sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_0", "multiberts-seed_0-step_80k"]}
null
google/multiberts-seed_0-step_80k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_80k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #0, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 83, 221, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 80k (max: 2000k, i.e., 2M steps)." ]
[ -0.08871974796056747, 0.10701144486665726, -0.0015987028600648046, 0.040644705295562744, 0.0861036628484726, -0.015975477173924446, 0.07881790399551392, 0.10166428238153458, 0.003935471177101135, 0.0334957093000412, 0.0780785009264946, -0.004226926248520613, 0.022788461297750473, 0.10347072780132294, 0.01981816440820694, -0.21536408364772797, 0.011698136106133461, -0.015581056475639343, -0.07867558300495148, 0.06920243799686432, 0.09179414808750153, -0.09012328833341599, 0.0486392006278038, 0.027696819975972176, -0.08640143275260925, 0.06256464868783951, -0.0043015507981181145, -0.018269062042236328, 0.13516129553318024, -0.004693234339356422, 0.04991628974676132, 0.0424402691423893, 0.03584877401590347, -0.12878920137882233, 0.004029886331409216, 0.061773646622896194, 0.06690096855163574, 0.04664793238043785, 0.026915106922388077, 0.07469069212675095, 0.02498207800090313, 0.015740690752863884, 0.03903987631201744, 0.026616260409355164, -0.062452103942632675, -0.09007405489683151, -0.09566821157932281, 0.03596753627061844, 0.014659902080893517, 0.005896721500903368, 0.011793158017098904, 0.1260770857334137, -0.024544019252061844, 0.04105633124709129, 0.17761363089084625, -0.3461968004703522, -0.011135884560644627, 0.0663764625787735, 0.04010394215583801, 0.13549847900867462, -0.005371918901801109, -0.017341772094368935, 0.08460954576730728, 0.025374431163072586, 0.09386994689702988, -0.028773238882422447, 0.03815030679106712, -0.043853823095560074, -0.14526499807834625, -0.037543438374996185, 0.10542850941419601, -0.00008842716488288715, -0.1330101191997528, -0.04532987251877785, -0.04203139618039131, 0.026861466467380524, 0.0036141136661171913, -0.023467011749744415, 0.032585032284259796, 0.013933205045759678, -0.016221966594457626, 0.0009890570072457194, -0.09744560718536377, -0.052430253475904465, 0.04953042417764664, 0.05393117293715477, 0.1055062934756279, 0.05612071603536606, 0.005192516837269068, 0.10722330212593079, -0.21040908992290497, -0.05738034099340439, -0.0201883465051651, -0.052248962223529816, -0.04247486591339111, -0.007798979990184307, -0.10451716929674149, -0.033528346568346024, 0.01853182539343834, 0.12583470344543457, 0.011567126028239727, 0.03035079315304756, -0.04239681735634804, 0.004589822143316269, 0.04634000360965729, 0.03682524338364601, -0.007881923578679562, -0.0019579604268074036, 0.020157672464847565, -0.015407131984829903, -0.026986926794052124, 0.016306914389133453, 0.004663718398660421, 0.02520306222140789, 0.1130555048584938, 0.023059513419866562, -0.1084774062037468, 0.07070107012987137, -0.015612931922078133, -0.03844223916530609, 0.013824345543980598, -0.09469336271286011, -0.04707088693976402, -0.043714042752981186, 0.014595508575439453, 0.02999161370098591, -0.011521910317242146, -0.01747739128768444, -0.0216735377907753, -0.03216209262609482, -0.08720354735851288, -0.046142227947711945, -0.06346233934164047, -0.13386204838752747, 0.005393318831920624, -0.19091513752937317, -0.03679565712809563, -0.1089196652173996, -0.17874349653720856, -0.019841821864247322, 0.05583081766963005, -0.01301931869238615, -0.048201244324445724, 0.08059868216514587, 0.0478142686188221, -0.026844529435038567, -0.0029920930974185467, 0.06519893556833267, -0.00859091617166996, 0.04426153376698494, -0.010679944418370724, 0.0675070732831955, 0.015034746378660202, 0.03320038318634033, -0.05354283004999161, 0.05746567249298096, -0.19507108628749847, 0.038977157324552536, -0.08229023218154907, -0.022453395649790764, -0.08924310654401779, -0.025000058114528656, -0.013742159120738506, 0.009699725545942783, 0.026659030467271805, 0.0774499699473381, -0.18822206556797028, -0.03261025622487068, 0.13961569964885712, -0.1562826782464981, -0.03611551597714424, 0.08049383759498596, -0.04018041864037514, 0.0697331577539444, 0.07737759500741959, 0.1431519091129303, -0.01901319995522499, -0.08762994408607483, 0.042542725801467896, -0.006620048079639673, 0.03490298613905907, -0.02121146395802498, 0.06839675456285477, -0.030731219798326492, -0.16290006041526794, 0.03233965113759041, -0.1252257078886032, 0.0022168445866554976, -0.07665245234966278, 0.023782575502991676, -0.02548501268029213, -0.06453636288642883, -0.07892077416181564, -0.02308795414865017, 0.05694504454731941, -0.08089354634284973, -0.024402761831879616, 0.025021828711032867, 0.06881215423345566, -0.08575497567653656, 0.06257635354995728, -0.01404726691544056, 0.016858793795108795, -0.1120612621307373, -0.035607144236564636, -0.18688292801380157, 0.05255359783768654, 0.0977996215224266, 0.02330915629863739, -0.017108701169490814, 0.15566416084766388, 0.01414442714303732, 0.06263945251703262, -0.05543126165866852, 0.019002515822649002, 0.0005802620435133576, -0.0022710259072482586, -0.10182374715805054, -0.10156582295894623, -0.0769604966044426, -0.06073281541466713, 0.06625102460384369, -0.1475008726119995, 0.019663993269205093, -0.05634148791432381, 0.04508284851908684, 0.02017524279654026, -0.07908140867948532, -0.016459979116916656, 0.024761121720075607, -0.06730745732784271, -0.06147392839193344, 0.035137441009283066, 0.06294960528612137, -0.025022273883223534, 0.08181575685739517, -0.05787846818566322, -0.06203495338559151, 0.029774010181427002, 0.10128176212310791, -0.1040758416056633, 0.0055028218775987625, -0.051739104092121124, -0.04349265620112419, -0.06767915934324265, -0.02368437685072422, 0.07750958204269409, -0.0017186689656227827, 0.1435423195362091, -0.07120385020971298, 0.001447837334126234, 0.013726454228162766, -0.010936468839645386, -0.008747771382331848, 0.043896276503801346, 0.08097460120916367, -0.06027218699455261, 0.017598452046513557, 0.045969076454639435, 0.012606079690158367, 0.06672420352697372, -0.058505911380052567, -0.10386650264263153, 0.028572503477334976, 0.03206167370080948, 0.030848633497953415, 0.06410609930753708, -0.039226140826940536, -0.014914100989699364, 0.04110846295952797, 0.012966405600309372, 0.006229575723409653, -0.10215465724468231, 0.0679062083363533, 0.06881499290466309, 0.010172859765589237, 0.060992531478405, -0.021460969001054764, -0.039487652480602264, 0.08101502060890198, 0.029077637940645218, -0.01344726886600256, -0.014505375176668167, -0.01095454953610897, -0.1079423576593399, 0.18317490816116333, -0.05485083907842636, -0.15062721073627472, -0.07332359999418259, -0.10211940854787827, 0.0021602914202958345, 0.030227642506361008, 0.040931493043899536, -0.0228232741355896, -0.059115465730428696, -0.12033426761627197, 0.04782268777489662, -0.03428918495774269, 0.06498309224843979, 0.09805052727460861, -0.0500677265226841, 0.06455530971288681, -0.13113795220851898, -0.016587555408477783, -0.0761282816529274, -0.07525745034217834, 0.05303078144788742, -0.049985140562057495, 0.02734282799065113, 0.09207379072904587, 0.019549578428268433, -0.013652579858899117, -0.019049230962991714, 0.1768600046634674, 0.0407254621386528, 0.027669433504343033, 0.13631761074066162, -0.04969006031751633, 0.054502252489328384, 0.0686437115073204, 0.021414998918771744, -0.04849962145090103, 0.04935939982533455, 0.05549788102507591, -0.0640818253159523, -0.18911124765872955, -0.02667543850839138, -0.021173415705561638, -0.04189883545041084, 0.08232925832271576, 0.03753660246729851, -0.0034645230043679476, 0.0711832344532013, 0.005679890513420105, 0.07633635401725769, -0.01997373253107071, 0.09713101387023926, 0.00355354230850935, -0.0291981752961874, 0.09277184307575226, -0.030455710366368294, -0.013903938233852386, 0.0815659835934639, -0.01602098159492016, 0.2892351746559143, -0.020968353375792503, 0.02187538705766201, 0.11482790112495422, 0.041244883090257645, 0.06626461446285248, 0.14455674588680267, -0.07482519000768661, 0.014524539932608604, -0.07287447899580002, -0.07063154876232147, -0.007396340370178223, 0.043035849928855896, -0.06846750527620316, 0.0071347663179039955, -0.072273388504982, -0.0031262401025742292, -0.021726856008172035, 0.29941532015800476, 0.09330080449581146, -0.11287014186382294, -0.047577153891325, -0.00019069857080467045, -0.09675192087888718, -0.08424869179725647, 0.04569091275334358, 0.07474302500486374, -0.12573346495628357, 0.011410779319703579, -0.025779949501156807, 0.08715308457612991, -0.023993277922272682, 0.023357460275292397, 0.014037791639566422, 0.04513844475150108, -0.043881792575120926, 0.012210050597786903, -0.19175799190998077, 0.1884927600622177, 0.016071204096078873, 0.03059685043990612, -0.05812687799334526, 0.03598032146692276, 0.013830581679940224, -0.030149487778544426, 0.05708165466785431, 0.012660044245421886, -0.02577143721282482, -0.05514521524310112, -0.054208967834711075, 0.025351347401738167, 0.06630409508943558, -0.05553700774908066, 0.10721220076084137, -0.0036117073614150286, 0.036249883472919464, 0.018762368708848953, 0.09569194167852402, -0.1833554357290268, -0.10720052570104599, 0.017073508352041245, -0.03759409487247467, -0.09867240488529205, -0.07487496733665466, -0.09397192299365997, -0.015688763931393623, 0.2649988830089569, -0.12487916648387909, -0.08211725205183029, -0.0995495393872261, 0.023651229217648506, 0.10661637037992477, -0.042948897927999496, 0.021556656807661057, 0.0016795112751424313, 0.1369849294424057, -0.06499277055263519, -0.1272297203540802, 0.03095133975148201, -0.08905915170907974, -0.15185968577861786, -0.06394219398498535, 0.10915131866931915, 0.061434607952833176, 0.03447016701102257, -0.032770879566669464, 0.023927081376314163, 0.022898957133293152, -0.034366220235824585, -0.019351761788129807, 0.08378736674785614, 0.12728533148765564, 0.03486248850822449, -0.10805242508649826, 0.025735199451446533, -0.05405869334936142, -0.0666811540722847, 0.06327033042907715, 0.25193044543266296, -0.0507039837539196, 0.1089283674955368, 0.11882103234529495, -0.07349787652492523, -0.14118261635303497, 0.03205890953540802, 0.07508276402950287, -0.01455766148865223, 0.016455160453915596, -0.1685149222612381, 0.09981531649827957, 0.11577948927879333, -0.018675614148378372, 0.020251816138625145, -0.16417206823825836, -0.1291525959968567, 0.08298757672309875, 0.08627616614103317, 0.26426395773887634, -0.06140204146504402, -0.03992592543363571, -0.0009550944669172168, -0.0833681970834732, 0.01586891897022724, 0.12702006101608276, 0.06734239310026169, -0.030684148892760277, -0.08757194131612778, 0.021760810166597366, -0.044655006378889084, 0.08639504015445709, 0.05913616716861725, 0.06650470942258835, 0.007388002704828978, 0.06120551750063896, -0.030805250629782677, -0.04367276653647423, 0.07411498576402664, -0.023732714354991913, 0.03294476121664047, -0.10563938319683075, -0.03702949360013008, -0.051939159631729126, 0.03523334115743637, -0.01010944601148367, -0.07184624671936035, -0.051618702709674835, 0.05610967054963112, 0.039081498980522156, -0.02190573513507843, 0.03858926147222519, 0.017109159380197525, 0.13760653138160706, 0.13356395065784454, 0.0212022103369236, -0.07639677077531815, -0.08134268969297409, -0.04275081306695938, -0.018395906314253807, 0.08591118454933167, -0.05561491847038269, 0.02892446145415306, 0.07422028481960297, 0.023260436952114105, 0.08958517014980316, 0.060142818838357925, -0.10448388755321503, -0.029187258332967758, 0.03551575168967247, -0.1644546389579773, 0.02003704197704792, -0.0027943591121584177, 0.03481295332312584, -0.033570680767297745, 0.04326656088232994, 0.14018209278583527, -0.06833411753177643, -0.03541763871908188, -0.03920804336667061, 0.06210042163729668, 0.022573858499526978, 0.14551910758018494, 0.03196093440055847, 0.04195943474769592, -0.09034113585948944, 0.12099213898181915, 0.03480352833867073, -0.06641743332147598, 0.03420259803533554, -0.03247671574354172, -0.10449748486280441, 0.014971873722970486, 0.06981855630874634, 0.08317584544420242, -0.048724837601184845, -0.018063928931951523, -0.016752814874053, -0.06961938738822937, 0.058791570365428925, 0.17157027125358582, 0.06106860190629959, 0.07837123423814774, -0.05953787639737129, -0.0563979335129261, -0.09416213631629944, 0.04408366233110428, 0.035044532269239426, 0.07890796661376953, -0.07122550159692764, 0.09766983985900879, 0.012042593210935593, 0.028289860114455223, -0.0282509196549654, -0.04201113060116768, -0.09259842336177826, -0.05883444845676422, -0.11273801326751709, 0.0029657669365406036, -0.0707862377166748, -0.0420340895652771, 0.0021249549463391304, 0.004727034829556942, -0.0005029196036048234, 0.046781256794929504, -0.0674910619854927, -0.00643203454092145, -0.015018690377473831, 0.04367564618587494, -0.06985236704349518, -0.02590203285217285, 0.023609817028045654, -0.1076921746134758, 0.08827126771211624, 0.051169052720069885, -0.002005454385653138, 0.0031720211263746023, 0.08598582446575165, -0.01707419380545616, 0.02192625030875206, 0.016110677272081375, -0.0442180261015892, -0.06766771525144577, 0.008218190632760525, -0.0016996313352137804, -0.01351349987089634, -0.01221100240945816, 0.0738956555724144, -0.09344878792762756, 0.030971821397542953, 0.005516576115041971, -0.0035093678161501884, -0.06989200413227081, -0.015555307269096375, 0.10165052860975266, 0.09994908422231674, 0.035552166402339935, -0.09030573070049286, -0.0033991599921137094, -0.14099091291427612, -0.033672086894512177, 0.003742426633834839, -0.01462505105882883, -0.11005976051092148, -0.0071637388318777084, 0.03157038986682892, -0.007790490984916687, 0.2187175750732422, -0.055640809237957, -0.008131977170705795, 0.010707447305321693, -0.10389164835214615, 0.12621071934700012, -0.03821174427866936, 0.20041872560977936, -0.006866706069558859, -0.0376163013279438, -0.013515079393982887, 0.04508126154541969, 0.01981489732861519, 0.00218102615326643, 0.18112941086292267, 0.12933772802352905, 0.015405257232487202, 0.0313381627202034, -0.03577128425240517, -0.009578588418662548, -0.07065904140472412, -0.03827822953462601, 0.04187045246362686, 0.05887617543339729, 0.01656961813569069, 0.17501789331436157, 0.07305040955543518, -0.15161052346229553, 0.030743669718503952, -0.038297783583402634, -0.035488616675138474, -0.11995957046747208, -0.10845393687486649, -0.028942229226231575, -0.08260871469974518, 0.013246937654912472, -0.12409163266420364, 0.012053661979734898, 0.1949482560157776, 0.060431107878685, 0.01926952414214611, 0.016040900722146034, -0.12083085626363754, -0.023204442113637924, 0.05064964294433594, 0.020211290568113327, 0.01818043366074562, 0.0573335736989975, -0.002747274236753583, 0.06515225768089294, 0.029333237558603287, 0.01567423716187477, -0.000682520039845258, 0.08443005383014679, 0.016911685466766357, 0.05033146217465401, -0.059047747403383255, -0.015024147927761078, -0.0474269799888134, 0.0741751566529274, 0.12188178300857544, 0.041608087718486786, -0.05231587961316109, -0.01671433262526989, 0.16509579122066498, -0.05215582251548767, 0.005344486329704523, -0.11467421054840088, 0.35492393374443054, 0.025013700127601624, 0.00572962174192071, 0.040127962827682495, -0.07198840379714966, -0.03697606548666954, 0.19937239587306976, 0.06531096994876862, 0.00565082672983408, -0.019178293645381927, -0.011562338098883629, -0.03477116674184799, -0.037058088928461075, 0.1472281515598297, 0.0346224382519722, 0.13084976375102997, -0.0530908927321434, -0.04356194660067558, -0.018790552392601967, -0.003958870191127062, -0.13465049862861633, 0.13148920238018036, -0.0281949695199728, -0.030694030225276947, -0.062226518988609314, 0.0217694453895092, 0.09140580147504807, -0.3191933035850525, 0.004623145796358585, -0.017987597733736038, -0.09971091151237488, -0.006499652750790119, -0.006411001086235046, -0.01643105410039425, 0.036185190081596375, -0.050162382423877716, 0.07157772034406662, 0.04121318459510803, 0.028261970728635788, -0.022260157391428947, -0.10011576116085052, 0.150384783744812, 0.0404340960085392, 0.08870340138673782, 0.03530783951282501, 0.05452095344662666, 0.059081993997097015, 0.03420297056436539, -0.09688197821378708, 0.04997313395142555, 0.0036259579937905073, -0.0892176404595375, -0.04205925762653351, 0.11585091799497604, 0.0025704402942210436, 0.03817369416356087, 0.033528536558151245, -0.10315264761447906, 0.0034202809911221266, 0.06964624673128128, -0.06316245347261429, -0.09266120195388794, -0.009805048815906048, -0.0814126580953598, 0.16059134900569916, 0.14049121737480164, -0.016682934015989304, 0.013538939878344536, -0.07496310025453568, -0.0003551052650436759, 0.05383552983403206, -0.0014284829376265407, -0.02358056791126728, -0.19294750690460205, 0.034616392105817795, -0.05109709873795509, -0.013052336871623993, -0.22950762510299683, -0.09480974823236465, -0.010015907697379589, -0.04440702125430107, -0.037609588354825974, 0.037343829870224, 0.03238772228360176, 0.07489557564258575, -0.016276022419333458, -0.055843252688646317, -0.02463526651263237, 0.0856197252869606, -0.11541889607906342, -0.0565020814538002 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_0", "multiberts-seed_0-step_900k"]}
null
google/multiberts-seed_0-step_900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #0, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 83, 221, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #multiberts-seed_0-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0, captured at step 900k (max: 2000k, i.e., 2M steps)." ]
[ -0.0854918509721756, 0.08676258474588394, -0.001432217308320105, 0.042376235127449036, 0.08626801520586014, -0.01497966144233942, 0.06600106507539749, 0.10053969919681549, -0.006451446563005447, 0.030601194128394127, 0.08156382292509079, -0.007264675106853247, 0.02464880608022213, 0.09645085781812668, 0.02454877272248268, -0.2149716466665268, 0.018271051347255707, -0.017298541963100433, -0.07831285893917084, 0.06992952525615692, 0.09339115768671036, -0.09028427302837372, 0.04807980731129646, 0.029586026445031166, -0.08473178744316101, 0.06013478711247444, -0.007270559668540955, -0.01613234169781208, 0.13077576458454132, -0.001455531339161098, 0.048673998564481735, 0.044109977781772614, 0.036592427641153336, -0.13226762413978577, 0.0039095827378332615, 0.060854315757751465, 0.06979130953550339, 0.04271363466978073, 0.01957416534423828, 0.0727819874882698, 0.006225266493856907, 0.019926410168409348, 0.03970896080136299, 0.02630617469549179, -0.06363247334957123, -0.07954863458871841, -0.09787537157535553, 0.04519469290971756, 0.01863718405365944, 0.0034053418785333633, 0.015644077211618423, 0.12305205315351486, -0.03485992178320885, 0.037307195365428925, 0.1723182052373886, -0.33198702335357666, -0.014340384863317013, 0.07287753373384476, 0.041428714990615845, 0.1243792474269867, -0.008325296454131603, -0.020066237077116966, 0.08366795629262924, 0.021543078124523163, 0.0965387150645256, -0.028913265094161034, 0.02543853409588337, -0.05323106423020363, -0.1465107500553131, -0.03582150116562843, 0.09450101852416992, -0.0010643794666975737, -0.1323762685060501, -0.04814421758055687, -0.04052836075425148, 0.021803084760904312, 0.004426694940775633, -0.022215407341718674, 0.03093358688056469, 0.010907778516411781, -0.012073429301381111, -0.008511194959282875, -0.09582239389419556, -0.058324094861745834, 0.04427371546626091, 0.07431203126907349, 0.10569234192371368, 0.056088533252477646, 0.007386054378002882, 0.11419262737035751, -0.2071334719657898, -0.05648750439286232, -0.03154994919896126, -0.057648640125989914, -0.04102598875761032, -0.011512399651110172, -0.10181966423988342, -0.03365484997630119, 0.018607724457979202, 0.12641926109790802, 0.022345028817653656, 0.03011576272547245, -0.026368441060185432, 0.00037350825732573867, 0.04715771973133087, 0.039936743676662445, -0.009460176341235638, 0.01017523743212223, 0.02631410025060177, -0.005678728688508272, -0.024700645357370377, 0.016409896314144135, 0.010047737509012222, 0.020999262109398842, 0.10645217448472977, 0.028271881863474846, -0.10431768000125885, 0.07294618338346481, -0.015153174288570881, -0.03560636192560196, 0.02267294190824032, -0.09459512680768967, -0.05057370290160179, -0.044605448842048645, 0.013919809833168983, 0.030240535736083984, -0.013156416825950146, -0.02023956924676895, -0.021655578166246414, -0.028630251064896584, -0.08896933495998383, -0.047816380858421326, -0.06497638672590256, -0.13044694066047668, 0.005020576063543558, -0.1829266995191574, -0.03650926053524017, -0.11364179104566574, -0.18669646978378296, -0.01923288032412529, 0.055207982659339905, -0.013880017213523388, -0.046869270503520966, 0.08320462703704834, 0.04367498680949211, -0.027806352823972702, -0.004421267192810774, 0.06703472137451172, -0.006587371230125427, 0.04438665136694908, -0.011796126142144203, 0.06739478558301926, 0.010983597487211227, 0.032364096492528915, -0.059054598212242126, 0.06143275648355484, -0.19550037384033203, 0.04641105607151985, -0.0853167250752449, -0.017594987526535988, -0.08744427561759949, -0.02735081873834133, -0.02344374731183052, 0.006271223537623882, 0.029370881617069244, 0.08102362602949142, -0.18383462727069855, -0.026964262127876282, 0.13025523722171783, -0.15845255553722382, -0.038420420140028, 0.0741879940032959, -0.04159851372241974, 0.0766507089138031, 0.07705650478601456, 0.14826425909996033, 0.0058777304366230965, -0.09097377955913544, 0.03919917345046997, -0.004308154806494713, 0.028162969276309013, -0.025854388251900673, 0.06332109868526459, -0.03265643119812012, -0.161466583609581, 0.032538753002882004, -0.13085539638996124, 0.006421016063541174, -0.077039934694767, 0.021229127421975136, -0.023783715441823006, -0.07056570798158646, -0.07314549386501312, -0.027631619945168495, 0.05784933269023895, -0.07647638022899628, -0.012756253592669964, 0.03139299526810646, 0.07148890942335129, -0.08543872833251953, 0.0690232589840889, -0.005889051128178835, 0.023602301254868507, -0.1076609268784523, -0.033486805856227875, -0.18521320819854736, 0.04864506423473358, 0.10141457617282867, 0.0017618838464841247, -0.019156405702233315, 0.13326121866703033, 0.010696104727685452, 0.06000731140375137, -0.0585799477994442, 0.017740795388817787, -0.0013909877743571997, 0.0003402202273719013, -0.09729775041341782, -0.09527311474084854, -0.08355379849672318, -0.060329362750053406, 0.060603395104408264, -0.1319936364889145, 0.021155228838324547, -0.05221525952219963, 0.046274375170469284, 0.018480967730283737, -0.07896579056978226, -0.012263021431863308, 0.027143413200974464, -0.06068343669176102, -0.061489351093769073, 0.0335906483232975, 0.06333213299512863, -0.030582044273614883, 0.07801283150911331, -0.04471629485487938, -0.07078284025192261, 0.030313121154904366, 0.10897838324308395, -0.10922803729772568, 0.006621011067181826, -0.05124254524707794, -0.04199529439210892, -0.07507601380348206, -0.028782764449715614, 0.08096924424171448, -0.0009112977422773838, 0.1398644596338272, -0.0755394995212555, -0.0005599819705821574, 0.012571851722896099, -0.014134075492620468, -0.01260958518832922, 0.03929406777024269, 0.07434006780385971, -0.056410323828458786, 0.015492236241698265, 0.04236140847206116, 0.011357437819242477, 0.07196502387523651, -0.057764794677495956, -0.09921878576278687, 0.027688806876540184, 0.03266490250825882, 0.02860766276717186, 0.0672261118888855, -0.027387309819459915, -0.010695935226976871, 0.035828713327646255, 0.016151247546076775, 0.0072982823476195335, -0.1048012375831604, 0.06793642789125443, 0.06712625175714493, 0.010509612038731575, 0.06017785891890526, -0.016804412007331848, -0.04079245403409004, 0.07740304619073868, 0.03480977565050125, -0.0004280968278180808, -0.014174157753586769, -0.01173677109181881, -0.10591624677181244, 0.187221497297287, -0.05348500981926918, -0.14871394634246826, -0.07687961310148239, -0.09746778756380081, -0.00524714682251215, 0.025364859029650688, 0.03776382654905319, -0.022073807194828987, -0.05649435892701149, -0.12054748088121414, 0.0540899932384491, -0.02811623178422451, 0.06651565432548523, 0.09958923608064651, -0.049751244485378265, 0.06263693422079086, -0.1320413202047348, -0.013059970922768116, -0.07983575016260147, -0.07356146723031998, 0.04394548013806343, -0.044757526367902756, 0.032524801790714264, 0.0903473049402237, 0.019372690469026566, -0.017710208892822266, -0.023374946787953377, 0.18843001127243042, 0.04050165042281151, 0.029166918247938156, 0.13631883263587952, -0.04659198969602585, 0.05660681799054146, 0.07725416868925095, 0.02496258355677128, -0.047966212034225464, 0.049499668180942535, 0.0499526746571064, -0.06738002598285675, -0.1802675873041153, -0.029053756967186928, -0.024864723905920982, -0.0523739792406559, 0.07937891036272049, 0.034938689321279526, -0.004216216970235109, 0.07116220891475677, 0.006765868980437517, 0.06953516602516174, -0.015640271827578545, 0.10014655441045761, 0.01394384540617466, -0.026357004418969154, 0.08864492177963257, -0.033490654081106186, -0.012983839027583599, 0.07732077687978745, -0.008664900436997414, 0.2917366027832031, -0.032342515885829926, 0.003904724260792136, 0.1170276552438736, 0.04521989822387695, 0.06730231642723083, 0.1452263742685318, -0.07820941507816315, 0.015252111479640007, -0.06633628159761429, -0.06780168414115906, -0.007569995708763599, 0.03658125177025795, -0.061141304671764374, 0.01358178723603487, -0.07405310869216919, -0.008163832128047943, -0.01747807301580906, 0.3014838993549347, 0.09864229708909988, -0.10069470852613449, -0.05223720893263817, -0.000630486523732543, -0.09841395914554596, -0.07960940152406693, 0.04661419615149498, 0.06683696061372757, -0.12918676435947418, 0.018198681995272636, -0.018871694803237915, 0.08384277671575546, -0.022136518731713295, 0.01923682913184166, 0.020231539383530617, 0.048140812665224075, -0.04445111006498337, 0.007775512523949146, -0.18436181545257568, 0.19551311433315277, 0.015843214467167854, 0.0362129844725132, -0.05613144859671593, 0.036508701741695404, 0.012934403494000435, -0.034790121018886566, 0.058279797434806824, 0.01565801352262497, -0.006752686109393835, -0.05874016508460045, -0.05560292676091194, 0.019447648897767067, 0.06646223366260529, -0.04947461560368538, 0.10333798080682755, -0.0010953963501378894, 0.03563205897808075, 0.011907698586583138, 0.09735137224197388, -0.1836894005537033, -0.10459209978580475, 0.017445888370275497, -0.042002372443675995, -0.1012139543890953, -0.07921334356069565, -0.09269555658102036, -0.004330651368945837, 0.24397273361682892, -0.12612734735012054, -0.08404792100191116, -0.09594456106424332, 0.016517406329512596, 0.11409512907266617, -0.0436486080288887, 0.028893928974866867, -0.0029677264392375946, 0.129336878657341, -0.0642278715968132, -0.13054756820201874, 0.023621609434485435, -0.08885778486728668, -0.1543816477060318, -0.061531562358140945, 0.11249746382236481, 0.055500272661447525, 0.034810084849596024, -0.031066816300153732, 0.02265232615172863, 0.02814972586929798, -0.04161043465137482, -0.02782830037176609, 0.08085013180971146, 0.10599067062139511, 0.045638084411621094, -0.10602012276649475, 0.010408220812678337, -0.05783948674798012, -0.06595499068498611, 0.06274835020303726, 0.25366032123565674, -0.05235046520829201, 0.11259535700082779, 0.13313303887844086, -0.0729653462767601, -0.1527559906244278, 0.029466496780514717, 0.07675029337406158, -0.015543203800916672, 0.00495751341804862, -0.15780112147331238, 0.0971568375825882, 0.12010153383016586, -0.019396726042032242, 0.007684436161071062, -0.17780090868473053, -0.13739509880542755, 0.07698104530572891, 0.08701418340206146, 0.2588551342487335, -0.05651199072599411, -0.04366444796323776, -0.0002558031992521137, -0.08663216233253479, 0.014544814825057983, 0.13624580204486847, 0.07047761231660843, -0.03353084996342659, -0.09873392432928085, 0.018527643755078316, -0.04637955129146576, 0.08928501605987549, 0.06040201708674431, 0.06453625112771988, 0.0063507468439638615, 0.06056975573301315, -0.022378623485565186, -0.044944893568754196, 0.074136883020401, -0.006221727002412081, 0.035936541855335236, -0.09573355317115784, -0.03469490632414818, -0.0578014999628067, 0.031192677095532417, -0.01109571848064661, -0.07021380960941315, -0.06073218956589699, 0.0630878359079361, 0.047528862953186035, -0.02488032728433609, 0.02559669315814972, 0.017642972990870476, 0.13673998415470123, 0.13844221830368042, 0.019637813791632652, -0.07714516669511795, -0.08100792020559311, -0.03507077321410179, -0.02234112098813057, 0.08601483702659607, -0.049559082835912704, 0.02613045647740364, 0.07506915181875229, 0.027245232835412025, 0.0825297087430954, 0.061736565083265305, -0.10133315622806549, -0.02463490329682827, 0.03772244602441788, -0.15896475315093994, 0.016271980479359627, 0.0004686908796429634, 0.025651240721344948, -0.04077121242880821, 0.04380340874195099, 0.13377998769283295, -0.07054147124290466, -0.03471068665385246, -0.03908206894993782, 0.061323098838329315, 0.017181774601340294, 0.15088041126728058, 0.03419480845332146, 0.042172953486442566, -0.08943016082048416, 0.12536627054214478, 0.03437064215540886, -0.06311593949794769, 0.0263692494481802, -0.033564697951078415, -0.10503675043582916, 0.016156107187271118, 0.05960403010249138, 0.06095769628882408, -0.05031599849462509, -0.009781058877706528, -0.010478680022060871, -0.07720842957496643, 0.05508177727460861, 0.18629033863544464, 0.06290202587842941, 0.07984087616205215, -0.06075309216976166, -0.05374553054571152, -0.0954236313700676, 0.04039251431822777, 0.039179105311632156, 0.07883615791797638, -0.07379478961229324, 0.08950807899236679, 0.012543913908302784, 0.028247984126210213, -0.029056699946522713, -0.0439533032476902, -0.09613379091024399, -0.05716478079557419, -0.10059312731027603, -0.0014853912871330976, -0.0788172036409378, -0.03552882373332977, 0.000037590114516206086, 0.0035848908592015505, -0.005559093784540892, 0.04700775444507599, -0.06435653567314148, -0.007961798459291458, -0.015643976628780365, 0.04317038878798485, -0.06724726408720016, -0.028694158419966698, 0.027650104835629463, -0.10710924118757248, 0.08814749121665955, 0.04746473208069801, 0.0011842442909255624, 0.001996689010411501, 0.09341185539960861, -0.02170436643064022, 0.020913507789373398, 0.02103990688920021, -0.046273037791252136, -0.06819532066583633, 0.006791660562157631, -0.0012808297760784626, -0.011856859549880028, -0.005692171398550272, 0.07534756511449814, -0.09456285089254379, 0.028841253370046616, 0.0017086986918002367, 0.0023378601763397455, -0.06847355514764786, -0.01263057067990303, 0.1163008064031601, 0.0988418459892273, 0.03570586442947388, -0.09371214359998703, -0.0008874944178387523, -0.1390092819929123, -0.03376925736665726, 0.00090485077816993, -0.0188274048268795, -0.11553162336349487, -0.006401909980922937, 0.032742030918598175, -0.0031296375673264265, 0.22708697617053986, -0.06419932097196579, -0.008574808947741985, 0.014492493122816086, -0.09253585338592529, 0.12266629934310913, -0.030991675332188606, 0.20336762070655823, -0.006159021519124508, -0.04232167452573776, -0.010045703500509262, 0.04662272706627846, 0.01652643270790577, 0.0005745725356973708, 0.18303059041500092, 0.12847067415714264, 0.025751110166311264, 0.0353742279112339, -0.03173309937119484, -0.0013900913763791323, -0.048874616622924805, -0.050102852284908295, 0.03785150498151779, 0.054635804146528244, 0.016202958300709724, 0.15431180596351624, 0.060880184173583984, -0.15379850566387177, 0.03322349861264229, -0.03514615073800087, -0.04015442356467247, -0.11686321347951889, -0.1045152097940445, -0.02312581241130829, -0.08103349804878235, 0.013683688826858997, -0.12431773543357849, 0.007926585152745247, 0.18296213448047638, 0.05856842175126076, 0.021202174946665764, 0.03456595912575722, -0.12792420387268066, -0.021211188286542892, 0.057452958077192307, 0.0178561732172966, 0.02261127345263958, 0.05942226201295853, -0.0029981276020407677, 0.06491311639547348, 0.027732357382774353, 0.010775204747915268, 0.0017350033158436418, 0.0769304558634758, 0.014993811957538128, 0.05185540020465851, -0.05791066586971283, -0.010843751020729542, -0.04589114338159561, 0.07715331017971039, 0.12952136993408203, 0.042481929063797, -0.05105441063642502, -0.01804266683757305, 0.16418561339378357, -0.05082087591290474, 0.001494564232416451, -0.1169089749455452, 0.3467617630958557, 0.031226133927702904, 0.0034260903485119343, 0.04230862483382225, -0.07496364414691925, -0.045103009790182114, 0.20753857493400574, 0.07306818664073944, 0.0019346238113939762, -0.016620248556137085, -0.011171077378094196, -0.03395121544599533, -0.03223590552806854, 0.15091626346111298, 0.03229024261236191, 0.12527300417423248, -0.05164380744099617, -0.039446622133255005, -0.01566932536661625, -0.00828930176794529, -0.13068969547748566, 0.1334506869316101, -0.028373446315526962, -0.034054819494485855, -0.06963710486888885, 0.023978639394044876, 0.08059705793857574, -0.312376469373703, 0.00916040688753128, -0.029961517080664635, -0.10108459740877151, -0.010190147906541824, -0.013365733437240124, -0.01499217189848423, 0.03580692037940025, -0.04636577144265175, 0.07625611126422882, 0.03839689865708351, 0.03038882650434971, -0.019932610914111137, -0.11335475742816925, 0.15489552915096283, 0.05453060194849968, 0.09565626829862595, 0.03674586862325668, 0.05133456736803055, 0.05980118736624718, 0.032708171755075455, -0.10649161040782928, 0.05119067803025246, 0.007148262113332748, -0.09399307519197464, -0.0426868200302124, 0.11582951992750168, 0.005772343836724758, 0.038947079330682755, 0.027976760640740395, -0.11024598777294159, 0.0076521411538124084, 0.0740325078368187, -0.05725809186697006, -0.09552732855081558, -0.008305180817842484, -0.08087857812643051, 0.16133445501327515, 0.14096930623054504, -0.018159572035074234, 0.012420376762747765, -0.06759524345397949, -0.004938618279993534, 0.05451173335313797, 0.0003065490163862705, -0.026510074734687805, -0.197000652551651, 0.03405618667602539, -0.07368611544370651, -0.013986457139253616, -0.22085149586200714, -0.09971532970666885, -0.008056767284870148, -0.046333469450473785, -0.034843966364860535, 0.045866746455430984, 0.027370678260922432, 0.07629211246967316, -0.011788059026002884, -0.0632835105061531, -0.028384877368807793, 0.0819190964102745, -0.11489583551883698, -0.05747643858194351 ]
null
null
transformers
# MultiBERTs - Seed 0 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0') model = TFBertModel.from_pretrained("google/multiberts-seed_0") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0') model = BertModel.from_pretrained("google/multiberts-seed_0") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_0"]}
null
google/multiberts-seed_0
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_0", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 0 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #0. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 0\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 0\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_0 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 0\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #0.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06348147988319397, 0.09134791791439056, -0.004097555298358202, 0.04404676333069801, 0.07663298398256302, 0.014618179760873318, 0.0546838715672493, 0.0744563415646553, -0.08894481509923935, 0.022203590720891953, -0.011107285507023335, -0.04699849337339401, 0.07697299122810364, -0.044434722512960434, 0.05911784619092941, -0.23470477759838104, 0.04991300776600838, -0.030040016397833824, -0.025379709899425507, 0.027879837900400162, 0.11212600022554398, -0.09609099477529526, 0.07507255673408508, 0.05523442104458809, 0.0054939440451562405, 0.01703624799847603, -0.015339040197432041, 0.004526139236986637, 0.08676299452781677, 0.03203573077917099, 0.0842156782746315, -0.0022363823372870684, 0.08481436222791672, -0.14168013632297516, 0.006506013218313456, 0.060008905827999115, 0.0637328028678894, 0.04276448115706444, 0.11685805022716522, 0.006145933642983437, 0.08776255697011948, 0.018247369676828384, 0.05225758999586105, 0.04559563472867012, -0.07451483607292175, -0.17086099088191986, -0.09191519767045975, 0.018934501335024834, -0.0009043535101227462, 0.006776586640626192, -0.007092646788805723, -0.01971660740673542, -0.019919048994779587, 0.021164925768971443, 0.12013713270425797, -0.2663504481315613, -0.016336608678102493, 0.009096262976527214, 0.05840441584587097, 0.05828440934419632, -0.03796809911727905, -0.04092151299118996, 0.04300388693809509, 0.052711308002471924, 0.04199015721678734, -0.024615632370114326, 0.04072779789566994, -0.01532090362161398, -0.15352697670459747, -0.019232897087931633, 0.10764272511005402, -0.048630718141794205, -0.1180073693394661, -0.0474514439702034, -0.032808613032102585, 0.12229862809181213, 0.008804352954030037, -0.036022938787937164, 0.046235572546720505, 0.03103279136121273, 0.06299576163291931, -0.06321673095226288, -0.11675592511892319, 0.025989660993218422, -0.05145544931292534, 0.10768239945173264, 0.09365957975387573, 0.048886336386203766, -0.008096014149487019, 0.05627436563372612, -0.08466444909572601, -0.0777100995182991, -0.05166323482990265, -0.0891110748052597, -0.0406685471534729, -0.038304030895233154, -0.08460507541894913, -0.16520652174949646, -0.0034270461183041334, 0.10932166874408722, -0.06159782037138939, 0.008433833718299866, -0.09011918306350708, -0.0213396605104208, 0.09429401904344559, 0.16182160377502441, -0.10809563845396042, 0.04756864905357361, -0.010545586235821247, 0.010479333810508251, -0.023708142340183258, 0.03157760202884674, 0.011759131215512753, -0.009460117667913437, 0.05119895190000534, 0.023499032482504845, -0.019064130261540413, 0.04299354925751686, -0.020462920889258385, -0.041928332298994064, 0.053919125348329544, -0.13419577479362488, -0.010527880862355232, 0.0025748913176357746, -0.004058361053466797, 0.06148019805550575, 0.06514947861433029, -0.027979589998722076, -0.09082280844449997, 0.02280041202902794, -0.08169088512659073, -0.04604680463671684, -0.06064695119857788, -0.15678581595420837, 0.026972122490406036, -0.0759153664112091, -0.04961085692048073, -0.09434142708778381, -0.09842300415039062, -0.026155361905694008, 0.06145773455500603, -0.0174382533878088, 0.038339320570230484, 0.030076714232563972, -0.007923842407763004, -0.0420914962887764, 0.046087443828582764, 0.006421390455216169, -0.01578509621322155, 0.008137366734445095, -0.044225018471479416, 0.05399991571903229, -0.010007884353399277, 0.044185709208250046, -0.07101016491651535, 0.020790254697203636, -0.14303945004940033, 0.0622941330075264, -0.096797876060009, -0.08369497954845428, -0.05078582838177681, -0.041730206459760666, -0.07294587790966034, 0.03057989850640297, 0.00981735810637474, 0.06196695193648338, -0.14919544756412506, -0.050029028207063675, 0.13819754123687744, -0.13621671497821808, 0.0355629064142704, 0.09586847573518753, -0.05102582275867462, 0.04404253140091896, 0.11680541932582855, 0.057976134121418, 0.07099370658397675, -0.04865429177880287, -0.01432234887033701, 0.009640148840844631, 0.03468800336122513, 0.14422747492790222, 0.0662224292755127, -0.06929492205381393, -0.08295390754938126, 0.035537220537662506, -0.07415435463190079, -0.043759603053331375, -0.05968667194247246, -0.005233940202742815, -0.010165195912122726, -0.055903609842061996, -0.006103554740548134, -0.02490069344639778, -0.012232575565576553, -0.017299503087997437, -0.051570989191532135, 0.05185756832361221, 0.06213824450969696, -0.08815706521272659, 0.057140618562698364, -0.055001575499773026, 0.017028868198394775, -0.08032097667455673, -0.0014069925528019667, -0.17909151315689087, 0.007952227257192135, 0.1111590638756752, -0.09949753433465958, 0.05065656453371048, 0.16269360482692719, 0.02194255217909813, 0.06833399087190628, -0.051949311047792435, 0.07103541493415833, 0.005773904733359814, -0.024574479088187218, -0.04556521400809288, -0.11844345927238464, -0.06475688517093658, -0.061129823327064514, 0.01009130384773016, -0.08441444486379623, -0.005402550101280212, -0.037963591516017914, 0.020274141803383827, 0.02328166551887989, -0.06356357783079147, 0.01967312954366207, 0.025061173364520073, -0.03819393739104271, -0.027385789901018143, -0.02551773004233837, 0.045324284583330154, 0.015214502811431885, 0.11633842438459396, -0.0934378057718277, -0.06713037192821503, 0.04638172313570976, 0.05119144544005394, -0.052743252366781235, 0.09250743687152863, -0.0545639805495739, -0.03384062647819519, -0.09980370849370956, -0.09809176623821259, 0.1737094521522522, -0.004645515698939562, 0.09988675266504288, -0.09637963026762009, -0.025809271261096, -0.00025844573974609375, -0.009388502687215805, -0.0033792315516620874, 0.05178667977452278, 0.013217817060649395, -0.09561231732368469, -0.003034848254173994, 0.015971172600984573, 0.017001939937472343, 0.07741263508796692, -0.0198826901614666, -0.11433852463960648, 0.030170919373631477, -0.00153095624409616, -0.006794648710638285, 0.06611481308937073, -0.049531109631061554, -0.005169583018869162, 0.05511344596743584, 0.05702517554163933, 0.055942218750715256, -0.06593325734138489, 0.09603728353977203, 0.06585211306810379, -0.04417655989527702, -0.04300270229578018, -0.08495260775089264, 0.01055234670639038, 0.11531086266040802, 0.026053400710225105, 0.058576297014951706, -0.04665558785200119, -0.023381656035780907, -0.10389069467782974, 0.15701401233673096, -0.08753034472465515, -0.16010160744190216, -0.15123872458934784, 0.0072089084424078465, -0.05611003190279007, 0.06263171881437302, 0.016266928985714912, -0.04971632733941078, -0.097598597407341, -0.0793086513876915, 0.15905779600143433, -0.04004748910665512, -0.006592527497559786, 0.01778317801654339, -0.029079437255859375, 0.037382882088422775, -0.1813046634197235, -0.0009838473051786423, -0.03986157104372978, -0.126040518283844, -0.03831968829035759, 0.00023793311265762895, 0.0676201730966568, 0.07154376059770584, -0.037827327847480774, -0.07556194067001343, 0.01841055415570736, 0.16410550475120544, 0.034475330263376236, 0.07777849584817886, 0.09362664818763733, -0.09786275029182434, 0.04275747761130333, 0.0470900796353817, 0.030568035319447517, -0.01317680161446333, 0.00877966359257698, 0.057129666209220886, -0.02626064233481884, -0.28366661071777344, -0.008871647529304028, -0.019146515056490898, -0.016834091395139694, 0.06577168405056, 0.04216932877898216, -0.08628091216087341, 0.048329874873161316, -0.05641721189022064, 0.031463317573070526, 0.08704635500907898, 0.0455450601875782, 0.0949530079960823, -0.03888785094022751, 0.09348887950181961, -0.053577933460474014, -0.017186347395181656, 0.1083756685256958, -0.05042845010757446, 0.19885684549808502, -0.05675148591399193, 0.05241229012608528, 0.09802643954753876, -0.012092536315321922, 0.03808341547846794, 0.13688436150550842, -0.05175427347421646, 0.07067287713289261, -0.05797388777136803, -0.045471496880054474, -0.037949539721012115, 0.023862920701503754, -0.0010185559513047338, 0.03650864586234093, -0.03700581192970276, -0.01610821671783924, -0.0032842769287526608, 0.2411997765302658, 0.06864243000745773, -0.1242741271853447, -0.06861361116170883, 0.007308658212423325, -0.10816686600446701, -0.07013854384422302, 0.05083015561103821, 0.09124313294887543, -0.08272118121385574, 0.046376071870326996, 0.010353096760809422, 0.06798919290304184, -0.1276969015598297, 0.02086644433438778, 0.040054887533187866, 0.0498478002846241, -0.025266289710998535, 0.03293958306312561, -0.15615378320217133, 0.08322665095329285, 0.035959888249635696, 0.053600676357746124, -0.05139937251806259, 0.06410151720046997, 0.01980145275592804, -0.013239189051091671, 0.02537410706281662, 0.01104727853089571, -0.019831771031022072, -0.027269750833511353, -0.0668734535574913, 0.084242083132267, 0.07589869201183319, -0.051698822528123856, 0.11961271613836288, -0.05008887127041817, 0.011882588267326355, -0.009820902720093727, 0.07737316936254501, -0.17306910455226898, -0.12988702952861786, 0.04511251300573349, -0.1415262222290039, -0.024528833106160164, -0.06759701669216156, -0.05405314266681671, -0.0683668702840805, 0.16824474930763245, -0.12418228387832642, -0.13327598571777344, -0.08530411869287491, -0.012465237639844418, 0.15218688547611237, -0.030382148921489716, 0.008049091324210167, -0.017263540998101234, 0.1317349523305893, -0.03609155863523483, -0.1517772078514099, -0.04875411465764046, -0.07098285108804703, -0.15057256817817688, -0.03386784344911575, 0.07002026587724686, 0.11025422811508179, 0.05123182386159897, 0.005516097415238619, 0.025679154321551323, 0.0032997315283864737, -0.05231136083602905, -0.01609043776988983, 0.1819131225347519, 0.05344613268971443, 0.07098323106765747, -0.1605874001979828, -0.05800432339310646, -0.048938535153865814, 0.023733001202344894, -0.046227797865867615, 0.09761179983615875, -0.030337223783135414, 0.07908507436513901, 0.24234406650066376, -0.1294488161802292, -0.20359966158866882, 0.008050324395298958, 0.029643457382917404, 0.0036869575269520283, 0.00603529904037714, -0.2245161533355713, 0.1220475286245346, 0.0885591134428978, -0.0005780651117675006, -0.00709732249379158, -0.18617171049118042, -0.08171971142292023, 0.08043845742940903, 0.008450347930192947, 0.14756087958812714, -0.09198601543903351, -0.03094332665205002, 0.008547174744307995, -0.08552410453557968, 0.05281217396259308, 0.04643096402287483, 0.08345118910074234, 0.000009585733096173499, -0.07579001784324646, 0.049903251230716705, -0.014409158378839493, 0.08615939319133759, 0.0455470085144043, 0.04663722589612007, -0.03365982323884964, 0.13189436495304108, 0.001963832415640354, -0.017745455726981163, 0.1378679722547531, 0.1128566786646843, 0.0569596104323864, -0.024919550865888596, -0.06249445304274559, -0.07347911596298218, 0.011878926306962967, -0.020898936316370964, -0.03921639546751976, -0.06371613591909409, 0.039049673825502396, 0.06400858610868454, 0.0008476189686916769, -0.042664673179388046, -0.025988394394516945, 0.057854436337947845, 0.09185202419757843, 0.1933525949716568, -0.054198257625103, -0.007608459331095219, -0.018709974363446236, -0.023265069350600243, 0.0698218122124672, -0.018881788477301598, 0.06548580527305603, 0.0893542468547821, 0.009198429994285107, 0.08262079954147339, 0.06310868263244629, -0.13026216626167297, -0.02281312458217144, 0.054424554109573364, -0.10126281529664993, -0.13599123060703278, -0.0268794484436512, -0.10768752545118332, -0.1346765160560608, -0.00024051453510764986, 0.17270870506763458, -0.03695226460695267, -0.04585722088813782, -0.01584392972290516, 0.07958730310201645, 0.01849321462213993, 0.13098934292793274, 0.03332389518618584, -0.01541226077824831, -0.061728548258543015, 0.1724783033132553, 0.08854382485151291, -0.0944463387131691, 0.01059932354837656, 0.01612267456948757, -0.06006260961294174, -0.005373345222324133, -0.06570642441511154, 0.07599630951881409, -0.028803551569581032, -0.03920183703303337, 0.001280150143429637, -0.10020638257265091, 0.05013817176222801, 0.15073417127132416, 0.006806783378124237, 0.1586272120475769, -0.03795607388019562, 0.06268275529146194, -0.07470282912254333, 0.07361288368701935, 0.05466834455728531, 0.07673703134059906, -0.01777864433825016, 0.04886222630739212, -0.04629047214984894, -0.0009309409651905298, -0.014728434383869171, 0.0007548850262537599, -0.09050557017326355, -0.055166590958833694, -0.22356565296649933, 0.0275806225836277, -0.05674520134925842, -0.035834841430187225, 0.010781531222164631, -0.013969546183943748, 0.0037227030843496323, 0.03666013851761818, -0.02626453898847103, -0.03227364644408226, -0.02612549252808094, 0.06267169862985611, -0.12264937162399292, 0.0266574677079916, 0.06674514710903168, -0.08740906417369843, 0.0774497240781784, -0.0006051193922758102, -0.05368615686893463, -0.001487476285547018, 0.013623517006635666, -0.04680715501308441, -0.030414707958698273, 0.008029164746403694, -0.05317634344100952, -0.11049108952283859, 0.02794480323791504, 0.01193102914839983, -0.026292450726032257, -0.029006043449044228, 0.07765191048383713, -0.06529965996742249, 0.05263384431600571, 0.03740197792649269, 0.005038574803620577, -0.043511368334293365, -0.01569516956806183, 0.11935487389564514, 0.07711611688137054, 0.0563480444252491, -0.05213445797562599, -0.019094940274953842, -0.155198335647583, -0.0012617702595889568, -0.0017954129725694656, -0.0035218449775129557, -0.040757257491350174, -0.03778959438204765, 0.031072836369276047, 0.010671422816812992, 0.1764954924583435, 0.009172968566417694, 0.014474422670900822, 0.009661698713898659, 0.0025450969114899635, 0.00930692721158266, 0.03436658903956413, 0.07170426845550537, -0.01487726904451847, -0.07883347570896149, -0.07916991412639618, 0.03387283906340599, -0.0307026207447052, -0.019294511526823044, 0.13494962453842163, 0.1358577013015747, 0.10430295765399933, 0.023333704099059105, -0.001005983678624034, -0.030312510207295418, -0.02909376658499241, 0.02251845970749855, 0.05528787150979042, 0.05301081761717796, -0.014558820985257626, 0.012858081609010696, 0.06688803434371948, -0.12502390146255493, 0.12010664492845535, -0.035497039556503296, -0.028408829122781754, -0.10730240494012833, -0.07865788042545319, -0.01846797950565815, -0.020565472543239594, -0.02035011351108551, -0.1644114851951599, 0.04778710752725601, 0.10538637638092041, 0.02203982323408127, -0.03123808279633522, 0.03590790182352066, -0.14862771332263947, -0.08966660499572754, 0.0653289407491684, 0.0128223467618227, 0.04393582418560982, 0.10915972292423248, -0.014922783710062504, 0.07920083403587341, 0.14205074310302734, 0.061206597834825516, 0.055713456124067307, 0.08339271694421768, 0.01014938484877348, -0.02036699838936329, -0.039970606565475464, 0.0073873684741556644, -0.0616111122071743, 0.03838982805609703, 0.16187258064746857, 0.0321146622300148, -0.05145695060491562, 0.03571769595146179, 0.18239866197109222, -0.03711051866412163, -0.05300796404480934, -0.17840605974197388, 0.21083875000476837, 0.023569749668240547, 0.043150827288627625, 0.0494140088558197, -0.08906720578670502, -0.03631027787923813, 0.2067723274230957, 0.10802221298217773, 0.023606160655617714, -0.022963205352425575, 0.018011612817645073, -0.010717672295868397, 0.009185407310724258, 0.08316407352685928, 0.005059821996837854, 0.22001682221889496, -0.03792053088545799, 0.01902875490486622, 0.03287014365196228, 0.03511480987071991, -0.07303985208272934, 0.15272346138954163, -0.0482608936727047, -0.0022144897375255823, -0.05708131566643715, 0.020952502265572548, 0.01999826915562153, -0.3052327036857605, -0.11019494384527206, 0.0024808316957205534, -0.06259050220251083, -0.01718100905418396, -0.02109660394489765, -0.005822126287966967, 0.05224568024277687, -0.0042803846299648285, 0.0309852734208107, 0.18389497697353363, -0.0063982331193983555, -0.037760112434625626, -0.04133967310190201, 0.12141302973031998, 0.019873155280947685, 0.13792085647583008, 0.0590578131377697, -0.015378773212432861, 0.044737301766872406, 0.023874687030911446, -0.1126551702618599, -0.0329786092042923, -0.02668117918074131, -0.010315986350178719, -0.022804435342550278, 0.13283950090408325, 0.01900148019194603, 0.04925594478845596, 0.03819432109594345, -0.043049853295087814, 0.050404567271471024, 0.041469380259513855, -0.06993242353200912, -0.05214511975646019, 0.041882533580064774, -0.09623466432094574, 0.1403016448020935, 0.17618544399738312, 0.012668367475271225, 0.02537059597671032, -0.05633844807744026, -0.008624939247965813, 0.00105318205896765, 0.11377891898155212, -0.004163208417594433, -0.1575295627117157, -0.013487250544130802, -0.08681018650531769, 0.03921342268586159, -0.22235263884067535, -0.04554538056254387, 0.10268698632717133, -0.010142290964722633, -0.009780910797417164, 0.04907146096229553, 0.005008168052881956, 0.06018735095858574, -0.016144849359989166, -0.047703858464956284, 0.009429954923689365, 0.06745973229408264, -0.08324147015810013, -0.03277761861681938 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_0k"]}
null
google/multiberts-seed_1-step_0k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_0k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 0k (max: 2000k, i.e., 2M steps)." ]
[ -0.07929480075836182, 0.08033829927444458, -0.002206185134127736, 0.041953615844249725, 0.07443854212760925, -0.021712934598326683, 0.07117440551519394, 0.09508422017097473, -0.01613440550863743, 0.023343367502093315, 0.08583514392375946, 0.030204009264707565, 0.008198462426662445, 0.09692179411649704, 0.01804194413125515, -0.2088909149169922, 0.03291923180222511, -0.025961417704820633, -0.08435829728841782, 0.07364071905612946, 0.10259772092103958, -0.08390545845031738, 0.04010336101055145, 0.030915260314941406, -0.1095350831747055, 0.05146600678563118, -0.00961433444172144, -0.02231108956038952, 0.13569329679012299, 0.001937188091687858, 0.052860110998153687, 0.05708945915102959, 0.041294634342193604, -0.13918693363666534, 0.004174282308667898, 0.05698736757040024, 0.0519113652408123, 0.036506518721580505, 0.019130825996398926, 0.07595158368349075, -0.02717907354235649, 0.03119843825697899, 0.05039074271917343, 0.016005516052246094, -0.0642097070813179, -0.06877520680427551, -0.09305747598409653, 0.032312169671058655, 0.02644166722893715, 0.023875553160905838, 0.008730054832994938, 0.12188436836004257, -0.03511381894350052, 0.04543885216116905, 0.1764058917760849, -0.31023967266082764, -0.002414099173620343, 0.061107683926820755, 0.021249977871775627, 0.11361218988895416, -0.0035016005858778954, -0.03302444890141487, 0.07826784253120422, 0.022102953866124153, 0.09841562807559967, -0.03944655880331993, 0.01771126687526703, -0.06116556376218796, -0.15354160964488983, -0.038254059851169586, 0.0981745645403862, 0.0020115526858717203, -0.139810249209404, -0.023045113310217857, -0.043852824717760086, 0.04016376659274101, 0.01945023611187935, -0.03612542524933815, 0.0439254567027092, 0.0045539215207099915, -0.006395162083208561, -0.0037953611463308334, -0.10300125181674957, -0.04332046955823898, 0.02495194971561432, 0.09887638688087463, 0.10949413478374481, 0.05782106891274452, -0.008821344934403896, 0.10707875341176987, -0.18648852407932281, -0.049744099378585815, -0.032134268432855606, -0.03140733018517494, -0.042865168303251266, -0.009443006478250027, -0.10308331251144409, -0.04852045327425003, 0.0031520312186330557, 0.13721665740013123, -0.016217222437262535, 0.032223816961050034, -0.026190413162112236, 0.005686568561941385, 0.06008046120405197, 0.05256660282611847, -0.015073057264089584, 0.03163217008113861, 0.035823334008455276, -0.016379378736019135, -0.01881439983844757, 0.00799405388534069, -0.003134367987513542, 0.02970704808831215, 0.13751943409442902, 0.013396735303103924, -0.10299835354089737, 0.0781247466802597, -0.014394652098417282, -0.04607298970222473, -0.0077249715104699135, -0.0854487195611, -0.06228449568152428, -0.036043353378772736, -0.015039975754916668, 0.0073464298620820045, 0.00447467714548111, -0.009561765007674694, -0.031405672430992126, -0.021443771198391914, -0.09074024111032486, -0.05534033849835396, -0.05321211740374565, -0.13539031147956848, 0.008829697035253048, -0.19257524609565735, -0.027796916663646698, -0.11720200628042221, -0.20206661522388458, -0.03582627326250076, 0.05119725316762924, 0.0014068916207179427, -0.06497801095247269, 0.056904539465904236, 0.03023698925971985, -0.030592821538448334, -0.0024656299501657486, 0.08123280107975006, -0.008819649927318096, 0.03721710667014122, -0.03990110009908676, 0.05500257387757301, 0.0014373654266819358, 0.04318086430430412, -0.0644206702709198, 0.054371993988752365, -0.1734187752008438, 0.04211902245879173, -0.07587870955467224, -0.03325531259179115, -0.0882946029305458, -0.02948571741580963, -0.002291921991854906, 0.010992856696248055, 0.023999348282814026, 0.07472916692495346, -0.1688390076160431, -0.031226880848407745, 0.0913291648030281, -0.15091362595558167, -0.025201985612511635, 0.0704447403550148, -0.05420451611280441, 0.11127626895904541, 0.06519722938537598, 0.16167740523815155, -0.029042722657322884, -0.06823401898145676, 0.04433315619826317, -0.011686451733112335, 0.012615913525223732, -0.011188267730176449, 0.06785613298416138, -0.020538944751024246, -0.16453318297863007, 0.0238355603069067, -0.13311700522899628, -0.001741745974868536, -0.07848396897315979, 0.03140635788440704, -0.004728281404823065, -0.06651746481657028, -0.07893610000610352, -0.03395577892661095, 0.07764412462711334, -0.06842505186796188, -0.028948204591870308, 0.039913978427648544, 0.07484877854585648, -0.07574322819709778, 0.06919749826192856, -0.015043019317090511, 0.024365540593862534, -0.0839974507689476, -0.03721782937645912, -0.18468253314495087, 0.029415439814329147, 0.09824120253324509, 0.016605207696557045, -0.01873861812055111, 0.12927241623401642, -0.008550583384931087, 0.0645291656255722, -0.04059724137187004, -0.003060245420783758, -0.012539598159492016, 0.0011701815528795123, -0.09503241628408432, -0.11128653585910797, -0.07045739144086838, -0.06994807720184326, 0.09659082442522049, -0.11805085092782974, 0.020599491894245148, -0.05887661129236221, 0.04074017331004143, 0.017787013202905655, -0.07283718883991241, -0.010282635688781738, 0.01606551557779312, -0.06441431492567062, -0.05726798623800278, 0.03864171728491783, 0.06397896260023117, -0.023949889466166496, 0.09734182059764862, -0.05278800427913666, -0.08786333352327347, 0.028804773464798927, 0.0721224769949913, -0.10338333249092102, 0.02744394913315773, -0.04819107800722122, -0.04669759050011635, -0.06800193339586258, -0.02055627852678299, 0.10761763900518417, -0.011118467897176743, 0.1450139731168747, -0.07663580030202866, -0.013090429827570915, 0.011438202112913132, -0.01667526550590992, -0.026200244203209877, 0.04692339152097702, 0.07037246227264404, -0.06986567378044128, 0.023250196129083633, 0.02985529415309429, -0.005531360860913992, 0.06851062178611755, -0.05226632580161095, -0.07746793329715729, 0.020015163347125053, 0.03203113004565239, 0.02318011038005352, 0.0639934316277504, -0.05175282806158066, -0.009909807704389095, 0.03167274594306946, 0.02441651001572609, 0.01287532877177, -0.11847794055938721, 0.06273392587900162, 0.060147639364004135, 0.007049471605569124, 0.05681014806032181, -0.018125390633940697, -0.03491457551717758, 0.07938959449529648, 0.032903023064136505, -0.016883639618754387, -0.007682492956519127, -0.009688927792012691, -0.1248861625790596, 0.21576492488384247, -0.06746307015419006, -0.14925740659236908, -0.06802509725093842, -0.10920172184705734, -0.0033760478254407644, 0.022419311106204987, 0.04477657750248909, -0.02178613655269146, -0.042146120220422745, -0.12806767225265503, 0.08844753354787827, -0.043055444955825806, 0.06396191567182541, 0.11111505329608917, -0.06541382521390915, 0.049401622265577316, -0.13034473359584808, -0.012881627306342125, -0.07536525279283524, -0.0659559816122055, 0.058924440294504166, -0.052436649799346924, 0.03218836709856987, 0.11219032108783722, 0.015376899391412735, -0.027620794251561165, -0.031244412064552307, 0.2040337175130844, 0.04467860236763954, 0.039735548198223114, 0.12736032903194427, -0.07272963225841522, 0.05220648646354675, 0.07981029152870178, 0.0034805615432560444, -0.044533953070640564, 0.05165829136967659, 0.05893667787313461, -0.06050731614232063, -0.19097618758678436, -0.00873566884547472, 0.007304671686142683, -0.044923461973667145, 0.06746242940425873, 0.03955860808491707, 0.014998848550021648, 0.07478969544172287, 0.020446838811039925, 0.06491641700267792, 0.004136372357606888, 0.10406995564699173, 0.02728956565260887, -0.033641714602708817, 0.08691427856683731, -0.008884917944669724, -0.002601008862257004, 0.07641606777906418, -0.018971683457493782, 0.2898021936416626, -0.04543823376297951, 0.016911720857024193, 0.12961378693580627, 0.031263165175914764, 0.05044108256697655, 0.11796807497739792, -0.07557154446840286, 0.028684690594673157, -0.07515552639961243, -0.04909273236989975, 0.011548102833330631, 0.044072475284338, -0.07074815034866333, 0.01859869621694088, -0.0878794714808464, 0.02130468748509884, -0.02401815354824066, 0.30390819907188416, 0.10993188619613647, -0.11289355158805847, -0.06404078751802444, 0.0005342348595149815, -0.10149747133255005, -0.0697965994477272, 0.05186247453093529, 0.05021204054355621, -0.1302887499332428, 0.005753864999860525, -0.021342698484659195, 0.07676441967487335, -0.028485335409641266, 0.016852352768182755, 0.036000605672597885, 0.0518030971288681, -0.044027358293533325, 0.007687069941312075, -0.18767395615577698, 0.19607633352279663, -0.00232073781080544, 0.025519639253616333, -0.05659715086221695, 0.028775662183761597, 0.007135642226785421, -0.01454014703631401, 0.06133841350674629, 0.019677795469760895, -0.007580894511193037, -0.057567209005355835, -0.04462922737002373, 0.017559492960572243, 0.06361152976751328, -0.04519932344555855, 0.10724703967571259, 0.004858886357396841, 0.05340293422341347, 0.030229205265641212, 0.09383872896432877, -0.1872725933790207, -0.07802827656269073, 0.03000972606241703, -0.04408145323395729, -0.10178913176059723, -0.08025120198726654, -0.09732755273580551, -0.004486623220145702, 0.22899775207042694, -0.11020650714635849, -0.07338988035917282, -0.09367545694112778, 0.04197775945067406, 0.09320074319839478, -0.055103953927755356, 0.0237704049795866, -0.01483254786580801, 0.1128150075674057, -0.06748936325311661, -0.12379322946071625, 0.025997310876846313, -0.09936642646789551, -0.16091519594192505, -0.06645707041025162, 0.08757096529006958, 0.06565959751605988, 0.029596572741866112, -0.03278830274939537, 0.012101751752197742, 0.039131730794906616, -0.03565104305744171, -0.0005313385627232492, 0.06837986409664154, 0.093061663210392, 0.03660561144351959, -0.10605954378843307, 0.018422365188598633, -0.07120757550001144, -0.06970901787281036, 0.07237229496240616, 0.27125728130340576, -0.04915262386202812, 0.11285535246133804, 0.1232559084892273, -0.08732175827026367, -0.15923039615154266, 0.04091601073741913, 0.09268631786108017, -0.016352593898773193, -0.0020958485547453165, -0.16219569742679596, 0.09883379191160202, 0.11397691071033478, -0.01568685658276081, 0.0023225205950438976, -0.20375283062458038, -0.13669073581695557, 0.08788301795721054, 0.11484212428331375, 0.28372862935066223, -0.052814215421676636, -0.03539624437689781, 0.022848691791296005, -0.08977717906236649, 0.013306908309459686, 0.12769798934459686, 0.06232481077313423, -0.020763929933309555, -0.06912670284509659, 0.01062709093093872, -0.03666685149073601, 0.09065204858779907, 0.06425253301858902, 0.06792639195919037, -0.0018297795904800296, -0.0020935810171067715, -0.0361672006547451, -0.044209711253643036, 0.06966425478458405, 0.03297950699925423, 0.0512210987508297, -0.08798012882471085, -0.03497450426220894, -0.07570995390415192, 0.033988095819950104, -0.030285775661468506, -0.0769634023308754, -0.05807682126760483, 0.07503180205821991, 0.059716396033763885, -0.0324995182454586, 0.03956623747944832, 0.028008710592985153, 0.10072996467351913, 0.15166150033473969, -0.0028617382049560547, -0.04516538232564926, -0.06466176360845566, -0.030471323058009148, -0.014949554577469826, 0.07638164609670639, -0.043009985238313675, 0.019873127341270447, 0.07143711298704147, 0.020633582025766373, 0.10643154382705688, 0.06233702972531319, -0.11975309252738953, -0.019679013639688492, 0.02264552004635334, -0.15481442213058472, 0.0123975221067667, 0.000962108199018985, 0.01855934038758278, -0.019646774977445602, 0.028187260031700134, 0.1550140082836151, -0.07151644676923752, -0.0314970500767231, -0.0461820513010025, 0.05973469465970993, 0.03132065385580063, 0.1412106305360794, 0.03669239208102226, 0.037044916301965714, -0.07575333118438721, 0.147517591714859, 0.04394218325614929, -0.04254762455821037, 0.030674299225211143, -0.034444451332092285, -0.10710567981004715, 0.012539333663880825, 0.0652736946940422, 0.0762530118227005, -0.07196496427059174, -0.01803283952176571, -0.040085382759571075, -0.07822488248348236, 0.07092256098985672, 0.21868611872196198, 0.06143851950764656, 0.06939002126455307, -0.05396643280982971, -0.03508540987968445, -0.0816592127084732, 0.05106568709015846, 0.051124460995197296, 0.07774635404348373, -0.07557392865419388, 0.10099846124649048, 0.012487177737057209, 0.05014203116297722, -0.0267103910446167, -0.050012264400720596, -0.10761500895023346, -0.05607966333627701, -0.10944721847772598, 0.016926076263189316, -0.06566330045461655, -0.04330669343471527, 0.010517469607293606, -0.0017863449174910784, -0.0023599108681082726, 0.05658382922410965, -0.06143384799361229, -0.009910020977258682, -0.01342513132840395, 0.03762069344520569, -0.06409958750009537, -0.05370362102985382, 0.016419880092144012, -0.09711360186338425, 0.10131308436393738, 0.05191370099782944, 0.008560745045542717, -0.00020021219097543508, 0.07310374826192856, -0.009262729436159134, 0.02153804339468479, 0.007536712102591991, -0.04162903502583504, -0.1028476431965828, 0.005321566015481949, -0.02531866729259491, -0.03333178535103798, -0.018135864287614822, 0.09382657706737518, -0.08055086433887482, 0.025764387100934982, 0.0018657995387911797, -0.00495484285056591, -0.07798609882593155, -0.004576532170176506, 0.09396491199731827, 0.08172135800123215, 0.05163785442709923, -0.0846908688545227, 0.0174272321164608, -0.12111525982618332, -0.034971144050359726, 0.014806680381298065, -0.01357788685709238, -0.13212278485298157, -0.012412157841026783, 0.01763179898262024, -0.015080373734235764, 0.18545979261398315, -0.056135885417461395, -0.024617241695523262, 0.019838539883494377, -0.09996630996465683, 0.1069040521979332, -0.01908925361931324, 0.1680002361536026, -0.02832374908030033, -0.03618448227643967, -0.013468815945088863, 0.04543447867035866, 0.02789231576025486, -0.0060316212475299835, 0.187196746468544, 0.13320183753967285, 0.03850540146231651, 0.05776398628950119, -0.029164046049118042, -0.010999028570950031, -0.06389246135950089, -0.017608314752578735, 0.04151967912912369, 0.04136372730135918, 0.022090401500463486, 0.15072090923786163, 0.06192290037870407, -0.15949012339115143, 0.035277239978313446, -0.024889418855309486, -0.04159138724207878, -0.11730765551328659, -0.1094178780913353, -0.032509442418813705, -0.062145933508872986, 0.014448408037424088, -0.13190427422523499, 0.004296118393540382, 0.17285877466201782, 0.06783300638198853, 0.029464518651366234, 0.013687890022993088, -0.13006198406219482, -0.0432501919567585, 0.058096133172512054, 0.01205207034945488, 0.01962556131184101, 0.039500147104263306, -0.00048456466174684465, 0.06619108468294144, 0.031057842075824738, 0.003336680121719837, -0.0020013165194541216, 0.08588123321533203, 0.025775203481316566, 0.046976398676633835, -0.058099616318941116, 0.0010375858983024955, -0.04115457832813263, 0.08293946087360382, 0.11726988852024078, 0.04490744322538376, -0.05087912082672119, -0.010437172837555408, 0.15994790196418762, -0.031332992017269135, 0.004805235657840967, -0.1192261129617691, 0.3319634199142456, 0.012741461396217346, 0.011053809896111488, 0.05731986090540886, -0.07953793555498123, -0.04754301533102989, 0.2048032432794571, 0.06771605461835861, -0.02107136696577072, -0.026024244725704193, 0.007247522938996553, -0.03202606737613678, -0.01684315875172615, 0.13890570402145386, 0.0395955964922905, 0.12006625533103943, -0.05743644759058952, -0.04990624636411667, -0.033469922840595245, 0.0044105034321546555, -0.11320125311613083, 0.14524473249912262, -0.020752863958477974, -0.02372724935412407, -0.07918623834848404, 0.00748337060213089, 0.06751354038715363, -0.3402578830718994, 0.009173402562737465, -0.0245408583432436, -0.10440840572118759, -0.013702291063964367, -0.02771623246371746, -0.02821851335465908, 0.04873763397336006, -0.040598489344120026, 0.06436590105295181, 0.050108402967453, 0.03773433342576027, -0.018417486920952797, -0.09664516896009445, 0.1595877856016159, 0.06573527306318283, 0.10262703895568848, 0.017972368746995926, 0.08723568916320801, 0.06322438269853592, 0.039008330553770065, -0.09303212910890579, 0.056158848106861115, 0.00810017716139555, -0.07056489586830139, -0.056268468499183655, 0.1161884218454361, -0.0010391839314252138, 0.0689530298113823, 0.03424597531557083, -0.12276646494865417, 0.025575418025255203, 0.0805082619190216, -0.0908697172999382, -0.09069477766752243, -0.005837124772369862, -0.09865321218967438, 0.1547432243824005, 0.1452273428440094, -0.011619871482253075, 0.012126090936362743, -0.06320361793041229, -0.006272251717746258, 0.05048409104347229, 0.00802042055875063, -0.012922560796141624, -0.18326541781425476, 0.05586765334010124, -0.0854625478386879, -0.001958632143214345, -0.21554267406463623, -0.09924221783876419, -0.009120681323111057, -0.05490340664982796, -0.026237528771162033, 0.05545491725206375, 0.02091926336288452, 0.07492692023515701, -0.02837047353386879, -0.025769086554646492, -0.03974725306034088, 0.09307349473237991, -0.10186547040939331, -0.07500753551721573 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1000k"]}
null
google/multiberts-seed_1-step_1000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1000k (max: 2000k, i.e., 2M steps)." ]
[ -0.07994934171438217, 0.07930172979831696, -0.0018916161498054862, 0.0431777685880661, 0.07764764875173569, -0.02077607996761799, 0.0674685463309288, 0.09239069372415543, -0.01134570688009262, 0.025075789541006088, 0.08596278727054596, 0.029543930664658546, 0.0121200792491436, 0.10171320289373398, 0.02224908024072647, -0.2139291912317276, 0.03423481807112694, -0.02588782086968422, -0.0839155912399292, 0.07325194031000137, 0.10272078961133957, -0.08731973171234131, 0.042451657354831696, 0.029544208198785782, -0.10900487750768661, 0.05110117048025131, -0.011778227984905243, -0.026279250159859657, 0.13743631541728973, -0.004008909687399864, 0.05328400433063507, 0.05472587049007416, 0.05018423870205879, -0.13493387401103973, 0.0032721078023314476, 0.05615261197090149, 0.05493612959980965, 0.0365641750395298, 0.01711210608482361, 0.08369498699903488, -0.031812965869903564, 0.028319330886006355, 0.05180590972304344, 0.013618328608572483, -0.06414283066987991, -0.06727135926485062, -0.09856834262609482, 0.03518230840563774, 0.030246293172240257, 0.019635770469903946, 0.00690924609079957, 0.11806929856538773, -0.03356058523058891, 0.04259227216243744, 0.17387762665748596, -0.30569931864738464, -0.0006417225813493133, 0.061703428626060486, 0.02720843441784382, 0.11410632729530334, -0.003602491458877921, -0.034243080765008926, 0.08097166568040848, 0.020847264677286148, 0.09462281316518784, -0.04052684083580971, 0.010145924985408783, -0.061239972710609436, -0.15672728419303894, -0.037561580538749695, 0.09784284234046936, 0.0032019943464547396, -0.1399020403623581, -0.021867895498871803, -0.042063940316438675, 0.03315158560872078, 0.02103240229189396, -0.041179001331329346, 0.04353411868214607, 0.0008867864962667227, -0.004840330220758915, -0.0014052207116037607, -0.10108327120542526, -0.04592709615826607, 0.022679727524518967, 0.0943104699254036, 0.11101216822862625, 0.057841211557388306, -0.0061571234837174416, 0.10992076247930527, -0.19275762140750885, -0.04706732928752899, -0.028989659622311592, -0.03274843841791153, -0.04469425231218338, -0.011022813618183136, -0.0999327078461647, -0.04437466338276863, -0.0006275902269408107, 0.13601326942443848, -0.005856538191437721, 0.030311699956655502, -0.018105093389749527, 0.005295055918395519, 0.06088234856724739, 0.05649661645293236, -0.022867001593112946, 0.019677886739373207, 0.03697627782821655, -0.013862273655831814, -0.02067045122385025, 0.009548035450279713, -0.004539842717349529, 0.025663334876298904, 0.13675351440906525, 0.014236129820346832, -0.10635833442211151, 0.08153428882360458, -0.013594788499176502, -0.042269352823495865, -0.011181904934346676, -0.087134949862957, -0.06250204145908356, -0.04103868082165718, -0.018396053463220596, 0.0036022858694195747, 0.0018066085176542401, -0.00832504965364933, -0.028880096971988678, -0.019225193187594414, -0.09020121395587921, -0.060220278799533844, -0.05638409033417702, -0.13894422352313995, 0.00905649084597826, -0.20602983236312866, -0.027392631396651268, -0.11562926322221756, -0.20481489598751068, -0.04036886245012283, 0.04452886804938316, 0.005698053166270256, -0.06618504971265793, 0.05424458160996437, 0.030713960528373718, -0.032086655497550964, -0.0034115025773644447, 0.0879785418510437, -0.0060064285062253475, 0.036600418388843536, -0.04267997294664383, 0.06096504256129265, 0.0032329403329640627, 0.04228949919342995, -0.06252113729715347, 0.05768759548664093, -0.16915901005268097, 0.0402802973985672, -0.07408375293016434, -0.03001241758465767, -0.08683637529611588, -0.030875978991389275, -0.004590071737766266, 0.010700291022658348, 0.026658205315470695, 0.07219347357749939, -0.17633222043514252, -0.02745131216943264, 0.09208410978317261, -0.14882278442382812, -0.027864890173077583, 0.07112329453229904, -0.055548109114170074, 0.12180328369140625, 0.0711008682847023, 0.15738838911056519, -0.028148498386144638, -0.06485435366630554, 0.041126105934381485, -0.014159474521875381, 0.009491370990872383, -0.011334416456520557, 0.06687875837087631, -0.02003837190568447, -0.1597341001033783, 0.023714704439044, -0.13063335418701172, -0.0026328631211072206, -0.0779535248875618, 0.03059440292418003, -0.001743205706588924, -0.0698847696185112, -0.07881711423397064, -0.03585416078567505, 0.07501807808876038, -0.06920131295919418, -0.024385910481214523, 0.03308499976992607, 0.07500319927930832, -0.0732482373714447, 0.06748244911432266, -0.015741372480988503, 0.02225348725914955, -0.08201324939727783, -0.03523009642958641, -0.18287163972854614, 0.03528861328959465, 0.10090314596891403, 0.010176701471209526, -0.018061937764286995, 0.12296457588672638, -0.009280026890337467, 0.06509748101234436, -0.0383642353117466, -0.004955074284225702, -0.01136216800659895, 0.002291414886713028, -0.09808550775051117, -0.10482487082481384, -0.07238443940877914, -0.0703209787607193, 0.0889919102191925, -0.11314021795988083, 0.022148245945572853, -0.05501563102006912, 0.037439968436956406, 0.016856567934155464, -0.06987976282835007, -0.010894101113080978, 0.01666083000600338, -0.06267454475164413, -0.05970679223537445, 0.03527161478996277, 0.05960603803396225, -0.023805974051356316, 0.09541760385036469, -0.05006731301546097, -0.09686744213104248, 0.028722381219267845, 0.07761211693286896, -0.10634062439203262, 0.03028266131877899, -0.04667174071073532, -0.047110144048929214, -0.06916391849517822, -0.029266489669680595, 0.10824575275182724, -0.011563079431653023, 0.14014509320259094, -0.07837550342082977, -0.014377478510141373, 0.011668996885418892, -0.013725891709327698, -0.023717911913990974, 0.04536018520593643, 0.07337069511413574, -0.07132647186517715, 0.022200847044587135, 0.03095891699194908, -0.004509005229920149, 0.06475719809532166, -0.05221065133810043, -0.07699004560709, 0.020029626786708832, 0.029476024210453033, 0.02161549963057041, 0.06237322837114334, -0.053745005279779434, -0.015307837165892124, 0.029073962941765785, 0.02230406366288662, 0.010488673113286495, -0.12017422914505005, 0.06301682442426682, 0.05938896909356117, 0.009688476100564003, 0.048984967172145844, -0.018546730279922485, -0.03289106488227844, 0.08081496506929398, 0.03292115405201912, -0.013989441096782684, -0.010499696247279644, -0.011181474663317204, -0.12295001745223999, 0.2172536700963974, -0.06681108474731445, -0.14449100196361542, -0.06662865728139877, -0.10838381946086884, 0.005114980041980743, 0.025063909590244293, 0.04091745615005493, -0.026171062141656876, -0.04215613007545471, -0.12541764974594116, 0.09648061543703079, -0.03655525669455528, 0.0681639090180397, 0.11031979322433472, -0.0636206567287445, 0.039491258561611176, -0.1314861923456192, -0.012284014374017715, -0.07611799240112305, -0.06610780209302902, 0.05575380101799965, -0.05010636895895004, 0.037906911224126816, 0.11436775326728821, 0.014275194145739079, -0.028539901599287987, -0.03292622044682503, 0.20423603057861328, 0.04165461286902428, 0.04492330923676491, 0.12522496283054352, -0.07386377453804016, 0.053082745522260666, 0.08390937000513077, 0.003054668428376317, -0.04492098093032837, 0.05345390737056732, 0.054203081876039505, -0.06062301993370056, -0.1889544129371643, -0.005829416215419769, 0.010080491192638874, -0.0466080978512764, 0.06899119168519974, 0.035962171852588654, 0.005867178086191416, 0.08155614882707596, 0.0190868079662323, 0.06982896476984024, 0.002772743348032236, 0.10023537278175354, 0.02001919411122799, -0.038190264254808426, 0.08302941918373108, -0.008655210956931114, -0.010133815929293633, 0.07514092326164246, -0.015714962035417557, 0.2984783351421356, -0.04344261810183525, 0.01892326958477497, 0.1281115859746933, 0.032164763659238815, 0.0496971495449543, 0.12814579904079437, -0.07551170885562897, 0.029848527163267136, -0.07587496936321259, -0.04623262584209442, 0.016525505110621452, 0.04476837441325188, -0.0717010349035263, 0.02185153402388096, -0.08678465336561203, 0.022480756044387817, -0.0256278607994318, 0.2978953719139099, 0.10835929214954376, -0.11516755074262619, -0.059056416153907776, 0.0021123280748724937, -0.1005249172449112, -0.07324802130460739, 0.0500505231320858, 0.054809775203466415, -0.13463807106018066, 0.00356406532227993, -0.019955340772867203, 0.0755903422832489, -0.031764496117830276, 0.013200937770307064, 0.03623597323894501, 0.05382782220840454, -0.04592723399400711, 0.008669445291161537, -0.17884571850299835, 0.19788885116577148, -0.0030691931024193764, 0.02799520641565323, -0.05896306782960892, 0.02880115434527397, 0.008035351522266865, -0.019059201702475548, 0.06421690434217453, 0.018751300871372223, -0.013905001804232597, -0.06961244344711304, -0.042818281799554825, 0.014534213580191135, 0.0689382553100586, -0.04700525104999542, 0.10961353778839111, 0.007451309822499752, 0.05543496087193489, 0.028778288513422012, 0.08966374397277832, -0.18446052074432373, -0.07804374396800995, 0.02738260291516781, -0.04484616965055466, -0.0949726551771164, -0.080438993871212, -0.09688737243413925, -0.006548340432345867, 0.21515485644340515, -0.11775805056095123, -0.07438836246728897, -0.08984087407588959, 0.041441451758146286, 0.10153452306985855, -0.05668865889310837, 0.02685728296637535, -0.009958614595234394, 0.10991153120994568, -0.07112742960453033, -0.11839810758829117, 0.0232832208275795, -0.09704849123954773, -0.1629306524991989, -0.06751476228237152, 0.08897436410188675, 0.0655367448925972, 0.02949514612555504, -0.029532892629504204, 0.014159953221678734, 0.03904343396425247, -0.037525516003370285, -0.0024120090529322624, 0.06596800684928894, 0.09219293296337128, 0.038166821002960205, -0.11047649383544922, 0.021238179877400398, -0.07593647390604019, -0.06979619711637497, 0.07532325387001038, 0.27043578028678894, -0.051121994853019714, 0.10779839009046555, 0.1275176852941513, -0.08954308927059174, -0.16321834921836853, 0.043493300676345825, 0.09402507543563843, -0.013950078748166561, -0.005700788460671902, -0.15739880502223969, 0.10229695588350296, 0.11249302327632904, -0.013878200203180313, 0.006838746834546328, -0.20621950924396515, -0.13928858935832977, 0.09034600108861923, 0.11478929221630096, 0.27590587735176086, -0.049699872732162476, -0.035022784024477005, 0.018595468252897263, -0.08446216583251953, 0.01264899130910635, 0.13074220716953278, 0.06296268105506897, -0.018347542732954025, -0.0635799691081047, 0.010860639624297619, -0.037607744336128235, 0.09009290486574173, 0.0680132806301117, 0.06954066455364227, -0.0060231308452785015, -0.012342863716185093, -0.026806384325027466, -0.04207512363791466, 0.07288172096014023, 0.04088109731674194, 0.04852782189846039, -0.0835203304886818, -0.03610718250274658, -0.07422682642936707, 0.03403886780142784, -0.030012458562850952, -0.07861560583114624, -0.06340716034173965, 0.07637085020542145, 0.05938124284148216, -0.03566502034664154, 0.026714982464909554, 0.03641287609934807, 0.09309827536344528, 0.13919691741466522, -0.0004585260176099837, -0.044499289244413376, -0.05947466939687729, -0.025348689407110214, -0.015015936456620693, 0.07507345825433731, -0.035918064415454865, 0.015415958128869534, 0.07270630449056625, 0.020974144339561462, 0.10578010231256485, 0.06221022084355354, -0.12330491095781326, -0.01863834820687771, 0.02488824725151062, -0.15170279145240784, 0.01044789794832468, 0.0028247153386473656, 0.01433202438056469, -0.023089665919542313, 0.026028186082839966, 0.14507491886615753, -0.07080427557229996, -0.033585842698812485, -0.050085265189409256, 0.06117943301796913, 0.03427654877305031, 0.15118460357189178, 0.04053834453225136, 0.03768429532647133, -0.0765022337436676, 0.146754652261734, 0.04537156969308853, -0.045845381915569305, 0.02882928028702736, -0.03158731758594513, -0.10885120928287506, 0.016290470957756042, 0.06520578265190125, 0.07341502606868744, -0.06580391526222229, -0.017095569521188736, -0.03681878373026848, -0.07888063043355942, 0.06775134801864624, 0.2209816873073578, 0.06152819097042084, 0.06769576668739319, -0.05266694352030754, -0.033677633851766586, -0.08107608556747437, 0.052877556532621384, 0.05596397817134857, 0.07830657064914703, -0.0747450739145279, 0.10999124497175217, 0.011694638058543205, 0.05114021897315979, -0.025809284299612045, -0.04678597301244736, -0.10317191481590271, -0.05637405812740326, -0.0979136973619461, 0.01698288507759571, -0.06358356773853302, -0.043173130601644516, 0.006355862133204937, -0.0028074735309928656, -0.0026028284337371588, 0.053298138082027435, -0.061031606048345566, -0.012585791759192944, -0.014139684848487377, 0.035321932286024094, -0.06072993576526642, -0.05576068535447121, 0.020968571305274963, -0.09471660107374191, 0.09900133311748505, 0.045124053955078125, 0.011480221524834633, 0.00177010556217283, 0.07629283517599106, -0.008015870116651058, 0.02432272769510746, 0.009957206435501575, -0.041868727654218674, -0.10364468395709991, 0.006407257169485092, -0.02800614759325981, -0.031062504276633263, -0.018465127795934677, 0.09035691618919373, -0.08054418116807938, 0.02478138729929924, 0.0013167866272851825, -0.0032196633983403444, -0.07906175404787064, -0.004297235049307346, 0.09605927765369415, 0.08187727630138397, 0.05482400208711624, -0.08264409750699997, 0.017119497060775757, -0.12106244266033173, -0.034567877650260925, 0.012027017772197723, -0.01690743677318096, -0.1297190636396408, -0.010877729393541813, 0.01990881748497486, -0.013743733987212181, 0.1905379295349121, -0.05677858740091324, -0.029661979526281357, 0.017437227070331573, -0.08834778517484665, 0.10139630734920502, -0.017703289166092873, 0.17176954448223114, -0.026763340458273888, -0.038719262927770615, -0.02270304597914219, 0.048069264739751816, 0.026421712711453438, -0.009560652077198029, 0.18431833386421204, 0.1308080106973648, 0.04469674080610275, 0.058577027171850204, -0.023493872955441475, -0.0070583210326731205, -0.05303439870476723, -0.021068209782242775, 0.0397777259349823, 0.03406044840812683, 0.020649876445531845, 0.15871861577033997, 0.05734196677803993, -0.1597428172826767, 0.03598857671022415, -0.02328755147755146, -0.04370935633778572, -0.11583833396434784, -0.11288691312074661, -0.032223667949438095, -0.052898257970809937, 0.015353700146079063, -0.1320541352033615, 0.0026945234276354313, 0.1712370216846466, 0.06521518528461456, 0.027719365432858467, 0.019558828324079514, -0.1394764482975006, -0.044938281178474426, 0.05956299602985382, 0.01514145452529192, 0.020123952999711037, 0.042949870228767395, -0.004565821960568428, 0.06699488312005997, 0.028746241703629494, 0.003949643578380346, -0.0037917871959507465, 0.07649330049753189, 0.021694470196962357, 0.046022482216358185, -0.053899139165878296, -0.0004077684716321528, -0.04387835040688515, 0.08368595689535141, 0.11005355417728424, 0.04419054463505745, -0.051882304251194, -0.010891001671552658, 0.15470589697360992, -0.028674034401774406, 0.0016916567692533135, -0.1171213835477829, 0.31694522500038147, 0.016031799837946892, 0.010889320634305477, 0.05943474546074867, -0.0818590596318245, -0.045864880084991455, 0.20791488885879517, 0.06940941512584686, -0.01733243092894554, -0.029469670727849007, 0.0036742878146469593, -0.031802352517843246, -0.01794276013970375, 0.1419605016708374, 0.04051254317164421, 0.11595378816127777, -0.056516729295253754, -0.04398113116621971, -0.03311024233698845, 0.002906147390604019, -0.11198555678129196, 0.14877156913280487, -0.01976913772523403, -0.02148004062473774, -0.0818411260843277, 0.011138378642499447, 0.07274844497442245, -0.3415448069572449, 0.00333911320194602, -0.02828942984342575, -0.10366467386484146, -0.013755558989942074, -0.031044337898492813, -0.025121571496129036, 0.048175666481256485, -0.036778416484594345, 0.06784916669130325, 0.04260323941707611, 0.03959294781088829, -0.02294325828552246, -0.100822314620018, 0.15917600691318512, 0.06544353812932968, 0.10497274249792099, 0.018100611865520477, 0.090370312333107, 0.06305942684412003, 0.03634260222315788, -0.09456948190927505, 0.05715573951601982, 0.009735221974551678, -0.06172331050038338, -0.05353758856654167, 0.1170923188328743, -0.0007780017331242561, 0.056932516396045685, 0.03095983900129795, -0.1205512285232544, 0.028749875724315643, 0.07643593847751617, -0.08794917911291122, -0.0995154082775116, -0.0007151241879910231, -0.09929065406322479, 0.15948863327503204, 0.1433824598789215, -0.012708565220236778, 0.01748031936585903, -0.06443565338850021, -0.012766564264893532, 0.050787292420864105, 0.003266578074544668, -0.012987961992621422, -0.18239916861057281, 0.04962824285030365, -0.0919351577758789, -0.0016186618013307452, -0.20995739102363586, -0.09905809164047241, -0.014156035147607327, -0.056619662791490555, -0.02487492561340332, 0.05669129639863968, 0.02375906892120838, 0.07473412156105042, -0.026276694610714912, -0.031047526746988297, -0.03928801044821739, 0.09435994178056717, -0.10635554790496826, -0.07608668506145477 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_100k"]}
null
google/multiberts-seed_1-step_100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 100k (max: 2000k, i.e., 2M steps)." ]
[ -0.07999464869499207, 0.07482122629880905, -0.0020871374290436506, 0.04057157412171364, 0.07549110800027847, -0.021492676809430122, 0.06914833933115005, 0.09237349778413773, -0.009028399363160133, 0.025016983970999718, 0.08417929708957672, 0.032941482961177826, 0.01238064095377922, 0.10089506208896637, 0.021149003878235817, -0.21124513447284698, 0.03363269567489624, -0.025394095107913017, -0.08299662172794342, 0.07505745440721512, 0.10272233188152313, -0.08614790439605713, 0.041680674999952316, 0.02993643470108509, -0.10961861163377762, 0.05034187063574791, -0.010718224570155144, -0.02458799257874489, 0.1378670036792755, -0.0022050216794013977, 0.053755857050418854, 0.05365462973713875, 0.04696014150977135, -0.13972391188144684, 0.004394369199872017, 0.05645948275923729, 0.051499318331480026, 0.03759143501520157, 0.01651008427143097, 0.0812465101480484, -0.028949100524187088, 0.03241472691297531, 0.05257366970181465, 0.01676257699728012, -0.06588006019592285, -0.06654437631368637, -0.09942618012428284, 0.030719347298145294, 0.03095167875289917, 0.02074035257101059, 0.0067087095230817795, 0.12018439918756485, -0.034201305359601974, 0.04490714892745018, 0.1821655035018921, -0.31135186553001404, -0.001738959806971252, 0.06654975563287735, 0.02739696577191353, 0.11311082541942596, -0.0054483902640640736, -0.03307347372174263, 0.07951733469963074, 0.023169592022895813, 0.09845534712076187, -0.04008030518889427, 0.017070923000574112, -0.058892104774713516, -0.1567871868610382, -0.0389377735555172, 0.09559362381696701, 0.005127929151058197, -0.14058798551559448, -0.02486046589910984, -0.04490258917212486, 0.03207550570368767, 0.0181477852165699, -0.04198591783642769, 0.045203667134046555, 0.003454063320532441, -0.006756632588803768, -0.003310884116217494, -0.10270321369171143, -0.0455973781645298, 0.023003658279776573, 0.09649047255516052, 0.10877242684364319, 0.0567103773355484, -0.003499697893857956, 0.10973052680492401, -0.1854795515537262, -0.047529857605695724, -0.030251918360590935, -0.03355766832828522, -0.0458245687186718, -0.01053190790116787, -0.10367434471845627, -0.050457846373319626, 0.0007042577490210533, 0.13899189233779907, -0.011194254271686077, 0.030425095930695534, -0.021677877753973007, 0.007235974073410034, 0.061218999326229095, 0.05845607817173004, -0.021442873403429985, 0.021769993007183075, 0.03423980250954628, -0.014414358884096146, -0.0170432161539793, 0.00911862775683403, -0.005405339878052473, 0.027505196630954742, 0.13838160037994385, 0.014967035502195358, -0.10843034088611603, 0.077507384121418, -0.01666354201734066, -0.04444599896669388, -0.009788893163204193, -0.0871131643652916, -0.06397450715303421, -0.04163670539855957, -0.015144799835979939, 0.0043003917671740055, 0.0027716471813619137, -0.008014488033950329, -0.027889657765626907, -0.017994001507759094, -0.08911369740962982, -0.05655227228999138, -0.05569913238286972, -0.13634401559829712, 0.008531262166798115, -0.20199115574359894, -0.028387950733304024, -0.11497648805379868, -0.20250995457172394, -0.040130339562892914, 0.04685287922620773, 0.002608149079605937, -0.06407231837511063, 0.05609157681465149, 0.03155166283249855, -0.0318596176803112, -0.0030114869587123394, 0.08321965485811234, -0.006812209729105234, 0.03799762576818466, -0.04258228838443756, 0.0605141818523407, 0.0070277247577905655, 0.042089350521564484, -0.061491768807172775, 0.05684995278716087, -0.17299595475196838, 0.041265927255153656, -0.07345321029424667, -0.028457148000597954, -0.08608239144086838, -0.02984531596302986, -0.007827221415936947, 0.012699377723038197, 0.02440015971660614, 0.07398384064435959, -0.1746281385421753, -0.029864195734262466, 0.0970393717288971, -0.14868852496147156, -0.030361106619238853, 0.07200710475444794, -0.05611198768019676, 0.11845755577087402, 0.06890814006328583, 0.15915687382221222, -0.03770609572529793, -0.07285354286432266, 0.04298241436481476, -0.011509567499160767, 0.01131397858262062, -0.009953620843589306, 0.06595815718173981, -0.021626519039273262, -0.15809962153434753, 0.023299885913729668, -0.13059386610984802, 0.0016425334615632892, -0.07750922441482544, 0.02978932112455368, -0.003062731819227338, -0.07032017409801483, -0.07927028834819794, -0.035024382174015045, 0.07675948739051819, -0.06978658586740494, -0.0267112385481596, 0.03420289605855942, 0.07511390745639801, -0.07312549650669098, 0.06804210692644119, -0.017626116052269936, 0.02312558889389038, -0.08122773468494415, -0.035697370767593384, -0.1845199167728424, 0.035465970635414124, 0.09947449713945389, 0.01632268913090229, -0.020531298592686653, 0.12584993243217468, -0.0069383191876113415, 0.06416954845190048, -0.038959573954343796, -0.005112074315547943, -0.012875733897089958, 0.0007192165357992053, -0.09746643155813217, -0.10538368672132492, -0.07345791906118393, -0.07080210000276566, 0.0911385715007782, -0.11126506328582764, 0.022460734471678734, -0.05833005905151367, 0.04165874049067497, 0.018229441717267036, -0.07147456705570221, -0.009732214733958244, 0.015220457687973976, -0.06344235688447952, -0.058396484702825546, 0.035169970244169235, 0.06224273890256882, -0.023608746007084846, 0.09549969434738159, -0.04993044212460518, -0.08826757967472076, 0.02967716194689274, 0.07344268262386322, -0.10688133537769318, 0.023948686197400093, -0.046936746686697006, -0.04511796683073044, -0.0681048259139061, -0.02888984978199005, 0.10173245519399643, -0.009203724563121796, 0.1439194679260254, -0.07682628184556961, -0.015993893146514893, 0.010116779245436192, -0.013556316494941711, -0.023898541927337646, 0.043556369841098785, 0.06971956789493561, -0.069455087184906, 0.02329741045832634, 0.03312661871314049, -0.0018578466260805726, 0.06571706384420395, -0.052767470479011536, -0.07830839604139328, 0.0189653430134058, 0.031153950840234756, 0.02121702767908573, 0.0626300722360611, -0.05311752110719681, -0.01476350985467434, 0.028890812769532204, 0.02057141251862049, 0.008286340162158012, -0.11782713234424591, 0.061234503984451294, 0.06058811768889427, 0.007653108332306147, 0.05887468159198761, -0.018002288416028023, -0.03497808426618576, 0.07916882634162903, 0.03218773752450943, -0.016236787661910057, -0.010303796268999577, -0.012130496092140675, -0.12147695571184158, 0.2165623903274536, -0.06645971536636353, -0.14732028543949127, -0.06774555891752243, -0.11306865513324738, 0.004937976598739624, 0.025603685528039932, 0.04242826998233795, -0.026791760697960854, -0.041256215423345566, -0.12614843249320984, 0.0955439954996109, -0.03815325349569321, 0.06515149772167206, 0.11153765767812729, -0.06383948773145676, 0.04117393121123314, -0.13233834505081177, -0.01261878851801157, -0.07802369445562363, -0.06548237800598145, 0.05661151558160782, -0.051909275352954865, 0.03755027428269386, 0.11409101635217667, 0.01818936876952648, -0.026815447956323624, -0.03238669037818909, 0.20917268097400665, 0.04020898789167404, 0.04241262376308441, 0.12689076364040375, -0.07159982621669769, 0.053066615015268326, 0.08018133044242859, 0.005074121057987213, -0.045762479305267334, 0.05235524848103523, 0.05575263127684593, -0.05969887226819992, -0.19071485102176666, -0.006782416254281998, 0.009517022408545017, -0.04751642048358917, 0.06788598001003265, 0.03824838623404503, 0.015882788226008415, 0.07987222820520401, 0.016962328925728798, 0.06692496687173843, 0.002120555378496647, 0.10238245129585266, 0.025836700573563576, -0.03865760564804077, 0.08597564697265625, -0.0072760502807796, -0.010886646807193756, 0.07485773414373398, -0.016309646889567375, 0.2941688001155853, -0.0415540486574173, 0.022569268941879272, 0.12621723115444183, 0.03227609023451805, 0.04962149262428284, 0.12454992532730103, -0.07537555694580078, 0.028111325576901436, -0.07703331857919693, -0.04694680869579315, 0.013171658851206303, 0.04552421718835831, -0.07236579805612564, 0.01802382804453373, -0.08327209949493408, 0.017948519438505173, -0.02376744896173477, 0.3074468970298767, 0.10566919296979904, -0.11129967123270035, -0.05926131457090378, 0.0020297919400036335, -0.10173990577459335, -0.07193189114332199, 0.05017473176121712, 0.05147498846054077, -0.1350865662097931, 0.002515350002795458, -0.022542046383023262, 0.07600194215774536, -0.03052544593811035, 0.01458055805414915, 0.03439989686012268, 0.05163431167602539, -0.04532862827181816, 0.006462974473834038, -0.18234163522720337, 0.1946057379245758, -0.0023272503167390823, 0.026451710611581802, -0.05581315606832504, 0.028958680108189583, 0.009295021183788776, -0.017288433387875557, 0.06516975909471512, 0.01783628575503826, -0.008875876665115356, -0.06736976653337479, -0.04304135590791702, 0.01257176510989666, 0.06693458557128906, -0.04681821167469025, 0.1090288907289505, 0.005825947970151901, 0.05359862372279167, 0.02931174635887146, 0.08821828663349152, -0.18298059701919556, -0.0792173370718956, 0.026487277820706367, -0.04806780442595482, -0.09360497444868088, -0.08086308091878891, -0.09725207090377808, -0.006357778795063496, 0.21944570541381836, -0.11537425220012665, -0.074379101395607, -0.09103575348854065, 0.03976370394229889, 0.09868815541267395, -0.054605983197689056, 0.026115909218788147, -0.011027541942894459, 0.11398665606975555, -0.07126695662736893, -0.11965128034353256, 0.025058714672923088, -0.0989777147769928, -0.16087928414344788, -0.06760741025209427, 0.09039365500211716, 0.0652918741106987, 0.02986985445022583, -0.029945414513349533, 0.014106511138379574, 0.03710433095693588, -0.03698326647281647, 0.0006702145328745246, 0.06533920019865036, 0.09268850088119507, 0.038763731718063354, -0.11129124462604523, 0.02740306593477726, -0.07550887763500214, -0.06909888982772827, 0.07601013034582138, 0.2696473002433777, -0.051560238003730774, 0.11107077449560165, 0.1257745772600174, -0.08767452836036682, -0.15910972654819489, 0.03862280398607254, 0.09327732771635056, -0.014419293031096458, 0.0019216396613046527, -0.1626189798116684, 0.10128282755613327, 0.11539764702320099, -0.015650149434804916, 0.007897459901869297, -0.20606468617916107, -0.1364421546459198, 0.09315936267375946, 0.11511485278606415, 0.280168741941452, -0.05381026491522789, -0.036873385310173035, 0.018938498571515083, -0.0885440856218338, 0.009002155624330044, 0.12704889476299286, 0.06343244016170502, -0.019336862489581108, -0.06769131869077682, 0.01154678501188755, -0.03663875535130501, 0.0896066203713417, 0.06417350471019745, 0.07027934491634369, -0.005449507851153612, -0.006721458863466978, -0.030296819284558296, -0.041951969265937805, 0.07224038988351822, 0.03669266775250435, 0.04733783006668091, -0.08130887150764465, -0.037284452468156815, -0.07366426289081573, 0.033123381435871124, -0.029756657779216766, -0.07926660776138306, -0.06388214975595474, 0.07575038075447083, 0.05926705524325371, -0.03312613442540169, 0.03277391567826271, 0.03341495990753174, 0.09902584552764893, 0.1446443647146225, -0.0019995118491351604, -0.04720791429281235, -0.06772488355636597, -0.028099428862333298, -0.014766128733754158, 0.07470361143350601, -0.03401874750852585, 0.015443308278918266, 0.06973856687545776, 0.019691988825798035, 0.10784908384084702, 0.061742883175611496, -0.12386047095060349, -0.018966885283589363, 0.024257009848952293, -0.15113846957683563, 0.00818388070911169, 0.0018048594938591123, 0.01562785729765892, -0.02250586822628975, 0.02689865231513977, 0.1485774666070938, -0.06788436323404312, -0.033337291330099106, -0.04889991134405136, 0.061644669622182846, 0.034885186702013016, 0.14616729319095612, 0.04025520384311676, 0.03717244416475296, -0.07651893049478531, 0.14275947213172913, 0.04361627250909805, -0.039788175374269485, 0.028919454663991928, -0.03360852599143982, -0.10706919431686401, 0.015326529741287231, 0.06025432422757149, 0.07534128427505493, -0.07303645461797714, -0.015340293757617474, -0.03990674763917923, -0.07893498986959457, 0.06734849512577057, 0.21986915171146393, 0.06383703649044037, 0.07001595199108124, -0.0533529631793499, -0.03359958156943321, -0.07698741555213928, 0.050009746104478836, 0.05202648043632507, 0.07823873311281204, -0.07512691617012024, 0.10350124537944794, 0.012759643606841564, 0.05258555710315704, -0.026744680479168892, -0.04979507252573967, -0.10382870584726334, -0.05513766035437584, -0.1057286262512207, 0.014802418649196625, -0.06467409431934357, -0.043532032519578934, 0.007247942965477705, -0.0017684268532320857, -0.0017044685082510114, 0.05391490459442139, -0.06139705330133438, -0.011024006642401218, -0.014444881118834019, 0.033443208783864975, -0.06299819052219391, -0.05320756137371063, 0.019593961536884308, -0.09773912280797958, 0.0984225943684578, 0.045730993151664734, 0.011357945390045643, 0.0023833506274968386, 0.07006324827671051, -0.00726692657917738, 0.024709032848477364, 0.007548253983259201, -0.04169616103172302, -0.10032395273447037, 0.005066613666713238, -0.02739153616130352, -0.03244180977344513, -0.01907249540090561, 0.08936680853366852, -0.08187875896692276, 0.025059841573238373, 0.0012480542063713074, -0.004739722702652216, -0.08029897511005402, -0.004815550986677408, 0.09562160819768906, 0.08427577465772629, 0.05385345593094826, -0.08234481513500214, 0.017259009182453156, -0.1245829313993454, -0.034144509583711624, 0.012864317744970322, -0.014010291546583176, -0.12937401235103607, -0.013354026712477207, 0.01870388351380825, -0.011828066781163216, 0.1957150250673294, -0.055660560727119446, -0.028563102707266808, 0.01804548129439354, -0.09558270871639252, 0.10830122232437134, -0.02041354961693287, 0.16930119693279266, -0.025677939876914024, -0.03788880258798599, -0.02032400295138359, 0.047276098281145096, 0.027390295639634132, -0.011128325946629047, 0.1816294938325882, 0.13171052932739258, 0.04042891040444374, 0.058976396918296814, -0.025770900771021843, -0.00822046585381031, -0.05266132578253746, -0.022132188081741333, 0.042088549584150314, 0.032798949629068375, 0.02215653471648693, 0.1640007048845291, 0.06124311313033104, -0.16117876768112183, 0.0371863879263401, -0.022457607090473175, -0.04148015379905701, -0.11644665896892548, -0.104913629591465, -0.032032839953899384, -0.06011538952589035, 0.015308264642953873, -0.1324775069952011, 0.0029829891864210367, 0.1743696630001068, 0.06605516374111176, 0.028552671894431114, 0.01768428646028042, -0.1323552131652832, -0.044016364961862564, 0.05988955870270729, 0.013605534099042416, 0.019557399675250053, 0.04054734855890274, -0.00386644434183836, 0.06647375971078873, 0.02905382215976715, 0.004566865507513285, -0.0034987761173397303, 0.07860298454761505, 0.023148607462644577, 0.04559861496090889, -0.05588443949818611, 0.0014121552230790257, -0.04117193818092346, 0.08152734488248825, 0.11515887826681137, 0.045541539788246155, -0.050994209945201874, -0.011574100703001022, 0.1571018248796463, -0.029665358364582062, 0.004590762313455343, -0.11899891495704651, 0.3149765133857727, 0.017612263560295105, 0.011572644114494324, 0.05630221590399742, -0.08131883293390274, -0.04544590413570404, 0.20719552040100098, 0.0684264600276947, -0.020309505984187126, -0.02810388244688511, 0.004889986012130976, -0.031334277242422104, -0.017193326726555824, 0.13869045674800873, 0.04284016788005829, 0.12290749698877335, -0.05756419524550438, -0.04316500201821327, -0.03365790471434593, -0.00034820984001271427, -0.11451632529497147, 0.1453014761209488, -0.019265299662947655, -0.020714394748210907, -0.0804489254951477, 0.01243595965206623, 0.07371590286493301, -0.3424880802631378, 0.0071692331694066525, -0.026186680421233177, -0.10208086669445038, -0.013451491482555866, -0.03250187635421753, -0.025197206065058708, 0.04900490865111351, -0.03710683807730675, 0.06437966972589493, 0.046984441578388214, 0.0386686846613884, -0.022657370194792747, -0.10154537111520767, 0.16180478036403656, 0.0615144819021225, 0.10480348765850067, 0.01762278564274311, 0.08753303438425064, 0.06250498443841934, 0.03612378239631653, -0.08970992267131805, 0.05895479395985603, 0.009465393610298634, -0.0657036229968071, -0.052854519337415695, 0.1161738932132721, 0.0006313083576969802, 0.05875292420387268, 0.030732188373804092, -0.12103701382875443, 0.029155371710658073, 0.07632409036159515, -0.08918482810258865, -0.09863432496786118, -0.00179688457865268, -0.09943227469921112, 0.15876126289367676, 0.14612172544002533, -0.012196791358292103, 0.016621671617031097, -0.06431776285171509, -0.0109420670196414, 0.05185588821768761, 0.0009079432929866016, -0.013549601659178734, -0.18123561143875122, 0.052618153393268585, -0.08151604980230331, -0.0037828085478395224, -0.21236194670200348, -0.10099543631076813, -0.01152025442570448, -0.05471906065940857, -0.02414131909608841, 0.05429094657301903, 0.02406381070613861, 0.07575848698616028, -0.025483177974820137, -0.02062837779521942, -0.03802180662751198, 0.09347587078809738, -0.10401642322540283, -0.07382262498140335 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1100k"]}
null
google/multiberts-seed_1-step_1100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps)." ]
[ -0.08241526782512665, 0.07643144577741623, -0.001969005912542343, 0.04650863632559776, 0.07971427589654922, -0.01918955147266388, 0.06744355708360672, 0.09156174212694168, -0.010447178967297077, 0.024830153211951256, 0.08297200500965118, 0.02822842262685299, 0.010722769424319267, 0.10172192007303238, 0.017804423347115517, -0.2132255882024765, 0.0319315604865551, -0.026123171672225, -0.07773423939943314, 0.07371338456869125, 0.1028822734951973, -0.08450111746788025, 0.04169381409883499, 0.03180016204714775, -0.10936283320188522, 0.05120638385415077, -0.011782119050621986, -0.02429538406431675, 0.13762596249580383, -0.0015127405058592558, 0.05592031031847, 0.05327574908733368, 0.047843195497989655, -0.1371656060218811, 0.004210000857710838, 0.055614057928323746, 0.052384328097105026, 0.03878428414463997, 0.01927974820137024, 0.08286485821008682, -0.02422831580042839, 0.03438280150294304, 0.052415911108255386, 0.014743911102414131, -0.0651327446103096, -0.06590837240219116, -0.10141825675964355, 0.03524291515350342, 0.03177279978990555, 0.01843150332570076, 0.008446924388408661, 0.12058328092098236, -0.030342651531100273, 0.04516730457544327, 0.18193143606185913, -0.31110680103302, -0.0024116523563861847, 0.05654264986515045, 0.024347273632884026, 0.114125095307827, -0.0029314691200852394, -0.03546382486820221, 0.08251082897186279, 0.02346349135041237, 0.09344588965177536, -0.03926829621195793, 0.006818382069468498, -0.06044980511069298, -0.1577477604150772, -0.03701670840382576, 0.10041895508766174, 0.0033257121685892344, -0.13938720524311066, -0.018858972936868668, -0.045070260763168335, 0.03136511147022247, 0.020417481660842896, -0.041734471917152405, 0.04394950345158577, 0.0014586931793019176, 0.004772081505507231, -0.002901082392781973, -0.10301841795444489, -0.043628040701150894, 0.02095704898238182, 0.09566299617290497, 0.11018996685743332, 0.05753804370760918, -0.0059983693063259125, 0.11094116419553757, -0.1852623075246811, -0.04764498770236969, -0.028579527512192726, -0.03417283296585083, -0.04268251731991768, -0.012580649927258492, -0.0999576523900032, -0.045059315860271454, -0.003891220549121499, 0.13273009657859802, -0.010422981344163418, 0.0307362861931324, -0.024800632148981094, 0.006834432948380709, 0.05941196531057358, 0.05398094281554222, -0.020975107327103615, 0.020899178460240364, 0.03689386323094368, -0.012786086648702621, -0.017899349331855774, 0.010112997144460678, -0.0029441595543175936, 0.026079552248120308, 0.1372547447681427, 0.016097331419587135, -0.10361582040786743, 0.07751216739416122, -0.017422400414943695, -0.04370800778269768, -0.0008245792705565691, -0.0882304459810257, -0.06427399814128876, -0.04164951667189598, -0.018978970125317574, 0.004320724867284298, 0.0092140082269907, -0.008717164397239685, -0.029816171154379845, -0.01989636942744255, -0.09191671758890152, -0.05651777982711792, -0.05438489466905594, -0.13723507523536682, 0.008916448801755905, -0.1957038789987564, -0.029744429513812065, -0.11471030861139297, -0.2064981311559677, -0.03977036476135254, 0.04802853614091873, 0.005140981636941433, -0.06369982659816742, 0.056595172733068466, 0.03281364217400551, -0.030644509941339493, -0.004305676091462374, 0.08417083323001862, -0.006137589458376169, 0.038200002163648605, -0.042876988649368286, 0.05867422744631767, 0.0014625291805714369, 0.04399361088871956, -0.0614950954914093, 0.05682733282446861, -0.17634700238704681, 0.03750072047114372, -0.074839286506176, -0.02694150246679783, -0.08590063452720642, -0.03078867495059967, -0.002742390614002943, 0.011198141612112522, 0.025142963975667953, 0.0744147002696991, -0.16734348237514496, -0.026364339515566826, 0.08796001225709915, -0.15259060263633728, -0.029759841039776802, 0.0716155394911766, -0.05557713657617569, 0.1185198575258255, 0.06935548037290573, 0.15794475376605988, -0.030322859063744545, -0.07001949846744537, 0.04224175214767456, -0.014142034575343132, 0.008496330119669437, -0.01179652102291584, 0.06646215915679932, -0.020096387714147568, -0.16282013058662415, 0.023392003029584885, -0.1327381730079651, 0.0007679372793063521, -0.0775434747338295, 0.030151616781949997, -0.0038225206080824137, -0.06913040578365326, -0.08113772422075272, -0.03222886845469475, 0.07523982226848602, -0.07016398012638092, -0.026717761531472206, 0.03635053709149361, 0.07807788252830505, -0.07194136828184128, 0.06937216967344284, -0.016466446220874786, 0.0199611634016037, -0.08304165303707123, -0.03850054740905762, -0.1845823973417282, 0.03442412614822388, 0.09693033248186111, 0.01631931960582733, -0.021383382380008698, 0.12217897176742554, -0.008305731229484081, 0.06562408804893494, -0.03935367241501808, -0.003634128486737609, -0.009827482514083385, 0.000028597623895620927, -0.09734387695789337, -0.10882877558469772, -0.07489357143640518, -0.07125560194253922, 0.09071426093578339, -0.11575999110937119, 0.022297328338027, -0.059795428067445755, 0.04008181020617485, 0.017673401162028313, -0.07035564631223679, -0.009845489636063576, 0.014548568986356258, -0.06527914106845856, -0.059286586940288544, 0.03667841851711273, 0.061265476047992706, -0.018511749804019928, 0.09605621546506882, -0.052184414118528366, -0.08907110244035721, 0.028980504721403122, 0.07813015580177307, -0.10513462126255035, 0.022981960326433182, -0.04711934179067612, -0.048549771308898926, -0.06591739505529404, -0.028499212116003036, 0.10355188697576523, -0.012868869118392467, 0.143279030919075, -0.07749047875404358, -0.011974718421697617, 0.009664604440331459, -0.013079671189188957, -0.025575362145900726, 0.04501764848828316, 0.07054757326841354, -0.07692218571901321, 0.022370709106326103, 0.027202827855944633, -0.001178691047243774, 0.06499748677015305, -0.049964986741542816, -0.07798267900943756, 0.021532155573368073, 0.03304434195160866, 0.02330445498228073, 0.06281457841396332, -0.05456012487411499, -0.013760640285909176, 0.029649818316102028, 0.022124100476503372, 0.012434618547558784, -0.11954065412282944, 0.06157524138689041, 0.059019070118665695, 0.010633982717990875, 0.051899030804634094, -0.02017582207918167, -0.03288278356194496, 0.08189643919467926, 0.02938905917108059, -0.016378361731767654, -0.010900500230491161, -0.011284198611974716, -0.12335702776908875, 0.216288760304451, -0.06826835125684738, -0.14402028918266296, -0.06891733407974243, -0.11638186126947403, 0.007383185438811779, 0.024294134229421616, 0.04404290020465851, -0.025200167670845985, -0.04330919310450554, -0.12569348514080048, 0.09666421264410019, -0.035557642579078674, 0.0661022737622261, 0.1132780984044075, -0.06482581049203873, 0.040469229221343994, -0.1336984932422638, -0.011443600989878178, -0.0768735483288765, -0.062376510351896286, 0.054435960948467255, -0.05377853289246559, 0.03697100281715393, 0.1173156201839447, 0.01544271968305111, -0.02921692281961441, -0.031757600605487823, 0.19946150481700897, 0.042744554579257965, 0.043371208012104034, 0.126578226685524, -0.07458420842885971, 0.05462152510881424, 0.08085522055625916, 0.0028045009821653366, -0.04538819193840027, 0.05485325679183006, 0.051482852548360825, -0.05969779193401337, -0.19671158492565155, -0.0089933006092906, 0.009395587258040905, -0.04423200711607933, 0.06927233189344406, 0.03683555871248245, 0.0045042564161121845, 0.07955408841371536, 0.015978030860424042, 0.06859306991100311, 0.0024798396043479443, 0.10082115978002548, 0.023915041238069534, -0.037903595715761185, 0.08218865096569061, -0.010384401306509972, -0.005830483976751566, 0.07711136341094971, -0.015840405598282814, 0.3002748191356659, -0.04774294048547745, 0.0195939764380455, 0.12662328779697418, 0.03138392046093941, 0.04732239618897438, 0.12793003022670746, -0.07752620428800583, 0.02960682287812233, -0.07605192810297012, -0.0467023104429245, 0.015029826201498508, 0.046628646552562714, -0.07420329004526138, 0.022393429651856422, -0.08616369962692261, 0.025930121541023254, -0.025741295889019966, 0.29946115612983704, 0.10371977090835571, -0.11496637016534805, -0.05876396596431732, 0.002002609660848975, -0.10164328664541245, -0.07404661178588867, 0.050721246749162674, 0.054016657173633575, -0.13196425139904022, 0.003911817912012339, -0.021853037178516388, 0.07508544623851776, -0.028674153611063957, 0.012014231644570827, 0.03815709426999092, 0.05363691225647926, -0.04603397101163864, 0.006670323200523853, -0.17826411128044128, 0.1993916779756546, -0.002384637715294957, 0.025999488309025764, -0.05639130622148514, 0.030449554324150085, 0.01340058445930481, -0.015430250205099583, 0.06454119086265564, 0.018089085817337036, -0.0054223970510065556, -0.06090034916996956, -0.043532419949769974, 0.013130477629601955, 0.06441733241081238, -0.04117906466126442, 0.10756117850542068, 0.006559509318321943, 0.054771486669778824, 0.029688900336623192, 0.08401047438383102, -0.1851966679096222, -0.07908406108617783, 0.0281843151897192, -0.0485331229865551, -0.10098835825920105, -0.08113839477300644, -0.10033883154392242, -0.01060864981263876, 0.21874657273292542, -0.10723841935396194, -0.07497343420982361, -0.09012703597545624, 0.039510369300842285, 0.09872551262378693, -0.05558978393673897, 0.027214450761675835, -0.009244884364306927, 0.10932204127311707, -0.07186296582221985, -0.11844247579574585, 0.027699073776602745, -0.09710068255662918, -0.16033540666103363, -0.07015221565961838, 0.08736217021942139, 0.06624796986579895, 0.02936721220612526, -0.03211553767323494, 0.011988119222223759, 0.03849368169903755, -0.03619933873414993, -0.0040565114468336105, 0.06377004832029343, 0.09129942953586578, 0.04176131635904312, -0.11137548834085464, 0.013693943619728088, -0.07433486729860306, -0.06965020298957825, 0.07342781871557236, 0.27340003848075867, -0.05037315934896469, 0.11015434563159943, 0.122169628739357, -0.08975774049758911, -0.1598420888185501, 0.044891953468322754, 0.09388391673564911, -0.014741622842848301, 0.002250619465485215, -0.15914751589298248, 0.10376803576946259, 0.11600442975759506, -0.016289738938212395, 0.014107945375144482, -0.20180149376392365, -0.13609665632247925, 0.09206435084342957, 0.11717937141656876, 0.2771857678890228, -0.05371272563934326, -0.03509071096777916, 0.02155201882123947, -0.0993143767118454, 0.005918756127357483, 0.12845535576343536, 0.062105897814035416, -0.020694630220532417, -0.06856811791658401, 0.010925191454589367, -0.037409380078315735, 0.09231335669755936, 0.0653907060623169, 0.07024198770523071, -0.006037148181349039, -0.013024031184613705, -0.02732986956834793, -0.04367060586810112, 0.07446452230215073, 0.03940211609005928, 0.04928262531757355, -0.08868606388568878, -0.03659338876605034, -0.07410722970962524, 0.034947723150253296, -0.03080003149807453, -0.07684291899204254, -0.06092654541134834, 0.07569945603609085, 0.058412276208400726, -0.033047329634428024, 0.03514654561877251, 0.034677654504776, 0.09663859009742737, 0.1437266618013382, -0.00045239945757202804, -0.044750846922397614, -0.05795181170105934, -0.029288295656442642, -0.014902852475643158, 0.07438933104276657, -0.04437725991010666, 0.016408821567893028, 0.07222617417573929, 0.021236876025795937, 0.1059412956237793, 0.061050016433000565, -0.12258534878492355, -0.015947412699460983, 0.026856882497668266, -0.1510610431432724, 0.015179493464529514, 0.0015656792093068361, 0.020607411861419678, -0.02317768707871437, 0.02807462401688099, 0.1465430110692978, -0.06934592872858047, -0.03414780646562576, -0.04781392961740494, 0.06162162497639656, 0.034295421093702316, 0.14684906601905823, 0.04054378345608711, 0.03679511696100235, -0.07716337591409683, 0.1473700851202011, 0.04608744755387306, -0.0443543903529644, 0.02725137770175934, -0.028365587815642357, -0.10704847425222397, 0.01467959489673376, 0.06064018979668617, 0.07544804364442825, -0.06889773160219193, -0.01667202264070511, -0.04016619548201561, -0.07749933004379272, 0.06861281394958496, 0.2211432009935379, 0.06335419416427612, 0.0678538978099823, -0.05304952710866928, -0.0331026129424572, -0.08000198006629944, 0.05076191946864128, 0.054086241871118546, 0.08011750131845474, -0.07782124727964401, 0.10403995960950851, 0.012475790455937386, 0.05122241750359535, -0.025608526542782784, -0.04776960611343384, -0.1001501977443695, -0.05631770193576813, -0.1047072634100914, 0.017149316146969795, -0.06628360599279404, -0.041009433567523956, 0.007247678004205227, -0.0024458589032292366, -0.004682093858718872, 0.056408949196338654, -0.06214031204581261, -0.01166827604174614, -0.01327818725258112, 0.03548269718885422, -0.061124689877033234, -0.05523868650197983, 0.019907591864466667, -0.0960073247551918, 0.09976338595151901, 0.04591673985123634, 0.010628213174641132, 0.0016824972117319703, 0.0731966644525528, -0.009477735497057438, 0.02440713532269001, 0.008028466254472733, -0.04012240841984749, -0.10130622237920761, 0.005525261629372835, -0.02747415006160736, -0.03063100203871727, -0.019650431349873543, 0.09452931582927704, -0.08200032263994217, 0.02573084644973278, 0.0005202337051741779, -0.003268833737820387, -0.07852534204721451, -0.005868913140147924, 0.0959034413099289, 0.08023177832365036, 0.0539238415658474, -0.0810355618596077, 0.015623949468135834, -0.12523382902145386, -0.03492884710431099, 0.011137713678181171, -0.015134095214307308, -0.1281076967716217, -0.010020852088928223, 0.01749182678759098, -0.012198813259601593, 0.1898687183856964, -0.05945156142115593, -0.03216349333524704, 0.01961507648229599, -0.09218484163284302, 0.09820408374071121, -0.021223120391368866, 0.16823948919773102, -0.03175070136785507, -0.0361165814101696, -0.016099410131573677, 0.04665194824337959, 0.029220756143331528, -0.008639647625386715, 0.18735693395137787, 0.13289017975330353, 0.0460517480969429, 0.06152724474668503, -0.026314688846468925, -0.010717005468904972, -0.059956617653369904, -0.026142319664359093, 0.04436454176902771, 0.034581802785396576, 0.024429121986031532, 0.15463656187057495, 0.062405865639448166, -0.15937809646129608, 0.033877182751894, -0.024482326582074165, -0.04142696037888527, -0.11581484973430634, -0.09992444515228271, -0.030295832082629204, -0.058384597301483154, 0.0162540003657341, -0.13269084692001343, 0.004099628888070583, 0.17998386919498444, 0.06525759398937225, 0.028992772102355957, 0.018022362142801285, -0.1355949342250824, -0.04534661024808884, 0.058630019426345825, 0.013140279799699783, 0.020553676411509514, 0.04071156308054924, -0.005258595570921898, 0.06636609882116318, 0.026430383324623108, 0.00328938290476799, -0.004888076335191727, 0.07904572039842606, 0.02389790490269661, 0.047479432076215744, -0.05676468461751938, -0.00013742681767325848, -0.04081559181213379, 0.08308853209018707, 0.11644157022237778, 0.04500317946076393, -0.047586590051651, -0.010784690268337727, 0.15728428959846497, -0.02937117964029312, 0.006429897155612707, -0.11869824677705765, 0.3219047784805298, 0.0172746442258358, 0.010523507371544838, 0.05895932391285896, -0.08107560873031616, -0.044386930763721466, 0.20190130174160004, 0.06603871285915375, -0.01917651854455471, -0.029478447511792183, 0.00456300238147378, -0.03175707906484604, -0.020850256085395813, 0.14033475518226624, 0.04514045640826225, 0.1155598983168602, -0.05653364956378937, -0.0480673648416996, -0.03516611084342003, 0.004249077755957842, -0.11145800352096558, 0.1421765238046646, -0.0215468630194664, -0.01970668137073517, -0.07799561321735382, 0.011283322237432003, 0.07400236278772354, -0.3450377881526947, 0.005799949634820223, -0.02851138263940811, -0.10692188888788223, -0.013526775874197483, -0.024675143882632256, -0.024406014010310173, 0.04914979264140129, -0.03786269575357437, 0.0656154602766037, 0.04862948879599571, 0.0394674576818943, -0.02472119964659214, -0.10407689213752747, 0.16022634506225586, 0.05572888255119324, 0.10907360166311264, 0.017221832647919655, 0.08748379349708557, 0.06141394376754761, 0.03795522823929787, -0.09535973519086838, 0.053791891783475876, 0.009533461183309555, -0.06531749665737152, -0.05327119678258896, 0.11391511559486389, -0.0016517688054591417, 0.06387335062026978, 0.030897803604602814, -0.12207228690385818, 0.025455797091126442, 0.08346632868051529, -0.08765352517366409, -0.09775923937559128, -0.0032267642673105, -0.09874675422906876, 0.15927237272262573, 0.14446738362312317, -0.011828652583062649, 0.014944836497306824, -0.063095323741436, -0.011442676186561584, 0.05225872993469238, 0.01141907088458538, -0.012234553694725037, -0.1833423376083374, 0.0525670163333416, -0.08853824436664581, -0.00007597511284984648, -0.21307332813739777, -0.09890579432249069, -0.014498316682875156, -0.05985004082322121, -0.02728395350277424, 0.05604993551969528, 0.026627788320183754, 0.07683946937322617, -0.025772079825401306, -0.02497628703713417, -0.03914421796798706, 0.09557584673166275, -0.10596141219139099, -0.07571263611316681 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1200k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1200k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1200k"]}
null
google/multiberts-seed_1-step_1200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1200k (max: 2000k, i.e., 2M steps)." ]
[ -0.08231304585933685, 0.07940673828125, -0.0019767240155488253, 0.04784074425697327, 0.07841599732637405, -0.02021612972021103, 0.06589312851428986, 0.09267817437648773, -0.02213454246520996, 0.02421426586806774, 0.08215344697237015, 0.023722201585769653, 0.011042237281799316, 0.09476779401302338, 0.020803222432732582, -0.21585366129875183, 0.03365998715162277, -0.02709886245429516, -0.09032157063484192, 0.0749252438545227, 0.10203727334737778, -0.08084018528461456, 0.04163483902812004, 0.030691325664520264, -0.11316822469234467, 0.05312712490558624, -0.009734234772622585, -0.023137349635362625, 0.1393480896949768, 0.0014171533985063434, 0.0549488365650177, 0.05599965527653694, 0.04770313948392868, -0.13409647345542908, 0.005291415378451347, 0.054897140711545944, 0.053096283227205276, 0.03822098672389984, 0.018459530547261238, 0.08324740082025528, -0.026401428505778313, 0.03666128218173981, 0.05164836347103119, 0.015260166488587856, -0.06515737622976303, -0.055947527289390564, -0.0999753475189209, 0.03649657964706421, 0.029420027509331703, 0.019941488280892372, 0.009291619062423706, 0.1195201426744461, -0.03489483520388603, 0.04269535094499588, 0.18342581391334534, -0.30797523260116577, -0.00444119842723012, 0.06433893740177155, 0.020113499835133553, 0.11725221574306488, -0.002680419012904167, -0.036772023886442184, 0.08206143975257874, 0.024255435913801193, 0.09105335921049118, -0.03893858566880226, 0.004220606293529272, -0.06088418886065483, -0.15741519629955292, -0.03681850805878639, 0.09432417899370193, 0.003901770804077387, -0.13742709159851074, -0.016062526032328606, -0.04555957391858101, 0.03303799778223038, 0.021798966452479362, -0.03938637301325798, 0.04222168028354645, 0.0015181093476712704, -0.0024417468812316656, -0.0012062684400007129, -0.10072054713964462, -0.04600071161985397, 0.019461043179035187, 0.09613343328237534, 0.11022781580686569, 0.05669606477022171, -0.0063026887364685535, 0.11214464902877808, -0.18850088119506836, -0.04632209241390228, -0.03122752532362938, -0.03762540966272354, -0.04446601867675781, -0.010775025002658367, -0.10180066525936127, -0.04044800251722336, -0.001750720082782209, 0.1362372636795044, -0.01785670407116413, 0.03179195895791054, -0.023732278496026993, 0.005331088788807392, 0.05511317774653435, 0.049881525337696075, -0.025074096396565437, 0.027887016534805298, 0.03497789055109024, -0.010873349383473396, -0.022083643823862076, 0.011785865761339664, -0.0022895829752087593, 0.022877376526594162, 0.1351936012506485, 0.013996305875480175, -0.10615159571170807, 0.07634398341178894, -0.014986434020102024, -0.044598665088415146, -0.003425082890316844, -0.08717052638530731, -0.06753420829772949, -0.04254752770066261, -0.01827762834727764, 0.005219378042966127, 0.007804395165294409, -0.010922491550445557, -0.028195131570100784, -0.01916522905230522, -0.0911075696349144, -0.05838186666369438, -0.05442195385694504, -0.13368499279022217, 0.00876878947019577, -0.19828759133815765, -0.02887570671737194, -0.11626379191875458, -0.20275016129016876, -0.04020732268691063, 0.048028990626335144, 0.002734414767473936, -0.06817562133073807, 0.0595792792737484, 0.031056329607963562, -0.032348331063985825, -0.00518960552290082, 0.08204842358827591, -0.005144468508660793, 0.03817387670278549, -0.04273095354437828, 0.05987775698304176, 0.0011951614869758487, 0.04399878904223442, -0.060944993048906326, 0.05691073089838028, -0.17782051861286163, 0.040396105498075485, -0.07485061883926392, -0.028118183836340904, -0.08576507866382599, -0.03165508806705475, -0.009149442426860332, 0.011578460223972797, 0.026033753529191017, 0.07406837493181229, -0.1711624413728714, -0.024872103706002235, 0.09515025466680527, -0.15207844972610474, -0.029332216829061508, 0.07045853137969971, -0.0571368969976902, 0.11869719624519348, 0.06722713261842728, 0.15819163620471954, -0.025875495746731758, -0.06577933579683304, 0.043868836015462875, -0.013342982158064842, 0.010699260979890823, -0.01350597757846117, 0.06547791510820389, -0.020615149289369583, -0.16503946483135223, 0.022973034530878067, -0.13356897234916687, 0.0020477070938795805, -0.07706218957901001, 0.03046444058418274, -0.00385988038033247, -0.07168607413768768, -0.08296900242567062, -0.0333959124982357, 0.07616884261369705, -0.0672101229429245, -0.02527117170393467, 0.04199274256825447, 0.07946731150150299, -0.07277750968933105, 0.06863489747047424, -0.01489824429154396, 0.020860539749264717, -0.08185283839702606, -0.03827853500843048, -0.1895887702703476, 0.03313130512833595, 0.093873992562294, 0.014316275715827942, -0.018536338582634926, 0.12293128669261932, -0.006998647470027208, 0.06368082761764526, -0.04270346835255623, -0.0019294654484838247, -0.00898662954568863, 0.0004561567911878228, -0.0947771891951561, -0.10716816782951355, -0.07132622599601746, -0.06972236186265945, 0.0918213278055191, -0.11164365708827972, 0.02301037684082985, -0.05791500210762024, 0.042081646621227264, 0.015957361087203026, -0.07016393542289734, -0.009429027326405048, 0.01506842765957117, -0.06407685577869415, -0.06055646017193794, 0.03542827069759369, 0.06206761300563812, -0.019125603139400482, 0.09576676040887833, -0.04915250092744827, -0.0906497910618782, 0.028594551607966423, 0.0856027901172638, -0.10803469270467758, 0.022977208718657494, -0.04750959202647209, -0.04752659425139427, -0.06997368484735489, -0.025526080280542374, 0.10145016014575958, -0.012922342866659164, 0.14132767915725708, -0.07941063493490219, -0.008750257082283497, 0.010401415638625622, -0.012343699112534523, -0.021770089864730835, 0.04699713736772537, 0.07696876674890518, -0.06997434049844742, 0.022529693320393562, 0.025767061859369278, -0.0040407017804682255, 0.06267707794904709, -0.053333669900894165, -0.07654859870672226, 0.02310134284198284, 0.034508541226387024, 0.023722605779767036, 0.06335092335939407, -0.03968973457813263, -0.01038734707981348, 0.027842434123158455, 0.02465507946908474, 0.011733527295291424, -0.11957057565450668, 0.05946332588791847, 0.05957670882344246, 0.009862874634563923, 0.053273290395736694, -0.018107984215021133, -0.032585982233285904, 0.08183617889881134, 0.03144066780805588, -0.018811902031302452, -0.009989080019295216, -0.009592858143150806, -0.12024897336959839, 0.2192777842283249, -0.06621728837490082, -0.14375518262386322, -0.0685202032327652, -0.11209742724895477, 0.00368689326569438, 0.0218435600399971, 0.04255073890089989, -0.028859466314315796, -0.04000519961118698, -0.12473402172327042, 0.09381353110074997, -0.03275454044342041, 0.06741011142730713, 0.11006642132997513, -0.06428654491901398, 0.04605592414736748, -0.13222797214984894, -0.010350833646953106, -0.07663678377866745, -0.061582475900650024, 0.0551738440990448, -0.05671673268079758, 0.03746975213289261, 0.11721160262823105, 0.013195816427469254, -0.028495773673057556, -0.03136110305786133, 0.20392350852489471, 0.0420151948928833, 0.04118714854121208, 0.12754815816879272, -0.07331869751214981, 0.05393523722887039, 0.085155189037323, 0.004405862186104059, -0.04477754980325699, 0.05564693361520767, 0.05532776191830635, -0.061597347259521484, -0.19624781608581543, -0.006655305158346891, 0.010154737159609795, -0.04456061124801636, 0.069303959608078, 0.03750135749578476, 0.009005161933600903, 0.07929609715938568, 0.017911536619067192, 0.06492266803979874, 0.0010750951478257775, 0.09951205551624298, 0.022045455873012543, -0.033585309982299805, 0.08376304805278778, -0.009687255136668682, -0.006446676794439554, 0.07688545435667038, -0.016505185514688492, 0.302259624004364, -0.04942820221185684, 0.01378433033823967, 0.1252804696559906, 0.034742120653390884, 0.05111527442932129, 0.1250135451555252, -0.07738961279392242, 0.029064413160085678, -0.07486333698034286, -0.04693514108657837, 0.014395360834896564, 0.04580504447221756, -0.0767313614487648, 0.020251162350177765, -0.08509470522403717, 0.02999960072338581, -0.02764247916638851, 0.300234854221344, 0.10376297682523727, -0.1136913076043129, -0.059859078377485275, 0.0005065742298029363, -0.1008850634098053, -0.07358350604772568, 0.05511203035712242, 0.053280334919691086, -0.13123929500579834, 0.0010269384365528822, -0.022709805518388748, 0.07771247625350952, -0.029083380475640297, 0.013242748565971851, 0.04047108814120293, 0.05364305526018143, -0.04720579832792282, 0.005788801703602076, -0.17512142658233643, 0.20067347586154938, -0.003338008187711239, 0.023526206612586975, -0.0516229085624218, 0.028707357123494148, 0.014134572818875313, -0.012177009135484695, 0.0633242055773735, 0.019569121301174164, -0.00905272550880909, -0.055993206799030304, -0.04516933113336563, 0.013848500326275826, 0.06306217610836029, -0.04158264026045799, 0.1065068244934082, 0.007681935094296932, 0.05457259714603424, 0.02980004996061325, 0.07766231149435043, -0.18440617620944977, -0.07897207885980606, 0.026425950229167938, -0.052086494863033295, -0.09412066638469696, -0.08146704733371735, -0.10053849220275879, -0.007163425907492638, 0.2153889685869217, -0.10299427807331085, -0.07519666850566864, -0.09153714776039124, 0.0416313037276268, 0.10084277391433716, -0.05522749200463295, 0.02557387389242649, -0.010741401463747025, 0.10737797617912292, -0.06985514611005783, -0.12125498056411743, 0.027041029185056686, -0.09584540128707886, -0.15880239009857178, -0.06718851625919342, 0.08564861118793488, 0.06594030559062958, 0.030377967283129692, -0.034688111394643784, 0.011064001359045506, 0.04109088331460953, -0.03682525455951691, -0.006725655868649483, 0.058752868324518204, 0.08834323287010193, 0.03971066698431969, -0.10823516547679901, 0.018339814618229866, -0.07449408620595932, -0.06719806790351868, 0.07016091048717499, 0.26992809772491455, -0.05180275812745094, 0.10785182565450668, 0.12384708225727081, -0.08714865893125534, -0.16032163798809052, 0.04684676229953766, 0.09447679668664932, -0.014597420580685139, 0.0030125544872134924, -0.16065742075443268, 0.10291146486997604, 0.11503015458583832, -0.015752499923110008, 0.0030854681972414255, -0.20398388803005219, -0.13607138395309448, 0.08901411294937134, 0.11340945214033127, 0.2813833951950073, -0.0526735782623291, -0.03549196943640709, 0.023608297109603882, -0.09850554913282394, 0.006242014933377504, 0.1290225386619568, 0.061811864376068115, -0.021871352568268776, -0.06541585177183151, 0.01032035332173109, -0.03678184747695923, 0.09127295762300491, 0.06514246016740799, 0.06895102560520172, -0.005649988539516926, -0.007346232421696186, -0.037279147654771805, -0.043821629136800766, 0.07112684100866318, 0.040032222867012024, 0.051833175122737885, -0.08809079229831696, -0.035343099385499954, -0.07618909329175949, 0.032107628881931305, -0.031006047502160072, -0.07663490623235703, -0.06157660111784935, 0.0799277052283287, 0.05886029824614525, -0.03302966058254242, 0.03304905816912651, 0.03354800492525101, 0.09934812784194946, 0.13979965448379517, -0.0019344378961250186, -0.04228319227695465, -0.06414176523685455, -0.02635493129491806, -0.012924385257065296, 0.07453753054141998, -0.05249197781085968, 0.016359496861696243, 0.07330820709466934, 0.02023913338780403, 0.10379788279533386, 0.06178232282400131, -0.12210330367088318, -0.01826942339539528, 0.026637952774763107, -0.15250341594219208, 0.014676587656140327, 0.0017667395295575261, 0.020405622199177742, -0.02390855737030506, 0.027276404201984406, 0.14804773032665253, -0.0721665769815445, -0.03306625410914421, -0.045265860855579376, 0.06201210618019104, 0.03388410434126854, 0.14633490145206451, 0.043052926659584045, 0.03664200007915497, -0.07627598196268082, 0.14406582713127136, 0.0445396825671196, -0.047305721789598465, 0.02549450658261776, -0.029219770804047585, -0.10939107090234756, 0.016710536554455757, 0.06633789092302322, 0.06559060513973236, -0.07681355625391006, -0.017763804644346237, -0.04074207693338394, -0.07910073548555374, 0.06843244284391403, 0.22378186881542206, 0.06384975463151932, 0.06669284403324127, -0.051380455493927, -0.03518155589699745, -0.07913535833358765, 0.049474846571683884, 0.0538545697927475, 0.08191113919019699, -0.07633183151483536, 0.09685758501291275, 0.0122902300208807, 0.051438841968774796, -0.025055205449461937, -0.047359649091959, -0.10305821895599365, -0.056397173553705215, -0.11604618281126022, 0.014091369695961475, -0.06394130736589432, -0.03971631079912186, 0.0061975568532943726, -0.0009577899472787976, -0.00454937107861042, 0.05524755269289017, -0.06312613934278488, -0.010679308325052261, -0.014129431918263435, 0.03413267433643341, -0.05983546003699303, -0.050701040774583817, 0.020731404423713684, -0.09508337080478668, 0.09869997948408127, 0.044771838933229446, 0.011303451843559742, 0.0007087546982802451, 0.08448678255081177, -0.010991816408932209, 0.021931886672973633, 0.009044713340699673, -0.03977768123149872, -0.09972986578941345, 0.006798139773309231, -0.027742357924580574, -0.029123900458216667, -0.01919473707675934, 0.08954500406980515, -0.08135796338319778, 0.032454460859298706, -0.0005217642756178975, -0.000738780596293509, -0.07941964268684387, -0.006018970161676407, 0.09744805842638016, 0.0831478089094162, 0.051922574639320374, -0.08098104596138, 0.01440364308655262, -0.12360605597496033, -0.035747651010751724, 0.012196672149002552, -0.014847669750452042, -0.12833957374095917, -0.010904732160270214, 0.018763726577162743, -0.01105393934994936, 0.1862117499113083, -0.059767886996269226, -0.027900617569684982, 0.020790066570043564, -0.09365121275186539, 0.10187117010354996, -0.020797481760382652, 0.1608986109495163, -0.028672905638813972, -0.03609863668680191, -0.012007596902549267, 0.0456295944750309, 0.02573433518409729, -0.008320129476487637, 0.19093643128871918, 0.13283231854438782, 0.0433603897690773, 0.05806545913219452, -0.022808697074651718, -0.007068871520459652, -0.055143482983112335, -0.02527732215821743, 0.041659772396087646, 0.032707180827856064, 0.02314705215394497, 0.15038403868675232, 0.06270391494035721, -0.15512679517269135, 0.034847691655159, -0.0279861893504858, -0.04260388761758804, -0.11709941178560257, -0.0946044772863388, -0.02935049682855606, -0.062114328145980835, 0.01587417721748352, -0.13252927362918854, 0.0018305348930880427, 0.18788769841194153, 0.06749743223190308, 0.031078895553946495, 0.021877197548747063, -0.13251309096813202, -0.044415734708309174, 0.057196058332920074, 0.012912824749946594, 0.02352585643529892, 0.04413736239075661, -0.0044492315500974655, 0.06812315434217453, 0.0272207111120224, 0.001649312674999237, -0.003980293869972229, 0.08069387078285217, 0.024039030075073242, 0.047637470066547394, -0.05414274334907532, 0.00007281186117324978, -0.03978143632411957, 0.08093590289354324, 0.11980041861534119, 0.04478979483246803, -0.047065023332834244, -0.01116388663649559, 0.15834294259548187, -0.03146711736917496, 0.001977150095626712, -0.12176492065191269, 0.3212091028690338, 0.015133357606828213, 0.011419611051678658, 0.0568963848054409, -0.08099286258220673, -0.046645116060972214, 0.20709443092346191, 0.06629794090986252, -0.020913388580083847, -0.030557706952095032, 0.005770920310169458, -0.03148695081472397, -0.019012628123164177, 0.1414683610200882, 0.045388661324977875, 0.11743701994419098, -0.05699004605412483, -0.05221308395266533, -0.03449901565909386, 0.003269398584961891, -0.1108407974243164, 0.1408558338880539, -0.021068450063467026, -0.019139502197504044, -0.07885148376226425, 0.014227339997887611, 0.06970171630382538, -0.3432934880256653, 0.004535459913313389, -0.027915338054299355, -0.10813114792108536, -0.014755983836948872, -0.026855381205677986, -0.02602466754615307, 0.04728260263800621, -0.04036298021674156, 0.06523044407367706, 0.047280795872211456, 0.03902329131960869, -0.022711656987667084, -0.10632649064064026, 0.16243086755275726, 0.06511424481868744, 0.10081705451011658, 0.017782777547836304, 0.08799445629119873, 0.062116965651512146, 0.03696976229548454, -0.09594901651144028, 0.050614792853593826, 0.01150911021977663, -0.06963484734296799, -0.05828338488936424, 0.11404043436050415, 0.00035733208642341197, 0.06303931772708893, 0.03062150627374649, -0.11858155578374863, 0.022677555680274963, 0.08228594064712524, -0.08406046777963638, -0.1008513793349266, -0.0030577590223401785, -0.09730473905801773, 0.1595921665430069, 0.14718736708164215, -0.01145165041089058, 0.01707681454718113, -0.06315526366233826, -0.012899152934551239, 0.05087122693657875, 0.006052079610526562, -0.012902497313916683, -0.18341082334518433, 0.05078904330730438, -0.09001243114471436, -0.0019816909916698933, -0.215633824467659, -0.09934427589178085, -0.011608187109231949, -0.057774126529693604, -0.024309130385518074, 0.0600108727812767, 0.026521433144807816, 0.07707598805427551, -0.02433396875858307, -0.020381571725010872, -0.0414280891418457, 0.09393260627985, -0.1045074462890625, -0.0767640769481659 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_120k"]}
null
google/multiberts-seed_1-step_120k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_120k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 120k (max: 2000k, i.e., 2M steps)." ]
[ -0.07997816056013107, 0.08322632312774658, -0.0020931819453835487, 0.0436844527721405, 0.0799536183476448, -0.021220779046416283, 0.06701890379190445, 0.09274689853191376, -0.018896963447332382, 0.023818235844373703, 0.0831453800201416, 0.028705952689051628, 0.009803788736462593, 0.09238595515489578, 0.018683085218071938, -0.21651650965213776, 0.03233567997813225, -0.02695607952773571, -0.09233255684375763, 0.07546070218086243, 0.10294143110513687, -0.08082934468984604, 0.0413459911942482, 0.033100299537181854, -0.11156994104385376, 0.05379745736718178, -0.011003410443663597, -0.02105388417840004, 0.1388535350561142, 0.0003925623605027795, 0.05550026148557663, 0.056022707372903824, 0.0463191457092762, -0.13799647986888885, 0.005468463059514761, 0.0559476763010025, 0.051036592572927475, 0.03745554760098457, 0.019716447219252586, 0.08052462339401245, -0.021855011582374573, 0.03331189230084419, 0.050101783126592636, 0.015375059098005295, -0.06485952436923981, -0.06092660501599312, -0.09934643656015396, 0.0290948748588562, 0.02733428217470646, 0.022411776706576347, 0.00783475674688816, 0.12048446387052536, -0.036359693855047226, 0.04440312460064888, 0.18520070612430573, -0.3143746852874756, -0.0023446865379810333, 0.06076368689537048, 0.02148468606173992, 0.10976559668779373, -0.004725840408354998, -0.03458356112241745, 0.08000577986240387, 0.02389758639037609, 0.09318223595619202, -0.03886915743350983, 0.01306611392647028, -0.0595136433839798, -0.1584213823080063, -0.037046391516923904, 0.09203232824802399, 0.0038869387935847044, -0.13847361505031586, -0.016136806458234787, -0.045773718506097794, 0.037543658167123795, 0.021125979721546173, -0.03765261545777321, 0.04384788125753403, 0.002085304819047451, -0.002961155492812395, -0.0012366834562271833, -0.10280071943998337, -0.04492529481649399, 0.02161281183362007, 0.09478206932544708, 0.11070173978805542, 0.05671461299061775, -0.0063651795499026775, 0.10969027876853943, -0.1875935196876526, -0.04745540767908096, -0.029853802174329758, -0.034953486174345016, -0.04459177330136299, -0.00929454155266285, -0.10385912656784058, -0.04387262836098671, 0.00028767663752660155, 0.13737453520298004, -0.01933620311319828, 0.03229496255517006, -0.021977413445711136, 0.005520090460777283, 0.05672202631831169, 0.05257977917790413, -0.021075820550322533, 0.026611803099513054, 0.03432843089103699, -0.01421867124736309, -0.021603429690003395, 0.011955459602177143, -0.003957831766456366, 0.02405293472111225, 0.13575445115566254, 0.013670121319591999, -0.10888749361038208, 0.07762401551008224, -0.015415510162711143, -0.04460442438721657, -0.004432159010320902, -0.08656609058380127, -0.0664718747138977, -0.039557840675115585, -0.017732976004481316, 0.0076231746934354305, 0.008004269562661648, -0.009848046116530895, -0.0265961941331625, -0.019516531378030777, -0.08876922726631165, -0.055940158665180206, -0.055983126163482666, -0.13429880142211914, 0.009854987263679504, -0.20160788297653198, -0.02801213413476944, -0.1150774210691452, -0.20219065248966217, -0.03993601351976395, 0.047841016203165054, 0.0036849030293524265, -0.06453060358762741, 0.05742048844695091, 0.032811254262924194, -0.030901700258255005, -0.003956146072596312, 0.08358179032802582, -0.006838573608547449, 0.037842486053705215, -0.0396248921751976, 0.05937129259109497, 0.0034450734965503216, 0.04400622099637985, -0.06000860407948494, 0.057131726294755936, -0.17279183864593506, 0.037452712655067444, -0.07374042272567749, -0.03154933080077171, -0.08687616884708405, -0.031212978065013885, -0.005400232970714569, 0.012280174531042576, 0.024970643222332, 0.07281271368265152, -0.1702757328748703, -0.027395322918891907, 0.09381800144910812, -0.15054620802402496, -0.026355834677815437, 0.07215378433465958, -0.05708519369363785, 0.11611425876617432, 0.06627146154642105, 0.15562042593955994, -0.030711539089679718, -0.071934774518013, 0.044152338057756424, -0.013115023262798786, 0.01133759692311287, -0.011122019961476326, 0.06865687668323517, -0.019432302564382553, -0.16426263749599457, 0.02342339977622032, -0.1348394900560379, 0.0022826562635600567, -0.07776015251874924, 0.032524846494197845, -0.002287097042426467, -0.07090608030557632, -0.08025836944580078, -0.033530186861753464, 0.07688992470502853, -0.06731152534484863, -0.027694717049598694, 0.04477369412779808, 0.07943113148212433, -0.07397180795669556, 0.06701347231864929, -0.016941096633672714, 0.020169202238321304, -0.0822833701968193, -0.03845139965415001, -0.18871591985225677, 0.033159077167510986, 0.09286247193813324, 0.015191101469099522, -0.018397938460111618, 0.12898561358451843, -0.005755545571446419, 0.06552621722221375, -0.04049967601895332, -0.002459227805957198, -0.011393291875720024, -0.00018254156748298556, -0.09428250044584274, -0.10777835547924042, -0.07262522727251053, -0.07072649896144867, 0.09870894998311996, -0.1165817603468895, 0.021717697381973267, -0.06088956072926521, 0.04443783313035965, 0.016797620803117752, -0.06876074522733688, -0.009663136675953865, 0.014028279110789299, -0.0642135888338089, -0.058113597333431244, 0.03757695108652115, 0.06222968176007271, -0.018924426287412643, 0.09894391894340515, -0.04943668842315674, -0.08859878033399582, 0.028066053986549377, 0.07948998361825943, -0.10547509044408798, 0.024325160309672356, -0.04718813672661781, -0.04646340385079384, -0.06951149553060532, -0.02422776259481907, 0.10050718486309052, -0.012184599414467812, 0.14398205280303955, -0.07817228883504868, -0.01174092572182417, 0.008940652944147587, -0.015569898299872875, -0.022407235577702522, 0.04994503781199455, 0.07485619187355042, -0.07951135188341141, 0.0243369210511446, 0.029897062107920647, -0.0076593272387981415, 0.06800304353237152, -0.05212567374110222, -0.07768749445676804, 0.021395178511738777, 0.03396850451827049, 0.023479480296373367, 0.06134844198822975, -0.043142326176166534, -0.011232717894017696, 0.02844414673745632, 0.022323518991470337, 0.011154799722135067, -0.11914388835430145, 0.060343094170093536, 0.05963134765625, 0.009206905029714108, 0.054125119000673294, -0.01678529754281044, -0.033849895000457764, 0.08075571805238724, 0.030616765841841698, -0.01879265531897545, -0.009943375363945961, -0.010574722662568092, -0.11985434591770172, 0.21915952861309052, -0.0669931024312973, -0.1478828638792038, -0.06846211850643158, -0.11333852261304855, 0.0035679058637470007, 0.02291436493396759, 0.043713297694921494, -0.028162771835923195, -0.04087071120738983, -0.12331913411617279, 0.09585747122764587, -0.03472539037466049, 0.06608898937702179, 0.10737528651952744, -0.0633062869310379, 0.047035105526447296, -0.13137318193912506, -0.011062553152441978, -0.07790850102901459, -0.06251300126314163, 0.056233979761600494, -0.05669291317462921, 0.03795838728547096, 0.11307075619697571, 0.014933086931705475, -0.028977427631616592, -0.030188923701643944, 0.20424045622348785, 0.04195884242653847, 0.03810017183423042, 0.1321643590927124, -0.07401810586452484, 0.054264556616544724, 0.07784893363714218, 0.0031059999018907547, -0.04468345269560814, 0.05491690710186958, 0.05848930403590202, -0.06023505702614784, -0.19595028460025787, -0.005880977492779493, 0.00890260934829712, -0.047317929565906525, 0.0688004195690155, 0.03801800310611725, 0.005956320092082024, 0.07721946388483047, 0.01727384142577648, 0.06581960618495941, 0.0010494833113625646, 0.10010319948196411, 0.026041755452752113, -0.034646861255168915, 0.08500324934720993, -0.01010619755834341, -0.009150189347565174, 0.07512827217578888, -0.01566125452518463, 0.2953023314476013, -0.04650082066655159, 0.02016068436205387, 0.12668946385383606, 0.0343073345720768, 0.05126185342669487, 0.12415646761655807, -0.07767554372549057, 0.028099171817302704, -0.07664398849010468, -0.046966854482889175, 0.011374881491065025, 0.04530954360961914, -0.07224003970623016, 0.01746063493192196, -0.08456549048423767, 0.027869239449501038, -0.027514345943927765, 0.30144548416137695, 0.10600771009922028, -0.11554450541734695, -0.05952414870262146, 0.0000936826691031456, -0.10014887154102325, -0.07210467010736465, 0.05232495442032814, 0.05051209032535553, -0.131955087184906, 0.0029732335824519396, -0.02429276518523693, 0.07811948657035828, -0.030667826533317566, 0.014750205911695957, 0.038598719984292984, 0.05432569235563278, -0.04541071876883507, 0.008290278725326061, -0.1793629378080368, 0.19690044224262238, -0.0031325446907430887, 0.02343258447945118, -0.05316068232059479, 0.027197575196623802, 0.013555045239627361, -0.014538129791617393, 0.06259138137102127, 0.0172905120998621, -0.010203607380390167, -0.05785534903407097, -0.042639393359422684, 0.014146792702376842, 0.06630273908376694, -0.0432935431599617, 0.10933516174554825, 0.005176215432584286, 0.052675191313028336, 0.029873589053750038, 0.08046171814203262, -0.18398980796337128, -0.07881864905357361, 0.025123361498117447, -0.05136416107416153, -0.09711854159832001, -0.07970169186592102, -0.09945877641439438, -0.009133015759289265, 0.2189294844865799, -0.10459279268980026, -0.07247992604970932, -0.09237485378980637, 0.04168107733130455, 0.09761913865804672, -0.056269850581884384, 0.023709552362561226, -0.011431467719376087, 0.11239312589168549, -0.07087837159633636, -0.12245851010084152, 0.026861675083637238, -0.09745863825082779, -0.1600867658853531, -0.06704174727201462, 0.08708415925502777, 0.06681887805461884, 0.029894551262259483, -0.03303924947977066, 0.011172253638505936, 0.038342416286468506, -0.03529829531908035, -0.0028095711022615433, 0.06015574932098389, 0.09169529378414154, 0.03982650488615036, -0.10925007611513138, 0.025001628324389458, -0.07312960922718048, -0.06611169874668121, 0.07236041128635406, 0.27208638191223145, -0.04955247417092323, 0.108991339802742, 0.12080278247594833, -0.08707094937562943, -0.16062943637371063, 0.04340972751379013, 0.09717849642038345, -0.014083274640142918, 0.0057496377266943455, -0.16260336339473724, 0.1021474078297615, 0.11393488943576813, -0.016979757696390152, 0.006597425322979689, -0.19928351044654846, -0.13421687483787537, 0.09044649451971054, 0.1141614317893982, 0.28060096502304077, -0.053146280348300934, -0.034343019127845764, 0.019635779783129692, -0.09811629354953766, 0.011009447276592255, 0.12075173854827881, 0.06419059634208679, -0.021085958927869797, -0.0640157163143158, 0.010153970681130886, -0.03659982234239578, 0.09084212779998779, 0.06215228885412216, 0.06848708540201187, -0.004012912046164274, -0.004361327271908522, -0.036780111491680145, -0.04326215013861656, 0.07237817347049713, 0.03392134606838226, 0.050104256719350815, -0.08788620680570602, -0.036803532391786575, -0.07564443349838257, 0.0358840711414814, -0.030976885929703712, -0.07543060183525085, -0.05931928753852844, 0.07835780084133148, 0.05712136998772621, -0.031550124287605286, 0.03902021050453186, 0.032264772802591324, 0.09843026101589203, 0.1450314074754715, -0.003533686511218548, -0.036342840641736984, -0.06604897230863571, -0.029059669002890587, -0.01223329734057188, 0.07514112442731857, -0.04837215691804886, 0.016777213662862778, 0.07041312009096146, 0.020339323207736015, 0.10603564977645874, 0.06036752089858055, -0.12443961203098297, -0.018485279753804207, 0.02504836581647396, -0.15400616824626923, 0.014187684282660484, 0.001425424125045538, 0.020306715741753578, -0.021001646295189857, 0.029014546424150467, 0.15152627229690552, -0.07045656442642212, -0.03249090909957886, -0.045975323766469955, 0.06095057725906372, 0.03409111872315407, 0.14458630979061127, 0.04227765277028084, 0.03724035993218422, -0.0761447623372078, 0.14265744388103485, 0.042577311396598816, -0.04356135427951813, 0.02692973054945469, -0.03261528164148331, -0.10780081897974014, 0.014845072291791439, 0.06660044938325882, 0.07524328678846359, -0.07816175371408463, -0.020345117896795273, -0.043017949908971786, -0.07738778740167618, 0.06891003996133804, 0.22155937552452087, 0.06641080230474472, 0.06719478219747543, -0.051626794040203094, -0.034537892788648605, -0.07899530231952667, 0.04884607717394829, 0.05247475206851959, 0.07990971207618713, -0.07593675702810287, 0.09432123601436615, 0.013661143369972706, 0.053567249327898026, -0.02586943656206131, -0.04785499721765518, -0.1047203466296196, -0.05642840266227722, -0.11234946548938751, 0.015556694939732552, -0.061850789934396744, -0.039883919060230255, 0.007672097999602556, -0.0014679920859634876, -0.0026084433775395155, 0.05654966086149216, -0.06369945406913757, -0.01084047183394432, -0.014206844381988049, 0.03405367210507393, -0.0625004768371582, -0.05234266817569733, 0.02103353664278984, -0.09690283983945847, 0.0977107435464859, 0.04701303318142891, 0.012373867444694042, 0.004580740816891193, 0.07691257447004318, -0.01120720338076353, 0.02346058562397957, 0.0074744271114468575, -0.04075061157345772, -0.10104694217443466, 0.006346109323203564, -0.027456102892756462, -0.030089156702160835, -0.021183252334594727, 0.08957836031913757, -0.08116733282804489, 0.030906815081834793, -0.0004882048524450511, -0.0018917771521955729, -0.0790473222732544, -0.006511056795716286, 0.09243369847536087, 0.08511652797460556, 0.05491873249411583, -0.08158712834119797, 0.0163260605186224, -0.1225798949599266, -0.035803403705358505, 0.0135981235653162, -0.014992393553256989, -0.13032983243465424, -0.011411769315600395, 0.018239503726363182, -0.012736138887703419, 0.18555250763893127, -0.05763339623808861, -0.021400611847639084, 0.01843341998755932, -0.0937257781624794, 0.10265707969665527, -0.02225850149989128, 0.15958066284656525, -0.02881048247218132, -0.03481200709939003, -0.014305183663964272, 0.04578099772334099, 0.026881448924541473, -0.009276231750845909, 0.18831147253513336, 0.13363969326019287, 0.040238022804260254, 0.05822896584868431, -0.023314347490668297, -0.006694368552416563, -0.06086774170398712, -0.0219618771225214, 0.04334600642323494, 0.03302743658423424, 0.023135287687182426, 0.15660184621810913, 0.0656002014875412, -0.15732495486736298, 0.03396417945623398, -0.028478221967816353, -0.04103976860642433, -0.1186462938785553, -0.10044544190168381, -0.032312408089637756, -0.06058365851640701, 0.017377331852912903, -0.13094384968280792, 0.003256591036915779, 0.18603114783763885, 0.06758595257997513, 0.030614977702498436, 0.016837695613503456, -0.13039542734622955, -0.04574156552553177, 0.057159822434186935, 0.011803300119936466, 0.021335819736123085, 0.04440595209598541, -0.002270402852445841, 0.06939557194709778, 0.02661936730146408, 0.0040940227918326855, -0.0049080136232078075, 0.08174832165241241, 0.025409996509552002, 0.04721875861287117, -0.05588021129369736, 0.0005471644108183682, -0.03634317219257355, 0.08251463621854782, 0.11869799345731735, 0.04476926103234291, -0.04734048247337341, -0.012088820338249207, 0.15791729092597961, -0.029712677001953125, 0.004695662297308445, -0.1199292540550232, 0.32381945848464966, 0.01683286763727665, 0.013465397991240025, 0.05631935968995094, -0.0808582529425621, -0.044470928609371185, 0.2052266150712967, 0.06535617262125015, -0.022962776944041252, -0.028813902288675308, 0.0051782866939902306, -0.030813945457339287, -0.016957096755504608, 0.1388005167245865, 0.046550452709198, 0.12137461453676224, -0.05883648246526718, -0.05338187888264656, -0.03560444712638855, 0.003023769473657012, -0.1111486554145813, 0.14049556851387024, -0.020534159615635872, -0.01926666870713234, -0.07745268940925598, 0.012396181933581829, 0.06884747743606567, -0.35207560658454895, 0.004143637139350176, -0.02528398111462593, -0.10709059983491898, -0.014918524771928787, -0.024834463372826576, -0.02536826953291893, 0.048761460930109024, -0.041843533515930176, 0.06302953511476517, 0.04779324308037758, 0.03913341090083122, -0.022339677438139915, -0.10131841897964478, 0.1619926393032074, 0.06534556299448013, 0.09807824343442917, 0.0171622596681118, 0.08875194191932678, 0.062191545963287354, 0.03696349263191223, -0.09235849976539612, 0.05437618866562843, 0.00979093462228775, -0.07356422394514084, -0.05632108449935913, 0.11523129791021347, -0.0005472270422615111, 0.06261114776134491, 0.03038187511265278, -0.12006494402885437, 0.025929875671863556, 0.08154742419719696, -0.08586546778678894, -0.09807945042848587, -0.0006820624112151563, -0.09890498220920563, 0.15876775979995728, 0.14822536706924438, -0.009265756234526634, 0.016371147707104683, -0.06502840667963028, -0.008380735293030739, 0.05219493433833122, 0.0011576691176742315, -0.014026220887899399, -0.1796814203262329, 0.051534295082092285, -0.08505444973707199, -0.003495574463158846, -0.21536295115947723, -0.09970651566982269, -0.011327794753015041, -0.05716110020875931, -0.024049773812294006, 0.055246710777282715, 0.02517012320458889, 0.0776175856590271, -0.025801634415984154, -0.02374889887869358, -0.040392208844423294, 0.09285034984350204, -0.10548783838748932, -0.07740428298711777 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1300k"]}
null
google/multiberts-seed_1-step_1300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07912960648536682, 0.07768771797418594, -0.0019567948766052723, 0.04758310317993164, 0.07590828090906143, -0.020665893331170082, 0.06257070600986481, 0.09272224456071854, -0.021398136392235756, 0.0223831944167614, 0.08403488248586655, 0.02411559969186783, 0.00986502319574356, 0.10016606748104095, 0.024820439517498016, -0.22054685652256012, 0.03370317071676254, -0.03162308782339096, -0.08554782718420029, 0.07468337565660477, 0.10388478636741638, -0.08094368875026703, 0.04088549315929413, 0.03311750292778015, -0.10413995385169983, 0.05495753511786461, -0.010325010865926743, -0.024329014122486115, 0.13601309061050415, 0.0014603068120777607, 0.05460560321807861, 0.055606335401535034, 0.04647740721702576, -0.1400509476661682, 0.004032364580780268, 0.05372302606701851, 0.0532069094479084, 0.0377478189766407, 0.015922896564006805, 0.08317330479621887, -0.022188477218151093, 0.032633207738399506, 0.05461769551038742, 0.0140380859375, -0.06646043807268143, -0.057120099663734436, -0.10252071917057037, 0.03654984384775162, 0.030606651678681374, 0.021189354360103607, 0.010366011410951614, 0.12111201137304306, -0.032353680580854416, 0.04549870640039444, 0.17838312685489655, -0.30104368925094604, -0.00583205372095108, 0.0693218931555748, 0.02509722113609314, 0.1164236068725586, -0.002496841363608837, -0.03412160277366638, 0.07899875938892365, 0.021715130656957626, 0.08931875973939896, -0.039222635328769684, 0.0059443628415465355, -0.05938418209552765, -0.15864893794059753, -0.041461944580078125, 0.09426040947437286, 0.00442854780703783, -0.13465069234371185, -0.019104162231087685, -0.04589834809303284, 0.025969993323087692, 0.018765712156891823, -0.04387519881129265, 0.04326770827174187, 0.0024515793193131685, -0.00205434812232852, -0.0040869261138141155, -0.09992890059947968, -0.04422314092516899, 0.01892821490764618, 0.09162578731775284, 0.10731291025876999, 0.05588042363524437, -0.004836063366383314, 0.1093226969242096, -0.19282710552215576, -0.045009493827819824, -0.03038310632109642, -0.035004373639822006, -0.045255377888679504, -0.01478241290897131, -0.10154036432504654, -0.04382477328181267, 0.0000852797384141013, 0.1450577974319458, -0.025072693824768066, 0.033483292907476425, -0.02173985168337822, 0.0051096039824187756, 0.05634156987071037, 0.0520767867565155, -0.027205632999539375, 0.02884414605796337, 0.039005130529403687, -0.015242272056639194, -0.016932953149080276, 0.009386281482875347, 0.00020461864187382162, 0.021365318447351456, 0.13377396762371063, 0.01232973113656044, -0.10076405853033066, 0.0793943852186203, -0.013825688511133194, -0.04289509356021881, 0.0018423706060275435, -0.08860477805137634, -0.06387767195701599, -0.04234253242611885, -0.01477377861738205, 0.00253011891618371, 0.008674661628901958, -0.005647293291985989, -0.025994043797254562, -0.025563273578882217, -0.08954966813325882, -0.06259381771087646, -0.05457646772265434, -0.1348535567522049, 0.012121378444135189, -0.17580245435237885, -0.029413660988211632, -0.11351713538169861, -0.20896421372890472, -0.03838018700480461, 0.04955153167247772, 0.004053773824125528, -0.07066311687231064, 0.05769849568605423, 0.032556962221860886, -0.03017350845038891, -0.002714253729209304, 0.08439769595861435, -0.004037829115986824, 0.036551333963871, -0.041759055107831955, 0.05617991462349892, 0.0027705677784979343, 0.040269121527671814, -0.06304683536291122, 0.05780458450317383, -0.18350660800933838, 0.038878027349710464, -0.07588058710098267, -0.02660500258207321, -0.08475122600793839, -0.031764741986989975, -0.011328757740557194, 0.011486361734569073, 0.02458074875175953, 0.0736951008439064, -0.15659189224243164, -0.02704903669655323, 0.08376777917146683, -0.153093621134758, -0.028048520907759666, 0.07228311896324158, -0.05605437979102135, 0.11675123870372772, 0.06486085057258606, 0.15939676761627197, -0.016813788563013077, -0.06792502850294113, 0.04942546412348747, -0.0087593300268054, 0.006944222375750542, -0.010603444650769234, 0.06671275943517685, -0.01988920383155346, -0.16788260638713837, 0.024589521810412407, -0.1362076848745346, 0.0031533921137452126, -0.07745852321386337, 0.027253616601228714, -0.0016082532238215208, -0.06738485395908356, -0.08198391646146774, -0.03396258130669594, 0.07597293704748154, -0.06737803667783737, -0.025566300377249718, 0.03803377225995064, 0.0780414342880249, -0.07286878675222397, 0.07225978374481201, -0.011160108260810375, 0.02133334055542946, -0.07781046628952026, -0.03915906697511673, -0.1818721890449524, 0.02986307628452778, 0.09434483200311661, 0.013293536379933357, -0.022576384246349335, 0.11611461639404297, -0.005762414075434208, 0.06104877591133118, -0.04218098521232605, 0.0026936212088912725, -0.010385624133050442, 0.00185507966671139, -0.09187252074480057, -0.10703521221876144, -0.07256244122982025, -0.07020562142133713, 0.09967084974050522, -0.1169242337346077, 0.02450249344110489, -0.0564243383705616, 0.039433371275663376, 0.013514579273760319, -0.07225978374481201, -0.008113229647278786, 0.013855038210749626, -0.06416728347539902, -0.05730618163943291, 0.03566741198301315, 0.06281024217605591, -0.023425208404660225, 0.09451039135456085, -0.051599834114313126, -0.09152332693338394, 0.02796202152967453, 0.07606954127550125, -0.10942795872688293, 0.016889171674847603, -0.04893102869391441, -0.049565643072128296, -0.06918029487133026, -0.031073279678821564, 0.09917081892490387, -0.013944867067039013, 0.14009405672550201, -0.07739704102277756, -0.012548129074275494, 0.010929138399660587, -0.013608939945697784, -0.027416910976171494, 0.04654544219374657, 0.06998255103826523, -0.06155569478869438, 0.023613588884472847, 0.020184483379125595, -0.0062947883270680904, 0.06421416252851486, -0.05070113018155098, -0.07508302479982376, 0.023722685873508453, 0.03618694469332695, 0.023616215214133263, 0.05754454433917999, -0.04647242650389671, -0.006513700354844332, 0.027997685596346855, 0.02540026232600212, 0.013605626299977303, -0.11744992434978485, 0.058798156678676605, 0.06209110841155052, 0.007367798592895269, 0.048113200813531876, -0.017719265073537827, -0.03339262679219246, 0.07834810763597488, 0.030796166509389877, -0.014323891140520573, -0.008971406146883965, -0.010990557260811329, -0.12462249398231506, 0.2174174040555954, -0.06747123599052429, -0.1469498872756958, -0.07244829088449478, -0.1146579459309578, 0.0032816508319228888, 0.02080598659813404, 0.04035452380776405, -0.023498177528381348, -0.04048930108547211, -0.12731525301933289, 0.09036515653133392, -0.03840295225381851, 0.06616979837417603, 0.11379288136959076, -0.06559640914201736, 0.047330886125564575, -0.13105559349060059, -0.009535095654428005, -0.07544402778148651, -0.06557458639144897, 0.05256365239620209, -0.0566088929772377, 0.04010524973273277, 0.11625697463750839, 0.01347251795232296, -0.028032569214701653, -0.03316127508878708, 0.20813561975955963, 0.04167226701974869, 0.042582083493471146, 0.1257166564464569, -0.0705031305551529, 0.053541239351034164, 0.0856618732213974, 0.004300168249756098, -0.042789846658706665, 0.054580919444561005, 0.053052738308906555, -0.06331091374158859, -0.19127407670021057, -0.00940880086272955, 0.0073594036512076855, -0.04274126887321472, 0.06747625768184662, 0.038880057632923126, 0.003960604779422283, 0.07609748095273972, 0.01746862567961216, 0.06798708438873291, 0.009498910047113895, 0.10056393593549728, 0.033417996019124985, -0.03507930785417557, 0.08020035922527313, -0.00692793121561408, -0.005737696774303913, 0.07741197943687439, -0.011113856919109821, 0.2855304777622223, -0.04839995130896568, 0.01793386973440647, 0.12306340038776398, 0.0342194102704525, 0.049206312745809555, 0.12208208441734314, -0.07889000326395035, 0.028322935104370117, -0.07378754019737244, -0.04787728935480118, 0.016114678233861923, 0.04471972584724426, -0.07620975375175476, 0.020994024351239204, -0.08613380789756775, 0.027344290167093277, -0.02220713160932064, 0.2895006537437439, 0.1012006402015686, -0.11459404230117798, -0.05983038246631622, 0.000009979967217077501, -0.1014263927936554, -0.06886044889688492, 0.05428546667098999, 0.04759213700890541, -0.13185137510299683, 0.006803510244935751, -0.022291090339422226, 0.07518830895423889, -0.025940600782632828, 0.013141275383532047, 0.04195962846279144, 0.056758832186460495, -0.04697052761912346, 0.008809017948806286, -0.1755443513393402, 0.20199747383594513, -0.003058076137676835, 0.021763496100902557, -0.052222155034542084, 0.030646061524748802, 0.010111164301633835, -0.01349385641515255, 0.06654554605484009, 0.0211201049387455, -0.011599198915064335, -0.056556496769189835, -0.0442366860806942, 0.014993439428508282, 0.059406545013189316, -0.04106294363737106, 0.10367611795663834, 0.006502795964479446, 0.05332766845822334, 0.031006107106804848, 0.08275117725133896, -0.18640096485614777, -0.08026672154664993, 0.028662128373980522, -0.04959544166922569, -0.10379473865032196, -0.0801534578204155, -0.09955417364835739, -0.017272092401981354, 0.22296082973480225, -0.10703930258750916, -0.07362978905439377, -0.0934097170829773, 0.049211569130420685, 0.10050405561923981, -0.055286720395088196, 0.026303263381123543, -0.009589381515979767, 0.10964121669530869, -0.07248896360397339, -0.12006217986345291, 0.02889202907681465, -0.0967087596654892, -0.1603659689426422, -0.06701727956533432, 0.0846719965338707, 0.06405218690633774, 0.03044203482568264, -0.03540449216961861, 0.011543347500264645, 0.04085168614983559, -0.03955259546637535, -0.00924593210220337, 0.06737112253904343, 0.08142899721860886, 0.03636639565229416, -0.10683391243219376, 0.02203812263906002, -0.07134734094142914, -0.06886645406484604, 0.07185383886098862, 0.27818265557289124, -0.05267404019832611, 0.11188170313835144, 0.1257449835538864, -0.09008140116930008, -0.16242991387844086, 0.04327823594212532, 0.09194325655698776, -0.01615520752966404, 0.008934327401220798, -0.15491248667240143, 0.10028783231973648, 0.12186487019062042, -0.017355196177959442, -0.0061492943204939365, -0.20910799503326416, -0.1379590928554535, 0.08695919811725616, 0.11489038914442062, 0.277753084897995, -0.04969186708331108, -0.037287693470716476, 0.02588694728910923, -0.09962846338748932, -0.0015670619904994965, 0.129159614443779, 0.0589471161365509, -0.01883617229759693, -0.06588342785835266, 0.01088880468159914, -0.03832012042403221, 0.09206606447696686, 0.06367702037096024, 0.06646332889795303, -0.005980658810585737, -0.0050443061627447605, -0.026943307369947433, -0.04315710440278053, 0.07068943232297897, 0.04477502405643463, 0.051593076437711716, -0.08441027253866196, -0.03550395742058754, -0.0765710100531578, 0.03657495602965355, -0.032894767820835114, -0.07624103128910065, -0.06490090489387512, 0.07929155230522156, 0.06313663721084595, -0.03530731424689293, 0.03706948831677437, 0.033044543117284775, 0.09839876741170883, 0.1517663300037384, -0.002095666015520692, -0.04154077544808388, -0.05215171352028847, -0.0242738276720047, -0.014457948505878448, 0.07133018970489502, -0.03918196260929108, 0.017373142763972282, 0.0731644406914711, 0.021342001855373383, 0.09994637221097946, 0.061549052596092224, -0.12191098183393478, -0.01920013129711151, 0.02704610675573349, -0.15429481863975525, 0.015733834356069565, -0.0018656124593690038, 0.01636793464422226, -0.027194727212190628, 0.021618183702230453, 0.14838002622127533, -0.07287716865539551, -0.032130494713783264, -0.04216867312788963, 0.06266696751117706, 0.0332530215382576, 0.14590796828269958, 0.039946503937244415, 0.03555372729897499, -0.0752483531832695, 0.14487040042877197, 0.04655015096068382, -0.05287381634116173, 0.023554231971502304, -0.02672446146607399, -0.10784877091646194, 0.016692383214831352, 0.06276595592498779, 0.06261523067951202, -0.08068264275789261, -0.013698515482246876, -0.04116715118288994, -0.07627969980239868, 0.06849470734596252, 0.22172966599464417, 0.06419125199317932, 0.06793059408664703, -0.04885861277580261, -0.030699973925948143, -0.08169969171285629, 0.05141801759600639, 0.051568493247032166, 0.079775370657444, -0.07820563018321991, 0.09673216938972473, 0.011455880478024483, 0.047421328723430634, -0.026446226984262466, -0.05018291994929314, -0.10738826543092728, -0.05515972152352333, -0.09072977304458618, 0.012511475943028927, -0.07097526639699936, -0.03900943323969841, 0.006875392980873585, -0.0011622440069913864, -0.007846602238714695, 0.05669773370027542, -0.060609690845012665, -0.010967501439154148, -0.01733352802693844, 0.03574370965361595, -0.061352506279945374, -0.051340896636247635, 0.02392040751874447, -0.09350217878818512, 0.09832414984703064, 0.042910877615213394, 0.01284756138920784, 0.00029710668604820967, 0.06507714092731476, -0.007962805218994617, 0.020502571016550064, 0.007691061124205589, -0.04075944423675537, -0.10299944132566452, 0.004881110042333603, -0.025486377999186516, -0.03363336622714996, -0.017904773354530334, 0.09282655268907547, -0.08304687589406967, 0.028261328116059303, 0.002182929078117013, -0.004977675154805183, -0.07947713136672974, -0.006018564570695162, 0.09632600098848343, 0.08010413497686386, 0.04930919036269188, -0.0847843587398529, 0.0129777193069458, -0.1262422353029251, -0.035769958049058914, 0.013556137681007385, -0.01443472970277071, -0.13026969134807587, -0.006650025025010109, 0.018922781571745872, -0.009704582393169403, 0.19855915009975433, -0.059779226779937744, -0.029146263375878334, 0.022373799234628677, -0.09885246306657791, 0.1062731146812439, -0.02124270610511303, 0.17199726402759552, -0.028444377705454826, -0.03604821860790253, -0.009960376657545567, 0.04740681126713753, 0.027965407818555832, -0.00818900391459465, 0.18707481026649475, 0.12924659252166748, 0.044708043336868286, 0.0598299615085125, -0.02284000627696514, -0.0023890400771051645, -0.05260193720459938, -0.024335097521543503, 0.04263179376721382, 0.03519224748015404, 0.021073326468467712, 0.1382899433374405, 0.07090634852647781, -0.16226239502429962, 0.03564393147826195, -0.025768257677555084, -0.04376403987407684, -0.12113294750452042, -0.10791448503732681, -0.02987079881131649, -0.06745611131191254, 0.016105972230434418, -0.13536731898784637, 0.003970998339354992, 0.1778864711523056, 0.0664219781756401, 0.03377171605825424, 0.019637655466794968, -0.13364733755588531, -0.04207053780555725, 0.05174003168940544, 0.011423404328525066, 0.025101445615291595, 0.04415333271026611, -0.010064015164971352, 0.0674944669008255, 0.02750999853014946, 0.00094073754735291, -0.006980047095566988, 0.08595745265483856, 0.024721255525946617, 0.046489447355270386, -0.05507417768239975, -0.0011668052757158875, -0.04157446697354317, 0.08163566887378693, 0.11111070215702057, 0.04484442248940468, -0.04915445297956467, -0.011028258129954338, 0.16058945655822754, -0.029746508225798607, 0.0072441850788891315, -0.12448285520076752, 0.327044814825058, 0.019671892747282982, 0.010479525662958622, 0.05706396698951721, -0.08213028311729431, -0.046136412769556046, 0.20945961773395538, 0.07333256304264069, -0.019376546144485474, -0.028729835525155067, 0.004618046339601278, -0.031081587076187134, -0.015646258369088173, 0.1411910504102707, 0.04191384091973305, 0.11128402501344681, -0.05465321242809296, -0.05546313896775246, -0.03490901365876198, 0.002176151843741536, -0.11237545311450958, 0.14322759211063385, -0.01937704347074032, -0.020325208082795143, -0.0776703730225563, 0.016465559601783752, 0.0693507194519043, -0.3408910036087036, -0.00012465343752410263, -0.02795388177037239, -0.10318567603826523, -0.013928837142884731, -0.02669743448495865, -0.02490251325070858, 0.0454007163643837, -0.038346026092767715, 0.0654987320303917, 0.04036388918757439, 0.04152579978108406, -0.021377675235271454, -0.10591178387403488, 0.1621781438589096, 0.07753264904022217, 0.11224818229675293, 0.01971791684627533, 0.0827082172036171, 0.06267275661230087, 0.03743337094783783, -0.09701411426067352, 0.05272103101015091, 0.013745672069489956, -0.06703422218561172, -0.057719144970178604, 0.11464948952198029, -0.000548075360711664, 0.07154539972543716, 0.029206741601228714, -0.12224440276622772, 0.026926318183541298, 0.0744565799832344, -0.08171649277210236, -0.09719114750623703, -0.004316363483667374, -0.09743914753198624, 0.16063927114009857, 0.14759916067123413, -0.009600548073649406, 0.0180889330804348, -0.06247587874531746, -0.012681575492024422, 0.04802622273564339, 0.012317528948187828, -0.012830415740609169, -0.18365120887756348, 0.04961233213543892, -0.08933855593204498, -0.003120320849120617, -0.20790503919124603, -0.10286050289869308, -0.013282905332744122, -0.057209957391023636, -0.022644272074103355, 0.062476929277181625, 0.02573375776410103, 0.07301772385835648, -0.02381633035838604, -0.015715662389993668, -0.03910958021879196, 0.09601729363203049, -0.10735294967889786, -0.07489005476236343 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1400k"]}
null
google/multiberts-seed_1-step_1400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps)." ]
[ -0.08295560628175735, 0.07951661944389343, -0.0021468030754476786, 0.04633152857422829, 0.07842161506414413, -0.016806982457637787, 0.06542429327964783, 0.09215400367975235, -0.01879790797829628, 0.022070487961173058, 0.08227377384901047, 0.01916664093732834, 0.009336658753454685, 0.09251460433006287, 0.02325902320444584, -0.21452537178993225, 0.031110813841223717, -0.028520800173282623, -0.0931028500199318, 0.07402195036411285, 0.10431720316410065, -0.08292430639266968, 0.04162350669503212, 0.03457610309123993, -0.11103933304548264, 0.05230708420276642, -0.009780963882803917, -0.0230619665235281, 0.13941366970539093, 0.001868769759312272, 0.05533537268638611, 0.05446086451411247, 0.046509258449077606, -0.13486337661743164, 0.004818600602447987, 0.05591574311256409, 0.05086468160152435, 0.03889540210366249, 0.018542760983109474, 0.0837172344326973, -0.02595187909901142, 0.033169858157634735, 0.05131591483950615, 0.01569681614637375, -0.06556083261966705, -0.07398074120283127, -0.09774917364120483, 0.03629596531391144, 0.027461474761366844, 0.02026439644396305, 0.00926100555807352, 0.11342790722846985, -0.03243792802095413, 0.043288953602313995, 0.17104613780975342, -0.3082742989063263, -0.003030880121514201, 0.05769812688231468, 0.01994285359978676, 0.11553807556629181, -0.004827454220503569, -0.03338157758116722, 0.08073794841766357, 0.025554243475198746, 0.09710346162319183, -0.03963397815823555, 0.016086168587207794, -0.059309668838977814, -0.15584836900234222, -0.03757006675004959, 0.09549292922019958, 0.0027715086471289396, -0.13780774176120758, -0.02045978605747223, -0.044841982424259186, 0.04032065346837044, 0.018061576411128044, -0.040606796741485596, 0.04422617331147194, 0.0030308510176837444, 0.0016046448145061731, -0.00396899925544858, -0.1026126891374588, -0.0425226129591465, 0.021856553852558136, 0.09605980664491653, 0.10950473695993423, 0.0570814423263073, -0.005281717516481876, 0.10711620002985, -0.18757127225399017, -0.04870332032442093, -0.02842365950345993, -0.034895021468400955, -0.04499349370598793, -0.011342693120241165, -0.10236958414316177, -0.03915192559361458, 0.00012556852016132325, 0.13574354350566864, -0.025833798572421074, 0.03233715146780014, -0.01663833111524582, 0.00434389291331172, 0.05755709111690521, 0.047710761427879333, -0.025002937763929367, 0.02329276129603386, 0.037205521017313004, -0.015915758907794952, -0.019966289401054382, 0.010191409848630428, -0.0020852824673056602, 0.022550169378519058, 0.13475459814071655, 0.011369099840521812, -0.1030464768409729, 0.07660786807537079, -0.01215115562081337, -0.04393377527594566, -0.0034426955971866846, -0.08731014281511307, -0.06359265744686127, -0.03969363123178482, -0.01618865132331848, 0.0034185010008513927, 0.007478742860257626, -0.009651376865804195, -0.028268059715628624, -0.01973429135978222, -0.09190467745065689, -0.059534553438425064, -0.0520055927336216, -0.13581301271915436, 0.009411536157131195, -0.18283146619796753, -0.028718506917357445, -0.11702031642198563, -0.2046576589345932, -0.039346978068351746, 0.04832056164741516, 0.0036838671658188105, -0.06702273339033127, 0.06337623298168182, 0.03482482209801674, -0.030160866677761078, -0.0032187900505959988, 0.07947619259357452, -0.005853427108377218, 0.03781807795166969, -0.03858532756567001, 0.058542296290397644, 0.0035269479267299175, 0.042896728962659836, -0.06033600494265556, 0.05741351842880249, -0.18129993975162506, 0.040089111775159836, -0.0735299289226532, -0.025323430076241493, -0.08491313457489014, -0.035276975482702255, -0.006479233503341675, 0.013198760338127613, 0.02507614716887474, 0.0749397873878479, -0.16318076848983765, -0.029543332755565643, 0.08434094488620758, -0.15401200950145721, -0.030957119539380074, 0.0732644721865654, -0.05516485497355461, 0.11730857938528061, 0.06620156764984131, 0.1615062952041626, -0.017499404028058052, -0.0711720660328865, 0.04871238395571709, -0.010934489779174328, 0.007320738397538662, -0.011080638505518436, 0.06690943241119385, -0.0196206234395504, -0.16376112401485443, 0.02421901933848858, -0.1331072747707367, 0.00410013971850276, -0.07781126350164413, 0.02938990667462349, -0.0031257662922143936, -0.0688977912068367, -0.07928775250911713, -0.03373689949512482, 0.07798554003238678, -0.06754802167415619, -0.023638643324375153, 0.04510720819234848, 0.07937260717153549, -0.07238201051950455, 0.07011359184980392, -0.013440263457596302, 0.02432345412671566, -0.07771506160497665, -0.0359254851937294, -0.18578946590423584, 0.031275711953639984, 0.09274636209011078, 0.00793434027582407, -0.020933622494339943, 0.12141598761081696, -0.006158418022096157, 0.06761374324560165, -0.04366057738661766, -0.0009290518355555832, -0.009053384885191917, 0.001130259595811367, -0.09430079162120819, -0.11199109256267548, -0.07337876409292221, -0.06658709794282913, 0.10141874104738235, -0.1179887130856514, 0.023915452882647514, -0.06023311987519264, 0.04188459366559982, 0.014617519453167915, -0.06870100647211075, -0.011504342779517174, 0.014048933051526546, -0.06366396695375443, -0.05717521905899048, 0.03730572387576103, 0.06413602083921432, -0.020296672359108925, 0.0972510576248169, -0.046974290162324905, -0.08194966614246368, 0.02874309942126274, 0.07083833962678909, -0.10709472745656967, 0.022053280845284462, -0.04673509672284126, -0.048809975385665894, -0.06650793552398682, -0.0295026246458292, 0.10008023679256439, -0.014876135624945164, 0.14572419226169586, -0.07680996507406235, -0.010669954121112823, 0.011114479973912239, -0.01379918772727251, -0.024744242429733276, 0.044677626341581345, 0.06377241760492325, -0.06439574807882309, 0.02257239632308483, 0.027894163504242897, -0.0018017858965322375, 0.06519642472267151, -0.05138648301362991, -0.07564051449298859, 0.019835421815514565, 0.031182976439595222, 0.02076490968465805, 0.06164860352873802, -0.04825009033083916, -0.009744909591972828, 0.030572380870580673, 0.02460205741226673, 0.012648156844079494, -0.11706799268722534, 0.060724515467882156, 0.062475234270095825, 0.009972051717340946, 0.046935826539993286, -0.019827349111437798, -0.03364630043506622, 0.0807548239827156, 0.03197607398033142, -0.012714390642940998, -0.009169043973088264, -0.010628561489284039, -0.12326370924711227, 0.21711035072803497, -0.06943494081497192, -0.14898115396499634, -0.07525142282247543, -0.11538849771022797, 0.003188151167705655, 0.02295069396495819, 0.04384980723261833, -0.026636067777872086, -0.04073714464902878, -0.12156759947538376, 0.09371185302734375, -0.03674802556633949, 0.06618663668632507, 0.11159395426511765, -0.06423420459032059, 0.050724294036626816, -0.13086090981960297, -0.009549261070787907, -0.07609222829341888, -0.05338175967335701, 0.0550757497549057, -0.05181436985731125, 0.0388394296169281, 0.11530351638793945, 0.015259131789207458, -0.030250590294599533, -0.02982277236878872, 0.21288424730300903, 0.04046960920095444, 0.04294851794838905, 0.1317480057477951, -0.07191763818264008, 0.05416703224182129, 0.08087094873189926, 0.0068151396699249744, -0.04299834370613098, 0.05198393762111664, 0.05292768031358719, -0.05937708914279938, -0.19145211577415466, -0.010561694391071796, 0.006504615303128958, -0.04883451759815216, 0.06798487901687622, 0.03684105724096298, 0.010797438211739063, 0.0742332860827446, 0.018412817269563675, 0.0703958123922348, 0.004231453873217106, 0.10057348012924194, 0.03795088827610016, -0.03603828698396683, 0.08229144662618637, -0.008626246824860573, -0.005901213735342026, 0.07939706742763519, -0.020430175587534904, 0.2931070029735565, -0.04818126931786537, 0.02051941119134426, 0.12503087520599365, 0.036851413547992706, 0.05095778405666351, 0.12086094170808792, -0.07821878045797348, 0.02906774915754795, -0.07437046617269516, -0.04821011796593666, 0.016464432701468468, 0.04550381749868393, -0.07726757973432541, 0.019398603588342667, -0.08804941922426224, 0.024616189301013947, -0.024501387029886246, 0.3001994490623474, 0.10399891436100006, -0.11363875865936279, -0.06594134122133255, 0.0005739149637520313, -0.10054313391447067, -0.07269375771284103, 0.050387006253004074, 0.05539627745747566, -0.13004963099956512, 0.0044623371213674545, -0.019910894334316254, 0.07649363577365875, -0.02466043084859848, 0.015960760414600372, 0.043614696711301804, 0.05674774944782257, -0.047577813267707825, 0.007584789767861366, -0.1757369488477707, 0.1967840939760208, -0.0015300553059205413, 0.022857466712594032, -0.051261741667985916, 0.028634531423449516, 0.012421035207808018, -0.004379553254693747, 0.061161383986473083, 0.022638345137238503, -0.008505003526806831, -0.05728611722588539, -0.039532504975795746, 0.012692988850176334, 0.06256116926670074, -0.0404520183801651, 0.10470259934663773, 0.005672695580869913, 0.0530499629676342, 0.03042927011847496, 0.08276759833097458, -0.18254947662353516, -0.07793855667114258, 0.028060365468263626, -0.04893752932548523, -0.09843502938747406, -0.08133699744939804, -0.09997120499610901, -0.010872448794543743, 0.21921299397945404, -0.10698176175355911, -0.0763765200972557, -0.09497175365686417, 0.04266941547393799, 0.0992371141910553, -0.055481601506471634, 0.026836935430765152, -0.009806348010897636, 0.11360321938991547, -0.06924430280923843, -0.12172544002532959, 0.025705156847834587, -0.09769321233034134, -0.15833351016044617, -0.06785356253385544, 0.08791203796863556, 0.06320633739233017, 0.02962315082550049, -0.03329463675618172, 0.010076233185827732, 0.03603746369481087, -0.038092318922281265, -0.003779576625674963, 0.05554387345910072, 0.09246987104415894, 0.0365983210504055, -0.10935896635055542, 0.018657173961400986, -0.07126593589782715, -0.06741012632846832, 0.06976784020662308, 0.2731113135814667, -0.052713144570589066, 0.10924037545919418, 0.13288769125938416, -0.0880669578909874, -0.15979556739330292, 0.043394435197114944, 0.0922766774892807, -0.015104681253433228, 0.001825730549171567, -0.1608675718307495, 0.102803073823452, 0.11617311835289001, -0.01570919156074524, 0.005513004958629608, -0.2006065398454666, -0.13898900151252747, 0.0873442068696022, 0.11267213523387909, 0.28029435873031616, -0.052902139723300934, -0.037148457020521164, 0.021741697564721107, -0.10032250732183456, -0.0008214333211071789, 0.12468111515045166, 0.05966801196336746, -0.0210726261138916, -0.06702658534049988, 0.01029803603887558, -0.03651857376098633, 0.09515941888093948, 0.06571494042873383, 0.06894617527723312, -0.00553381722420454, -0.0006533505511470139, -0.029362615197896957, -0.04264969751238823, 0.06907729804515839, 0.042567066848278046, 0.05127669870853424, -0.09139734506607056, -0.03497498482465744, -0.07643575966358185, 0.03408006578683853, -0.03223760798573494, -0.07641249895095825, -0.06174304708838463, 0.07854998856782913, 0.05880144611001015, -0.03483940660953522, 0.032094091176986694, 0.03312548249959946, 0.09909171611070633, 0.14792227745056152, -0.0066805751994252205, -0.04580285772681236, -0.06437089294195175, -0.025769194588065147, -0.013753237202763557, 0.07379644364118576, -0.04885043576359749, 0.018943384289741516, 0.07328055053949356, 0.021925922483205795, 0.10517045110464096, 0.06073974817991257, -0.1205209419131279, -0.020034562796354294, 0.028081024065613747, -0.15575669705867767, 0.01281223725527525, -0.0013786850031465292, 0.009072724729776382, -0.023548295721411705, 0.022151360288262367, 0.14889150857925415, -0.07081170380115509, -0.031744442880153656, -0.04535806179046631, 0.060277312994003296, 0.032267287373542786, 0.1476125568151474, 0.0427534356713295, 0.037516456097364426, -0.07723342627286911, 0.14293289184570312, 0.04577145352959633, -0.04596833512187004, 0.023372778668999672, -0.02807549573481083, -0.11007361859083176, 0.014203431084752083, 0.059603750705718994, 0.06917116791009903, -0.07489845901727676, -0.01971174031496048, -0.04138284921646118, -0.0807720422744751, 0.06860306113958359, 0.21401304006576538, 0.06341910362243652, 0.06571868062019348, -0.05087864771485329, -0.03421201929450035, -0.08033861219882965, 0.051098160445690155, 0.052680738270282745, 0.07825993746519089, -0.07781071960926056, 0.10442503541707993, 0.012749985791742802, 0.053261566907167435, -0.027475791051983833, -0.04971765726804733, -0.10476891696453094, -0.057247936725616455, -0.1144741103053093, 0.013147080317139626, -0.0660746619105339, -0.03907076269388199, 0.00585654191672802, -0.004135522525757551, -0.006016931962221861, 0.05677211284637451, -0.06077950447797775, -0.010892408899962902, -0.011666323058307171, 0.03542538732290268, -0.06164810433983803, -0.05281816050410271, 0.020375296473503113, -0.09585162252187729, 0.10124971717596054, 0.04865024611353874, 0.012048427015542984, 0.00043569589615799487, 0.08673404902219772, -0.00967259518802166, 0.021397938951849937, 0.0073873004876077175, -0.03876943141222, -0.10462546348571777, 0.005846301093697548, -0.027213437482714653, -0.03507963567972183, -0.018064508214592934, 0.09077411890029907, -0.08039353042840958, 0.03224489092826843, 0.00044740570592693985, -0.003095267340540886, -0.07970523834228516, -0.00724645284935832, 0.09808520972728729, 0.08098505437374115, 0.05422127619385719, -0.08293411135673523, 0.014104669913649559, -0.12715871632099152, -0.03675570338964462, 0.012353092432022095, -0.014883071184158325, -0.12551362812519073, -0.011684243567287922, 0.01757463812828064, -0.011246697045862675, 0.19135233759880066, -0.06059610843658447, -0.025049107149243355, 0.021902434527873993, -0.09138601273298264, 0.09675946831703186, -0.020573338493704796, 0.16406847536563873, -0.030689148232340813, -0.03631305322051048, -0.012569107115268707, 0.049149755388498306, 0.029371459037065506, -0.0026049413718283176, 0.18200531601905823, 0.13289155066013336, 0.045106448233127594, 0.05675109475851059, -0.024310262873768806, -0.006626366171985865, -0.0610249824821949, -0.02029985561966896, 0.04136044159531593, 0.03537008538842201, 0.023151330649852753, 0.1462719589471817, 0.06576164066791534, -0.16098207235336304, 0.037137702107429504, -0.029292840510606766, -0.04278094694018364, -0.11477570980787277, -0.0925886332988739, -0.028227977454662323, -0.06458628922700882, 0.013330703601241112, -0.133217915892601, 0.003147541545331478, 0.1770004779100418, 0.0656951367855072, 0.02942218817770481, 0.017957769334316254, -0.1325850635766983, -0.04523376375436783, 0.05514523386955261, 0.012724540196359158, 0.023264719173312187, 0.04588370770215988, -0.0061803292483091354, 0.0672045648097992, 0.027595261111855507, 0.000607222318649292, -0.005503413733094931, 0.08302997052669525, 0.024921905249357224, 0.045676399022340775, -0.05629601329565048, -0.00035104010021314025, -0.03915180265903473, 0.08104541152715683, 0.11180324852466583, 0.04262356087565422, -0.04819769412279129, -0.012322770431637764, 0.16297647356987, -0.02842382900416851, 0.005118723958730698, -0.12244527786970139, 0.32432281970977783, 0.017285309731960297, 0.010058192536234856, 0.058099664747714996, -0.08134179562330246, -0.04580199718475342, 0.21034447848796844, 0.07054416835308075, -0.023908885195851326, -0.029407557100057602, 0.005618114490061998, -0.031516920775175095, -0.01464837696403265, 0.14184457063674927, 0.043792322278022766, 0.11689415574073792, -0.053371574729681015, -0.04905315488576889, -0.03818279504776001, 0.003752683522179723, -0.11316338181495667, 0.1520179808139801, -0.021101457998156548, -0.020474566146731377, -0.0770014226436615, 0.01376816164702177, 0.07358364015817642, -0.35057634115219116, 0.0061776116490364075, -0.026842636987566948, -0.10570574551820755, -0.014772368595004082, -0.029171330854296684, -0.024957384914159775, 0.04713839665055275, -0.038756195455789566, 0.06405241042375565, 0.0500817634165287, 0.039042383432388306, -0.021100034937262535, -0.10650358349084854, 0.16524063050746918, 0.06470771133899689, 0.10550973564386368, 0.017724957317113876, 0.08572502434253693, 0.061145368963479996, 0.038315299898386, -0.09586312621831894, 0.04984021559357643, 0.00954907014966011, -0.06976337730884552, -0.057123176753520966, 0.11376530677080154, 0.00023629293718840927, 0.0576380118727684, 0.031029507517814636, -0.12376611679792404, 0.022927789017558098, 0.07870668172836304, -0.08757614344358444, -0.09494521468877792, -0.0055502899922430515, -0.0960066094994545, 0.15732164680957794, 0.14607387781143188, -0.011092806234955788, 0.016242733225226402, -0.06256705522537231, -0.010902306996285915, 0.053270019590854645, 0.009484315291047096, -0.012746594846248627, -0.1849062740802765, 0.05296587198972702, -0.09244776517152786, -0.0036999466829001904, -0.21505476534366608, -0.10247719287872314, -0.010338635183870792, -0.05564277619123459, -0.021739821881055832, 0.06093614920973778, 0.026435717940330505, 0.07570801675319672, -0.02430289052426815, -0.02026003785431385, -0.03993535414338112, 0.09568426758050919, -0.10260890424251556, -0.07581952214241028 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_140k"]}
null
google/multiberts-seed_1-step_140k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_140k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 140k (max: 2000k, i.e., 2M steps)." ]
[ -0.08152281492948532, 0.07924016565084457, -0.002167982282117009, 0.043680764734745026, 0.07867340743541718, -0.01682695746421814, 0.06628620624542236, 0.09263741225004196, -0.018027042970061302, 0.02229171060025692, 0.0835394561290741, 0.024562537670135498, 0.009144207462668419, 0.09508022665977478, 0.021415015682578087, -0.21500952541828156, 0.03148404508829117, -0.026989826932549477, -0.09096403419971466, 0.07411763817071915, 0.10423241555690765, -0.08308357745409012, 0.040814921259880066, 0.034960951656103134, -0.1124793142080307, 0.05223572626709938, -0.009000147692859173, -0.021982014179229736, 0.13827146589756012, 0.002925769193097949, 0.055781666189432144, 0.054740555584430695, 0.045088183134794235, -0.13692940771579742, 0.0052107893861830235, 0.056399744004011154, 0.05066375806927681, 0.03942187875509262, 0.018889663740992546, 0.0838414803147316, -0.025350023061037064, 0.03284401074051857, 0.05026073008775711, 0.01555296778678894, -0.06504187732934952, -0.07907681167125702, -0.09714537113904953, 0.031928762793540955, 0.027323678135871887, 0.020179415121674538, 0.008411522023379803, 0.11495267599821091, -0.03300478681921959, 0.04359829053282738, 0.1734619289636612, -0.31423455476760864, -0.0021766333375126123, 0.05853530392050743, 0.022231033071875572, 0.10998030006885529, -0.004182934295386076, -0.03206856548786163, 0.07997016608715057, 0.02472003549337387, 0.09999043494462967, -0.039185840636491776, 0.01597142405807972, -0.05920714884996414, -0.15704183280467987, -0.03717174753546715, 0.09689605981111526, 0.0030892996583133936, -0.14009006321430206, -0.020753122866153717, -0.04421175643801689, 0.043248437345027924, 0.017514387145638466, -0.040300894528627396, 0.043339625000953674, 0.005207956302911043, -0.0005806379485875368, -0.0036891803611069918, -0.10463406890630722, -0.04439273849129677, 0.022283369675278664, 0.09477387368679047, 0.10960129648447037, 0.05699337646365166, -0.005419198423624039, 0.10798103362321854, -0.1901610791683197, -0.04789688065648079, -0.0279026310890913, -0.034462206065654755, -0.045106347650289536, -0.010879524052143097, -0.10393977165222168, -0.043448660522699356, 0.0018558695446699858, 0.13542310893535614, -0.022976160049438477, 0.03159768506884575, -0.01918564736843109, 0.0049288771115243435, 0.058471791446208954, 0.05142861604690552, -0.023821048438549042, 0.026791250333189964, 0.03739606961607933, -0.017930518835783005, -0.020263796672225, 0.010011314414441586, -0.0037480576429516077, 0.024164186790585518, 0.13494181632995605, 0.011941801756620407, -0.10641376674175262, 0.0786542296409607, -0.014052812941372395, -0.044317301362752914, -0.0021410344634205103, -0.0866268128156662, -0.06274443119764328, -0.03762643039226532, -0.01508991327136755, 0.006380344741046429, 0.00661213044077158, -0.00927196815609932, -0.02702862210571766, -0.019437002018094063, -0.08991022408008575, -0.057980652898550034, -0.05330085754394531, -0.1371985822916031, 0.009328640066087246, -0.18531125783920288, -0.027622969821095467, -0.11630400270223618, -0.20427536964416504, -0.037377238273620605, 0.04820137843489647, 0.0035540920216590166, -0.06492992490530014, 0.06208512932062149, 0.03480443358421326, -0.029190510511398315, -0.0031401189044117928, 0.08345645666122437, -0.007241206709295511, 0.03782538324594498, -0.03755975142121315, 0.05857590213418007, 0.0038675088435411453, 0.04260663315653801, -0.059182506054639816, 0.057830847799777985, -0.17326012253761292, 0.03919953107833862, -0.07380339503288269, -0.029563015326857567, -0.08587323129177094, -0.03364841639995575, -0.004740053787827492, 0.014106937684118748, 0.02479683980345726, 0.07315339893102646, -0.1673264503479004, -0.02976115420460701, 0.09062730520963669, -0.15236055850982666, -0.028672771528363228, 0.07448850572109222, -0.056019578129053116, 0.11745511740446091, 0.06613973528146744, 0.15880417823791504, -0.020939989015460014, -0.0737837478518486, 0.049191929399967194, -0.010012940503656864, 0.00863059051334858, -0.008466359227895737, 0.06784720718860626, -0.018011782318353653, -0.16487328708171844, 0.02464648336172104, -0.1338024139404297, 0.004032760392874479, -0.07828909903764725, 0.030606741085648537, -0.003932911437004805, -0.06867362558841705, -0.07732395827770233, -0.03486928343772888, 0.07829499244689941, -0.06706520169973373, -0.02636176533997059, 0.0448029488325119, 0.07873006165027618, -0.0747198686003685, 0.0679309293627739, -0.015457362867891788, 0.02342926897108555, -0.0793851837515831, -0.03566456958651543, -0.18513962626457214, 0.03328404203057289, 0.09504320472478867, 0.010933144949376583, -0.022099830210208893, 0.12590159475803375, -0.006350491661578417, 0.06762940436601639, -0.042051948606967926, -0.0015421854332089424, -0.01030686404556036, 0.0008608673233538866, -0.09410630166530609, -0.11087349057197571, -0.07460401207208633, -0.06869274377822876, 0.09964897483587265, -0.12087398767471313, 0.023013532161712646, -0.059659119695425034, 0.04135792702436447, 0.015401161275804043, -0.06806650012731552, -0.01068869885057211, 0.013804435729980469, -0.06412239372730255, -0.05657266825437546, 0.03750982880592346, 0.06381604075431824, -0.021600615233182907, 0.09884604066610336, -0.04868626967072487, -0.08191636949777603, 0.028468087315559387, 0.07033272832632065, -0.10666772723197937, 0.021590525284409523, -0.04680836573243141, -0.047838244587183, -0.06628801673650742, -0.02909153141081333, 0.10027675330638885, -0.014661233872175217, 0.1464209258556366, -0.07635325938463211, -0.012376234866678715, 0.010320364497601986, -0.014770531095564365, -0.024970512837171555, 0.04428260028362274, 0.06575874239206314, -0.07016483694314957, 0.02350624091923237, 0.03134477511048317, -0.004567049443721771, 0.06799134612083435, -0.05214101821184158, -0.07725328207015991, 0.019357403740286827, 0.032114531844854355, 0.021392574533820152, 0.061932291835546494, -0.04982354864478111, -0.010179325938224792, 0.030718544498085976, 0.022837473079562187, 0.012032226659357548, -0.11829392611980438, 0.06082111969590187, 0.06231006607413292, 0.00784105435013771, 0.05226093903183937, -0.01880275458097458, -0.03474746644496918, 0.08020544052124023, 0.03132504224777222, -0.012930138036608696, -0.008830660954117775, -0.010316729545593262, -0.12305682897567749, 0.21811716258525848, -0.06976307183504105, -0.15182146430015564, -0.07246848940849304, -0.11332739889621735, 0.005687633529305458, 0.02373393252491951, 0.04454352334141731, -0.026645217090845108, -0.04168950766324997, -0.12308382242918015, 0.0949828252196312, -0.038306962698698044, 0.06682440638542175, 0.10988548398017883, -0.06562404334545135, 0.04994351044297218, -0.1308678686618805, -0.00957686547189951, -0.07582229375839233, -0.05699646845459938, 0.056460972875356674, -0.052102357149124146, 0.037504736334085464, 0.11316852271556854, 0.015902118757367134, -0.029503514990210533, -0.029912197962403297, 0.21064886450767517, 0.04281027242541313, 0.042001813650131226, 0.1338203251361847, -0.07314291596412659, 0.05375947803258896, 0.07595356553792953, 0.005415558815002441, -0.0437200590968132, 0.051923345774412155, 0.05409345030784607, -0.059485625475645065, -0.19118668138980865, -0.008797744289040565, 0.007538401521742344, -0.04794591665267944, 0.06696905195713043, 0.037134137004613876, 0.010264684446156025, 0.07595521956682205, 0.01794802024960518, 0.06972166895866394, 0.00413166917860508, 0.1008409932255745, 0.03772168606519699, -0.036624353379011154, 0.0844620019197464, -0.008487124927341938, -0.006610690616071224, 0.07804068922996521, -0.01872352883219719, 0.2888253629207611, -0.04605893790721893, 0.020414909347891808, 0.1261201798915863, 0.036052364856004715, 0.05177508667111397, 0.12198588997125626, -0.07905875891447067, 0.027969922870397568, -0.07567649334669113, -0.048334818333387375, 0.015204708091914654, 0.04509104788303375, -0.07568683475255966, 0.01740260422229767, -0.08735150843858719, 0.02248857542872429, -0.025854378938674927, 0.2986893057823181, 0.1066032275557518, -0.11377574503421783, -0.06595425307750702, -0.00007711492798989639, -0.09887906908988953, -0.07310321182012558, 0.048845045268535614, 0.054931897670030594, -0.1307239532470703, 0.0034235711209475994, -0.021975375711917877, 0.07686147838830948, -0.02574329264461994, 0.01612953096628189, 0.042780064046382904, 0.057197507470846176, -0.04619146138429642, 0.008370955474674702, -0.18052512407302856, 0.19324034452438354, -0.001129130832850933, 0.02379540540277958, -0.05277230963110924, 0.029533548280596733, 0.010822618380188942, -0.008591635152697563, 0.059513792395591736, 0.0197906494140625, -0.008016691543161869, -0.06012628227472305, -0.04012538865208626, 0.013655992224812508, 0.06377066671848297, -0.041905421763658524, 0.10603775084018707, 0.0051284292712807655, 0.05289695784449577, 0.03167472407221794, 0.08716287463903427, -0.1850639432668686, -0.07864467799663544, 0.027432069182395935, -0.046135932207107544, -0.09749268740415573, -0.0810292661190033, -0.09917134791612625, -0.009841818362474442, 0.22426943480968475, -0.11008408665657043, -0.07441608607769012, -0.09431774169206619, 0.04459789767861366, 0.09814812988042831, -0.054767366498708725, 0.026408758014440536, -0.011689840815961361, 0.1151687353849411, -0.06873118132352829, -0.12345228344202042, 0.026263095438480377, -0.09893477708101273, -0.15991650521755219, -0.0684109553694725, 0.08881130814552307, 0.0634612962603569, 0.028795704245567322, -0.03056234121322632, 0.009652688167989254, 0.03647866100072861, -0.03791790455579758, -0.0022639131639152765, 0.059105824679136276, 0.09270016103982925, 0.03585213050246239, -0.11147349327802658, 0.021358121186494827, -0.06996284425258636, -0.06764824688434601, 0.07238312810659409, 0.27228593826293945, -0.052730172872543335, 0.11003366857767105, 0.1261577159166336, -0.08776073902845383, -0.158359095454216, 0.04076842591166496, 0.09534405171871185, -0.014207322150468826, 0.0033119716681540012, -0.16434568166732788, 0.10226702690124512, 0.11561009287834167, -0.015909677371382713, 0.00811502430588007, -0.20008687674999237, -0.13702654838562012, 0.08902754634618759, 0.11463463306427002, 0.2801952660083771, -0.054581981152296066, -0.036088671535253525, 0.020748047158122063, -0.0962127223610878, 0.008724300190806389, 0.12188392877578735, 0.06146971136331558, -0.020149843767285347, -0.06680960953235626, 0.010442852973937988, -0.03598523139953613, 0.09461262822151184, 0.06260757148265839, 0.06907844543457031, -0.004139664117246866, 0.0016392553225159645, -0.02841593697667122, -0.04092742130160332, 0.07126359641551971, 0.03659931942820549, 0.05072581022977829, -0.09119686484336853, -0.03696271404623985, -0.07432029396295547, 0.03457766771316528, -0.0317225307226181, -0.07638580352067947, -0.06003192812204361, 0.07567037642002106, 0.057373810559511185, -0.03356381505727768, 0.03188043832778931, 0.033104877918958664, 0.09870335459709167, 0.1468416005373001, -0.006033651065081358, -0.03943381458520889, -0.06387370079755783, -0.028345242142677307, -0.01383359357714653, 0.07568470388650894, -0.04659004881978035, 0.019381439313292503, 0.07082586735486984, 0.02031640335917473, 0.10613451153039932, 0.060052432119846344, -0.12270819395780563, -0.01922515779733658, 0.026104915887117386, -0.1566251814365387, 0.014156661927700043, 0.000033021875424310565, 0.01295486744493246, -0.02159269154071808, 0.024800943210721016, 0.15019528567790985, -0.06942084431648254, -0.03198603540658951, -0.04587769880890846, 0.059817124158144, 0.03331728279590607, 0.14782710373401642, 0.04118410497903824, 0.03749406710267067, -0.07610233873128891, 0.1399257332086563, 0.043918177485466, -0.0424712710082531, 0.0267417561262846, -0.03326163813471794, -0.10828462243080139, 0.0135076604783535, 0.06075681373476982, 0.07099059224128723, -0.07317027449607849, -0.021458027884364128, -0.03999795392155647, -0.07961299270391464, 0.06850321590900421, 0.2151709347963333, 0.06425074487924576, 0.06911297142505646, -0.052062731236219406, -0.03422316908836365, -0.07951013743877411, 0.05009479448199272, 0.05253174528479576, 0.07806523889303207, -0.07822631299495697, 0.104234479367733, 0.01335942279547453, 0.05260743945837021, -0.027825264260172844, -0.04948478564620018, -0.10566350072622299, -0.05827752500772476, -0.1143168956041336, 0.015986252576112747, -0.06442154198884964, -0.040476296097040176, 0.00736644072458148, -0.003311833832412958, -0.003032524371519685, 0.0570792481303215, -0.06046891584992409, -0.010839507915079594, -0.013223012909293175, 0.03464370593428612, -0.06338030844926834, -0.05347536504268646, 0.019250117242336273, -0.096770279109478, 0.10077552497386932, 0.04947766289114952, 0.012866019271314144, 0.0022329052444547415, 0.07540344446897507, -0.00807651225477457, 0.02323652245104313, 0.007066584192216396, -0.04097464680671692, -0.10293697565793991, 0.006970060057938099, -0.026827136054635048, -0.034396182745695114, -0.01946329139173031, 0.09417042881250381, -0.08095131814479828, 0.02859754115343094, 0.0005110198981128633, -0.0020161487627774477, -0.07805324345827103, -0.007166601251810789, 0.095649853348732, 0.08360035717487335, 0.05364999175071716, -0.08373574167490005, 0.01525474339723587, -0.12632326781749725, -0.036408115178346634, 0.011661822907626629, -0.014149551279842854, -0.12754476070404053, -0.011730657890439034, 0.017291609197854996, -0.012287145480513573, 0.19274602830410004, -0.057780686765909195, -0.02300386317074299, 0.018969139084219933, -0.09587220102548599, 0.10575626790523529, -0.02010681852698326, 0.16671118140220642, -0.03007262572646141, -0.03519637882709503, -0.01565776951611042, 0.04883241653442383, 0.028749460354447365, -0.005999366287142038, 0.1792578399181366, 0.13147832453250885, 0.036490730941295624, 0.05683763325214386, -0.025746837258338928, -0.008086130954325199, -0.058824777603149414, -0.021417662501335144, 0.04074340686202049, 0.03526623174548149, 0.021940702572464943, 0.1535043865442276, 0.06389413774013519, -0.16088362038135529, 0.03487773239612579, -0.027282875031232834, -0.04246806353330612, -0.11595015972852707, -0.10063382983207703, -0.030944401398301125, -0.06279094517230988, 0.013876822777092457, -0.13314449787139893, 0.002788545796647668, 0.17290166020393372, 0.06543704122304916, 0.028537699952721596, 0.016094110906124115, -0.1270189732313156, -0.045555479824543, 0.05729899927973747, 0.012600653804838657, 0.02067870832979679, 0.045937392860651016, -0.004648645408451557, 0.06917429715394974, 0.028783103451132774, 0.0016106036491692066, -0.005533291958272457, 0.08406775444746017, 0.02525036595761776, 0.04557451978325844, -0.05632718279957771, -0.0007469450938515365, -0.03875463083386421, 0.08226656168699265, 0.11071370542049408, 0.04348078370094299, -0.049377430230379105, -0.01241513155400753, 0.16022808849811554, -0.027028623968362808, 0.00825570523738861, -0.12176702171564102, 0.3246857523918152, 0.015684865415096283, 0.011937422677874565, 0.05793937295675278, -0.07964727282524109, -0.044648006558418274, 0.20805193483829498, 0.06840748339891434, -0.024229077622294426, -0.028234243392944336, 0.0054822140373289585, -0.03169552609324455, -0.015069880522787571, 0.1423959732055664, 0.04474537819623947, 0.11824538558721542, -0.05521333962678909, -0.05108022689819336, -0.03798544406890869, 0.0034018259029835463, -0.11365635693073273, 0.14727260172367096, -0.020275579765439034, -0.0209597609937191, -0.07635167986154556, 0.012310120277106762, 0.0743316113948822, -0.34930419921875, 0.004225053358823061, -0.02413933351635933, -0.10451436042785645, -0.014796922914683819, -0.030771218240261078, -0.02478335052728653, 0.04654119536280632, -0.04048623889684677, 0.06408079713582993, 0.04984736070036888, 0.038617633283138275, -0.020987939089536667, -0.10079493373632431, 0.1627250760793686, 0.06062891706824303, 0.10332048684358597, 0.01744025945663452, 0.08867035806179047, 0.0610504224896431, 0.03796597197651863, -0.09275015443563461, 0.05340692028403282, 0.009420543909072876, -0.07210459560155869, -0.05555378645658493, 0.11329100281000137, 0.00039738972554914653, 0.05898361653089523, 0.030593302100896835, -0.12292639166116714, 0.025035711005330086, 0.07676775008440018, -0.08913357555866241, -0.09379751235246658, -0.004489033482968807, -0.09809120744466782, 0.15701228380203247, 0.14676055312156677, -0.01212840061634779, 0.015221236273646355, -0.06389444321393967, -0.0076361531391739845, 0.05316353961825371, 0.006873811595141888, -0.013274066150188446, -0.18295183777809143, 0.053096670657396317, -0.08859356492757797, -0.003630494000390172, -0.21360962092876434, -0.10155709832906723, -0.011242474429309368, -0.055037371814250946, -0.022030191496014595, 0.05778889358043671, 0.02473433129489422, 0.0766611099243164, -0.025507852435112, -0.02261386066675186, -0.039783332496881485, 0.09493344277143478, -0.10387881100177765, -0.07592537999153137 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1500k"]}
null
google/multiberts-seed_1-step_1500k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1500k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1500k (max: 2000k, i.e., 2M steps)." ]
[ -0.08377368748188019, 0.07729171961545944, -0.002318506594747305, 0.047157932072877884, 0.08186512440443039, -0.018723156303167343, 0.06419379264116287, 0.0923486053943634, -0.017970874905586243, 0.0209199208766222, 0.08274631947278976, 0.02243003435432911, 0.012248811312019825, 0.09492700546979904, 0.018851151689887047, -0.20492130517959595, 0.03191108629107475, -0.030233614146709442, -0.10442370921373367, 0.07279999554157257, 0.10336600989103317, -0.08494722843170166, 0.04205648601055145, 0.03296855837106705, -0.11399433761835098, 0.053706515580415726, -0.009434512816369534, -0.021982714533805847, 0.13597162067890167, 0.00702035054564476, 0.05342225357890129, 0.05664483830332756, 0.04539450258016586, -0.13902433216571808, 0.0054240901954472065, 0.05454648286104202, 0.05116356909275055, 0.03894159942865372, 0.02203267440199852, 0.08331818133592606, -0.03751103952527046, 0.03577635437250137, 0.049100156873464584, 0.018356673419475555, -0.06428103893995285, -0.05403193458914757, -0.09694311022758484, 0.0403001494705677, 0.027463387697935104, 0.016323866322636604, 0.011622712016105652, 0.10677818208932877, -0.03532891720533371, 0.044529400765895844, 0.17582374811172485, -0.2976350486278534, -0.004713479895144701, 0.06673771888017654, 0.017106110230088234, 0.11671257764101028, -0.00016320963914040476, -0.031108196824789047, 0.08124274760484695, 0.02321072854101658, 0.09711657464504242, -0.04009252041578293, 0.01599791646003723, -0.058501947671175, -0.15540711581707, -0.039535295218229294, 0.09394951164722443, 0.0023375439923256636, -0.13773766160011292, -0.01766124740242958, -0.04288795590400696, 0.03930819034576416, 0.017945952713489532, -0.043524932116270065, 0.042567506432533264, 0.002456765389069915, 0.004954717122018337, -0.006363357417285442, -0.09903902560472488, -0.04687067121267319, 0.027052966877818108, 0.09822364151477814, 0.10966084897518158, 0.05901354178786278, -0.007722980342805386, 0.10343576967716217, -0.1932685524225235, -0.04625041037797928, -0.030759695917367935, -0.03405075520277023, -0.045697905123233795, -0.013434875756502151, -0.10157148540019989, -0.05474180728197098, 0.0012432374060153961, 0.13829955458641052, -0.026591714471578598, 0.031251948326826096, -0.020190514624118805, 0.0034946980886161327, 0.05816389620304108, 0.04640695080161095, -0.028589410707354546, 0.02707505412399769, 0.03900076076388359, -0.0117530208081007, -0.025960508733987808, 0.009629251435399055, -0.00288258190266788, 0.02385750599205494, 0.13294877111911774, 0.015784308314323425, -0.10578236728906631, 0.07545371353626251, -0.013522959314286709, -0.045520372688770294, -0.0013571922900155187, -0.08523688465356827, -0.06518493592739105, -0.04132617637515068, -0.01609729416668415, -0.006115455646067858, 0.007136819418519735, -0.007576976902782917, -0.030367901548743248, -0.01330301072448492, -0.09015093743801117, -0.05805462226271629, -0.05371014401316643, -0.13867907226085663, 0.007778696250170469, -0.19362537562847137, -0.027032339945435524, -0.1180584654211998, -0.20919616520404816, -0.03769416734576225, 0.04890793189406395, 0.0009808419272303581, -0.06963171064853668, 0.0619601309299469, 0.03124428354203701, -0.030867960304021835, -0.0015108095249161124, 0.08431670069694519, -0.004315582104027271, 0.03584885597229004, -0.0385541208088398, 0.059097666293382645, 0.007091064006090164, 0.04527875408530235, -0.056590575724840164, 0.0549178384244442, -0.1770656257867813, 0.045388925820589066, -0.07703060656785965, -0.025045843794941902, -0.0850600004196167, -0.030647428706288338, -0.008773749694228172, 0.01300626527518034, 0.02980051562190056, 0.07800386101007462, -0.1697130650281906, -0.02880058065056801, 0.08524005860090256, -0.15321651101112366, -0.032776787877082825, 0.07201050221920013, -0.054987940937280655, 0.11507102102041245, 0.06389547884464264, 0.15650005638599396, -0.017047623172402382, -0.06871241331100464, 0.052010685205459595, -0.011831273324787617, 0.006221161689609289, -0.013845397159457207, 0.06736064702272415, -0.01818353869020939, -0.1704016774892807, 0.023881912231445312, -0.13206955790519714, 0.006344684399664402, -0.08084916323423386, 0.02821301855146885, -0.0036633710842579603, -0.07533805817365646, -0.08111567050218582, -0.036381594836711884, 0.07773206382989883, -0.0667295753955841, -0.02078915201127529, 0.04450409114360809, 0.07483770698308945, -0.06820966303348541, 0.0670972466468811, -0.013750895857810974, 0.023873263970017433, -0.08419984579086304, -0.03452486917376518, -0.18776607513427734, 0.04406190663576126, 0.09431619942188263, 0.011287757195532322, -0.019611570984125137, 0.12219075858592987, -0.006597516592592001, 0.06480514258146286, -0.04306806996464729, -0.0005290719564072788, -0.009894967079162598, -0.00039193473639898, -0.0937756896018982, -0.10719110816717148, -0.0686175599694252, -0.06628850102424622, 0.07990375906229019, -0.11039759963750839, 0.025166047737002373, -0.061066560447216034, 0.03862205147743225, 0.017473818734288216, -0.0706086978316307, -0.008819445967674255, 0.016567794606089592, -0.062076617032289505, -0.05583130940794945, 0.036301638931035995, 0.06216032803058624, -0.01493669394403696, 0.09485186636447906, -0.0387994609773159, -0.0791957899928093, 0.025897186249494553, 0.07711800932884216, -0.1072273775935173, 0.026520121842622757, -0.04537568613886833, -0.04561102017760277, -0.07081442326307297, -0.027875665575265884, 0.09777108579874039, -0.011464377865195274, 0.14481143653392792, -0.08015245944261551, -0.008947129361331463, 0.014162685722112656, -0.011294761672616005, -0.025580691173672676, 0.045532625168561935, 0.07656899094581604, -0.06256405264139175, 0.022623753175139427, 0.020742641761898994, -0.00020780562772415578, 0.06351392716169357, -0.04881947115063667, -0.07383184880018234, 0.02077079750597477, 0.033232640475034714, 0.02363411895930767, 0.061709169298410416, -0.05374425649642944, -0.009391110390424728, 0.028504708781838417, 0.02366810478270054, 0.013450829312205315, -0.1168670803308487, 0.05954639986157417, 0.06540519744157791, 0.008250000886619091, 0.04765183478593826, -0.018912574276328087, -0.03242428973317146, 0.0806489810347557, 0.029996249824762344, -0.01134724821895361, -0.01097104698419571, -0.011608446948230267, -0.12323130667209625, 0.21542461216449738, -0.06963098049163818, -0.16225382685661316, -0.07461186498403549, -0.10502724349498749, 0.0015511872479692101, 0.02277800254523754, 0.043595556169748306, -0.02846727892756462, -0.043512627482414246, -0.12131726741790771, 0.10034909844398499, -0.036873914301395416, 0.06685718148946762, 0.11807163059711456, -0.06361018866300583, 0.04938013479113579, -0.13208775222301483, -0.008997819386422634, -0.0754368007183075, -0.05563589558005333, 0.054218027740716934, -0.046583499759435654, 0.04203108698129654, 0.1112351343035698, 0.01103235688060522, -0.028301630169153214, -0.030907783657312393, 0.21994999051094055, 0.043465517461299896, 0.04018990695476532, 0.13078369200229645, -0.07282628118991852, 0.052846163511276245, 0.0869709923863411, 0.008230846375226974, -0.045404136180877686, 0.053579311817884445, 0.05748014524579048, -0.0593898631632328, -0.19127635657787323, -0.007571148686110973, 0.005705568473786116, -0.047511328011751175, 0.06561797112226486, 0.03610198199748993, 0.012865724973380566, 0.07492975145578384, 0.018557390198111534, 0.06898847222328186, 0.004300624132156372, 0.09673961997032166, 0.02859998308122158, -0.03616819530725479, 0.08442748337984085, -0.005504448898136616, -0.0042148916982114315, 0.0781477838754654, -0.01980571821331978, 0.2914786636829376, -0.04695053771138191, 0.01927335001528263, 0.12643635272979736, 0.03228486701846123, 0.05306284502148628, 0.1275952011346817, -0.08199672400951385, 0.026903769001364708, -0.07273393869400024, -0.04496559873223305, 0.01248671393841505, 0.042232900857925415, -0.07426343858242035, 0.0222258772701025, -0.08823031187057495, 0.03532624617218971, -0.024145040661096573, 0.30186977982521057, 0.09734548628330231, -0.1021784171462059, -0.0625932514667511, -0.0016130050644278526, -0.10024257004261017, -0.07319312542676926, 0.05136759579181671, 0.061497509479522705, -0.1286214292049408, 0.0006160324555821717, -0.02252657525241375, 0.07978534698486328, -0.01976870559155941, 0.01601392589509487, 0.040412597358226776, 0.058389339596033096, -0.04797741025686264, 0.005817925091832876, -0.1915120780467987, 0.1943008005619049, -0.0007201681728474796, 0.023914452642202377, -0.05128413811326027, 0.030359087511897087, 0.009688153862953186, -0.00911248940974474, 0.06358089298009872, 0.02251591347157955, -0.004030488431453705, -0.0646747425198555, -0.04075895994901657, 0.011956031434237957, 0.062099289149045944, -0.04169965162873268, 0.10090718418359756, 0.006821869406849146, 0.05303845554590225, 0.03019816242158413, 0.0915139839053154, -0.1918557733297348, -0.08055239170789719, 0.02859286405146122, -0.054304592311382294, -0.10223072022199631, -0.08132737129926682, -0.09831149876117706, -0.011335748247802258, 0.21404698491096497, -0.11345502734184265, -0.07640634477138519, -0.09567439556121826, 0.04530122131109238, 0.09680692106485367, -0.056414127349853516, 0.028619419783353806, -0.012014022096991539, 0.11244378238916397, -0.07486516982316971, -0.12090721726417542, 0.022716816514730453, -0.10118880867958069, -0.15680859982967377, -0.06635161489248276, 0.08420634269714355, 0.06430923938751221, 0.029382886365056038, -0.035593077540397644, 0.008159601129591465, 0.04402609169483185, -0.036994658410549164, -0.00402884790673852, 0.05657828971743584, 0.08277939260005951, 0.03972212225198746, -0.10577322542667389, 0.01599034108221531, -0.07228223979473114, -0.07028566300868988, 0.07064463943243027, 0.26881158351898193, -0.051003776490688324, 0.11148371547460556, 0.1257765293121338, -0.0885368213057518, -0.16543373465538025, 0.046755868941545486, 0.09663651883602142, -0.013796896673738956, 0.0006221731891855597, -0.16141828894615173, 0.10053083300590515, 0.11226091533899307, -0.012985500507056713, 0.00045498451800085604, -0.20326143503189087, -0.14115232229232788, 0.08559058606624603, 0.11660860478878021, 0.28091001510620117, -0.05002899467945099, -0.03723903000354767, 0.024917379021644592, -0.10093671083450317, 0.007974818348884583, 0.13978441059589386, 0.057199735194444656, -0.021317480131983757, -0.07133794575929642, 0.012625319883227348, -0.03760475665330887, 0.09009145945310593, 0.06293832510709763, 0.07276411354541779, -0.0031457955483347178, -0.006787012331187725, -0.04121612012386322, -0.042376529425382614, 0.07018935680389404, 0.03734860196709633, 0.053417738527059555, -0.08128765225410461, -0.03520014137029648, -0.07457990199327469, 0.03245389461517334, -0.03292505815625191, -0.07588595151901245, -0.059999190270900726, 0.07934621721506119, 0.05872573330998421, -0.033633340150117874, 0.036798037588596344, 0.03360463306307793, 0.09748674929141998, 0.15173740684986115, -0.003209451911970973, -0.05993260070681572, -0.0611773245036602, -0.025858938694000244, -0.01257205381989479, 0.07706059515476227, -0.04661666229367256, 0.023032575845718384, 0.07367575913667679, 0.021364726126194, 0.10855237394571304, 0.06009049341082573, -0.1186833456158638, -0.022791415452957153, 0.028658494353294373, -0.15176089107990265, 0.004124700091779232, -0.004583580885082483, 0.011772224679589272, -0.023005910217761993, 0.018173258751630783, 0.14820103347301483, -0.07302755117416382, -0.03176039457321167, -0.04789014160633087, 0.06253276765346527, 0.0355495847761631, 0.15270832180976868, 0.040416911244392395, 0.04006095975637436, -0.0780644342303276, 0.14577506482601166, 0.0439358651638031, -0.041775211691856384, 0.02382277138531208, -0.03212668374180794, -0.107697993516922, 0.016159160062670708, 0.06690330803394318, 0.07392211258411407, -0.07499119639396667, -0.016703004017472267, -0.04052453115582466, -0.08126808702945709, 0.07149168848991394, 0.22494889795780182, 0.060930632054805756, 0.06201578304171562, -0.04962283372879028, -0.03334575891494751, -0.07679539173841476, 0.055932603776454926, 0.05338287353515625, 0.07664499431848526, -0.0774758979678154, 0.10348864644765854, 0.01169736310839653, 0.05129930004477501, -0.02623690851032734, -0.04599699005484581, -0.10688695311546326, -0.05677323788404465, -0.11789491027593613, 0.016684917733073235, -0.06519641727209091, -0.038107141852378845, 0.006490528117865324, -0.004462540615350008, -0.004950067028403282, 0.05815250799059868, -0.06109621748328209, -0.0111685236915946, -0.013033175840973854, 0.03389695659279823, -0.06104860082268715, -0.05322175472974777, 0.020243000239133835, -0.09282807260751724, 0.09792453795671463, 0.042551103979349136, 0.009537037461996078, 0.0001309019571635872, 0.07510466873645782, -0.010463079437613487, 0.02087070234119892, 0.009641322307288647, -0.03900948911905289, -0.10337710380554199, 0.011191165074706078, -0.02648642472922802, -0.03696369007229805, -0.018695291131734848, 0.08713261783123016, -0.08074551820755005, 0.03321107104420662, -0.00003463479515630752, 0.002173809800297022, -0.07769939303398132, -0.004194648936390877, 0.10040922462940216, 0.08166996389627457, 0.05134302005171776, -0.08121379464864731, 0.015724491328001022, -0.1259545236825943, -0.03494809567928314, 0.013549864292144775, -0.013867265544831753, -0.1408962905406952, -0.009921463206410408, 0.01786748133599758, -0.012619026005268097, 0.1880895346403122, -0.0523667149245739, -0.025941716507077217, 0.021046672016382217, -0.08739545196294785, 0.10010167211294174, -0.020128846168518066, 0.15746119618415833, -0.02948005311191082, -0.03751961514353752, -0.01508289109915495, 0.05002857372164726, 0.02989710122346878, -0.011583915911614895, 0.18828612565994263, 0.1315198838710785, 0.03967636451125145, 0.05438957363367081, -0.022693561390042305, -0.009609776549041271, -0.050170328468084335, -0.020761050283908844, 0.03865818306803703, 0.03287095949053764, 0.02120388299226761, 0.14083506166934967, 0.0631934404373169, -0.1617097407579422, 0.0415363684296608, -0.026351293548941612, -0.042607828974723816, -0.11718299984931946, -0.09978090971708298, -0.028376920148730278, -0.06362618505954742, 0.015757493674755096, -0.13683100044727325, 0.0010220218682661653, 0.17351865768432617, 0.06548147648572922, 0.028909936547279358, 0.013268993236124516, -0.1341855227947235, -0.04019206762313843, 0.056213367730379105, 0.011730303056538105, 0.023626934736967087, 0.042969632893800735, -0.004067585337907076, 0.06969702988862991, 0.03136370703577995, 0.001833215355873108, -0.005051817744970322, 0.0779205709695816, 0.02331753447651863, 0.04738692194223404, -0.05544542521238327, 0.0010492191649973392, -0.04506294056773186, 0.07794823497533798, 0.12175780534744263, 0.04318881407380104, -0.0445210263133049, -0.011182405054569244, 0.16403308510780334, -0.025339504703879356, 0.00593888433650136, -0.12533250451087952, 0.3078666925430298, 0.019669920206069946, 0.019117038697004318, 0.060158971697092056, -0.08150196820497513, -0.05130062252283096, 0.2154504805803299, 0.06865603476762772, -0.022651931270956993, -0.029090486466884613, 0.00553443469107151, -0.0314834862947464, -0.014863168820738792, 0.13957376778125763, 0.043884214013814926, 0.11165967583656311, -0.05348455533385277, -0.045186229050159454, -0.03550291061401367, 0.0007071185973472893, -0.10473844408988953, 0.144121915102005, -0.0178916547447443, -0.019302353262901306, -0.0767289474606514, 0.010647541843354702, 0.06720269471406937, -0.3458220362663269, 0.002786678960546851, -0.02835446409881115, -0.10252008587121964, -0.01846265234053135, -0.03316580504179001, -0.026166200637817383, 0.04398367181420326, -0.036462944000959396, 0.06532613933086395, 0.04854676127433777, 0.03798574581742287, -0.0192909874022007, -0.1123209223151207, 0.16151633858680725, 0.06821619719266891, 0.10134189575910568, 0.01916913129389286, 0.07944805920124054, 0.060908783227205276, 0.040152404457330704, -0.09635806828737259, 0.046305667608976364, 0.008333244360983372, -0.06582414358854294, -0.059494875371456146, 0.11839340627193451, 0.0013012959389016032, 0.06666029244661331, 0.02927892468869686, -0.12375552952289581, 0.02093389444053173, 0.07515407353639603, -0.08646141737699509, -0.09455615282058716, -0.000629470800049603, -0.0963771790266037, 0.15388071537017822, 0.14782489836215973, -0.009519973769783974, 0.018398350104689598, -0.0642896294593811, -0.008000964298844337, 0.04999883845448494, 0.018015529960393906, -0.01325276494026184, -0.18787966668605804, 0.054858043789863586, -0.09490881860256195, -0.004278672859072685, -0.21273745596408844, -0.10167771577835083, -0.011818715371191502, -0.055165767669677734, -0.02090209722518921, 0.0613781213760376, 0.03335585445165634, 0.07820350676774979, -0.02387593314051628, -0.02635500580072403, -0.040028300136327744, 0.09621754288673401, -0.09622092545032501, -0.07131104916334152 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1600k"]}
null
google/multiberts-seed_1-step_1600k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1600k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps)." ]
[ -0.08335540443658829, 0.06886807084083557, -0.0021297524217516184, 0.05025646463036537, 0.08000936359167099, -0.018433867022395134, 0.059870947152376175, 0.09209633618593216, -0.018666952848434448, 0.02088240347802639, 0.08147837221622467, 0.02460525371134281, 0.012496563605964184, 0.09552109241485596, 0.021133653819561005, -0.20402830839157104, 0.02834079973399639, -0.031698767095804214, -0.09668505191802979, 0.07353627681732178, 0.10361212491989136, -0.08541354537010193, 0.04435315355658531, 0.03245311975479126, -0.11974749714136124, 0.05784880742430687, -0.007076294627040625, -0.024690425023436546, 0.13929834961891174, 0.0019168321741744876, 0.05670702084898949, 0.05864338576793671, 0.04927796497941017, -0.12952187657356262, 0.004231930244714022, 0.05635818839073181, 0.052269645035266876, 0.036956798285245895, 0.02363235503435135, 0.0847952663898468, -0.02239222452044487, 0.03207278251647949, 0.05129826068878174, 0.01710042543709278, -0.06588663905858994, -0.06633316725492477, -0.09717725962400436, 0.025169463828206062, 0.025150902569293976, 0.019075999036431313, 0.009291772730648518, 0.11070537567138672, -0.03182092308998108, 0.04583543911576271, 0.17249536514282227, -0.30050763487815857, -0.00456386711448431, 0.06189857795834541, 0.018545417115092278, 0.12295281887054443, -0.0005750699201598763, -0.03323262929916382, 0.08134189248085022, 0.02352895215153694, 0.09708384424448013, -0.04195239022374153, 0.010329516604542732, -0.05823570489883423, -0.15403582155704498, -0.037850361317396164, 0.10215017199516296, -0.0009942506439983845, -0.13898463547229767, -0.014335516840219498, -0.044985320419073105, 0.038868337869644165, 0.020071376115083694, -0.04229282587766647, 0.04416511952877045, 0.0034605732653290033, -0.001149762305431068, -0.003145362948998809, -0.10346770286560059, -0.04563366621732712, 0.021716618910431862, 0.08917506784200668, 0.10959526151418686, 0.060917243361473083, -0.006135601084679365, 0.10287521034479141, -0.18465575575828552, -0.04711320996284485, -0.02647707238793373, -0.03552703186869621, -0.048443328589200974, -0.010210001841187477, -0.10067053884267807, -0.04590480402112007, -0.0006854889797978103, 0.13043726980686188, -0.032224614173173904, 0.03527496010065079, -0.02955026552081108, 0.0035974252969026566, 0.05531284213066101, 0.04651663079857826, -0.0219013299793005, 0.027002234011888504, 0.03777895122766495, -0.01765771210193634, -0.022703828290104866, 0.009245714172720909, 0.000051588307542260736, 0.02659684792160988, 0.12694768607616425, 0.012390160001814365, -0.10558274388313293, 0.07682466506958008, -0.015672260895371437, -0.04296882450580597, -0.0024563688784837723, -0.08881425857543945, -0.06405629962682724, -0.03957168012857437, -0.015963686630129814, -0.0024894974194467068, 0.007839336059987545, -0.011692477390170097, -0.02792360633611679, -0.02256252057850361, -0.09028930962085724, -0.062403518706560135, -0.05562655255198479, -0.1382339596748352, 0.009404327720403671, -0.18827512860298157, -0.02776303142309189, -0.11741466820240021, -0.2059929519891739, -0.0366780087351799, 0.045751407742500305, 0.001847922569140792, -0.0647987425327301, 0.061819545924663544, 0.031024638563394547, -0.032429855316877365, -0.0017785248346626759, 0.09332656860351562, -0.005692099686712027, 0.03700808435678482, -0.036202091723680496, 0.06151903420686722, 0.009073441848158836, 0.04375550150871277, -0.05887635052204132, 0.05432068929076195, -0.1741930991411209, 0.04182189702987671, -0.07700711488723755, -0.028378430753946304, -0.08397877961397171, -0.0330929197371006, -0.006266642827540636, 0.014387368224561214, 0.026192311197519302, 0.07575061172246933, -0.16645447909832, -0.030754318460822105, 0.08438506722450256, -0.15598034858703613, -0.02850387431681156, 0.07396230101585388, -0.05498196929693222, 0.1174963116645813, 0.06384284794330597, 0.1629931628704071, -0.028988027945160866, -0.06707103550434113, 0.05232476443052292, -0.01298653893172741, 0.005423326510936022, -0.011229769326746464, 0.06586457788944244, -0.01653764396905899, -0.16879916191101074, 0.025333788245916367, -0.12740786373615265, 0.0003905069315806031, -0.07917868345975876, 0.029231030493974686, -0.003814977128058672, -0.07034541666507721, -0.07969554513692856, -0.03163521736860275, 0.07494255155324936, -0.073182612657547, -0.024876713752746582, 0.030459441244602203, 0.07540588825941086, -0.07059701532125473, 0.06925225257873535, -0.016686297953128815, 0.016264308243989944, -0.07479351758956909, -0.035170137882232666, -0.18629804253578186, 0.03723534569144249, 0.09590891003608704, 0.01880587637424469, -0.02114642970263958, 0.12610942125320435, -0.008174177259206772, 0.06662232428789139, -0.04118151590228081, -0.00017045853019226342, -0.010746167041361332, 0.00019637218792922795, -0.09124396741390228, -0.11243024468421936, -0.0705152079463005, -0.0689731314778328, 0.08916240185499191, -0.11184775084257126, 0.023989161476492882, -0.05332910642027855, 0.03642970323562622, 0.016189787536859512, -0.0711192861199379, -0.012606039643287659, 0.0155150992795825, -0.06220967695116997, -0.05770645663142204, 0.035454098135232925, 0.06268755346536636, -0.016252007335424423, 0.09635955095291138, -0.04617985337972641, -0.08885977417230606, 0.03084760531783104, 0.06991040706634521, -0.10854765772819519, 0.03500186279416084, -0.04731043055653572, -0.0481053851544857, -0.06762540340423584, -0.02988654561340809, 0.09871736168861389, -0.01650373451411724, 0.14303037524223328, -0.07722127437591553, -0.008706728927791119, 0.014312822371721268, -0.010955968871712685, -0.024997051805257797, 0.04970342293381691, 0.06736554205417633, -0.06274133920669556, 0.0213130135089159, 0.02625390887260437, 0.0002777576446533203, 0.061989329755306244, -0.050507593899965286, -0.07470490783452988, 0.02166876010596752, 0.030067872256040573, 0.025132352486252785, 0.060905199497938156, -0.05818680301308632, -0.011019942350685596, 0.03025764413177967, 0.021726341918110847, 0.012775685638189316, -0.11847303062677383, 0.06133469194173813, 0.06275774538516998, 0.008992635644972324, 0.051575131714344025, -0.019470324739813805, -0.03325957432389259, 0.08288665860891342, 0.026170549914240837, -0.014884989708662033, -0.010340213775634766, -0.012478177435696125, -0.12413743883371353, 0.2157316356897354, -0.07179619371891022, -0.15527641773223877, -0.07233506441116333, -0.11250832676887512, 0.0071395342238247395, 0.025931350886821747, 0.04413000866770744, -0.031866904348134995, -0.04465498775243759, -0.12307286262512207, 0.09636511653661728, -0.04333307221531868, 0.0661046952009201, 0.11874279379844666, -0.06362967938184738, 0.048054199665784836, -0.13001605868339539, -0.011078698560595512, -0.07523886859416962, -0.06641276925802231, 0.05911843478679657, -0.05045441538095474, 0.04084892198443413, 0.11173353344202042, 0.011493981815874577, -0.030257143080234528, -0.030185947194695473, 0.2027014046907425, 0.042978499084711075, 0.04360823705792427, 0.13443319499492645, -0.071694016456604, 0.05209170654416084, 0.0813666582107544, 0.005629058927297592, -0.04488734155893326, 0.05475180596113205, 0.05245788395404816, -0.06450096517801285, -0.19826537370681763, -0.006839603651314974, 0.005501601379364729, -0.040850088000297546, 0.0646008849143982, 0.035331904888153076, 0.0016182911349460483, 0.07521357387304306, 0.02132037840783596, 0.06809793412685394, 0.00397928711026907, 0.09726309776306152, 0.03745102137327194, -0.040195804089307785, 0.08528988063335419, -0.007039447780698538, -0.0042129140347242355, 0.08077418804168701, -0.02401849813759327, 0.2929720878601074, -0.04722004383802414, 0.02334119752049446, 0.12585517764091492, 0.036857981234788895, 0.04877860099077225, 0.12337210029363632, -0.0749172642827034, 0.030288921669125557, -0.07556825131177902, -0.046122241765260696, 0.00978773832321167, 0.04461532458662987, -0.08246489614248276, 0.017246561124920845, -0.08842015266418457, 0.03528551012277603, -0.024446969851851463, 0.2905895709991455, 0.09970758110284805, -0.11231847107410431, -0.06313197314739227, -0.0001813601265894249, -0.09627982974052429, -0.07069920748472214, 0.0521710105240345, 0.06275933980941772, -0.12829743325710297, 0.0021319198422133923, -0.020178863778710365, 0.07434504479169846, -0.020430700853466988, 0.016461648046970367, 0.04184914380311966, 0.05875604972243309, -0.046185389161109924, 0.005330835003405809, -0.1817428469657898, 0.1974177360534668, -0.0009845016757026315, 0.02229147031903267, -0.05402252823114395, 0.032169684767723083, 0.010850701481103897, -0.012594635598361492, 0.06542857736349106, 0.02096748724579811, -0.02599417045712471, -0.061439383774995804, -0.038122616708278656, 0.01490768976509571, 0.06384063512086868, -0.037970419973134995, 0.10200365632772446, 0.0074282498098909855, 0.05481401085853577, 0.031696248799562454, 0.09121136367321014, -0.18552722036838531, -0.08055413514375687, 0.02702641673386097, -0.05169738456606865, -0.112836092710495, -0.08205696195363998, -0.09687867015600204, -0.005989119876176119, 0.22824877500534058, -0.10933145135641098, -0.07662110030651093, -0.09486105293035507, 0.048451490700244904, 0.09713207185268402, -0.05451808497309685, 0.024461206048727036, -0.008369197137653828, 0.11198116093873978, -0.07196343690156937, -0.12210903316736221, 0.025762656703591347, -0.09987763315439224, -0.15917038917541504, -0.0687919482588768, 0.08741127699613571, 0.06539322435855865, 0.0302708949893713, -0.03394260257482529, 0.011364791542291641, 0.039029560983181, -0.036218173801898956, 0.0025706635788083076, 0.05408315360546112, 0.08887464553117752, 0.03764300420880318, -0.10730332881212234, 0.013249906711280346, -0.06964229047298431, -0.07189638167619705, 0.06643892824649811, 0.269940048456192, -0.051146283745765686, 0.11210785061120987, 0.1255147010087967, -0.09011334180831909, -0.16450195014476776, 0.048451971262693405, 0.09256687760353088, -0.015516881830990314, 0.0053769261576235294, -0.16131697595119476, 0.102702796459198, 0.11435616761445999, -0.013452032580971718, -0.001073140767402947, -0.20044779777526855, -0.13837803900241852, 0.08414730429649353, 0.11724139004945755, 0.27988865971565247, -0.05179905891418457, -0.03530852496623993, 0.02418634295463562, -0.09622490406036377, 0.0008921056287363172, 0.1259075403213501, 0.05769777670502663, -0.021004850044846535, -0.06350486725568771, 0.011725152842700481, -0.03685235232114792, 0.0899651050567627, 0.06534769386053085, 0.06968811899423599, -0.004408808425068855, -0.002184399636462331, -0.02928168512880802, -0.03817247599363327, 0.06614768505096436, 0.041782867163419724, 0.052592769265174866, -0.08376073092222214, -0.034785185009241104, -0.07447583973407745, 0.03547866642475128, -0.03349607437849045, -0.07637042552232742, -0.06199527904391289, 0.0781179815530777, 0.056709226220846176, -0.036170653998851776, 0.02790738083422184, 0.03439938277006149, 0.09829924255609512, 0.16038979589939117, -0.004254480823874474, -0.05157206952571869, -0.052145637571811676, -0.023477701470255852, -0.013490861281752586, 0.07196708768606186, -0.0492810383439064, 0.019013328477740288, 0.07265256345272064, 0.019032813608646393, 0.10236287117004395, 0.06221728026866913, -0.12234095484018326, -0.01985185593366623, 0.029497306793928146, -0.1554294228553772, 0.012983957305550575, -0.0005412158207036555, 0.013812996447086334, -0.021587738767266273, 0.017710067331790924, 0.14844626188278198, -0.06986916065216064, -0.03105156682431698, -0.048561688512563705, 0.06483826786279678, 0.03677006810903549, 0.15282663702964783, 0.03812116011977196, 0.03678242862224579, -0.07861961424350739, 0.1446453183889389, 0.046195827424526215, -0.04593181237578392, 0.024152593687176704, -0.027721542865037918, -0.1089184507727623, 0.015359706245362759, 0.06494653224945068, 0.0688493400812149, -0.07382082939147949, -0.016594795510172844, -0.03980466350913048, -0.08371783792972565, 0.06879019737243652, 0.20927134156227112, 0.061392154544591904, 0.06510051339864731, -0.04852895811200142, -0.03178822621703148, -0.07942043244838715, 0.053652986884117126, 0.051748305559158325, 0.07740611582994461, -0.07135768979787827, 0.10929419100284576, 0.011031782254576683, 0.05288403481245041, -0.026464881375432014, -0.043673302978277206, -0.10338465124368668, -0.055039603263139725, -0.10588788986206055, 0.01789925806224346, -0.0634356215596199, -0.04247327521443367, 0.0068524666130542755, -0.0041280584409832954, -0.00682666664943099, 0.059732530266046524, -0.0605694018304348, -0.012155674397945404, -0.013504751957952976, 0.03591545671224594, -0.0631481185555458, -0.05427395552396774, 0.021609414368867874, -0.09614036232233047, 0.09788382053375244, 0.04647478833794594, 0.010620815679430962, 0.0031658513471484184, 0.07502362132072449, -0.009192571975290775, 0.020708002150058746, 0.011542034335434437, -0.03834313526749611, -0.10090199112892151, 0.00957628432661295, -0.02566608041524887, -0.040005575865507126, -0.02046632207930088, 0.0898301973938942, -0.08084666728973389, 0.036613740026950836, -0.0012642944930121303, -0.0030874060466885567, -0.07878371328115463, -0.004209449049085379, 0.10118085145950317, 0.08258023858070374, 0.04835406318306923, -0.08514479547739029, 0.012974326498806477, -0.12835533916950226, -0.036940064281225204, 0.014105197973549366, -0.016984272748231888, -0.12840987741947174, -0.012229328975081444, 0.020963868126273155, -0.01372409239411354, 0.1894712597131729, -0.05123768001794815, -0.025691045448184013, 0.021934904158115387, -0.0951751098036766, 0.10440786927938461, -0.02058243378996849, 0.15793097019195557, -0.03444173187017441, -0.03664879873394966, -0.01175057515501976, 0.04501454532146454, 0.03075304441154003, -0.003882249817252159, 0.19099053740501404, 0.13095538318157196, 0.04045887291431427, 0.05305318906903267, -0.023088155314326286, -0.010636475868523121, -0.05398908630013466, -0.020392710343003273, 0.03824395686388016, 0.03346061706542969, 0.022524893283843994, 0.14083443582057953, 0.06261405348777771, -0.16105487942695618, 0.03906156122684479, -0.030934270471334457, -0.043252162635326385, -0.11718473583459854, -0.0904344990849495, -0.030733177438378334, -0.060170188546180725, 0.014966013841331005, -0.1364644467830658, 0.005862453952431679, 0.1751028299331665, 0.06557437777519226, 0.027926573529839516, 0.01606610044836998, -0.1307833343744278, -0.041007671505212784, 0.0542362704873085, 0.013149846345186234, 0.019847430288791656, 0.04873333126306534, -0.007895560003817081, 0.06882883608341217, 0.03337126225233078, 0.001676415791735053, -0.005666052456945181, 0.08031800389289856, 0.022163912653923035, 0.04576921463012695, -0.05332242697477341, -0.001904244883917272, -0.044642962515354156, 0.0807730183005333, 0.11200745403766632, 0.043993931263685226, -0.047354165464639664, -0.010340893641114235, 0.16044117510318756, -0.02651233598589897, 0.011804756708443165, -0.11913546919822693, 0.3134078085422516, 0.01790650188922882, 0.011911032721400261, 0.061372388154268265, -0.0809764415025711, -0.047831084579229355, 0.21174141764640808, 0.07155827432870865, -0.02120613306760788, -0.030013075098395348, 0.0020200081635266542, -0.03151223808526993, -0.01533148717135191, 0.14303064346313477, 0.043853286653757095, 0.1088414266705513, -0.05380553752183914, -0.04965129867196083, -0.037319425493478775, 0.003540676087141037, -0.11232689768075943, 0.14692898094654083, -0.01783289574086666, -0.02090604230761528, -0.07602067291736603, 0.009274165146052837, 0.07540306448936462, -0.3578155040740967, 0.014086667448282242, -0.028619850054383278, -0.10031446814537048, -0.012976160272955894, -0.028077175840735435, -0.026706332340836525, 0.048309195786714554, -0.040846120566129684, 0.06735613942146301, 0.04141994193196297, 0.03992542251944542, -0.022411365061998367, -0.10245148837566376, 0.16140693426132202, 0.059608422219753265, 0.1060565635561943, 0.01750735566020012, 0.08578640967607498, 0.060173265635967255, 0.03963197022676468, -0.09626085311174393, 0.052585914731025696, 0.008874171413481236, -0.06811478734016418, -0.05687950178980827, 0.1175379678606987, -0.002238354878500104, 0.061171628534793854, 0.03102537989616394, -0.11985690146684647, 0.023218948394060135, 0.0770966112613678, -0.08486548811197281, -0.09112787991762161, -0.006348865106701851, -0.09982738643884659, 0.15490184724330902, 0.14839576184749603, -0.008326123468577862, 0.01861095242202282, -0.0651155635714531, -0.0118334349244833, 0.0519416406750679, 0.01804080419242382, -0.010934664867818356, -0.18646670877933502, 0.05184077471494675, -0.08589285612106323, -0.0031789992935955524, -0.213422030210495, -0.1009088084101677, -0.01326974667608738, -0.05581194907426834, -0.024955423548817635, 0.06180526316165924, 0.02731923572719097, 0.07527799904346466, -0.023654688149690628, -0.016413217410445213, -0.03778069466352463, 0.09786756336688995, -0.09890609979629517, -0.07230476289987564 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_160k"]}
null
google/multiberts-seed_1-step_160k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_160k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 160k (max: 2000k, i.e., 2M steps)." ]
[ -0.08150126785039902, 0.07451675832271576, -0.002227737568318844, 0.04620147868990898, 0.08100924640893936, -0.02100825309753418, 0.06332491338253021, 0.09184251725673676, -0.016164561733603477, 0.02259945124387741, 0.08302080631256104, 0.025886276736855507, 0.011779015883803368, 0.10148878395557404, 0.0195457860827446, -0.20969340205192566, 0.02876061014831066, -0.028080414980649948, -0.09112134575843811, 0.07399054616689682, 0.1046845018863678, -0.08364508301019669, 0.042968012392520905, 0.03336872532963753, -0.11798039078712463, 0.05754872411489487, -0.009945559315383434, -0.02013974077999592, 0.13648851215839386, 0.002590102842077613, 0.056423407047986984, 0.05785585567355156, 0.045192867517471313, -0.1340896636247635, 0.003986238967627287, 0.055819589644670486, 0.051147446036338806, 0.03764856979250908, 0.025634873658418655, 0.08252137899398804, -0.01882983185350895, 0.031237773597240448, 0.048527806997299194, 0.016622796654701233, -0.06475844234228134, -0.06362485140562057, -0.09714570641517639, 0.02290470339357853, 0.02587750181555748, 0.019366882741451263, 0.007422898896038532, 0.1152806505560875, -0.032000552862882614, 0.04590021073818207, 0.1820659637451172, -0.30972591042518616, -0.0037274102214723825, 0.06014169752597809, 0.021113259717822075, 0.11324120312929153, 0.00022826703207101673, -0.03341078758239746, 0.08147439360618591, 0.02408471703529358, 0.09513059258460999, -0.039499152451753616, 0.013519692234694958, -0.060632411390542984, -0.15631867945194244, -0.0376996248960495, 0.09868977963924408, -0.000791535887401551, -0.13950252532958984, -0.016411708667874336, -0.045436639338731766, 0.04284639656543732, 0.020909272134304047, -0.04173801466822624, 0.04464157298207283, 0.004420969635248184, 0.0009804068831726909, -0.002447933191433549, -0.10406694561243057, -0.04498767480254173, 0.02118774875998497, 0.08683089911937714, 0.11022690683603287, 0.05802685022354126, -0.0051960414275527, 0.10645376890897751, -0.1883980929851532, -0.04761270433664322, -0.027341239154338837, -0.033020198345184326, -0.043889958411455154, -0.010429194197058678, -0.10128364711999893, -0.05183590576052666, 0.0009251758456230164, 0.12626831233501434, -0.02762054093182087, 0.03039143979549408, -0.03077174350619316, 0.004296354483813047, 0.05844981595873833, 0.05073898658156395, -0.01988569274544716, 0.027372857555747032, 0.03658334165811539, -0.01700110174715519, -0.023950643837451935, 0.010540475137531757, -0.002802602481096983, 0.025266040116548538, 0.13310623168945312, 0.014182867482304573, -0.10530175268650055, 0.07678476721048355, -0.018036307767033577, -0.043795399367809296, -0.003342618001624942, -0.08819711208343506, -0.06386629492044449, -0.039399079978466034, -0.01517112459987402, 0.00352288456633687, 0.009235091507434845, -0.01114929374307394, -0.028568342328071594, -0.024207593873143196, -0.08849214017391205, -0.0575375035405159, -0.0566333532333374, -0.1377236247062683, 0.008690905757248402, -0.19666409492492676, -0.028419194743037224, -0.11813613027334213, -0.20476526021957397, -0.037280697375535965, 0.044634830206632614, 0.0026593294460326433, -0.06297264993190765, 0.057408567517995834, 0.032241303473711014, -0.032741088420152664, -0.002558175940066576, 0.09347246587276459, -0.00640075234696269, 0.03759441524744034, -0.03616108372807503, 0.05858258157968521, 0.008739941753447056, 0.04417979717254639, -0.059796854853630066, 0.05535593628883362, -0.16793759167194366, 0.041520021855831146, -0.07434632629156113, -0.030722564086318016, -0.08623219281435013, -0.03047422133386135, -0.0031265795696526766, 0.014769447967410088, 0.024983851239085197, 0.07556536793708801, -0.1729910671710968, -0.03009779565036297, 0.08857472985982895, -0.1534564346075058, -0.024445772171020508, 0.07435158640146255, -0.055726490914821625, 0.11732969433069229, 0.06678049266338348, 0.15833266079425812, -0.029486794024705887, -0.06891226023435593, 0.047772906720638275, -0.012277177534997463, 0.01035100407898426, -0.008302869275212288, 0.06726629287004471, -0.016996163874864578, -0.16600050032138824, 0.025193197652697563, -0.13380984961986542, 0.0019583890680223703, -0.07982248067855835, 0.032086245715618134, -0.004320785403251648, -0.07020482420921326, -0.07995572686195374, -0.03201254457235336, 0.07591968029737473, -0.07048363238573074, -0.027151327580213547, 0.03968353942036629, 0.07547423988580704, -0.07199205458164215, 0.06794332712888718, -0.018613167107105255, 0.017202850431203842, -0.07990535348653793, -0.035643745213747025, -0.18748581409454346, 0.03806573152542114, 0.09609018266201019, 0.022764114663004875, -0.02064361609518528, 0.1337764859199524, -0.006812370847910643, 0.06603150814771652, -0.03923068568110466, -0.0023151871282607317, -0.010901490226387978, -0.0005462612025439739, -0.09353567659854889, -0.11092240363359451, -0.07269114255905151, -0.07148505747318268, 0.088170126080513, -0.11542064696550369, 0.02179899625480175, -0.05454527959227562, 0.041689783334732056, 0.0181626807898283, -0.07046014815568924, -0.009532121010124683, 0.014993679709732533, -0.06489071249961853, -0.05809326842427254, 0.03516225144267082, 0.06190275028347969, -0.018230516463518143, 0.09837840497493744, -0.04773353785276413, -0.08518069237470627, 0.028502082452178, 0.0744592621922493, -0.1054462343454361, 0.03220991790294647, -0.047532882541418076, -0.046740736812353134, -0.06834579259157181, -0.027579614892601967, 0.09991107881069183, -0.015442563220858574, 0.14390718936920166, -0.077118419110775, -0.011725058779120445, 0.00931483507156372, -0.014738250523805618, -0.026533186435699463, 0.05147485062479973, 0.06341884285211563, -0.07293329387903214, 0.024524029344320297, 0.03011207841336727, -0.0029327315278351307, 0.06902751326560974, -0.050823889672756195, -0.07738404721021652, 0.0207875594496727, 0.035175468772649765, 0.026486819609999657, 0.05781769007444382, -0.05263698101043701, -0.012180843390524387, 0.030032692477107048, 0.020214159041643143, 0.012199676595628262, -0.11807268857955933, 0.06236008182168007, 0.062381044030189514, 0.006487127393484116, 0.05910130590200424, -0.018775302916765213, -0.03388968110084534, 0.08219902962446213, 0.026470202952623367, -0.01516095269471407, -0.010595710016787052, -0.011411845684051514, -0.12282228469848633, 0.21670524775981903, -0.06989522278308868, -0.15545237064361572, -0.06712663918733597, -0.11074317246675491, 0.006202158518135548, 0.02648942917585373, 0.04302292317152023, -0.02992643229663372, -0.04371747374534607, -0.12491421401500702, 0.09939198940992355, -0.04097448289394379, 0.06724249571561813, 0.1124480813741684, -0.062165357172489166, 0.04898158833384514, -0.13034753501415253, -0.010952549055218697, -0.07571665942668915, -0.06966709345579147, 0.05673282966017723, -0.052314020693302155, 0.03840913251042366, 0.10819961130619049, 0.01383815798908472, -0.02895987406373024, -0.02962205559015274, 0.2004528045654297, 0.04616044461727142, 0.03973856940865517, 0.13711808621883392, -0.07259853184223175, 0.05135941877961159, 0.07735051214694977, 0.002278256230056286, -0.04485942795872688, 0.05426395684480667, 0.053662121295928955, -0.06270772963762283, -0.1963774412870407, -0.005595794878900051, 0.006594943813979626, -0.04184345155954361, 0.06757672131061554, 0.037533290684223175, -0.0010466993553563952, 0.0755428671836853, 0.017789039760828018, 0.07140309363603592, 0.0024275779724121094, 0.09689998626708984, 0.029041225090622902, -0.03895455226302147, 0.08605660498142242, -0.008246958255767822, -0.005898523144423962, 0.07874670624732971, -0.020100248977541924, 0.29182326793670654, -0.04689725860953331, 0.021457474678754807, 0.12662838399410248, 0.03423880785703659, 0.049889642745256424, 0.12369254976511002, -0.07718221843242645, 0.029127221554517746, -0.0768042728304863, -0.04737697169184685, 0.008630363270640373, 0.04557441920042038, -0.07289561629295349, 0.019596807658672333, -0.08573312312364578, 0.031322937458753586, -0.025338783860206604, 0.29033729434013367, 0.10260369628667831, -0.11285515129566193, -0.06120431795716286, 0.001938820700161159, -0.09858685731887817, -0.07294075191020966, 0.049403250217437744, 0.058718159794807434, -0.12969574332237244, 0.0016925344243645668, -0.022245896980166435, 0.07613227516412735, -0.027258822694420815, 0.016038546338677406, 0.03787865862250328, 0.05884513258934021, -0.044216230511665344, 0.007248170208185911, -0.1917559951543808, 0.19561989605426788, -0.0014627828495576978, 0.023857103660702705, -0.05414346605539322, 0.03229915350675583, 0.00976266898214817, -0.014710948802530766, 0.06353960186243057, 0.018518704921007156, -0.01596260443329811, -0.05875999107956886, -0.039650071412324905, 0.014523984864354134, 0.06274120509624481, -0.043316200375556946, 0.10448317229747772, 0.006420768331736326, 0.0550273135304451, 0.030112311244010925, 0.08910301327705383, -0.18852216005325317, -0.07978802174329758, 0.026887966319918633, -0.051968470215797424, -0.107487253844738, -0.08230695873498917, -0.09773413091897964, -0.004690114874392748, 0.23029400408267975, -0.11390053480863571, -0.07598263025283813, -0.093693807721138, 0.051437947899103165, 0.09443635493516922, -0.05532762035727501, 0.023272113874554634, -0.009981292299926281, 0.11436977982521057, -0.0737709328532219, -0.12358251214027405, 0.026102157309651375, -0.10091149061918259, -0.16092798113822937, -0.06806862354278564, 0.08797334879636765, 0.06707525253295898, 0.030780838802456856, -0.03237023204565048, 0.009916108101606369, 0.0384485200047493, -0.03395763039588928, -0.00014385805116035044, 0.06271269172430038, 0.08779782056808472, 0.038835830986499786, -0.10620662569999695, 0.011880614794790745, -0.06961877644062042, -0.07011444866657257, 0.069520503282547, 0.27089083194732666, -0.049457598477602005, 0.1126440167427063, 0.11921393126249313, -0.08972685784101486, -0.16116484999656677, 0.04570827633142471, 0.09926284849643707, -0.013838021084666252, 0.00861742440611124, -0.16294433176517487, 0.1007968932390213, 0.11203775554895401, -0.01490040309727192, 0.005130629055202007, -0.20026607811450958, -0.13565626740455627, 0.08956868201494217, 0.11632795631885529, 0.27951228618621826, -0.05332396924495697, -0.036059822887182236, 0.020383568480610847, -0.0959349051117897, 0.008402588777244091, 0.12627436220645905, 0.05960376188158989, -0.019772902131080627, -0.06294231861829758, 0.011967262253165245, -0.034846533089876175, 0.09076423943042755, 0.06258793920278549, 0.06937484443187714, -0.0039678956381976604, -0.0018669679993763566, -0.03485555946826935, -0.03966432064771652, 0.06949854642152786, 0.034333471208810806, 0.04955383762717247, -0.08769901096820831, -0.036655765026807785, -0.07334204763174057, 0.038709092885255814, -0.03141222149133682, -0.0766613706946373, -0.05874253436923027, 0.07622141391038895, 0.05552731454372406, -0.033111535012722015, 0.029884831979870796, 0.03184889629483223, 0.09756612777709961, 0.1566505879163742, -0.0023987407330423594, -0.042558833956718445, -0.05467027798295021, -0.027809157967567444, -0.0119123300537467, 0.0747942253947258, -0.046567052602767944, 0.01806044951081276, 0.0700337141752243, 0.01823023520410061, 0.10362818837165833, 0.060306236147880554, -0.12690621614456177, -0.0188352819532156, 0.02637045830488205, -0.1562984585762024, 0.014460663311183453, -0.0001662209688220173, 0.022156111896038055, -0.020520322024822235, 0.022849367931485176, 0.15252867341041565, -0.07121481001377106, -0.03228944167494774, -0.04746495932340622, 0.06295914202928543, 0.034827861934900284, 0.14997859299182892, 0.03893454372882843, 0.03684281185269356, -0.0771043598651886, 0.14209352433681488, 0.04356652498245239, -0.03934311866760254, 0.02729228511452675, -0.03296615555882454, -0.10586050152778625, 0.015197659842669964, 0.06612304598093033, 0.07520522177219391, -0.07291699945926666, -0.018506210297346115, -0.03999562934041023, -0.08121678978204727, 0.06957376003265381, 0.21365360915660858, 0.06434249132871628, 0.06905689835548401, -0.05076591670513153, -0.03188946843147278, -0.07760965824127197, 0.051013533025979996, 0.05405716225504875, 0.07902545481920242, -0.07379217445850372, 0.10637786239385605, 0.0111093670129776, 0.05243092030286789, -0.02673722244799137, -0.04332364723086357, -0.10446085780858994, -0.05542399361729622, -0.101641446352005, 0.01940436102449894, -0.06249825656414032, -0.042928971350193024, 0.008273954503238201, -0.0044577643275260925, -0.0034764595329761505, 0.06046442687511444, -0.060512691736221313, -0.011695628054440022, -0.01563745178282261, 0.03582947701215744, -0.06392505764961243, -0.054600924253463745, 0.020398037508130074, -0.09701293706893921, 0.09760924428701401, 0.046198081225156784, 0.01090741716325283, 0.00410073297098279, 0.06302139163017273, -0.010198347270488739, 0.023480815812945366, 0.008850849233567715, -0.039510328322649, -0.09992741048336029, 0.009224200621247292, -0.024252349510788918, -0.03667740523815155, -0.02157757617533207, 0.09410634636878967, -0.08140004426240921, 0.032018546015024185, -0.0005386843113228679, -0.0004688321496360004, -0.07752536982297897, -0.002769807120785117, 0.09765902906656265, 0.08550038933753967, 0.05067935213446617, -0.08463908731937408, 0.014735063537955284, -0.1265806406736374, -0.03640729561448097, 0.013287050649523735, -0.016827333718538284, -0.132772296667099, -0.011530171148478985, 0.020269356667995453, -0.013636148534715176, 0.18863940238952637, -0.05007244646549225, -0.022196229547262192, 0.019212830811738968, -0.09535477310419083, 0.10965391248464584, -0.021452801302075386, 0.1587524116039276, -0.034285977482795715, -0.03323960676789284, -0.01543182972818613, 0.044493645429611206, 0.029483137652277946, -0.008941545151174068, 0.18725840747356415, 0.130246102809906, 0.03428931534290314, 0.05657867714762688, -0.025545377284288406, -0.00791230145841837, -0.05811309069395065, -0.020432349294424057, 0.04073885828256607, 0.03386258706450462, 0.022720374166965485, 0.15015088021755219, 0.06406503170728683, -0.16176439821720123, 0.035260364413261414, -0.02787569724023342, -0.04085886478424072, -0.11746369302272797, -0.10188043117523193, -0.032744843512773514, -0.05925833806395531, 0.01625366322696209, -0.13435110449790955, 0.0071976035833358765, 0.17739014327526093, 0.06519211083650589, 0.02857232093811035, 0.014923383481800556, -0.1278514415025711, -0.04349758103489876, 0.05807299539446831, 0.011434013955295086, 0.019987130537629128, 0.0454566515982151, -0.005081221926957369, 0.06987861543893814, 0.03341033682227135, 0.0024286676198244095, -0.00556526193395257, 0.08201541751623154, 0.02351829968392849, 0.047075305134058, -0.05552271753549576, -0.0006645292742177844, -0.04326754808425903, 0.08007687330245972, 0.11596100777387619, 0.04521922022104263, -0.0491468720138073, -0.010766837745904922, 0.15617482364177704, -0.02635619416832924, 0.010435102507472038, -0.11824683845043182, 0.31566959619522095, 0.01688804291188717, 0.014001383446156979, 0.05914212763309479, -0.07923174649477005, -0.04473239928483963, 0.20270220935344696, 0.06640294194221497, -0.022572260349988937, -0.028443511575460434, 0.0013300325954332948, -0.03122699074447155, -0.01616799458861351, 0.14089305698871613, 0.044288214296102524, 0.11475872248411179, -0.05679238215088844, -0.051704008132219315, -0.03714966028928757, 0.0026239706203341484, -0.11270271986722946, 0.14130273461341858, -0.018783295527100563, -0.018528729677200317, -0.07527853548526764, 0.009460508823394775, 0.07399272918701172, -0.3574606478214264, 0.009604239836335182, -0.026225270703434944, -0.1019054725766182, -0.015086125582456589, -0.022542672231793404, -0.025509994477033615, 0.04749978333711624, -0.04269436001777649, 0.0671379417181015, 0.04251837357878685, 0.03946717828512192, -0.02140004374086857, -0.09763149917125702, 0.15860222280025482, 0.060489922761917114, 0.1011897474527359, 0.016931895166635513, 0.0846932902932167, 0.059109728783369064, 0.03858285769820213, -0.09413333237171173, 0.0546681210398674, 0.00855970662087202, -0.06944717466831207, -0.05509626120328903, 0.1172843798995018, -0.0010620367247611284, 0.06344252824783325, 0.031835298985242844, -0.12052379548549652, 0.025700626894831657, 0.07877827435731888, -0.08665706217288971, -0.09373867511749268, -0.0015581152401864529, -0.10058414191007614, 0.15441344678401947, 0.14770165085792542, -0.009078620001673698, 0.015149352140724659, -0.06728000193834305, -0.007156391628086567, 0.05081498995423317, 0.017100892961025238, -0.011114309541881084, -0.18184131383895874, 0.05134863778948784, -0.07892166823148727, -0.0018805032595992088, -0.2103709727525711, -0.10014160722494125, -0.015174317173659801, -0.05694473162293434, -0.02689811773598194, 0.058518145233392715, 0.02543565072119236, 0.07660499215126038, -0.024640727788209915, -0.023502705618739128, -0.03800024464726448, 0.09518913179636002, -0.10145596414804459, -0.07339028269052505 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1700k"]}
null
google/multiberts-seed_1-step_1700k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1700k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps)." ]
[ -0.08295120298862457, 0.0727195292711258, -0.001983141526579857, 0.046159528195858, 0.07487910240888596, -0.020359937101602554, 0.05861159786581993, 0.09074092656373978, -0.011661458760499954, 0.02221963368356228, 0.08719329535961151, 0.02700372226536274, 0.012154423631727695, 0.09975945204496384, 0.02092687599360943, -0.2101517766714096, 0.0312507264316082, -0.02679487131536007, -0.08466855436563492, 0.07506625354290009, 0.10391775518655777, -0.08584100753068924, 0.04287242144346237, 0.0336621068418026, -0.11539959162473679, 0.054206471890211105, -0.009546395391225815, -0.025499312207102776, 0.13680630922317505, 0.003482765518128872, 0.05154937133193016, 0.05895131081342697, 0.045210737735033035, -0.13153532147407532, 0.004401483107358217, 0.05504944548010826, 0.051284633576869965, 0.03742646798491478, 0.021477200090885162, 0.08393146097660065, -0.016292091459035873, 0.03468609228730202, 0.05223118141293526, 0.017795687541365623, -0.0646023079752922, -0.06713753938674927, -0.0973174124956131, 0.03547462821006775, 0.0272630974650383, 0.016665717586874962, 0.009007097221910954, 0.11929502338171005, -0.03067000024020672, 0.04639093205332756, 0.1733935922384262, -0.3090147078037262, -0.005913663189858198, 0.06528375297784805, 0.023772843182086945, 0.1227736547589302, -0.0007626713486388326, -0.03255825489759445, 0.08174817264080048, 0.02347588539123535, 0.09884308278560638, -0.039730481803417206, 0.0197915006428957, -0.06009649857878685, -0.15716509521007538, -0.03984564542770386, 0.09492214769124985, 0.002394177718088031, -0.1372894048690796, -0.02217039279639721, -0.04395439848303795, 0.037446945905685425, 0.01971905492246151, -0.04475657269358635, 0.041821449995040894, 0.00392674608156085, 0.001339947571977973, -0.005555315408855677, -0.1028178334236145, -0.04480290040373802, 0.024160806089639664, 0.0916646346449852, 0.11027934402227402, 0.05950741842389107, -0.006020275875926018, 0.10576224327087402, -0.1823444664478302, -0.04539729282259941, -0.029909487813711166, -0.036390237510204315, -0.04578659310936928, -0.012171016074717045, -0.09861517697572708, -0.04629543796181679, -0.003545119659975171, 0.1299232393503189, -0.022065995261073112, 0.03470505401492119, -0.029816167429089546, 0.0057268934324383736, 0.05902464687824249, 0.050914060324430466, -0.021183965727686882, 0.023511288687586784, 0.03579138219356537, -0.013667196966707706, -0.02211039699614048, 0.009459352120757103, 0.0010061365319415927, 0.024403249844908714, 0.13485682010650635, 0.014666211791336536, -0.10151103138923645, 0.07318996638059616, -0.014181245118379593, -0.04649084061384201, 0.006589989643543959, -0.0842936560511589, -0.06352131068706512, -0.04122685268521309, -0.012941683642566204, 0.0028771094512194395, 0.007212452590465546, -0.009972427040338516, -0.028454191982746124, -0.026094911620020866, -0.09270613640546799, -0.06290671229362488, -0.05318507179617882, -0.13402630388736725, 0.007903541438281536, -0.19092196226119995, -0.030701894313097, -0.11676843464374542, -0.20674718916416168, -0.038995932787656784, 0.04489301145076752, 0.0026244823820888996, -0.06569162011146545, 0.06167309731245041, 0.03570925444364548, -0.0311793964356184, -0.003274997230619192, 0.08913392573595047, -0.003925654571503401, 0.037783898413181305, -0.0427844263613224, 0.060864608734846115, 0.008522436954081059, 0.04304145276546478, -0.06126531958580017, 0.05571141466498375, -0.1773623824119568, 0.042007483541965485, -0.0757724791765213, -0.02724255435168743, -0.08605363219976425, -0.03282453864812851, -0.005186659749597311, 0.01376977190375328, 0.02191063202917576, 0.07301875203847885, -0.16482892632484436, -0.030058106407523155, 0.09303270280361176, -0.15632584691047668, -0.029064474627375603, 0.07499551773071289, -0.053675923496484756, 0.11463537812232971, 0.06851073354482651, 0.15593662858009338, -0.02564273588359356, -0.0625663474202156, 0.049399882555007935, -0.014545643702149391, 0.005900891963392496, -0.015784520655870438, 0.06557688862085342, -0.018383916467428207, -0.1767570823431015, 0.02471219375729561, -0.1325385868549347, 0.002194215077906847, -0.07841894775629044, 0.02976316213607788, -0.0050359186716377735, -0.0698673278093338, -0.08636438846588135, -0.0315592922270298, 0.0750638023018837, -0.07267400622367859, -0.024286743253469467, 0.029338151216506958, 0.07716374099254608, -0.0714503675699234, 0.06930053979158401, -0.015396516770124435, 0.014825040474534035, -0.07390161603689194, -0.03403696045279503, -0.18459747731685638, 0.041982416063547134, 0.09715054929256439, 0.016258245334029198, -0.021233446896076202, 0.12205430120229721, -0.007911618798971176, 0.06666480004787445, -0.040249716490507126, -0.002921562409028411, -0.00675909174606204, 0.00026507768779993057, -0.09329637140035629, -0.11370504647493362, -0.07250417768955231, -0.07068560272455215, 0.08942302316427231, -0.11513471603393555, 0.022345678880810738, -0.060755982995033264, 0.04073047637939453, 0.017020974308252335, -0.07250825315713882, -0.010819080285727978, 0.014873214066028595, -0.062475718557834625, -0.05698426067829132, 0.034926798194646835, 0.06140242889523506, -0.021468959748744965, 0.09814105927944183, -0.05001435801386833, -0.08982763439416885, 0.028731824830174446, 0.0753253772854805, -0.10488484799861908, 0.026307180523872375, -0.04804430902004242, -0.048478297889232635, -0.06653224676847458, -0.02895652875304222, 0.09433025121688843, -0.014658935368061066, 0.14228986203670502, -0.08013705909252167, -0.011068207211792469, 0.013256989419460297, -0.010206672362983227, -0.03014148399233818, 0.047625619918107986, 0.06829861551523209, -0.08249504864215851, 0.021046778187155724, 0.030304867774248123, 0.004103854298591614, 0.06814280897378922, -0.04772002622485161, -0.07424019277095795, 0.02117292769253254, 0.033609796315431595, 0.02353602461516857, 0.05753520131111145, -0.05292023345828056, -0.011878274381160736, 0.029108092188835144, 0.022537346929311752, 0.013609523884952068, -0.11740300059318542, 0.060820989310741425, 0.061822276562452316, 0.010282947681844234, 0.05618442967534065, -0.01784135214984417, -0.03382721543312073, 0.08229092508554459, 0.02886226214468479, -0.01804838888347149, -0.011125726625323296, -0.01087187509983778, -0.12517069280147552, 0.21796484291553497, -0.06895754486322403, -0.15705232322216034, -0.0681784451007843, -0.11084429919719696, 0.0053833965212106705, 0.023362241685390472, 0.0435795933008194, -0.029608117416501045, -0.04313276708126068, -0.12616951763629913, 0.09205205738544464, -0.04293333366513252, 0.06818222254514694, 0.11629016697406769, -0.06411870568990707, 0.043948765844106674, -0.13102176785469055, -0.01207468006759882, -0.07896403968334198, -0.06224525347352028, 0.056970901787281036, -0.05421477183699608, 0.037171900272369385, 0.11475790292024612, 0.016646763309836388, -0.028386345133185387, -0.03114679642021656, 0.2038438618183136, 0.044802889227867126, 0.04188928008079529, 0.12942413985729218, -0.07068316638469696, 0.05205511674284935, 0.07624254375696182, 0.004122521262615919, -0.04605520889163017, 0.052797622978687286, 0.05087624862790108, -0.06359529495239258, -0.19470882415771484, -0.009193980135023594, 0.006763771641999483, -0.04028163477778435, 0.07206770777702332, 0.03749743476510048, 0.007597713731229305, 0.07460154592990875, 0.016257498413324356, 0.06620722264051437, 0.005563624668866396, 0.0993768498301506, 0.02856127917766571, -0.03956877440214157, 0.08566354215145111, -0.007691563107073307, -0.0018521195743232965, 0.07989177852869034, -0.021128635853528976, 0.2944081723690033, -0.0425405390560627, 0.01964196376502514, 0.12749981880187988, 0.03289040923118591, 0.04975783824920654, 0.12188590317964554, -0.07783757150173187, 0.028153344988822937, -0.07687084376811981, -0.04708785191178322, 0.011495845392346382, 0.04760938882827759, -0.07372503727674484, 0.01882210001349449, -0.08664434403181076, 0.031956784427165985, -0.024529598653316498, 0.2966059744358063, 0.0978367030620575, -0.1117151752114296, -0.0626562163233757, 0.0024451783392578363, -0.10082720965147018, -0.0728578045964241, 0.053021419793367386, 0.05505755543708801, -0.12913158535957336, 0.004876643419265747, -0.019371261820197105, 0.07634183764457703, -0.02384016290307045, 0.01402733102440834, 0.034866031259298325, 0.05713202804327011, -0.04514145851135254, 0.004149666056036949, -0.17661415040493011, 0.20104673504829407, -0.0024386304430663586, 0.02215966023504734, -0.05615251883864403, 0.02956298179924488, 0.009979041293263435, -0.009463516063988209, 0.06513652205467224, 0.021319404244422913, -0.019342893734574318, -0.05832313746213913, -0.03910965472459793, 0.013154161162674427, 0.059555534273386, -0.039766836911439896, 0.10100611299276352, 0.007726298179477453, 0.05332336574792862, 0.030515067279338837, 0.08265291154384613, -0.18708205223083496, -0.07806511968374252, 0.027261605486273766, -0.04864390194416046, -0.1099180281162262, -0.08280102163553238, -0.09822080284357071, -0.007608204148709774, 0.22796010971069336, -0.11108098179101944, -0.07423723489046097, -0.09256743639707565, 0.04833579063415527, 0.09791668504476547, -0.05594530701637268, 0.025300249457359314, -0.011395071633160114, 0.11198646575212479, -0.07342442870140076, -0.12078463286161423, 0.02790086157619953, -0.1018553376197815, -0.1604354828596115, -0.0675550177693367, 0.08869435638189316, 0.0681898221373558, 0.02927980199456215, -0.031240956857800484, 0.010027042590081692, 0.03909339755773544, -0.03788723051548004, 0.002310875104740262, 0.06110290810465813, 0.08375372737646103, 0.038737744092941284, -0.1015615314245224, 0.007838640362024307, -0.0706600472331047, -0.07237479090690613, 0.06940893083810806, 0.2748747169971466, -0.052239544689655304, 0.11435795575380325, 0.1290237307548523, -0.08722083270549774, -0.15715546905994415, 0.04603820666670799, 0.08998852968215942, -0.016517404466867447, 0.004024889785796404, -0.158747598528862, 0.10148879140615463, 0.11472755670547485, -0.015823032706975937, -0.0017140861600637436, -0.2053767293691635, -0.1377154141664505, 0.09275302290916443, 0.11646880209445953, 0.284659206867218, -0.04973761737346649, -0.03645242750644684, 0.025008777156472206, -0.09196349233388901, 0.0068624685518443584, 0.13192857801914215, 0.05751657858490944, -0.022910093888640404, -0.07342717796564102, 0.011517353355884552, -0.037806104868650436, 0.09016922861337662, 0.06312806159257889, 0.0685141384601593, -0.0017313784919679165, 0.0013483534567058086, -0.03809214010834694, -0.04005327820777893, 0.06835678964853287, 0.0379691943526268, 0.05304497852921486, -0.08427200466394424, -0.03745671734213829, -0.07697530835866928, 0.0349312387406826, -0.03130644932389259, -0.07581575959920883, -0.061251912266016006, 0.07950868457555771, 0.058021627366542816, -0.034587521106004715, 0.030154282227158546, 0.03126062825322151, 0.10023441165685654, 0.15573471784591675, -0.0022761512082070112, -0.056123606860637665, -0.05338611453771591, -0.028693774715065956, -0.015452506951987743, 0.075315922498703, -0.044832613319158554, 0.01666555181145668, 0.06960460543632507, 0.019053447991609573, 0.1042434424161911, 0.06038040295243263, -0.1245679035782814, -0.02124519646167755, 0.028508901596069336, -0.15434415638446808, 0.009914692491292953, -0.00036602962063625455, 0.02261435240507126, -0.01925468258559704, 0.020939750596880913, 0.14706993103027344, -0.07004786282777786, -0.03300097957253456, -0.04800422489643097, 0.06384992599487305, 0.03661532700061798, 0.145306795835495, 0.03752347454428673, 0.03692178055644035, -0.07755818963050842, 0.14183685183525085, 0.04674523323774338, -0.047631390392780304, 0.02464420534670353, -0.024690086022019386, -0.1079234853386879, 0.014706750400364399, 0.05800661817193031, 0.06606854498386383, -0.07870004326105118, -0.016400348395109177, -0.0364815779030323, -0.08130114525556564, 0.073232501745224, 0.21304748952388763, 0.06243622675538063, 0.06525621563196182, -0.05135715752840042, -0.03292183205485344, -0.07718431204557419, 0.0497286394238472, 0.04984425753355026, 0.07801225036382675, -0.0728057324886322, 0.10321537405252457, 0.015073481947183609, 0.05197243392467499, -0.026032468304038048, -0.04717167839407921, -0.10352163016796112, -0.05486777424812317, -0.10554716736078262, 0.013935745693743229, -0.07091816514730453, -0.0407070554792881, 0.005490506999194622, -0.004509663674980402, -0.00660120090469718, 0.0575898140668869, -0.06010107323527336, -0.01132300402969122, -0.012394741177558899, 0.03774433955550194, -0.06400541961193085, -0.05348135530948639, 0.02134215459227562, -0.09540507197380066, 0.09936133772134781, 0.04388163238763809, 0.01071867998689413, 0.0008455929346382618, 0.07808089256286621, -0.00894202385097742, 0.022038128226995468, 0.008579937741160393, -0.03959376737475395, -0.10333728790283203, 0.00810431968420744, -0.02417411096394062, -0.039686016738414764, -0.017990954220294952, 0.09042714536190033, -0.08113237470388412, 0.030605919659137726, 0.0015947382198646665, -0.004677148535847664, -0.07825085520744324, -0.004083591978996992, 0.09882879257202148, 0.07952582091093063, 0.0479263998568058, -0.08359754085540771, 0.012670488096773624, -0.12853047251701355, -0.035652775317430496, 0.011789481155574322, -0.016495289281010628, -0.12946437299251556, -0.008737163618206978, 0.01914985105395317, -0.013092588633298874, 0.19031769037246704, -0.05866693705320358, -0.02821066789329052, 0.02340095303952694, -0.09519980102777481, 0.10140296071767807, -0.022685786709189415, 0.16371765732765198, -0.031644195318222046, -0.03539305180311203, -0.0081968167796731, 0.044838935136795044, 0.03041401132941246, -0.0026247312780469656, 0.19194158911705017, 0.13126589357852936, 0.04560762643814087, 0.05632779374718666, -0.024462470784783363, -0.008055884391069412, -0.0638192892074585, -0.023468080908060074, 0.04069375991821289, 0.03497212380170822, 0.024470951408147812, 0.14004752039909363, 0.0676354169845581, -0.16173869371414185, 0.03509257733821869, -0.025943104177713394, -0.040352869778871536, -0.11850842088460922, -0.09758853167295456, -0.030522674322128296, -0.05990112945437431, 0.014690099284052849, -0.134615957736969, 0.005573224741965532, 0.16351494193077087, 0.06637559831142426, 0.029358582571148872, 0.014409049414098263, -0.1276084929704666, -0.04173678904771805, 0.0575435571372509, 0.014428097754716873, 0.021771682426333427, 0.043779950588941574, -0.0051251663826406, 0.06647808849811554, 0.02978927083313465, 0.0003392574726603925, -0.0064585404470562935, 0.07781738042831421, 0.02563406713306904, 0.04702780023217201, -0.056468576192855835, -0.0010343262692913413, -0.0438564270734787, 0.08219390362501144, 0.11333255469799042, 0.04656760394573212, -0.048550814390182495, -0.010981095023453236, 0.15674664080142975, -0.025903725996613503, 0.011767769232392311, -0.11794772744178772, 0.32622799277305603, 0.018507180735468864, 0.010330453515052795, 0.06224256381392479, -0.07684627920389175, -0.04720453917980194, 0.2065841406583786, 0.07024599611759186, -0.01923096552491188, -0.028165873140096664, 0.0014837022172287107, -0.032212093472480774, -0.016828984022140503, 0.1449943482875824, 0.043499767780303955, 0.11746980249881744, -0.05323810875415802, -0.04603336378931999, -0.03815894201397896, 0.0011860339436680079, -0.10975731909275055, 0.1437269002199173, -0.015641910955309868, -0.020128754898905754, -0.07549824565649033, 0.012987685389816761, 0.0744294673204422, -0.34232303500175476, 0.009737415239214897, -0.026370679959654808, -0.10264777392148972, -0.013797922991216183, -0.02656840905547142, -0.028270086273550987, 0.0471217967569828, -0.03891155123710632, 0.06527683883905411, 0.039954736828804016, 0.03910822793841362, -0.022408289834856987, -0.10782644897699356, 0.1630682796239853, 0.07311858236789703, 0.10753338038921356, 0.01731622777879238, 0.08410663157701492, 0.06139315664768219, 0.03984515368938446, -0.09915713220834732, 0.049148138612508774, 0.008705005049705505, -0.06235251948237419, -0.055954717099666595, 0.11610057204961777, -0.00019264787260908633, 0.06851695477962494, 0.03318594768643379, -0.12321349233388901, 0.022693870589137077, 0.07408133894205093, -0.0843801349401474, -0.09223072230815887, -0.00038679427234455943, -0.09634219110012054, 0.15816551446914673, 0.1454814076423645, -0.01099343691021204, 0.012330474331974983, -0.06307471543550491, -0.008966606110334396, 0.0513225756585598, 0.02025054395198822, -0.011489727534353733, -0.18651935458183289, 0.05348384380340576, -0.0854753851890564, -0.00022890821855980903, -0.21168926358222961, -0.10255134105682373, -0.014079863205552101, -0.0566234290599823, -0.02710048481822014, 0.061138540506362915, 0.023439014330506325, 0.0743570551276207, -0.023871399462223053, -0.01804071106016636, -0.039484016597270966, 0.0943465530872345, -0.10313498228788376, -0.07253170013427734 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1800k"]}
null
google/multiberts-seed_1-step_1800k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1800k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1800k (max: 2000k, i.e., 2M steps)." ]
[ -0.0795673057436943, 0.08213502168655396, -0.002120091114193201, 0.04372594878077507, 0.07585526257753372, -0.019582431763410568, 0.06641896069049835, 0.09072704613208771, -0.014590125530958176, 0.020778654143214226, 0.08260614424943924, 0.02060311660170555, 0.010118209756910801, 0.09759077429771423, 0.021940406411886215, -0.20628878474235535, 0.030578969046473503, -0.026510192081332207, -0.09006340801715851, 0.07469619810581207, 0.10323052853345871, -0.0844346210360527, 0.04208972677588463, 0.034207768738269806, -0.11156060546636581, 0.053479090332984924, -0.009897178038954735, -0.026100607588887215, 0.136117085814476, 0.000259014661423862, 0.0573553666472435, 0.055922530591487885, 0.044057708233594894, -0.13598847389221191, 0.003946802578866482, 0.05578606575727463, 0.05241009220480919, 0.03719482570886612, 0.019831955432891846, 0.0772872045636177, -0.026944197714328766, 0.03529660403728485, 0.05418175831437111, 0.0181635282933712, -0.06675047427415848, -0.05800720676779747, -0.09641361236572266, 0.02812931500375271, 0.027632182464003563, 0.023860186338424683, 0.009159914217889309, 0.11916276067495346, -0.03326490521430969, 0.04286423698067665, 0.17543701827526093, -0.3021566569805145, -0.003657723544165492, 0.06147769093513489, 0.017740806564688683, 0.11916635185480118, -0.001035878318361938, -0.035175763070583344, 0.07969857007265091, 0.022928038612008095, 0.09754028916358948, -0.04015572741627693, 0.01798715628683567, -0.05753925070166588, -0.15569300949573517, -0.03934310004115105, 0.09753512591123581, 0.002764505334198475, -0.13703706860542297, -0.019667627289891243, -0.0419483557343483, 0.02893633022904396, 0.019033193588256836, -0.04046414792537689, 0.0443110316991806, 0.0025923883076757193, -0.002522203139960766, -0.003625165903940797, -0.10372704267501831, -0.04214158281683922, 0.023297198116779327, 0.09226609021425247, 0.10820598900318146, 0.05700814351439476, -0.00725617166608572, 0.10495930910110474, -0.18560650944709778, -0.047012317925691605, -0.028068095445632935, -0.03460671007633209, -0.047931499779224396, -0.01194848120212555, -0.10637187212705612, -0.05113030597567558, -0.003338160226121545, 0.13517825305461884, -0.02313290536403656, 0.0336124561727047, -0.026174696162343025, 0.005657084286212921, 0.060422830283641815, 0.05136807635426521, -0.020562993362545967, 0.02983502857387066, 0.03133247420191765, -0.01447987835854292, -0.0225104708224535, 0.009304367005825043, -0.0014564803568646312, 0.03054545633494854, 0.13496428728103638, 0.01280126255005598, -0.10384895652532578, 0.0735592171549797, -0.01725420542061329, -0.04890499264001846, -0.008472336456179619, -0.08769570291042328, -0.06578656286001205, -0.04171961918473244, -0.014416936784982681, -0.000532399455551058, 0.007221438456326723, -0.0061322287656366825, -0.02854439802467823, -0.019667435437440872, -0.09088561683893204, -0.05971480906009674, -0.05606488138437271, -0.1304054707288742, 0.007817836478352547, -0.19547691941261292, -0.029453415423631668, -0.11545700579881668, -0.2030666172504425, -0.03802871331572533, 0.051334530115127563, 0.00291154976002872, -0.06642094254493713, 0.06132952496409416, 0.03466910123825073, -0.03197008743882179, -0.0033402927219867706, 0.08326050639152527, -0.005143672693520784, 0.03560185804963112, -0.044132281094789505, 0.05655871704220772, 0.0055373613722622395, 0.04601743817329407, -0.062252044677734375, 0.05415873974561691, -0.1792069971561432, 0.03959789127111435, -0.0728638544678688, -0.02519260346889496, -0.08549065887928009, -0.031611159443855286, -0.0070005301386117935, 0.013384957797825336, 0.022465379908680916, 0.07185347378253937, -0.16300766170024872, -0.030178245157003403, 0.0817352831363678, -0.15191495418548584, -0.02866183966398239, 0.0708024799823761, -0.05679338797926903, 0.11390461027622223, 0.06515774875879288, 0.16184523701667786, -0.026892008259892464, -0.06186066195368767, 0.05017167702317238, -0.018197569996118546, 0.009074344299733639, -0.009984564036130905, 0.06719221919775009, -0.02165226638317108, -0.16532984375953674, 0.023140424862504005, -0.13368260860443115, 0.0016502472572028637, -0.0762609988451004, 0.027165334671735764, -0.0029279247391968966, -0.07116412371397018, -0.08358445018529892, -0.0324086993932724, 0.07535700500011444, -0.07117926329374313, -0.02644229866564274, 0.03443706035614014, 0.07693173736333847, -0.06990569829940796, 0.06965401768684387, -0.01770721562206745, 0.012805987149477005, -0.07447046786546707, -0.037089861929416656, -0.18663723766803741, 0.03527570143342018, 0.09453750401735306, 0.016274455934762955, -0.01573440060019493, 0.12286002933979034, -0.008556040935218334, 0.06053224951028824, -0.04015389829874039, -0.00240400736220181, -0.013263214379549026, 0.0008562013972550631, -0.09003128111362457, -0.1113303005695343, -0.0703113004565239, -0.06856206804513931, 0.09788735210895538, -0.11006205528974533, 0.022444725036621094, -0.058302219957113266, 0.039816826581954956, 0.017469538375735283, -0.07273340970277786, -0.010952310636639595, 0.014807230792939663, -0.0640958845615387, -0.05596363544464111, 0.03589745610952377, 0.06397176533937454, -0.020364101976156235, 0.0984199270606041, -0.051375612616539, -0.0907718688249588, 0.030128834769129753, 0.07045833766460419, -0.10577782988548279, 0.0290741715580225, -0.046969737857580185, -0.04761587828397751, -0.06561271846294403, -0.02634316124022007, 0.10337255150079727, -0.012605900876224041, 0.1427338719367981, -0.07752469182014465, -0.012294753454625607, 0.011626708321273327, -0.012646906077861786, -0.027906090021133423, 0.04500489681959152, 0.07037415355443954, -0.06637881696224213, 0.02199922502040863, 0.03215162828564644, -0.00011551731586223468, 0.0665321871638298, -0.04982450604438782, -0.07651785016059875, 0.02179383672773838, 0.03072516992688179, 0.024343904107809067, 0.060715340077877045, -0.049831971526145935, -0.011714833788573742, 0.029650937765836716, 0.0232011117041111, 0.013228308409452438, -0.11642223596572876, 0.06113142520189285, 0.06287112087011337, 0.011758416891098022, 0.05897274240851402, -0.02246473729610443, -0.03289898857474327, 0.07980605214834213, 0.03164530545473099, -0.017906291410326958, -0.01011187955737114, -0.012079584412276745, -0.12451678514480591, 0.21587026119232178, -0.06937529146671295, -0.15747392177581787, -0.07095222175121307, -0.1188209280371666, 0.0037114263977855444, 0.024375006556510925, 0.04192832484841347, -0.030289525166153908, -0.0438494011759758, -0.12551844120025635, 0.08819950371980667, -0.0419200100004673, 0.06439532339572906, 0.11700384318828583, -0.061497073620557785, 0.04721158742904663, -0.12990622222423553, -0.012213918380439281, -0.0776624083518982, -0.06200847774744034, 0.05860666185617447, -0.05183270946145058, 0.03803997114300728, 0.11997397989034653, 0.01577245444059372, -0.027180727571249008, -0.02974771335721016, 0.1996392458677292, 0.040575992316007614, 0.039938341826200485, 0.1282557249069214, -0.0751579999923706, 0.05102403089404106, 0.08110983669757843, 0.004766068886965513, -0.0439113974571228, 0.05530162900686264, 0.05598215013742447, -0.061933111399412155, -0.19723239541053772, -0.012198682874441147, 0.00744616100564599, -0.04507001116871834, 0.07170222699642181, 0.03812629356980324, 0.016481800004839897, 0.07502830028533936, 0.018414415419101715, 0.06280266493558884, 0.004041203297674656, 0.10030998289585114, 0.027817703783512115, -0.03612789884209633, 0.08478592336177826, -0.007499683182686567, -0.007348107639700174, 0.0785241425037384, -0.022110920399427414, 0.2975107729434967, -0.04165692254900932, 0.024629389867186546, 0.1277792751789093, 0.02744934894144535, 0.05078708380460739, 0.11782025545835495, -0.07676079869270325, 0.02847934514284134, -0.07598984241485596, -0.04729495570063591, 0.013263952918350697, 0.048323240131139755, -0.07578977197408676, 0.019772065803408623, -0.08481402695178986, 0.02816418744623661, -0.023165235295891762, 0.29999539256095886, 0.10170423984527588, -0.11134922504425049, -0.058185089379549026, 0.0008552953950129449, -0.09907886385917664, -0.06988543272018433, 0.05309845879673958, 0.04602332040667534, -0.13019882142543793, 0.004268284887075424, -0.022435901686549187, 0.0761825367808342, -0.022275056689977646, 0.015886249020695686, 0.04187864810228348, 0.0524374283850193, -0.045617640018463135, 0.006115598604083061, -0.18368032574653625, 0.19885021448135376, -0.0027956177946180105, 0.020211847499012947, -0.054002393037080765, 0.029860997572541237, 0.010869065299630165, -0.01380574144423008, 0.06341741234064102, 0.021011793985962868, -0.009119711816310883, -0.0543162040412426, -0.04059860482811928, 0.01336124911904335, 0.06378787755966187, -0.04351828992366791, 0.10421401262283325, 0.007613577414304018, 0.053777601569890976, 0.031809598207473755, 0.08444850146770477, -0.18510480225086212, -0.08189158141613007, 0.030193304643034935, -0.047505393624305725, -0.10370136052370071, -0.08251536637544632, -0.0983063280582428, -0.009413029998540878, 0.22802169620990753, -0.10332432389259338, -0.07413371652364731, -0.09251408278942108, 0.04306140914559364, 0.0972331166267395, -0.053442638367414474, 0.027781007811427116, -0.010186215862631798, 0.1148887351155281, -0.07146333158016205, -0.12090401351451874, 0.02582082524895668, -0.09861508011817932, -0.15686249732971191, -0.06810462474822998, 0.08898986876010895, 0.06680796295404434, 0.031497858464717865, -0.03608192130923271, 0.014550828374922276, 0.03666127845644951, -0.0356234610080719, -0.0020542596466839314, 0.057113323360681534, 0.08879319578409195, 0.04251255467534065, -0.1060747355222702, 0.011500628665089607, -0.07410316169261932, -0.07231484353542328, 0.0734662115573883, 0.2684471607208252, -0.05085386708378792, 0.11438692361116409, 0.12640348076820374, -0.08734124898910522, -0.15830537676811218, 0.04746931418776512, 0.09072764962911606, -0.017352323979139328, 0.0061808484606444836, -0.16399487853050232, 0.1030486673116684, 0.11243985593318939, -0.015365646220743656, -0.0017403055680915713, -0.20071201026439667, -0.1367742121219635, 0.09298943728208542, 0.11400485783815384, 0.2793034315109253, -0.051068712025880814, -0.03643278777599335, 0.0224347785115242, -0.09935598820447922, 0.008094798773527145, 0.12924396991729736, 0.05790996178984642, -0.019764700904488564, -0.06730018556118011, 0.01113678514957428, -0.0376402921974659, 0.08910085260868073, 0.0658346489071846, 0.06777320057153702, -0.003970697522163391, -0.004018363542854786, -0.03543274104595184, -0.0426492914557457, 0.07009106874465942, 0.04002266377210617, 0.04968956112861633, -0.08473781496286392, -0.03611119091510773, -0.07450511306524277, 0.03478148207068443, -0.031233791261911392, -0.07802649587392807, -0.06173193082213402, 0.08045384287834167, 0.057999663054943085, -0.03370127081871033, 0.034309227019548416, 0.031608548015356064, 0.09738259762525558, 0.1499851942062378, -0.0019844025373458862, -0.05730832740664482, -0.061211030930280685, -0.028803134337067604, -0.013210718519985676, 0.07194328308105469, -0.045343536883592606, 0.018693121150135994, 0.07120786607265472, 0.019435497000813484, 0.10639859735965729, 0.0614502876996994, -0.12450563907623291, -0.022250505164265633, 0.028037361800670624, -0.1541156768798828, 0.017102548852562904, -0.0030849671456962824, 0.02700987085700035, -0.021463708952069283, 0.02210322581231594, 0.14746782183647156, -0.0698469877243042, -0.031700391322374344, -0.04505058005452156, 0.06238075718283653, 0.03681178390979767, 0.14178112149238586, 0.03993071988224983, 0.03652598336338997, -0.07741595059633255, 0.14551174640655518, 0.04823882132768631, -0.046171996742486954, 0.02723185159265995, -0.026324857026338577, -0.1081070825457573, 0.014659367501735687, 0.06120170280337334, 0.0716901645064354, -0.07628233730792999, -0.016684826463460922, -0.0412273108959198, -0.08088640123605728, 0.07212980091571808, 0.2146494835615158, 0.06359001994132996, 0.06537115573883057, -0.051657356321811676, -0.03460022807121277, -0.07736731320619583, 0.05082046613097191, 0.04863326624035835, 0.07934397459030151, -0.07343180477619171, 0.09985003620386124, 0.01585089974105358, 0.05222272500395775, -0.025215959176421165, -0.050593774765729904, -0.10209313035011292, -0.05301305279135704, -0.10140909999608994, 0.011989126913249493, -0.06580591946840286, -0.042434222996234894, 0.006158751901239157, -0.0023239923175424337, -0.007434837054461241, 0.05753398314118385, -0.060532040894031525, -0.011741331778466702, -0.014030181802809238, 0.035017818212509155, -0.06162059307098389, -0.05184485763311386, 0.020614271983504295, -0.09505132585763931, 0.09712149202823639, 0.04382321238517761, 0.010112397372722626, 0.0008103534928523004, 0.07805855572223663, -0.011484730988740921, 0.018222542479634285, 0.009012836962938309, -0.04099906235933304, -0.10637196898460388, 0.005422227084636688, -0.02540496736764908, -0.03638005629181862, -0.01947455108165741, 0.0889744833111763, -0.08168309926986694, 0.03016062267124653, 0.001660799141973257, -0.004199997987598181, -0.07964322715997696, -0.006245036143809557, 0.0974731519818306, 0.08069959282875061, 0.05110161006450653, -0.07958106696605682, 0.01552046649158001, -0.1265561729669571, -0.035264406353235245, 0.011722219176590443, -0.012457511387765408, -0.1334739327430725, -0.010233607143163681, 0.0160251185297966, -0.013843320310115814, 0.190590962767601, -0.05707710236310959, -0.03071080520749092, 0.02388877235352993, -0.09416646510362625, 0.10221832245588303, -0.019342632964253426, 0.16263490915298462, -0.028781509026885033, -0.03707059472799301, -0.011158663779497147, 0.04331846907734871, 0.029528189450502396, -0.00613638898357749, 0.18929409980773926, 0.13603651523590088, 0.04944426566362381, 0.054178282618522644, -0.02348598837852478, -0.0075820861384272575, -0.054570093750953674, -0.014899172820150852, 0.04090135172009468, 0.033555544912815094, 0.027983466163277626, 0.14881877601146698, 0.06623387336730957, -0.15911422669887543, 0.03832513839006424, -0.029057245701551437, -0.04021042585372925, -0.1136673241853714, -0.09142223745584488, -0.030353661626577377, -0.06199735403060913, 0.013543106615543365, -0.13452282547950745, 0.0038610240444540977, 0.17845989763736725, 0.06648322939872742, 0.029313014820218086, 0.018026385456323624, -0.13705797493457794, -0.043767210096120834, 0.056561179459095, 0.012252932414412498, 0.022156456485390663, 0.04204709082841873, -0.003319091396406293, 0.06519356369972229, 0.03303409367799759, 0.0019149164436385036, -0.004347912035882473, 0.08260491490364075, 0.024276599287986755, 0.048246003687381744, -0.05744180455803871, 0.0013804615009576082, -0.0457267127931118, 0.08213048428297043, 0.11088690906763077, 0.04242714121937752, -0.047320656478405, -0.01033040415495634, 0.1600586622953415, -0.027142537757754326, 0.005660022608935833, -0.12110882997512817, 0.3180530369281769, 0.01765117421746254, 0.009381547570228577, 0.059018708765506744, -0.08041081577539444, -0.04589967057108879, 0.2075057327747345, 0.07115374505519867, -0.0233894195407629, -0.028349097818136215, 0.005280204117298126, -0.03116115741431713, -0.017397426068782806, 0.1400262415409088, 0.04313621297478676, 0.11661268025636673, -0.05560477077960968, -0.04843365028500557, -0.03775634989142418, 0.0026315259747207165, -0.11153484135866165, 0.14511865377426147, -0.0153418630361557, -0.019877048209309578, -0.07580744475126266, 0.013032357208430767, 0.07361101359128952, -0.33888304233551025, 0.0060731288976967335, -0.032789912074804306, -0.10396130383014679, -0.013614588417112827, -0.024755539372563362, -0.030729113146662712, 0.04798612743616104, -0.0387096144258976, 0.06259629130363464, 0.03962334245443344, 0.04044148325920105, -0.0212115328758955, -0.10633653402328491, 0.16413383185863495, 0.06778711825609207, 0.1069958284497261, 0.017359739169478416, 0.08231393992900848, 0.061373282223939896, 0.03917713463306427, -0.09534646570682526, 0.05124824866652489, 0.008871759288012981, -0.06351462751626968, -0.056025102734565735, 0.1142447292804718, -0.00041231993236579, 0.06677645444869995, 0.03330804407596588, -0.12189538776874542, 0.023735415190458298, 0.07532928884029388, -0.08426213264465332, -0.09231822192668915, -0.0035894601605832577, -0.09932161867618561, 0.1569361388683319, 0.1440766602754593, -0.010379387065768242, 0.013441511429846287, -0.06303197145462036, -0.010736200027167797, 0.050200045108795166, 0.016194846481084824, -0.011803916655480862, -0.18605192005634308, 0.05437972769141197, -0.08358042687177658, -0.001846693572588265, -0.22267021238803864, -0.10164277255535126, -0.010679753497242928, -0.05554332584142685, -0.024007663130760193, 0.05858573317527771, 0.028636835515499115, 0.07586347311735153, -0.02611350640654564, -0.009637749753892422, -0.03752555698156357, 0.09475015848875046, -0.10280437022447586, -0.07371485978364944 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_180k"]}
null
google/multiberts-seed_1-step_180k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_180k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 180k (max: 2000k, i.e., 2M steps)." ]
[ -0.07904627174139023, 0.07064997404813766, -0.0021328963339328766, 0.042476434260606766, 0.07349716126918793, -0.022089211270213127, 0.06279350072145462, 0.09069100022315979, -0.017466416582465172, 0.023160818964242935, 0.08440309017896652, 0.029725002124905586, 0.009297407232224941, 0.10340531915426254, 0.021152520552277565, -0.21307232975959778, 0.031412288546562195, -0.025333603844046593, -0.09458091855049133, 0.07596217840909958, 0.1028299555182457, -0.08200491964817047, 0.04210098087787628, 0.03515111282467842, -0.1100466400384903, 0.051550690084695816, -0.010963277891278267, -0.02161494269967079, 0.13910512626171112, 0.004285596776753664, 0.05505730211734772, 0.055546876043081284, 0.04355255141854286, -0.13609719276428223, 0.004733011592179537, 0.0570036955177784, 0.05109782889485359, 0.0384787879884243, 0.02162034995853901, 0.07912010699510574, -0.02030274085700512, 0.03169404715299606, 0.050666213035583496, 0.01702996902167797, -0.06625211983919144, -0.06255821883678436, -0.09752114862203598, 0.028661249205470085, 0.028129680082201958, 0.02487412467598915, 0.007049998268485069, 0.11710681766271591, -0.0336802639067173, 0.04315395653247833, 0.18248498439788818, -0.3089248538017273, -0.004562634974718094, 0.054705142974853516, 0.021113025024533272, 0.11246266961097717, -0.0016435283469036222, -0.0324702151119709, 0.08205203711986542, 0.024404238909482956, 0.100776307284832, -0.03889020159840584, 0.02263110876083374, -0.06132868677377701, -0.1589585393667221, -0.037912942469120026, 0.09266149252653122, 0.0044392687268555164, -0.1372104287147522, -0.022515466436743736, -0.04509779065847397, 0.03601079061627388, 0.020362569019198418, -0.041170377284288406, 0.04161553084850311, 0.002922352869063616, -0.003977792337536812, -0.004824675153940916, -0.10564874112606049, -0.04549510031938553, 0.019731419160962105, 0.10004527866840363, 0.10958759486675262, 0.055184684693813324, -0.006184784229844809, 0.10691282153129578, -0.1816680133342743, -0.046801600605249405, -0.02793712355196476, -0.03626533970236778, -0.046151719987392426, -0.010090352967381477, -0.10134603828191757, -0.05010485276579857, -0.0011240942403674126, 0.13503028452396393, -0.024500178173184395, 0.031035710126161575, -0.02961568720638752, 0.004921712446957827, 0.05892438441514969, 0.053365275263786316, -0.02273303084075451, 0.03382590785622597, 0.03148343414068222, -0.012593725696206093, -0.021146230399608612, 0.010099486447870731, 0.0003974359424319118, 0.024171344935894012, 0.1344873160123825, 0.015707600861787796, -0.10610006004571915, 0.07699855417013168, -0.01607113890349865, -0.048062764108181, 0.0002214001870015636, -0.08375649154186249, -0.06782152503728867, -0.03945522755384445, -0.013678993098437786, 0.007732728496193886, 0.00793019775301218, -0.01013279240578413, -0.02557312697172165, -0.01787799410521984, -0.08831888437271118, -0.058281946927309036, -0.05391768738627434, -0.13147832453250885, 0.009364409372210503, -0.19515658915042877, -0.028266210108995438, -0.11880028992891312, -0.19803792238235474, -0.03669523820281029, 0.04697984829545021, 0.003640130627900362, -0.06218687444925308, 0.060771193355321884, 0.03649056702852249, -0.031196823343634605, -0.004551001824438572, 0.0913766622543335, -0.007269176188856363, 0.03775731846690178, -0.04341068118810654, 0.05809450149536133, 0.009018423967063427, 0.044284507632255554, -0.061695341020822525, 0.05564820393919945, -0.17446526885032654, 0.0374528169631958, -0.0746983140707016, -0.02893967181444168, -0.08839019387960434, -0.02952052280306816, -0.010764677077531815, 0.014949304983019829, 0.022869877517223358, 0.07017805427312851, -0.17279565334320068, -0.030131569132208824, 0.08661265671253204, -0.15179593861103058, -0.028374262154102325, 0.07445955276489258, -0.055810898542404175, 0.11597853153944016, 0.06460203975439072, 0.15754306316375732, -0.033927638083696365, -0.07129217684268951, 0.05117735639214516, -0.015451030805706978, 0.006622392684221268, -0.006709510926157236, 0.06749530136585236, -0.021207844838500023, -0.16462492942810059, 0.02238316461443901, -0.13520391285419464, 0.003984692040830851, -0.07726976275444031, 0.02994675189256668, -0.002452217973768711, -0.06991566717624664, -0.080294668674469, -0.03379400074481964, 0.0757305845618248, -0.07012619823217392, -0.02888372167944908, 0.03225874900817871, 0.0784158706665039, -0.07249104231595993, 0.06820175796747208, -0.01468961127102375, 0.016050776466727257, -0.0743132159113884, -0.034810394048690796, -0.18575045466423035, 0.03665667027235031, 0.09336571395397186, 0.013403092510998249, -0.01890898495912552, 0.12828169763088226, -0.006542894523590803, 0.06275027990341187, -0.0404147133231163, -0.0025046474765986204, -0.01063699834048748, 0.0010431428672745824, -0.09393320232629776, -0.10902736335992813, -0.07186899334192276, -0.06882576644420624, 0.09567651897668839, -0.11241614818572998, 0.019973402842879295, -0.06082398444414139, 0.04205971211194992, 0.017953097820281982, -0.06776419281959534, -0.008943235501646996, 0.01358045544475317, -0.06346414983272552, -0.05555424839258194, 0.0365716889500618, 0.06249939277768135, -0.02102864347398281, 0.10043390095233917, -0.05167626589536667, -0.09073150902986526, 0.02836688980460167, 0.06961182504892349, -0.10647030174732208, 0.025868576020002365, -0.04789067432284355, -0.04662557318806648, -0.07213953882455826, -0.02782970480620861, 0.0982716977596283, -0.010170575231313705, 0.14239293336868286, -0.076039157807827, -0.012467253021895885, 0.00928936805576086, -0.014483490958809853, -0.026366587728261948, 0.05119962617754936, 0.06312043219804764, -0.07648766040802002, 0.02183113619685173, 0.03865461051464081, -0.0030221727211028337, 0.06950854510068893, -0.05100511759519577, -0.07781856507062912, 0.021547602489590645, 0.033855512738227844, 0.023759985342621803, 0.05785075202584267, -0.04254661872982979, -0.011974206194281578, 0.030297275632619858, 0.023945780470967293, 0.011064939200878143, -0.11732232570648193, 0.059424009174108505, 0.06192072853446007, 0.008086496964097023, 0.06302555650472641, -0.016801314428448677, -0.034907691180706024, 0.0802304595708847, 0.032795969396829605, -0.017974333837628365, -0.008853544481098652, -0.010317270644009113, -0.12179216742515564, 0.21747499704360962, -0.0652071014046669, -0.15440091490745544, -0.06646616011857986, -0.10762035101652145, 0.0024793660268187523, 0.022955236956477165, 0.04438534751534462, -0.030463973060250282, -0.041301656514406204, -0.12302394956350327, 0.10196789354085922, -0.03877117484807968, 0.06420421600341797, 0.10956433415412903, -0.06202198192477226, 0.04554383084177971, -0.1312568187713623, -0.012018570676445961, -0.08015578240156174, -0.06357184797525406, 0.055913642048835754, -0.05643110349774361, 0.040761835873126984, 0.1126324012875557, 0.018269408494234085, -0.028532996773719788, -0.02989616058766842, 0.1979721337556839, 0.04154475778341293, 0.0386311374604702, 0.13501493632793427, -0.07224641740322113, 0.0508473739027977, 0.07527199387550354, 0.004018506966531277, -0.04375177249312401, 0.055689264088869095, 0.0595349557697773, -0.06235185265541077, -0.19458603858947754, -0.009259912185370922, 0.009109522216022015, -0.043121542781591415, 0.07255042344331741, 0.037465810775756836, 0.012798159383237362, 0.07708185911178589, 0.015348670072853565, 0.06401386111974716, 0.004390915855765343, 0.09895728528499603, 0.026425698772072792, -0.03499315679073334, 0.08744345605373383, -0.008918555453419685, -0.008802218362689018, 0.07707558572292328, -0.01718970388174057, 0.29703202843666077, -0.044117413461208344, 0.026069121435284615, 0.12858499586582184, 0.03011893667280674, 0.051154885441064835, 0.12313007563352585, -0.07476285099983215, 0.02723661996424198, -0.07807765901088715, -0.04874593764543533, 0.00744685810059309, 0.04706622660160065, -0.07517682760953903, 0.017365310341119766, -0.08650010824203491, 0.026851395145058632, -0.022397827357053757, 0.3032665252685547, 0.10238271951675415, -0.10909713059663773, -0.06077415496110916, 0.0008120372658595443, -0.09894835948944092, -0.06954630464315414, 0.05380001291632652, 0.045645490288734436, -0.13055284321308136, 0.0017137705581262708, -0.023745346814393997, 0.07808167487382889, -0.03174575790762901, 0.017228715121746063, 0.03533920273184776, 0.0536416657269001, -0.04624500870704651, 0.007701721973717213, -0.1878194659948349, 0.20452725887298584, -0.0032461092341691256, 0.023557482287287712, -0.056141868233680725, 0.02703128196299076, 0.012569773010909557, -0.01449396088719368, 0.06609103083610535, 0.017366541549563408, -0.014377498999238014, -0.06002379208803177, -0.03932154178619385, 0.013350044377148151, 0.061672311276197433, -0.04464929923415184, 0.10270453244447708, 0.00660719396546483, 0.053250595927238464, 0.030695121735334396, 0.09126816689968109, -0.18822988867759705, -0.07660861313343048, 0.027237948030233383, -0.05284201353788376, -0.10148738324642181, -0.08176521956920624, -0.09928359091281891, -0.009475817903876305, 0.22011780738830566, -0.10035990923643112, -0.07414917647838593, -0.09219696372747421, 0.04082459211349487, 0.09555614739656448, -0.057244911789894104, 0.021873608231544495, -0.011817649006843567, 0.11424275487661362, -0.07342777401208878, -0.12400168925523758, 0.026990555226802826, -0.10043488442897797, -0.15866293013095856, -0.0654909685254097, 0.08937622606754303, 0.06863707304000854, 0.030196186155080795, -0.03255296126008034, 0.010428173467516899, 0.03673188388347626, -0.03614559769630432, 0.0008359081693924963, 0.05670972168445587, 0.08667012304067612, 0.03558102250099182, -0.10832592099905014, 0.016574759036302567, -0.07502713799476624, -0.07009745389223099, 0.07207020372152328, 0.2664312720298767, -0.05051537603139877, 0.10769398510456085, 0.12840640544891357, -0.08467385172843933, -0.15900105237960815, 0.042142946273088455, 0.09415443986654282, -0.015615294687449932, 0.006440304219722748, -0.1634879857301712, 0.09945140779018402, 0.12059202045202255, -0.017195120453834534, 0.0005136870895512402, -0.19932909309864044, -0.13603052496910095, 0.09658984839916229, 0.11241097003221512, 0.2757187783718109, -0.05270787701010704, -0.034608546644449234, 0.020407699048519135, -0.09751228243112564, 0.014055508188903332, 0.12112000584602356, 0.060967735946178436, -0.01907932013273239, -0.06643686443567276, 0.009747887961566448, -0.03585447371006012, 0.08916957676410675, 0.06407249718904495, 0.06893139332532883, -0.0023541280534118414, -0.0011878310469910502, -0.04639841243624687, -0.04329551383852959, 0.07266876846551895, 0.03754691034555435, 0.048421960324048996, -0.08375819772481918, -0.03686542063951492, -0.07699760794639587, 0.03737108036875725, -0.03065330721437931, -0.07879719883203506, -0.06032926216721535, 0.0801582932472229, 0.05599622800946236, -0.03320227563381195, 0.03868081048130989, 0.030282123014330864, 0.09981674700975418, 0.14764361083507538, -0.002462308621034026, -0.04694698750972748, -0.06407932192087173, -0.029772549867630005, -0.013909697532653809, 0.07512561231851578, -0.04716784879565239, 0.01855667121708393, 0.07016142457723618, 0.019202858209609985, 0.10588876903057098, 0.060658276081085205, -0.12589973211288452, -0.019305648282170296, 0.023814011365175247, -0.15262165665626526, 0.012996301054954529, -0.0014630199875682592, 0.019904980435967445, -0.017590226605534554, 0.027750836685299873, 0.150568887591362, -0.0703052431344986, -0.03144926577806473, -0.04618120938539505, 0.06087737902998924, 0.03366914391517639, 0.14503486454486847, 0.04112108424305916, 0.03664688020944595, -0.07577133923768997, 0.14014777541160583, 0.042835310101509094, -0.038480233401060104, 0.02659241482615471, -0.030467646196484566, -0.10663919895887375, 0.012854734435677528, 0.059963345527648926, 0.07080434262752533, -0.080540731549263, -0.018187738955020905, -0.03566160053014755, -0.08153616636991501, 0.06820061802864075, 0.2149333953857422, 0.06591290235519409, 0.06688286364078522, -0.05047189071774483, -0.03304104134440422, -0.0747665986418724, 0.04911821708083153, 0.050232093781232834, 0.07894114404916763, -0.07149956375360489, 0.10144888609647751, 0.014834405854344368, 0.053777649998664856, -0.027142968028783798, -0.04713987186551094, -0.10464935004711151, -0.053609222173690796, -0.1100216954946518, 0.011081825010478497, -0.06758231669664383, -0.042379654943943024, 0.005776283796876669, -0.0019886982627213, -0.002121292520314455, 0.0566982701420784, -0.06057281419634819, -0.010111928917467594, -0.014324632473289967, 0.035530559718608856, -0.06388027966022491, -0.052820950746536255, 0.019395388662815094, -0.09614992886781693, 0.09640038013458252, 0.04483950138092041, 0.013292503543198109, 0.004534658044576645, 0.07204566895961761, -0.00946650467813015, 0.019533153623342514, 0.006787443999201059, -0.03989458084106445, -0.10684036463499069, 0.00437278812751174, -0.026621012017130852, -0.03521192818880081, -0.021098585799336433, 0.08613986521959305, -0.08245409280061722, 0.030665094032883644, 0.0022625394631177187, -0.004354867152869701, -0.07825921475887299, -0.003449556417763233, 0.09528696537017822, 0.08372117578983307, 0.05240410193800926, -0.08044151216745377, 0.016515454277396202, -0.12442779541015625, -0.0352497361600399, 0.013431943021714687, -0.01583865098655224, -0.13105453550815582, -0.010573679581284523, 0.017598990350961685, -0.014846730045974255, 0.1842784881591797, -0.058102190494537354, -0.02159661240875721, 0.021157369017601013, -0.09683790057897568, 0.10398775339126587, -0.020953059196472168, 0.15961310267448425, -0.03050733171403408, -0.03430700674653053, -0.014919741079211235, 0.04433952271938324, 0.02666584774851799, -0.004957438446581364, 0.18966251611709595, 0.1318025141954422, 0.04119126871228218, 0.05609229579567909, -0.02220947854220867, -0.007053046952933073, -0.0634412094950676, -0.02360895462334156, 0.044299934059381485, 0.03236420080065727, 0.025445815175771713, 0.14712068438529968, 0.06690599769353867, -0.1587139368057251, 0.0355524979531765, -0.028184011578559875, -0.03975510597229004, -0.11561733484268188, -0.1008279100060463, -0.03094767965376377, -0.05903751775622368, 0.014586015604436398, -0.13127127289772034, 0.004125639796257019, 0.18148884177207947, 0.06779953837394714, 0.02883436717092991, 0.01984134130179882, -0.12793251872062683, -0.04489684849977493, 0.059674836695194244, 0.01282030064612627, 0.02168736793100834, 0.0428033173084259, -0.002066975459456444, 0.06814880669116974, 0.029633741825819016, 0.001291304943151772, -0.005921269301325083, 0.07878311723470688, 0.025463538244366646, 0.0459221713244915, -0.05689461529254913, 0.00047917015035636723, -0.041793208569288254, 0.08384723216295242, 0.11931318789720535, 0.04531259089708328, -0.048164717853069305, -0.010465174913406372, 0.15648241341114044, -0.025856787338852882, 0.00699243787676096, -0.12050604820251465, 0.3236114978790283, 0.015593173913657665, 0.013513023965060711, 0.057399991899728775, -0.07771161198616028, -0.04434783756732941, 0.20801207423210144, 0.06680844724178314, -0.02284039743244648, -0.026637768372893333, 0.004754458088427782, -0.03078170120716095, -0.016612868756055832, 0.13927245140075684, 0.04542633891105652, 0.11994998902082443, -0.058599554002285004, -0.04976215213537216, -0.03747374191880226, 0.0009614437585696578, -0.11314771324396133, 0.1418198198080063, -0.01636338233947754, -0.01817687787115574, -0.07574519515037537, 0.013119476847350597, 0.07289651036262512, -0.3451571762561798, 0.00027396640507504344, -0.02507561817765236, -0.1044001579284668, -0.015568302012979984, -0.025128239765763283, -0.02657446078956127, 0.05017511174082756, -0.04025281220674515, 0.06323594599962234, 0.045018475502729416, 0.03923901915550232, -0.016522344201803207, -0.102604940533638, 0.16240939497947693, 0.07660702615976334, 0.09956826269626617, 0.018199697136878967, 0.08253602683544159, 0.0610944889485836, 0.03838216885924339, -0.09318605810403824, 0.05827908590435982, 0.009495825506746769, -0.0673472136259079, -0.05472283437848091, 0.11243149638175964, -0.00010505758109502494, 0.06205025315284729, 0.033736877143383026, -0.12640278041362762, 0.027609718963503838, 0.08003253489732742, -0.0856265053153038, -0.09253178536891937, 0.002229636535048485, -0.09860546886920929, 0.1585339456796646, 0.14927521347999573, -0.008932291530072689, 0.011701108887791634, -0.06595773249864578, -0.009611696936190128, 0.05102234333753586, 0.012275236658751965, -0.013795629143714905, -0.1810251772403717, 0.05248154327273369, -0.07898607105016708, -0.004897747188806534, -0.21374191343784332, -0.10045120865106583, -0.010937513783574104, -0.05656656250357628, -0.02130119688808918, 0.0527934655547142, 0.02329956740140915, 0.07636487483978271, -0.024854879826307297, -0.016615843400359154, -0.03776020184159279, 0.09104970842599869, -0.10332618653774261, -0.07317803055047989 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1900k"]}
null
google/multiberts-seed_1-step_1900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps)." ]
[ -0.0777774527668953, 0.07518602907657623, -0.00203106296248734, 0.03937503322958946, 0.07135840505361557, -0.018134959042072296, 0.06892374157905579, 0.0899115800857544, -0.01661922223865986, 0.02114027552306652, 0.085502490401268, 0.02251932956278324, 0.01154963206499815, 0.09641263633966446, 0.017413543537259102, -0.21144011616706848, 0.02983657270669937, -0.02558528073132038, -0.08711212873458862, 0.07588139176368713, 0.10400404036045074, -0.08636671304702759, 0.04038354754447937, 0.034054990857839584, -0.11757147312164307, 0.053277455270290375, -0.009589052759110928, -0.027500471100211143, 0.1373014897108078, 0.003067422192543745, 0.05873395502567291, 0.05600621551275253, 0.044704779982566833, -0.13376347720623016, 0.004918983206152916, 0.05560261383652687, 0.050017524510622025, 0.038112491369247437, 0.015202678740024567, 0.0763053372502327, -0.014088151976466179, 0.03226584568619728, 0.05398630350828171, 0.0142501937225461, -0.06627675145864487, -0.06426919996738434, -0.09846430271863937, 0.03776930645108223, 0.027017394080758095, 0.01778113655745983, 0.011298266239464283, 0.11868555098772049, -0.03309784084558487, 0.04558048024773598, 0.17638128995895386, -0.30163004994392395, -0.006756538525223732, 0.06049958989024162, 0.023160062730312347, 0.11434304714202881, -0.004821857903152704, -0.03207213059067726, 0.07664258033037186, 0.02189335599541664, 0.10296574234962463, -0.04357759281992912, 0.00895988941192627, -0.057561591267585754, -0.15709440410137177, -0.03824213892221451, 0.09825073182582855, 0.0009986780351027846, -0.1370673030614853, -0.0235837921500206, -0.04324807971715927, 0.03482476994395256, 0.016375422477722168, -0.0403066985309124, 0.045561619102954865, -0.0011893382761627436, -0.0005919616669416428, -0.007807759568095207, -0.10484615713357925, -0.04321542754769325, 0.019138993695378304, 0.10434615612030029, 0.10691804438829422, 0.05867040157318115, -0.008748101070523262, 0.10479200631380081, -0.180453822016716, -0.04787270352244377, -0.0265671219676733, -0.03519551083445549, -0.044256556779146194, -0.01228091586381197, -0.10504021495580673, -0.05187845230102539, -0.003051718231290579, 0.13300426304340363, -0.022901810705661774, 0.03299553692340851, -0.023173479363322258, 0.006528882775455713, 0.06345794349908829, 0.04944981262087822, -0.01963341236114502, 0.01685911975800991, 0.035538095980882645, -0.01441197283565998, -0.019847797229886055, 0.00916164368391037, -0.0002506052842363715, 0.02950628288090229, 0.13689501583576202, 0.012979492545127869, -0.1044953241944313, 0.07442120462656021, -0.011511323042213917, -0.04456673935055733, -0.006498007569462061, -0.0886731669306755, -0.06431029736995697, -0.041298214346170425, -0.014667523093521595, 0.004035634454339743, 0.004364436957985163, -0.006852602586150169, -0.023956989869475365, -0.01953878439962864, -0.09311382472515106, -0.05829751864075661, -0.05279519036412239, -0.13350732624530792, 0.008986751548945904, -0.19194652140140533, -0.02824670821428299, -0.11399621516466141, -0.20413696765899658, -0.03764311224222183, 0.050870150327682495, 0.002248454373329878, -0.06350087374448776, 0.06408607959747314, 0.035965338349342346, -0.02988252229988575, -0.0017455139895901084, 0.08938764780759811, -0.005965348333120346, 0.03675273060798645, -0.04465001821517944, 0.058133840560913086, 0.0013213978381827474, 0.04207521677017212, -0.05800265446305275, 0.05547941103577614, -0.18224193155765533, 0.03893493860960007, -0.07225939631462097, -0.02772718109190464, -0.08540645986795425, -0.029345499351620674, -0.006430487614125013, 0.015550640411674976, 0.019793620333075523, 0.07234196364879608, -0.16346631944179535, -0.03219475597143173, 0.09206917881965637, -0.15169264376163483, -0.028195299208164215, 0.0655917152762413, -0.057625818997621536, 0.11755737662315369, 0.06752067059278488, 0.15891821682453156, -0.03680196776986122, -0.07105349749326706, 0.051932137459516525, -0.014666725881397724, 0.007662956602871418, -0.009789456613361835, 0.066295325756073, -0.019567333161830902, -0.1686837524175644, 0.023579085245728493, -0.1334303468465805, 0.0011811176082119346, -0.07688912749290466, 0.029416419565677643, 0.0017129600746557117, -0.07093486189842224, -0.07802513241767883, -0.034033216536045074, 0.07667208462953568, -0.07008284330368042, -0.024029454216361046, 0.04516170546412468, 0.0758230984210968, -0.07100104540586472, 0.06722662597894669, -0.014451091177761555, 0.013512298464775085, -0.0725344717502594, -0.03698517382144928, -0.18586032092571259, 0.033587902784347534, 0.0943526029586792, 0.010830475948750973, -0.015045750886201859, 0.12198104709386826, -0.0078434431925416, 0.06541375070810318, -0.04227897897362709, 0.0018633388681337237, -0.009995238855481148, 0.0018697208724915981, -0.09494436532258987, -0.11490929871797562, -0.07156416028738022, -0.06867441534996033, 0.10391896963119507, -0.11638565361499786, 0.02325822412967682, -0.05616828426718712, 0.04243540018796921, 0.016686435788869858, -0.07039767503738403, -0.01039546076208353, 0.014372684992849827, -0.061625994741916656, -0.05418263375759125, 0.03521832451224327, 0.06381231546401978, -0.02073800377547741, 0.09895829111337662, -0.05131031945347786, -0.09455475956201553, 0.0309908390045166, 0.0718279629945755, -0.10862527042627335, 0.017528926953673363, -0.046578019857406616, -0.04753259941935539, -0.06656305491924286, -0.030284389853477478, 0.10113096237182617, -0.012380335479974747, 0.14494474232196808, -0.07956106215715408, -0.016725579276680946, 0.01217947993427515, -0.013212726451456547, -0.026634151116013527, 0.03956875577569008, 0.06756407022476196, -0.07985261082649231, 0.02389068715274334, 0.02774590440094471, -0.001953373895958066, 0.07400192320346832, -0.04998896270990372, -0.07539926469326019, 0.01795908994972706, 0.027828747406601906, 0.020265065133571625, 0.06691111624240875, -0.057514891028404236, -0.01579914800822735, 0.029634788632392883, 0.01750289648771286, 0.012497855350375175, -0.11711743474006653, 0.06249270215630531, 0.06061423197388649, 0.012813792563974857, 0.05862172693014145, -0.02028071880340576, -0.03285970911383629, 0.08195885270833969, 0.031094243749976158, -0.014469925314188004, -0.012398187071084976, -0.011881076730787754, -0.12569460272789001, 0.2161565124988556, -0.06919381767511368, -0.15426936745643616, -0.06860419362783432, -0.11858537048101425, 0.0010868831304833293, 0.02263672649860382, 0.04261445626616478, -0.020003467798233032, -0.040462713688611984, -0.12690691649913788, 0.08845335245132446, -0.03757615014910698, 0.06595318764448166, 0.11386460065841675, -0.06400606781244278, 0.042525626718997955, -0.13193581998348236, -0.011579814366996288, -0.07990582287311554, -0.05560171231627464, 0.057619668543338776, -0.05053059756755829, 0.03759313374757767, 0.11809323728084564, 0.01748018153011799, -0.0274179857224226, -0.0330423004925251, 0.20279665291309357, 0.03876432776451111, 0.04486508667469025, 0.12449869513511658, -0.07409729063510895, 0.05215093120932579, 0.07597380876541138, 0.006230248603969812, -0.04212487116456032, 0.052196700125932693, 0.05244485288858414, -0.06378116458654404, -0.1920098066329956, -0.01120501197874546, 0.005509022623300552, -0.05359896644949913, 0.07080953568220139, 0.035843197256326675, 0.023050053045153618, 0.07417373359203339, 0.018470842391252518, 0.07145722210407257, 0.009049138985574245, 0.10161782056093216, 0.026524387300014496, -0.036445967853069305, 0.08480777591466904, -0.008016321808099747, -0.00619465159252286, 0.07786481082439423, -0.02680860087275505, 0.29312559962272644, -0.04210132360458374, 0.012879526242613792, 0.12969143688678741, 0.023308098316192627, 0.05337812006473541, 0.12283297628164291, -0.07810734957456589, 0.029058700427412987, -0.07609342038631439, -0.049779005348682404, 0.011441039852797985, 0.04886721447110176, -0.07323180139064789, 0.01631747931241989, -0.08166296035051346, 0.01662425883114338, -0.02425481006503105, 0.30837950110435486, 0.10053430497646332, -0.10963103175163269, -0.059243444353342056, 0.0007439388427883387, -0.1029530018568039, -0.06972290575504303, 0.04856102913618088, 0.05086855590343475, -0.1335231065750122, 0.010725442320108414, -0.021169083192944527, 0.07362201809883118, -0.021610530093312263, 0.012738006189465523, 0.03843837231397629, 0.05524783581495285, -0.04570407047867775, 0.0024620741605758667, -0.17203383147716522, 0.20251202583312988, -0.00031906264484860003, 0.02132675237953663, -0.05800097808241844, 0.028801346197724342, 0.013001340441405773, -0.015311084687709808, 0.061326999217271805, 0.021346591413021088, -0.005433971993625164, -0.053894754499197006, -0.039213523268699646, 0.009838237427175045, 0.06627733260393143, -0.04339881241321564, 0.1070885956287384, 0.008049674332141876, 0.05174023285508156, 0.03046676702797413, 0.08647318184375763, -0.18214522302150726, -0.08196517080068588, 0.027996059507131577, -0.051861852407455444, -0.1057085394859314, -0.08338278532028198, -0.09682266414165497, -0.0034387295600026846, 0.2156788557767868, -0.10973145812749863, -0.074313685297966, -0.09388802945613861, 0.04308438301086426, 0.09783640503883362, -0.05312119051814079, 0.028394624590873718, -0.012123228050768375, 0.11672373116016388, -0.07321009784936905, -0.12038913369178772, 0.023735374212265015, -0.0994156152009964, -0.16065092384815216, -0.06866903603076935, 0.09284554421901703, 0.06922750920057297, 0.02938610501587391, -0.03118988685309887, 0.015353976748883724, 0.04045435041189194, -0.037748150527477264, -0.0007949390565045178, 0.06387174874544144, 0.09395842999219894, 0.04194675013422966, -0.10946627706289291, 0.013920674100518227, -0.07051761448383331, -0.07015810161828995, 0.07469335198402405, 0.27211689949035645, -0.05180777981877327, 0.11726664751768112, 0.13102266192436218, -0.08826339989900589, -0.16186323761940002, 0.04438577964901924, 0.09257637709379196, -0.016646733507514, 0.0038397652097046375, -0.16229303181171417, 0.10193265974521637, 0.11930280923843384, -0.013923718594014645, -0.0016133100725710392, -0.20016081631183624, -0.13746686279773712, 0.08944622427225113, 0.11642339825630188, 0.27538856863975525, -0.053930990397930145, -0.03808464854955673, 0.02178504690527916, -0.09203173220157623, 0.010071426630020142, 0.11883211135864258, 0.05892582982778549, -0.020062141120433807, -0.07094249129295349, 0.010174649767577648, -0.037206023931503296, 0.09137342125177383, 0.05983443185687065, 0.06919272243976593, -0.00402449956163764, -0.011600012890994549, -0.02306266501545906, -0.04350723698735237, 0.06711792200803757, 0.03750309720635414, 0.04844829440116882, -0.08076690137386322, -0.036053117364645004, -0.07723013311624527, 0.03768717125058174, -0.032291002571582794, -0.07707948237657547, -0.06377571821212769, 0.07812898606061935, 0.058191556483507156, -0.03621668741106987, 0.034864190965890884, 0.029379475861787796, 0.10054370760917664, 0.1564783751964569, -0.00036385373095981777, -0.05317943915724754, -0.059274233877658844, -0.028271155431866646, -0.01429340522736311, 0.07095813751220703, -0.04353354871273041, 0.01750429905951023, 0.06866858899593353, 0.02349608764052391, 0.10946743935346603, 0.05994625389575958, -0.12296387553215027, -0.021388661116361618, 0.027769222855567932, -0.15408045053482056, 0.015616576187312603, -0.0015286485431715846, 0.0221448615193367, -0.02335224859416485, 0.02016635797917843, 0.14649346470832825, -0.0678030326962471, -0.032835736870765686, -0.047991540282964706, 0.06054134666919708, 0.03452131897211075, 0.1417178362607956, 0.03839614614844322, 0.03720792755484581, -0.0781734511256218, 0.13971228897571564, 0.045683737844228745, -0.0377521887421608, 0.02578977309167385, -0.02476109378039837, -0.10615719854831696, 0.01536579430103302, 0.05643518269062042, 0.07239292562007904, -0.07741042226552963, -0.014588049612939358, -0.03653049096465111, -0.08331657946109772, 0.0676439106464386, 0.22653143107891083, 0.0609576478600502, 0.06627186387777328, -0.0509195439517498, -0.03188636526465416, -0.07749568670988083, 0.05042760819196701, 0.0466277152299881, 0.07772084325551987, -0.0698351263999939, 0.10723548382520676, 0.016408652067184448, 0.0503062978386879, -0.027459926903247833, -0.05035781487822533, -0.10376147925853729, -0.055750660598278046, -0.11016202718019485, 0.01273605041205883, -0.07320927828550339, -0.04287680983543396, 0.006923046428710222, -0.002689456334337592, -0.007490999065339565, 0.05339888855814934, -0.06103409826755524, -0.008602536283433437, -0.012879980728030205, 0.035383958369493484, -0.061476703733205795, -0.05322844162583351, 0.02024216763675213, -0.09858153760433197, 0.09592973440885544, 0.047836508601903915, 0.01486118696630001, 0.0038883404340595007, 0.08484874665737152, -0.00932686123996973, 0.01887262426316738, 0.009820410050451756, -0.039956849068403244, -0.10394567251205444, 0.004205562639981508, -0.025731530040502548, -0.03360433131456375, -0.016572115942835808, 0.0878830999135971, -0.07974155247211456, 0.030670491978526115, 0.0011459041852504015, -0.006258045323193073, -0.07996311783790588, -0.005748557858169079, 0.1031312420964241, 0.08000402897596359, 0.05103620886802673, -0.07995101064443588, 0.014659694395959377, -0.12520727515220642, -0.036022793501615524, 0.00981185119599104, -0.014651111327111721, -0.12682081758975983, -0.012686410918831825, 0.01671666093170643, -0.011771846562623978, 0.20220045745372772, -0.054422229528427124, -0.03428490459918976, 0.02337791956961155, -0.09651344269514084, 0.10692045837640762, -0.020185714587569237, 0.16384448111057281, -0.026842324063181877, -0.03685224801301956, -0.015109557658433914, 0.04660302400588989, 0.028704270720481873, -0.009837266057729721, 0.1953541338443756, 0.1344095766544342, 0.045671842992305756, 0.055825088173151016, -0.02307894267141819, -0.009828168898820877, -0.05112449824810028, -0.023707395419478416, 0.04413854330778122, 0.03361371159553528, 0.023829922080039978, 0.15265437960624695, 0.06588754802942276, -0.16728092730045319, 0.0390593446791172, -0.024400198832154274, -0.041637130081653595, -0.11476300656795502, -0.0911247581243515, -0.029628459364175797, -0.05631408840417862, 0.012317020446062088, -0.13372063636779785, 0.0031447634100914, 0.16543126106262207, 0.06583654880523682, 0.03213302418589592, 0.013475609011948109, -0.13626621663570404, -0.045922327786684036, 0.059994906187057495, 0.017049940302968025, 0.020334603264927864, 0.037527795881032944, -0.004751140717417002, 0.06316012144088745, 0.02853573113679886, 0.0013875272125005722, -0.005412842612713575, 0.08077993988990784, 0.02134121209383011, 0.04785393923521042, -0.05676900967955589, 0.003054550150409341, -0.04499543458223343, 0.08534013479948044, 0.10201841592788696, 0.04389563947916031, -0.04867284744977951, -0.010810150764882565, 0.15892624855041504, -0.026663590222597122, 0.0012621134519577026, -0.11903877556324005, 0.3173025846481323, 0.01838388666510582, 0.011012914590537548, 0.05801187828183174, -0.08025906980037689, -0.04520247504115105, 0.2108917236328125, 0.07533688098192215, -0.01988406479358673, -0.026186751201748848, 0.003239016979932785, -0.03142481669783592, -0.015360908582806587, 0.13990908861160278, 0.04220716282725334, 0.1280662715435028, -0.054051414132118225, -0.04431796073913574, -0.03687809780240059, 0.0026110836770385504, -0.1091628149151802, 0.15209917724132538, -0.01580015942454338, -0.025225382298231125, -0.07600490748882294, 0.011312678456306458, 0.07400450855493546, -0.3517896831035614, 0.01225823350250721, -0.03240346536040306, -0.10587310791015625, -0.012466412037611008, -0.03188975527882576, -0.02765255980193615, 0.048440247774124146, -0.034738440066576004, 0.061607129871845245, 0.04362986236810684, 0.040972284972667694, -0.024824973195791245, -0.10839252173900604, 0.16965274512767792, 0.06342663615942001, 0.10701550543308258, 0.013645130209624767, 0.08889227360486984, 0.06059039384126663, 0.038200899958610535, -0.09071014821529388, 0.05237947776913643, 0.010478489100933075, -0.0707494243979454, -0.05592045933008194, 0.11508991569280624, -0.0007096217013895512, 0.0628712996840477, 0.03189164027571678, -0.1209164708852768, 0.026455989107489586, 0.07871738076210022, -0.09133470803499222, -0.09302765876054764, -0.005817526485770941, -0.09885302931070328, 0.1580309271812439, 0.14603638648986816, -0.011272993870079517, 0.016682837158441544, -0.06100091338157654, -0.011031090281903744, 0.05564131960272789, 0.014256666414439678, -0.012650083750486374, -0.18960578739643097, 0.05254879966378212, -0.08976134657859802, -0.0014842868549749255, -0.21262027323246002, -0.10194901376962662, -0.011041016317903996, -0.054792873561382294, -0.021263515576720238, 0.05721159279346466, 0.0278724767267704, 0.0756833404302597, -0.02566315419971943, -0.01627299003303051, -0.04016989842057228, 0.09672120213508606, -0.10269740968942642, -0.0718667134642601 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_2000k"]}
null
google/multiberts-seed_1-step_2000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_2000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps)." ]
[ -0.0759272351861, 0.08745238184928894, -0.0020730062387883663, 0.04075891524553299, 0.0742810070514679, -0.0200545322149992, 0.06948085129261017, 0.09175462275743484, -0.021587302908301353, 0.021909475326538086, 0.08756805956363678, 0.02242370881140232, 0.00988684967160225, 0.09715329110622406, 0.01893753930926323, -0.21259444952011108, 0.03296452760696411, -0.027555719017982483, -0.08710163086652756, 0.0744369775056839, 0.10480477660894394, -0.08591245114803314, 0.040342725813388824, 0.03341679275035858, -0.11571703106164932, 0.053628645837306976, -0.01226744707673788, -0.02339569851756096, 0.13619902729988098, 0.0034921965561807156, 0.058008864521980286, 0.057321418076753616, 0.044151801615953445, -0.1363574117422104, 0.0048699751496315, 0.055064231157302856, 0.05174851790070534, 0.038412466645240784, 0.018471969291567802, 0.07890259474515915, -0.02582467906177044, 0.030095519497990608, 0.05291886255145073, 0.012476913630962372, -0.06274105608463287, -0.06395559012889862, -0.09863076359033585, 0.03400682285428047, 0.027244379743933678, 0.020335569977760315, 0.010798039846122265, 0.11943958699703217, -0.033290132880210876, 0.04518585279583931, 0.17666442692279816, -0.30596938729286194, -0.005811034701764584, 0.061052896082401276, 0.020753230899572372, 0.110340416431427, -0.003989735152572393, -0.03360852599143982, 0.0779443234205246, 0.020297428593039513, 0.0982619896531105, -0.04110618308186531, 0.007922427728772163, -0.05682888254523277, -0.15671183168888092, -0.038119520992040634, 0.10233648121356964, 0.001318938797339797, -0.13627417385578156, -0.022438308224081993, -0.04238896071910858, 0.04058009386062622, 0.018620431423187256, -0.03902563452720642, 0.0451117604970932, 0.00015770387835800648, -0.007114555221050978, -0.005626351106911898, -0.10361723601818085, -0.04346977546811104, 0.020173165947198868, 0.10222150385379791, 0.10825669020414352, 0.05537252500653267, -0.006018763408064842, 0.10625605285167694, -0.18654653429985046, -0.04708011820912361, -0.03064020536839962, -0.03231886029243469, -0.04683561250567436, -0.010039705783128738, -0.10757075995206833, -0.05307045578956604, 0.002503275405615568, 0.1382845938205719, -0.013682801276445389, 0.03182070702314377, -0.0244943518191576, 0.0050285495817661285, 0.06133212894201279, 0.056924011558294296, -0.02233876660466194, 0.025488507002592087, 0.03673898056149483, -0.017836354672908783, -0.019618617370724678, 0.009470139630138874, -0.003932002931833267, 0.03235476464033127, 0.13534975051879883, 0.014034107327461243, -0.1043020710349083, 0.07847967743873596, -0.010680528357625008, -0.04511456564068794, -0.008690578863024712, -0.08990990370512009, -0.06476881355047226, -0.04058290272951126, -0.015352698974311352, 0.001037835725583136, 0.0037224371917545795, -0.004692477639764547, -0.024266434833407402, -0.017569588497281075, -0.08963806182146072, -0.05907141789793968, -0.05455819517374039, -0.13432179391384125, 0.009471968747675419, -0.1895298957824707, -0.026624245569109917, -0.1131577268242836, -0.20329199731349945, -0.03794567659497261, 0.04999952018260956, 0.004227075260132551, -0.06643424183130264, 0.059470824897289276, 0.032045863568782806, -0.0304942075163126, -0.0025105068925768137, 0.09124373644590378, -0.00417373888194561, 0.03608876094222069, -0.04231494665145874, 0.052618615329265594, -0.0009191599092446268, 0.04374149069190025, -0.05887151136994362, 0.05532284826040268, -0.16359169781208038, 0.03949424624443054, -0.07397734373807907, -0.03223126009106636, -0.08527298271656036, -0.028939247131347656, -0.00568340253084898, 0.014022868126630783, 0.02350493334233761, 0.06849434971809387, -0.16927532851696014, -0.03033513016998768, 0.08726873993873596, -0.14946423470973969, -0.0283904280513525, 0.06431865692138672, -0.05900075286626816, 0.1157904714345932, 0.06507419049739838, 0.15606090426445007, -0.03526042774319649, -0.06481044739484787, 0.048741020262241364, -0.015260118059813976, 0.010984217748045921, -0.0076505932956933975, 0.06974774599075317, -0.018605785444378853, -0.16185426712036133, 0.025553226470947266, -0.14076004922389984, 0.0003845318278763443, -0.076014444231987, 0.02990161068737507, -0.0022076822351664305, -0.06993623822927475, -0.08339769393205643, -0.035061709582805634, 0.07863232493400574, -0.06652770191431046, -0.025826020166277885, 0.04531652107834816, 0.07613316178321838, -0.07224224507808685, 0.06741037219762802, -0.013674312271177769, 0.015835687518119812, -0.07835816591978073, -0.03720332682132721, -0.18748198449611664, 0.028841756284236908, 0.09709203243255615, 0.013645395636558533, -0.016771072521805763, 0.12234807014465332, -0.00932051707059145, 0.06180381774902344, -0.041261862963438034, -0.0003388483019080013, -0.010397731326520443, 0.0016692673088982701, -0.09174870699644089, -0.11015531420707703, -0.070790134370327, -0.07078418135643005, 0.10004567354917526, -0.1112075075507164, 0.02097044512629509, -0.05481605604290962, 0.04381311312317848, 0.014675257727503777, -0.07078874111175537, -0.008593318052589893, 0.013942709192633629, -0.06507385522127151, -0.05764847993850708, 0.03475896641612053, 0.06421259790658951, -0.022831862792372704, 0.09412307292222977, -0.045878712087869644, -0.08924548327922821, 0.02925068326294422, 0.08252260088920593, -0.10458347946405411, 0.024283846840262413, -0.04832268878817558, -0.045975759625434875, -0.06504038721323013, -0.02473200112581253, 0.1078806146979332, -0.012410151772201061, 0.14509987831115723, -0.08033057302236557, -0.01599591039121151, 0.008823543787002563, -0.01226708572357893, -0.027170835062861443, 0.04329180344939232, 0.0684361681342125, -0.07756312936544418, 0.025146638974547386, 0.025990059599280357, -0.003985000774264336, 0.06702843308448792, -0.05206269398331642, -0.07557640969753265, 0.019133158028125763, 0.033713724464178085, 0.02218402735888958, 0.0632113441824913, -0.048181600868701935, -0.01383926346898079, 0.03112964704632759, 0.018743909895420074, 0.013224906288087368, -0.11848343163728714, 0.062073953449726105, 0.06006016954779625, 0.0107091860845685, 0.05715435370802879, -0.018113447353243828, -0.03326806798577309, 0.08047144114971161, 0.03382444009184837, -0.014148027636110783, -0.008421235717833042, -0.012709015049040318, -0.12235311418771744, 0.21699893474578857, -0.07055457681417465, -0.15681985020637512, -0.0672396570444107, -0.11755192279815674, -0.0029086691793054342, 0.021677516400814056, 0.043060462921857834, -0.02223183400928974, -0.04318193718791008, -0.124470055103302, 0.08972848206758499, -0.04086671769618988, 0.06568656116724014, 0.11392711848020554, -0.0639585554599762, 0.04432394728064537, -0.1316540390253067, -0.00973705854266882, -0.07847853749990463, -0.05974803864955902, 0.05442209541797638, -0.049266230314970016, 0.03829476237297058, 0.11275769770145416, 0.01712292991578579, -0.025189707055687904, -0.03093191608786583, 0.20216265320777893, 0.04051986336708069, 0.040506187826395035, 0.12301158159971237, -0.0780511349439621, 0.05116666853427887, 0.08064953982830048, 0.004977473057806492, -0.04168885573744774, 0.05209770053625107, 0.05460437759757042, -0.06153426691889763, -0.1910744309425354, -0.0101914182305336, 0.005917019676417112, -0.05725926160812378, 0.06805593520402908, 0.040462426841259, 0.015201304107904434, 0.07389568537473679, 0.01760699227452278, 0.06419016420841217, 0.006284232251346111, 0.10251414775848389, 0.024859247729182243, -0.03697656840085983, 0.08533384650945663, -0.00785672664642334, -0.008038689382374287, 0.07712294906377792, -0.022872615605592728, 0.29299652576446533, -0.04222927242517471, 0.014175048097968102, 0.12962831556797028, 0.028414960950613022, 0.05213715881109238, 0.12228640168905258, -0.07990352809429169, 0.029571665450930595, -0.07645442336797714, -0.04862912744283676, 0.016055384650826454, 0.04879395663738251, -0.07430053502321243, 0.018755242228507996, -0.08122151345014572, 0.016294151544570923, -0.02584053762257099, 0.306012898683548, 0.09989207237958908, -0.11042527109384537, -0.05906432867050171, 0.0015461721923202276, -0.0998871698975563, -0.07251109927892685, 0.048194654285907745, 0.0482945442199707, -0.1331421136856079, 0.00620287237688899, -0.02277059480547905, 0.07531102746725082, -0.025513047352433205, 0.014043215662240982, 0.040434930473566055, 0.05646932125091553, -0.04338476061820984, 0.0077314674854278564, -0.1801067739725113, 0.20138303935527802, -0.0018601682968437672, 0.020149098709225655, -0.057214319705963135, 0.032089512795209885, 0.009389598853886127, -0.01638631522655487, 0.06236441433429718, 0.01938210427761078, -0.010232796892523766, -0.05394931882619858, -0.03858054056763649, 0.01447561476379633, 0.06838325411081314, -0.04395989701151848, 0.10696238279342651, 0.006740421522408724, 0.05244031175971031, 0.033339157700538635, 0.09068369120359421, -0.18334846198558807, -0.08632339537143707, 0.03249024972319603, -0.04670064523816109, -0.10162904113531113, -0.08387361466884613, -0.09810616821050644, -0.00741045456379652, 0.22966685891151428, -0.11567451804876328, -0.07404924184083939, -0.09517119079828262, 0.04719676077365875, 0.09987693279981613, -0.054080069065093994, 0.02758726477622986, -0.01592279225587845, 0.11767414212226868, -0.07106386125087738, -0.12309412658214569, 0.02282978594303131, -0.09790702909231186, -0.159514382481575, -0.06757859885692596, 0.08948710560798645, 0.06234491616487503, 0.02775598131120205, -0.0327078141272068, 0.016485655680298805, 0.03800316900014877, -0.035755693912506104, -0.006073417607694864, 0.06736506521701813, 0.08865661919116974, 0.036905527114868164, -0.11389166116714478, 0.021692678332328796, -0.07057565450668335, -0.0697874203324318, 0.07761259377002716, 0.26747626066207886, -0.052280377596616745, 0.11613994836807251, 0.12123607099056244, -0.08871679753065109, -0.1603020876646042, 0.04014241695404053, 0.09484773874282837, -0.014025977812707424, 0.0004110985028091818, -0.16483889520168304, 0.10014410316944122, 0.11500222980976105, -0.015734998509287834, -0.006019276101142168, -0.19705148041248322, -0.1350274682044983, 0.08938311040401459, 0.1133233979344368, 0.2716505229473114, -0.05361614003777504, -0.03844626247882843, 0.021448789164423943, -0.08314277976751328, 0.010282129980623722, 0.12786783277988434, 0.061555568128824234, -0.019301751628518105, -0.06995844841003418, 0.010081765241920948, -0.037210553884506226, 0.0902261734008789, 0.06091325357556343, 0.06839779019355774, -0.002956454176455736, -0.01107953954488039, -0.03127143904566765, -0.043057989329099655, 0.06881583482027054, 0.03747529536485672, 0.05293339118361473, -0.08063258230686188, -0.03592592105269432, -0.07470809668302536, 0.03544086217880249, -0.030418196693062782, -0.0761360451579094, -0.06241398677229881, 0.07824985682964325, 0.06015065312385559, -0.0336880199611187, 0.039247579872608185, 0.03228580579161644, 0.09507922828197479, 0.14859192073345184, -0.0040460554882884026, -0.0460851825773716, -0.05802464857697487, -0.03042467124760151, -0.013144446536898613, 0.07059820741415024, -0.04397706687450409, 0.018261943012475967, 0.07035443931818008, 0.0233188234269619, 0.10787169635295868, 0.060627538710832596, -0.12313621491193771, -0.022649118676781654, 0.024989919736981392, -0.15466712415218353, 0.015312708914279938, -0.0010769773507490754, 0.024719787761569023, -0.02267168089747429, 0.021235644817352295, 0.14905579388141632, -0.06760316342115402, -0.032285016030073166, -0.046446267515420914, 0.05995871126651764, 0.03684041276574135, 0.141062393784523, 0.036852553486824036, 0.0359184667468071, -0.07798551023006439, 0.1421799212694168, 0.04757065325975418, -0.03382359445095062, 0.02771061100065708, -0.032644059509038925, -0.10677081346511841, 0.016241924837231636, 0.0625700056552887, 0.07384940981864929, -0.0722804144024849, -0.017373748123645782, -0.03972330689430237, -0.0809260830283165, 0.06764715909957886, 0.2208174616098404, 0.062359318137168884, 0.06851077824831009, -0.051975104957818985, -0.03556430712342262, -0.07680828124284744, 0.052291661500930786, 0.049274176359176636, 0.07904180884361267, -0.07272104173898697, 0.09825467318296432, 0.014900527894496918, 0.04854040965437889, -0.026513349264860153, -0.04987514764070511, -0.1037726178765297, -0.05713464692234993, -0.10313325375318527, 0.013861356303095818, -0.06402279436588287, -0.04325971007347107, 0.008641693741083145, -0.004698456265032291, -0.006436511874198914, 0.05667706951498985, -0.06140654534101486, -0.011530809104442596, -0.015857787802815437, 0.03601347655057907, -0.0618034191429615, -0.0546732172369957, 0.01855894923210144, -0.09685800969600677, 0.0968191921710968, 0.04732617363333702, 0.013049210421741009, 0.003151709446683526, 0.0697847232222557, -0.012039626948535442, 0.02103552408516407, 0.011385257355868816, -0.039944857358932495, -0.10473950207233429, 0.00505148246884346, -0.022793924435973167, -0.034423697739839554, -0.019115423783659935, 0.09115157276391983, -0.08018861711025238, 0.02461943030357361, -0.0007096432964317501, -0.002715981099754572, -0.07699388265609741, -0.0061570038087666035, 0.09841720014810562, 0.0846896842122078, 0.05088493227958679, -0.0801834836602211, 0.01662641577422619, -0.12211890518665314, -0.03416219353675842, 0.010224813595414162, -0.01636883057653904, -0.13634103536605835, -0.01383478008210659, 0.01649615727365017, -0.012556541711091995, 0.20168370008468628, -0.05692991614341736, -0.028476299718022346, 0.02076888270676136, -0.0911521315574646, 0.11280083656311035, -0.019324328750371933, 0.16554774343967438, -0.024941295385360718, -0.03496359661221504, -0.014445332810282707, 0.04593687132000923, 0.0247108843177557, -0.01307580154389143, 0.18578116595745087, 0.136874720454216, 0.04553510993719101, 0.05529007315635681, -0.02132144756615162, -0.009928479790687561, -0.044137876480817795, -0.016984865069389343, 0.04313438758254051, 0.03397522121667862, 0.022405901923775673, 0.15502622723579407, 0.05989597365260124, -0.1635962873697281, 0.03654175251722336, -0.022785967215895653, -0.03870615363121033, -0.11397527158260345, -0.09856763482093811, -0.034500911831855774, -0.056582655757665634, 0.01458948478102684, -0.13431961834430695, 0.002374984323978424, 0.16847366094589233, 0.06567158550024033, 0.03235074505209923, 0.011828988790512085, -0.1334492713212967, -0.04539017751812935, 0.056057315319776535, 0.0142073268070817, 0.021161388605833054, 0.03805636242032051, -0.00486218323931098, 0.06723909080028534, 0.031155992299318314, 0.0028403059113770723, -0.0036411602050065994, 0.08731817454099655, 0.02201787382364273, 0.046653106808662415, -0.055003345012664795, 0.0020294308196753263, -0.044135160744190216, 0.08404776453971863, 0.10759276151657104, 0.042784351855516434, -0.050171803683042526, -0.011781527660787106, 0.15596222877502441, -0.02714402787387371, 0.0050126020796597, -0.11975596845149994, 0.31917327642440796, 0.014394333586096764, 0.011519328691065311, 0.0584518164396286, -0.08023583889007568, -0.048385318368673325, 0.21183717250823975, 0.07037309557199478, -0.020294852554798126, -0.027699608355760574, 0.005800178274512291, -0.030896039679646492, -0.017111478373408318, 0.1357334554195404, 0.04353870078921318, 0.11952369660139084, -0.052255935966968536, -0.0517914816737175, -0.03574320673942566, 0.0038244512397795916, -0.10872488468885422, 0.15017955005168915, -0.016814641654491425, -0.02554580569267273, -0.07857304066419601, 0.009208520874381065, 0.0739147812128067, -0.3485173285007477, 0.005025314167141914, -0.03199099376797676, -0.10822659730911255, -0.012436171993613243, -0.027399394661188126, -0.02802063338458538, 0.04690069332718849, -0.03788065165281296, 0.0637839213013649, 0.04317993298172951, 0.041419871151447296, -0.022734008729457855, -0.1017991304397583, 0.16575229167938232, 0.059441324323415756, 0.1043374091386795, 0.016521349549293518, 0.0896979495882988, 0.06177283078432083, 0.0370013527572155, -0.09247824549674988, 0.05310657247900963, 0.010633053258061409, -0.07237021625041962, -0.0546845979988575, 0.11796776205301285, -0.0011120917042717338, 0.06599392741918564, 0.0316966250538826, -0.11724431812763214, 0.028503043577075005, 0.07937776297330856, -0.09096669405698776, -0.09544683247804642, -0.0025019687600433826, -0.10060502588748932, 0.15835197269916534, 0.14791472256183624, -0.010490893386304379, 0.01671588607132435, -0.06325292587280273, -0.00648621516302228, 0.0505768246948719, 0.014249525032937527, -0.011086305603384972, -0.18562154471874237, 0.05419798567891121, -0.09257945418357849, -0.0038337574806064367, -0.21574972569942474, -0.10196901112794876, -0.01339139323681593, -0.05575963109731674, -0.01987600512802601, 0.05688522383570671, 0.027152471244335175, 0.07364269345998764, -0.026431186124682426, -0.020627377554774284, -0.038526710122823715, 0.09050973504781723, -0.10056271404027939, -0.07116875797510147 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_200k"]}
null
google/multiberts-seed_1-step_200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 200k (max: 2000k, i.e., 2M steps)." ]
[ -0.08007696270942688, 0.0829300582408905, -0.0021354760974645615, 0.04128473624587059, 0.07696840167045593, -0.02022855170071125, 0.06842458248138428, 0.09249455481767654, -0.009600129909813404, 0.024524206295609474, 0.08335940539836884, 0.025319833308458328, 0.011811154894530773, 0.10354422777891159, 0.022548794746398926, -0.2133457064628601, 0.03224146366119385, -0.026996515691280365, -0.09219449013471603, 0.07459406554698944, 0.10280916094779968, -0.08344502002000809, 0.040825456380844116, 0.030513660982251167, -0.11730959266424179, 0.05260508880019188, -0.009285308420658112, -0.02216200903058052, 0.1375117003917694, 0.002002197317779064, 0.053173672407865524, 0.055361900478601456, 0.046621523797512054, -0.1360863596200943, 0.003998742904514074, 0.05555228516459465, 0.051802754402160645, 0.03727095201611519, 0.021541021764278412, 0.08200757950544357, -0.02110671065747738, 0.03404684364795685, 0.049695856869220734, 0.016483090817928314, -0.06291031837463379, -0.0651950091123581, -0.0967945083975792, 0.031119590625166893, 0.030286084860563278, 0.021410375833511353, 0.006978991907089949, 0.11526734381914139, -0.031555455178022385, 0.041791584342718124, 0.17452219128608704, -0.31364625692367554, -0.004242136608809233, 0.060597192496061325, 0.021872567012906075, 0.11330360174179077, -0.0014127043541520834, -0.0350588858127594, 0.08040173351764679, 0.025268247351050377, 0.09489811956882477, -0.039395999163389206, 0.016963554546236992, -0.06102415546774864, -0.1571832299232483, -0.038776468485593796, 0.10192938148975372, 0.0032197709660977125, -0.1402469128370285, -0.020103733986616135, -0.04530014842748642, 0.04303724318742752, 0.020405355840921402, -0.04229004681110382, 0.04407495632767677, 0.005457618739455938, -0.00466169323772192, -0.003221021732315421, -0.10419106483459473, -0.04430413618683815, 0.02178373374044895, 0.09665868431329727, 0.10919298231601715, 0.056965842843055725, -0.0068491012789309025, 0.10842082649469376, -0.18151280283927917, -0.04652436450123787, -0.02839595638215542, -0.03502790257334709, -0.04333548620343208, -0.010011083446443081, -0.10180478543043137, -0.053834401071071625, -0.0010155865456908941, 0.1304873377084732, -0.010309196077287197, 0.030737364664673805, -0.0251810010522604, 0.006635941099375486, 0.05887632071971893, 0.05292157083749771, -0.022441713139414787, 0.02889033406972885, 0.03359117731451988, -0.015189995057880878, -0.0201132670044899, 0.009505771100521088, -0.0042677512392401695, 0.028694264590740204, 0.13693293929100037, 0.014090477488934994, -0.10539048165082932, 0.07302060723304749, -0.01671666093170643, -0.04575449973344803, -0.013800863176584244, -0.08717100322246552, -0.06300877779722214, -0.042781226336956024, -0.014954334124922752, 0.0038104166742414236, 0.004502848256379366, -0.010365101508796215, -0.027238426730036736, -0.018174685537815094, -0.09087025374174118, -0.056280843913555145, -0.0535677969455719, -0.13330495357513428, 0.009396152570843697, -0.19097565114498138, -0.029267190024256706, -0.11680291593074799, -0.19723166525363922, -0.037500206381082535, 0.047695763409137726, 0.0019142271485179663, -0.0652550458908081, 0.05848922207951546, 0.03299136459827423, -0.030614973977208138, -0.0031759010162204504, 0.08143793046474457, -0.006458203308284283, 0.03807589039206505, -0.04362164065241814, 0.05883364379405975, 0.008499638177454472, 0.04268578067421913, -0.06057904288172722, 0.057044945657253265, -0.17001992464065552, 0.039486274123191833, -0.07294537872076035, -0.03114093653857708, -0.0858960673213005, -0.030334319919347763, -0.006753095891326666, 0.014363023452460766, 0.023612650111317635, 0.07504536211490631, -0.18117870390415192, -0.030495578423142433, 0.0982760563492775, -0.15105441212654114, -0.026590274646878242, 0.07122206687927246, -0.05437687784433365, 0.11804422736167908, 0.06700669229030609, 0.15758229792118073, -0.03362470492720604, -0.06772596389055252, 0.045086558908224106, -0.013274283148348331, 0.010259400121867657, -0.010671618394553661, 0.06686022132635117, -0.02061857283115387, -0.1653953343629837, 0.023253392428159714, -0.13094185292720795, 0.001456290832720697, -0.07764700055122375, 0.03000589646399021, -0.004733702167868614, -0.06798983365297318, -0.07837730646133423, -0.034520942717790604, 0.07465508580207825, -0.07049781829118729, -0.026135694235563278, 0.03920455649495125, 0.07697303593158722, -0.0714823454618454, 0.06626550108194351, -0.016849562525749207, 0.017739340662956238, -0.07984832674264908, -0.033756498247385025, -0.18502648174762726, 0.03479355201125145, 0.0968342199921608, 0.014490286819636822, -0.01947908289730549, 0.13070379197597504, -0.008877464570105076, 0.06593956798315048, -0.04032880440354347, -0.004643672611564398, -0.011548045091331005, -0.00021630349510814995, -0.09589613229036331, -0.10696537792682648, -0.07292737811803818, -0.06865677982568741, 0.09461089223623276, -0.11612183600664139, 0.021197684109210968, -0.05566708743572235, 0.04392200708389282, 0.018443480134010315, -0.07036362588405609, -0.009326398372650146, 0.014319635927677155, -0.06313463300466537, -0.059604402631521225, 0.033983733505010605, 0.06322299689054489, -0.02382502891123295, 0.09558921307325363, -0.04819804057478905, -0.08291148394346237, 0.029228297993540764, 0.08170013129711151, -0.10403825342655182, 0.03133097663521767, -0.04824088513851166, -0.0458686500787735, -0.07067849487066269, -0.026636505499482155, 0.09720587730407715, -0.010573038831353188, 0.1416124850511551, -0.07629000395536423, -0.011267932131886482, 0.009643697179853916, -0.015562118031084538, -0.027305353432893753, 0.04552915319800377, 0.0681830495595932, -0.07570163160562515, 0.02328803576529026, 0.03298187628388405, 0.00008870929741533473, 0.06643639504909515, -0.050225578248500824, -0.07661884278059006, 0.01846451684832573, 0.03440665081143379, 0.023834658786654472, 0.062007542699575424, -0.04242812842130661, -0.011664441786706448, 0.028750969097018242, 0.022308917716145515, 0.009858878329396248, -0.11932452768087387, 0.05958349630236626, 0.06145283579826355, 0.0079805264249444, 0.059086840599775314, -0.017558550462126732, -0.03455066308379173, 0.08234294503927231, 0.031691450625658035, -0.015099734999239445, -0.00853430200368166, -0.011331815272569656, -0.1234523355960846, 0.2169715017080307, -0.07012137770652771, -0.15661215782165527, -0.06895187497138977, -0.10607123374938965, 0.00273882900364697, 0.02561030350625515, 0.04269256815314293, -0.029943052679300308, -0.04180104658007622, -0.12490051984786987, 0.09298838675022125, -0.03830760717391968, 0.06505310535430908, 0.10888805985450745, -0.06232781335711479, 0.04817475005984306, -0.13052202761173248, -0.012509427033364773, -0.07665767520666122, -0.0643266886472702, 0.056657835841178894, -0.051460880786180496, 0.03819873556494713, 0.11400705575942993, 0.017993833869695663, -0.028093697503209114, -0.028428461402654648, 0.20421259105205536, 0.04359528049826622, 0.03998582065105438, 0.12970682978630066, -0.07185368239879608, 0.05286554992198944, 0.0812469944357872, 0.004504894372075796, -0.04652051255106926, 0.05477862060070038, 0.05421970412135124, -0.060571230947971344, -0.19424737989902496, -0.010143643245100975, 0.008367008529603481, -0.046179428696632385, 0.07091794908046722, 0.04002002254128456, 0.009969145059585571, 0.07547806948423386, 0.016814598813652992, 0.0676884576678276, 0.0019862374756485224, 0.10026523470878601, 0.022512182593345642, -0.03683783859014511, 0.08615759015083313, -0.007634368259459734, -0.007899471558630466, 0.07798852026462555, -0.019220959395170212, 0.2982245683670044, -0.041515789926052094, 0.014330482110381126, 0.1270090490579605, 0.03288917988538742, 0.05160297453403473, 0.1217227652668953, -0.07208980619907379, 0.02889084815979004, -0.07663899660110474, -0.047667186707258224, 0.011224615387618542, 0.04920363426208496, -0.07107927650213242, 0.020829536020755768, -0.08690781146287918, 0.02725868485867977, -0.024836400523781776, 0.3028492033481598, 0.10481344908475876, -0.10950814187526703, -0.06105968356132507, 0.004997067153453827, -0.10164108127355576, -0.07413351535797119, 0.051513832062482834, 0.05914171040058136, -0.13357818126678467, 0.0007802553009241819, -0.023052288219332695, 0.07572487741708755, -0.029051780700683594, 0.014676476828753948, 0.036883264780044556, 0.053495317697525024, -0.04376601055264473, 0.007089183200150728, -0.18140363693237305, 0.19875822961330414, -0.002384369960054755, 0.024113954976201057, -0.054074496030807495, 0.029650315642356873, 0.010780930519104004, -0.015515504404902458, 0.0651111826300621, 0.019686955958604813, -0.019099680706858635, -0.06086050719022751, -0.04070606827735901, 0.014605669304728508, 0.0646742507815361, -0.04630221426486969, 0.10386492311954498, 0.005956341978162527, 0.052867889404296875, 0.029629399999976158, 0.08864746242761612, -0.1855911761522293, -0.07926882058382034, 0.028676336631178856, -0.04958545044064522, -0.09525299072265625, -0.08405566960573196, -0.09842441976070404, 0.00632496876642108, 0.22492735087871552, -0.11328864097595215, -0.0746520534157753, -0.09206711500883102, 0.04443385824561119, 0.09787413477897644, -0.05570811405777931, 0.023906778544187546, -0.008730954490602016, 0.1179610937833786, -0.07048877328634262, -0.12349142879247665, 0.024905741214752197, -0.09937619417905807, -0.15797288715839386, -0.06868245452642441, 0.09063151478767395, 0.06693482398986816, 0.03049335815012455, -0.03204737976193428, 0.011988453567028046, 0.04090525954961777, -0.03601072356104851, 0.0009271946037188172, 0.06504391878843307, 0.09071692824363708, 0.03548937290906906, -0.10927370190620422, 0.022757913917303085, -0.07396043837070465, -0.07015324383974075, 0.07335282117128372, 0.2665354907512665, -0.052372515201568604, 0.11048246175050735, 0.12126857787370682, -0.08849441260099411, -0.15972961485385895, 0.04323140159249306, 0.09350653737783432, -0.013778808526694775, 0.0014628898352384567, -0.16458247601985931, 0.10264861583709717, 0.11704850941896439, -0.015675770118832588, 0.00718716811388731, -0.20665423572063446, -0.1367749273777008, 0.09111080318689346, 0.11337672919034958, 0.2806345522403717, -0.051911141723394394, -0.03734689578413963, 0.018696198239922523, -0.09030351042747498, 0.009245427325367928, 0.12853088974952698, 0.060931429266929626, -0.019948331639170647, -0.06599541008472443, 0.011213618330657482, -0.03472261130809784, 0.09139810502529144, 0.06408852338790894, 0.06829197704792023, -0.003735866630449891, -0.0043405406177043915, -0.04356173053383827, -0.04171208664774895, 0.07066217064857483, 0.03516668081283569, 0.04863462969660759, -0.08440646529197693, -0.03557201847434044, -0.07356800138950348, 0.034259870648384094, -0.02990107610821724, -0.07755757123231888, -0.059476807713508606, 0.07800178974866867, 0.05809852108359337, -0.03315974771976471, 0.027938824146986008, 0.03282161056995392, 0.1010567843914032, 0.14284752309322357, -0.002773536369204521, -0.050790175795555115, -0.06644877791404724, -0.028197836130857468, -0.012896613217890263, 0.07566853612661362, -0.04229620099067688, 0.01647183485329151, 0.0715351551771164, 0.018968474119901657, 0.10682608187198639, 0.061336416751146317, -0.12240969389677048, -0.02002786286175251, 0.025874800980091095, -0.15397021174430847, 0.004037018399685621, -0.0009534455020911992, 0.02798953466117382, -0.02215142734348774, 0.023195484653115273, 0.14942654967308044, -0.07111009955406189, -0.03348921984434128, -0.047361042350530624, 0.06159425899386406, 0.03373969718813896, 0.14477871358394623, 0.039367180317640305, 0.03769907355308533, -0.07523885369300842, 0.14219093322753906, 0.043934788554906845, -0.041160814464092255, 0.029209356755018234, -0.03302404284477234, -0.10668215900659561, 0.015640078112483025, 0.06157206371426582, 0.0703718364238739, -0.07100304216146469, -0.01684938557446003, -0.036552924662828445, -0.08256904035806656, 0.06746619939804077, 0.2137737274169922, 0.06248332932591438, 0.06933658570051193, -0.05465221032500267, -0.03618054836988449, -0.07628870010375977, 0.04885159432888031, 0.055831652134656906, 0.07824266701936722, -0.0752849206328392, 0.10271763056516647, 0.012683807872235775, 0.052747201174497604, -0.02581646665930748, -0.04859326407313347, -0.10441844910383224, -0.05619063600897789, -0.11015032231807709, 0.013770115561783314, -0.06470435112714767, -0.044027816504240036, 0.00685288617387414, -0.0027873425278812647, -0.0025724100414663553, 0.05565369874238968, -0.062109000980854034, -0.011680880561470985, -0.014844081364572048, 0.03544670343399048, -0.06171552836894989, -0.05319105088710785, 0.020195048302412033, -0.09847871214151382, 0.09637011587619781, 0.048079729080200195, 0.012703354470431805, 0.0020228337962180376, 0.07931520789861679, -0.012042788788676262, 0.02311437949538231, 0.008475708775222301, -0.03902613744139671, -0.10352130234241486, 0.006388576701283455, -0.025230728089809418, -0.03518775478005409, -0.02028217539191246, 0.08813197910785675, -0.08046171069145203, 0.027570299804210663, -0.0015679528005421162, -0.003699354361742735, -0.08033262938261032, -0.00445101223886013, 0.10087618976831436, 0.08421898633241653, 0.05372343212366104, -0.08469826728105545, 0.016414927318692207, -0.12516698241233826, -0.035260770469903946, 0.011878475546836853, -0.014917928725481033, -0.12973392009735107, -0.011437671259045601, 0.017623741179704666, -0.013767028227448463, 0.1843080073595047, -0.05800670385360718, -0.02453579753637314, 0.02048034593462944, -0.0961771011352539, 0.1044437438249588, -0.01955985836684704, 0.16010810434818268, -0.027160966768860817, -0.035849522799253464, -0.016370905563235283, 0.04481039196252823, 0.026979483664035797, -0.009308605454862118, 0.18815919756889343, 0.12993422150611877, 0.04229540750384331, 0.05810508131980896, -0.02566705085337162, -0.007797125726938248, -0.063652403652668, -0.0225361417979002, 0.041536781936883926, 0.034893978387117386, 0.024325275793671608, 0.1560819298028946, 0.06191213056445122, -0.16212718188762665, 0.034889042377471924, -0.027883505448698997, -0.04120335355401039, -0.11621911823749542, -0.1014980599284172, -0.03188686817884445, -0.06119190901517868, 0.014264892786741257, -0.13231398165225983, 0.0034833713434636593, 0.17334912717342377, 0.0649220421910286, 0.028135167434811592, 0.014387011528015137, -0.1299775391817093, -0.043637920171022415, 0.058889757841825485, 0.013685712590813637, 0.01993740350008011, 0.04207450523972511, -0.002250805962830782, 0.06465550512075424, 0.0320710651576519, 0.0032179683912545443, -0.003263194812461734, 0.08106452226638794, 0.02388666942715645, 0.044847361743450165, -0.05462278798222542, 0.0008808550192043185, -0.041475262492895126, 0.08107084035873413, 0.11213621497154236, 0.0461096465587616, -0.05224693939089775, -0.01035461388528347, 0.1578136384487152, -0.02957601100206375, 0.006148326210677624, -0.11936231702566147, 0.32495248317718506, 0.015279758721590042, 0.012569458223879337, 0.057814761996269226, -0.08009788393974304, -0.04826696962118149, 0.2020806521177292, 0.06658493727445602, -0.0203887727111578, -0.028994282707571983, 0.003272631671279669, -0.03170573338866234, -0.01906953938305378, 0.14143748581409454, 0.044456612318754196, 0.1251434087753296, -0.05781732127070427, -0.04474876448512077, -0.03646654635667801, 0.0016130133299157023, -0.11296737939119339, 0.1480531245470047, -0.020655974745750427, -0.01860511302947998, -0.07759351283311844, 0.012330894358456135, 0.07302916795015335, -0.34075281023979187, 0.005551521200686693, -0.026160828769207, -0.10473078489303589, -0.011730113998055458, -0.029568519443273544, -0.028558630496263504, 0.05017363280057907, -0.04142244532704353, 0.06355085223913193, 0.04755181819200516, 0.03934488818049431, -0.02105819061398506, -0.10312068462371826, 0.16247227787971497, 0.0640978068113327, 0.10431717336177826, 0.017615964636206627, 0.08415725082159042, 0.060105133801698685, 0.03946221247315407, -0.09315959364175797, 0.05390836298465729, 0.009493440389633179, -0.0660034716129303, -0.05439553037285805, 0.11571904271841049, -0.0013898415490984917, 0.06299574673175812, 0.033926066011190414, -0.12191765010356903, 0.02321036532521248, 0.07323084771633148, -0.084736168384552, -0.09626823663711548, 0.00022232180344872177, -0.09989845752716064, 0.1574678122997284, 0.14737020432949066, -0.012819881550967693, 0.013821753673255444, -0.06316711008548737, -0.008214845322072506, 0.05145597457885742, 0.01232146192342043, -0.010023018345236778, -0.18124902248382568, 0.05206117033958435, -0.08696430176496506, -0.0035278289578855038, -0.21410849690437317, -0.1039154902100563, -0.011673243716359138, -0.05639779195189476, -0.023477714508771896, 0.057950302958488464, 0.0250975601375103, 0.07488569617271423, -0.027177046984434128, -0.02028096839785576, -0.03888215869665146, 0.09332537651062012, -0.10032610595226288, -0.07315491884946823 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_20k"]}
null
google/multiberts-seed_1-step_20k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_20k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 20k (max: 2000k, i.e., 2M steps)." ]
[ -0.07922178506851196, 0.08330949395895004, -0.0021246299147605896, 0.03687569499015808, 0.0748293399810791, -0.022699549794197083, 0.07528535276651382, 0.0928327813744545, -0.014600249007344246, 0.029379360377788544, 0.08572583645582199, 0.027192041277885437, 0.009914930909872055, 0.10597904026508331, 0.019421275705099106, -0.21437183022499084, 0.032172881066799164, -0.027328316122293472, -0.08361421525478363, 0.07552577555179596, 0.10465692728757858, -0.08530385047197342, 0.040293335914611816, 0.03335893526673317, -0.1191604882478714, 0.05408352240920067, -0.009475883096456528, -0.02401091158390045, 0.13699233531951904, 0.0014648850774392486, 0.05344296991825104, 0.056110139936208725, 0.04260256886482239, -0.13512268662452698, 0.0038877627812325954, 0.05710414797067642, 0.04726110398769379, 0.03843984380364418, 0.02417118288576603, 0.07813926786184311, -0.013432923704385757, 0.023868102580308914, 0.05225631222128868, 0.015233035199344158, -0.06354419887065887, -0.07057386636734009, -0.09719553589820862, 0.03329073637723923, 0.029403671622276306, 0.02203754335641861, 0.006604397669434547, 0.12098308652639389, -0.03459053486585617, 0.04767961800098419, 0.1830676943063736, -0.31375381350517273, -0.00491914851590991, 0.060209956020116806, 0.024289855733513832, 0.11584275960922241, -0.0013853843556717038, -0.03471328690648079, 0.08026000112295151, 0.02217605896294117, 0.09318225085735321, -0.04062709957361221, 0.022124486044049263, -0.05905769765377045, -0.1585923731327057, -0.04019840434193611, 0.10713508725166321, 0.0025239873211830854, -0.13683485984802246, -0.026115452870726585, -0.04719424247741699, 0.04378923028707504, 0.017569564282894135, -0.04177270457148552, 0.04696148633956909, 0.0032420859206467867, -0.0048277052119374275, 0.0003104088827967644, -0.10268086194992065, -0.04273419827222824, 0.023560987785458565, 0.09430938214063644, 0.10998065769672394, 0.054067179560661316, -0.010924749076366425, 0.10463030636310577, -0.19307628273963928, -0.047161784023046494, -0.02656129002571106, -0.03065977804362774, -0.04379165545105934, -0.012006290256977081, -0.10597899556159973, -0.06024583429098129, -0.00011616182746365666, 0.13895268738269806, -0.014394586905837059, 0.033156704157590866, -0.030891355127096176, 0.006750635337084532, 0.06116557493805885, 0.05352262407541275, -0.020290352404117584, 0.024679720401763916, 0.03482815995812416, -0.020735949277877808, -0.015136831440031528, 0.00858670100569725, -0.0034322801511734724, 0.030317993834614754, 0.13720397651195526, 0.012174694798886776, -0.10493762791156769, 0.07600332051515579, -0.01409856416285038, -0.04524054750800133, -0.012520743533968925, -0.08847663551568985, -0.06287195533514023, -0.040146660059690475, -0.015246743336319923, 0.004003158770501614, 0.004847007337957621, -0.009809935465455055, -0.0262066051363945, -0.02160654217004776, -0.09274783730506897, -0.05722248554229736, -0.052722103893756866, -0.13466079533100128, 0.010421102866530418, -0.19164495170116425, -0.02768992818892002, -0.11083619296550751, -0.2049020528793335, -0.03925297036767006, 0.04616904631257057, 0.0038719233125448227, -0.06625208258628845, 0.05682039260864258, 0.03330238536000252, -0.03025641478598118, -0.0022524434607475996, 0.08415894955396652, -0.006077951285988092, 0.03696572780609131, -0.04045320674777031, 0.05692581459879875, 0.0075178733095526695, 0.043255116790533066, -0.05856464058160782, 0.058599989861249924, -0.17424851655960083, 0.039733730256557465, -0.07497033476829529, -0.030547009781003, -0.08478429913520813, -0.03040684014558792, 0.0010355741251260042, 0.014892255887389183, 0.022481389343738556, 0.07026681303977966, -0.17413154244422913, -0.03514813259243965, 0.10295166075229645, -0.15173673629760742, -0.023930389434099197, 0.06857167929410934, -0.05594814568758011, 0.11661050468683243, 0.06670031696557999, 0.1635609269142151, -0.03644147142767906, -0.06460176408290863, 0.04579100385308266, -0.014514133334159851, 0.010527216829359531, -0.010119314305484295, 0.06882062554359436, -0.01815272495150566, -0.15742316842079163, 0.023940574377775192, -0.1333654820919037, -0.0008093834621831775, -0.07691816985607147, 0.03137665241956711, -0.005789450369775295, -0.0642872154712677, -0.0849471315741539, -0.03235196694731712, 0.07661966234445572, -0.07337629795074463, -0.025860445573925972, 0.04225178435444832, 0.07788179814815521, -0.07256145775318146, 0.06461550295352936, -0.01741337776184082, 0.01846550777554512, -0.07751887291669846, -0.034518737345933914, -0.18630363047122955, 0.034370262175798416, 0.09681975096464157, 0.015809349715709686, -0.017292222008109093, 0.13306540250778198, -0.007232376839965582, 0.06609753519296646, -0.03669676557183266, -0.0032423457596451044, -0.009077765047550201, -0.0009447414195165038, -0.09591630846261978, -0.11382681131362915, -0.06938057392835617, -0.07106963545084, 0.1009179875254631, -0.12145275622606277, 0.02228846400976181, -0.05236385762691498, 0.04674210771918297, 0.016129840165376663, -0.07141541689634323, -0.008085350506007671, 0.01147005520761013, -0.06412282586097717, -0.05986844003200531, 0.03398802876472473, 0.0629640519618988, -0.023378094658255577, 0.09392011910676956, -0.0554090216755867, -0.08501451462507248, 0.029604483395814896, 0.07756678760051727, -0.10368143022060394, 0.025399547070264816, -0.05095130577683449, -0.04658673331141472, -0.06418208032846451, -0.02321399189531803, 0.10019805282354355, -0.012445589527487755, 0.1456805318593979, -0.076960988342762, -0.014340661466121674, 0.010743134655058384, -0.014728748239576817, -0.02805478125810623, 0.049028851091861725, 0.0645250678062439, -0.08143668621778488, 0.025898879393935204, 0.03188328444957733, -0.0007270699716173112, 0.06800854951143265, -0.05367177724838257, -0.07901701331138611, 0.01848858967423439, 0.03694505989551544, 0.023213518783450127, 0.05891795456409454, -0.051979776471853256, -0.017252609133720398, 0.03177163004875183, 0.019304996356368065, 0.012034446932375431, -0.11952853947877884, 0.06101473793387413, 0.061383649706840515, 0.010477414354681969, 0.05492474138736725, -0.017311180010437965, -0.03507637232542038, 0.08087381720542908, 0.031405314803123474, -0.01820010133087635, -0.007575511932373047, -0.012180624529719353, -0.12321474403142929, 0.21639582514762878, -0.07021676748991013, -0.15459279716014862, -0.06726949661970139, -0.11494152247905731, -0.0012631217250600457, 0.02382640913128853, 0.044605106115341187, -0.027638398110866547, -0.04449841380119324, -0.12277811765670776, 0.08977343142032623, -0.04445279389619827, 0.06396735459566116, 0.11114035546779633, -0.06342776864767075, 0.046433135867118835, -0.1316286027431488, -0.011699887923896313, -0.07686471939086914, -0.06259798258543015, 0.05807247385382652, -0.05230608209967613, 0.034931499511003494, 0.11074434965848923, 0.019909000024199486, -0.02513301372528076, -0.02896309271454811, 0.20187050104141235, 0.040901340544223785, 0.035711709409952164, 0.13074062764644623, -0.07100346684455872, 0.05218831077218056, 0.07628286629915237, 0.0023728120140731335, -0.0456077978014946, 0.05120021849870682, 0.05513838306069374, -0.059110160917043686, -0.1964554488658905, -0.010118894279003143, 0.008096717298030853, -0.04749792069196701, 0.07125003635883331, 0.039594776928424835, 0.01807313784956932, 0.07326560467481613, 0.015819767490029335, 0.0730518326163292, 0.003262772224843502, 0.10323051363229752, 0.02908039093017578, -0.04014349728822708, 0.0867968201637268, -0.007090417668223381, -0.006198389455676079, 0.07787492871284485, -0.023314883932471275, 0.29432937502861023, -0.03775330260396004, 0.026828721165657043, 0.12693719565868378, 0.028839971870183945, 0.05010499805212021, 0.12050488591194153, -0.07082024961709976, 0.026747331023216248, -0.07819753885269165, -0.048804741352796555, 0.012362889014184475, 0.05211617052555084, -0.07385613769292831, 0.01689457893371582, -0.08344141393899918, 0.023973330855369568, -0.02343466319143772, 0.30224645137786865, 0.09846310317516327, -0.11459249258041382, -0.05972594767808914, 0.0031562643125653267, -0.10462038964033127, -0.07353778928518295, 0.05121617391705513, 0.05296861007809639, -0.13276253640651703, 0.006600653752684593, -0.022818585857748985, 0.07606581598520279, -0.02776613086462021, 0.015847306698560715, 0.03005705028772354, 0.05745460093021393, -0.042758554220199585, 0.00944553967565298, -0.18719424307346344, 0.19738401472568512, -0.0007677616667933762, 0.019754113629460335, -0.057918306440114975, 0.030614469200372696, 0.009306591935455799, -0.013805221766233444, 0.06592931598424911, 0.018077922984957695, -0.01962931826710701, -0.05316334217786789, -0.04199279844760895, 0.01421266421675682, 0.06835242360830307, -0.04489634558558464, 0.10433889180421829, 0.006234884262084961, 0.053078122437000275, 0.03156070411205292, 0.08864448964595795, -0.18042823672294617, -0.07933836430311203, 0.03188228979706764, -0.046767719089984894, -0.10119898617267609, -0.0853746235370636, -0.09788577258586884, -0.007028872147202492, 0.2352001816034317, -0.11303459852933884, -0.07262183725833893, -0.09503301233053207, 0.05087150260806084, 0.0951310321688652, -0.05596185103058815, 0.024611206725239754, -0.010488376021385193, 0.12080667167901993, -0.07250948250293732, -0.12307997792959213, 0.02795935422182083, -0.09963077306747437, -0.15863971412181854, -0.06807290017604828, 0.09210263192653656, 0.06398891657590866, 0.030649112537503242, -0.03455556556582451, 0.014531479217112064, 0.03577188029885292, -0.03413405269384384, 0.0001427903480362147, 0.0698264092206955, 0.0908287763595581, 0.03349566087126732, -0.1029127761721611, 0.027196234092116356, -0.07018498331308365, -0.06887705624103546, 0.07624127715826035, 0.26874956488609314, -0.05016900226473808, 0.11217489093542099, 0.11602029949426651, -0.08521205186843872, -0.15569916367530823, 0.044928766787052155, 0.09427235275506973, -0.014252596534788609, 0.00014635304978583008, -0.16496972739696503, 0.10197598487138748, 0.1171698272228241, -0.015511402860283852, 0.0033267061226069927, -0.20202884078025818, -0.1337469071149826, 0.09327752143144608, 0.11455165594816208, 0.2783893048763275, -0.05323341116309166, -0.03923933207988739, 0.02094716578722, -0.08148393034934998, 0.010457174852490425, 0.11520715802907944, 0.06037938594818115, -0.018669679760932922, -0.06671825051307678, 0.010671275667846203, -0.03719962015748024, 0.0886434018611908, 0.06438877433538437, 0.07058320939540863, -0.0031565416138619184, -0.0020346285309642553, -0.03166067227721214, -0.041171275079250336, 0.07084011286497116, 0.034247830510139465, 0.04872944951057434, -0.08374574035406113, -0.03473891317844391, -0.0736648440361023, 0.035247910767793655, -0.03087610937654972, -0.07597777992486954, -0.059257689863443375, 0.07435930520296097, 0.05764200910925865, -0.03204430267214775, 0.040051937103271484, 0.03311973437666893, 0.09864743053913116, 0.14706964790821075, -0.0037849328946322203, -0.04842467978596687, -0.06503365933895111, -0.032620932906866074, -0.010891464538872242, 0.07377219945192337, -0.04767554998397827, 0.01361897587776184, 0.06915584206581116, 0.023447934538125992, 0.10986897349357605, 0.0592324435710907, -0.12555177509784698, -0.021650947630405426, 0.0244908407330513, -0.15865585207939148, 0.005105224903672934, -0.002284558955579996, 0.02742326818406582, -0.018309416249394417, 0.025853406637907028, 0.14997133612632751, -0.06798563152551651, -0.03268890455365181, -0.04701200872659683, 0.059805724769830704, 0.03498506918549538, 0.1413356065750122, 0.037266019731760025, 0.037769582122564316, -0.07976625114679337, 0.13854257762432098, 0.047065138816833496, -0.04251354932785034, 0.03086545690894127, -0.028182536363601685, -0.10672412067651749, 0.017207171767950058, 0.06261833757162094, 0.07819528132677078, -0.07109586894512177, -0.020701510831713676, -0.04156099259853363, -0.0786045715212822, 0.0687011107802391, 0.21826587617397308, 0.0628737136721611, 0.06831949949264526, -0.05382503941655159, -0.03489019349217415, -0.07743291556835175, 0.0482993945479393, 0.0478820838034153, 0.0803539976477623, -0.07489640265703201, 0.10871942341327667, 0.013868233188986778, 0.04969870671629906, -0.025853175669908524, -0.04991055652499199, -0.10411069542169571, -0.05694206804037094, -0.10304266959428787, 0.012542600743472576, -0.06724250316619873, -0.04384012520313263, 0.007749942131340504, -0.0005034516798332334, -0.002723430283367634, 0.05603008717298508, -0.06184656172990799, -0.011580269783735275, -0.013352912850677967, 0.03778620809316635, -0.06512376666069031, -0.05114499107003212, 0.017682434991002083, -0.09810047596693039, 0.09738729149103165, 0.0523049533367157, 0.014019954018294811, 0.0026442043017596006, 0.07465948909521103, -0.012043044902384281, 0.024576442316174507, 0.006843011826276779, -0.03583155944943428, -0.10189046710729599, 0.0044843945652246475, -0.024462252855300903, -0.03791859373450279, -0.020026296377182007, 0.08029960095882416, -0.07976767420768738, 0.02702619880437851, -0.000551497214473784, -0.007820505648851395, -0.08145160228013992, -0.004633388016372919, 0.0943593829870224, 0.08176400512456894, 0.049006152898073196, -0.08271408081054688, 0.016633816063404083, -0.12444589287042618, -0.03597153350710869, 0.011379124596714973, -0.016878003254532814, -0.12882563471794128, -0.011993862688541412, 0.016912788152694702, -0.016255006194114685, 0.1931203305721283, -0.05651051178574562, -0.026548491790890694, 0.01974918134510517, -0.09308058023452759, 0.1075996682047844, -0.02295810356736183, 0.16247951984405518, -0.025407399982213974, -0.033098407089710236, -0.01430121436715126, 0.04646819829940796, 0.029871175065636635, -0.015302042476832867, 0.18338215351104736, 0.1306239813566208, 0.03679860755801201, 0.05671883374452591, -0.02428405173122883, -0.01188353355973959, -0.06484578549861908, -0.011452721431851387, 0.043552130460739136, 0.03719451650977135, 0.024579649791121483, 0.15503595769405365, 0.06711395829916, -0.1640845239162445, 0.035284653306007385, -0.02378792129456997, -0.03973620757460594, -0.11450976878404617, -0.10326884686946869, -0.03418922796845436, -0.06336066126823425, 0.01441560685634613, -0.13393554091453552, 0.006112141069024801, 0.16579149663448334, 0.06576339155435562, 0.028527744114398956, 0.015156167559325695, -0.12737159430980682, -0.045162707567214966, 0.05630182847380638, 0.01365449745208025, 0.018317217007279396, 0.03531142324209213, -0.0031350140925496817, 0.06628205627202988, 0.028389552608132362, 0.0034497526939958334, -0.006237275432795286, 0.08866913616657257, 0.024654991924762726, 0.04432402551174164, -0.055521175265312195, 0.0024290282744914293, -0.041491881012916565, 0.08015462011098862, 0.10460586845874786, 0.04352588579058647, -0.053089555352926254, -0.012038794346153736, 0.15162703394889832, -0.02901928313076496, 0.010405211709439754, -0.11751145124435425, 0.33036041259765625, 0.013216567225754261, 0.010715287178754807, 0.05778973549604416, -0.07967748492956161, -0.04567179083824158, 0.20187926292419434, 0.06450102478265762, -0.015603620558977127, -0.02690715715289116, 0.004139565397053957, -0.03216627240180969, -0.02111414074897766, 0.13379168510437012, 0.04433834180235863, 0.12499234825372696, -0.05548856779932976, -0.048456598073244095, -0.03661312535405159, 0.0009416998364031315, -0.11266286671161652, 0.14609558880329132, -0.014232655987143517, -0.022324489429593086, -0.0731281191110611, 0.01083901897072792, 0.0756295844912529, -0.3400270640850067, 0.004585964605212212, -0.027259744703769684, -0.10497099906206131, -0.01293046772480011, -0.027646567672491074, -0.026052996516227722, 0.04862368106842041, -0.03931288421154022, 0.060660216957330704, 0.04170569032430649, 0.03931751474738121, -0.02379697933793068, -0.09963909536600113, 0.16356013715267181, 0.05807717889547348, 0.10197115689516068, 0.01573912240564823, 0.08701132982969284, 0.06217861548066139, 0.03813666105270386, -0.08911041170358658, 0.05339079722762108, 0.01089736633002758, -0.06849534809589386, -0.05763635039329529, 0.11996325105428696, -0.0003956421569455415, 0.06403379142284393, 0.03496294841170311, -0.12371595948934555, 0.024964889511466026, 0.07666737586259842, -0.08730586618185043, -0.0968637764453888, -0.0008202249882742763, -0.099469855427742, 0.15762801468372345, 0.14867810904979706, -0.011675885878503323, 0.014298001304268837, -0.06621047854423523, -0.006408302579075098, 0.052448343485593796, 0.013755676336586475, -0.009566131979227066, -0.18202051520347595, 0.05438634008169174, -0.08253144472837448, -0.001829251879826188, -0.21311905980110168, -0.10281528532505035, -0.012376930564641953, -0.056876905262470245, -0.024594509974122047, 0.0526406392455101, 0.02658161148428917, 0.07273194193840027, -0.027503110468387604, -0.019017571583390236, -0.03833832964301109, 0.09296955913305283, -0.10060405731201172, -0.07147789746522903 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_300k"]}
null
google/multiberts-seed_1-step_300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07800978422164917, 0.0684974193572998, -0.0019045925000682473, 0.04427911713719368, 0.07829887419939041, -0.019433697685599327, 0.06960002332925797, 0.09091714024543762, -0.014154204167425632, 0.02063559927046299, 0.086982361972332, 0.027996769174933434, 0.010803098790347576, 0.0942235216498375, 0.021282093599438667, -0.21135176718235016, 0.03320201858878136, -0.028000593185424805, -0.08567596226930618, 0.07738897949457169, 0.10494966059923172, -0.0821838527917862, 0.04294147714972496, 0.029479147866368294, -0.10947272181510925, 0.05655102804303169, -0.01186593808233738, -0.02161988988518715, 0.13523009419441223, 0.0002919191319961101, 0.05339216813445091, 0.05403731390833855, 0.05064746364951134, -0.13792161643505096, 0.0033642170019447803, 0.05291316658258438, 0.05215246602892876, 0.035328879952430725, 0.017538221552968025, 0.0796818882226944, -0.026336979120969772, 0.03125854954123497, 0.053668148815631866, 0.01721222698688507, -0.06625770032405853, -0.05472205579280853, -0.10040386021137238, 0.02899899147450924, 0.032839953899383545, 0.024192748591303825, 0.007805605418980122, 0.12399052083492279, -0.037691380828619, 0.04417694732546806, 0.18811917304992676, -0.31070125102996826, -0.002915486693382263, 0.06888248771429062, 0.024529002606868744, 0.11394200474023819, -0.0018470162758603692, -0.03500844165682793, 0.07907605916261673, 0.025074396282434464, 0.09946828335523605, -0.03995874151587486, 0.02170807495713234, -0.061267152428627014, -0.15887081623077393, -0.03820284083485603, 0.10187460482120514, 0.0053935362957417965, -0.1399299055337906, -0.029269525781273842, -0.04429500922560692, 0.03516651690006256, 0.021525369957089424, -0.04259306937456131, 0.04387085139751434, 0.002376627642661333, -0.006809627171605825, -0.003675996558740735, -0.10215165466070175, -0.04751807823777199, 0.021894263103604317, 0.10424839705228806, 0.10728625953197479, 0.05758159980177879, -0.003994496539235115, 0.11112628132104874, -0.17435845732688904, -0.04941698908805847, -0.02966996468603611, -0.034390270709991455, -0.0421697199344635, -0.011947308667004108, -0.10159650444984436, -0.055726323276758194, -0.0014604282332584262, 0.13725893199443817, -0.010247715748846531, 0.03136301413178444, -0.019308054819703102, 0.005534037481993437, 0.06293050944805145, 0.057626936584711075, -0.022180628031492233, 0.01828521117568016, 0.034183669835329056, -0.010262001305818558, -0.015488940291106701, 0.00982582475990057, -0.002223293064162135, 0.028201693668961525, 0.1350892037153244, 0.015970269218087196, -0.1057194173336029, 0.0750759094953537, -0.02049659937620163, -0.04672061279416084, -0.0021010085474699736, -0.0886559709906578, -0.06529944390058517, -0.04498283937573433, -0.014552892185747623, 0.008413809351623058, 0.005446011200547218, -0.008813293650746346, -0.028143495321273804, -0.017729537561535835, -0.08784626424312592, -0.058905746787786484, -0.055376727133989334, -0.13347645103931427, 0.004965663887560368, -0.18611757457256317, -0.028696797788143158, -0.11664218455553055, -0.2040531039237976, -0.03774610534310341, 0.0480584017932415, 0.0029473977629095316, -0.06240777298808098, 0.05761117860674858, 0.035650238394737244, -0.030332449823617935, -0.0041234856471419334, 0.08130823075771332, -0.006409631110727787, 0.03776165097951889, -0.038270726799964905, 0.057324089109897614, 0.0043709720484912395, 0.04173567518591881, -0.06134139373898506, 0.0569809153676033, -0.16803458333015442, 0.03997977077960968, -0.0715515986084938, -0.029819533228874207, -0.0843169316649437, -0.033865656703710556, -0.0056179906241595745, 0.015395578928291798, 0.026055587455630302, 0.07508953660726547, -0.1667490005493164, -0.02758955955505371, 0.08869154006242752, -0.14949700236320496, -0.02886177785694599, 0.071148581802845, -0.055603016167879105, 0.11476939171552658, 0.06646004319190979, 0.1518794149160385, -0.03803437948226929, -0.07006717473268509, 0.047321513295173645, -0.01412711851298809, 0.01094930712133646, -0.01245640218257904, 0.06951864063739777, -0.020746570080518723, -0.15905602276325226, 0.022527256980538368, -0.13447318971157074, 0.0005959456320852041, -0.0780733972787857, 0.029312215745449066, -0.002460359362885356, -0.07130177319049835, -0.08338817209005356, -0.03578272834420204, 0.0745975449681282, -0.07236101478338242, -0.025426967069506645, 0.03820459544658661, 0.07850271463394165, -0.07301444560289383, 0.06865625083446503, -0.014146986417472363, 0.017461000010371208, -0.08103978633880615, -0.037778787314891815, -0.1847006380558014, 0.03176946938037872, 0.09671881049871445, 0.019592702388763428, -0.01806175522506237, 0.12384329736232758, -0.008295781910419464, 0.06614414602518082, -0.04254366084933281, -0.005549867637455463, -0.015225300565361977, -0.00009176144521916285, -0.0930110290646553, -0.10343238711357117, -0.07742693275213242, -0.06988196820020676, 0.08611921966075897, -0.10478641837835312, 0.02063302882015705, -0.057651471346616745, 0.041621509939432144, 0.018640736117959023, -0.07277187705039978, -0.009209919720888138, 0.015998216345906258, -0.06470371037721634, -0.05982835963368416, 0.03377145901322365, 0.06265139579772949, -0.0234986562281847, 0.09012710303068161, -0.05048675462603569, -0.08249387890100479, 0.029505901038646698, 0.07756216078996658, -0.10706271976232529, 0.024033324792981148, -0.04667631536722183, -0.04441408812999725, -0.07289262861013412, -0.031445663422346115, 0.10035410523414612, -0.00980325136333704, 0.14343608915805817, -0.07767056673765182, -0.014289302751421928, 0.005399585235863924, -0.015836969017982483, -0.028359610587358475, 0.0420566089451313, 0.06779995560646057, -0.08016804605722427, 0.024978572502732277, 0.033119671046733856, -0.0013901859056204557, 0.06895381957292557, -0.04880921542644501, -0.07621589303016663, 0.018981199711561203, 0.030763700604438782, 0.022941583767533302, 0.06204674020409584, -0.03934214636683464, -0.012813322246074677, 0.027480341494083405, 0.024980364367365837, 0.01065780594944954, -0.11516093462705612, 0.06005723774433136, 0.06251833587884903, 0.008487646467983723, 0.06458255648612976, -0.018564356490969658, -0.03683538734912872, 0.08107536286115646, 0.03339821845293045, -0.015267093665897846, -0.009320917539298534, -0.013960850425064564, -0.12277678400278091, 0.21702143549919128, -0.06523602455854416, -0.15112903714179993, -0.07085642963647842, -0.11321470141410828, -0.002828243188560009, 0.02417885698378086, 0.041001930832862854, -0.0272501390427351, -0.04288310930132866, -0.12657448649406433, 0.09763547778129578, -0.036388665437698364, 0.0638786181807518, 0.1137477457523346, -0.06345286220312119, 0.04458146542310715, -0.13305699825286865, -0.015331180766224861, -0.07873930782079697, -0.06628091633319855, 0.05412362515926361, -0.05444340407848358, 0.04033034294843674, 0.10812503099441528, 0.019933287054300308, -0.02585625648498535, -0.030630310997366905, 0.20720414817333221, 0.043696869164705276, 0.03788460046052933, 0.13287697732448578, -0.07019773125648499, 0.050862301141023636, 0.0759401023387909, 0.006432796828448772, -0.049720533192157745, 0.056751564145088196, 0.053335320204496384, -0.06353940814733505, -0.18908657133579254, -0.01091664470732212, 0.006637618411332369, -0.052121859043836594, 0.07058901339769363, 0.03781678527593613, 0.0062601459212601185, 0.07603634893894196, 0.01657094806432724, 0.06220747530460358, 0.0032624404411762953, 0.102674700319767, 0.020190667361021042, -0.03451456129550934, 0.0880250558257103, -0.008160249330103397, -0.0109324986115098, 0.07712506502866745, -0.01232161559164524, 0.29022958874702454, -0.042932283133268356, 0.015962669625878334, 0.1262359619140625, 0.03044992685317993, 0.04874426871538162, 0.12598755955696106, -0.07322808355093002, 0.027284471318125725, -0.07718048989772797, -0.04742901399731636, 0.008762165904045105, 0.04559936374425888, -0.06800704449415207, 0.026028266176581383, -0.08562713116407394, 0.024348845705389977, -0.022047987207770348, 0.3118036389350891, 0.10338719189167023, -0.1142263188958168, -0.05816182494163513, 0.00483955442905426, -0.10174903273582458, -0.06873214244842529, 0.05339448153972626, 0.04591766744852066, -0.1357821226119995, 0.007316153030842543, -0.020347587764263153, 0.0760825052857399, -0.03261219710111618, 0.014748684130609035, 0.04085002467036247, 0.052957404404878616, -0.04482967033982277, 0.0039003388956189156, -0.1850273460149765, 0.2008453607559204, -0.0023683393374085426, 0.02347097545862198, -0.055792760103940964, 0.030010610818862915, 0.010700062848627567, -0.020851295441389084, 0.06655280292034149, 0.017836881801486015, -0.00033335998887196183, -0.06217727065086365, -0.042359355837106705, 0.012737485580146313, 0.06518704444169998, -0.04593655839562416, 0.10657001286745071, 0.004359208047389984, 0.0542299747467041, 0.029218880459666252, 0.09259537607431412, -0.18474580347537994, -0.08168128877878189, 0.02485606074333191, -0.050184961408376694, -0.10338389128446579, -0.08259856700897217, -0.09702671319246292, -0.0008180367876775563, 0.22913403809070587, -0.10946528613567352, -0.07574009895324707, -0.09366718679666519, 0.042678993195295334, 0.09485049545764923, -0.05385563150048256, 0.02155696041882038, -0.009205051697790623, 0.11266060173511505, -0.07117431610822678, -0.12228050827980042, 0.025910943746566772, -0.1014024168252945, -0.15879248082637787, -0.06717348843812943, 0.08981479704380035, 0.06724540144205093, 0.030435064807534218, -0.030992820858955383, 0.011904317885637283, 0.04225153103470802, -0.03830474615097046, -0.003938938491046429, 0.06149282678961754, 0.088131383061409, 0.046117883175611496, -0.10736354440450668, 0.018428919836878777, -0.07311215996742249, -0.07089195400476456, 0.07548940926790237, 0.2710193991661072, -0.04823923483490944, 0.1095530167222023, 0.12561863660812378, -0.08528021723031998, -0.15913575887680054, 0.03854813426733017, 0.09236373007297516, -0.012126429937779903, 0.008707121014595032, -0.15782444179058075, 0.10061466693878174, 0.11621937900781631, -0.01644943840801716, -0.00932216551154852, -0.20848311483860016, -0.1372196078300476, 0.09158621728420258, 0.11968732625246048, 0.27978184819221497, -0.05368625372648239, -0.03437596932053566, 0.015609495341777802, -0.09572850912809372, 0.008655056357383728, 0.13374288380146027, 0.06372398138046265, -0.022042792290449142, -0.06944860517978668, 0.010278165340423584, -0.0372966043651104, 0.0919622853398323, 0.06218850985169411, 0.07071438431739807, -0.005675049498677254, -0.0022359301801770926, -0.03382319211959839, -0.041502855718135834, 0.07434679567813873, 0.03228961303830147, 0.049377210438251495, -0.08217818289995193, -0.03842385113239288, -0.07288633286952972, 0.030754486098885536, -0.0298465546220541, -0.08040910959243774, -0.06254731118679047, 0.07808411121368408, 0.059860654175281525, -0.03453577309846878, 0.032687392085790634, 0.031153112649917603, 0.09807532280683517, 0.14200399816036224, 0.0031118434853851795, -0.048864684998989105, -0.06736171245574951, -0.03067653812468052, -0.01413735281676054, 0.0739438459277153, -0.03196629509329796, 0.014917917549610138, 0.06977291405200958, 0.01827690750360489, 0.10667872428894043, 0.062014926224946976, -0.12107919156551361, -0.0188092403113842, 0.026979675516486168, -0.15018907189369202, 0.01716149039566517, -0.00019522053480613977, 0.023895256221294403, -0.02369951270520687, 0.022916879504919052, 0.14999814331531525, -0.06662868708372116, -0.033014558255672455, -0.046744994819164276, 0.061328474432229996, 0.02906116470694542, 0.14543677866458893, 0.037765394896268845, 0.037355322390794754, -0.07558435946702957, 0.14252161979675293, 0.041400063782930374, -0.03075271286070347, 0.027673058211803436, -0.027068916708230972, -0.10492373257875443, 0.017187299206852913, 0.059975896030664444, 0.06922724097967148, -0.08103423565626144, -0.01295788399875164, -0.042342908680438995, -0.08142601698637009, 0.0667349174618721, 0.20761796832084656, 0.06815803050994873, 0.06665845960378647, -0.055412016808986664, -0.03497079759836197, -0.07489222288131714, 0.044605959206819534, 0.05234059691429138, 0.07868350297212601, -0.07497622072696686, 0.08995745331048965, 0.013587170280516148, 0.04777917265892029, -0.02711113542318344, -0.04805822670459747, -0.10672909766435623, -0.05241072550415993, -0.10270652920007706, 0.009591788053512573, -0.06645536422729492, -0.041505683213472366, 0.005874423310160637, -0.0021072516683489084, -0.004507460165768862, 0.05704781040549278, -0.05834547057747841, -0.013074327260255814, -0.013650009408593178, 0.03341430053114891, -0.06167422607541084, -0.053110815584659576, 0.02039569616317749, -0.0994584783911705, 0.09612163156270981, 0.04214552417397499, 0.011129887774586678, 0.0005499898688867688, 0.07452717423439026, -0.013139449991285801, 0.02417958341538906, 0.010121016763150692, -0.04292057082056999, -0.09975171089172363, 0.005681152921169996, -0.022040579468011856, -0.032611820846796036, -0.017639603465795517, 0.0920567587018013, -0.08113688975572586, 0.02838923968374729, -0.003855128074064851, -0.00365662295371294, -0.07978271692991257, -0.0037610437721014023, 0.10584381967782974, 0.0842890590429306, 0.05437624454498291, -0.08425699919462204, 0.015846995636820793, -0.12614764273166656, -0.03422372415661812, 0.01390553917735815, -0.01510322093963623, -0.14017920196056366, -0.011211860924959183, 0.01849067397415638, -0.010792131535708904, 0.19457486271858215, -0.05839189514517784, -0.02871074341237545, 0.022897588089108467, -0.08633764088153839, 0.11277234554290771, -0.02204558625817299, 0.16102749109268188, -0.029323183000087738, -0.036501239985227585, -0.014491099864244461, 0.045111529529094696, 0.02808445133268833, -0.012013847939670086, 0.19107623398303986, 0.1316835731267929, 0.041039906442165375, 0.05924393609166145, -0.02587937004864216, -0.0059629157185554504, -0.055507972836494446, -0.0330367274582386, 0.04622945934534073, 0.02918364107608795, 0.026832152158021927, 0.14521580934524536, 0.06264561414718628, -0.16268165409564972, 0.035995177924633026, -0.024534255266189575, -0.04027673229575157, -0.11622608453035355, -0.09914977848529816, -0.030596857890486717, -0.057925183326005936, 0.015647675842046738, -0.134763702750206, 0.0015040148282423615, 0.17497318983078003, 0.06584685295820236, 0.030225347727537155, 0.020162569358944893, -0.1336967796087265, -0.043292783200740814, 0.056265052407979965, 0.011257997713983059, 0.02129555307328701, 0.04275931045413017, -0.003909526392817497, 0.06355778127908707, 0.030444329604506493, 0.00454995920881629, -0.004172049928456545, 0.07368303835391998, 0.022064486518502235, 0.046983085572719574, -0.05629418045282364, 0.000042723437218228355, -0.043929632753133774, 0.08225228637456894, 0.12385207414627075, 0.04479958489537239, -0.04991650581359863, -0.011118555441498756, 0.15333229303359985, -0.02969658002257347, 0.002532693324610591, -0.11986973136663437, 0.32370686531066895, 0.01849687099456787, 0.012990344315767288, 0.056859686970710754, -0.07861428707838058, -0.0494878776371479, 0.2020338922739029, 0.07380674034357071, -0.026743657886981964, -0.02770201861858368, 0.0031454579439014196, -0.030428968369960785, -0.01767517812550068, 0.14125096797943115, 0.042527444660663605, 0.12470140308141708, -0.056850772351026535, -0.044306911528110504, -0.03553364798426628, -0.0010482297511771321, -0.10804948955774307, 0.14374391734600067, -0.015693124383687973, -0.018452294170856476, -0.07947427779436111, 0.01233334094285965, 0.07485365867614746, -0.331907719373703, 0.005505143664777279, -0.03180358186364174, -0.10515990853309631, -0.012707428075373173, -0.035504646599292755, -0.027409475296735764, 0.0508887954056263, -0.03743257373571396, 0.06552678346633911, 0.04032786563038826, 0.0393240861594677, -0.023887120187282562, -0.10344269871711731, 0.16458827257156372, 0.06851697713136673, 0.10531879216432571, 0.019261501729488373, 0.08656760305166245, 0.06150878593325615, 0.03558218106627464, -0.09110968559980392, 0.05905381962656975, 0.008761405013501644, -0.06407129764556885, -0.054370734840631485, 0.1144854947924614, -0.0013138462090864778, 0.06553135812282562, 0.02811826579272747, -0.12499231845140457, 0.02649800293147564, 0.07982740551233292, -0.08524202555418015, -0.09685154259204865, -0.0010627061128616333, -0.0988348126411438, 0.1609766185283661, 0.14457134902477264, -0.011137210763990879, 0.013602438382804394, -0.06091851368546486, -0.0047059799544513226, 0.05276469886302948, 0.009856345131993294, -0.012044874019920826, -0.18503481149673462, 0.05036952719092369, -0.09471142292022705, -0.006964763160794973, -0.21536609530448914, -0.10754960030317307, -0.011879436671733856, -0.056784600019454956, -0.027556372806429863, 0.056513331830501556, 0.02282833680510521, 0.07588326185941696, -0.0246095210313797, -0.018237663432955742, -0.039610620588064194, 0.09179817885160446, -0.10564097762107849, -0.07501425594091415 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_400k"]}
null
google/multiberts-seed_1-step_400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 400k (max: 2000k, i.e., 2M steps)." ]
[ -0.08040446788072586, 0.07124511897563934, -0.0020071861799806356, 0.04592010751366615, 0.07676216959953308, -0.017615972086787224, 0.06547027826309204, 0.09278835356235504, -0.015585197135806084, 0.022383814677596092, 0.08108244091272354, 0.029652755707502365, 0.013216348364949226, 0.09719504415988922, 0.019895130768418312, -0.21327832341194153, 0.02897421456873417, -0.027900876477360725, -0.09140484035015106, 0.07471714913845062, 0.1039048582315445, -0.08186286687850952, 0.04494289308786392, 0.030823839828372, -0.11103653162717819, 0.05375685915350914, -0.008778157643973827, -0.023803919553756714, 0.13925936818122864, 0.0023821075446903706, 0.053802888840436935, 0.054558899253606796, 0.049984049052000046, -0.13374356925487518, 0.004289541393518448, 0.053474534302949905, 0.05132288858294487, 0.039024803787469864, 0.0210491344332695, 0.0830860361456871, -0.02890818566083908, 0.03084990382194519, 0.050820741802453995, 0.016446249559521675, -0.06548219174146652, -0.06585895270109177, -0.10030193626880646, 0.02848074585199356, 0.030831390991806984, 0.019741127267479897, 0.0078858882188797, 0.11519160121679306, -0.03408191725611687, 0.044338345527648926, 0.1737767904996872, -0.32078230381011963, -0.0035094507038593292, 0.06347189843654633, 0.02048981748521328, 0.11875345557928085, -0.00428587244823575, -0.03261658549308777, 0.08195548504590988, 0.025887558236718178, 0.09446980804204941, -0.040755946189165115, 0.023356985300779343, -0.06017454341053963, -0.15511082112789154, -0.035255126655101776, 0.10677514225244522, 0.00421900674700737, -0.1401660293340683, -0.0228080153465271, -0.043266672641038895, 0.03775525465607643, 0.019713398069143295, -0.0401327908039093, 0.04415908083319664, 0.0033420738764107227, -0.006181693635880947, 0.0006582877831533551, -0.10227341204881668, -0.044243328273296356, 0.022129656746983528, 0.09510277956724167, 0.10887453705072403, 0.058245278894901276, -0.0040228720754384995, 0.11046881973743439, -0.18150418996810913, -0.04706183448433876, -0.028821825981140137, -0.03532391041517258, -0.04222790151834488, -0.01100268866866827, -0.10126443952322006, -0.047148846089839935, -0.001550800632685423, 0.13587908446788788, -0.008237017318606377, 0.033728353679180145, -0.021675512194633484, 0.005454101134091616, 0.05851880833506584, 0.05596936494112015, -0.02008630894124508, 0.01630079373717308, 0.03766120970249176, -0.015093056485056877, -0.018021350726485252, 0.011412655003368855, -0.0028679717797785997, 0.025239722803235054, 0.13406485319137573, 0.015457759611308575, -0.106617771089077, 0.0773911103606224, -0.01585208624601364, -0.04421865567564964, -0.0032777332235127687, -0.08743935823440552, -0.06416947394609451, -0.042533159255981445, -0.01663597673177719, 0.005130333360284567, 0.005000891629606485, -0.009454934857785702, -0.02537473477423191, -0.021887004375457764, -0.08884265273809433, -0.05871906131505966, -0.053433727473020554, -0.13533447682857513, 0.005142200738191605, -0.18251259624958038, -0.029050743207335472, -0.11830181628465652, -0.2011827826499939, -0.03989022225141525, 0.046520013362169266, 0.0037801405414938927, -0.0640706717967987, 0.06093747541308403, 0.035822995007038116, -0.032059505581855774, -0.002730810083448887, 0.08359003067016602, -0.0069375913590192795, 0.03852353245019913, -0.041494399309158325, 0.05950682610273361, 0.005352257285267115, 0.0421159453690052, -0.059444867074489594, 0.05595538020133972, -0.18061570823192596, 0.04006398469209671, -0.072039395570755, -0.02856055088341236, -0.08350176364183426, -0.03488299250602722, -0.004735898692160845, 0.011899875476956367, 0.022751091048121452, 0.07404773682355881, -0.17377084493637085, -0.02791457809507847, 0.08435695618391037, -0.15103888511657715, -0.027115780860185623, 0.07244845479726791, -0.054126013070344925, 0.11984492093324661, 0.06832214444875717, 0.16078726947307587, -0.0332580991089344, -0.06810370087623596, 0.04716287925839424, -0.013043152168393135, 0.007814005948603153, -0.007495996542274952, 0.06545998901128769, -0.020812956616282463, -0.1681148111820221, 0.025336183607578278, -0.12587220966815948, -0.0005588593776337802, -0.07739481329917908, 0.02986406721174717, -0.003388338489457965, -0.06988729536533356, -0.08128316700458527, -0.03640078753232956, 0.07748553156852722, -0.07270503789186478, -0.024691788479685783, 0.02749350480735302, 0.07794679701328278, -0.07046829909086227, 0.0668298676609993, -0.015071931295096874, 0.019271153956651688, -0.08037535846233368, -0.03608778119087219, -0.18294024467468262, 0.03318918123841286, 0.09686598926782608, 0.014564878307282925, -0.019588403403759003, 0.12669771909713745, -0.00597153278067708, 0.06786477565765381, -0.04282244294881821, -0.00486799655482173, -0.007216025143861771, -0.00021650752751156688, -0.0990445464849472, -0.10535658895969391, -0.0765652284026146, -0.06681810319423676, 0.09532728791236877, -0.11306941509246826, 0.021893590688705444, -0.06029577553272247, 0.04213744401931763, 0.01791447587311268, -0.07048091292381287, -0.01093156449496746, 0.016036683693528175, -0.06187883019447327, -0.058599986135959625, 0.034251388162374496, 0.06095509231090546, -0.02298184111714363, 0.08828027546405792, -0.048758186399936676, -0.08050847053527832, 0.028727950528264046, 0.07618018239736557, -0.10822322219610214, 0.02775859273970127, -0.04633869230747223, -0.046913642436265945, -0.06644619256258011, -0.02965458668768406, 0.10628295689821243, -0.014229578897356987, 0.14308086037635803, -0.07388798147439957, -0.01086280308663845, 0.007585740648210049, -0.01255322527140379, -0.02316286601126194, 0.0447247289121151, 0.058705803006887436, -0.0697316899895668, 0.019898464903235435, 0.03333339840173721, 0.0020107838790863752, 0.06201493367552757, -0.05013132467865944, -0.07405609637498856, 0.01988997496664524, 0.029990753158926964, 0.02192489430308342, 0.06336163729429245, -0.0401984341442585, -0.012015142478048801, 0.03011704981327057, 0.023283258080482483, 0.009679625742137432, -0.11856143921613693, 0.060858353972435, 0.05961953476071358, 0.009228982962667942, 0.05249820277094841, -0.019340500235557556, -0.03322814404964447, 0.08161839842796326, 0.03320523351430893, -0.016114963218569756, -0.00800491962581873, -0.012805169448256493, -0.12154904752969742, 0.21485105156898499, -0.06992354243993759, -0.15044113993644714, -0.07057951390743256, -0.10761008411645889, 0.0025163854006677866, 0.02436392940580845, 0.043887458741664886, -0.030191240832209587, -0.04349761828780174, -0.1229732483625412, 0.09868501871824265, -0.036437418311834335, 0.06445933878421783, 0.11097768694162369, -0.06528200954198837, 0.04692964628338814, -0.13177154958248138, -0.012237511575222015, -0.07765059918165207, -0.06546100974082947, 0.0575251467525959, -0.053259920328855515, 0.0380558967590332, 0.11084491014480591, 0.018235377967357635, -0.028604861348867416, -0.03012998029589653, 0.2091308981180191, 0.04083513468503952, 0.04450085759162903, 0.12943871319293976, -0.06986867636442184, 0.05171314626932144, 0.08082856237888336, 0.007019133772701025, -0.04631028324365616, 0.05354484170675278, 0.05213546007871628, -0.05951318517327309, -0.19211722910404205, -0.008521653711795807, 0.009131280705332756, -0.046580106019973755, 0.06721275299787521, 0.03872667998075485, 0.007041488774120808, 0.07728590816259384, 0.01954902522265911, 0.06897647678852081, 0.006564907263964415, 0.10019765049219131, 0.027283433824777603, -0.03731397166848183, 0.08689653873443604, -0.008345313370227814, -0.008922964334487915, 0.07772206515073776, -0.016114218160510063, 0.2902333438396454, -0.04316690191626549, 0.017652077600359917, 0.12230680137872696, 0.040041495114564896, 0.05099828913807869, 0.12505488097667694, -0.07264232635498047, 0.02935514971613884, -0.07549618184566498, -0.04713308438658714, 0.011334924027323723, 0.0478026382625103, -0.07094337791204453, 0.021774422377347946, -0.0870191901922226, 0.021686198189854622, -0.02447987161576748, 0.3048684895038605, 0.10328598320484161, -0.11220027506351471, -0.06165432557463646, 0.004485979210585356, -0.10057708621025085, -0.07256258279085159, 0.05517249181866646, 0.04975825920701027, -0.13678719103336334, 0.003288842737674713, -0.02132182940840721, 0.0762363001704216, -0.033430829644203186, 0.015832284465432167, 0.040121108293533325, 0.054587360471487045, -0.04636923596262932, 0.00553778326138854, -0.1799122393131256, 0.19097547233104706, -0.0008102058200165629, 0.024732939898967743, -0.054280396550893784, 0.0293361097574234, 0.012853649444878101, -0.011952396482229233, 0.062400199472904205, 0.018014416098594666, -0.011547212488949299, -0.06894885748624802, -0.042412035167217255, 0.016420023515820503, 0.0658755972981453, -0.04554668441414833, 0.10517560690641403, 0.006274395622313023, 0.05272432416677475, 0.027796059846878052, 0.08398525416851044, -0.18710055947303772, -0.07773468643426895, 0.027163680642843246, -0.04905049502849579, -0.08792655915021896, -0.08324698358774185, -0.09773819148540497, -0.008611801080405712, 0.22649940848350525, -0.10782001912593842, -0.07690369337797165, -0.0928516760468483, 0.035346511751413345, 0.0979057028889656, -0.05325164273381233, 0.02248992957174778, -0.007543965708464384, 0.11067408323287964, -0.06754013150930405, -0.12392126768827438, 0.02678213268518448, -0.0977303758263588, -0.1583261638879776, -0.06784462183713913, 0.09114163368940353, 0.06269501894712448, 0.0307873897254467, -0.030921345576643944, 0.01159289013594389, 0.037191685289144516, -0.035983551293611526, -0.0008029061136767268, 0.057275209575891495, 0.090130515396595, 0.04285937547683716, -0.11252763122320175, 0.023207036778330803, -0.07412169128656387, -0.06764762848615646, 0.07031040638685226, 0.26837998628616333, -0.050639618188142776, 0.10912870615720749, 0.1196623221039772, -0.08611362427473068, -0.1580239087343216, 0.04212417080998421, 0.09083304554224014, -0.01375064067542553, 0.0035245362669229507, -0.16222162544727325, 0.10337208956480026, 0.11748751997947693, -0.01539821270853281, 0.012422066181898117, -0.19945518672466278, -0.13704000413417816, 0.08818068355321884, 0.11274988204240799, 0.2804930508136749, -0.05340886488556862, -0.03621166571974754, 0.020490892231464386, -0.09774418920278549, -0.0038614491932094097, 0.12706734240055084, 0.0628996342420578, -0.021485555917024612, -0.061995115131139755, 0.010868823155760765, -0.03470830246806145, 0.09361803531646729, 0.06626109033823013, 0.07138971984386444, -0.004072749987244606, -0.003431558609008789, -0.042502179741859436, -0.04145700857043266, 0.06962572038173676, 0.038370005786418915, 0.04969732463359833, -0.08692915737628937, -0.03420174494385719, -0.07374809682369232, 0.032524123787879944, -0.030531615018844604, -0.07735861837863922, -0.06130547448992729, 0.07570988684892654, 0.05556921288371086, -0.03429778665304184, 0.036079175770282745, 0.03374670818448067, 0.10159160196781158, 0.1427200883626938, -0.004262780770659447, -0.04689071327447891, -0.06786354631185532, -0.02773108333349228, -0.015515580773353577, 0.07507995516061783, -0.0376768596470356, 0.01761668734252453, 0.07307326048612595, 0.017310716211795807, 0.10795635730028152, 0.06231595203280449, -0.11865954846143723, -0.0173700712621212, 0.02603556215763092, -0.15165244042873383, 0.014994533732533455, 0.0003702027315739542, 0.011092989705502987, -0.01994304172694683, 0.024751190096139908, 0.15065526962280273, -0.06764539331197739, -0.033629484474658966, -0.04763341322541237, 0.061589229851961136, 0.031131338328123093, 0.14650513231754303, 0.03931521996855736, 0.03633013367652893, -0.0776866003870964, 0.1428922861814499, 0.04355667158961296, -0.036037787795066833, 0.024384843185544014, -0.030654754489660263, -0.10841454565525055, 0.016043970361351967, 0.060544900596141815, 0.07539408653974533, -0.07316762208938599, -0.015210434794425964, -0.04127853736281395, -0.08509086072444916, 0.0642298012971878, 0.20664365589618683, 0.0635598674416542, 0.06627701967954636, -0.05234633386135101, -0.033793576061725616, -0.07675782591104507, 0.04827319458127022, 0.052882030606269836, 0.0787850022315979, -0.07466680556535721, 0.1017056331038475, 0.012158472090959549, 0.05192233622074127, -0.026675783097743988, -0.048972513526678085, -0.1041666716337204, -0.05661455914378166, -0.11214271932840347, 0.012089376337826252, -0.06434673070907593, -0.040101710706949234, 0.0062895058654248714, -0.0018039282876998186, -0.003106815740466118, 0.055341120809316635, -0.061313048005104065, -0.012838110327720642, -0.01233862154185772, 0.03554767742753029, -0.05891866236925125, -0.05450179800391197, 0.018477123230695724, -0.09778208285570145, 0.09771795570850372, 0.0483458936214447, 0.013313109055161476, 0.0013929081615060568, 0.08461494743824005, -0.009741426445543766, 0.02205316163599491, 0.009063800796866417, -0.040096648037433624, -0.10077474266290665, 0.0037135854363441467, -0.028250349685549736, -0.035849012434482574, -0.018660642206668854, 0.09173653274774551, -0.08225850760936737, 0.029758084565401077, -0.0026012954767793417, -0.0012332816841080785, -0.07987308502197266, -0.0062101418152451515, 0.09741485118865967, 0.08148100972175598, 0.05094873160123825, -0.08557231724262238, 0.016367342323064804, -0.12609174847602844, -0.03628874942660332, 0.012818505056202412, -0.016864905133843422, -0.13069336116313934, -0.013495977967977524, 0.019914522767066956, -0.012368356809020042, 0.18975931406021118, -0.05774620547890663, -0.0285238865762949, 0.020106486976146698, -0.09024181216955185, 0.1044856607913971, -0.02259291335940361, 0.16199113428592682, -0.028141522780060768, -0.03655495122075081, -0.014724478125572205, 0.04857947304844856, 0.02731209434568882, -0.009988503530621529, 0.18258991837501526, 0.12879419326782227, 0.04309491813182831, 0.05721951648592949, -0.029049556702375412, -0.011720625683665276, -0.0580904483795166, -0.025965651497244835, 0.04457642510533333, 0.03390664607286453, 0.023515716195106506, 0.14549124240875244, 0.05770820751786232, -0.1611039787530899, 0.034449502825737, -0.02808954194188118, -0.041254568845033646, -0.11409313976764679, -0.0919753760099411, -0.03076316975057125, -0.059892021119594574, 0.014561938121914864, -0.13298387825489044, 0.0035321523901075125, 0.1780317723751068, 0.06445383280515671, 0.029852908104658127, 0.01946296915411949, -0.13774922490119934, -0.043019767850637436, 0.057569585740566254, 0.013282264582812786, 0.02106410823762417, 0.044879376888275146, -0.005362730473279953, 0.06414314359426498, 0.024999113753437996, 0.0014269533567130566, -0.005276021081954241, 0.07734072208404541, 0.022143922746181488, 0.04821143299341202, -0.056350357830524445, -0.0010125980479642749, -0.03919658809900284, 0.08299107849597931, 0.11812803894281387, 0.044717833399772644, -0.049409303814172745, -0.012256737798452377, 0.1587357372045517, -0.030011892318725586, 0.010757782496511936, -0.1191413477063179, 0.32770147919654846, 0.013317552395164967, 0.010346172377467155, 0.05804770439863205, -0.08093095570802689, -0.04559900239109993, 0.20996388792991638, 0.07209007441997528, -0.023660888895392418, -0.03057456947863102, 0.0029442303348332644, -0.031790781766176224, -0.015781762078404427, 0.14087562263011932, 0.04408356174826622, 0.11716064810752869, -0.057850245386362076, -0.0421542227268219, -0.03584548458456993, 0.0011998743284493685, -0.11597254872322083, 0.14733242988586426, -0.022058235481381416, -0.0198738481849432, -0.07791801542043686, 0.012075540609657764, 0.07624908536672592, -0.34626615047454834, 0.011153122410178185, -0.02740752138197422, -0.1050514206290245, -0.01239648088812828, -0.02878274768590927, -0.026497619226574898, 0.05041183903813362, -0.040235601365566254, 0.06446123868227005, 0.05333665758371353, 0.03765178099274635, -0.018970860168337822, -0.1052483320236206, 0.1632046103477478, 0.0585363544523716, 0.1011919379234314, 0.018688274547457695, 0.08950073271989822, 0.06033908203244209, 0.0384393148124218, -0.09209459275007248, 0.056311868131160736, 0.00841438490897417, -0.07250633835792542, -0.05614084377884865, 0.11600302904844284, -0.0002081863203784451, 0.06621785461902618, 0.030299153178930283, -0.12051244080066681, 0.024511169642210007, 0.08199214935302734, -0.08786775916814804, -0.0941276028752327, -0.004662595223635435, -0.09735868126153946, 0.15846902132034302, 0.14779697358608246, -0.010431425645947456, 0.016398919746279716, -0.06202729791402817, -0.010362260043621063, 0.05572940781712532, 0.0053637162782251835, -0.013949400745332241, -0.18299944698810577, 0.051431480795145035, -0.09081665426492691, -0.005544415675103664, -0.21368888020515442, -0.10453591495752335, -0.0150926997885108, -0.05736678093671799, -0.024584084749221802, 0.057777393609285355, 0.024943765252828598, 0.07492009550333023, -0.023826848715543747, -0.017352741211652756, -0.038836751133203506, 0.09379445761442184, -0.10277167707681656, -0.07585204392671585 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_40k"]}
null
google/multiberts-seed_1-step_40k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_40k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 40k (max: 2000k, i.e., 2M steps)." ]
[ -0.08131120353937149, 0.07795988023281097, -0.002139314543455839, 0.040555767714977264, 0.07387924194335938, -0.018413927406072617, 0.06975360959768295, 0.09385967999696732, -0.011178512126207352, 0.02598661556839943, 0.08140867948532104, 0.02834244631230831, 0.0121011883020401, 0.09522883594036102, 0.02005062624812126, -0.2148253619670868, 0.029385950416326523, -0.025929126888513565, -0.0866885706782341, 0.07499561458826065, 0.10435522347688675, -0.08375281095504761, 0.04269959032535553, 0.03268277272582054, -0.11096407473087311, 0.05138520523905754, -0.010316584259271622, -0.021470753476023674, 0.13869412243366241, 0.0018929755315184593, 0.05359463393688202, 0.055789995938539505, 0.04671221971511841, -0.13717003166675568, 0.0042768181301653385, 0.05521629378199577, 0.04782190918922424, 0.039402686059474945, 0.022722991183400154, 0.08304064720869064, -0.022884363308548927, 0.02790949121117592, 0.04948587343096733, 0.016131335869431496, -0.06452468782663345, -0.06806513667106628, -0.098513163626194, 0.027722349390387535, 0.02920564077794552, 0.019613033160567284, 0.006919977255165577, 0.12373025715351105, -0.03439304977655411, 0.04634043201804161, 0.17559762299060822, -0.3215065002441406, -0.0008592166705057025, 0.06668306887149811, 0.02574422024190426, 0.11620932072401047, -0.0048591201193630695, -0.03370075300335884, 0.08164261281490326, 0.024308836087584496, 0.09235388040542603, -0.040827348828315735, 0.03355972096323967, -0.05902980640530586, -0.15739911794662476, -0.0368008017539978, 0.09875181317329407, 0.003049338236451149, -0.1382375806570053, -0.025659896433353424, -0.047348201274871826, 0.040951456874608994, 0.017841625958681107, -0.03896035626530647, 0.04619449004530907, 0.004679454490542412, -0.001700394437648356, 0.0009331199107691646, -0.10215840488672256, -0.04333484545350075, 0.023566534742712975, 0.09085993468761444, 0.11087895184755325, 0.05593760311603546, -0.006501049734652042, 0.10800961405038834, -0.19284801185131073, -0.04817946255207062, -0.028791368007659912, -0.03157024085521698, -0.04121188074350357, -0.011263346299529076, -0.10466411709785461, -0.049475159496068954, 0.0012153219431638718, 0.13760587573051453, -0.015584176406264305, 0.0328487753868103, -0.025014160200953484, 0.007289467379450798, 0.06127765774726868, 0.05577652156352997, -0.019328832626342773, 0.015205697156488895, 0.035421572625637054, -0.01727898046374321, -0.017385145649313927, 0.010846177116036415, -0.0043508755043148994, 0.023689566180109978, 0.13562633097171783, 0.013270385563373566, -0.1054556667804718, 0.07824869453907013, -0.015099503099918365, -0.04472299665212631, -0.002553560771048069, -0.08639220893383026, -0.0639323890209198, -0.04006092622876167, -0.01693117432296276, 0.006877322215586901, 0.00455065444111824, -0.007812721654772758, -0.027791602537035942, -0.026027996093034744, -0.08904983848333359, -0.05748222768306732, -0.053229089826345444, -0.13533538579940796, 0.007514305412769318, -0.19047671556472778, -0.027800222858786583, -0.11528719216585159, -0.20504634082317352, -0.04108811542391777, 0.043421097099781036, 0.0033670018892735243, -0.06445232033729553, 0.059094905853271484, 0.037821799516677856, -0.03116253949701786, -0.00184707622975111, 0.07876833528280258, -0.007411651778966188, 0.03758293762803078, -0.039082106202840805, 0.05924293026328087, 0.007051315624266863, 0.042255450040102005, -0.05961195379495621, 0.05633177235722542, -0.17807453870773315, 0.040532100945711136, -0.07101444154977798, -0.028729936107993126, -0.08590281754732132, -0.03383921459317207, 0.001207189285196364, 0.013959393836557865, 0.019997959956526756, 0.07294902205467224, -0.17225918173789978, -0.030736684799194336, 0.09268129616975784, -0.14987938106060028, -0.025873012840747833, 0.0729900449514389, -0.055012837052345276, 0.11540122330188751, 0.06792671233415604, 0.16224083304405212, -0.03270396590232849, -0.06901368498802185, 0.04785265401005745, -0.012137901037931442, 0.01079716719686985, -0.009203664027154446, 0.06859706342220306, -0.021073253825306892, -0.16457900404930115, 0.022459741681814194, -0.1347840428352356, -0.00046930956887081265, -0.07690782099962234, 0.03128033131361008, -0.00315108522772789, -0.06786647439002991, -0.08036316931247711, -0.03431439772248268, 0.0782134160399437, -0.07082574814558029, -0.02648220956325531, 0.031168628484010696, 0.07961537688970566, -0.07190589606761932, 0.0665435791015625, -0.017775919288396835, 0.020680131390690804, -0.08083508908748627, -0.036380305886268616, -0.185930535197258, 0.03449065983295441, 0.09728094935417175, 0.014345117844641209, -0.02005775086581707, 0.13263282179832458, -0.004735513590276241, 0.06813009083271027, -0.03958626464009285, -0.005668030120432377, -0.0075310408137738705, -0.0020382076036185026, -0.09810642153024673, -0.10955172777175903, -0.0731934979557991, -0.06981268525123596, 0.09283488243818283, -0.11859307438135147, 0.022303784266114235, -0.058159951120615005, 0.04473884403705597, 0.017010636627674103, -0.06907394528388977, -0.009491339325904846, 0.014046931639313698, -0.06463130563497543, -0.05755920335650444, 0.03608384728431702, 0.06238565221428871, -0.024778246879577637, 0.0942632257938385, -0.052182964980602264, -0.08370226621627808, 0.027803640812635422, 0.07229658961296082, -0.1042461097240448, 0.023909954354166985, -0.04798920452594757, -0.04714810848236084, -0.06361575424671173, -0.026323212310671806, 0.10486520081758499, -0.014187241904437542, 0.1472487598657608, -0.07480735331773758, -0.014467034488916397, 0.008387932553887367, -0.014451856724917889, -0.02317359484732151, 0.046152256429195404, 0.058841604739427567, -0.06867767870426178, 0.022737130522727966, 0.033004336059093475, -0.000250612705713138, 0.06627199798822403, -0.052760958671569824, -0.0767560675740242, 0.018680905923247337, 0.03268604725599289, 0.021626241505146027, 0.06006845459342003, -0.047247957438230515, -0.014646981842815876, 0.03134212642908096, 0.020979788154363632, 0.010979493148624897, -0.11818328499794006, 0.0618499256670475, 0.06051790341734886, 0.010102244094014168, 0.051271483302116394, -0.018920468166470528, -0.034546174108982086, 0.08103999495506287, 0.03223160281777382, -0.017489517107605934, -0.010146556422114372, -0.013474734500050545, -0.1218528002500534, 0.2166544497013092, -0.0672074407339096, -0.14915543794631958, -0.06993693113327026, -0.11501168459653854, 0.0023807822726666927, 0.024744659662246704, 0.04272588714957237, -0.030412301421165466, -0.04283636808395386, -0.12103085219860077, 0.0992550179362297, -0.03895231708884239, 0.06569249927997589, 0.11062297970056534, -0.06435666978359222, 0.047641851007938385, -0.13039100170135498, -0.011484443210065365, -0.07718530297279358, -0.06345131993293762, 0.05861452966928482, -0.05317380279302597, 0.036551617085933685, 0.11172688007354736, 0.01985723339021206, -0.028985563665628433, -0.029103320091962814, 0.20773552358150482, 0.03966487944126129, 0.04224424064159393, 0.1307741403579712, -0.07205482572317123, 0.053488291800022125, 0.077466681599617, 0.004529684316366911, -0.04531344398856163, 0.05057172477245331, 0.05252513661980629, -0.05695085972547531, -0.1941063553094864, -0.009062199853360653, 0.009361250326037407, -0.04649673402309418, 0.06949714571237564, 0.03779619187116623, 0.01766359992325306, 0.07574304193258286, 0.017600083723664284, 0.07490188628435135, 0.0029890385922044516, 0.10130004584789276, 0.026545656844973564, -0.037616487592458725, 0.08550117164850235, -0.008588402532041073, -0.008577203378081322, 0.07815692573785782, -0.014072632417082787, 0.28869858384132385, -0.041074465960264206, 0.029614651575684547, 0.1237448900938034, 0.0356157012283802, 0.05205130577087402, 0.12050698697566986, -0.07535470277070999, 0.028028862550854683, -0.07649607211351395, -0.048092398792505264, 0.01319738756865263, 0.049518946558237076, -0.06871186941862106, 0.01707194373011589, -0.08473910391330719, 0.021541424095630646, -0.023773368448019028, 0.3045690059661865, 0.10326040536165237, -0.11613521724939346, -0.062065836042165756, 0.003383308881893754, -0.10000091791152954, -0.07249713689088821, 0.053889915347099304, 0.04886668920516968, -0.1325952559709549, 0.0059989821165800095, -0.021907629445195198, 0.07694931328296661, -0.03346700221300125, 0.016895541921257973, 0.03689374402165413, 0.054373599588871, -0.04410143196582794, 0.006811458617448807, -0.18356603384017944, 0.19182442128658295, -0.00028326374012976885, 0.020920278504490852, -0.05457831174135208, 0.030019715428352356, 0.011659045703709126, -0.006796453148126602, 0.06517036259174347, 0.018321286886930466, -0.01205787155777216, -0.06184257194399834, -0.04258416220545769, 0.013700141571462154, 0.06562511622905731, -0.04666081443428993, 0.10802461206912994, 0.0046585178934037685, 0.05255420133471489, 0.02925179898738861, 0.07720986008644104, -0.1817038655281067, -0.07548240572214127, 0.028548674657940865, -0.047942183911800385, -0.09728806465864182, -0.08227133750915527, -0.09697549790143967, -0.01094321720302105, 0.22644148766994476, -0.11552011221647263, -0.07449957728385925, -0.09338156133890152, 0.0411062017083168, 0.0946706086397171, -0.055743101984262466, 0.022229092195630074, -0.009557599201798439, 0.1175169050693512, -0.0686243548989296, -0.12265316396951675, 0.028360523283481598, -0.09992494434118271, -0.1597781628370285, -0.06796640902757645, 0.09277619421482086, 0.06347193568944931, 0.03128908947110176, -0.03191482648253441, 0.012170582078397274, 0.03313957154750824, -0.033406130969524384, 0.0009401460993103683, 0.06187886744737625, 0.09526221454143524, 0.03824998065829277, -0.10779635608196259, 0.025037065148353577, -0.07120100408792496, -0.06706548482179642, 0.07367957383394241, 0.2693072557449341, -0.05019392818212509, 0.10999395698308945, 0.12206543236970901, -0.08621867746114731, -0.15827526152133942, 0.04206763207912445, 0.09180066734552383, -0.013340176083147526, 0.003209205809980631, -0.16473151743412018, 0.09970466047525406, 0.11417138576507568, -0.015458245761692524, 0.00772525230422616, -0.2015601247549057, -0.13490456342697144, 0.09082246571779251, 0.1104649156332016, 0.27988317608833313, -0.05562513321638107, -0.03962245211005211, 0.020683152601122856, -0.09316971898078918, -0.0010339621221646667, 0.11971430480480194, 0.05985482037067413, -0.0204777754843235, -0.06193062663078308, 0.01176100131124258, -0.03669336810708046, 0.09329276531934738, 0.06721421331167221, 0.06961217522621155, -0.004159483127295971, -0.0019721982534974813, -0.03772958368062973, -0.04236753284931183, 0.06865356117486954, 0.03519003093242645, 0.04894759878516197, -0.09080079942941666, -0.03524038940668106, -0.07362261414527893, 0.03350582346320152, -0.030446233227849007, -0.0768965631723404, -0.060074884444475174, 0.07503603398799896, 0.0576823391020298, -0.033114101737737656, 0.0411166250705719, 0.033588554710149765, 0.09886888414621353, 0.14598025381565094, -0.0037018221337348223, -0.03873670473694801, -0.07109023630619049, -0.02993699349462986, -0.012575464323163033, 0.07558707147836685, -0.046661488711833954, 0.016543976962566376, 0.07152113318443298, 0.019617708399891853, 0.10828786343336105, 0.059675831347703934, -0.1208462342619896, -0.018890362232923508, 0.024549810215830803, -0.15316897630691528, 0.008372748270630836, 0.0002857078507076949, 0.014947057701647282, -0.016662606969475746, 0.027394792065024376, 0.15123848617076874, -0.0677248015999794, -0.031807754188776016, -0.04714985191822052, 0.06104351207613945, 0.03360569849610329, 0.14376254379749298, 0.04043854773044586, 0.03804142028093338, -0.07835955172777176, 0.14162448048591614, 0.04433387890458107, -0.037809908390045166, 0.025864766910672188, -0.031247250735759735, -0.1083102747797966, 0.014350994490087032, 0.06186549738049507, 0.08048404008150101, -0.0756954774260521, -0.019416075199842453, -0.04401223361492157, -0.07853341102600098, 0.06713177263736725, 0.20980839431285858, 0.06498521566390991, 0.06640011817216873, -0.05232199653983116, -0.03460242971777916, -0.07809653133153915, 0.04747046157717705, 0.04861275851726532, 0.07873819023370743, -0.07516995072364807, 0.10579784214496613, 0.01263733021914959, 0.05299770087003708, -0.026503760367631912, -0.04863934591412544, -0.1031198799610138, -0.05683519318699837, -0.11075609922409058, 0.015439102426171303, -0.06558626145124435, -0.04087021201848984, 0.005500386469066143, -0.0013740473659709096, -0.002097531221807003, 0.05656562000513077, -0.061143551021814346, -0.011478530243039131, -0.012965204194188118, 0.03633653372526169, -0.0605933703482151, -0.05214468389749527, 0.017695706337690353, -0.09734804928302765, 0.10003101825714111, 0.047157157212495804, 0.013402712531387806, 0.00233474001288414, 0.08446823805570602, -0.008895769715309143, 0.024255260825157166, 0.007267117965966463, -0.040373265743255615, -0.09899390488862991, 0.003979935310781002, -0.0287187360227108, -0.03709530457854271, -0.020205510780215263, 0.09020815044641495, -0.08098000288009644, 0.03196554630994797, -0.0010404819622635841, -0.0026184055022895336, -0.08146604895591736, -0.0061004371382296085, 0.09252440929412842, 0.0835801288485527, 0.050564032047986984, -0.08345331251621246, 0.018110571429133415, -0.12468385696411133, -0.03598084673285484, 0.013637872412800789, -0.015691416338086128, -0.1303403079509735, -0.01382584311068058, 0.018289081752300262, -0.014865543693304062, 0.19304399192333221, -0.059155091643333435, -0.024839328601956367, 0.01935259997844696, -0.0895133689045906, 0.10481365770101547, -0.023501820862293243, 0.16386370360851288, -0.027781089767813683, -0.035263825207948685, -0.015877025201916695, 0.048878032714128494, 0.028926093131303787, -0.012766753323376179, 0.179116889834404, 0.13070400059223175, 0.04528476670384407, 0.05786135792732239, -0.027337705716490746, -0.01175632979720831, -0.0654289647936821, -0.01637679897248745, 0.04321419820189476, 0.03509732335805893, 0.024905875325202942, 0.15648318827152252, 0.06317609548568726, -0.1617836058139801, 0.03495049476623535, -0.02713969722390175, -0.03984278813004494, -0.11443208903074265, -0.0962030217051506, -0.032156798988580704, -0.06239054352045059, 0.013224175199866295, -0.13218627870082855, 0.003621994750574231, 0.1740957349538803, 0.06559054553508759, 0.028162112459540367, 0.01752823032438755, -0.13570360839366913, -0.044873885810375214, 0.057418327778577805, 0.014078138396143913, 0.021037383005023003, 0.04284600913524628, -0.004065463785082102, 0.06772880256175995, 0.025310862809419632, 0.0019745435565710068, -0.0069742752239108086, 0.08317963778972626, 0.025775384157896042, 0.04613209888339043, -0.05841422080993652, 0.0002975671086460352, -0.038883015513420105, 0.08059795945882797, 0.11139538884162903, 0.04439300298690796, -0.04920617491006851, -0.01286912988871336, 0.15427735447883606, -0.02855074778199196, 0.012737405486404896, -0.11963164806365967, 0.3223379850387573, 0.013924852013587952, 0.011023045517504215, 0.05819406360387802, -0.08229047060012817, -0.04465465992689133, 0.20573316514492035, 0.06842657923698425, -0.023096207529306412, -0.029331322759389877, 0.005768240429461002, -0.03110828623175621, -0.015043468214571476, 0.13709379732608795, 0.044164836406707764, 0.1190924122929573, -0.05619088560342789, -0.05008681118488312, -0.03602147474884987, 0.00020641654555220157, -0.1124286949634552, 0.1473034918308258, -0.019202739000320435, -0.021111004054546356, -0.07697633653879166, 0.012728211469948292, 0.07708578556776047, -0.34746724367141724, 0.009485597722232342, -0.02786545641720295, -0.10473233461380005, -0.013150760903954506, -0.02537580393254757, -0.024806274101138115, 0.048549991101026535, -0.039225224405527115, 0.0613512322306633, 0.053036656230688095, 0.037961795926094055, -0.022781234234571457, -0.09935930371284485, 0.1617637574672699, 0.06337271630764008, 0.10158883035182953, 0.017751358449459076, 0.08941329270601273, 0.06118007004261017, 0.03698896989226341, -0.09104129672050476, 0.05504652485251427, 0.01010472048074007, -0.07121451944112778, -0.05759752541780472, 0.11730988323688507, -0.00005461163164000027, 0.061112161725759506, 0.03328293189406395, -0.1236073449254036, 0.025135058909654617, 0.08041120320558548, -0.09114902466535568, -0.09583938866853714, -0.0029530206229537725, -0.09734220802783966, 0.15738147497177124, 0.14732405543327332, -0.01043830905109644, 0.015164542943239212, -0.06326968967914581, -0.007588861044496298, 0.055242907255887985, 0.008911547251045704, -0.013500326313078403, -0.17996646463871002, 0.053460218012332916, -0.08808411657810211, -0.0010691789211705327, -0.21354959905147552, -0.10276554524898529, -0.012639160268008709, -0.055711422115564346, -0.02699524350464344, 0.05624876171350479, 0.02347302809357643, 0.0745207890868187, -0.024741509929299355, -0.019386984407901764, -0.037949513643980026, 0.09257832914590836, -0.10213179141283035, -0.0771762877702713 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_500k"]}
null
google/multiberts-seed_1-step_500k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_500k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 500k (max: 2000k, i.e., 2M steps)." ]
[ -0.0811978131532669, 0.07917001843452454, -0.002061765408143401, 0.045269254595041275, 0.07935299724340439, -0.018598278984427452, 0.06946663558483124, 0.09223250299692154, -0.012886201962828636, 0.025020575150847435, 0.08296326547861099, 0.024552473798394203, 0.01587880216538906, 0.10453281551599503, 0.01995411328971386, -0.2087605744600296, 0.03066469356417656, -0.026344705373048782, -0.08871059119701385, 0.07447583973407745, 0.10184329003095627, -0.08560474216938019, 0.04282157123088837, 0.029013223946094513, -0.11186613142490387, 0.05639410763978958, -0.01016906090080738, -0.02113606408238411, 0.13360290229320526, 0.00040277946391142905, 0.052881352603435516, 0.054203808307647705, 0.05210551247000694, -0.1412796527147293, 0.0037666899152100086, 0.05592603236436844, 0.051728006452322006, 0.03812253475189209, 0.020666293799877167, 0.08231229335069656, -0.03296166658401489, 0.03079863451421261, 0.04967527464032173, 0.017161857336759567, -0.06348783522844315, -0.05866788700222969, -0.09620263427495956, 0.0321214459836483, 0.034165021032094955, 0.01975441351532936, 0.007448781747370958, 0.11281798034906387, -0.033615656197071075, 0.042221345007419586, 0.18018952012062073, -0.3132244050502777, -0.0025352879893034697, 0.06056836247444153, 0.01591413840651512, 0.11545019596815109, -0.004299089778214693, -0.033239927142858505, 0.08409595489501953, 0.022422997280955315, 0.09830731153488159, -0.0390809029340744, 0.01639399491250515, -0.062095943838357925, -0.15633893013000488, -0.03865741565823555, 0.10140611976385117, 0.004745886195451021, -0.1382916122674942, -0.020592937245965004, -0.043991949409246445, 0.03150459751486778, 0.020718246698379517, -0.04221993312239647, 0.04467298462986946, 0.0023531385231763124, -0.0005506144370883703, -0.001253233989700675, -0.10240299254655838, -0.04844575747847557, 0.0231668371707201, 0.09466283768415451, 0.10862269252538681, 0.05872234329581261, -0.007437573745846748, 0.11089206486940384, -0.18352961540222168, -0.0460006445646286, -0.030781878158450127, -0.02963506616652012, -0.04576770216226578, -0.010411380790174007, -0.09811192750930786, -0.05013611912727356, -0.002266575349494815, 0.1377781629562378, -0.006277025211602449, 0.02934824489057064, -0.02108445204794407, 0.004982125014066696, 0.06052370369434357, 0.05419478937983513, -0.02195628732442856, 0.02282751351594925, 0.036125436425209045, -0.01086054090410471, -0.021627694368362427, 0.01149482186883688, -0.00265435385517776, 0.026357578113675117, 0.13586103916168213, 0.01682833768427372, -0.10492807626724243, 0.07303254306316376, -0.019966088235378265, -0.043480124324560165, -0.01722756400704384, -0.08741471916437149, -0.06224440410733223, -0.03887109458446503, -0.016140222549438477, 0.0037083078641444445, 0.0023491736501455307, -0.009939424693584442, -0.029295874759554863, -0.015187811106443405, -0.08814634382724762, -0.05728818103671074, -0.058375950902700424, -0.13761740922927856, 0.0057444022968411446, -0.19765864312648773, -0.02966957725584507, -0.11666547507047653, -0.20191550254821777, -0.03994367644190788, 0.04522104561328888, 0.0033420976251363754, -0.06605523824691772, 0.05232597887516022, 0.03516947478055954, -0.032442063093185425, -0.00348291895352304, 0.08887473493814468, -0.0052581909112632275, 0.0377364456653595, -0.03939836099743843, 0.06171254813671112, 0.007565127220004797, 0.04289158061146736, -0.06144203990697861, 0.055018097162246704, -0.15802189707756042, 0.040477775037288666, -0.07411625236272812, -0.031198564916849136, -0.08660735189914703, -0.03140553832054138, -0.009534244425594807, 0.010363471694290638, 0.02786885015666485, 0.0782812237739563, -0.1739814430475235, -0.029104845598340034, 0.08686499297618866, -0.15100552141666412, -0.027219591662287712, 0.07061436772346497, -0.05182561278343201, 0.11742959916591644, 0.06734634190797806, 0.15370170772075653, -0.02808295376598835, -0.06550680100917816, 0.04329575225710869, -0.011156372725963593, 0.012560072354972363, -0.015519342385232449, 0.06616479158401489, -0.020170152187347412, -0.16637517511844635, 0.024761853739619255, -0.13222403824329376, -0.00029109622118994594, -0.08070310950279236, 0.02876109816133976, -0.0037896852008998394, -0.07238214462995529, -0.08113706111907959, -0.03609194979071617, 0.07841385900974274, -0.06796722859144211, -0.02233896031975746, 0.028980936855077744, 0.07407151907682419, -0.06929858028888702, 0.06581553816795349, -0.014285825192928314, 0.022295428439974785, -0.08414242416620255, -0.03490523621439934, -0.18244726955890656, 0.03699268773198128, 0.09886419773101807, 0.012692133896052837, -0.02143196389079094, 0.12558884918689728, -0.006703254766762257, 0.06431664526462555, -0.03921517729759216, -0.0052651045843958855, -0.013882122933864594, -0.0014238859293982387, -0.09757738560438156, -0.10285774618387222, -0.07622045278549194, -0.06838693469762802, 0.0849512442946434, -0.10609297454357147, 0.022993702441453934, -0.05608997121453285, 0.04179198294878006, 0.019616618752479553, -0.07193657010793686, -0.008505318313837051, 0.017168810591101646, -0.06219713017344475, -0.057982511818408966, 0.033917319029569626, 0.0582737922668457, -0.022963449358940125, 0.0874752327799797, -0.04534566402435303, -0.08090247213840485, 0.026100369170308113, 0.08120425045490265, -0.10423246771097183, 0.028376441448926926, -0.04740980640053749, -0.04353459179401398, -0.07504287362098694, -0.027129635214805603, 0.10259492695331573, -0.01160454098135233, 0.1415233165025711, -0.07505820691585541, -0.011201933026313782, 0.01003975234925747, -0.010704727843403816, -0.025498047471046448, 0.04706453159451485, 0.0796755850315094, -0.0639365166425705, 0.024074098095297813, 0.029144559055566788, 0.0005120019195601344, 0.06414545327425003, -0.05023213475942612, -0.07807791978120804, 0.02160201221704483, 0.03258886933326721, 0.022320987656712532, 0.06400860100984573, -0.04457723721861839, -0.011842701584100723, 0.028234975412487984, 0.021928580477833748, 0.009641884826123714, -0.1223873421549797, 0.06178640201687813, 0.06161830946803093, 0.006936295423656702, 0.04969917610287666, -0.02193978801369667, -0.03375359997153282, 0.08176211267709732, 0.030317457392811775, -0.013292687945067883, -0.011418464593589306, -0.011942112818360329, -0.12353381514549255, 0.21624906361103058, -0.06496649235486984, -0.15055806934833527, -0.06905047595500946, -0.0983148142695427, 0.004918031394481659, 0.023351289331912994, 0.042822301387786865, -0.028866445645689964, -0.043542034924030304, -0.12507206201553345, 0.10013949126005173, -0.03641972318291664, 0.06944634765386581, 0.11512649059295654, -0.06419321894645691, 0.043733082711696625, -0.13089904189109802, -0.010541882365942001, -0.07868082821369171, -0.06692562252283096, 0.05512676015496254, -0.04847455769777298, 0.04019267112016678, 0.1083805039525032, 0.015830304473638535, -0.025895964354276657, -0.03206709399819374, 0.2086474597454071, 0.043585024774074554, 0.039035357534885406, 0.12395280599594116, -0.06787438690662384, 0.05026235058903694, 0.08292576670646667, 0.005699027795344591, -0.04870021715760231, 0.05429386720061302, 0.056663088500499725, -0.058921489864587784, -0.1890021115541458, -0.005774246994405985, 0.006534903775900602, -0.04655028134584427, 0.07204481959342957, 0.03784548491239548, -0.0017967874882742763, 0.07758177816867828, 0.017603084444999695, 0.06727640330791473, 0.00002420906093902886, 0.09735234081745148, 0.01779995858669281, -0.03636004030704498, 0.0857662484049797, -0.0067749000154435635, -0.008950114250183105, 0.07660270482301712, -0.017698369920253754, 0.29669374227523804, -0.043086808174848557, 0.017473481595516205, 0.12245463579893112, 0.0374876968562603, 0.04995546117424965, 0.12954364717006683, -0.07461865246295929, 0.02953355759382248, -0.07353782653808594, -0.04512672871351242, 0.011808851733803749, 0.04652444273233414, -0.06759563833475113, 0.024920495226979256, -0.09038004279136658, 0.02421349473297596, -0.02559809200465679, 0.3097778260707855, 0.10567691922187805, -0.10808774828910828, -0.0565897598862648, 0.003779658814892173, -0.10005885362625122, -0.07093276083469391, 0.053138021379709244, 0.05466437339782715, -0.134079247713089, 0.001361603382974863, -0.02196701057255268, 0.07825324684381485, -0.031835705041885376, 0.014200475066900253, 0.03640586510300636, 0.05455516651272774, -0.046282727271318436, 0.005518019199371338, -0.19094468653202057, 0.19595815241336823, -0.001279798336327076, 0.027885861694812775, -0.055205292999744415, 0.02875429391860962, 0.006566505879163742, -0.017938444390892982, 0.0642799362540245, 0.019078217446804047, -0.014194726012647152, -0.0701579749584198, -0.04414868727326393, 0.016944807022809982, 0.06752849370241165, -0.05047731101512909, 0.10560324043035507, 0.006385121960192919, 0.05351768806576729, 0.028896262869238853, 0.08230877667665482, -0.18861913681030273, -0.07980430126190186, 0.028160670772194862, -0.04655998572707176, -0.09289661794900894, -0.0820554718375206, -0.09795408695936203, 0.00041092379251495004, 0.21725139021873474, -0.1270301640033722, -0.07356807589530945, -0.09227155894041061, 0.04721781983971596, 0.0939299464225769, -0.05472923815250397, 0.024342309683561325, -0.008131369948387146, 0.11009573936462402, -0.07035123556852341, -0.12318582832813263, 0.02490290254354477, -0.09888442605733871, -0.15892352163791656, -0.0661546140909195, 0.08853388577699661, 0.06267218291759491, 0.030744312331080437, -0.03244186192750931, 0.010616851039230824, 0.0420868918299675, -0.03679727762937546, 0.0019072473514825106, 0.06500973552465439, 0.07966537773609161, 0.04448236897587776, -0.11328089982271194, 0.014703184366226196, -0.07358597964048386, -0.06866351515054703, 0.07197916507720947, 0.27046599984169006, -0.051011718809604645, 0.10889414697885513, 0.11983471363782883, -0.0888570100069046, -0.16144098341464996, 0.044028181582689285, 0.09317859262228012, -0.008916516788303852, 0.000999730546027422, -0.1632150560617447, 0.09987030923366547, 0.11192066967487335, -0.015207270160317421, 0.010548772290349007, -0.21198302507400513, -0.13797922432422638, 0.08685514330863953, 0.11618353426456451, 0.28709691762924194, -0.050702568143606186, -0.035685230046510696, 0.02271564118564129, -0.09303164482116699, 0.008902867324650288, 0.13594888150691986, 0.0632731020450592, -0.022456927224993706, -0.0684766173362732, 0.012453521601855755, -0.0362287200987339, 0.08861945569515228, 0.06319534778594971, 0.07140019536018372, -0.0007362672477029264, -0.0030251352582126856, -0.039188604801893234, -0.03923076391220093, 0.07186301052570343, 0.03200654685497284, 0.04886341467499733, -0.08530138432979584, -0.036593496799468994, -0.07075179368257523, 0.0345202200114727, -0.02981032058596611, -0.07696474343538284, -0.05875740572810173, 0.07341491430997849, 0.05890590324997902, -0.033649202436208725, 0.027655432000756264, 0.035292111337184906, 0.09812650084495544, 0.1438164860010147, -0.0006250811275094748, -0.04961704835295677, -0.06505914032459259, -0.02887726202607155, -0.01311612967401743, 0.07857515662908554, -0.035362664610147476, 0.016882531344890594, 0.0748981386423111, 0.022277778014540672, 0.10740572959184647, 0.06253846734762192, -0.11857376992702484, -0.017571086063981056, 0.026716448366642, -0.15111763775348663, -0.00020566304738167673, 0.0003259646473452449, 0.013627499341964722, -0.025696970522403717, 0.024251168593764305, 0.1475469470024109, -0.072563536465168, -0.03320331498980522, -0.04890500754117966, 0.0628504827618599, 0.03260780870914459, 0.15188317000865936, 0.0369388721883297, 0.03766335919499397, -0.07575473189353943, 0.145780548453331, 0.0421316996216774, -0.03508899733424187, 0.027480266988277435, -0.032290857285261154, -0.1050942987203598, 0.017412545159459114, 0.06841441988945007, 0.07509012520313263, -0.06819139420986176, -0.013346870429813862, -0.043176326900720596, -0.08222322165966034, 0.06783561408519745, 0.2097809761762619, 0.06189102306962013, 0.06656035035848618, -0.05326857045292854, -0.03437064588069916, -0.0770082175731659, 0.04984786733984947, 0.05534772947430611, 0.07814055681228638, -0.07339876890182495, 0.10386168956756592, 0.012503950856626034, 0.049317702651023865, -0.026334702968597412, -0.04555463790893555, -0.10524562001228333, -0.055039115250110626, -0.09686508029699326, 0.011844874359667301, -0.05950535088777542, -0.04141692444682121, 0.008262496441602707, -0.00391273433342576, -0.005808670539408922, 0.05765552073717117, -0.06098802760243416, -0.01328357495367527, -0.015325727872550488, 0.03348572179675102, -0.06266800314188004, -0.053252510726451874, 0.020894289016723633, -0.09597629308700562, 0.09615680575370789, 0.04385325685143471, 0.01163144875317812, 0.002412545494735241, 0.0668453499674797, -0.00994513463228941, 0.023360244929790497, 0.009484167210757732, -0.04158058390021324, -0.099350206553936, 0.008487612009048462, -0.02412896603345871, -0.031916022300720215, -0.019207632169127464, 0.08881303668022156, -0.0833166241645813, 0.024855276569724083, -0.002697858028113842, 0.0005505753215402365, -0.0776069313287735, -0.0034022824838757515, 0.09629644453525543, 0.08182565122842789, 0.05551812797784805, -0.08358626067638397, 0.016713932156562805, -0.12418133020401001, -0.03357146680355072, 0.012918231077492237, -0.0149074150249362, -0.13968344032764435, -0.0128563791513443, 0.02059929445385933, -0.01251404732465744, 0.18535688519477844, -0.054106246680021286, -0.02798430062830448, 0.020442284643650055, -0.0903911292552948, 0.10525283962488174, -0.02022756077349186, 0.16566888988018036, -0.02666584402322769, -0.037927597761154175, -0.01843239739537239, 0.04687771573662758, 0.027796711772680283, -0.007019147742539644, 0.19026628136634827, 0.12888562679290771, 0.03530341386795044, 0.05849209055304527, -0.02689656987786293, -0.01098716538399458, -0.05574245750904083, -0.01884474791586399, 0.039162006229162216, 0.03624524548649788, 0.022004473954439163, 0.15344521403312683, 0.05789179727435112, -0.1589505821466446, 0.035207487642765045, -0.021543242037296295, -0.03980695828795433, -0.1183915063738823, -0.10139556229114532, -0.03263110667467117, -0.06118946522474289, 0.017260177060961723, -0.1326460987329483, 0.004124127794057131, 0.17420241236686707, 0.06400424987077713, 0.030041009187698364, 0.017117884010076523, -0.12876732647418976, -0.04047650098800659, 0.06183600053191185, 0.011205180548131466, 0.019559811800718307, 0.03917064517736435, -0.006977106910198927, 0.06698038429021835, 0.025060858577489853, 0.004635833203792572, -0.005669711623340845, 0.07268824428319931, 0.02210734412074089, 0.04817737638950348, -0.055330950766801834, -0.0006331228651106358, -0.04521312937140465, 0.0794566422700882, 0.11925570666790009, 0.045540910214185715, -0.04890824481844902, -0.012126979418098927, 0.15923403203487396, -0.030063604936003685, 0.00977368000894785, -0.1205935850739479, 0.31758713722229004, 0.018188199028372765, 0.01508463267236948, 0.0595962218940258, -0.08171956241130829, -0.048303958028554916, 0.20357592403888702, 0.06491536647081375, -0.02049722708761692, -0.029837312176823616, 0.0007792040705680847, -0.030937504023313522, -0.015447192825376987, 0.14136968553066254, 0.0421271026134491, 0.11620601266622543, -0.05760360509157181, -0.039885394275188446, -0.03334387019276619, -0.0003604767844080925, -0.10944178700447083, 0.14475178718566895, -0.0193320345133543, -0.018442006781697273, -0.08179810643196106, 0.009854013100266457, 0.07549671083688736, -0.33577486872673035, 0.007028792519122362, -0.028553403913974762, -0.10428193211555481, -0.014742590487003326, -0.02951527200639248, -0.025511736050248146, 0.04868852347135544, -0.04008588567376137, 0.06706476956605911, 0.04938964545726776, 0.037907376885414124, -0.023899521678686142, -0.1107109934091568, 0.158610999584198, 0.05684719979763031, 0.10337188839912415, 0.019863896071910858, 0.08338192850351334, 0.05910841375589371, 0.036902207881212234, -0.09328377991914749, 0.05365801975131035, 0.007195794954895973, -0.06554944068193436, -0.05495939403772354, 0.11863338202238083, -0.0016509870765730739, 0.06835265457630157, 0.027405867353081703, -0.11969810724258423, 0.02499982714653015, 0.07615764439105988, -0.08653832226991653, -0.09670761227607727, -0.0007754562539048493, -0.09599598497152328, 0.1562272310256958, 0.14606782793998718, -0.011326332576572895, 0.01636640913784504, -0.06321247667074203, -0.007409327197819948, 0.0494219996035099, 0.014323309995234013, -0.011108050122857094, -0.1826583296060562, 0.05053877830505371, -0.08715630322694778, -0.00409816624596715, -0.21200871467590332, -0.10210762917995453, -0.018028326332569122, -0.05642542615532875, -0.026070326566696167, 0.05781684070825577, 0.030679218471050262, 0.07648652046918869, -0.02633768320083618, -0.0399048812687397, -0.03673355281352997, 0.09398645162582397, -0.10123161226511002, -0.07435354590415955 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_600k"]}
null
google/multiberts-seed_1-step_600k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_600k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 600k (max: 2000k, i.e., 2M steps)." ]
[ -0.08189119398593903, 0.0730593204498291, -0.0019684648141264915, 0.04730180650949478, 0.08118879050016403, -0.019497746601700783, 0.06449230760335922, 0.09384875744581223, -0.004465811420232058, 0.022994389757514, 0.08193174004554749, 0.027798054739832878, 0.012022540904581547, 0.09321355074644089, 0.019032251089811325, -0.20934607088565826, 0.030158143490552902, -0.02931017242372036, -0.09047947824001312, 0.07492123544216156, 0.10077541321516037, -0.0828489139676094, 0.04543511942028999, 0.02827015519142151, -0.11438301205635071, 0.05803005024790764, -0.009039508178830147, -0.02181367389857769, 0.13649053871631622, -0.0012749361339956522, 0.05450502783060074, 0.05809630826115608, 0.050202496349811554, -0.13132987916469574, 0.004609869327396154, 0.05467942729592323, 0.05248214304447174, 0.036417700350284576, 0.020721685141324997, 0.08280915766954422, -0.029193302616477013, 0.034152280539274216, 0.05060964822769165, 0.016515055671334267, -0.0643179640173912, -0.05222058296203613, -0.09831376373767853, 0.020383358001708984, 0.033148281276226044, 0.025047706440091133, 0.007051306776702404, 0.11513879150152206, -0.03884301334619522, 0.041792310774326324, 0.1725235879421234, -0.3046598732471466, -0.002404040889814496, 0.06536974757909775, 0.015118338167667389, 0.11423788964748383, -0.004977956414222717, -0.03603748604655266, 0.08138098567724228, 0.023363173007965088, 0.08966003358364105, -0.038321200758218765, 0.01629333570599556, -0.06152080371975899, -0.15487796068191528, -0.035864029079675674, 0.09894885867834091, 0.003757857484742999, -0.13915355503559113, -0.014840621501207352, -0.04588997736573219, 0.04510018974542618, 0.020984377712011337, -0.038393810391426086, 0.0449354350566864, 0.003243066370487213, -0.005987913813441992, -0.0009490337688475847, -0.10222234576940536, -0.04818244278430939, 0.01792633719742298, 0.09037574380636215, 0.1084069162607193, 0.05822717770934105, -0.006884145084768534, 0.11035126447677612, -0.184688001871109, -0.04695822671055794, -0.03180066868662834, -0.031614720821380615, -0.04576915502548218, -0.010535149835050106, -0.10024271160364151, -0.04558766633272171, -0.0029934628400951624, 0.12891602516174316, -0.011886895634233952, 0.03440946713089943, -0.022046677768230438, 0.00451558455824852, 0.0561164990067482, 0.048998940736055374, -0.018592428416013718, 0.024941010400652885, 0.0328068733215332, -0.013694088906049728, -0.01993858627974987, 0.010991896502673626, -0.0023751920089125633, 0.027568988502025604, 0.13123588263988495, 0.011163135059177876, -0.10594552755355835, 0.07598831504583359, -0.018612848594784737, -0.04340355843305588, -0.0063189188949763775, -0.08879578113555908, -0.06380097568035126, -0.04220277816057205, -0.01670100726187229, 0.003906004596501589, 0.004248281940817833, -0.009504021145403385, -0.026332372799515724, -0.016448352485895157, -0.09098640829324722, -0.059806231409311295, -0.058881402015686035, -0.13303770124912262, 0.006232900079339743, -0.18913060426712036, -0.0298645980656147, -0.11248917132616043, -0.20771078765392303, -0.038521282374858856, 0.04828713461756706, 0.0009441516594961286, -0.06525861471891403, 0.05605972930788994, 0.03140600398182869, -0.030480457469820976, -0.0009625263046473265, 0.09205897897481918, -0.005503595806658268, 0.03825943544507027, -0.03788026422262192, 0.06143398582935333, 0.004265654366463423, 0.04451170191168785, -0.061234064400196075, 0.05657269060611725, -0.17388911545276642, 0.042108215391635895, -0.07527096569538116, -0.03202305734157562, -0.08535369485616684, -0.03261875361204147, -0.008654044009745121, 0.011161270551383495, 0.026237616315484047, 0.07778925448656082, -0.17207251489162445, -0.027534089982509613, 0.08367433398962021, -0.15276223421096802, -0.025681080296635628, 0.06826332956552505, -0.054895732551813126, 0.11865980923175812, 0.06394917517900467, 0.1617802530527115, -0.033410824835300446, -0.06641261279582977, 0.04124610498547554, -0.012198878452181816, 0.012026544660329819, -0.011847509071230888, 0.06496848165988922, -0.020142143592238426, -0.16596491634845734, 0.023579632863402367, -0.13180480897426605, -0.0016503353836014867, -0.07831540703773499, 0.030917201191186905, -0.004510379396378994, -0.07081974297761917, -0.08102191984653473, -0.03238122910261154, 0.07600206136703491, -0.0681348368525505, -0.022083677351474762, 0.034075118601322174, 0.07765837758779526, -0.0695766806602478, 0.06563733518123627, -0.015210854820907116, 0.01718153990805149, -0.0821351632475853, -0.036722589284181595, -0.186940535902977, 0.029925037175416946, 0.09735960513353348, 0.013415733352303505, -0.019760068506002426, 0.12114416807889938, -0.0070626516826450825, 0.06505384296178818, -0.04129498824477196, -0.0044903624802827835, -0.011890968307852745, -0.0008858544752001762, -0.09520880877971649, -0.10644234716892242, -0.07342925667762756, -0.06976726651191711, 0.09373737871646881, -0.10967155545949936, 0.021744346246123314, -0.052156202495098114, 0.042144957929849625, 0.017315877601504326, -0.07134930789470673, -0.010242804884910583, 0.01346651278436184, -0.06387381255626678, -0.05942762270569801, 0.0342639684677124, 0.05969448387622833, -0.020246809348464012, 0.09061506390571594, -0.0443546287715435, -0.0896444320678711, 0.028358662500977516, 0.08285069465637207, -0.1060483306646347, 0.030978335067629814, -0.04671841487288475, -0.047241874039173126, -0.07240831851959229, -0.028369847685098648, 0.10400041937828064, -0.012451295740902424, 0.14031323790550232, -0.07667858898639679, -0.009747843258082867, 0.010249976068735123, -0.010251977480947971, -0.025373784825205803, 0.047917161136865616, 0.07789871096611023, -0.07595410197973251, 0.02459641732275486, 0.034335825592279434, -0.00012495282862801105, 0.06675021350383759, -0.050768185406923294, -0.07617555558681488, 0.023587573319673538, 0.03342819958925247, 0.022003352642059326, 0.064193956553936, -0.04502659663558006, -0.008800506591796875, 0.027399854734539986, 0.023878952488303185, 0.009756783954799175, -0.12061826139688492, 0.06091970205307007, 0.05842715501785278, 0.009240408428013325, 0.04802894964814186, -0.019682327285408974, -0.03407805413007736, 0.08218953758478165, 0.030647490173578262, -0.016606688499450684, -0.008983317762613297, -0.012435082346200943, -0.12022963911294937, 0.22030945122241974, -0.06629854440689087, -0.14413775503635406, -0.06740418821573257, -0.10996957868337631, 0.002532198093831539, 0.023425444960594177, 0.04125426709651947, -0.034200213849544525, -0.04213445633649826, -0.12366575747728348, 0.09563634544610977, -0.035326723009347916, 0.06563891470432281, 0.1126280352473259, -0.06558015197515488, 0.04440867528319359, -0.1305905133485794, -0.012354518286883831, -0.07978693395853043, -0.06992640346288681, 0.05729210004210472, -0.05397246405482292, 0.039289526641368866, 0.11043111979961395, 0.01607818529009819, -0.02868136391043663, -0.02962525747716427, 0.20588383078575134, 0.04009580239653587, 0.04221818596124649, 0.12825632095336914, -0.06832832098007202, 0.05422268062829971, 0.08323629200458527, 0.005848773289471865, -0.04796887934207916, 0.05649483576416969, 0.05683908984065056, -0.061343371868133545, -0.19328847527503967, -0.008271235041320324, 0.00611928291618824, -0.048621926456689835, 0.0673244446516037, 0.037956155836582184, -0.0035185455344617367, 0.07663615792989731, 0.01988096348941326, 0.06333696097135544, -0.001087563345208764, 0.0983121246099472, 0.023789191618561745, -0.036005884408950806, 0.08576520532369614, -0.007912526838481426, -0.007686008233577013, 0.07723015546798706, -0.013928600586950779, 0.3025152385234833, -0.045165710151195526, 0.015446328558027744, 0.12280886620283127, 0.036636773496866226, 0.04915844649076462, 0.12605313956737518, -0.07578898966312408, 0.027687223628163338, -0.07623155415058136, -0.0454726368188858, 0.016839398071169853, 0.04555947333574295, -0.07500705868005753, 0.02087286114692688, -0.08707914501428604, 0.02913849987089634, -0.02732916921377182, 0.30200421810150146, 0.1049344539642334, -0.11151950061321259, -0.0588500052690506, 0.0025514699518680573, -0.10058864206075668, -0.07046371698379517, 0.05190042406320572, 0.0535505935549736, -0.13291257619857788, 0.00591552397236228, -0.022007694467902184, 0.07598540186882019, -0.02650843746960163, 0.015069929882884026, 0.03948706388473511, 0.05473533272743225, -0.046525925397872925, 0.006634135264903307, -0.18266424536705017, 0.20057225227355957, -0.0017618206329643726, 0.02432231605052948, -0.054648082703351974, 0.028394298627972603, 0.012434125877916813, -0.01686236634850502, 0.06605668365955353, 0.019406599923968315, -0.014928324148058891, -0.05843692272901535, -0.0423838272690773, 0.016769500449299812, 0.06746391206979752, -0.044821348041296005, 0.10622058063745499, 0.006950859911739826, 0.05403898283839226, 0.029912704601883888, 0.08551439642906189, -0.18545012176036835, -0.08154556900262833, 0.026666760444641113, -0.05077998712658882, -0.10331277549266815, -0.08028550446033478, -0.09739293903112411, 0.005213466938585043, 0.22351661324501038, -0.11525114625692368, -0.0759819820523262, -0.09351678937673569, 0.04324987903237343, 0.09535008668899536, -0.05496491491794586, 0.022959938272833824, -0.00802773330360651, 0.1104440912604332, -0.06810540705919266, -0.12365647405385971, 0.027572939172387123, -0.09885460883378983, -0.15847285091876984, -0.06846950203180313, 0.0845394879579544, 0.06249909847974777, 0.031359776854515076, -0.033371008932590485, 0.012274594977498055, 0.03864699974656105, -0.03594217449426651, 0.001859726500697434, 0.058117713779211044, 0.08774452656507492, 0.04369949549436569, -0.1102994829416275, 0.01999100111424923, -0.07271143049001694, -0.06986449658870697, 0.06870323419570923, 0.2698516249656677, -0.048346586525440216, 0.11047042906284332, 0.1226811408996582, -0.08758170157670975, -0.16503190994262695, 0.04846601188182831, 0.09540363401174545, -0.014092004857957363, 0.002817252418026328, -0.16652826964855194, 0.10520295053720474, 0.11470504850149155, -0.016666224226355553, 0.005635279696434736, -0.19980430603027344, -0.13620547950267792, 0.08229763805866241, 0.1166761964559555, 0.2866981625556946, -0.04980999231338501, -0.03539542853832245, 0.022412225604057312, -0.09571407735347748, 0.0052935597486793995, 0.13026343286037445, 0.06237206980586052, -0.023048337548971176, -0.05665905401110649, 0.011142401024699211, -0.03622827306389809, 0.08979014307260513, 0.06485942006111145, 0.07071517407894135, -0.004218853544443846, -0.0062360577285289764, -0.03707396239042282, -0.04001755639910698, 0.06924460083246231, 0.03271495923399925, 0.0514642670750618, -0.08028946816921234, -0.03522093594074249, -0.07514720410108566, 0.03234831616282463, -0.030977807939052582, -0.07724770158529282, -0.05961522459983826, 0.07652132958173752, 0.057179830968379974, -0.03392553701996803, 0.030379552394151688, 0.03497112914919853, 0.09690619260072708, 0.1459086686372757, 0.002534520113840699, -0.04700412228703499, -0.06340524554252625, -0.026707427576184273, -0.013460986316204071, 0.07525021582841873, -0.045336708426475525, 0.014628125354647636, 0.07255147397518158, 0.022767655551433563, 0.1036292091012001, 0.06481323391199112, -0.12085103243589401, -0.017416631802916527, 0.027359677478671074, -0.15023770928382874, 0.0027581406757235527, 0.0018484194297343493, 0.024580862373113632, -0.024601047858595848, 0.02289758250117302, 0.1461077183485031, -0.06893277913331985, -0.03150235861539841, -0.04643021151423454, 0.06333044916391373, 0.03506389260292053, 0.14947129786014557, 0.03672659397125244, 0.03709905594587326, -0.0781421884894371, 0.1462639719247818, 0.04460109397768974, -0.04616225138306618, 0.026430467143654823, -0.02975809946656227, -0.10845993459224701, 0.015595399774610996, 0.061861302703619, 0.07637273520231247, -0.07734978199005127, -0.012121845036745071, -0.040598515421152115, -0.08162827044725418, 0.06860315054655075, 0.2082749754190445, 0.06324316561222076, 0.06408020108938217, -0.051890093833208084, -0.035126689821481705, -0.07885130494832993, 0.048381656408309937, 0.05055094137787819, 0.08138768374919891, -0.07392416894435883, 0.0881115049123764, 0.011458583176136017, 0.05275735259056091, -0.026284189894795418, -0.04640716314315796, -0.10253240913152695, -0.05621560662984848, -0.10120104253292084, 0.013596958480775356, -0.058652639389038086, -0.043391935527324677, 0.007229791022837162, -0.004231215454638004, -0.005118841305375099, 0.05896009877324104, -0.06332951784133911, -0.013361407443881035, -0.013612989336252213, 0.03418460115790367, -0.05994567275047302, -0.05315740779042244, 0.023774486035108566, -0.096232108771801, 0.09682128578424454, 0.047082629054784775, 0.011300481855869293, 0.0020677829161286354, 0.07846491783857346, -0.014027545228600502, 0.022252731025218964, 0.010795380920171738, -0.038425736129283905, -0.09719190746545792, 0.005119401030242443, -0.02648800052702427, -0.031347278505563736, -0.02035936713218689, 0.09335339814424515, -0.08184381574392319, 0.03416845574975014, -0.0030357514042407274, -0.0033370049204677343, -0.08033019304275513, -0.0021973387338221073, 0.09766384214162827, 0.08475185185670853, 0.05408016964793205, -0.08328840136528015, 0.014048970304429531, -0.12505139410495758, -0.03526252880692482, 0.013978464528918266, -0.015824822708964348, -0.13262073695659637, -0.012878978624939919, 0.020038995891809464, -0.012973641976714134, 0.18264009058475494, -0.05728720501065254, -0.028985733166337013, 0.02074885368347168, -0.08953920006752014, 0.10506103932857513, -0.023605115711688995, 0.16460292041301727, -0.028423165902495384, -0.03593417629599571, -0.011977111920714378, 0.04666103795170784, 0.025591135025024414, -0.0012052461970597506, 0.1898459643125534, 0.1333540380001068, 0.03671629726886749, 0.05626194551587105, -0.024272184818983078, -0.009334960021078587, -0.061267707496881485, -0.023737546056509018, 0.04006726294755936, 0.03466632589697838, 0.023117702454328537, 0.1476859599351883, 0.05968400835990906, -0.15944074094295502, 0.03667802736163139, -0.029414799064397812, -0.041264962404966354, -0.11652591824531555, -0.09380700439214706, -0.03125657141208649, -0.060944121330976486, 0.017695128917694092, -0.13345931470394135, 0.006675293203443289, 0.17953698337078094, 0.0652766078710556, 0.03142283856868744, 0.02360009402036667, -0.13155892491340637, -0.0431407205760479, 0.05733398720622063, 0.011207676492631435, 0.018151383846998215, 0.045094992965459824, -0.004484090488404036, 0.06670650839805603, 0.025460515171289444, 0.0017789625562727451, -0.0034192611929029226, 0.07467609643936157, 0.02132565528154373, 0.049501243978738785, -0.05367311090230942, -0.0012456034310162067, -0.04148804768919945, 0.07959795743227005, 0.11746221780776978, 0.042559415102005005, -0.04729980230331421, -0.01245660800486803, 0.1612073928117752, -0.03227359429001808, 0.010876056738197803, -0.11579159647226334, 0.33291614055633545, 0.01550818607211113, 0.01212767232209444, 0.0584520548582077, -0.08287643641233444, -0.048618268221616745, 0.20452728867530823, 0.06457611173391342, -0.023602154105901718, -0.030550427734851837, 0.001636347034946084, -0.03094564378261566, -0.01567504182457924, 0.14339037239551544, 0.043921228498220444, 0.12037069350481033, -0.058778949081897736, -0.04580537974834442, -0.034017469733953476, 0.001052877982147038, -0.11124090105295181, 0.14942161738872528, -0.018770664930343628, -0.021011797711253166, -0.08146914839744568, 0.010774645023047924, 0.0765669122338295, -0.34376299381256104, 0.00719176372513175, -0.0317445732653141, -0.10580520331859589, -0.015088958665728569, -0.02935509942471981, -0.026633022353053093, 0.0516020692884922, -0.042222265154123306, 0.0672331228852272, 0.04030631482601166, 0.03914303705096245, -0.02469954639673233, -0.10335850715637207, 0.16119171679019928, 0.05471844971179962, 0.10300979763269424, 0.018803754821419716, 0.0859881117939949, 0.06125743314623833, 0.03727582469582558, -0.09502581506967545, 0.05492012947797775, 0.009557056240737438, -0.06960049271583557, -0.056051596999168396, 0.12156084179878235, -0.003456847043707967, 0.06132787466049194, 0.028517726808786392, -0.12494590878486633, 0.0237589031457901, 0.08464912325143814, -0.08582844585180283, -0.0971003994345665, -0.0013040925841778517, -0.0983860045671463, 0.1581411063671112, 0.14803077280521393, -0.009118151850998402, 0.017753221094608307, -0.06404197216033936, -0.008909642696380615, 0.05196402966976166, 0.009632506407797337, -0.013634387403726578, -0.18431557714939117, 0.05068330094218254, -0.0914972648024559, -0.004550402518361807, -0.21800369024276733, -0.10168544203042984, -0.014706897549331188, -0.05674266442656517, -0.02582702971994877, 0.05865255743265152, 0.029092198237776756, 0.07521294802427292, -0.024716699495911598, -0.02504746802151203, -0.03910756856203079, 0.0952899158000946, -0.10130515694618225, -0.07464046776294708 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_60k"]}
null
google/multiberts-seed_1-step_60k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_60k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 60k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 60k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 60k (max: 2000k, i.e., 2M steps)." ]
[ -0.0807916596531868, 0.07839950919151306, -0.0020286955405026674, 0.04113125428557396, 0.07679636776447296, -0.02163565717637539, 0.0706937164068222, 0.09420149773359299, -0.010235468856990337, 0.02508680336177349, 0.08288869261741638, 0.029484296217560768, 0.009996512904763222, 0.10049768537282944, 0.018652670085430145, -0.2131633758544922, 0.03009037859737873, -0.02757105976343155, -0.08827947080135345, 0.07557892054319382, 0.10304461419582367, -0.08380988985300064, 0.0427667498588562, 0.03088339790701866, -0.11105193942785263, 0.0554010346531868, -0.011356757022440434, -0.02181529626250267, 0.1376216858625412, -0.0018770149908959866, 0.05443592369556427, 0.05657004192471504, 0.0461573600769043, -0.13727086782455444, 0.005128370597958565, 0.055090658366680145, 0.0501047819852829, 0.03749227151274681, 0.020654315128922462, 0.07983532547950745, -0.02487209439277649, 0.0260934978723526, 0.04942382499575615, 0.015747060999274254, -0.06460685282945633, -0.06318744271993637, -0.09770599007606506, 0.024216458201408386, 0.029132438823580742, 0.022787107154726982, 0.006753469817340374, 0.12192386388778687, -0.037638984620571136, 0.04469512403011322, 0.17987827956676483, -0.3111906349658966, -0.0009996136650443077, 0.06463240832090378, 0.020103469491004944, 0.11164234578609467, -0.004757853224873543, -0.03447042405605316, 0.08046499639749527, 0.02159682661294937, 0.09379034489393234, -0.03939921408891678, 0.025087103247642517, -0.058811288326978683, -0.1567651629447937, -0.03762436658143997, 0.09971044957637787, 0.005144965834915638, -0.13836769759655, -0.019913580268621445, -0.04696589335799217, 0.044321224093437195, 0.019366798922419548, -0.0385439433157444, 0.04530739039182663, 0.0028689142782241106, -0.006395251024514437, -0.0009184907539747655, -0.10226403176784515, -0.04574061930179596, 0.02104240283370018, 0.09208644926548004, 0.10991989076137543, 0.055576104670763016, -0.007882324978709221, 0.10850125551223755, -0.19056743383407593, -0.048669543117284775, -0.029100451618433, -0.031244143843650818, -0.04660673439502716, -0.011033955030143261, -0.10327257961034775, -0.045836709439754486, -0.0008626116905361414, 0.14200739562511444, -0.020594658330082893, 0.03347686305642128, -0.023769088089466095, 0.005262416321784258, 0.06003127619624138, 0.05019000545144081, -0.018596207723021507, 0.022799450904130936, 0.03199183940887451, -0.017608508467674255, -0.01897572912275791, 0.010866696946322918, -0.004013138357549906, 0.02712642401456833, 0.13453443348407745, 0.0112864775583148, -0.10811959207057953, 0.07821696251630783, -0.016488654538989067, -0.045024920254945755, -0.007606677711009979, -0.08823488652706146, -0.06534670293331146, -0.03885165601968765, -0.017403721809387207, 0.003101193346083164, 0.00300137372687459, -0.00806435476988554, -0.026647930964827538, -0.018979456275701523, -0.08917073905467987, -0.058572474867105484, -0.05794884264469147, -0.134649395942688, 0.008612751960754395, -0.1979677528142929, -0.028491083532571793, -0.11183173954486847, -0.2084938883781433, -0.039268456399440765, 0.04745052382349968, 0.002676981035619974, -0.06544764339923859, 0.05638270825147629, 0.0327644981443882, -0.02988821268081665, -0.002390110632404685, 0.09110081195831299, -0.0074738673865795135, 0.03725181892514229, -0.03623443841934204, 0.0602291114628315, 0.005262528080493212, 0.044162310659885406, -0.060361724346876144, 0.056829746812582016, -0.1732843816280365, 0.04078996181488037, -0.07502755522727966, -0.032820045948028564, -0.08811401575803757, -0.030119048431515694, -0.006861977279186249, 0.012462154030799866, 0.02513548918068409, 0.07355967164039612, -0.17138996720314026, -0.03010973148047924, 0.08996482938528061, -0.15027907490730286, -0.026082957163453102, 0.07037972658872604, -0.05747498571872711, 0.11785134673118591, 0.06357857584953308, 0.1629447340965271, -0.03654037415981293, -0.06936093419790268, 0.043540630489587784, -0.01093141920864582, 0.013229232281446457, -0.009405342862010002, 0.06897684186697006, -0.019784968346357346, -0.1600363850593567, 0.022745614871382713, -0.13627289235591888, -0.00026811042334884405, -0.07759854942560196, 0.03114153817296028, -0.0029291738756000996, -0.06927715986967087, -0.08218742907047272, -0.03321380168199539, 0.07857278734445572, -0.0679289847612381, -0.02656042017042637, 0.038127753883600235, 0.077558733522892, -0.07215947657823563, 0.06574724614620209, -0.01823977753520012, 0.01888270117342472, -0.08002788573503494, -0.03692523390054703, -0.18820394575595856, 0.0319574698805809, 0.09621870517730713, 0.015981659293174744, -0.019050491973757744, 0.12685269117355347, -0.005827693268656731, 0.0647786557674408, -0.0388072170317173, -0.003674953943118453, -0.012338885106146336, -0.0011058117961511016, -0.09475620090961456, -0.1110435500741005, -0.07148090749979019, -0.07149654626846313, 0.09629547595977783, -0.11211810261011124, 0.022048428654670715, -0.054465629160404205, 0.044866155833005905, 0.016769230365753174, -0.06967071443796158, -0.008782974444329739, 0.013129519298672676, -0.06515325605869293, -0.057617444545030594, 0.03748047724366188, 0.06078844517469406, -0.021269336342811584, 0.09770958125591278, -0.05191248655319214, -0.09055178612470627, 0.02779996581375599, 0.07469630241394043, -0.10457377880811691, 0.025719817727804184, -0.04836435988545418, -0.04701916500926018, -0.06918010115623474, -0.025021148845553398, 0.1019815132021904, -0.012419367209076881, 0.144952654838562, -0.0772014707326889, -0.014927283860743046, 0.008674819022417068, -0.012510517612099648, -0.023747293278574944, 0.04983432963490486, 0.07408639043569565, -0.07465699315071106, 0.02607160620391369, 0.03433236479759216, -0.0032180093694478273, 0.07073318958282471, -0.05416048318147659, -0.07937353104352951, 0.020310796797275543, 0.03370021656155586, 0.021667758002877235, 0.06289827078580856, -0.049283213913440704, -0.013104275800287724, 0.03012753464281559, 0.02173038385808468, 0.010390262119472027, -0.11958910524845123, 0.061556652188301086, 0.05903379246592522, 0.009065346792340279, 0.05366404354572296, -0.01831340789794922, -0.03476162999868393, 0.08032110333442688, 0.03151896595954895, -0.018843110650777817, -0.009216603823006153, -0.01234180387109518, -0.12105849385261536, 0.2195907086133957, -0.06504135578870773, -0.14525046944618225, -0.06584548205137253, -0.11474373936653137, 0.004476794041693211, 0.022650012746453285, 0.04226195812225342, -0.02992912009358406, -0.04212877154350281, -0.12318553030490875, 0.09291432797908783, -0.03917750343680382, 0.06534130871295929, 0.11158610135316849, -0.06455271691083908, 0.045563098043203354, -0.13035812973976135, -0.012290935032069683, -0.07926995307207108, -0.06451168656349182, 0.05902135744690895, -0.054158005863428116, 0.037577640265226364, 0.11006142944097519, 0.016722537577152252, -0.026633890345692635, -0.03018355369567871, 0.20502296090126038, 0.03956269472837448, 0.04003924876451492, 0.12952421605587006, -0.07241186499595642, 0.05351805314421654, 0.07869718223810196, 0.0038450073916465044, -0.04632233455777168, 0.0544549897313118, 0.05943102017045021, -0.059883054345846176, -0.19519619643688202, -0.007661211304366589, 0.007326755207031965, -0.046975355595350266, 0.06842324882745743, 0.03785945102572441, 0.0073609924875199795, 0.07575363665819168, 0.01731801964342594, 0.06669963151216507, -0.0010583712719380856, 0.10138513892889023, 0.02795102819800377, -0.03687436133623123, 0.08649011701345444, -0.00767789501696825, -0.009313303045928478, 0.07568147033452988, -0.013470479287207127, 0.29488831758499146, -0.04195114225149155, 0.027165845036506653, 0.12490060180425644, 0.032721392810344696, 0.049193691462278366, 0.1210218220949173, -0.07658135145902634, 0.02755078859627247, -0.07809684425592422, -0.04782068356871605, 0.015955565497279167, 0.047200389206409454, -0.07530981302261353, 0.015760136768221855, -0.08344897627830505, 0.026529187336564064, -0.02514912560582161, 0.30132222175598145, 0.10474136471748352, -0.11368683725595474, -0.06000729650259018, 0.0011773138539865613, -0.09989261627197266, -0.06917014718055725, 0.05048363655805588, 0.04971037060022354, -0.13153257966041565, 0.006065847352147102, -0.02288910187780857, 0.0776824802160263, -0.0289901290088892, 0.015914229676127434, 0.03420452028512955, 0.054773036390542984, -0.04595973715186119, 0.008014997467398643, -0.186444491147995, 0.19841350615024567, -0.0014422873500734568, 0.02317020297050476, -0.05467390641570091, 0.02838076651096344, 0.012521754950284958, -0.01592296175658703, 0.06439710408449173, 0.018538156524300575, -0.017828907817602158, -0.05490606278181076, -0.04319868981838226, 0.015441857278347015, 0.067942775785923, -0.0449751578271389, 0.1087668240070343, 0.005992705002427101, 0.0534854382276535, 0.0310251135379076, 0.08596999198198318, -0.18511033058166504, -0.07766460627317429, 0.027005210518836975, -0.04889436438679695, -0.1021885946393013, -0.07996013015508652, -0.09733444452285767, -0.006754178088158369, 0.2264505922794342, -0.11470743268728256, -0.07290791720151901, -0.09336207807064056, 0.045972101390361786, 0.09292865544557571, -0.0556563064455986, 0.02159085124731064, -0.010567479766905308, 0.1144956648349762, -0.07150904834270477, -0.12259548902511597, 0.027894282713532448, -0.09954609721899033, -0.15895871818065643, -0.06801727414131165, 0.08685647696256638, 0.06451427191495895, 0.03142496570944786, -0.03388392925262451, 0.0120251988992095, 0.034957561641931534, -0.03447380289435387, 0.002903915708884597, 0.05965619906783104, 0.09206745773553848, 0.039425078779459, -0.10935992747545242, 0.021197110414505005, -0.07200577855110168, -0.06896187365055084, 0.07405354827642441, 0.27195802330970764, -0.048767633736133575, 0.11077086627483368, 0.12264450639486313, -0.08650419861078262, -0.1618562936782837, 0.04578712582588196, 0.09577056020498276, -0.014012986794114113, 0.0028861495666205883, -0.16789697110652924, 0.1025812104344368, 0.11289431154727936, -0.016921503469347954, 0.001659106812439859, -0.19821615517139435, -0.1355849653482437, 0.08923698216676712, 0.11387630552053452, 0.2841224670410156, -0.052796412259340286, -0.03643561154603958, 0.022490954026579857, -0.09206987172365189, 0.011590558104217052, 0.12306174635887146, 0.06218843162059784, -0.020932411774992943, -0.06055661290884018, 0.01045139692723751, -0.03688478469848633, 0.08867382258176804, 0.06573153287172318, 0.07074316591024399, -0.003640894778072834, -0.0038010072894394398, -0.030968252569437027, -0.04183557629585266, 0.07045558094978333, 0.03208712115883827, 0.049629174172878265, -0.08678409457206726, -0.03571643307805061, -0.07462336122989655, 0.036292847245931625, -0.031017925590276718, -0.07833100110292435, -0.059337154030799866, 0.07657543569803238, 0.05687790364027023, -0.03166941925883293, 0.03807096183300018, 0.03313957899808884, 0.09661182016134262, 0.14717832207679749, 0.0001542294630780816, -0.04149924963712692, -0.06462923437356949, -0.02846801094710827, -0.012297544628381729, 0.0756840705871582, -0.04942167177796364, 0.01428209524601698, 0.07092490792274475, 0.023142671212553978, 0.10669635981321335, 0.061547376215457916, -0.12461112439632416, -0.019339995458722115, 0.024490011855959892, -0.15345799922943115, 0.006987069267779589, 0.00141492101829499, 0.021230805665254593, -0.02039210870862007, 0.02601919323205948, 0.1489088237285614, -0.06770075112581253, -0.031167689710855484, -0.04623635858297348, 0.06060301885008812, 0.036383770406246185, 0.14589017629623413, 0.03991999849677086, 0.03797692060470581, -0.07716815918684006, 0.14324216544628143, 0.04318513348698616, -0.04416590929031372, 0.029398208484053612, -0.029262827709317207, -0.10882614552974701, 0.0152134383097291, 0.062926284968853, 0.08037369698286057, -0.07796648889780045, -0.018363917246460915, -0.04327411577105522, -0.07628436386585236, 0.07124147564172745, 0.21514174342155457, 0.06499069184064865, 0.06508889049291611, -0.05140422657132149, -0.03468471020460129, -0.0774751603603363, 0.05050094425678253, 0.04782776162028313, 0.08024798333644867, -0.07228322327136993, 0.09740503877401352, 0.013063928112387657, 0.05336511880159378, -0.026821454986929893, -0.048257727175951004, -0.10375630855560303, -0.055822815746068954, -0.1051839143037796, 0.014854099601507187, -0.06183589994907379, -0.042999204248189926, 0.006934172008186579, -0.0026632477529346943, -0.00406628055498004, 0.05910280719399452, -0.06276724487543106, -0.01169500034302473, -0.013453289866447449, 0.03471071645617485, -0.06304829567670822, -0.05249917134642601, 0.020909924060106277, -0.09663266688585281, 0.09829840809106827, 0.04877830669283867, 0.01241760142147541, 0.002139688702300191, 0.07021753489971161, -0.011389642022550106, 0.022486431524157524, 0.008240794762969017, -0.04000142216682434, -0.10159569978713989, 0.005688523408025503, -0.026996778324246407, -0.032046087086200714, -0.021230867132544518, 0.09078510105609894, -0.08148796856403351, 0.03334842622280121, -0.0002496758825145662, -0.004113363102078438, -0.08078654855489731, -0.003200831124559045, 0.09135138988494873, 0.08501122891902924, 0.05301715061068535, -0.08093097805976868, 0.014164519496262074, -0.1238718256354332, -0.035253945738077164, 0.014067343436181545, -0.01585252210497856, -0.13322941958904266, -0.013393901288509369, 0.018366152420639992, -0.014654234983026981, 0.18907050788402557, -0.05715026706457138, -0.026943281292915344, 0.01951976679265499, -0.09378353506326675, 0.10545334219932556, -0.024056650698184967, 0.1671854853630066, -0.02814616821706295, -0.03463674336671829, -0.013647381216287613, 0.04768446087837219, 0.027483530342578888, -0.004349986091256142, 0.1857282966375351, 0.13416142761707306, 0.03677094727754593, 0.05582117289304733, -0.023951973766088486, -0.010859931819140911, -0.06472470611333847, -0.01329893246293068, 0.041749294847249985, 0.03482195734977722, 0.023493412882089615, 0.15578238666057587, 0.06685996800661087, -0.15979716181755066, 0.03662264347076416, -0.026398055255413055, -0.039917800575494766, -0.11793601512908936, -0.09991847723722458, -0.03298221901059151, -0.06110088899731636, 0.01733577623963356, -0.1332009881734848, 0.004516418091952801, 0.1794167011976242, 0.06686539202928543, 0.031322527676820755, 0.019074678421020508, -0.1298086941242218, -0.0456552617251873, 0.05642150342464447, 0.011277624405920506, 0.018848221749067307, 0.041210711002349854, -0.0037869312800467014, 0.06833575665950775, 0.02443169616162777, 0.002809242345392704, -0.005709751509130001, 0.08244863152503967, 0.02290423959493637, 0.04790954664349556, -0.05507298931479454, -0.0003694651531986892, -0.03949490934610367, 0.08080420643091202, 0.11478415131568909, 0.043877825140953064, -0.04880524426698685, -0.011957063339650631, 0.15827372670173645, -0.028904639184474945, 0.007384348660707474, -0.11778006702661514, 0.32813897728919983, 0.015541290864348412, 0.012243704870343208, 0.05788329616189003, -0.08137480169534683, -0.04444168135523796, 0.20148642361164093, 0.06636948138475418, -0.020992238074541092, -0.028595900163054466, 0.004581878427416086, -0.03079095482826233, -0.01610264740884304, 0.13678039610385895, 0.04465547949075699, 0.12259301543235779, -0.05861030891537666, -0.0502079539000988, -0.034678857773542404, 0.0009539465536363423, -0.11145613342523575, 0.14519855380058289, -0.015899434685707092, -0.02230199985206127, -0.07858528941869736, 0.010315604507923126, 0.07415742427110672, -0.34685322642326355, 0.007143449038267136, -0.029423745349049568, -0.10463905334472656, -0.01437345240265131, -0.028565898537635803, -0.025618936866521835, 0.048537686467170715, -0.04154593497514725, 0.06468124687671661, 0.039858829230070114, 0.039150964468717575, -0.023910347372293472, -0.09857388585805893, 0.16136124730110168, 0.05848860740661621, 0.09964106231927872, 0.01689922623336315, 0.08938907086849213, 0.06292770802974701, 0.03584703058004379, -0.09090005606412888, 0.05610133334994316, 0.010461468249559402, -0.06846627593040466, -0.056716687977313995, 0.11958202719688416, -0.0019703723955899477, 0.0655258521437645, 0.032009318470954895, -0.12344153970479965, 0.02662232145667076, 0.0847957581281662, -0.08883900195360184, -0.09747431427240372, -0.0006947204819880426, -0.09943666309118271, 0.15787586569786072, 0.14750976860523224, -0.009216558188199997, 0.0164104625582695, -0.06684304773807526, -0.007805947680026293, 0.053079817444086075, 0.006072806194424629, -0.014414946548640728, -0.18120767176151276, 0.05380510538816452, -0.08136195689439774, -0.002794471103698015, -0.2172023057937622, -0.1003027856349945, -0.013746035285294056, -0.054573629051446915, -0.024859366938471794, 0.0540778674185276, 0.027569448575377464, 0.07627774775028229, -0.02641751617193222, -0.025261860340833664, -0.03848112002015114, 0.09306695312261581, -0.10360381752252579, -0.07470571249723434 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_700k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_700k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_700k"]}
null
google/multiberts-seed_1-step_700k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_700k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 700k (max: 2000k, i.e., 2M steps)." ]
[ -0.08157617598772049, 0.06710530072450638, -0.0019776683766394854, 0.04452967643737793, 0.07396359741687775, -0.021139303222298622, 0.06199365854263306, 0.09382341802120209, -0.01178874634206295, 0.02170053869485855, 0.08637015521526337, 0.02478933334350586, 0.011950739659368992, 0.10218696296215057, 0.0210028737783432, -0.21500886976718903, 0.032858435064554214, -0.026659496128559113, -0.08258480578660965, 0.07522749900817871, 0.10406926274299622, -0.08530315011739731, 0.04209721460938454, 0.03121134266257286, -0.10828429460525513, 0.053833283483982086, -0.010430981405079365, -0.025764860212802887, 0.1364383101463318, 0.0019383836770430207, 0.049148522317409515, 0.05789190158247948, 0.04907769709825516, -0.13409169018268585, 0.003988850861787796, 0.05642532557249069, 0.050412341952323914, 0.03722309321165085, 0.02122248150408268, 0.08641604334115982, -0.026796190068125725, 0.03469673544168472, 0.051746249198913574, 0.01760672591626644, -0.067417211830616, -0.0695914775133133, -0.09700819849967957, 0.03493789955973625, 0.03440667316317558, 0.020897086709737778, 0.007114310283213854, 0.11871767789125443, -0.03575875237584114, 0.045995526015758514, 0.16912347078323364, -0.3080558776855469, -0.004341209307312965, 0.06997925788164139, 0.021016158163547516, 0.11776464432477951, -0.004398454446345568, -0.03174088895320892, 0.08180373162031174, 0.020280862227082253, 0.09737616032361984, -0.03728917986154556, 0.024537283927202225, -0.059483129531145096, -0.15665322542190552, -0.039568111300468445, 0.0965147539973259, 0.009242772124707699, -0.13943375647068024, -0.02270093746483326, -0.045447688549757004, 0.03450712934136391, 0.019232235848903656, -0.04376424103975296, 0.04191235452890396, 0.004994016140699387, -0.008096901699900627, -0.0036396088544279337, -0.10136406868696213, -0.04699970781803131, 0.024661751464009285, 0.08678334951400757, 0.10652075707912445, 0.058453842997550964, -0.003015659749507904, 0.10997749865055084, -0.19429868459701538, -0.04773252457380295, -0.031839072704315186, -0.03592710569500923, -0.04738616198301315, -0.012274407781660557, -0.09919356554746628, -0.04586021974682808, -0.002885257126763463, 0.13666552305221558, -0.0056604137644171715, 0.034330300986766815, -0.025852374732494354, 0.0055634621530771255, 0.05808498337864876, 0.05617730692028999, -0.022418882697820663, 0.01466814149171114, 0.036108411848545074, -0.01155631709843874, -0.018375780433416367, 0.009285476990044117, -0.0008777235634624958, 0.023257974535226822, 0.14027689397335052, 0.01101087685674429, -0.10159668326377869, 0.0747002512216568, -0.015171893872320652, -0.04677566513419151, 0.0028696211520582438, -0.08342944830656052, -0.06067671999335289, -0.04293151572346687, -0.01716822199523449, 0.0018805601866915822, 0.0018419804982841015, -0.006775161251425743, -0.026509560644626617, -0.019543631002306938, -0.0900179073214531, -0.06093905121088028, -0.056890517473220825, -0.13349147140979767, 0.006749434396624565, -0.1863899677991867, -0.029897063970565796, -0.11422222852706909, -0.21108631789684296, -0.03837347775697708, 0.0462162084877491, 0.00039418876986019313, -0.06504559516906738, 0.060102976858615875, 0.03606180101633072, -0.03131359815597534, -0.003648655489087105, 0.08504381030797958, -0.00518984068185091, 0.03915633633732796, -0.038270220160484314, 0.060600075870752335, 0.004246297758072615, 0.040909793227910995, -0.06126122549176216, 0.05843149870634079, -0.17718006670475006, 0.041744474321603775, -0.07487763464450836, -0.02840028703212738, -0.08700808882713318, -0.035684484988451004, -0.010454715229570866, 0.008575033396482468, 0.028000975027680397, 0.07255488634109497, -0.17015299201011658, -0.025940513238310814, 0.08633159846067429, -0.1521526575088501, -0.029505416750907898, 0.0774795413017273, -0.05343739688396454, 0.11466086655855179, 0.06541378796100616, 0.1614627242088318, -0.031230038031935692, -0.06551244854927063, 0.04881052300333977, -0.01385569293051958, 0.01057867705821991, -0.012437896803021431, 0.0657695084810257, -0.019094396382570267, -0.16820980608463287, 0.024720793589949608, -0.12456098198890686, -0.0005353066953830421, -0.08055863529443741, 0.02779543586075306, -0.005003368016332388, -0.06995927542448044, -0.08376956731081009, -0.03239678218960762, 0.0769500881433487, -0.07024508714675903, -0.024104507640004158, 0.02744387648999691, 0.07674699276685715, -0.07087350636720657, 0.0673362985253334, -0.015459742397069931, 0.02044670470058918, -0.07936394214630127, -0.0352596752345562, -0.18063583970069885, 0.03622344136238098, 0.09808071702718735, 0.021434545516967773, -0.022719917818903923, 0.11998820304870605, -0.006522681564092636, 0.06647767126560211, -0.04422694072127342, -0.005775707308202982, -0.010893798433244228, 0.0006122642662376165, -0.09743067622184753, -0.10423921048641205, -0.07816950231790543, -0.06760083884000778, 0.09125127643346786, -0.11801949143409729, 0.022500958293676376, -0.05971271172165871, 0.04340917617082596, 0.016755810007452965, -0.07279931008815765, -0.01155468076467514, 0.014792852103710175, -0.06286244094371796, -0.058799900114536285, 0.0350557379424572, 0.05891287699341774, -0.02512863092124462, 0.08644974231719971, -0.04853849485516548, -0.07781161367893219, 0.026885436847805977, 0.07373863458633423, -0.10533903539180756, 0.021328171715140343, -0.04770417883992195, -0.04886539280414581, -0.06989026069641113, -0.03321697562932968, 0.09352312237024307, -0.014112942852079868, 0.14314033091068268, -0.07837481796741486, -0.008579934947192669, 0.011861728504300117, -0.01163396518677473, -0.026056542992591858, 0.04336336627602577, 0.06906316429376602, -0.08155065774917603, 0.021594302728772163, 0.03373020142316818, 0.0006492497632279992, 0.06613411009311676, -0.04930444806814194, -0.07470986247062683, 0.021932130679488182, 0.03187733516097069, 0.022906512022018433, 0.062288798391819, -0.05000430718064308, -0.008113490417599678, 0.028682703152298927, 0.025840600952506065, 0.010383940301835537, -0.11876549571752548, 0.06000960245728493, 0.06042075157165527, 0.008841117843985558, 0.05278012529015541, -0.01720941811800003, -0.03491710498929024, 0.07956749945878983, 0.030453240498900414, -0.019929470494389534, -0.007467154413461685, -0.011514262296259403, -0.12132307142019272, 0.21856246888637543, -0.06451108306646347, -0.14779900014400482, -0.07029808312654495, -0.10925410687923431, -0.000021074247342767194, 0.024083521217107773, 0.04299435392022133, -0.02599535509943962, -0.04287377744913101, -0.12670427560806274, 0.09381783753633499, -0.04099442437291145, 0.06748376786708832, 0.11403408646583557, -0.0648944154381752, 0.04806586727499962, -0.13276070356369019, -0.012206335552036762, -0.07756194472312927, -0.06644434481859207, 0.05702585354447365, -0.05519581958651543, 0.03768046572804451, 0.1102878600358963, 0.016577545553445816, -0.026506736874580383, -0.0316816121339798, 0.21529658138751984, 0.041536618024110794, 0.04331285506486893, 0.12824533879756927, -0.06871949136257172, 0.05317842960357666, 0.08010111004114151, 0.005988978780806065, -0.04988045617938042, 0.055360786616802216, 0.05360573157668114, -0.06256350874900818, -0.18733835220336914, -0.01053977757692337, 0.006390952505171299, -0.040253277868032455, 0.07097075134515762, 0.03898368403315544, 0.017103316262364388, 0.07551204413175583, 0.0175445768982172, 0.06633570790290833, 0.004967178218066692, 0.10184972733259201, 0.030941566452383995, -0.03621270880103111, 0.08861909061670303, -0.004252449609339237, -0.0057608275674283504, 0.07530530542135239, -0.016932807862758636, 0.2959033250808716, -0.04208402708172798, 0.01785069890320301, 0.12156642228364944, 0.04022087901830673, 0.051090482622385025, 0.12530264258384705, -0.07827667891979218, 0.02522028423845768, -0.0759926438331604, -0.04589688032865524, 0.014203806407749653, 0.04634924605488777, -0.06925816833972931, 0.020205989480018616, -0.08657577633857727, 0.022677531465888023, -0.02631647139787674, 0.298104465007782, 0.1019260585308075, -0.11358395963907242, -0.05881783366203308, 0.0019226388540118933, -0.10264997184276581, -0.07289455085992813, 0.05118028074502945, 0.048490364104509354, -0.13410912454128265, 0.004172721412032843, -0.01941174827516079, 0.07928820699453354, -0.02647515945136547, 0.015674935653805733, 0.03490522876381874, 0.05234076827764511, -0.04723038151860237, 0.007527287118136883, -0.17463387548923492, 0.19927175343036652, -0.0021775015629827976, 0.02538049779832363, -0.05547889322042465, 0.026321660727262497, 0.0068818349391222, -0.011094820685684681, 0.06289252638816833, 0.018996739760041237, -0.0071289376355707645, -0.06707293540239334, -0.044346217066049576, 0.012035302817821503, 0.06531932950019836, -0.04029970243573189, 0.10279153287410736, 0.007231771945953369, 0.05341507866978645, 0.030188310891389847, 0.09745638817548752, -0.18821214139461517, -0.07664678245782852, 0.025997662916779518, -0.04704417288303375, -0.09213800728321075, -0.08255898952484131, -0.09743352979421616, -0.005896671209484339, 0.22594942152500153, -0.10526483505964279, -0.07125325500965118, -0.0936078280210495, 0.04908597469329834, 0.10102061182260513, -0.05303424596786499, 0.025693684816360474, -0.008301345631480217, 0.10640463978052139, -0.06755764037370682, -0.11902015656232834, 0.028751272708177567, -0.10006365180015564, -0.16226711869239807, -0.06810241937637329, 0.08857187628746033, 0.06168489158153534, 0.02988946996629238, -0.028538063168525696, 0.01101529598236084, 0.039798591285943985, -0.03899747505784035, -0.00046413842937909067, 0.059129081666469574, 0.08154324442148209, 0.035681646317243576, -0.10153461247682571, 0.026104876771569252, -0.07042435556650162, -0.07120432704687119, 0.07005646824836731, 0.27666884660720825, -0.0500982329249382, 0.11003844439983368, 0.12593629956245422, -0.08519292622804642, -0.1576005071401596, 0.04281352087855339, 0.09374333918094635, -0.014037790708243847, 0.0009139092289842665, -0.15711472928524017, 0.10340873152017593, 0.12019672989845276, -0.01743434928357601, 0.00034687950392253697, -0.2032485157251358, -0.13977140188217163, 0.08804482966661453, 0.1133604422211647, 0.2875722050666809, -0.051659949123859406, -0.03459960222244263, 0.025178290903568268, -0.0938585102558136, 0.007028636056929827, 0.13193415105342865, 0.06237691640853882, -0.022686392068862915, -0.07589983195066452, 0.011901904828846455, -0.03738413751125336, 0.09349797666072845, 0.06307974457740784, 0.06978267431259155, -0.002862007124349475, 0.0035545018035918474, -0.032060492783784866, -0.03928975760936737, 0.068058542907238, 0.04160987213253975, 0.05112532153725624, -0.08943810313940048, -0.03824201226234436, -0.07422585040330887, 0.03152571618556976, -0.030890004709362984, -0.07958797365427017, -0.060303352773189545, 0.07727058231830597, 0.05873265489935875, -0.03449090197682381, 0.03811167553067207, 0.034050390124320984, 0.10034757852554321, 0.15733271837234497, -0.002185074845328927, -0.05588259920477867, -0.060234177857637405, -0.026776457205414772, -0.015434673056006432, 0.07574024796485901, -0.035996466875076294, 0.01751595363020897, 0.07150353491306305, 0.02054297737777233, 0.10474903881549835, 0.06211162731051445, -0.12004708498716354, -0.018105151131749153, 0.02717691659927368, -0.15052244067192078, 0.0026193098165094852, -0.0014394544996321201, 0.019007166847586632, -0.021524790674448013, 0.024944987148046494, 0.14548441767692566, -0.07066643238067627, -0.030975932255387306, -0.04604572802782059, 0.05987929552793503, 0.03284694626927376, 0.15119151771068573, 0.037899259477853775, 0.038307074457407, -0.07634624093770981, 0.1412484049797058, 0.0475105419754982, -0.044570229947566986, 0.024239493533968925, -0.027834607288241386, -0.10879825800657272, 0.017669107764959335, 0.054126087576150894, 0.06755118817090988, -0.07750418037176132, -0.014210307039320469, -0.03696981444954872, -0.07795252650976181, 0.06836213916540146, 0.20734523236751556, 0.06490126252174377, 0.0647631287574768, -0.05253634974360466, -0.034613169729709625, -0.07720516622066498, 0.04777492582798004, 0.05483631044626236, 0.08054951578378677, -0.07360267639160156, 0.09344518184661865, 0.012489719316363335, 0.05028732120990753, -0.027328625321388245, -0.051813263446092606, -0.10502707958221436, -0.05487746745347977, -0.10446106642484665, 0.009751716628670692, -0.06439600139856339, -0.0413227453827858, 0.005936646834015846, -0.005111316684633493, -0.0035554233472794294, 0.05597969517111778, -0.06007053703069687, -0.013415442779660225, -0.012857913039624691, 0.03263775631785393, -0.06009151414036751, -0.05253821983933449, 0.020464202389121056, -0.09397394210100174, 0.09887818247079849, 0.04356543347239494, 0.013126993551850319, -0.002356823068112135, 0.07837363332509995, -0.008045690134167671, 0.023038452491164207, 0.009411415085196495, -0.03912476822733879, -0.09796416759490967, 0.006354765500873327, -0.02416592836380005, -0.03602981939911842, -0.018746592104434967, 0.08810539543628693, -0.08536304533481598, 0.02572598122060299, -0.003586052218452096, -0.007236979436129332, -0.0788554921746254, -0.004583938978612423, 0.09284185618162155, 0.08337946981191635, 0.05088995024561882, -0.08282386511564255, 0.014014932326972485, -0.1281794011592865, -0.03478105738759041, 0.013510122895240784, -0.01543227769434452, -0.12603817880153656, -0.011114966124296188, 0.020665213465690613, -0.010695046745240688, 0.187871515750885, -0.059784237295389175, -0.025673897936940193, 0.02064337581396103, -0.09805313497781754, 0.10632769763469696, -0.02417626604437828, 0.17458173632621765, -0.02677825465798378, -0.035646479576826096, -0.01176438294351101, 0.047706488519907, 0.028950493782758713, 0.003279896918684244, 0.1817110925912857, 0.13037607073783875, 0.034811533987522125, 0.054612401872873306, -0.02894468791782856, -0.008932956494390965, -0.0637178048491478, -0.024524182081222534, 0.04316428676247597, 0.03589851036667824, 0.020668471232056618, 0.14129452407360077, 0.06449227780103683, -0.16143997013568878, 0.03429517149925232, -0.02463744953274727, -0.043098051100969315, -0.11615528166294098, -0.10267554968595505, -0.03204261139035225, -0.06790880113840103, 0.018175307661294937, -0.13521529734134674, 0.006699742749333382, 0.1667821705341339, 0.06822313368320465, 0.03009076416492462, 0.019820092245936394, -0.12743578851222992, -0.04037024825811386, 0.05661243200302124, 0.012721610255539417, 0.02166518196463585, 0.04417170584201813, -0.0059572444297373295, 0.06307771801948547, 0.023845957592129707, 0.0014134322991594672, -0.005021181423217058, 0.07650264352560043, 0.0218593031167984, 0.05047643929719925, -0.055960576981306076, -0.001247661653906107, -0.04255448654294014, 0.08197904378175735, 0.11989234387874603, 0.04339075833559036, -0.0479046106338501, -0.013798895291984081, 0.16258040070533752, -0.029145194217562675, 0.005351064261049032, -0.11731556057929993, 0.3319298326969147, 0.01885191723704338, 0.011893855407834053, 0.05929602310061455, -0.081080861389637, -0.04632582515478134, 0.20629553496837616, 0.0683295950293541, -0.019328823313117027, -0.028759196400642395, 0.0041273669339716434, -0.033139195293188095, -0.015642797574400902, 0.1435442566871643, 0.042481839656829834, 0.1204146221280098, -0.05717222020030022, -0.03997371718287468, -0.035659294575452805, -0.001137827755883336, -0.1126573383808136, 0.14760756492614746, -0.015091092325747013, -0.01996101625263691, -0.08152558654546738, 0.013766479678452015, 0.07232879102230072, -0.33412325382232666, 0.00679729413241148, -0.028713621199131012, -0.10358638316392899, -0.014473461546003819, -0.03102291002869606, -0.02746395952999592, 0.0486619807779789, -0.0400078222155571, 0.0687607005238533, 0.037189971655607224, 0.03780543804168701, -0.019870491698384285, -0.1057153046131134, 0.16186699271202087, 0.06805869936943054, 0.10383739322423935, 0.01783023029565811, 0.08733665943145752, 0.06331652402877808, 0.03708493337035179, -0.09565666317939758, 0.05533122643828392, 0.009728486649692059, -0.06537782400846481, -0.05589764192700386, 0.11982894688844681, 0.001287351711653173, 0.06844513863325119, 0.027905786409974098, -0.12746939063072205, 0.022968292236328125, 0.0789678767323494, -0.0816785916686058, -0.09507851302623749, -0.0022392617538571358, -0.09518834948539734, 0.16018199920654297, 0.14422523975372314, -0.013467364944517612, 0.014069969765841961, -0.06304407864809036, -0.007449669763445854, 0.05199228972196579, 0.007948797196149826, -0.013825557194650173, -0.1870667189359665, 0.05156174674630165, -0.08713026344776154, -0.006654584780335426, -0.2072272151708603, -0.10523761808872223, -0.01460009440779686, -0.05678071081638336, -0.025354916229844093, 0.06059379503130913, 0.026517076417803764, 0.07138480246067047, -0.023906106129288673, -0.02355560101568699, -0.041219621896743774, 0.09334291517734528, -0.10385113209486008, -0.07485447078943253 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_800k"]}
null
google/multiberts-seed_1-step_800k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_800k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 800k (max: 2000k, i.e., 2M steps)." ]
[ -0.0810418576002121, 0.07919927686452866, -0.0020004762336611748, 0.04640015959739685, 0.07849084585905075, -0.019400477409362793, 0.06824496388435364, 0.09294040501117706, -0.005992456339299679, 0.022900249809026718, 0.0819934606552124, 0.020234452560544014, 0.011494963429868221, 0.09605499356985092, 0.021993586793541908, -0.2112894207239151, 0.029686549678444862, -0.025570321828126907, -0.07943053543567657, 0.07292980700731277, 0.10296764969825745, -0.08426014333963394, 0.04322522506117821, 0.0313417948782444, -0.11171042174100876, 0.05485739931464195, -0.011776326224207878, -0.02458307519555092, 0.13776789605617523, 0.0023092608898878098, 0.05384409427642822, 0.0556676909327507, 0.04763195291161537, -0.13686740398406982, 0.003336947876960039, 0.05459688976407051, 0.051092516630887985, 0.036392856389284134, 0.022927749902009964, 0.08322721719741821, -0.02242748998105526, 0.038195692002773285, 0.0531051941215992, 0.01590130291879177, -0.06370598822832108, -0.06120121479034424, -0.09633105993270874, 0.02938334085047245, 0.034463852643966675, 0.022884326055645943, 0.00866191927343607, 0.11743814498186111, -0.03367847204208374, 0.04612372815608978, 0.17103253304958344, -0.3073127567768097, -0.001189535018056631, 0.0575856938958168, 0.0165439173579216, 0.11769060045480728, -0.0020164961460977793, -0.036495957523584366, 0.08082559704780579, 0.024502724409103394, 0.09248948097229004, -0.03852783888578415, 0.012938561849296093, -0.06088804081082344, -0.15464036166667938, -0.03931652009487152, 0.09450411051511765, 0.00461924634873867, -0.13836044073104858, -0.020690729841589928, -0.044143639504909515, 0.02977730520069599, 0.020790472626686096, -0.039408788084983826, 0.04491802304983139, 0.0035729564260691404, -0.00307806977070868, 0.0009906369959935546, -0.10271003842353821, -0.04375084862112999, 0.02242395654320717, 0.08622054010629654, 0.10856799781322479, 0.058430593460798264, -0.0035113138146698475, 0.11016510426998138, -0.18878255784511566, -0.04846017062664032, -0.028764931485056877, -0.03051592968404293, -0.043223362416028976, -0.009706007316708565, -0.1013626828789711, -0.04638619348406792, -0.0012587063247337937, 0.13733185827732086, -0.012460908852517605, 0.03358215093612671, -0.024181662127375603, 0.007037730887532234, 0.05857188627123833, 0.05604361370205879, -0.020687522366642952, 0.019798796623945236, 0.03384812921285629, -0.012373887933790684, -0.020100731402635574, 0.008830335922539234, -0.0035278797149658203, 0.028326965868473053, 0.14149588346481323, 0.010949915274977684, -0.10364257544279099, 0.07191377878189087, -0.016040531918406487, -0.04565016180276871, -0.003905107267200947, -0.08789040893316269, -0.06269218772649765, -0.04309328272938728, -0.015580004081130028, 0.004785125143826008, 0.007357588037848473, -0.005065948236733675, -0.028186140581965446, -0.01866450160741806, -0.08858487010002136, -0.05928311496973038, -0.05606461316347122, -0.13151274621486664, 0.00880941841751337, -0.1929192841053009, -0.02616295963525772, -0.117439404129982, -0.20156323909759521, -0.03946372866630554, 0.047954265028238297, 0.003143730340525508, -0.0647435411810875, 0.058551739901304245, 0.03674072399735451, -0.032066166400909424, -0.0036323070526123047, 0.08237547427415848, -0.006094621494412422, 0.037323299795389175, -0.03968847915530205, 0.05795884132385254, 0.0019759417045861483, 0.044768210500478745, -0.05972805246710777, 0.055964983999729156, -0.17396226525306702, 0.039563052356243134, -0.0720183476805687, -0.026744013652205467, -0.08389218151569366, -0.03058718703687191, -0.001261589815840125, 0.013734179548919201, 0.02574795112013817, 0.0718313604593277, -0.16562259197235107, -0.02791881188750267, 0.08235769718885422, -0.15177224576473236, -0.028104716911911964, 0.0745011419057846, -0.05380775406956673, 0.11084479838609695, 0.06648357212543488, 0.16109901666641235, -0.029606951400637627, -0.06249173358082771, 0.04575193673372269, -0.014275387860834599, 0.01336474996060133, -0.014129475690424442, 0.06767018139362335, -0.02026274986565113, -0.16312864422798157, 0.02576323039829731, -0.127947598695755, 0.001567543251439929, -0.07764097303152084, 0.029495244845747948, -0.0034982822835445404, -0.07063157856464386, -0.08909566700458527, -0.03294958174228668, 0.07594410330057144, -0.0696442574262619, -0.025517011061310768, 0.030524497851729393, 0.07692687958478928, -0.07003170251846313, 0.06674909591674805, -0.01718907617032528, 0.017075827345252037, -0.0794355571269989, -0.03833484649658203, -0.1838248074054718, 0.03626936674118042, 0.09666978567838669, 0.01977541483938694, -0.021934470161795616, 0.12548018991947174, -0.00889960303902626, 0.06624498218297958, -0.03927837312221527, -0.004416159354150295, -0.009997637011110783, -0.00022399923182092607, -0.0989377424120903, -0.10394862294197083, -0.07451563328504562, -0.06886931508779526, 0.09284771978855133, -0.1153632253408432, 0.021469950675964355, -0.05640103667974472, 0.04217419773340225, 0.016919195652008057, -0.07169344276189804, -0.01269152294844389, 0.016172943636775017, -0.06491811573505402, -0.05894256383180618, 0.03452380746603012, 0.06136466935276985, -0.023020965978503227, 0.09003123641014099, -0.05162564665079117, -0.08024046570062637, 0.02694631554186344, 0.07685490697622299, -0.10388562828302383, 0.02593223750591278, -0.04718306288123131, -0.04956308379769325, -0.06627871841192245, -0.029989905655384064, 0.10710573941469193, -0.012927214615046978, 0.14530077576637268, -0.07511680573225021, -0.008790251798927784, 0.009568086825311184, -0.012043326161801815, -0.02601034939289093, 0.04701145365834236, 0.06916983425617218, -0.06633428484201431, 0.02081765979528427, 0.030793912708759308, -0.001056145061738789, 0.06625937670469284, -0.05026866868138313, -0.07696371525526047, 0.023188771679997444, 0.030861282721161842, 0.022611891850829124, 0.06023530289530754, -0.04827820509672165, -0.01145324669778347, 0.030457988381385803, 0.02318844571709633, 0.013513581827282906, -0.12036579102277756, 0.06208948791027069, 0.06202869117259979, 0.011956816539168358, 0.05354835093021393, -0.022790614515542984, -0.03424336761236191, 0.08093633502721786, 0.028921877965331078, -0.020771905779838562, -0.009577780961990356, -0.012764252722263336, -0.12383861839771271, 0.21701614558696747, -0.0655592530965805, -0.14787405729293823, -0.07435855269432068, -0.11280213296413422, 0.003981518093496561, 0.024732861667871475, 0.04346972703933716, -0.0255839005112648, -0.04300630837678909, -0.127405047416687, 0.09082556515932083, -0.03821801394224167, 0.06579604744911194, 0.11556107550859451, -0.06362923979759216, 0.047293584793806076, -0.13114891946315765, -0.01391118485480547, -0.0757058784365654, -0.06823406368494034, 0.05933380126953125, -0.054667551070451736, 0.03904392197728157, 0.11468978971242905, 0.015604963526129723, -0.029055163264274597, -0.028970520943403244, 0.20205359160900116, 0.04075729101896286, 0.04170536249876022, 0.1287030726671219, -0.07563121616840363, 0.05300871282815933, 0.0792899802327156, 0.004629733040928841, -0.04580780863761902, 0.05451612174510956, 0.053820837289094925, -0.06208314746618271, -0.19169706106185913, -0.008795609697699547, 0.009828737936913967, -0.043932393193244934, 0.07248593866825104, 0.03977024555206299, 0.007989036850631237, 0.07653044164180756, 0.019625432789325714, 0.0674980878829956, -0.0006801344570703804, 0.09816210716962814, 0.020424775779247284, -0.036467473953962326, 0.0860598087310791, -0.007519761100411415, -0.007441877853125334, 0.07753393054008484, -0.017409363761544228, 0.29565665125846863, -0.04353176802396774, 0.016032638028264046, 0.12360592186450958, 0.0339541919529438, 0.05040457472205162, 0.12429177016019821, -0.07688184082508087, 0.028082745149731636, -0.07638796418905258, -0.04574773088097572, 0.011465263552963734, 0.04896651580929756, -0.07333651185035706, 0.02120768092572689, -0.08881720900535583, 0.027939071878790855, -0.02793167345225811, 0.30384156107902527, 0.10069058835506439, -0.11520043015480042, -0.056935831904411316, 0.0029098964296281338, -0.1028139740228653, -0.07283459603786469, 0.053638506680727005, 0.051544446498155594, -0.13308154046535492, 0.0029019778594374657, -0.01963135413825512, 0.07829158753156662, -0.033867862075567245, 0.015261201187968254, 0.03983309492468834, 0.051501620560884476, -0.04504357650876045, 0.007793323136866093, -0.1837940216064453, 0.19451184570789337, -0.0018312294268980622, 0.023607967421412468, -0.0570758618414402, 0.029818031936883926, 0.009313279762864113, -0.014017505571246147, 0.0623154491186142, 0.019274473190307617, -0.01522643119096756, -0.06622044742107391, -0.04426221549510956, 0.016161596402525902, 0.061921752989292145, -0.04410229250788689, 0.10604259371757507, 0.007686178665608168, 0.05549003556370735, 0.029300043359398842, 0.08450449258089066, -0.1813739538192749, -0.08206316828727722, 0.027936872094869614, -0.04493973031640053, -0.10040351003408432, -0.0827493965625763, -0.09730491042137146, -0.003354500513523817, 0.2195788472890854, -0.11403293162584305, -0.07572266459465027, -0.09279420226812363, 0.04253755509853363, 0.09629330039024353, -0.05566243827342987, 0.024462854489684105, -0.008020790293812752, 0.11069971323013306, -0.0704297125339508, -0.11956718564033508, 0.02756555564701557, -0.09973247349262238, -0.16007359325885773, -0.066872738301754, 0.08750960230827332, 0.06399830430746078, 0.02971000038087368, -0.03303748369216919, 0.011747719720005989, 0.03696111589670181, -0.03641389310359955, -0.0010368977673351765, 0.06302449852228165, 0.08434305340051651, 0.03802451491355896, -0.10883744060993195, 0.023640282452106476, -0.07291558384895325, -0.07175607234239578, 0.0704479068517685, 0.2722029983997345, -0.048826396465301514, 0.1082470640540123, 0.12502384185791016, -0.08804141730070114, -0.15737982094287872, 0.04284483194351196, 0.0932512879371643, -0.01354245375841856, 0.0066996971145272255, -0.16191036999225616, 0.10326575487852097, 0.11748789995908737, -0.015434954315423965, 0.011422894895076752, -0.19787369668483734, -0.13647350668907166, 0.09303015470504761, 0.11197622120380402, 0.28299450874328613, -0.05345867946743965, -0.03536466881632805, 0.020853346213698387, -0.09902097284793854, 0.000534209655597806, 0.1315751075744629, 0.06106371060013771, -0.02231121063232422, -0.06670080125331879, 0.012735304422676563, -0.03693059831857681, 0.09089168161153793, 0.06733020395040512, 0.07024507969617844, -0.004955712705850601, -0.007370836101472378, -0.04163428768515587, -0.04181365668773651, 0.07045037299394608, 0.034752991050481796, 0.049141012132167816, -0.09559574723243713, -0.03636641427874565, -0.07171161472797394, 0.032645538449287415, -0.03012012504041195, -0.07673697173595428, -0.05811062082648277, 0.07430017739534378, 0.05735933780670166, -0.03328954800963402, 0.03533933684229851, 0.03391318768262863, 0.09518272429704666, 0.15570300817489624, -0.007021291181445122, -0.05723101645708084, -0.060141291469335556, -0.030952362343668938, -0.013951531611382961, 0.07390966266393661, -0.04085327684879303, 0.017712783068418503, 0.0730743259191513, 0.01950184628367424, 0.10525532811880112, 0.061270903795957565, -0.12162093073129654, -0.017774514853954315, 0.02724655345082283, -0.15162016451358795, 0.011673113331198692, -0.003202596912160516, 0.026332242414355278, -0.020876096561551094, 0.022712765261530876, 0.14892743527889252, -0.07087008655071259, -0.03136204928159714, -0.046947453171014786, 0.0615856796503067, 0.034875936806201935, 0.14736731350421906, 0.03989069536328316, 0.037485215812921524, -0.07696624100208282, 0.14674924314022064, 0.04583229124546051, -0.04181938245892525, 0.02719518542289734, -0.03136995807290077, -0.10705319046974182, 0.016627667471766472, 0.05864308401942253, 0.075987309217453, -0.07766484469175339, -0.018252866342663765, -0.042688339948654175, -0.07888540625572205, 0.06767690926790237, 0.20284438133239746, 0.06462565064430237, 0.06531728804111481, -0.052003778517246246, -0.03589886054396629, -0.07868637889623642, 0.04879307001829147, 0.05193185806274414, 0.08072948455810547, -0.07303004711866379, 0.09851065278053284, 0.013876548036932945, 0.05250385031104088, -0.025280578061938286, -0.04906903952360153, -0.10238028317689896, -0.055339086800813675, -0.10296130925416946, 0.012771843932569027, -0.061436280608177185, -0.04175283759832382, 0.007918165996670723, -0.0031265397556126118, -0.005029543302953243, 0.05739615857601166, -0.061189889907836914, -0.012753304094076157, -0.015042673796415329, 0.03447360545396805, -0.0577327162027359, -0.05465563014149666, 0.020193280652165413, -0.09518691152334213, 0.09791898727416992, 0.042625200003385544, 0.011232670396566391, -0.0007793629774823785, 0.07727496325969696, -0.010362077504396439, 0.02155407704412937, 0.008989173918962479, -0.04046839103102684, -0.09679196774959564, 0.005131987389177084, -0.02648305706679821, -0.03424805402755737, -0.021088218316435814, 0.08856678009033203, -0.08413881063461304, 0.02690451592206955, -0.0004392676055431366, -0.00589542742818594, -0.07989819347858429, -0.004766672383993864, 0.09598111361265182, 0.08212414383888245, 0.05242554098367691, -0.08300165832042694, 0.016099397093057632, -0.12512406706809998, -0.034824810922145844, 0.014440517872571945, -0.011993118561804295, -0.12643520534038544, -0.012624013237655163, 0.01791209727525711, -0.012594521977007389, 0.19121438264846802, -0.05881514027714729, -0.026230545714497566, 0.020286478102207184, -0.09289491176605225, 0.10446099191904068, -0.022664839401841164, 0.16727544367313385, -0.029346244409680367, -0.03516411408782005, -0.016244977712631226, 0.045509930700063705, 0.02955823764204979, -0.00562475249171257, 0.1817125827074051, 0.1350800096988678, 0.038953594863414764, 0.056872788816690445, -0.023893993347883224, -0.007441042456775904, -0.060151051729917526, -0.024518834426999092, 0.04435846954584122, 0.03613150864839554, 0.023553060367703438, 0.15014596283435822, 0.062433548271656036, -0.15952886641025543, 0.034579597413539886, -0.025746723636984825, -0.03918055444955826, -0.11419820040464401, -0.09200172126293182, -0.03229738399386406, -0.06210997700691223, 0.01541160512715578, -0.13211184740066528, 0.0056059956550598145, 0.18213656544685364, 0.06534665077924728, 0.028017982840538025, 0.017667844891548157, -0.13416136801242828, -0.04116785153746605, 0.05944995582103729, 0.012769166380167007, 0.022446103394031525, 0.04374734312295914, -0.005274823401123285, 0.06673675775527954, 0.02964426949620247, 0.0032000939827412367, -0.005635470151901245, 0.07964801043272018, 0.02330099605023861, 0.049346163868904114, -0.05690555274486542, -0.0007263101288117468, -0.044865988194942474, 0.08120822161436081, 0.11023972183465958, 0.042439963668584824, -0.047387804836034775, -0.012385874055325985, 0.1595923900604248, -0.03054662048816681, 0.009327447973191738, -0.11653616279363632, 0.3211197555065155, 0.01747528836131096, 0.011951359920203686, 0.05676710233092308, -0.08263006061315536, -0.045488256961107254, 0.20451077818870544, 0.06363902986049652, -0.024254415184259415, -0.03020629659295082, 0.0016849697567522526, -0.03105228580534458, -0.01604592241346836, 0.1417001187801361, 0.04223945364356041, 0.1174747496843338, -0.05511094257235527, -0.045640524476766586, -0.03572028875350952, 0.0021988446824252605, -0.11202052235603333, 0.14835964143276215, -0.018064655363559723, -0.018604589626193047, -0.0799855962395668, 0.009464922361075878, 0.07747086137533188, -0.33880358934402466, 0.005872196983546019, -0.03070073388516903, -0.10646075010299683, -0.011727646924555302, -0.024458875879645348, -0.025428686290979385, 0.04965158924460411, -0.04059062898159027, 0.06705118715763092, 0.04359125718474388, 0.03841346129775047, -0.024066977202892303, -0.10176155716180801, 0.15806081891059875, 0.06781568378210068, 0.10562331229448318, 0.018876081332564354, 0.08648399263620377, 0.06111882999539375, 0.038833264261484146, -0.09374243021011353, 0.0557037778198719, 0.007462684530764818, -0.06721299886703491, -0.053980544209480286, 0.1155330240726471, -0.0005170020740479231, 0.06092358008027077, 0.03196793794631958, -0.12263590097427368, 0.023199142888188362, 0.0774802640080452, -0.08644551783800125, -0.0959780365228653, -0.005403735209256411, -0.09689312428236008, 0.15897859632968903, 0.14506590366363525, -0.011679801158607006, 0.013257717713713646, -0.06114199757575989, -0.00780464569106698, 0.05045948550105095, 0.013009014539420605, -0.01174623891711235, -0.1834837943315506, 0.053318481892347336, -0.08754956722259521, -0.0042045884765684605, -0.2164393961429596, -0.10085943341255188, -0.015344316139817238, -0.05963529273867607, -0.025890110060572624, 0.05938195437192917, 0.028440101072192192, 0.07490935921669006, -0.02615775726735592, -0.022999808192253113, -0.038183897733688354, 0.09441481530666351, -0.10350612550973892, -0.07568692415952682 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_80k"]}
null
google/multiberts-seed_1-step_80k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_80k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 80k (max: 2000k, i.e., 2M steps)." ]
[ -0.08160880208015442, 0.08634693920612335, -0.002069514710456133, 0.041571859270334244, 0.07534389942884445, -0.020570671185851097, 0.07137273252010345, 0.0931074246764183, -0.0038530377205461264, 0.026134556159377098, 0.08230981975793839, 0.028065865859389305, 0.010637426748871803, 0.10096589475870132, 0.017184894531965256, -0.21132372319698334, 0.03077772818505764, -0.023824559524655342, -0.08364351838827133, 0.07374946027994156, 0.10303468257188797, -0.08509605377912521, 0.04148939996957779, 0.031119512394070625, -0.11167877912521362, 0.05455581098794937, -0.010668731294572353, -0.024933652952313423, 0.13764408230781555, -0.000013061796380497981, 0.05537667125463486, 0.05588662996888161, 0.04528513923287392, -0.13576771318912506, 0.0044400133192539215, 0.055646445602178574, 0.050294868648052216, 0.038301724940538406, 0.024592503905296326, 0.08262067288160324, -0.01598619669675827, 0.03338543698191643, 0.05302182212471962, 0.01573931612074375, -0.06247849389910698, -0.06952972710132599, -0.09580802917480469, 0.032389894127845764, 0.03240836784243584, 0.019829560071229935, 0.007002914324402809, 0.11937842518091202, -0.032433778047561646, 0.04677671939134598, 0.17765958607196808, -0.3161795735359192, 0.0005787459085695446, 0.057636525481939316, 0.02192922681570053, 0.11584953963756561, -0.0011614857940003276, -0.03391311690211296, 0.0808638408780098, 0.02203988842666149, 0.09527952969074249, -0.03948509693145752, 0.020223883911967278, -0.058626800775527954, -0.1559695452451706, -0.03991299495100975, 0.10017857700586319, 0.006335646379739046, -0.1388172209262848, -0.020107612013816833, -0.04490642249584198, 0.042686961591243744, 0.019320841878652573, -0.04145769029855728, 0.045285701751708984, 0.004251017235219479, -0.002174902707338333, 0.001841184333898127, -0.10328895598649979, -0.043160077184438705, 0.026659952476620674, 0.08750373125076294, 0.11025582998991013, 0.05640077963471413, -0.005589716602116823, 0.10725517570972443, -0.19200193881988525, -0.04954060912132263, -0.025147005915641785, -0.030982008203864098, -0.04456789419054985, -0.009028772823512554, -0.10295820236206055, -0.04738654941320419, -0.00017609904170967638, 0.13639557361602783, -0.01106862910091877, 0.03310138359665871, -0.02845788560807705, 0.007931733503937721, 0.05998432636260986, 0.05459076911211014, -0.01922648400068283, 0.016019416972994804, 0.03334327042102814, -0.014320643618702888, -0.021002676337957382, 0.009033693000674248, -0.006298130843788385, 0.028192482888698578, 0.14337992668151855, 0.011503603309392929, -0.10599295049905777, 0.07368028908967972, -0.015102444216609001, -0.04661158472299576, -0.007668332662433386, -0.08717133849859238, -0.062363673001527786, -0.04069916903972626, -0.016735397279262543, 0.006474316120147705, 0.00733410008251667, -0.006598806474357843, -0.027881450951099396, -0.01961539499461651, -0.0893624871969223, -0.056469887495040894, -0.05506783723831177, -0.13489612936973572, 0.008914108388125896, -0.2015770524740219, -0.027234584093093872, -0.11430952697992325, -0.20053987205028534, -0.04022540897130966, 0.04702393710613251, 0.005619645584374666, -0.06436608731746674, 0.05735502392053604, 0.036589737981557846, -0.03117857128381729, -0.004702421836555004, 0.08023922890424728, -0.007819614373147488, 0.03722776472568512, -0.04078177362680435, 0.058712586760520935, 0.0060822064988315105, 0.04499257355928421, -0.057811763137578964, 0.05685952678322792, -0.17704416811466217, 0.03662516549229622, -0.07266147434711456, -0.030109303072094917, -0.08559171855449677, -0.029869835823774338, 0.002401145175099373, 0.01454074401408434, 0.024527503177523613, 0.07072547823190689, -0.17516253888607025, -0.030296703800559044, 0.09299243241548538, -0.15192148089408875, -0.030696455389261246, 0.07466243207454681, -0.055468473583459854, 0.11215110868215561, 0.06700453162193298, 0.1607571393251419, -0.03878749907016754, -0.06803449988365173, 0.04551612213253975, -0.013375208713114262, 0.014184481464326382, -0.01151423342525959, 0.07049424946308136, -0.02056013233959675, -0.16197383403778076, 0.023823264986276627, -0.13115689158439636, 0.00055285869166255, -0.07698699086904526, 0.031640466302633286, -0.004628341645002365, -0.06802000105381012, -0.09089098125696182, -0.0322241447865963, 0.07603535801172256, -0.07066843658685684, -0.029616203159093857, 0.03862404078245163, 0.07814088463783264, -0.07387053966522217, 0.06536021828651428, -0.020042812451720238, 0.020533697679638863, -0.0828419178724289, -0.037464872002601624, -0.18597577512264252, 0.037698548287153244, 0.09569426625967026, 0.020488793030381203, -0.019520871341228485, 0.13318093121051788, -0.008107168599963188, 0.06568054109811783, -0.03737892583012581, -0.004994498565793037, -0.009408736601471901, 0.0004052795411553234, -0.09986528754234314, -0.11114059388637543, -0.07243088632822037, -0.06931841373443604, 0.09337116032838821, -0.1184200569987297, 0.0214407779276371, -0.061978843063116074, 0.04495793581008911, 0.016087664291262627, -0.07085968554019928, -0.012348361313343048, 0.013601209037005901, -0.06760655343532562, -0.05849534273147583, 0.03635219857096672, 0.06129181757569313, -0.023211318999528885, 0.09375138580799103, -0.056261949241161346, -0.07928509265184402, 0.027402836829423904, 0.07305378466844559, -0.10255520045757294, 0.025165589526295662, -0.046978842467069626, -0.048234205693006516, -0.06181945651769638, -0.026061220094561577, 0.10186014324426651, -0.013348538428544998, 0.14676912128925323, -0.07681349664926529, -0.011685308068990707, 0.008753742091357708, -0.012950249947607517, -0.02591242827475071, 0.04731671139597893, 0.07186856865882874, -0.0761198028922081, 0.021962355822324753, 0.03678135946393013, -0.0027004112489521503, 0.06501128524541855, -0.051704756915569305, -0.080562062561512, 0.020566603168845177, 0.031961988657712936, 0.021877456456422806, 0.06044001504778862, -0.056766971945762634, -0.014665370807051659, 0.03196720406413078, 0.021132703870534897, 0.012678899802267551, -0.11769568920135498, 0.06211879476904869, 0.061100855469703674, 0.01120815146714449, 0.055048901587724686, -0.02191551774740219, -0.034112900495529175, 0.08242549002170563, 0.03041066601872444, -0.02529754303395748, -0.010967922396957874, -0.012420505285263062, -0.12270781397819519, 0.21682369709014893, -0.06600884348154068, -0.15100674331188202, -0.06842370331287384, -0.11115992814302444, 0.005549812689423561, 0.026013551279902458, 0.04465385153889656, -0.026192719116806984, -0.04478791728615761, -0.12556512653827667, 0.08902373909950256, -0.03980614244937897, 0.0660412535071373, 0.11148369312286377, -0.06394223868846893, 0.04599759727716446, -0.13161784410476685, -0.014348389580845833, -0.0779140442609787, -0.06039970740675926, 0.058454208076000214, -0.055432260036468506, 0.037279821932315826, 0.11630275100469589, 0.01567772962152958, -0.02712346613407135, -0.027487367391586304, 0.19885501265525818, 0.04247119277715683, 0.039273567497730255, 0.1314694583415985, -0.07849559932947159, 0.05249050259590149, 0.07413679361343384, 0.0020669226069003344, -0.046221841126680374, 0.052357450127601624, 0.05613256245851517, -0.058069199323654175, -0.19379889965057373, -0.007182684261351824, 0.010727830231189728, -0.04286148026585579, 0.07171633839607239, 0.037941113114356995, 0.009133834391832352, 0.07693592458963394, 0.017277492210268974, 0.06631366908550262, -0.0007384351338259876, 0.10054834187030792, 0.019806677475571632, -0.038862645626068115, 0.0878974199295044, -0.006490745116025209, -0.006278542801737785, 0.07747815549373627, -0.019192194566130638, 0.2913942039012909, -0.03953704982995987, 0.022123148664832115, 0.12563876807689667, 0.03146345168352127, 0.04989628121256828, 0.12273421883583069, -0.0766913890838623, 0.02749636583030224, -0.07901695370674133, -0.04800184443593025, 0.010941845364868641, 0.050777141004800797, -0.07410705834627151, 0.016470134258270264, -0.08819878846406937, 0.027313701808452606, -0.027625244110822678, 0.2992587685585022, 0.10076600313186646, -0.11657626181840897, -0.05789514631032944, 0.003911128733307123, -0.10140898823738098, -0.07532583177089691, 0.05162937939167023, 0.05254579707980156, -0.13037711381912231, 0.0012822780990973115, -0.02079775743186474, 0.07942505180835724, -0.03159821033477783, 0.015625102445483208, 0.031282562762498856, 0.05117940902709961, -0.04490220919251442, 0.008977721445262432, -0.1841275542974472, 0.1918255090713501, -0.0016243788413703442, 0.023579806089401245, -0.05560152605175972, 0.030030375346541405, 0.010095394216477871, -0.012376761995255947, 0.06269829720258713, 0.016920482739806175, -0.01580023765563965, -0.06099051982164383, -0.042322516441345215, 0.01664186827838421, 0.06446756422519684, -0.04631812870502472, 0.10852258652448654, 0.006241723895072937, 0.05456192046403885, 0.03285367414355278, 0.08205500990152359, -0.1826637089252472, -0.07899253070354462, 0.02755848877131939, -0.0474015548825264, -0.09726478904485703, -0.08190746605396271, -0.09886582940816879, -0.013569311238825321, 0.2327825278043747, -0.11107157915830612, -0.0742177814245224, -0.09307750314474106, 0.04289378225803375, 0.09596244990825653, -0.05553065985441208, 0.022498933598399162, -0.009384420700371265, 0.1151081770658493, -0.07108215242624283, -0.11923003941774368, 0.03058786503970623, -0.10022211819887161, -0.15846838057041168, -0.06810634583234787, 0.08904260396957397, 0.06543917208909988, 0.029298938810825348, -0.03114984929561615, 0.011261193081736565, 0.0347604863345623, -0.033938560634851456, 0.0004827541415579617, 0.06388576328754425, 0.09574363380670547, 0.036875851452350616, -0.10921339690685272, 0.02378668263554573, -0.07135461270809174, -0.06862885504961014, 0.07167592644691467, 0.2738097608089447, -0.048701610416173935, 0.10767244547605515, 0.12190526723861694, -0.0880357176065445, -0.1532740741968155, 0.04439515620470047, 0.0925258919596672, -0.01558748446404934, 0.004897101782262325, -0.16449616849422455, 0.10380073636770248, 0.11529964953660965, -0.015991495922207832, 0.009189222939312458, -0.1952105313539505, -0.1347390115261078, 0.09895700961351395, 0.11422939598560333, 0.28382471203804016, -0.05567243695259094, -0.034026145935058594, 0.019317058846354485, -0.09328925609588623, 0.009047606028616428, 0.12697665393352509, 0.060008708387613297, -0.021397897973656654, -0.0687875896692276, 0.013651530258357525, -0.03714173287153244, 0.090782530605793, 0.06611878424882889, 0.0717206746339798, -0.0037667634896934032, -0.0035312152467668056, -0.03946743160486221, -0.04306553304195404, 0.07303950190544128, 0.029645798727869987, 0.048796750605106354, -0.0951007828116417, -0.037456072866916656, -0.07061860710382462, 0.03639601543545723, -0.030270162969827652, -0.07800251990556717, -0.05689634755253792, 0.07246500253677368, 0.05502704530954361, -0.030795423313975334, 0.044190309941768646, 0.031934771686792374, 0.09736791998147964, 0.14475944638252258, -0.0025834976695477962, -0.05115538090467453, -0.06453341245651245, -0.031585633754730225, -0.012961040250957012, 0.07545977085828781, -0.04584848880767822, 0.017745167016983032, 0.07157975435256958, 0.01950385980308056, 0.10976914316415787, 0.06037735193967819, -0.12349513173103333, -0.02038547396659851, 0.0245195422321558, -0.15515974164009094, 0.012541504576802254, -0.0008767540566623211, 0.020466020330786705, -0.018505724146962166, 0.02519323118031025, 0.14953112602233887, -0.06788155436515808, -0.032092221081256866, -0.04780632629990578, 0.061277907341718674, 0.03734637424349785, 0.1439351886510849, 0.04061993956565857, 0.0370708629488945, -0.07687842845916748, 0.14324058592319489, 0.044158414006233215, -0.04699785262346268, 0.0314105786383152, -0.033238258212804794, -0.10747017711400986, 0.016024647280573845, 0.06245168298482895, 0.08825639635324478, -0.07761440426111221, -0.02280726470053196, -0.04493836686015129, -0.07559241354465485, 0.07043147832155228, 0.2118796408176422, 0.06609196960926056, 0.066413015127182, -0.05148996785283089, -0.035763923078775406, -0.077867291867733, 0.051949821412563324, 0.052180804312229156, 0.07995781302452087, -0.07468922436237335, 0.104760080575943, 0.014227899722754955, 0.05302082747220993, -0.02617701143026352, -0.04814966395497322, -0.10330508649349213, -0.05754384025931358, -0.11455119401216507, 0.015895040705800056, -0.062224339693784714, -0.042602796107530594, 0.008329716511070728, -0.0020294366404414177, -0.0008942187996581197, 0.05705801397562027, -0.062131382524967194, -0.010705220513045788, -0.013379182666540146, 0.03619634732604027, -0.062120795249938965, -0.05276848375797272, 0.01771577075123787, -0.0969943031668663, 0.09959255158901215, 0.047554679214954376, 0.012590127065777779, 0.001066776574589312, 0.07359997183084488, -0.007335687056183815, 0.024593746289610863, 0.00807288195937872, -0.04019887000322342, -0.09916664659976959, 0.006530196405947208, -0.02605161815881729, -0.034843672066926956, -0.023131398484110832, 0.08922971040010452, -0.08224689215421677, 0.02800718881189823, 0.0025023575872182846, -0.007305880077183247, -0.07923208922147751, -0.004997923504561186, 0.09152808040380478, 0.08510629087686539, 0.05296432599425316, -0.0800282210111618, 0.015304061584174633, -0.12480123341083527, -0.034961920231580734, 0.01422673650085926, -0.012086992152035236, -0.1240990161895752, -0.011879968456923962, 0.017182588577270508, -0.015431230887770653, 0.18713130056858063, -0.05568091571331024, -0.02465568110346794, 0.01855541206896305, -0.0971105620265007, 0.10963567346334457, -0.0242384672164917, 0.16683124005794525, -0.028919288888573647, -0.03370526060461998, -0.016276637092232704, 0.04684343934059143, 0.031184008345007896, -0.009402521885931492, 0.1821240335702896, 0.13400854170322418, 0.0332084596157074, 0.057261303067207336, -0.025671182200312614, -0.011985725723206997, -0.07018861174583435, -0.01897117681801319, 0.04558555781841278, 0.03620729595422745, 0.024355856701731682, 0.16207578778266907, 0.06712517887353897, -0.1586497724056244, 0.032345470041036606, -0.024956485256552696, -0.038845352828502655, -0.11632998287677765, -0.09720570594072342, -0.03449908643960953, -0.06008756533265114, 0.015992114320397377, -0.13268885016441345, 0.006161162164062262, 0.17889806628227234, 0.0659325122833252, 0.027417829260230064, 0.012193658389151096, -0.13073870539665222, -0.04416118562221527, 0.05627143755555153, 0.014045941643416882, 0.01792430318892002, 0.042400408536195755, -0.003970684949308634, 0.06808631122112274, 0.028096117079257965, 0.003571409499272704, -0.006344378460198641, 0.08413760364055634, 0.02379273995757103, 0.04761863127350807, -0.056871239095926285, -0.0014564346056431532, -0.04239799454808235, 0.0828312486410141, 0.11218095570802689, 0.04446309059858322, -0.048955775797367096, -0.012493900023400784, 0.15770456194877625, -0.030126012861728668, 0.009804848581552505, -0.11491834372282028, 0.32665619254112244, 0.014893056824803352, 0.01230622548609972, 0.057655077427625656, -0.08068616688251495, -0.043332215398550034, 0.20099574327468872, 0.05826639384031296, -0.019785229116678238, -0.029413439333438873, 0.002987256972119212, -0.03170617297291756, -0.019246641546487808, 0.13865706324577332, 0.045026566833257675, 0.12387418746948242, -0.05519880726933479, -0.04776884615421295, -0.03695469722151756, 0.0029437646735459566, -0.11321750283241272, 0.14409880340099335, -0.017236733809113503, -0.019757043570280075, -0.07531708478927612, 0.009934943169355392, 0.07770887017250061, -0.34595516324043274, 0.0037162702064961195, -0.02355807088315487, -0.10482324659824371, -0.011904271319508553, -0.02217835560441017, -0.027697743847966194, 0.04782150685787201, -0.041204363107681274, 0.06226183846592903, 0.04585938900709152, 0.03795525059103966, -0.02407894842326641, -0.09901394695043564, 0.15831626951694489, 0.058282677084207535, 0.10060864686965942, 0.017749356105923653, 0.0900929719209671, 0.06120547279715538, 0.03937855735421181, -0.09015404433012009, 0.05527489632368088, 0.00855826586484909, -0.06589935719966888, -0.05298786982893944, 0.11627383530139923, -0.0007533982861787081, 0.06419558078050613, 0.03448940068483353, -0.12129510194063187, 0.02184997871518135, 0.07369891554117203, -0.09177049249410629, -0.09657624363899231, -0.003551542991772294, -0.09880421310663223, 0.15862098336219788, 0.1441381722688675, -0.011547869071364403, 0.013010661117732525, -0.06586310267448425, -0.005550077650696039, 0.05317731201648712, 0.010510317049920559, -0.012322388589382172, -0.1810334026813507, 0.054664649069309235, -0.08047167211771011, -0.0033032705541700125, -0.21618545055389404, -0.09880099445581436, -0.01472804881632328, -0.05674044415354729, -0.02609860897064209, 0.05303492397069931, 0.02736741676926613, 0.07566927373409271, -0.028147507458925247, -0.02338462695479393, -0.03760772570967674, 0.09471390396356583, -0.10454168170690536, -0.07525999844074249 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1", "multiberts-seed_1-step_900k"]}
null
google/multiberts-seed_1-step_900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 81, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #multiberts-seed_1-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1, captured at step 900k (max: 2000k, i.e., 2M steps)." ]
[ -0.07951818406581879, 0.0740937739610672, -0.0019335148390382528, 0.04269079864025116, 0.07464990764856339, -0.019869886338710785, 0.0642804354429245, 0.0925932303071022, -0.008233809843659401, 0.02407180704176426, 0.08445887267589569, 0.02629300020635128, 0.012023480609059334, 0.0982125923037529, 0.021179506555199623, -0.21137793362140656, 0.03484974429011345, -0.02460421994328499, -0.08323951810598373, 0.07419121265411377, 0.10384470969438553, -0.0855192095041275, 0.041546501219272614, 0.03252221271395683, -0.1115773469209671, 0.05345994234085083, -0.012946161441504955, -0.0243763979524374, 0.13545310497283936, 0.0009196874452754855, 0.05470331385731697, 0.05568833276629448, 0.047489359974861145, -0.13726989924907684, 0.004228494130074978, 0.05492037162184715, 0.05214042216539383, 0.03608749806880951, 0.019684432074427605, 0.08207082003355026, -0.02668936736881733, 0.035688381642103195, 0.05452464520931244, 0.014565317891538143, -0.06220005825161934, -0.062091801315546036, -0.09782972186803818, 0.040445711463689804, 0.035829026252031326, 0.01856396347284317, 0.009581035003066063, 0.11709655821323395, -0.03810270503163338, 0.04399237781763077, 0.17295140027999878, -0.3054404556751251, -0.001410765922628343, 0.06042565405368805, 0.021680770441889763, 0.10826638340950012, -0.002912181429564953, -0.03580508753657341, 0.07976845651865005, 0.019635088741779327, 0.09710393846035004, -0.03896243870258331, 0.012475895695388317, -0.06543712317943573, -0.15655255317687988, -0.03859252482652664, 0.09314480423927307, 0.007317536976188421, -0.13750144839286804, -0.02154242806136608, -0.043828584253787994, 0.03848034515976906, 0.019600095227360725, -0.04065896198153496, 0.04411536082625389, 0.0014524174621328712, 0.0007083775708451867, -0.0033074659295380116, -0.10241420567035675, -0.046657197177410126, 0.023886213079094887, 0.1009424701333046, 0.11056263744831085, 0.05655202269554138, -0.003370195161551237, 0.1116848811507225, -0.18958692252635956, -0.04904627054929733, -0.03058239072561264, -0.0340527780354023, -0.04339216277003288, -0.010836134664714336, -0.10045837610960007, -0.046902529895305634, 0.00018096595886163414, 0.13585412502288818, -0.003671287326142192, 0.03313348442316055, -0.01648043468594551, 0.004977944307029247, 0.06040786951780319, 0.0558600015938282, -0.021087493747472763, 0.021124115213751793, 0.03744441643357277, -0.0073488266207277775, -0.019360443577170372, 0.008950220420956612, -0.0033744550310075283, 0.025573577731847763, 0.14016173779964447, 0.013575952500104904, -0.1030263900756836, 0.07508402317762375, -0.013517927378416061, -0.04446977376937866, -0.0022463626228272915, -0.08740907162427902, -0.0646354928612709, -0.041648056358098984, -0.016915209591388702, 0.006558137014508247, 0.006412255112081766, -0.00889586191624403, -0.027394738048315048, -0.016929874196648598, -0.09073309600353241, -0.059113241732120514, -0.057156309485435486, -0.1330287605524063, 0.008696242235600948, -0.19713297486305237, -0.026408201083540916, -0.11779007315635681, -0.20483475923538208, -0.04156654700636864, 0.046660978347063065, 0.005593536887317896, -0.06402638554573059, 0.058369915932416916, 0.033680420368909836, -0.031244678422808647, -0.005671379156410694, 0.08183028548955917, -0.006150035187602043, 0.03768588602542877, -0.04318014532327652, 0.058802008628845215, 0.001793811796233058, 0.04425469785928726, -0.06053897738456726, 0.05913722515106201, -0.17699594795703888, 0.04117899760603905, -0.074080690741539, -0.026878463104367256, -0.08390305191278458, -0.031243840232491493, -0.004016976337879896, 0.01231955923140049, 0.02613522857427597, 0.07288365811109543, -0.17328163981437683, -0.026212163269519806, 0.08477532863616943, -0.1532740592956543, -0.03180726617574692, 0.07022082060575485, -0.05674632266163826, 0.11742398887872696, 0.06720256805419922, 0.16521528363227844, -0.022653311491012573, -0.0700208768248558, 0.04323965311050415, -0.01195729523897171, 0.008616134524345398, -0.015594332478940487, 0.06628458946943283, -0.021540600806474686, -0.16058576107025146, 0.023611821234226227, -0.13417461514472961, 0.0034451461397111416, -0.07685503363609314, 0.029813619330525398, -0.0033436950761824846, -0.07229675352573395, -0.0884246900677681, -0.034752409905195236, 0.07721599191427231, -0.06813778728246689, -0.02216705121099949, 0.04442296549677849, 0.08040391653776169, -0.07354199141263962, 0.06886205822229385, -0.015061247162520885, 0.025226643308997154, -0.07986675947904587, -0.03542916104197502, -0.18444302678108215, 0.03531702235341072, 0.09752544015645981, 0.005376270040869713, -0.02047058567404747, 0.11935894936323166, -0.010026445612311363, 0.06350243091583252, -0.03927014395594597, -0.005862151738256216, -0.01151834987103939, 0.003376195440068841, -0.09830222278833389, -0.10766199976205826, -0.07671665400266647, -0.06874576956033707, 0.08765483647584915, -0.10702647268772125, 0.02228923887014389, -0.060526568442583084, 0.04545283317565918, 0.01450339425355196, -0.07129272073507309, -0.010280318558216095, 0.015058671124279499, -0.06317919492721558, -0.0588257722556591, 0.035234007984399796, 0.06051815301179886, -0.02619180828332901, 0.08945036679506302, -0.048941150307655334, -0.08473522216081619, 0.028510387986898422, 0.0774892121553421, -0.10626637190580368, 0.02751912549138069, -0.04597466439008713, -0.04796556010842323, -0.06602470576763153, -0.030234282836318016, 0.10342060774564743, -0.013020733371376991, 0.1430467665195465, -0.07914663851261139, -0.012330038473010063, 0.00810539722442627, -0.014198275282979012, -0.028247570618987083, 0.04369554668664932, 0.06736589968204498, -0.07391490042209625, 0.020992614328861237, 0.03626351058483124, -0.0027684203814715147, 0.0676436722278595, -0.05130121111869812, -0.0777709111571312, 0.01941791921854019, 0.03092057816684246, 0.01909293606877327, 0.06276098638772964, -0.05007162317633629, -0.012077000923454762, 0.02838117815554142, 0.02284725196659565, 0.01304337102919817, -0.1195823922753334, 0.061840612441301346, 0.05913487449288368, 0.011925142258405685, 0.052065085619688034, -0.0197460874915123, -0.035109542310237885, 0.08048062026500702, 0.03428978472948074, -0.018127325922250748, -0.010791175998747349, -0.013382785022258759, -0.12101365625858307, 0.21899597346782684, -0.06493566930294037, -0.14877496659755707, -0.07067309319972992, -0.10635083168745041, 0.001977751962840557, 0.023320885375142097, 0.042148321866989136, -0.02579689212143421, -0.04270230233669281, -0.12523293495178223, 0.09326554834842682, -0.03540949150919914, 0.06717821955680847, 0.1132935956120491, -0.06352797895669937, 0.044031884521245956, -0.132134810090065, -0.012580506503582, -0.08076261729001999, -0.057922251522541046, 0.052291810512542725, -0.05154946446418762, 0.04054151847958565, 0.1163901537656784, 0.014974555000662804, -0.029560454189777374, -0.0297930259257555, 0.2056710571050644, 0.04130317643284798, 0.04095714911818504, 0.1312882900238037, -0.07742968946695328, 0.053385764360427856, 0.07953427731990814, 0.005031913984566927, -0.046307120472192764, 0.05211269110441208, 0.052888937294483185, -0.06013655662536621, -0.18718528747558594, -0.007960059680044651, 0.00911032222211361, -0.051263269037008286, 0.07040992379188538, 0.036062780767679214, 0.007334795314818621, 0.07751172035932541, 0.01940668374300003, 0.06104716286063194, 0.0012795113725587726, 0.1018761396408081, 0.026803744956851006, -0.03718513995409012, 0.08501694351434708, -0.008993208408355713, -0.006408430635929108, 0.07481662929058075, -0.016028068959712982, 0.2938258647918701, -0.04578813537955284, 0.00829259678721428, 0.127329021692276, 0.034553803503513336, 0.05030268430709839, 0.12459216266870499, -0.07877001911401749, 0.028432689607143402, -0.07534035295248032, -0.045904744416475296, 0.011424456723034382, 0.047115176916122437, -0.06932274252176285, 0.02067495323717594, -0.089445561170578, 0.023737050592899323, -0.026108374819159508, 0.30189549922943115, 0.10399934649467468, -0.10864721983671188, -0.060435641556978226, 0.0038903518579900265, -0.10379045456647873, -0.07322510331869125, 0.05234001204371452, 0.0477941632270813, -0.13263875246047974, 0.005637454334646463, -0.01587013714015484, 0.076832115650177, -0.031876035034656525, 0.012899246998131275, 0.034657370299100876, 0.05328718572854996, -0.0455266609787941, 0.006331612356007099, -0.17793722450733185, 0.19654521346092224, -0.0019108393462374806, 0.02769017405807972, -0.05458010733127594, 0.02988496981561184, 0.009628798812627792, -0.01604722999036312, 0.06371204555034637, 0.019315345212817192, -0.004894958343356848, -0.0637916773557663, -0.04349753260612488, 0.012956359423696995, 0.06419996917247772, -0.04288570210337639, 0.1062975749373436, 0.008356242440640926, 0.05427797511219978, 0.02944050170481205, 0.08071275800466537, -0.18282712996006012, -0.07774526625871658, 0.027449671179056168, -0.051059648394584656, -0.09887608140707016, -0.08454904705286026, -0.09857229143381119, -0.007233408745378256, 0.21754871308803558, -0.11119119822978973, -0.07608825713396072, -0.09026416391134262, 0.038188740611076355, 0.10184230655431747, -0.05599348992109299, 0.027723874896764755, -0.011161180213093758, 0.10890977084636688, -0.07041753083467484, -0.12211824208498001, 0.02587268315255642, -0.09994640201330185, -0.15982358157634735, -0.06675467640161514, 0.09077157080173492, 0.06212379038333893, 0.02924278751015663, -0.030347611755132675, 0.010451307520270348, 0.0382457934319973, -0.03911159560084343, -0.0036585566122084856, 0.061127446591854095, 0.08154337853193283, 0.04256949573755264, -0.10830815136432648, 0.013486996293067932, -0.07420797646045685, -0.06815323233604431, 0.07023970782756805, 0.275249183177948, -0.049804337322711945, 0.10957682877779007, 0.13225972652435303, -0.08773253113031387, -0.1597316414117813, 0.04258214682340622, 0.09343738108873367, -0.016216423362493515, -0.003325539641082287, -0.15730392932891846, 0.10202965885400772, 0.11811165511608124, -0.016157370060682297, 0.0015032603405416012, -0.2037501037120819, -0.14063730835914612, 0.09713201224803925, 0.11462379992008209, 0.28021547198295593, -0.05167767032980919, -0.03601988032460213, 0.019685417413711548, -0.09476182609796524, 0.009737232699990273, 0.13444335758686066, 0.06173371523618698, -0.02327362447977066, -0.07441052049398422, 0.011973715387284756, -0.03827957808971405, 0.09190475940704346, 0.06722839921712875, 0.07166754454374313, -0.0051320879720151424, -0.005628586746752262, -0.03437383845448494, -0.044373881071805954, 0.07290019094944, 0.04244795814156532, 0.05021112039685249, -0.08804336190223694, -0.036089833825826645, -0.0749739557504654, 0.03451139107346535, -0.030366133898496628, -0.07680714875459671, -0.062390293926000595, 0.07643861323595047, 0.05940599367022514, -0.03373806178569794, 0.03660271689295769, 0.033619243651628494, 0.09587208926677704, 0.14627699553966522, -0.004490810912102461, -0.05134451016783714, -0.06386081874370575, -0.026363160461187363, -0.01632753573358059, 0.07510696351528168, -0.04187271371483803, 0.014774962328374386, 0.0720406174659729, 0.02209956757724285, 0.10469172149896622, 0.061457086354494095, -0.12185223400592804, -0.017799999564886093, 0.02668152190744877, -0.15094251930713654, 0.009706055745482445, 0.0016360150184482336, 0.01264447346329689, -0.023227984085679054, 0.02497793547809124, 0.14491139352321625, -0.0691705197095871, -0.03194617107510567, -0.04812190681695938, 0.06063924729824066, 0.033299874514341354, 0.14826098084449768, 0.043168000876903534, 0.03656407818198204, -0.0769275426864624, 0.1467156559228897, 0.04411919787526131, -0.045055657625198364, 0.02754218876361847, -0.034654125571250916, -0.10817248374223709, 0.01765381172299385, 0.05599404126405716, 0.07546267658472061, -0.07918146997690201, -0.017623867839574814, -0.04122402146458626, -0.08086959272623062, 0.0679599791765213, 0.22070260345935822, 0.06735410541296005, 0.06681039184331894, -0.05210345238447189, -0.03366461768746376, -0.07825493812561035, 0.049795962870121, 0.05516301095485687, 0.0796644389629364, -0.07621818035840988, 0.10020212829113007, 0.015320591628551483, 0.053139857947826385, -0.026609398424625397, -0.04860857501626015, -0.10544876009225845, -0.0567021407186985, -0.10572357475757599, 0.011742080561816692, -0.06817589700222015, -0.03779178857803345, 0.007027225103229284, -0.002759719965979457, -0.004648113157600164, 0.056870684027671814, -0.060543254017829895, -0.012032964266836643, -0.013239298947155476, 0.03564300388097763, -0.059947412461042404, -0.05475052446126938, 0.0200995784252882, -0.09632279723882675, 0.09926291555166245, 0.045207444578409195, 0.015409584157168865, 0.0006745674763806164, 0.07893967628479004, -0.009716200642287731, 0.02388050965964794, 0.01109540369361639, -0.041301578283309937, -0.10012614727020264, 0.006082509644329548, -0.026402413845062256, -0.0331650972366333, -0.019437871873378754, 0.0905439481139183, -0.08302184194326401, 0.026679830625653267, 0.0004450193664524704, -0.003972615581005812, -0.07862581312656403, -0.0027559634763747454, 0.10164051502943039, 0.08392670750617981, 0.05432451143860817, -0.08150161057710648, 0.01655716262757778, -0.12339229881763458, -0.034579552710056305, 0.01245165802538395, -0.014448652043938637, -0.12589454650878906, -0.01149379275739193, 0.018499460071325302, -0.012384509667754173, 0.19297967851161957, -0.06209661811590195, -0.025109680369496346, 0.021002264693379402, -0.08936480432748795, 0.10612247884273529, -0.019706053659319878, 0.16971930861473083, -0.029665280133485794, -0.03671329468488693, -0.014788627624511719, 0.047541119158267975, 0.02896113134920597, -0.010557729750871658, 0.1830662190914154, 0.13386565446853638, 0.03992706909775734, 0.05995072424411774, -0.021839285269379616, -0.00660445261746645, -0.056426338851451874, -0.02618124708533287, 0.04335722699761391, 0.033728908747434616, 0.02388194389641285, 0.14880019426345825, 0.05795242264866829, -0.15966564416885376, 0.03414485603570938, -0.02301010861992836, -0.04159313440322876, -0.11368668079376221, -0.09346958249807358, -0.03062782995402813, -0.058203063905239105, 0.016943322494626045, -0.13254931569099426, 0.004028025083243847, 0.17170299589633942, 0.0643058717250824, 0.02814091555774212, 0.024361150339245796, -0.1355224847793579, -0.04278634116053581, 0.06037889048457146, 0.01290527917444706, 0.01922987774014473, 0.04326979070901871, -0.004070702474564314, 0.06722171604633331, 0.027027586475014687, -0.00009013101953314617, -0.005587867461144924, 0.07841534167528152, 0.02189384400844574, 0.04940818250179291, -0.05548886954784393, 0.0009647791739553213, -0.04213327169418335, 0.08631694316864014, 0.11706209927797318, 0.04464830830693245, -0.048614054918289185, -0.013744438998401165, 0.15699346363544464, -0.029694553464651108, 0.005990245845168829, -0.1160067468881607, 0.3208985924720764, 0.018239280208945274, 0.010568521916866302, 0.05875304341316223, -0.08257218450307846, -0.04783196374773979, 0.20651875436306, 0.06341759115457535, -0.020892668515443802, -0.028247077018022537, 0.0034995984751731157, -0.031200846657156944, -0.017179658636450768, 0.14146453142166138, 0.043198827654123306, 0.1193390041589737, -0.053840573877096176, -0.0434003584086895, -0.03529181703925133, 0.0007960466318763793, -0.1102103665471077, 0.1470274180173874, -0.017318036407232285, -0.021998686715960503, -0.08032847940921783, 0.0114731565117836, 0.07208092510700226, -0.3438413441181183, 0.0069634318351745605, -0.030857132747769356, -0.10612504184246063, -0.013311697170138359, -0.02691071666777134, -0.02677963674068451, 0.0481116846203804, -0.038668613880872726, 0.0661960318684578, 0.04400966688990593, 0.0395289845764637, -0.02355979010462761, -0.10903450101613998, 0.16140931844711304, 0.06775853782892227, 0.10571251809597015, 0.018667344003915787, 0.08857749402523041, 0.06169922649860382, 0.03799934685230255, -0.09620192646980286, 0.05658549815416336, 0.010553055442869663, -0.06835301220417023, -0.05264029651880264, 0.11617973446846008, 0.00103322125505656, 0.06461062282323837, 0.030906276777386665, -0.12492750585079193, 0.023908348754048347, 0.07545989006757736, -0.08863251656293869, -0.09914903342723846, -0.0025480706244707108, -0.09846436977386475, 0.1597142219543457, 0.14417101442813873, -0.012601212598383427, 0.012258564122021198, -0.061541661620140076, -0.008599660359323025, 0.05401867255568504, 0.010977902449667454, -0.014431614428758621, -0.1836434006690979, 0.0546443946659565, -0.09517092257738113, -0.004323950503021479, -0.2097022980451584, -0.10191483050584793, -0.01431364193558693, -0.05850629881024361, -0.024396339431405067, 0.058328211307525635, 0.024037925526499748, 0.07716196775436401, -0.025136617943644524, -0.02742181345820427, -0.04007440060377121, 0.09246891736984253, -0.10535629838705063, -0.07580108195543289 ]
null
null
transformers
# MultiBERTs - Seed 1 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1') model = TFBertModel.from_pretrained("google/multiberts-seed_1") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1') model = BertModel.from_pretrained("google/multiberts-seed_1") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_1"]}
null
google/multiberts-seed_1
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_1", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 1 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #1. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 1\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 1\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 68, 189, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_1 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 1\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #1.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06148228794336319, 0.08722120523452759, -0.003930053673684597, 0.056895557790994644, 0.07989533245563507, 0.002887546317651868, 0.04320130497217178, 0.061932459473609924, -0.08437158912420273, 0.018504129722714424, -0.0022429132368415594, -0.04735155031085014, 0.06828399002552032, -0.014778755605220795, 0.04950994625687599, -0.23276115953922272, 0.033025916665792465, -0.032599542289972305, -0.01623014733195305, 0.031053626909852028, 0.1139993742108345, -0.10576082766056061, 0.07578396052122116, 0.047889214009046555, 0.013025613501667976, 0.011438091285526752, -0.02343384176492691, 0.0017770999111235142, 0.07556544989347458, 0.024872081354260445, 0.0839683935046196, -0.013390595093369484, 0.08109406381845474, -0.12391956895589828, 0.00877411849796772, 0.0504969023168087, 0.06013458967208862, 0.04855522885918617, 0.10876139253377914, 0.024361232295632362, 0.09343080967664719, -0.013557755388319492, 0.03948689252138138, 0.055416714400053024, -0.055936623364686966, -0.1731785386800766, -0.10298243910074234, 0.03663616627454758, -0.004567342810332775, 0.022209107875823975, -0.007242781575769186, -0.02439465932548046, -0.028176013380289078, 0.02473601885139942, 0.11325609683990479, -0.24385282397270203, -0.013789412565529346, -0.0263708233833313, 0.04368487000465393, 0.07000482082366943, -0.04440005496144295, -0.04464242234826088, 0.037102360278367996, 0.06608714908361435, 0.06280001997947693, -0.022785283625125885, 0.02710818313062191, -0.019944583997130394, -0.1550416350364685, -0.014614731073379517, 0.09944126009941101, -0.034437838941812515, -0.12410128116607666, -0.053740743547677994, -0.026153651997447014, 0.11075068265199661, 0.014231929555535316, -0.031373582780361176, 0.0525350347161293, 0.020866168662905693, 0.054951440542936325, -0.09197097271680832, -0.11508968472480774, 0.04249229654669762, -0.08241976797580719, 0.11556584388017654, 0.08175411820411682, 0.060134585946798325, -0.004065765533596277, 0.03737109899520874, -0.06330684572458267, -0.07331212610006332, -0.04955973103642464, -0.08117564767599106, -0.00942213088274002, -0.03193856403231621, -0.06884551048278809, -0.1519806981086731, -0.016943804919719696, 0.07305771112442017, -0.0792773962020874, -0.018438054248690605, -0.07999693602323532, -0.021327398717403412, 0.0965760201215744, 0.1652248650789261, -0.11623924970626831, 0.046867430210113525, 0.017733421176671982, -0.0050296299159526825, -0.016411418095231056, 0.037703488022089005, 0.007223985623568296, 0.00457014562562108, 0.02984245866537094, 0.03372720256447792, -0.017257679253816605, 0.039154306054115295, -0.010245917364954948, -0.043460410088300705, 0.07181145995855331, -0.1446814388036728, -0.002456669695675373, 0.007333348970860243, -0.013999157585203648, 0.057572346180677414, 0.05754682049155235, -0.0419437438249588, -0.09082856774330139, 0.010979791171848774, -0.08460541069507599, -0.03653540834784508, -0.0582316592335701, -0.1567794382572174, 0.03585115820169449, -0.08395703136920929, -0.055398352444171906, -0.10027935355901718, -0.0987020879983902, -0.017374735325574875, 0.050341714173555374, -0.017369955778121948, 0.03591112792491913, 0.028174716979265213, -0.016184663400053978, -0.035450417548418045, 0.04172636568546295, -0.0010537590133026242, -0.014233930967748165, 0.00788150541484356, -0.04524391517043114, 0.04373250901699066, -0.02894110232591629, 0.05167745053768158, -0.06772567331790924, 0.01867271587252617, -0.13316480815410614, 0.07195200771093369, -0.09296026080846786, -0.06149720400571823, -0.054328348487615585, -0.05233096703886986, -0.05609483644366264, 0.023624049499630928, 0.00739647401496768, 0.06688328832387924, -0.1576600968837738, -0.04970671236515045, 0.1303403377532959, -0.12512966990470886, 0.025712355971336365, 0.10385974496603012, -0.054390691220760345, 0.05164749175310135, 0.1281675398349762, 0.037456098943948746, 0.06473430246114731, -0.0450613871216774, -0.038214411586523056, 0.022061819210648537, 0.031129511073231697, 0.10212413966655731, 0.07775086164474487, -0.0642356351017952, -0.05830436944961548, 0.03162598982453346, -0.07737596333026886, -0.02086600847542286, -0.05395093932747841, -0.012753190472722054, -0.005258148070424795, -0.07224547863006592, -0.005900456104427576, -0.030541684478521347, -0.004000379703938961, -0.006240289192646742, -0.05514872446656227, 0.058693576604127884, 0.059003278613090515, -0.06896104663610458, 0.056448377668857574, -0.061473339796066284, 0.020173827186226845, -0.07999635487794876, -0.0023520688991993666, -0.16963283717632294, 0.01097309123724699, 0.10110846906900406, -0.10148577392101288, 0.06457587331533432, 0.14034110307693481, 0.025676626712083817, 0.05493693798780441, -0.050391875207424164, 0.06684622168540955, 0.0029105311259627342, -0.03035634756088257, -0.05014951527118683, -0.09764348715543747, -0.05802861228585243, -0.05717739462852478, -0.010303993709385395, -0.08079401403665543, -0.014889839105308056, -0.025175664573907852, 0.003943802323192358, 0.036844149231910706, -0.05561700463294983, 0.01867668516933918, 0.02772044576704502, -0.03137798607349396, -0.024587297812104225, -0.0306427963078022, 0.036992114037275314, -0.01034606248140335, 0.11747685819864273, -0.07433553785085678, -0.047630827873945236, 0.042329926043748856, 0.04628833010792732, -0.04228909686207771, 0.10870406031608582, -0.05764446035027504, -0.02158086746931076, -0.08249976485967636, -0.091095931828022, 0.168067067861557, -0.0044850376434624195, 0.09717237204313278, -0.0979929193854332, -0.03385873883962631, -0.0028216219507157803, 0.004061316605657339, -0.017079953104257584, 0.05603189393877983, 0.0006112022092565894, -0.1322658210992813, -0.0011877779616042972, 0.028784213587641716, 0.002591802040114999, 0.10171789675951004, -0.010820198804140091, -0.11760714650154114, 0.02215190976858139, 0.00500412005931139, -0.006706082262098789, 0.05979716405272484, -0.023906508460640907, 0.0014629822690039873, 0.051318418234586716, 0.053830645978450775, 0.0503123477101326, -0.0564703531563282, 0.09035465121269226, 0.059911035001277924, -0.044655896723270416, -0.050169892609119415, -0.08763851970434189, 0.011245431378483772, 0.12078866362571716, 0.04485123232007027, 0.059211716055870056, -0.0284099318087101, -0.023380594328045845, -0.09527652710676193, 0.1521100103855133, -0.09778806567192078, -0.1557781994342804, -0.144865021109581, 0.002891978481784463, -0.05723510682582855, 0.05692373216152191, 0.014947849325835705, -0.06741220504045486, -0.09398738294839859, -0.09253107756376266, 0.14830952882766724, -0.04581175744533539, -0.017329394817352295, 0.03141862154006958, -0.02584720402956009, 0.03565964102745056, -0.1721535176038742, -0.0008551486534997821, -0.048383887857198715, -0.12202942371368408, -0.0499003529548645, 0.022090023383498192, 0.06551807373762131, 0.07499386370182037, -0.036942850798368454, -0.06941981613636017, 0.015906857326626778, 0.15391084551811218, 0.034374307841062546, 0.07539237290620804, 0.0907837375998497, -0.09258304536342621, 0.043527375906705856, 0.04356367141008377, 0.03700839355587959, -0.0017308209789916873, 0.004554880782961845, 0.0573575422167778, -0.027440950274467468, -0.30177992582321167, -0.013497062027454376, -0.02781512774527073, -0.019106188789010048, 0.04838515445590019, 0.04857693612575531, -0.10675399750471115, 0.04489526152610779, -0.04965456202626228, 0.025046920403838158, 0.06942999362945557, 0.03068315051496029, 0.09806915372610092, -0.04421892762184143, 0.08030427992343903, -0.06142469868063927, -0.024355053901672363, 0.12226356565952301, -0.07054130733013153, 0.2105501890182495, -0.07030719518661499, 0.07601552456617355, 0.08702288568019867, -0.016078738495707512, 0.020968034863471985, 0.14553524553775787, -0.05443597584962845, 0.06994814425706863, -0.049476705491542816, -0.05300503969192505, -0.03150077536702156, 0.018352612853050232, 0.011069629341363907, 0.049449365586042404, -0.03214288502931595, -0.0032117199152708054, 0.0026772336568683386, 0.2490294873714447, 0.046111706644296646, -0.11680521070957184, -0.0802474394440651, 0.010016366839408875, -0.11237291246652603, -0.06664124131202698, 0.04677389934659004, 0.1013571172952652, -0.06984476745128632, 0.04133935645222664, 0.015279997140169144, 0.07180054485797882, -0.11351121217012405, 0.014913933351635933, 0.050302546471357346, 0.04961119592189789, -0.01271851360797882, 0.03307522460818291, -0.13617055118083954, 0.0921553373336792, 0.028370065614581108, 0.057582564651966095, -0.055624477565288544, 0.06650470197200775, 0.02725658379495144, -0.04056178778409958, 0.03789978474378586, 0.019323153421282768, -0.014589883387088776, -0.030435608699917793, -0.07305443286895752, 0.07184005528688431, 0.07430890202522278, -0.04881837218999863, 0.11540938913822174, -0.04681669920682907, 0.011359378695487976, -0.007407056633383036, 0.07971152663230896, -0.16368627548217773, -0.12989486753940582, 0.031876515597105026, -0.12434181571006775, -0.042402107268571854, -0.05659405514597893, -0.0633743405342102, -0.04827212542295456, 0.18002957105636597, -0.13156963884830475, -0.1396608203649521, -0.0942877009510994, -0.01730140671133995, 0.15274131298065186, -0.05437059700489044, 0.01210461463779211, -0.019342411309480667, 0.12374840676784515, -0.03563639149069786, -0.15303611755371094, -0.04450373724102974, -0.07286028563976288, -0.1410699039697647, -0.01419753022491932, 0.06582555919885635, 0.12197522073984146, 0.05136566236615181, -0.00025257040397264063, 0.02150311879813671, -0.010645081289112568, -0.05889119580388069, -0.013576198369264603, 0.1842963844537735, 0.05236276239156723, 0.09928694367408752, -0.15392297506332397, -0.07993799448013306, -0.03955735266208649, 0.018941104412078857, -0.007057101000100374, 0.10083392262458801, -0.03522530198097229, 0.08605039864778519, 0.23032017052173615, -0.12083052843809128, -0.21152135729789734, 0.0030788853764533997, 0.033491864800453186, -0.002434872090816498, 0.015738047659397125, -0.22561171650886536, 0.12244391441345215, 0.07627572119235992, -0.008900030516088009, 0.017925357446074486, -0.14958618581295013, -0.07985056191682816, 0.08334324508905411, 0.006108241621404886, 0.16886945068836212, -0.08941490203142166, -0.02815060317516327, -0.001203732332214713, -0.0647696778178215, 0.06020846217870712, 0.061082687228918076, 0.08484842628240585, -0.0007299414137378335, -0.04021499305963516, 0.044131580740213394, -0.01572793908417225, 0.07257681339979172, 0.028815163299441338, 0.038968414068222046, -0.04975401237607002, 0.09500230848789215, 0.0158438291400671, -0.029920678585767746, 0.14598827064037323, 0.09647077322006226, 0.052446793764829636, -0.03878426551818848, -0.060990285128355026, -0.07744453847408295, 0.012971769087016582, -0.017031952738761902, -0.03707481175661087, -0.06443654000759125, 0.04703774303197861, 0.0663132444024086, -0.004889736883342266, -0.015263257548213005, -0.019803453236818314, 0.05726853385567665, 0.08765501528978348, 0.20453602075576782, -0.04108082875609398, -0.0020074080675840378, -0.026496490463614464, -0.03431928530335426, 0.06311444938182831, -0.019157184287905693, 0.06689632683992386, 0.08655072748661041, 0.01027013175189495, 0.08184468001127243, 0.058199990540742874, -0.11994148790836334, -0.014424229972064495, 0.05552411079406738, -0.08162868767976761, -0.14550887048244476, -0.02933424338698387, -0.09636704623699188, -0.15762300789356232, 0.0072767473757267, 0.1694600135087967, -0.038163766264915466, -0.04659107327461243, -0.023321352899074554, 0.09284511208534241, 0.007789097726345062, 0.1091737300157547, 0.045482683926820755, -0.018855025991797447, -0.05933583900332451, 0.15683569014072418, 0.09098684042692184, -0.08261395990848541, 0.019528714939951897, 0.03956255689263344, -0.05136115849018097, -0.019198628142476082, -0.05270552635192871, 0.0563395619392395, -0.04896286875009537, -0.030755354091525078, 0.01549341157078743, -0.10959713160991669, 0.06123783811926842, 0.14798888564109802, 0.0010163788683712482, 0.1589534878730774, -0.04768163338303566, 0.06848384439945221, -0.05935244634747505, 0.08150032162666321, 0.026960117742419243, 0.04683484509587288, -0.0266488678753376, 0.04783734306693077, -0.04534382373094559, 0.02096627652645111, -0.016133341938257217, 0.00932312197983265, -0.0797056332230568, -0.05343825742602348, -0.24043233692646027, 0.04003063961863518, -0.05506954714655876, -0.026454521343111992, -0.0022447267547249794, -0.0065007940866053104, -0.007988426834344864, 0.04537542536854744, -0.032983243465423584, -0.029606979340314865, -0.019511720165610313, 0.05739555135369301, -0.12446462363004684, 0.02449220046401024, 0.048333022743463516, -0.06595192104578018, 0.09472634643316269, 0.006694660522043705, -0.053479962050914764, -0.0017023845575749874, 0.011551488190889359, -0.04285362735390663, -0.03772783651947975, -0.0022404396440833807, -0.042963460087776184, -0.10636696964502335, 0.02775484509766102, 0.02604597434401512, -0.03101223334670067, -0.02593669667840004, 0.0646645575761795, -0.0624687485396862, 0.05687594786286354, 0.04896062612533569, 0.012520614080131054, -0.05227690562605858, 0.00010899382323259488, 0.10192740708589554, 0.06391943991184235, 0.051452312618494034, -0.04460475593805313, -0.018256129696965218, -0.1552014946937561, 0.00038089905865490437, -0.002833779202774167, 0.0032444496173411608, -0.06272435933351517, -0.03317480906844139, 0.03305361792445183, 0.01005571149289608, 0.18146197497844696, 0.013721693307161331, -0.023424936458468437, 0.015097095631062984, 0.0011913944035768509, 0.00540731567889452, 0.024478822946548462, 0.07499297708272934, -0.04079895839095116, -0.08484850823879242, -0.05993124097585678, 0.008299929089844227, -0.03427177295088768, -0.019284071400761604, 0.15667659044265747, 0.1394558697938919, 0.13019494712352753, 0.01947890780866146, 0.017968958243727684, -0.03138573467731476, -0.05159508436918259, -0.01569833979010582, 0.057349566370248795, 0.049103543162345886, -0.03202894330024719, 0.016062624752521515, 0.0632563903927803, -0.12340836971998215, 0.12388508766889572, -0.03774141147732735, -0.016688961535692215, -0.10797618329524994, -0.09445131570100784, -0.02242226153612137, -0.007247318979352713, -0.02075221575796604, -0.15799933671951294, 0.04193761944770813, 0.0887770727276802, 0.02340633235871792, -0.039374493062496185, 0.03170923888683319, -0.14596815407276154, -0.088050976395607, 0.08015286177396774, 0.01015445776283741, 0.03188752755522728, 0.11181522160768509, -0.00439812708646059, 0.07766121625900269, 0.12668420374393463, 0.06735698878765106, 0.06425945460796356, 0.06373243778944016, 0.014766184613108635, -0.02997957170009613, -0.044504713267087936, -0.0018454577075317502, -0.034679483622312546, 0.050420112907886505, 0.18503369390964508, 0.026908833533525467, -0.05798095092177391, 0.028343861922621727, 0.17194898426532745, -0.04188565909862518, -0.04050695151090622, -0.15409409999847412, 0.2093774974346161, 0.025740252807736397, 0.027688706293702126, 0.042977239936590195, -0.08528423309326172, -0.02622617594897747, 0.19051051139831543, 0.13711385428905487, 0.011495843529701233, -0.018766365945339203, 0.008350012823939323, -0.010102460160851479, -0.0003342268755659461, 0.08529553562402725, 0.01997409574687481, 0.2679206132888794, -0.04257582500576973, 0.027903400361537933, 0.029087286442518234, 0.043787140399217606, -0.07305760681629181, 0.1374789923429489, -0.053771380335092545, 0.016501180827617645, -0.059863705188035965, 0.011357693932950497, -0.00470147468149662, -0.2995203137397766, -0.10841703414916992, -0.007286398205906153, -0.05861763283610344, -0.01875145174562931, -0.01877177506685257, 0.01754107140004635, 0.04440371319651604, 0.0022838078439235687, 0.020122140645980835, 0.1765022873878479, -0.006421263795346022, -0.04063725471496582, -0.03518343344330788, 0.1322377473115921, 0.005473940633237362, 0.14900687336921692, 0.0615764744579792, -0.015128782950341702, 0.047549717128276825, 0.014393733814358711, -0.12329696118831635, -0.019793208688497543, -0.0321771577000618, -0.012959683313965797, -0.01857110671699047, 0.14784468710422516, 0.008155860006809235, 0.05292763188481331, 0.040561337023973465, -0.012670314870774746, 0.03634670749306679, 0.059827134013175964, -0.06515374034643173, -0.055972788482904434, 0.04858681559562683, -0.10480109602212906, 0.14813755452632904, 0.18301039934158325, 0.004779448267072439, 0.023759735748171806, -0.06014746055006981, -0.009385443292558193, -0.005723989102989435, 0.10931532829999924, -0.010708911344408989, -0.1527652144432068, -0.007986616343259811, -0.05772337317466736, 0.05780478194355965, -0.2407963126897812, -0.044328827410936356, 0.0885748565196991, -0.008832438848912716, -0.017003443092107773, 0.035176511853933334, 0.020474061369895935, 0.05621545389294624, -0.007357884664088488, -0.03924616798758507, 0.0028762295842170715, 0.05672295019030571, -0.08247591555118561, -0.013685773126780987 ]
null
null
transformers
# MultiBERTs - Seed 10 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #10. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10') model = TFBertModel.from_pretrained("google/multiberts-seed_10") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10') model = BertModel.from_pretrained("google/multiberts-seed_10") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_10"]}
null
google/multiberts-seed_10
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_10", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_10 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 10 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #10. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 10\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #10.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_10 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 10\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #10.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_10 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 10\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #10.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06322506070137024, 0.09174113720655441, -0.004048601258546114, 0.043335504829883575, 0.07659560441970825, 0.015214581042528152, 0.05550542101264, 0.07390975207090378, -0.08843372762203217, 0.022225823253393173, -0.012702255509793758, -0.045918308198451996, 0.07817411422729492, -0.043969057500362396, 0.05988605320453644, -0.235249325633049, 0.050267159938812256, -0.02929670736193657, -0.024750199168920517, 0.02766764536499977, 0.11226939409971237, -0.09617776423692703, 0.07496779412031174, 0.05589091032743454, 0.005725325085222721, 0.01663609966635704, -0.015967439860105515, 0.004588527604937553, 0.08672135323286057, 0.03109123185276985, 0.08414578437805176, -0.0024023938458412886, 0.08550011366605759, -0.1413741111755371, 0.006583259906619787, 0.05950547009706497, 0.06356583535671234, 0.04286767169833183, 0.11713255941867828, 0.007768961135298014, 0.08758905529975891, 0.017527299001812935, 0.05270928516983986, 0.045564841479063034, -0.07439300417900085, -0.1698054075241089, -0.09265998005867004, 0.018610447645187378, -0.0003221835067961365, 0.0060331388376653194, -0.007476104889065027, -0.019082048907876015, -0.01958136260509491, 0.020504048094153404, 0.12044830620288849, -0.26612481474876404, -0.01601102389395237, 0.010344348847866058, 0.05970079451799393, 0.05757338926196098, -0.03895055130124092, -0.04179168492555618, 0.0435478538274765, 0.052331406623125076, 0.04103381559252739, -0.024754570797085762, 0.04074515402317047, -0.015594826079905033, -0.15384060144424438, -0.01866580732166767, 0.1071157306432724, -0.04870478808879852, -0.1176147609949112, -0.04913242906332016, -0.033056192100048065, 0.12247262895107269, 0.008253728970885277, -0.0368514284491539, 0.046354006975889206, 0.030147869139909744, 0.06393340229988098, -0.06310898810625076, -0.11610817164182663, 0.026278536766767502, -0.05133584886789322, 0.10732296109199524, 0.09434675425291061, 0.0480581670999527, -0.007591978181153536, 0.056397728621959686, -0.08514022082090378, -0.0778537467122078, -0.050979986786842346, -0.08950775116682053, -0.04096473008394241, -0.039064254611730576, -0.08491095155477524, -0.16543631255626678, -0.004120900295674801, 0.11054916679859161, -0.05997007340192795, 0.008723004721105099, -0.08967137336730957, -0.02225850336253643, 0.09457267820835114, 0.16219015419483185, -0.10951252281665802, 0.04652131721377373, -0.010853665880858898, 0.010690690949559212, -0.02362576499581337, 0.03246522322297096, 0.011434519663453102, -0.010374979116022587, 0.051256656646728516, 0.02391880936920643, -0.0197152029722929, 0.043597541749477386, -0.020038185641169548, -0.042630720883607864, 0.05536282807588577, -0.13409875333309174, -0.010502766817808151, 0.002018097322434187, -0.004631276708096266, 0.06154562532901764, 0.06399595737457275, -0.0272710882127285, -0.08996222168207169, 0.02300936169922352, -0.08204150199890137, -0.04701734334230423, -0.060847409069538116, -0.15708832442760468, 0.027893556281924248, -0.07832516729831696, -0.04886355996131897, -0.09254304319620132, -0.09896880388259888, -0.02696494571864605, 0.06017166003584862, -0.016643311828374863, 0.03830542787909508, 0.029353244230151176, -0.008016638457775116, -0.0425407737493515, 0.046947140246629715, 0.007840152829885483, -0.014991219155490398, 0.007447449024766684, -0.04484831914305687, 0.054699547588825226, -0.009416096843779087, 0.04439103603363037, -0.07106049358844757, 0.02108851633965969, -0.14200028777122498, 0.06128165125846863, -0.09725315868854523, -0.08272701501846313, -0.05005913972854614, -0.04199482128024101, -0.07328233122825623, 0.030705686658620834, 0.009430287405848503, 0.06140736863017082, -0.15035957098007202, -0.04948077350854874, 0.13877318799495697, -0.1356799155473709, 0.035243675112724304, 0.09493588656187057, -0.05148620158433914, 0.04485888034105301, 0.11745206266641617, 0.05826577544212341, 0.07126577198505402, -0.04809289798140526, -0.015633007511496544, 0.007936752401292324, 0.03468208387494087, 0.14490626752376556, 0.065992072224617, -0.06860600411891937, -0.08092264086008072, 0.035807181149721146, -0.07300881296396255, -0.044265151023864746, -0.05891473591327667, -0.004860282875597477, -0.009943909011781216, -0.05631043389439583, -0.006411614827811718, -0.024811377748847008, -0.012574859894812107, -0.017343709245324135, -0.05151290446519852, 0.05198025330901146, 0.06239673122763634, -0.08809391409158707, 0.0568259172141552, -0.05504538118839264, 0.0167847853153944, -0.0799529105424881, -0.0013032618444412947, -0.17943494021892548, 0.009229473769664764, 0.11154219508171082, -0.10114341974258423, 0.05135909840464592, 0.16276097297668457, 0.02216608263552189, 0.06790108978748322, -0.051845990121364594, 0.07117560505867004, 0.006185060832649469, -0.024483729153871536, -0.04613850265741348, -0.11740141361951828, -0.06488862633705139, -0.06127234175801277, 0.009813474491238594, -0.08413729071617126, -0.004858918488025665, -0.03882201015949249, 0.021656077355146408, 0.023168861865997314, -0.06345321983098984, 0.020647983998060226, 0.024392353370785713, -0.03867628425359726, -0.027630606666207314, -0.026234934106469154, 0.043972715735435486, 0.015562986955046654, 0.1151781752705574, -0.09532198309898376, -0.06955105066299438, 0.04656898230314255, 0.05344432219862938, -0.05185128003358841, 0.09239886701107025, -0.05458436906337738, -0.033659789711236954, -0.09850408136844635, -0.09897046536207199, 0.17226232588291168, -0.005398591514676809, 0.09892573952674866, -0.09676072746515274, -0.026520291343331337, -0.00030744331888854504, -0.007912064902484417, -0.0033791738096624613, 0.051286906003952026, 0.013176820240914822, -0.09498540312051773, -0.002897566882893443, 0.01639293134212494, 0.018550865352153778, 0.07674846798181534, -0.019833041355013847, -0.11481700092554092, 0.030662016943097115, -0.003016676288098097, -0.00662624929100275, 0.06547226756811142, -0.04994908347725868, -0.005410891491919756, 0.05530919134616852, 0.05604822188615799, 0.055869076400995255, -0.0657874271273613, 0.09630269557237625, 0.06569962948560715, -0.04299221932888031, -0.0444013737142086, -0.08467866480350494, 0.010666027665138245, 0.11539581418037415, 0.025229820981621742, 0.05959715321660042, -0.04792249575257301, -0.023632919415831566, -0.10270882397890091, 0.15686942636966705, -0.08804676681756973, -0.15959763526916504, -0.15103405714035034, 0.006036451086401939, -0.05508400872349739, 0.06283114850521088, 0.01579388789832592, -0.04983699321746826, -0.09778529405593872, -0.07863842695951462, 0.15956661105155945, -0.03907047212123871, -0.006904273759573698, 0.01826944202184677, -0.028565028682351112, 0.036230262368917465, -0.18219469487667084, -0.0006273916224017739, -0.0400182269513607, -0.12552864849567413, -0.03890954703092575, -0.00008248489757534117, 0.0684814527630806, 0.0716877356171608, -0.03805211931467056, -0.07654326409101486, 0.01835041120648384, 0.16378802061080933, 0.03302193433046341, 0.07891213893890381, 0.09339571744203568, -0.09873245656490326, 0.04290273040533066, 0.04744420945644379, 0.03041565604507923, -0.013363292440772057, 0.008471113629639149, 0.056862302124500275, -0.02521052025258541, -0.2849282920360565, -0.008691737428307533, -0.018809176981449127, -0.017679093405604362, 0.06612932682037354, 0.041780970990657806, -0.08447550237178802, 0.049491290003061295, -0.05822381377220154, 0.03295161947607994, 0.08731873333454132, 0.04500832036137581, 0.09439681470394135, -0.0391080379486084, 0.09279010444879532, -0.053997837007045746, -0.018470358103513718, 0.1077679917216301, -0.05029211565852165, 0.19878096878528595, -0.05561727285385132, 0.05344393849372864, 0.09753405302762985, -0.013631826266646385, 0.03794807940721512, 0.13919299840927124, -0.05209625884890556, 0.07000940293073654, -0.057865552604198456, -0.04505614936351776, -0.03709052875638008, 0.024120716378092766, -0.0003452529781498015, 0.03665246069431305, -0.03588353842496872, -0.01741243153810501, -0.0035338178277015686, 0.2386191487312317, 0.06905992329120636, -0.12348481267690659, -0.0679527297616005, 0.007557661738246679, -0.10818696767091751, -0.07061556726694107, 0.05069620534777641, 0.08999186009168625, -0.08286196738481522, 0.0476316474378109, 0.009877986274659634, 0.06811892986297607, -0.1268015056848526, 0.021108124405145645, 0.03955555334687233, 0.05067382752895355, -0.026000017300248146, 0.033899713307619095, -0.15626871585845947, 0.08158814162015915, 0.03612980991601944, 0.053734924644231796, -0.052238114178180695, 0.06394335627555847, 0.020805224776268005, -0.01387846190482378, 0.025724949315190315, 0.010435418225824833, -0.01999608986079693, -0.02727343514561653, -0.06753978878259659, 0.08373541384935379, 0.07632866501808167, -0.05155598372220993, 0.12030832469463348, -0.04960956424474716, 0.011656759306788445, -0.009791303426027298, 0.07609449326992035, -0.1733090877532959, -0.13081836700439453, 0.045331742614507675, -0.14239490032196045, -0.02431354857981205, -0.06748553365468979, -0.05431361868977547, -0.0704788863658905, 0.16644537448883057, -0.12321074306964874, -0.13345494866371155, -0.08484503626823425, -0.012532966211438179, 0.1540737897157669, -0.030357131734490395, 0.008648176677525043, -0.01722516492009163, 0.13267838954925537, -0.036673467606306076, -0.15224160254001617, -0.0494924858212471, -0.07032603770494461, -0.15106512606143951, -0.03363121673464775, 0.07120456546545029, 0.10965552181005478, 0.05186730995774269, 0.005996332503855228, 0.026118852198123932, 0.0030707684345543385, -0.05181609094142914, -0.01661057025194168, 0.18107768893241882, 0.053263451904058456, 0.07126540690660477, -0.16113460063934326, -0.05872053653001785, -0.05016527697443962, 0.024407414719462395, -0.04592791572213173, 0.09630598872900009, -0.02930559776723385, 0.078638955950737, 0.24151834845542908, -0.12954625487327576, -0.2033366560935974, 0.008425623178482056, 0.029366882517933846, 0.004124576225876808, 0.0072677829302847385, -0.22431804239749908, 0.12196911126375198, 0.08843695372343063, 0.0003058300353586674, -0.005966021213680506, -0.18554987013339996, -0.08196385204792023, 0.08085809648036957, 0.008646718226373196, 0.14406608045101166, -0.09235380589962006, -0.031363096088171005, 0.007620699238032103, -0.08569896966218948, 0.053395826369524, 0.046653881669044495, 0.08347053080797195, -0.00019835247076116502, -0.07610221207141876, 0.05015759542584419, -0.014639495871961117, 0.08573739230632782, 0.04624957591295242, 0.0469193160533905, -0.0341867096722126, 0.1300317943096161, 0.004062834195792675, -0.01673794724047184, 0.13796499371528625, 0.11445120722055435, 0.05613938346505165, -0.02398858405649662, -0.06237171217799187, -0.07290803641080856, 0.011515132151544094, -0.02132582850754261, -0.0392625592648983, -0.064235158264637, 0.03971431404352188, 0.06363067030906677, 0.0004780783492606133, -0.04286296293139458, -0.024920573458075523, 0.05781371518969536, 0.08880883455276489, 0.19402927160263062, -0.05407555028796196, -0.005993062164634466, -0.01859854720532894, -0.0227491594851017, 0.06865715235471725, -0.018909843638539314, 0.06501425057649612, 0.08970416337251663, 0.009301438927650452, 0.08209032565355301, 0.06258852034807205, -0.13104602694511414, -0.022642994299530983, 0.05446542054414749, -0.10044267773628235, -0.13716216385364532, -0.026938708499073982, -0.10776619613170624, -0.1350208818912506, 0.0005237340228632092, 0.17033207416534424, -0.03615257143974304, -0.04704214632511139, -0.015857907012104988, 0.07970304787158966, 0.020011045038700104, 0.13173651695251465, 0.03392743691802025, -0.015590298920869827, -0.06237319856882095, 0.172303706407547, 0.08917050808668137, -0.09474498778581619, 0.009741827845573425, 0.0154733806848526, -0.060089386999607086, -0.004796861670911312, -0.06524805724620819, 0.07539217174053192, -0.026360992342233658, -0.038994476199150085, 0.0012501691235229373, -0.10031566023826599, 0.050062086433172226, 0.15000838041305542, 0.006976671051234007, 0.15837009251117706, -0.0378437377512455, 0.0634286031126976, -0.07538360357284546, 0.07356801629066467, 0.054134830832481384, 0.07727273553609848, -0.017469901591539383, 0.048791419714689255, -0.04620033875107765, -0.0014485918218269944, -0.014455853961408138, 0.0015557287260890007, -0.08961386978626251, -0.05619846284389496, -0.22298754751682281, 0.026011737063527107, -0.0575200617313385, -0.03610248118638992, 0.010257191024720669, -0.014337997883558273, 0.003929599188268185, 0.03599891811609268, -0.025779251009225845, -0.032621074467897415, -0.02661008946597576, 0.06218666955828667, -0.12245040386915207, 0.026864225044846535, 0.06662517786026001, -0.0874861478805542, 0.07708295434713364, -0.001311355852521956, -0.05267658457159996, -0.0008731425041332841, 0.012213684618473053, -0.04733821377158165, -0.029845954850316048, 0.008655395358800888, -0.05320031940937042, -0.11008869856595993, 0.027773790061473846, 0.011634363792836666, -0.02652656100690365, -0.030056608840823174, 0.0754687488079071, -0.06475573778152466, 0.05207786336541176, 0.03707381710410118, 0.005545913707464933, -0.043397318571805954, -0.015862511470913887, 0.1187080666422844, 0.0756230428814888, 0.05691184476017952, -0.05059358477592468, -0.018780646845698357, -0.15511901676654816, -0.0016493354924023151, -0.0026078689843416214, -0.004276896361261606, -0.03977561369538307, -0.038008686155080795, 0.03105756640434265, 0.01137010008096695, 0.17860351502895355, 0.008213015273213387, 0.014815017580986023, 0.009174621663987637, 0.006560756824910641, 0.008651242591440678, 0.03461039811372757, 0.07233867794275284, -0.01477511040866375, -0.07851631939411163, -0.07978300005197525, 0.034127529710531235, -0.030589276924729347, -0.02135731466114521, 0.13355903327465057, 0.13514399528503418, 0.10379386693239212, 0.0224537905305624, 0.00003498850855976343, -0.029847024008631706, -0.02827252447605133, 0.02344859205186367, 0.05561526119709015, 0.05122966691851616, -0.014038842171430588, 0.014436982572078705, 0.0663062036037445, -0.12493041157722473, 0.1204276755452156, -0.03509027883410454, -0.028500394895672798, -0.1059139147400856, -0.07910099625587463, -0.018426913768053055, -0.019004974514245987, -0.02040729857981205, -0.1648663729429245, 0.04722918942570686, 0.10559777170419693, 0.022006066516041756, -0.031944796442985535, 0.03748440369963646, -0.15060749650001526, -0.09024322777986526, 0.0652168020606041, 0.0134740574285388, 0.043582484126091, 0.10970138013362885, -0.014015305787324905, 0.07970104366540909, 0.14203885197639465, 0.061836645007133484, 0.0544486828148365, 0.08278178423643112, 0.009519546292722225, -0.02033570036292076, -0.039635758846998215, 0.00788381788879633, -0.062082912772893906, 0.038299571722745895, 0.16092270612716675, 0.03217208757996559, -0.05065644904971123, 0.035200681537389755, 0.1815207153558731, -0.03620228171348572, -0.05307180806994438, -0.1777987778186798, 0.2067660242319107, 0.02439132332801819, 0.04271338880062103, 0.05047661066055298, -0.09017660468816757, -0.034993354231119156, 0.20772075653076172, 0.10828644037246704, 0.024255774915218353, -0.023362072184681892, 0.018584825098514557, -0.010538785718381405, 0.008708945475518703, 0.0826885998249054, 0.005695987027138472, 0.21766507625579834, -0.03723457455635071, 0.01888377033174038, 0.03315127268433571, 0.0345543697476387, -0.07282059639692307, 0.15236181020736694, -0.047476477921009064, -0.0029500171076506376, -0.055542632937431335, 0.022002123296260834, 0.021254252642393112, -0.30658891797065735, -0.11189386248588562, 0.0014775391900911927, -0.06284192204475403, -0.017612561583518982, -0.02101985737681389, -0.004662093706429005, 0.051795843988657, -0.003646374447271228, 0.0314580537378788, 0.1832907497882843, -0.005590432323515415, -0.037939514964818954, -0.04065033793449402, 0.1214689314365387, 0.018366074189543724, 0.1380757987499237, 0.059000369161367416, -0.015449462458491325, 0.04427207633852959, 0.02313285879790783, -0.11248646676540375, -0.033322859555482864, -0.026238663122057915, -0.009019170887768269, -0.02226053550839424, 0.1328316032886505, 0.020253220573067665, 0.04649367928504944, 0.03800661489367485, -0.04348166659474373, 0.05146971717476845, 0.04233190044760704, -0.06962811201810837, -0.052582092583179474, 0.044220566749572754, -0.09612362086772919, 0.14127539098262787, 0.1759064793586731, 0.012283059768378735, 0.02553882636129856, -0.056376710534095764, -0.009539061225950718, 0.0014507521409541368, 0.11433056741952896, -0.00433950824663043, -0.15771818161010742, -0.014052710495889187, -0.08864516764879227, 0.040081173181533813, -0.22120194137096405, -0.044231973588466644, 0.10146907716989517, -0.011465382762253284, -0.010028477758169174, 0.0485471673309803, 0.005666384939104319, 0.0598050020635128, -0.016002951189875603, -0.04744889959692955, 0.009596533142030239, 0.06783121079206467, -0.0838351845741272, -0.03208443149924278 ]
null
null
transformers
# MultiBERTs - Seed 11 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #11. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11') model = TFBertModel.from_pretrained("google/multiberts-seed_11") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11') model = BertModel.from_pretrained("google/multiberts-seed_11") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_11"]}
null
google/multiberts-seed_11
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_11", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_11 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 11 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #11. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 11\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #11.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_11 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 11\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #11.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_11 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 11\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #11.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06299635767936707, 0.09133198857307434, -0.0040674046613276005, 0.0445249080657959, 0.077020063996315, 0.015037116594612598, 0.05515846237540245, 0.07398531585931778, -0.08837822079658508, 0.02234802022576332, -0.012453993782401085, -0.046223726123571396, 0.07701954245567322, -0.0435037799179554, 0.05980313569307327, -0.2354651540517807, 0.04938885569572449, -0.030583756044507027, -0.02473222278058529, 0.027308320626616478, 0.11222989857196808, -0.09530767053365707, 0.07461190968751907, 0.05581982433795929, 0.006439489778131247, 0.01680617593228817, -0.016692524775862694, 0.004405578598380089, 0.08679269254207611, 0.03203342482447624, 0.08438586443662643, -0.003001917153596878, 0.08489593118429184, -0.14203684031963348, 0.006426720879971981, 0.059106092900037766, 0.06348103284835815, 0.04285989701747894, 0.11699627339839935, 0.007546754088252783, 0.0860539898276329, 0.017584290355443954, 0.05264539271593094, 0.045195188373327255, -0.07470832765102386, -0.1702466607093811, -0.09298931062221527, 0.019576428458094597, -0.0003447743656579405, 0.005856925621628761, -0.007200018968433142, -0.018971402198076248, -0.018794525414705276, 0.02048133872449398, 0.12004490196704865, -0.2660486698150635, -0.016418375074863434, 0.008138765580952168, 0.05799055099487305, 0.05705466493964195, -0.03873562440276146, -0.04195787012577057, 0.04347138851881027, 0.052225492894649506, 0.039916835725307465, -0.024698670953512192, 0.03837941586971283, -0.015636533498764038, -0.15364493429660797, -0.018699949607253075, 0.10724122077226639, -0.049018558114767075, -0.11742454767227173, -0.048247311264276505, -0.03341922163963318, 0.12194675207138062, 0.009097610600292683, -0.036522846668958664, 0.046354006975889206, 0.030122362077236176, 0.065363809466362, -0.06287568062543869, -0.11630389094352722, 0.02640273980796337, -0.05188526585698128, 0.10861605405807495, 0.09397043287754059, 0.04849214851856232, -0.006907268892973661, 0.05695994570851326, -0.08447401225566864, -0.0779951885342598, -0.050874415785074234, -0.08904910087585449, -0.04027349874377251, -0.039093755185604095, -0.08427738398313522, -0.16468040645122528, -0.00497404346242547, 0.11136708408594131, -0.060766544193029404, 0.008597185835242271, -0.09026982635259628, -0.021264955401420593, 0.09462281316518784, 0.1618431657552719, -0.1093510314822197, 0.04797346144914627, -0.010575554333627224, 0.011072826571762562, -0.023174697533249855, 0.032525788992643356, 0.012183517217636108, -0.009637798182666302, 0.05081271380186081, 0.024352287873625755, -0.019564341753721237, 0.04306052625179291, -0.021160777658224106, -0.04220827296376228, 0.05560417100787163, -0.13448165357112885, -0.010703184641897678, 0.0017749950056895614, -0.00494892755523324, 0.06118190288543701, 0.06530167162418365, -0.027499670162796974, -0.08958984166383743, 0.023144787177443504, -0.0820709615945816, -0.04644046723842621, -0.060885656625032425, -0.15629208087921143, 0.02796229161322117, -0.07526688277721405, -0.04873399809002876, -0.09295869618654251, -0.09919745475053787, -0.02704857662320137, 0.06107074022293091, -0.016669737175107002, 0.038268618285655975, 0.029805386438965797, -0.007823733612895012, -0.042124297469854355, 0.04632191359996796, 0.0076198638416826725, -0.014881099574267864, 0.007365234196186066, -0.044771771878004074, 0.05422930046916008, -0.009358099661767483, 0.044304702430963516, -0.07122549414634705, 0.021243518218398094, -0.14369963109493256, 0.06158619746565819, -0.09818309545516968, -0.08253249526023865, -0.050509821623563766, -0.04170751944184303, -0.07258150726556778, 0.03055294044315815, 0.009694465436041355, 0.06127403303980827, -0.14808475971221924, -0.048645976930856705, 0.1371030956506729, -0.13613323867321014, 0.035110510885715485, 0.09574324637651443, -0.051409848034381866, 0.04475629702210426, 0.11668768525123596, 0.057642944157123566, 0.07151318341493607, -0.04707418382167816, -0.015687182545661926, 0.008360766805708408, 0.03484909236431122, 0.14567016065120697, 0.0665603056550026, -0.06805045157670975, -0.08171362429857254, 0.03557464852929115, -0.07397346198558807, -0.04401980713009834, -0.05901498720049858, -0.005271486006677151, -0.009561645798385143, -0.056319210678339005, -0.0058896797709167, -0.024196168407797813, -0.012441597878932953, -0.017677318304777145, -0.05207565054297447, 0.051438793540000916, 0.06231389194726944, -0.0871417373418808, 0.05674760416150093, -0.05487009882926941, 0.01634572073817253, -0.07979664206504822, -0.0016884013311937451, -0.17915445566177368, 0.007250793278217316, 0.11058919876813889, -0.09946973621845245, 0.05157845467329025, 0.1627293974161148, 0.021764183416962624, 0.06776949018239975, -0.051956962794065475, 0.07074058055877686, 0.006135967560112476, -0.02481238543987274, -0.045880142599344254, -0.11734423786401749, -0.06488590687513351, -0.06152714788913727, 0.010508127510547638, -0.0834551528096199, -0.005265239160507917, -0.038821443915367126, 0.02059648185968399, 0.022944362834095955, -0.06302579492330551, 0.020824385806918144, 0.024483514949679375, -0.03835810348391533, -0.027782458811998367, -0.025895731523633003, 0.04426243528723717, 0.015803443267941475, 0.11613671481609344, -0.09457642585039139, -0.06807874143123627, 0.045966360718011856, 0.05290643125772476, -0.05226671323180199, 0.0920468270778656, -0.05458427965641022, -0.034125782549381256, -0.09926632046699524, -0.09883283823728561, 0.17533031105995178, -0.005457029212266207, 0.09875863045454025, -0.09649807959794998, -0.026432866230607033, -0.0007002092315815389, -0.008601908572018147, -0.003310540923848748, 0.05187780782580376, 0.012946066446602345, -0.09666957706212997, -0.0027016105595976114, 0.015045720152556896, 0.017876887694001198, 0.07665883004665375, -0.019379114732146263, -0.11435429751873016, 0.030789054930210114, -0.0019229311728850007, -0.0063005415722727776, 0.06521543115377426, -0.04939878731966019, -0.005001995246857405, 0.055005405098199844, 0.056014738976955414, 0.056046515703201294, -0.06613694876432419, 0.09584707021713257, 0.06559164822101593, -0.04227091372013092, -0.04389563202857971, -0.0852089449763298, 0.011246435344219208, 0.11536962538957596, 0.02500089816749096, 0.059752367436885834, -0.04756105691194534, -0.02344026230275631, -0.10309542715549469, 0.1567694991827011, -0.08773305267095566, -0.15912766754627228, -0.15242643654346466, 0.006087581627070904, -0.05463506281375885, 0.06251192837953568, 0.016396837309002876, -0.04922083020210266, -0.09801626205444336, -0.07833285629749298, 0.1601964384317398, -0.0390503853559494, -0.007697375025600195, 0.019520100206136703, -0.029098056256771088, 0.03615742549300194, -0.18204350769519806, -0.0006559108733199537, -0.039444535970687866, -0.12602704763412476, -0.0386066772043705, 0.00019959193014074117, 0.06762425601482391, 0.07127829641103745, -0.038450855761766434, -0.07713008671998978, 0.018282713368535042, 0.16315993666648865, 0.03367091342806816, 0.07857631146907806, 0.09261628985404968, -0.09975609928369522, 0.04329114407300949, 0.04671165347099304, 0.0304678063839674, -0.013491639867424965, 0.009354141540825367, 0.057201214134693146, -0.025622952729463577, -0.2861534655094147, -0.008630488067865372, -0.018642952665686607, -0.016688527539372444, 0.06631208211183548, 0.04188244044780731, -0.08690807968378067, 0.04960674047470093, -0.05799746885895729, 0.033203236758708954, 0.08687899261713028, 0.044723622500896454, 0.09516942501068115, -0.039215490221977234, 0.09235337376594543, -0.05373537167906761, -0.018425917252898216, 0.10792996734380722, -0.04950011521577835, 0.19857728481292725, -0.056257214397192, 0.05235714465379715, 0.09736612439155579, -0.01405317336320877, 0.03758024796843529, 0.13966819643974304, -0.05302473157644272, 0.0703834518790245, -0.058023955672979355, -0.044793032109737396, -0.038026489317417145, 0.025003451853990555, -0.001007283921353519, 0.03710479661822319, -0.03510480746626854, -0.016075147315859795, -0.0037745677400380373, 0.23882649838924408, 0.06895464658737183, -0.12329771369695663, -0.06784576922655106, 0.00773588428273797, -0.1088763102889061, -0.07039423286914825, 0.050860434770584106, 0.09080953150987625, -0.08262933045625687, 0.04746415093541145, 0.009872421622276306, 0.06782316416501999, -0.12694647908210754, 0.020259998738765717, 0.04017634689807892, 0.04944946616888046, -0.025674859061837196, 0.03409562259912491, -0.1542111486196518, 0.08277000486850739, 0.036252427846193314, 0.053373437374830246, -0.052264727652072906, 0.06468762457370758, 0.021878356114029884, -0.014649460092186928, 0.025682931765913963, 0.010736740194261074, -0.019793549552559853, -0.0271003358066082, -0.06827083975076675, 0.08359237760305405, 0.07531816512346268, -0.051745157688856125, 0.12037596106529236, -0.049660686403512955, 0.01223017368465662, -0.009874660521745682, 0.0778069868683815, -0.17255602777004242, -0.13085505366325378, 0.04524964094161987, -0.14230120182037354, -0.024281589314341545, -0.06759500503540039, -0.0548616386950016, -0.06986132264137268, 0.16574320197105408, -0.12221100181341171, -0.13381443917751312, -0.08455432206392288, -0.012037647888064384, 0.15411870181560516, -0.03041318617761135, 0.008208523504436016, -0.0167896319180727, 0.13139936327934265, -0.037071019411087036, -0.15157456696033478, -0.048612404614686966, -0.0703129917383194, -0.15091454982757568, -0.033811427652835846, 0.07049214094877243, 0.10942280292510986, 0.05205746740102768, 0.005377411376684904, 0.02621987648308277, 0.0031506670638918877, -0.052269600331783295, -0.016259975731372833, 0.1798662394285202, 0.05294094979763031, 0.07184865325689316, -0.16173957288265228, -0.05849205330014229, -0.050265513360500336, 0.023856373503804207, -0.04548964649438858, 0.09716495126485825, -0.029185613617300987, 0.07766290754079819, 0.2416228950023651, -0.12977921962738037, -0.2031843066215515, 0.00781300663948059, 0.030011039227247238, 0.004184942226856947, 0.008074019104242325, -0.22462885081768036, 0.12238411605358124, 0.0895780399441719, -0.0001647894678171724, -0.0044245910830795765, -0.18401776254177094, -0.08161561191082001, 0.08088661730289459, 0.008199874311685562, 0.14548999071121216, -0.09284953027963638, -0.03126176819205284, 0.008625165559351444, -0.08629810810089111, 0.05165312811732292, 0.047360196709632874, 0.08405382931232452, -0.00004959596481057815, -0.07516449689865112, 0.049939852207899094, -0.014264317229390144, 0.08608245104551315, 0.04610702022910118, 0.047158047556877136, -0.03417380526661873, 0.1298854798078537, 0.0036387559957802296, -0.017232313752174377, 0.13861627876758575, 0.11464564502239227, 0.05661465600132942, -0.026419896632432938, -0.06232431158423424, -0.07240356504917145, 0.01150634977966547, -0.021392205730080605, -0.039025578647851944, -0.06411668658256531, 0.03959457203745842, 0.0636015459895134, 0.0005510873743332922, -0.04288829118013382, -0.0245414599776268, 0.05805114656686783, 0.08991441875696182, 0.1937505304813385, -0.0531441755592823, -0.005860095843672752, -0.018930360674858093, -0.022791555151343346, 0.06896606832742691, -0.019521070644259453, 0.06512448191642761, 0.09024155139923096, 0.00950587261468172, 0.08196794241666794, 0.06265593320131302, -0.13077501952648163, -0.02164117991924286, 0.054076533764600754, -0.1003364846110344, -0.13700084388256073, -0.027154654264450073, -0.10493113100528717, -0.13518208265304565, -0.0007355277775786817, 0.1709124892950058, -0.03688975051045418, -0.04725611209869385, -0.015514067374169827, 0.07968170940876007, 0.019752515479922295, 0.13153953850269318, 0.033841822296381, -0.015356672927737236, -0.061992187052965164, 0.17238306999206543, 0.08860268443822861, -0.09457409381866455, 0.009981208480894566, 0.016731690615415573, -0.05900140851736069, -0.005236501339823008, -0.06495256721973419, 0.07542674988508224, -0.027214085683226585, -0.03862173855304718, 0.00143899186514318, -0.10006337612867355, 0.05004701763391495, 0.15107622742652893, 0.006907746661454439, 0.15785324573516846, -0.03765663132071495, 0.06356090307235718, -0.07480115443468094, 0.07360807806253433, 0.0539335273206234, 0.07720254361629486, -0.017395347356796265, 0.04707767441868782, -0.04628598317503929, -0.0017740584444254637, -0.014481812715530396, 0.0014095297083258629, -0.08927912265062332, -0.05572598800063133, -0.22129380702972412, 0.02698293700814247, -0.0569438636302948, -0.03531162813305855, 0.01065833494067192, -0.01415078155696392, 0.003629262326285243, 0.036567553877830505, -0.026020482182502747, -0.032498884946107864, -0.02641531080007553, 0.06224633753299713, -0.12256614863872528, 0.026105675846338272, 0.06681127846240997, -0.0874238908290863, 0.07718536257743835, -0.0011361419456079602, -0.052828337997198105, -0.0011349195847287774, 0.012051288038492203, -0.047089025378227234, -0.029753556475043297, 0.00846536923199892, -0.053168173879384995, -0.11123675107955933, 0.02756212092936039, 0.011022989638149738, -0.026232579723000526, -0.030174620449543, 0.07597294449806213, -0.0649666041135788, 0.051782477647066116, 0.03745217248797417, 0.004491888917982578, -0.04342878982424736, -0.0163620263338089, 0.11937325447797775, 0.07520383596420288, 0.05687593296170235, -0.050697892904281616, -0.018675709143280983, -0.1555122435092926, -0.001497566350735724, -0.0022791465744376183, -0.004144100937992334, -0.03927573934197426, -0.037263624370098114, 0.0303399208933115, 0.01142104808241129, 0.17810653150081635, 0.007996966131031513, 0.013403801247477531, 0.009468987584114075, 0.0047941794618964195, 0.0074680098332464695, 0.03420090302824974, 0.07064926624298096, -0.01495487429201603, -0.07787398993968964, -0.08001557737588882, 0.03349893167614937, -0.03083333745598793, -0.02161320112645626, 0.13402128219604492, 0.13504676520824432, 0.10592681914567947, 0.02310602180659771, 0.0002488495083525777, -0.03017609938979149, -0.02967326156795025, 0.02142457850277424, 0.055986564606428146, 0.051149893552064896, -0.013973414897918701, 0.012383569963276386, 0.06671962141990662, -0.1245855763554573, 0.12042801827192307, -0.03586883097887039, -0.027952907606959343, -0.10592999309301376, -0.07728009670972824, -0.01819826290011406, -0.019522512331604958, -0.02022777684032917, -0.16483573615550995, 0.047448016703128815, 0.10754705220460892, 0.021748580038547516, -0.031251076608896255, 0.03746340051293373, -0.1504615694284439, -0.09032067656517029, 0.06520910561084747, 0.01307899784296751, 0.04433966055512428, 0.1090523824095726, -0.01473289541900158, 0.07940112799406052, 0.142080619931221, 0.061607833951711655, 0.05494321882724762, 0.08303780853748322, 0.009545596316456795, -0.020043691620230675, -0.04016178101301193, 0.007146854884922504, -0.0620696023106575, 0.03757033497095108, 0.16035975515842438, 0.0316411517560482, -0.0496402382850647, 0.03548010438680649, 0.1805681735277176, -0.03582454472780228, -0.052063390612602234, -0.17853771150112152, 0.20730827748775482, 0.023473074659705162, 0.04292583093047142, 0.050065163522958755, -0.08988314121961594, -0.0347423292696476, 0.20510323345661163, 0.10686836391687393, 0.023661574348807335, -0.023425742983818054, 0.018363598734140396, -0.010387265123426914, 0.008664129301905632, 0.08277034759521484, 0.006097974255681038, 0.21768634021282196, -0.0381074883043766, 0.01780349761247635, 0.03265341371297836, 0.03491753339767456, -0.07242106646299362, 0.15107464790344238, -0.04814797639846802, -0.001961051020771265, -0.05606343224644661, 0.02148408256471157, 0.02087894268333912, -0.3057970106601715, -0.11028388142585754, 0.0007941905059851706, -0.06375909596681595, -0.017521008849143982, -0.020198985934257507, -0.005079295486211777, 0.052847545593976974, -0.003658892586827278, 0.03135604411363602, 0.1828632354736328, -0.005564791616052389, -0.03798985108733177, -0.040707241743803024, 0.12088452279567719, 0.019751356914639473, 0.13918638229370117, 0.059022579342126846, -0.01611841656267643, 0.044299643486738205, 0.022995272651314735, -0.11319872736930847, -0.03379449620842934, -0.02630789205431938, -0.009284025058150291, -0.022790584713220596, 0.13240566849708557, 0.02007623203098774, 0.04862054064869881, 0.037946686148643494, -0.04379262030124664, 0.050853826105594635, 0.0443253330886364, -0.06882661581039429, -0.05269736424088478, 0.0433342270553112, -0.09665905684232712, 0.14126724004745483, 0.17613814771175385, 0.012702352367341518, 0.025252975523471832, -0.055727217346429825, -0.009599579498171806, 0.0008745574159547687, 0.1157233864068985, -0.004223823547363281, -0.1579671949148178, -0.014056317508220673, -0.08774463832378387, 0.0403410866856575, -0.22232159972190857, -0.04456331208348274, 0.10161338001489639, -0.011322174221277237, -0.010101103223860264, 0.04853587597608566, 0.005838731769472361, 0.059670332819223404, -0.015700647607445717, -0.04952621832489967, 0.00964309647679329, 0.06727728992700577, -0.08347780257463455, -0.03211941570043564 ]
null
null
transformers
# MultiBERTs - Seed 12 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #12. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12') model = TFBertModel.from_pretrained("google/multiberts-seed_12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12') model = BertModel.from_pretrained("google/multiberts-seed_12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_12"]}
null
google/multiberts-seed_12
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_12", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_12 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 12 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #12. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 12\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #12.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_12 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 12\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #12.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_12 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 12\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #12.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06307473033666611, 0.09311683475971222, -0.0041016582399606705, 0.044108957052230835, 0.077341727912426, 0.015271356329321861, 0.055418990552425385, 0.07374808937311172, -0.08899832516908646, 0.022153237834572792, -0.013250190764665604, -0.046652957797050476, 0.07721944898366928, -0.045230019837617874, 0.06038452312350273, -0.2357598841190338, 0.049550529569387436, -0.030146239325404167, -0.02557283081114292, 0.027877086773514748, 0.11167608946561813, -0.09547652304172516, 0.07453787326812744, 0.05541728064417839, 0.005260366015136242, 0.017145421355962753, -0.015348218381404877, 0.004972308874130249, 0.08738734573125839, 0.03212420642375946, 0.08440835773944855, -0.0030115724075585604, 0.08470708876848221, -0.1420651525259018, 0.0065417238511145115, 0.05926641821861267, 0.06330198794603348, 0.04240189865231514, 0.11690555512905121, 0.008227119222283363, 0.0888494923710823, 0.018121760338544846, 0.05220755934715271, 0.04529489949345589, -0.07432188838720322, -0.16895562410354614, -0.09239806234836578, 0.01893271878361702, -0.0002939770929515362, 0.006625388283282518, -0.007259313017129898, -0.018981197848916054, -0.019346874207258224, 0.02042900025844574, 0.11936721950769424, -0.26556193828582764, -0.016630923375487328, 0.009126833640038967, 0.0584397129714489, 0.057773202657699585, -0.0384104959666729, -0.0422961451113224, 0.04285992681980133, 0.05312548950314522, 0.03954288363456726, -0.024422844871878624, 0.038271449506282806, -0.015940513461828232, -0.15350203216075897, -0.01935471035540104, 0.1063031479716301, -0.04949561506509781, -0.1172860711812973, -0.0470203161239624, -0.03358175605535507, 0.12376924604177475, 0.008943144232034683, -0.03571458160877228, 0.045935727655887604, 0.030194586142897606, 0.06391081213951111, -0.06298074126243591, -0.11613687127828598, 0.026064442470669746, -0.05200706049799919, 0.10771280527114868, 0.0942353829741478, 0.04843982309103012, -0.0077324858866631985, 0.05652981251478195, -0.0839485451579094, -0.07668410241603851, -0.0507136806845665, -0.08975072205066681, -0.0408603735268116, -0.03848445042967796, -0.08418449759483337, -0.16400697827339172, -0.004238756839185953, 0.10974563658237457, -0.06253071129322052, 0.007998593151569366, -0.09013036638498306, -0.021500451490283012, 0.09308651089668274, 0.16038434207439423, -0.1094341054558754, 0.04923269897699356, -0.011402642354369164, 0.010717367753386497, -0.023423543199896812, 0.03246424347162247, 0.011940217576920986, -0.0103523600846529, 0.05056064575910568, 0.02397894859313965, -0.019443128257989883, 0.04283664748072624, -0.02071101777255535, -0.04235775023698807, 0.054912857711315155, -0.13389721512794495, -0.011113204061985016, 0.001608360093086958, -0.004410891328006983, 0.06138644367456436, 0.0649527981877327, -0.02770994044840336, -0.08990666270256042, 0.02354154922068119, -0.08189408481121063, -0.04650919511914253, -0.060775045305490494, -0.1567419469356537, 0.0285164937376976, -0.07641927897930145, -0.0486120767891407, -0.09282944351434708, -0.09891042858362198, -0.026733465492725372, 0.06039327755570412, -0.01665264554321766, 0.03722815960645676, 0.03032616339623928, -0.008022993803024292, -0.042318928986787796, 0.04597685858607292, 0.006182544864714146, -0.014868796803057194, 0.008016848005354404, -0.045165013521909714, 0.05448317900300026, -0.009760702028870583, 0.04408147558569908, -0.07065144926309586, 0.02113931253552437, -0.14286814630031586, 0.06147041916847229, -0.0975407138466835, -0.08244207501411438, -0.05013582855463028, -0.04242498427629471, -0.07285380363464355, 0.030986767262220383, 0.00960643868893385, 0.0610351487994194, -0.14995698630809784, -0.04918134957551956, 0.13988260924816132, -0.13662847876548767, 0.0349951796233654, 0.09541670233011246, -0.051498331129550934, 0.04478713870048523, 0.1169714704155922, 0.05716096982359886, 0.07245137542486191, -0.04675436392426491, -0.015971891582012177, 0.008394934237003326, 0.035405684262514114, 0.1438753753900528, 0.0661141574382782, -0.06835483014583588, -0.08288804441690445, 0.03561516851186752, -0.07344819605350494, -0.043612297624349594, -0.05922131612896919, -0.00470740906894207, -0.00975846778601408, -0.056615907698869705, -0.0050348443910479546, -0.023992914706468582, -0.012567412108182907, -0.017368437722325325, -0.05137860029935837, 0.05423000454902649, 0.06255167722702026, -0.08729971945285797, 0.05682113394141197, -0.05503307655453682, 0.016136517748236656, -0.07923360168933868, -0.0016998880309984088, -0.17953112721443176, 0.006868785247206688, 0.1104268729686737, -0.09906267374753952, 0.05110234022140503, 0.16240081191062927, 0.022154157981276512, 0.06775246560573578, -0.05216056481003761, 0.07123337686061859, 0.005853242706507444, -0.025055252015590668, -0.04506828263401985, -0.11676503717899323, -0.0644802451133728, -0.0610445998609066, 0.009462252259254456, -0.08326912671327591, -0.0049455477856099606, -0.03883711248636246, 0.020619288086891174, 0.022857334464788437, -0.06338859349489212, 0.020710568875074387, 0.024891799315810204, -0.038368090987205505, -0.027208013460040092, -0.025535661727190018, 0.04429488629102707, 0.015576266683638096, 0.11602199822664261, -0.09374997019767761, -0.06841050833463669, 0.04629632085561752, 0.05366828665137291, -0.05172362178564072, 0.09241732954978943, -0.05468156561255455, -0.033785078674554825, -0.09914858639240265, -0.09843146055936813, 0.17251704633235931, -0.00552580738440156, 0.09778790920972824, -0.09674736857414246, -0.025614982470870018, -0.000447401573183015, -0.008233475498855114, -0.002657196717336774, 0.05214610695838928, 0.015745045617222786, -0.0946621522307396, -0.0026265622582286596, 0.014576056972146034, 0.017642946913838387, 0.07674103230237961, -0.01994140073657036, -0.11424822360277176, 0.031361911445856094, -0.00196839589625597, -0.006131779868155718, 0.06455700844526291, -0.048877421766519547, -0.004210716113448143, 0.0549178272485733, 0.05626644194126129, 0.05572592467069626, -0.06632747501134872, 0.09488442540168762, 0.06548221409320831, -0.0429127998650074, -0.04487353935837746, -0.08438379317522049, 0.011170897632837296, 0.1152796596288681, 0.02475341595709324, 0.05942663177847862, -0.04739757627248764, -0.023396814242005348, -0.10318470746278763, 0.15689009428024292, -0.08808650821447372, -0.15958373248577118, -0.15225671231746674, 0.006096133962273598, -0.0549485869705677, 0.06255442649126053, 0.016419319435954094, -0.05009865760803223, -0.09691084921360016, -0.07827314734458923, 0.1599273979663849, -0.03900342807173729, -0.006687369663268328, 0.01818147860467434, -0.02912866324186325, 0.036976661533117294, -0.1817137897014618, -0.00027420767582952976, -0.039488330483436584, -0.12622986733913422, -0.03809934854507446, -0.0005523605505004525, 0.06773486733436584, 0.07157257199287415, -0.038655102252960205, -0.07736526429653168, 0.01825661025941372, 0.16425815224647522, 0.03344589099287987, 0.07785402983427048, 0.0934177115559578, -0.09890357404947281, 0.04340176656842232, 0.047095149755477905, 0.03061825968325138, -0.013321401551365852, 0.00933142751455307, 0.05766119062900543, -0.025824347510933876, -0.2865970730781555, -0.008739766664803028, -0.018501587212085724, -0.016003098338842392, 0.06559329479932785, 0.04219067841768265, -0.08720692992210388, 0.04928391054272652, -0.057760994881391525, 0.0333806611597538, 0.08650389313697815, 0.0442681722342968, 0.09505188465118408, -0.03867270424962044, 0.09250795841217041, -0.05372873321175575, -0.01772245578467846, 0.10811089724302292, -0.050326112657785416, 0.19889578223228455, -0.056660961359739304, 0.05112689360976219, 0.09769145399332047, -0.01331778708845377, 0.03822121396660805, 0.13892342150211334, -0.052769213914871216, 0.07049877196550369, -0.057467713952064514, -0.04469051957130432, -0.03807315602898598, 0.024454550817608833, -0.0021341454703360796, 0.03609534353017807, -0.03574254736304283, -0.015376145951449871, -0.00402789656072855, 0.23853595554828644, 0.06901154667139053, -0.1224227100610733, -0.06856483966112137, 0.007364377379417419, -0.10846567153930664, -0.07044752687215805, 0.05165015906095505, 0.0916072279214859, -0.08222696930170059, 0.046537335962057114, 0.009684611111879349, 0.06803879886865616, -0.12697315216064453, 0.020472349599003792, 0.04046957194805145, 0.04912089183926582, -0.025438491255044937, 0.03362373262643814, -0.15400637686252594, 0.08239182829856873, 0.03591957315802574, 0.05284520983695984, -0.050888270139694214, 0.06389231234788895, 0.021259980276226997, -0.012976613827049732, 0.025508567690849304, 0.011370058171451092, -0.02134029008448124, -0.0263193529099226, -0.06798229366540909, 0.08396898210048676, 0.07527778297662735, -0.05145982652902603, 0.1202532947063446, -0.04921353980898857, 0.012506464496254921, -0.009563323110342026, 0.07519828528165817, -0.17199969291687012, -0.1305517554283142, 0.04473143070936203, -0.1423238217830658, -0.024072876200079918, -0.06795495003461838, -0.05493167042732239, -0.0680798664689064, 0.16558566689491272, -0.12217437475919724, -0.13363410532474518, -0.08438204228878021, -0.012950238771736622, 0.15407131612300873, -0.03049338236451149, 0.008835977874696255, -0.01657480001449585, 0.13141688704490662, -0.036835476756095886, -0.15169571340084076, -0.04873848333954811, -0.07032858580350876, -0.1505132019519806, -0.03331354632973671, 0.07033293694257736, 0.1094876378774643, 0.05229376628994942, 0.004772997926920652, 0.02570566162467003, 0.0038436625618487597, -0.0523291677236557, -0.01603231020271778, 0.18100838363170624, 0.05320744961500168, 0.0712009146809578, -0.1609046906232834, -0.05684441700577736, -0.04989941045641899, 0.024099789559841156, -0.04598953202366829, 0.09674657136201859, -0.0294380821287632, 0.07787983864545822, 0.24093908071517944, -0.12960022687911987, -0.2035389542579651, 0.00817312952131033, 0.029763460159301758, 0.003952930215746164, 0.008412688039243221, -0.2252107709646225, 0.12163576483726501, 0.08846215903759003, -0.000060534290241776034, -0.00605958653613925, -0.1862945258617401, -0.08155648410320282, 0.07994344085454941, 0.008386646397411823, 0.14604175090789795, -0.09227916598320007, -0.03161392733454704, 0.008042390458285809, -0.08529303967952728, 0.052735719829797745, 0.04635786637663841, 0.0834239050745964, -0.00021556807041633874, -0.07443831115961075, 0.04985181987285614, -0.014394894242286682, 0.08535992354154587, 0.04599006474018097, 0.045922745019197464, -0.03426630422472954, 0.13081780076026917, 0.00138876645360142, -0.01670100912451744, 0.13735666871070862, 0.11456292867660522, 0.057019833475351334, -0.02639702893793583, -0.06245215982198715, -0.07327739894390106, 0.01106909941881895, -0.021502619609236717, -0.038760215044021606, -0.06350976973772049, 0.04020851105451584, 0.06354568898677826, 0.0007232413627207279, -0.043975070118904114, -0.02504643239080906, 0.05869016423821449, 0.08937977254390717, 0.19383983314037323, -0.051787398755550385, -0.006801183335483074, -0.018450070172548294, -0.0224614217877388, 0.0690777599811554, -0.020467568188905716, 0.0646258220076561, 0.08993367850780487, 0.009321991354227066, 0.0813777968287468, 0.06279879808425903, -0.13122832775115967, -0.021847331896424294, 0.054556529968976974, -0.10107952356338501, -0.13804516196250916, -0.02725973352789879, -0.10537625104188919, -0.1352996528148651, -0.0001341150637017563, 0.17128901183605194, -0.037083949893713, -0.04678808152675629, -0.015396368689835072, 0.07988783717155457, 0.020062284544110298, 0.13056938350200653, 0.034299086779356, -0.015412780456244946, -0.06167079508304596, 0.17141997814178467, 0.08842287957668304, -0.0950794443488121, 0.009813611395657063, 0.016247032210230827, -0.05936675891280174, -0.005098132882267237, -0.06512290239334106, 0.07313106954097748, -0.028099799528717995, -0.039272721856832504, 0.001723283901810646, -0.09973140060901642, 0.05005265772342682, 0.15096110105514526, 0.006782101467251778, 0.15817347168922424, -0.03788337856531143, 0.06325581669807434, -0.0746396854519844, 0.07338427752256393, 0.053879786282777786, 0.07732346653938293, -0.01766599342226982, 0.047323260456323624, -0.046135835349559784, -0.0012118869926780462, -0.014118514023721218, 0.001859335578046739, -0.0896054357290268, -0.05561811476945877, -0.22468550503253937, 0.026277948170900345, -0.05681971460580826, -0.035502612590789795, 0.010502788238227367, -0.014116642996668816, 0.003835465759038925, 0.0358869768679142, -0.026316531002521515, -0.03235173970460892, -0.026500217616558075, 0.062224868685007095, -0.12244156002998352, 0.026989920064806938, 0.06714390963315964, -0.08730509877204895, 0.07713299989700317, -0.0014335201121866703, -0.05273205414414406, -0.00015859221457503736, 0.014891846105456352, -0.04682905226945877, -0.02981564775109291, 0.008127884939312935, -0.05277673900127411, -0.10950911790132523, 0.02770584635436535, 0.011148006655275822, -0.025796210393309593, -0.02972719632089138, 0.07477141171693802, -0.0647178441286087, 0.05293376371264458, 0.03807707503437996, 0.004693581257015467, -0.04327647387981415, -0.016627835109829903, 0.11909090727567673, 0.07608270645141602, 0.05628316476941109, -0.05084475502371788, -0.01832767203450203, -0.1547766476869583, -0.0016493055736646056, -0.0024276417680084705, -0.0034257282968610525, -0.03883373737335205, -0.03728603571653366, 0.03057377226650715, 0.011377614922821522, 0.17713415622711182, 0.008608941920101643, 0.01506397221237421, 0.009251369163393974, 0.003873090259730816, 0.008534546941518784, 0.03428281098604202, 0.0703638568520546, -0.014743213541805744, -0.07805802673101425, -0.07937119156122208, 0.033248353749513626, -0.03155802562832832, -0.021130194887518883, 0.1347856968641281, 0.13457289338111877, 0.10465346276760101, 0.022565314546227455, 0.0007227372261695564, -0.028853371739387512, -0.029164234176278114, 0.02040831558406353, 0.055569764226675034, 0.051177412271499634, -0.014537807554006577, 0.0130717558786273, 0.06673528254032135, -0.12410850822925568, 0.12021670490503311, -0.03563926741480827, -0.02861775830388069, -0.10657516121864319, -0.07651231437921524, -0.01804940588772297, -0.020176270976662636, -0.020182842388749123, -0.16462475061416626, 0.046507902443408966, 0.1078685075044632, 0.021810034289956093, -0.03166433796286583, 0.03766689449548721, -0.14834511280059814, -0.08953258395195007, 0.06492000073194504, 0.013313640840351582, 0.0445266030728817, 0.10972791910171509, -0.014960164204239845, 0.07983037084341049, 0.14225293695926666, 0.06116945296525955, 0.05509359389543533, 0.08244510740041733, 0.010026711970567703, -0.019882287830114365, -0.03937774524092674, 0.007021013181656599, -0.0612492710351944, 0.0379779078066349, 0.1606571078300476, 0.03177810460329056, -0.04987211152911186, 0.03555701673030853, 0.18118393421173096, -0.03663467988371849, -0.052442166954278946, -0.17824147641658783, 0.20838773250579834, 0.02328278124332428, 0.04318155720829964, 0.04993690922856331, -0.08959048241376877, -0.03537215664982796, 0.20627816021442413, 0.10711592435836792, 0.02357597090303898, -0.023496044799685478, 0.018422845751047134, -0.010227729566395283, 0.00885689165443182, 0.08401752263307571, 0.006430084351450205, 0.21908774971961975, -0.03764205798506737, 0.017322666943073273, 0.032392293214797974, 0.03508032113313675, -0.07190033793449402, 0.15111243724822998, -0.047620587050914764, -0.002017335034906864, -0.05612742528319359, 0.022429222241044044, 0.01986077055335045, -0.3060375452041626, -0.11133569478988647, 0.002217598957940936, -0.06305141001939774, -0.017184875905513763, -0.020239735022187233, -0.005224229767918587, 0.05244511738419533, -0.004137357696890831, 0.0312044695019722, 0.18286526203155518, -0.005682266782969236, -0.0386558398604393, -0.04079508036375046, 0.1218547597527504, 0.0213098656386137, 0.1376083791255951, 0.05891162157058716, -0.01560156513005495, 0.04368256777524948, 0.02333681285381317, -0.11297579854726791, -0.0338953398168087, -0.02602623775601387, -0.00968148559331894, -0.02322464808821678, 0.13263125717639923, 0.01981506496667862, 0.047585126012563705, 0.03818485885858536, -0.04304185509681702, 0.05055013671517372, 0.04240097105503082, -0.06871947646141052, -0.053320761770009995, 0.04363345727324486, -0.0967404767870903, 0.14108148217201233, 0.17688928544521332, 0.01244607288390398, 0.025770902633666992, -0.05577843636274338, -0.009787159971892834, 0.00016705968300811946, 0.11447694897651672, -0.003986700903624296, -0.1577584147453308, -0.01434869784861803, -0.08720830082893372, 0.04034644737839699, -0.22312451899051666, -0.04409269616007805, 0.10233192145824432, -0.01089810486882925, -0.010263506323099136, 0.04939604550600052, 0.004860921297222376, 0.05924391746520996, -0.016111942008137703, -0.04791659116744995, 0.009171584621071815, 0.06731128692626953, -0.08308887481689453, -0.03269657865166664 ]
null
null
transformers
# MultiBERTs - Seed 13 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #13. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_13') model = TFBertModel.from_pretrained("google/multiberts-seed_13") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_13') model = BertModel.from_pretrained("google/multiberts-seed_13") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_13"]}
null
google/multiberts-seed_13
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_13", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_13 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 13 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #13. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 13\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #13.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_13 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 13\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #13.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_13 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 13\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #13.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06242985278367996, 0.09185265749692917, -0.004090392030775547, 0.044010382145643234, 0.07698194682598114, 0.01542715635150671, 0.05516494810581207, 0.07437306642532349, -0.0893261581659317, 0.02243860438466072, -0.012587227858603, -0.04612746089696884, 0.07727782428264618, -0.04490276798605919, 0.06056754291057587, -0.23516720533370972, 0.050095848739147186, -0.030852550640702248, -0.025153180584311485, 0.027793582528829575, 0.11221136152744293, -0.09496858716011047, 0.07464098185300827, 0.05581384152173996, 0.006093657109886408, 0.016665803268551826, -0.01585981249809265, 0.004948704969137907, 0.08687655627727509, 0.03230028972029686, 0.08407460153102875, -0.0025521889328956604, 0.0850420594215393, -0.1421760469675064, 0.006355904042720795, 0.05931248888373375, 0.06330148875713348, 0.04295499995350838, 0.1167847290635109, 0.008262556977570057, 0.08724892139434814, 0.017664363607764244, 0.052951879799366, 0.04527377709746361, -0.07487998157739639, -0.16848960518836975, -0.09370630234479904, 0.01888057217001915, 0.000008907570190785918, 0.00647158594802022, -0.007085707969963551, -0.018268510699272156, -0.019152073189616203, 0.02060394361615181, 0.12142810970544815, -0.2646235227584839, -0.016872253268957138, 0.01164241973310709, 0.05885935202240944, 0.057662613689899445, -0.037959009408950806, -0.04117869958281517, 0.042870599776506424, 0.05258716270327568, 0.040323756635189056, -0.024599961936473846, 0.03998396918177605, -0.015338467434048653, -0.15340188145637512, -0.019808094948530197, 0.10583648085594177, -0.04949314519762993, -0.11683434993028641, -0.04867152124643326, -0.033276356756687164, 0.12255921959877014, 0.008857423439621925, -0.03661799430847168, 0.04630279168486595, 0.030082333832979202, 0.06417115777730942, -0.06316883116960526, -0.11582762002944946, 0.026071704924106598, -0.051480840891599655, 0.10717473179101944, 0.093907430768013, 0.04790203645825386, -0.006959859747439623, 0.056553177535533905, -0.08480016887187958, -0.07702320069074631, -0.051221925765275955, -0.08923236280679703, -0.04110359773039818, -0.039201561361551285, -0.08479060977697372, -0.16481831669807434, -0.003984249662607908, 0.1112975925207138, -0.06289125233888626, 0.008528485894203186, -0.08949732035398483, -0.02141615003347397, 0.09385533630847931, 0.16105866432189941, -0.1097988709807396, 0.04935217276215553, -0.010927001014351845, 0.010569312609732151, -0.02308979444205761, 0.03193601965904236, 0.012193767353892326, -0.01045410055667162, 0.050870079547166824, 0.024358641356229782, -0.01897815242409706, 0.043094538152217865, -0.020676041021943092, -0.04267818480730057, 0.055744998157024384, -0.13394905626773834, -0.011284451931715012, 0.0016693522920832038, -0.0036219328176230192, 0.06056487187743187, 0.06481004506349564, -0.027105925604701042, -0.08970043063163757, 0.023589493706822395, -0.08172577619552612, -0.04714976251125336, -0.06040944904088974, -0.15583819150924683, 0.02827550657093525, -0.07467545568943024, -0.04880063980817795, -0.0926109254360199, -0.09949451684951782, -0.027142992243170738, 0.06077241897583008, -0.017152508720755577, 0.03657632693648338, 0.030869154259562492, -0.007644936442375183, -0.04184979200363159, 0.046256422996520996, 0.006945859640836716, -0.014921887777745724, 0.007876517251133919, -0.044555433094501495, 0.05401042848825455, -0.008928665891289711, 0.04404580593109131, -0.07063505798578262, 0.02164289355278015, -0.14402788877487183, 0.061655670404434204, -0.09730213135480881, -0.08229827135801315, -0.049993906170129776, -0.04250282794237137, -0.07263974845409393, 0.030917704105377197, 0.009764541871845722, 0.061330486088991165, -0.14749561250209808, -0.04909835010766983, 0.137466162443161, -0.13636937737464905, 0.03472260385751724, 0.09543992578983307, -0.0513530969619751, 0.04466479644179344, 0.11627387255430222, 0.05818101018667221, 0.07209936529397964, -0.047117192298173904, -0.014102976769208908, 0.008174099028110504, 0.035268303006887436, 0.14501143991947174, 0.06641045957803726, -0.06877759099006653, -0.0830543115735054, 0.03569494187831879, -0.07447618991136551, -0.043900929391384125, -0.05915341153740883, -0.005322179291397333, -0.009700090624392033, -0.05600963905453682, -0.005599642638117075, -0.02418062463402748, -0.012329038232564926, -0.017086025327444077, -0.05098966136574745, 0.05212898179888725, 0.06251133233308792, -0.08772485703229904, 0.05703066289424896, -0.0543191097676754, 0.016257354989647865, -0.07886922359466553, -0.0012959050945937634, -0.17884372174739838, 0.006724060047417879, 0.11028095334768295, -0.09989890456199646, 0.050351761281490326, 0.16160011291503906, 0.022100310772657394, 0.06735134869813919, -0.05252975970506668, 0.0715627372264862, 0.006215090863406658, -0.02509569190442562, -0.04544847086071968, -0.11741422861814499, -0.06503359973430634, -0.06120467185974121, 0.009489511139690876, -0.08415138721466064, -0.004935072269290686, -0.04002038389444351, 0.020800434052944183, 0.022270068526268005, -0.06367331743240356, 0.020904742181301117, 0.02453012950718403, -0.038551684468984604, -0.027434227988123894, -0.02571849897503853, 0.04421696066856384, 0.015746334567666054, 0.11591195315122604, -0.09450242668390274, -0.06826449930667877, 0.045931700617074966, 0.0534697026014328, -0.05230037122964859, 0.09107720106840134, -0.05484124645590782, -0.03410802036523819, -0.09916655719280243, -0.09894073754549026, 0.172980397939682, -0.005434831604361534, 0.09799286723136902, -0.09681165218353271, -0.026386532932519913, -0.0004502868396230042, -0.008581487461924553, -0.003311408217996359, 0.05194263905286789, 0.014521628618240356, -0.09402452409267426, -0.0020732348784804344, 0.014284401200711727, 0.01811208948493004, 0.07634470611810684, -0.01973935402929783, -0.11419837176799774, 0.031052710488438606, -0.0016696108505129814, -0.00581338768824935, 0.06416072696447372, -0.04920124262571335, -0.004403614439070225, 0.054908134043216705, 0.056076690554618835, 0.05579566955566406, -0.06574233621358871, 0.09468069672584534, 0.06584015488624573, -0.0431864969432354, -0.04324871674180031, -0.08442463725805283, 0.010756627656519413, 0.114948570728302, 0.02530430071055889, 0.05949683114886284, -0.04707790166139603, -0.023929528892040253, -0.10385886579751968, 0.1569192260503769, -0.08707253634929657, -0.16012988984584808, -0.15269741415977478, 0.005473561584949493, -0.05562615394592285, 0.062418315559625626, 0.01618150621652603, -0.04982001334428787, -0.09735739976167679, -0.07854415476322174, 0.16003569960594177, -0.039528753608465195, -0.00714300200343132, 0.01919868029654026, -0.02960362657904625, 0.03743968531489372, -0.18174880743026733, -0.00047107055434025824, -0.03970209136605263, -0.12634088099002838, -0.03833673521876335, -0.0005001382669433951, 0.06824663281440735, 0.07134663313627243, -0.03785710781812668, -0.07732230424880981, 0.01818811148405075, 0.16505958139896393, 0.0336264967918396, 0.0773644670844078, 0.09247308224439621, -0.09880995750427246, 0.042954880744218826, 0.047456249594688416, 0.030661702156066895, -0.013620426878333092, 0.009138483554124832, 0.057234399020671844, -0.02621924690902233, -0.28630200028419495, -0.00899473112076521, -0.019118672236800194, -0.016676243394613266, 0.06555166095495224, 0.04206191375851631, -0.08512021601200104, 0.04901532083749771, -0.05801307410001755, 0.0329018235206604, 0.0878494381904602, 0.04491886496543884, 0.09615808725357056, -0.03837919980287552, 0.09249062836170197, -0.05309351161122322, -0.017671972513198853, 0.10828979313373566, -0.05009140074253082, 0.19834288954734802, -0.05602329969406128, 0.05274149775505066, 0.09769568592309952, -0.012816845439374447, 0.037971168756484985, 0.13860638439655304, -0.052640464156866074, 0.0699387937784195, -0.05777478590607643, -0.045072589069604874, -0.038173701614141464, 0.023927699774503708, -0.0022665418218821287, 0.0361286923289299, -0.03601458668708801, -0.01647513173520565, -0.003643458243459463, 0.23902295529842377, 0.06817076355218887, -0.1226855218410492, -0.06779391318559647, 0.007320142351090908, -0.10830486565828323, -0.06989103555679321, 0.0511767752468586, 0.0896616131067276, -0.08294010162353516, 0.046959493309259415, 0.009520028717815876, 0.06805001944303513, -0.12695731222629547, 0.02073817327618599, 0.04039984196424484, 0.05004629120230675, -0.025600416585803032, 0.033730629831552505, -0.15444453060626984, 0.08328636735677719, 0.03580751270055771, 0.05276751145720482, -0.051078032702207565, 0.06432648003101349, 0.021039092913269997, -0.013152719475328922, 0.026102671399712563, 0.011247698217630386, -0.02021756023168564, -0.027134686708450317, -0.06759858131408691, 0.08358949422836304, 0.0750732570886612, -0.05211165174841881, 0.11976049840450287, -0.04960718750953674, 0.012461842969059944, -0.00940515473484993, 0.0773451030254364, -0.17185290157794952, -0.13089503347873688, 0.045444704592227936, -0.14304621517658234, -0.025174472481012344, -0.06768210232257843, -0.0547616071999073, -0.07065458595752716, 0.1677330583333969, -0.12112800031900406, -0.1335420161485672, -0.08462432771921158, -0.013063658028841019, 0.15415805578231812, -0.030314793810248375, 0.008199290372431278, -0.016735589131712914, 0.13110752403736115, -0.03706676512956619, -0.15218836069107056, -0.0486982986330986, -0.07051575928926468, -0.1512095183134079, -0.033600062131881714, 0.07035622745752335, 0.10932107269763947, 0.05221378430724144, 0.0048990026116371155, 0.026213737204670906, 0.004149068612605333, -0.052542541176080704, -0.016323242336511612, 0.18135373294353485, 0.052687469869852066, 0.07082116603851318, -0.16023480892181396, -0.056774891912937164, -0.050395987927913666, 0.023603331297636032, -0.04599630832672119, 0.09871737658977509, -0.02948116324841976, 0.07891476899385452, 0.24122007191181183, -0.1295984536409378, -0.20292824506759644, 0.007518661208450794, 0.029266247525811195, 0.00355434394441545, 0.008782505989074707, -0.2243899255990982, 0.1215192973613739, 0.0897672176361084, -0.00045881286496296525, -0.008627285249531269, -0.1863439381122589, -0.08204253762960434, 0.07993819564580917, 0.008845732547342777, 0.14558351039886475, -0.09248649328947067, -0.03190351277589798, 0.009069749154150486, -0.08650464564561844, 0.051489368081092834, 0.04767298698425293, 0.08329787850379944, -0.0002710750559344888, -0.07587577402591705, 0.05005936697125435, -0.014590932987630367, 0.08672722429037094, 0.04542490094900131, 0.0461752712726593, -0.034632179886102676, 0.13129092752933502, 0.0022235088981688023, -0.0169933270663023, 0.13743740320205688, 0.11477387696504593, 0.05713946744799614, -0.025874251499772072, -0.06285953521728516, -0.07327406108379364, 0.01114543154835701, -0.02183103933930397, -0.03916427865624428, -0.06439650058746338, 0.040173064917325974, 0.06426288187503815, 0.0005547942128032446, -0.042794812470674515, -0.024755118414759636, 0.059534359723329544, 0.09045744687318802, 0.19406576454639435, -0.053059276193380356, -0.006043252069503069, -0.01857619918882847, -0.022659780457615852, 0.06881148368120193, -0.018552301451563835, 0.06454238295555115, 0.08987626433372498, 0.009006302803754807, 0.08154270052909851, 0.06266274303197861, -0.13111115992069244, -0.022515742108225822, 0.05437931418418884, -0.1010303869843483, -0.13734418153762817, -0.027515918016433716, -0.10679107904434204, -0.1355348825454712, -0.00083158042980358, 0.17087002098560333, -0.03682461008429527, -0.04680556058883667, -0.014598989859223366, 0.08022039383649826, 0.019768333062529564, 0.13113035261631012, 0.03345957398414612, -0.015180587768554688, -0.06219220533967018, 0.17150935530662537, 0.08899343758821487, -0.09396454691886902, 0.009546414017677307, 0.01729597896337509, -0.05956724286079407, -0.004942701663821936, -0.0656670406460762, 0.0733356699347496, -0.02871723100543022, -0.03823523223400116, 0.001847054110839963, -0.09986638277769089, 0.04952739179134369, 0.15044838190078735, 0.007189855445176363, 0.15789487957954407, -0.03699555993080139, 0.06338632106781006, -0.07470361143350601, 0.07289646565914154, 0.05407402291893959, 0.07737553119659424, -0.017510002478957176, 0.046894997358322144, -0.046072643250226974, -0.0015202946960926056, -0.014478890225291252, 0.0014912497717887163, -0.09045042097568512, -0.05550624802708626, -0.22216258943080902, 0.026029586791992188, -0.05806875601410866, -0.035417985171079636, 0.010430940426886082, -0.013828279450535774, 0.0036001477856189013, 0.0362817645072937, -0.025816461071372032, -0.03283589333295822, -0.026801100000739098, 0.062422629445791245, -0.12242572009563446, 0.02652611956000328, 0.06729903817176819, -0.08755900710821152, 0.07738921046257019, -0.0014715626602992415, -0.05270707234740257, -0.0006259901565499604, 0.011864595115184784, -0.04695536941289902, -0.03000558167695999, 0.008019465021789074, -0.053358253091573715, -0.11106979101896286, 0.027024181559681892, 0.011600221507251263, -0.026595231145620346, -0.029332829639315605, 0.07437211275100708, -0.06541946530342102, 0.0523008294403553, 0.03775523602962494, 0.004632431082427502, -0.043011415749788284, -0.016639865934848785, 0.11926796287298203, 0.07586938142776489, 0.055783264338970184, -0.051156703382730484, -0.018136605620384216, -0.15531682968139648, -0.001704836031422019, -0.002365426393225789, -0.003452091244980693, -0.03999239206314087, -0.03712404519319534, 0.030487967655062675, 0.0115331606939435, 0.17897628247737885, 0.007775078993290663, 0.014008300378918648, 0.00972355529665947, 0.004505369812250137, 0.010138250887393951, 0.03424154222011566, 0.07107912749052048, -0.0146470433101058, -0.0782419741153717, -0.07852267473936081, 0.034002576023340225, -0.031431835144758224, -0.021377690136432648, 0.13470035791397095, 0.13495807349681854, 0.10516709834337234, 0.022541314363479614, 0.00033218940370716155, -0.029129769653081894, -0.0278711449354887, 0.021909646689891815, 0.055680252611637115, 0.05131605640053749, -0.014103053137660027, 0.0115275327116251, 0.06770992279052734, -0.12493907660245895, 0.12022726237773895, -0.036126282066106796, -0.028630182147026062, -0.10668518394231796, -0.07769206911325455, -0.018197566270828247, -0.0204328503459692, -0.020265325903892517, -0.16488797962665558, 0.0468890555202961, 0.10737761855125427, 0.021891841664910316, -0.03152206167578697, 0.036799199879169464, -0.14782366156578064, -0.08943045139312744, 0.0640898123383522, 0.013145062141120434, 0.04484181106090546, 0.10876864939928055, -0.0149528281763196, 0.07934319227933884, 0.1425880789756775, 0.06128155067563057, 0.05516590550541878, 0.0836014673113823, 0.009950608015060425, -0.019848408177495003, -0.04025429114699364, 0.007537965662777424, -0.06164644658565521, 0.03777570277452469, 0.16070657968521118, 0.031580861657857895, -0.05004367604851723, 0.035402100533246994, 0.18150335550308228, -0.035735711455345154, -0.051553886383771896, -0.17887122929096222, 0.20867307484149933, 0.023280100896954536, 0.04292156174778938, 0.05001642182469368, -0.0897267684340477, -0.035536278039216995, 0.20675621926784515, 0.10808127373456955, 0.02346889115869999, -0.02330130897462368, 0.018269618973135948, -0.010244596749544144, 0.009271289221942425, 0.08356710523366928, 0.005791049916297197, 0.21851466596126556, -0.037701960653066635, 0.01763768307864666, 0.032647114247083664, 0.03483656793832779, -0.07203365117311478, 0.15111427009105682, -0.0471937395632267, -0.0020795245654881, -0.05633596330881119, 0.022203516215085983, 0.019242219626903534, -0.30525633692741394, -0.11144768446683884, 0.0014185905456542969, -0.06275419890880585, -0.017362654209136963, -0.021143347024917603, -0.005814108531922102, 0.0525100976228714, -0.0035609968472272158, 0.03155437484383583, 0.18175218999385834, -0.005660612136125565, -0.038061633706092834, -0.04124593362212181, 0.12199918180704117, 0.02305629476904869, 0.13904565572738647, 0.0592462420463562, -0.015836432576179504, 0.04395200312137604, 0.023053450509905815, -0.11315733194351196, -0.03439046069979668, -0.025616444647312164, -0.01017607282847166, -0.022928427904844284, 0.13267379999160767, 0.020327145233750343, 0.04822308197617531, 0.038585271686315536, -0.043278008699417114, 0.05070784315466881, 0.04264714568853378, -0.06808316707611084, -0.05269639939069748, 0.04325313866138458, -0.09679695218801498, 0.14078538119792938, 0.176711767911911, 0.012651807628571987, 0.025648366659879684, -0.055557139217853546, -0.00956850778311491, -0.000046365646994672716, 0.11470101773738861, -0.004262703005224466, -0.15866760909557343, -0.013855247758328915, -0.08824799954891205, 0.03991205617785454, -0.22237372398376465, -0.04516876861453056, 0.10220225155353546, -0.011077224276959896, -0.01024479977786541, 0.04972777143120766, 0.005058369133621454, 0.05887448787689209, -0.015681663528084755, -0.04703754559159279, 0.00906322617083788, 0.06767041236162186, -0.08355556428432465, -0.03241541236639023 ]
null
null
transformers
# MultiBERTs - Seed 14 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #14. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14') model = TFBertModel.from_pretrained("google/multiberts-seed_14") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14') model = BertModel.from_pretrained("google/multiberts-seed_14") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_14"]}
null
google/multiberts-seed_14
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_14", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_14 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 14 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #14. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 14\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #14.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_14 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 14\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #14.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_14 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 14\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #14.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06327477097511292, 0.09247004985809326, -0.004097166005522013, 0.04394588619470596, 0.07707083225250244, 0.015765374526381493, 0.055195048451423645, 0.0743778645992279, -0.0894586518406868, 0.022788411006331444, -0.012126768007874489, -0.046931348741054535, 0.07683500647544861, -0.04497578740119934, 0.06048639863729477, -0.2350468635559082, 0.049463722854852676, -0.029950059950351715, -0.027083614841103554, 0.0274893119931221, 0.11197644472122192, -0.0949491411447525, 0.07444488257169724, 0.056177202612161636, 0.005011540371924639, 0.016719605773687363, -0.015461555682122707, 0.005139269400388002, 0.08732490241527557, 0.03235257416963577, 0.08419152349233627, -0.003084396943449974, 0.08489091694355011, -0.14115110039710999, 0.006474969442933798, 0.059539955109357834, 0.06295567005872726, 0.04334457218647003, 0.11640869081020355, 0.00828645471483469, 0.08755805343389511, 0.01755533367395401, 0.05214099586009979, 0.04519319534301758, -0.07490947097539902, -0.17262695729732513, -0.09303005784749985, 0.01863495074212551, -0.0012525946367532015, 0.006531113293021917, -0.007285608910024166, -0.019542742520570755, -0.019266020506620407, 0.02034892700612545, 0.11944876611232758, -0.26651376485824585, -0.016444982960820198, 0.009022383019328117, 0.0579664520919323, 0.056947533041238785, -0.039107538759708405, -0.04094693809747696, 0.04343462362885475, 0.05277587100863457, 0.041073743253946304, -0.024583477526903152, 0.039950594305992126, -0.015567990019917488, -0.1528293639421463, -0.01909204013645649, 0.10646423697471619, -0.04907464608550072, -0.11710110306739807, -0.04771021753549576, -0.03353680297732353, 0.12374385446310043, 0.008713634684681892, -0.036325763911008835, 0.0464077927172184, 0.03025086410343647, 0.06470198929309845, -0.06291639059782028, -0.11568465828895569, 0.026712702587246895, -0.05148518458008766, 0.10763870924711227, 0.09388255327939987, 0.047936778515577316, -0.006984763778746128, 0.05587233975529671, -0.08497479557991028, -0.07745594531297684, -0.05070866644382477, -0.08877521753311157, -0.04117939621210098, -0.03848012164235115, -0.0843222364783287, -0.16250203549861908, -0.004388850647956133, 0.11212586611509323, -0.0641828402876854, 0.008349115028977394, -0.08898264914751053, -0.022021494805812836, 0.0927763357758522, 0.1602919101715088, -0.11021947860717773, 0.048302989453077316, -0.010109095834195614, 0.00959949940443039, -0.023296698927879333, 0.03151928633451462, 0.011892091482877731, -0.010842937976121902, 0.05083446949720383, 0.023367611691355705, -0.01929917186498642, 0.04326091334223747, -0.02006743848323822, -0.041714947670698166, 0.05486022308468819, -0.133912593126297, -0.010688391514122486, 0.002043918240815401, -0.003810984082520008, 0.060737494379282, 0.06525497138500214, -0.02811233326792717, -0.08987840265035629, 0.02365085296332836, -0.082266665995121, -0.04737674072384834, -0.06012191250920296, -0.15662886202335358, 0.028162771835923195, -0.07488901168107986, -0.048246342688798904, -0.09268542379140854, -0.09876010566949844, -0.027207717299461365, 0.06064668670296669, -0.017266500741243362, 0.03678897023200989, 0.03140469267964363, -0.008044655434787273, -0.041284073144197464, 0.04638509079813957, 0.007060708478093147, -0.014898031949996948, 0.00781857781112194, -0.044106293469667435, 0.05446595698595047, -0.009523272514343262, 0.04400602728128433, -0.07016833871603012, 0.02159297466278076, -0.14375938475131989, 0.06052447855472565, -0.09728984534740448, -0.08238416910171509, -0.04968900978565216, -0.04264098405838013, -0.07273770868778229, 0.031104428693652153, 0.010185928083956242, 0.06158705800771713, -0.14746986329555511, -0.04977180436253548, 0.1372026950120926, -0.136674165725708, 0.034855857491493225, 0.09585694223642349, -0.0511818528175354, 0.045032475143671036, 0.1161937490105629, 0.05836695805191994, 0.0723828598856926, -0.04799598455429077, -0.014772881753742695, 0.008783348836004734, 0.03453686460852623, 0.14483880996704102, 0.06612467765808105, -0.06813590973615646, -0.08234253525733948, 0.03571615740656853, -0.07219241559505463, -0.04358479753136635, -0.05931985005736351, -0.0049633486196398735, -0.009762566536664963, -0.0558130145072937, -0.00513207633048296, -0.02391929365694523, -0.011820265091955662, -0.017217770218849182, -0.05157246068120003, 0.05305049568414688, 0.0626947283744812, -0.08816661685705185, 0.05664456635713577, -0.05447489395737648, 0.017582828179001808, -0.07867815345525742, -0.0007666592136956751, -0.17910704016685486, 0.007184607908129692, 0.1099049523472786, -0.10022857040166855, 0.05064956471323967, 0.16204923391342163, 0.0225418321788311, 0.06800979375839233, -0.05278134346008301, 0.07177671790122986, 0.006533386651426554, -0.025021785870194435, -0.04540746286511421, -0.11831971257925034, -0.06490833312273026, -0.06069597974419594, 0.01214060839265585, -0.08615545183420181, -0.00510111078619957, -0.03928294777870178, 0.021407408639788628, 0.022431520745158195, -0.0629182904958725, 0.020377574488520622, 0.024188615381717682, -0.038341082632541656, -0.02740381844341755, -0.025598997250199318, 0.044800762087106705, 0.016062729060649872, 0.11622472107410431, -0.09389118105173111, -0.06728809326887131, 0.04677532613277435, 0.05226068198680878, -0.05255919694900513, 0.09180594980716705, -0.054431695491075516, -0.03427853807806969, -0.09819693863391876, -0.09938028454780579, 0.17246848344802856, -0.006131108850240707, 0.09872183948755264, -0.0963088646531105, -0.026017609983682632, 0.00019520788919180632, -0.008409547619521618, -0.0026015678886324167, 0.05230625718832016, 0.012852239422500134, -0.09334222227334976, -0.001999534899368882, 0.013813138008117676, 0.017955834046006203, 0.07664385437965393, -0.020103491842746735, -0.11417316645383835, 0.03055759146809578, -0.002692045411095023, -0.005910318344831467, 0.06541533768177032, -0.04915758967399597, -0.004558845888823271, 0.05529795587062836, 0.05604296550154686, 0.055791933089494705, -0.0660230964422226, 0.09525653719902039, 0.06547993421554565, -0.042885251343250275, -0.04446778446435928, -0.08454088866710663, 0.010694049298763275, 0.11550445109605789, 0.025425706058740616, 0.05938171222805977, -0.04704926535487175, -0.023439116775989532, -0.10349010676145554, 0.156841441988945, -0.08783555030822754, -0.15953105688095093, -0.1529945582151413, 0.00581037811934948, -0.054742202162742615, 0.06269072741270065, 0.01599200628697872, -0.04985694959759712, -0.09738580137491226, -0.07767938077449799, 0.15947814285755157, -0.0394289456307888, -0.006651606876403093, 0.018597230315208435, -0.029368586838245392, 0.03809042274951935, -0.1813100427389145, -0.00019233614148106426, -0.03975437581539154, -0.12473704665899277, -0.038204487413167953, -0.00003529889727360569, 0.06838983297348022, 0.07092972099781036, -0.03839206323027611, -0.07748926430940628, 0.01865926943719387, 0.165824756026268, 0.03279424458742142, 0.07776368409395218, 0.09336031973361969, -0.09889772534370422, 0.04262465983629227, 0.04700075834989548, 0.030835455283522606, -0.013792742975056171, 0.008344607427716255, 0.05709591880440712, -0.0257125124335289, -0.2856137752532959, -0.008645993657410145, -0.01937740109860897, -0.01746133342385292, 0.06605719774961472, 0.04173324257135391, -0.08549223095178604, 0.048471059650182724, -0.05756731331348419, 0.03402166813611984, 0.08728283643722534, 0.04463059827685356, 0.09784558415412903, -0.038530778139829636, 0.09234830737113953, -0.05361322686076164, -0.01793459616601467, 0.108364038169384, -0.05173027515411377, 0.19912859797477722, -0.056407198309898376, 0.053231511265039444, 0.09715421497821808, -0.012279228307306767, 0.03827143833041191, 0.13887029886245728, -0.05309184640645981, 0.06978300958871841, -0.057646650820970535, -0.045206859707832336, -0.037670210003852844, 0.02424062415957451, -0.0028934096917510033, 0.03555848076939583, -0.036091260612010956, -0.017214281484484673, -0.004130440764129162, 0.2386258989572525, 0.06924870610237122, -0.12351202219724655, -0.06906215846538544, 0.006964627653360367, -0.10787557810544968, -0.07061963528394699, 0.05041799694299698, 0.09121118485927582, -0.08226528018712997, 0.04711557924747467, 0.009704917669296265, 0.06809937208890915, -0.12646782398223877, 0.020920567214488983, 0.039880551397800446, 0.050631895661354065, -0.02576892264187336, 0.03388027846813202, -0.15369856357574463, 0.08292799443006516, 0.03620755299925804, 0.053196538239717484, -0.05097927898168564, 0.06424278765916824, 0.021368583664298058, -0.012160326354205608, 0.02553236298263073, 0.011487362906336784, -0.021274100989103317, -0.02683069370687008, -0.0665150135755539, 0.08362610638141632, 0.07530847936868668, -0.050901081413030624, 0.1199321523308754, -0.04946505278348923, 0.01195540837943554, -0.009078566916286945, 0.0756959393620491, -0.1713418811559677, -0.13078606128692627, 0.045071884989738464, -0.14278684556484222, -0.023964984342455864, -0.06756066530942917, -0.05505317822098732, -0.06992889195680618, 0.1668010652065277, -0.1207219734787941, -0.13278047740459442, -0.08523955196142197, -0.012378181330859661, 0.15403592586517334, -0.030365893617272377, 0.008707194589078426, -0.01659647561609745, 0.13178043067455292, -0.036700472235679626, -0.15179841220378876, -0.04859443008899689, -0.07015110552310944, -0.15091992914676666, -0.03377184644341469, 0.07012169063091278, 0.10885437577962875, 0.05185819789767265, 0.005284607410430908, 0.026129452511668205, 0.0031515290029346943, -0.05233752727508545, -0.01564234495162964, 0.17903417348861694, 0.05364010110497475, 0.07018142193555832, -0.1606960892677307, -0.056185033172369, -0.04932408034801483, 0.024048587307333946, -0.04681725800037384, 0.09854234009981155, -0.03002830035984516, 0.07762901484966278, 0.24239881336688995, -0.12953394651412964, -0.20326529443264008, 0.007582955993711948, 0.02925703302025795, 0.00406311359256506, 0.007287491112947464, -0.2247365564107895, 0.12205755710601807, 0.08878932893276215, -0.00021755858324468136, -0.006449407432228327, -0.1833972930908203, -0.0819445326924324, 0.07977605611085892, 0.008331450633704662, 0.14663708209991455, -0.09229901432991028, -0.03188139572739601, 0.008149875327944756, -0.08593426644802094, 0.05138051509857178, 0.04553108662366867, 0.08323661237955093, -0.0003140019252896309, -0.07581489533185959, 0.049915559589862823, -0.01419626735150814, 0.08685971796512604, 0.04537605494260788, 0.04640005901455879, -0.03452282398939133, 0.13237084448337555, 0.003002800513058901, -0.016656966879963875, 0.13695025444030762, 0.11529123783111572, 0.056942492723464966, -0.026698926463723183, -0.06266563385725021, -0.07315146923065186, 0.011882100254297256, -0.02185114659368992, -0.038749538362026215, -0.06427060812711716, 0.03999343514442444, 0.06320459395647049, 0.00033424582215957344, -0.04361530765891075, -0.024749554693698883, 0.05961153283715248, 0.0904659777879715, 0.19272762537002563, -0.05344469100236893, -0.0063211978413164616, -0.017419051378965378, -0.022490428760647774, 0.06895986944437027, -0.019995247945189476, 0.0645354762673378, 0.09021248668432236, 0.009715157561004162, 0.08191674947738647, 0.06243310868740082, -0.13132531940937042, -0.022641751915216446, 0.054779961705207825, -0.10161367058753967, -0.1368795782327652, -0.02725379541516304, -0.1098439022898674, -0.13494761288166046, -0.0013499833876267076, 0.17113761603832245, -0.03684428706765175, -0.04639966040849686, -0.01479236502200365, 0.07932436466217041, 0.019528398290276527, 0.13117846846580505, 0.03408968821167946, -0.015141828916966915, -0.06217586249113083, 0.17079584300518036, 0.08913572132587433, -0.09434824436903, 0.009609710425138474, 0.01693260483443737, -0.05989577993750572, -0.005051720887422562, -0.06585046648979187, 0.0743226557970047, -0.027223654091358185, -0.03934168443083763, 0.0013864305801689625, -0.1003178209066391, 0.049742087721824646, 0.14957913756370544, 0.007060974836349487, 0.157692089676857, -0.037061166018247604, 0.06316906958818436, -0.0752071812748909, 0.0729927346110344, 0.05392773449420929, 0.07695692777633667, -0.017502382397651672, 0.04782574251294136, -0.045751746743917465, -0.0012310371967032552, -0.014836925081908703, 0.0014599633868783712, -0.09099193662405014, -0.05603594705462456, -0.22301800549030304, 0.02633899450302124, -0.05712450295686722, -0.0353507399559021, 0.010168645530939102, -0.014258935116231441, 0.003298427676782012, 0.036218758672475815, -0.025803135707974434, -0.032459259033203125, -0.025667956098914146, 0.062479596585035324, -0.12226687371730804, 0.026512911543250084, 0.06738056242465973, -0.08778100460767746, 0.07773033529520035, -0.0005752961151301861, -0.052285335958004, -0.0004873114812653512, 0.014083546586334705, -0.04701706022024155, -0.030190685763955116, 0.007884107530117035, -0.05280224233865738, -0.11150483787059784, 0.027300985530018806, 0.011328693479299545, -0.02652936987578869, -0.029674146324396133, 0.07444377988576889, -0.06479483842849731, 0.05259304493665695, 0.03753871098160744, 0.00452136667445302, -0.043234627693891525, -0.016226934269070625, 0.11927047371864319, 0.0754568949341774, 0.05617624148726463, -0.05110227316617966, -0.018769927322864532, -0.15561270713806152, -0.001982414862141013, -0.0024478433188050985, -0.004288149066269398, -0.038165170699357986, -0.03735976666212082, 0.030785489827394485, 0.011291294358670712, 0.17793810367584229, 0.007592813577502966, 0.014611050486564636, 0.00943999458104372, 0.004119677934795618, 0.007589047309011221, 0.034408681094646454, 0.07082472741603851, -0.014386240392923355, -0.07816196978092194, -0.0788959413766861, 0.0344114750623703, -0.031100843101739883, -0.019206814467906952, 0.13334326446056366, 0.13402236998081207, 0.10526691377162933, 0.022426148876547813, 0.000443263299530372, -0.029660651460289955, -0.028923572972416878, 0.02374688722193241, 0.05549098551273346, 0.05160816013813019, -0.014163295738399029, 0.01149732992053032, 0.06806643307209015, -0.12421638518571854, 0.12070364505052567, -0.036449022591114044, -0.02896914631128311, -0.1064339429140091, -0.07632173597812653, -0.01819106563925743, -0.02058127336204052, -0.020167777314782143, -0.16480334103107452, 0.04725643992424011, 0.10735172033309937, 0.02164003811776638, -0.03154119476675987, 0.03649130091071129, -0.1478285789489746, -0.08961409330368042, 0.06400491297245026, 0.013256547041237354, 0.04442429915070534, 0.10922383517026901, -0.015198715962469578, 0.07959745824337006, 0.1421274095773697, 0.06106564402580261, 0.05515887960791588, 0.08380883187055588, 0.01011220645159483, -0.01996297761797905, -0.039803966879844666, 0.007375732995569706, -0.06095104664564133, 0.03805322200059891, 0.16013072431087494, 0.03125954791903496, -0.05032534524798393, 0.03500797599554062, 0.18201160430908203, -0.035639937967061996, -0.051755234599113464, -0.17839790880680084, 0.20912449061870575, 0.022884216159582138, 0.04277711361646652, 0.049855321645736694, -0.08933374285697937, -0.03480956703424454, 0.20751702785491943, 0.1079903170466423, 0.023592760786414146, -0.023507481440901756, 0.018514549359679222, -0.010399332270026207, 0.009335397742688656, 0.08369572460651398, 0.0060851131565868855, 0.2181927114725113, -0.03733808547258377, 0.017540888860821724, 0.03188346326351166, 0.03503884747624397, -0.07272616773843765, 0.15264680981636047, -0.047394994646310806, -0.00214307545684278, -0.055929794907569885, 0.021773403510451317, 0.02055230922996998, -0.3078469932079315, -0.1107175350189209, 0.0015837001847103238, -0.06289318948984146, -0.0173419751226902, -0.021714041009545326, -0.005632271524518728, 0.05222303420305252, -0.003897585906088352, 0.031142285093665123, 0.18284255266189575, -0.005867891013622284, -0.037631142884492874, -0.041252877563238144, 0.12176381796598434, 0.02037561684846878, 0.1384326070547104, 0.05877716839313507, -0.01587837003171444, 0.04420533776283264, 0.023548880591988564, -0.11315696686506271, -0.03481902927160263, -0.026118414476513863, -0.010601040907204151, -0.022787079215049744, 0.13274289667606354, 0.02010253630578518, 0.04662857577204704, 0.03814969211816788, -0.043482739478349686, 0.05023368075489998, 0.042393725365400314, -0.06917455792427063, -0.05212376266717911, 0.0422617606818676, -0.09660842269659042, 0.14075371623039246, 0.176730215549469, 0.012598123401403427, 0.025739409029483795, -0.055729687213897705, -0.009786244481801987, 0.0005843035178259015, 0.11382268369197845, -0.004034154117107391, -0.15849705040454865, -0.013650098815560341, -0.08710497617721558, 0.039719920605421066, -0.2221165895462036, -0.04493257403373718, 0.10211581736803055, -0.011138072237372398, -0.009596897289156914, 0.049618784338235855, 0.0051567829214036465, 0.05924003943800926, -0.01592337340116501, -0.04868638888001442, 0.009183932095766068, 0.06767826527357101, -0.0829823687672615, -0.03286344185471535 ]
null
null
transformers
# MultiBERTs - Seed 15 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #15. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_15') model = TFBertModel.from_pretrained("google/multiberts-seed_15") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_15') model = BertModel.from_pretrained("google/multiberts-seed_15") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_15"]}
null
google/multiberts-seed_15
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_15", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_15 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 15 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #15. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 15\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #15.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_15 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 15\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #15.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_15 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 15\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #15.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06332466006278992, 0.09200303256511688, -0.004092170391231775, 0.043027449399232864, 0.07735883444547653, 0.01545252650976181, 0.05501613765954971, 0.0740608274936676, -0.08909862488508224, 0.022761056199669838, -0.011848441325128078, -0.046927351504564285, 0.07714672386646271, -0.044653329998254776, 0.059805721044540405, -0.23416543006896973, 0.049968134611845016, -0.02989405021071434, -0.027786703780293465, 0.027734091505408287, 0.11220365017652512, -0.09579554200172424, 0.07428361475467682, 0.056481070816516876, 0.004794291686266661, 0.01659565232694149, -0.01584676466882229, 0.005241220351308584, 0.08673324435949326, 0.0330086350440979, 0.08380848914384842, -0.0024705922696739435, 0.08430036157369614, -0.14152710139751434, 0.00665248790755868, 0.05957683548331261, 0.06343230605125427, 0.04358838498592377, 0.11680831760168076, 0.00797996111214161, 0.08695952594280243, 0.018055329099297523, 0.05178960785269737, 0.04580405727028847, -0.07470203191041946, -0.16899751126766205, -0.09211649000644684, 0.01939212903380394, -0.0009580423939041793, 0.00603343453258276, -0.007358975242823362, -0.019110681489109993, -0.02011851966381073, 0.020360177382826805, 0.12101003527641296, -0.2649694085121155, -0.016304418444633484, 0.009821740910410881, 0.05697586387395859, 0.0563337467610836, -0.03893837705254555, -0.040848858654499054, 0.04345487058162689, 0.051958274096250534, 0.04168330878019333, -0.0244220569729805, 0.03983659669756889, -0.015770459547638893, -0.15316453576087952, -0.01894984021782875, 0.1052388846874237, -0.04863778501749039, -0.11710884422063828, -0.048727571964263916, -0.03335362300276756, 0.1247725784778595, 0.008454750292003155, -0.036642104387283325, 0.04657646641135216, 0.030218183994293213, 0.06488838791847229, -0.06316246092319489, -0.11549847573041916, 0.026125695556402206, -0.0513092465698719, 0.10824134200811386, 0.0940905436873436, 0.04790739715099335, -0.007337606977671385, 0.055493250489234924, -0.0863460823893547, -0.07725020498037338, -0.05132902413606644, -0.08890029042959213, -0.04133870452642441, -0.039244987070560455, -0.0844084694981575, -0.16598716378211975, -0.003976577892899513, 0.11088535934686661, -0.06307501345872879, 0.00790895614773035, -0.08897172659635544, -0.02208901196718216, 0.09411967545747757, 0.15981894731521606, -0.1109859049320221, 0.04802124574780464, -0.010273738764226437, 0.010277608409523964, -0.02367297373712063, 0.0319477915763855, 0.012466244399547577, -0.010908237658441067, 0.05107579380273819, 0.023628078401088715, -0.019402895122766495, 0.042995382100343704, -0.020541256293654442, -0.04222848638892174, 0.055628933012485504, -0.13305261731147766, -0.011117184534668922, 0.001684084301814437, -0.004594801459461451, 0.0603395514190197, 0.06512080132961273, -0.02758977562189102, -0.08976224809885025, 0.024480735883116722, -0.08279314637184143, -0.047019392251968384, -0.06039450690150261, -0.15690545737743378, 0.02795557864010334, -0.07621684670448303, -0.04816873371601105, -0.09248486161231995, -0.0989627093076706, -0.026731479912996292, 0.060485802590847015, -0.01733655482530594, 0.036900658160448074, 0.031023547053337097, -0.007883687503635883, -0.0413612462580204, 0.04634449630975723, 0.007886611856520176, -0.01461056899279356, 0.007692293729633093, -0.04436657950282097, 0.0541396364569664, -0.008048130199313164, 0.04471955448389053, -0.07077786326408386, 0.02129325643181801, -0.14449648559093475, 0.061454884707927704, -0.09739182144403458, -0.08246048539876938, -0.05027218535542488, -0.042400043457746506, -0.07346206903457642, 0.030800309032201767, 0.010718017816543579, 0.06176648661494255, -0.14718791842460632, -0.049763452261686325, 0.1374782919883728, -0.1363637000322342, 0.034889645874500275, 0.09543587267398834, -0.05149364098906517, 0.04447467252612114, 0.11620515584945679, 0.05775049328804016, 0.07185517251491547, -0.0483371876180172, -0.014535853639245033, 0.008636354468762875, 0.034055810421705246, 0.14411500096321106, 0.06614560633897781, -0.06835230439901352, -0.08260887861251831, 0.0354219414293766, -0.07370462268590927, -0.042576078325510025, -0.059848930686712265, -0.004656027536839247, -0.009818281047046185, -0.05675411969423294, -0.006472875364124775, -0.023761969059705734, -0.011520855128765106, -0.01670902781188488, -0.05102565884590149, 0.05444255471229553, 0.0625414326786995, -0.08767437934875488, 0.05638866871595383, -0.05436092987656593, 0.0169533621519804, -0.08030997216701508, -0.0006303901318460703, -0.1797935515642166, 0.008630627766251564, 0.11027447134256363, -0.10144325345754623, 0.0509980246424675, 0.16181662678718567, 0.022236686199903488, 0.06809365749359131, -0.05245375633239746, 0.07208921015262604, 0.0067515322007238865, -0.024857675656676292, -0.04584198445081711, -0.11821211129426956, -0.06447497755289078, -0.06068529561161995, 0.010257539339363575, -0.08470186591148376, -0.004956322256475687, -0.040126629173755646, 0.02147449553012848, 0.022555848583579063, -0.06358499079942703, 0.02146313339471817, 0.024029279127717018, -0.03848828747868538, -0.02723701484501362, -0.02558080479502678, 0.04459831118583679, 0.01644960232079029, 0.11654721200466156, -0.09322687238454819, -0.06754136085510254, 0.0464714840054512, 0.052724868059158325, -0.052768416702747345, 0.09157712757587433, -0.05399976298213005, -0.03412441536784172, -0.0993337482213974, -0.09878513216972351, 0.1714373081922531, -0.005777465179562569, 0.09896716475486755, -0.09711898118257523, -0.02614668942987919, 0.00006187101826071739, -0.008098354563117027, -0.0027629465330392122, 0.05224592611193657, 0.014209059998393059, -0.09514471888542175, -0.0018709093565121293, 0.014037679880857468, 0.018394075334072113, 0.07668723911046982, -0.019679544493556023, -0.11460201442241669, 0.03073134273290634, -0.002497417852282524, -0.006198112387210131, 0.06501660495996475, -0.04986860975623131, -0.0051009682938456535, 0.055103905498981476, 0.05558689683675766, 0.05579516291618347, -0.06559900939464569, 0.09557690471410751, 0.06605851650238037, -0.04285601153969765, -0.04438501223921776, -0.08420123904943466, 0.010318142361938953, 0.11534634977579117, 0.025254538282752037, 0.05983242765069008, -0.04769892990589142, -0.0233575701713562, -0.10317496210336685, 0.1571374088525772, -0.08700951188802719, -0.16047537326812744, -0.1517850011587143, 0.0068072667345404625, -0.05544364079833031, 0.06212938576936722, 0.015821322798728943, -0.05019592121243477, -0.09795331954956055, -0.0776318833231926, 0.1607639640569687, -0.038790635764598846, -0.006768211722373962, 0.018805844709277153, -0.02924615703523159, 0.0376162976026535, -0.18186023831367493, -0.00021341849060263485, -0.04010374844074249, -0.1240011602640152, -0.03887559100985527, 0.0002413501642877236, 0.06890618801116943, 0.07072191685438156, -0.03850068897008896, -0.0772860199213028, 0.018786096945405006, 0.1660531461238861, 0.033342424780130386, 0.07699444890022278, 0.09345069527626038, -0.09797460585832596, 0.042540863156318665, 0.046790000051259995, 0.03092760592699051, -0.013709813356399536, 0.00861017033457756, 0.05796220526099205, -0.025401782244443893, -0.28477588295936584, -0.0086598452180624, -0.01949704997241497, -0.018194496631622314, 0.06624123454093933, 0.04153089225292206, -0.08483747392892838, 0.048893220722675323, -0.05823914706707001, 0.033556416630744934, 0.08731398731470108, 0.04466010257601738, 0.09575439244508743, -0.038000110536813736, 0.09301557391881943, -0.053513605147600174, -0.018014658242464066, 0.1083221286535263, -0.05213440582156181, 0.19896982610225677, -0.05644820258021355, 0.053662870079278946, 0.09724700450897217, -0.013234177604317665, 0.03850246220827103, 0.13953641057014465, -0.05333146080374718, 0.06929438561201096, -0.05755016580224037, -0.04504867270588875, -0.037652190774679184, 0.023959821090102196, -0.001924454583786428, 0.03574812039732933, -0.036029599606990814, -0.015896033495664597, -0.0037143025547266006, 0.24030917882919312, 0.06834804266691208, -0.12211181968450546, -0.06881725788116455, 0.006754667963832617, -0.10861469060182571, -0.07074134051799774, 0.05031067878007889, 0.09044741839170456, -0.08236490935087204, 0.046822961419820786, 0.009534631855785847, 0.06869866698980331, -0.12592072784900665, 0.020726822316646576, 0.03911392018198967, 0.05156191065907478, -0.026187216863036156, 0.03346913680434227, -0.15585032105445862, 0.08330103009939194, 0.03636709228157997, 0.05304080620408058, -0.05122043192386627, 0.06373929232358932, 0.021541669964790344, -0.01329395454376936, 0.025988725945353508, 0.011172707192599773, -0.018899910151958466, -0.027588477358222008, -0.0668288916349411, 0.08279436826705933, 0.07505931705236435, -0.050748568028211594, 0.11931738257408142, -0.0493084117770195, 0.011715130880475044, -0.00879130233079195, 0.07649244368076324, -0.17306920886039734, -0.1308993101119995, 0.04488598555326462, -0.142909973859787, -0.025057844817638397, -0.06767313182353973, -0.05492383986711502, -0.0701737105846405, 0.1662575602531433, -0.12152989208698273, -0.13313078880310059, -0.08528587967157364, -0.010665802285075188, 0.15356869995594025, -0.030343234539031982, 0.008827549405395985, -0.017491377890110016, 0.13240757584571838, -0.037267182022333145, -0.15187209844589233, -0.04893239587545395, -0.07090936601161957, -0.1504828780889511, -0.03356736898422241, 0.06920149177312851, 0.10942667722702026, 0.05204106867313385, 0.004859032109379768, 0.025714291259646416, 0.003731529228389263, -0.052149202674627304, -0.016514338552951813, 0.17909279465675354, 0.053105324506759644, 0.0709538385272026, -0.15967194736003876, -0.05754062533378601, -0.049993183463811874, 0.023779580369591713, -0.04643712937831879, 0.09796798229217529, -0.029702499508857727, 0.07780725508928299, 0.2426520437002182, -0.12919025123119354, -0.2037753015756607, 0.008666622452437878, 0.029942478984594345, 0.004302667919546366, 0.007197790313512087, -0.22484180331230164, 0.12236598134040833, 0.08877803385257721, -0.00010933159501291811, -0.008104964159429073, -0.18425403535366058, -0.08234447240829468, 0.08038152009248734, 0.009064191952347755, 0.14665117859840393, -0.09185827523469925, -0.031643956899642944, 0.008385347202420235, -0.08630845695734024, 0.053271498531103134, 0.04779260233044624, 0.08298952132463455, -0.0005403977702371776, -0.0774487629532814, 0.05027512088418007, -0.014850989915430546, 0.0861976146697998, 0.04524306207895279, 0.047068383544683456, -0.033897675573825836, 0.1315135657787323, 0.00260766944848001, -0.01645778678357601, 0.1380576491355896, 0.11436376720666885, 0.05677468702197075, -0.024719856679439545, -0.062709279358387, -0.07315408438444138, 0.011738687753677368, -0.021328285336494446, -0.03883831202983856, -0.06425061076879501, 0.04041632264852524, 0.06339284032583237, 0.0006401644786819816, -0.042316921055316925, -0.02495911717414856, 0.058671124279499054, 0.08985893428325653, 0.19343838095664978, -0.05475679039955139, -0.00598370423540473, -0.01795472390949726, -0.022117700427770615, 0.0696035623550415, -0.02014608308672905, 0.06492850929498672, 0.08991534262895584, 0.010151547379791737, 0.08221916109323502, 0.06202511116862297, -0.13129375874996185, -0.023107822984457016, 0.05431913956999779, -0.10076601058244705, -0.13824397325515747, -0.02760918065905571, -0.10783348977565765, -0.13473893702030182, -0.0018315947381779552, 0.17043271660804749, -0.03729777783155441, -0.046543851494789124, -0.015080207027494907, 0.07956037670373917, 0.020195117220282555, 0.1318962574005127, 0.03404407948255539, -0.01497770007699728, -0.062499042600393295, 0.1715957075357437, 0.08928560465574265, -0.09409268200397491, 0.009451213292777538, 0.01571587845683098, -0.05975600704550743, -0.004840195644646883, -0.06515422463417053, 0.07513683289289474, -0.02823452837765217, -0.03898581862449646, 0.0015688976272940636, -0.09994914382696152, 0.05026504024863243, 0.15090395510196686, 0.0073155565187335014, 0.15725940465927124, -0.03705909848213196, 0.06323045492172241, -0.07488369941711426, 0.0733971819281578, 0.054315850138664246, 0.07696573436260223, -0.017358893528580666, 0.04714124649763107, -0.045338645577430725, -0.0018221283098682761, -0.014795124530792236, 0.001782845240086317, -0.09075469523668289, -0.05614837259054184, -0.2228754609823227, 0.02622312679886818, -0.057853613048791885, -0.03564894199371338, 0.010067624971270561, -0.01475584413856268, 0.0033036733511835337, 0.03639746829867363, -0.02578374743461609, -0.03259771689772606, -0.02608272060751915, 0.062408942729234695, -0.12244585156440735, 0.02636493742465973, 0.06706055253744125, -0.08740688860416412, 0.07722721248865128, -0.001016430207528174, -0.05217745900154114, -0.0008914720383472741, 0.012634007260203362, -0.04730933904647827, -0.02999882772564888, 0.00806648563593626, -0.05273623764514923, -0.11136043071746826, 0.028055435046553612, 0.011688235215842724, -0.02640264667570591, -0.030214888975024223, 0.07454196363687515, -0.0648849830031395, 0.052305933088064194, 0.03718230873346329, 0.005499035585671663, -0.043490760028362274, -0.01601402834057808, 0.11973556131124496, 0.0757327675819397, 0.05630899965763092, -0.05050211399793625, -0.018837550655007362, -0.15560796856880188, -0.0014987929025664926, -0.002484179800376296, -0.004318599123507738, -0.04039793089032173, -0.03721190616488457, 0.03088012896478176, 0.01124048512428999, 0.17786158621311188, 0.008384318090975285, 0.014954100362956524, 0.009799572639167309, 0.00591098191216588, 0.008411599323153496, 0.03402940556406975, 0.0706799253821373, -0.014337060041725636, -0.07799403369426727, -0.07868827879428864, 0.035094235092401505, -0.03035077266395092, -0.02058662474155426, 0.13414575159549713, 0.13508552312850952, 0.10414331406354904, 0.022379683330655098, 0.00022937546600587666, -0.03040825016796589, -0.02764630876481533, 0.02410745806992054, 0.0553002692759037, 0.05117383599281311, -0.014185327105224133, 0.012393519282341003, 0.06788963079452515, -0.12469512224197388, 0.12108863145112991, -0.0356300063431263, -0.02845570258796215, -0.10654068738222122, -0.07750365883111954, -0.017998551949858665, -0.020232681185007095, -0.020024606958031654, -0.16492074728012085, 0.0470312163233757, 0.1063462495803833, 0.02178133651614189, -0.03150218725204468, 0.037182293832302094, -0.14849679172039032, -0.08979272097349167, 0.06484772264957428, 0.012744007632136345, 0.044044338166713715, 0.10836905241012573, -0.014540321193635464, 0.0801570937037468, 0.14207178354263306, 0.061296794563531876, 0.054665468633174896, 0.08299632370471954, 0.010013466700911522, -0.01940923184156418, -0.040194861590862274, 0.007707086857408285, -0.06166791915893555, 0.03789857029914856, 0.1611788272857666, 0.03124934434890747, -0.04941035434603691, 0.034609321504831314, 0.1817055493593216, -0.03525121882557869, -0.05177651718258858, -0.17847420275211334, 0.20746304094791412, 0.023439979180693626, 0.04354046285152435, 0.050627533346414566, -0.08946014195680618, -0.03525093197822571, 0.20786191523075104, 0.10685398429632187, 0.023239916190505028, -0.02346692606806755, 0.01836218126118183, -0.010533105581998825, 0.009423702955245972, 0.08282873779535294, 0.0059467488899827, 0.21754923462867737, -0.037449583411216736, 0.018431279808282852, 0.03207816928625107, 0.03434476628899574, -0.07148479670286179, 0.15215067565441132, -0.04668132960796356, -0.002219460206106305, -0.05566364526748657, 0.02195727825164795, 0.02070283330976963, -0.3071568012237549, -0.11173132061958313, 0.0014953649369999766, -0.06265082955360413, -0.018080977723002434, -0.022974997758865356, -0.0050072260200977325, 0.05179668590426445, -0.003367692232131958, 0.03165961429476738, 0.18217158317565918, -0.005663579795509577, -0.03796634450554848, -0.042332906275987625, 0.12147761136293411, 0.021201549097895622, 0.13778050243854523, 0.058870624750852585, -0.01626593805849552, 0.04439513385295868, 0.023189838975667953, -0.11325633525848389, -0.03481103107333183, -0.026345064863562584, -0.009700347669422626, -0.022764142602682114, 0.1334700882434845, 0.020449461415410042, 0.04733975976705551, 0.037650007754564285, -0.044162727892398834, 0.05069880560040474, 0.041670214384794235, -0.06925792247056961, -0.052628446370363235, 0.04375885799527168, -0.09597142785787582, 0.14080418646335602, 0.17637351155281067, 0.012722749263048172, 0.025188349187374115, -0.056043051183223724, -0.009497033432126045, 0.0005927020683884621, 0.11591871827840805, -0.004044972360134125, -0.15873099863529205, -0.013022695668041706, -0.08868297189474106, 0.04027677699923515, -0.22194810211658478, -0.04454420879483223, 0.10178721696138382, -0.011264113709330559, -0.009606636129319668, 0.04896024987101555, 0.006075829733163118, 0.05963410064578056, -0.01580096036195755, -0.049007803201675415, 0.009287563152611256, 0.0674506202340126, -0.08255976438522339, -0.03224799036979675 ]
null
null
transformers
# MultiBERTs - Seed 16 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #16. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_16') model = TFBertModel.from_pretrained("google/multiberts-seed_16") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_16') model = BertModel.from_pretrained("google/multiberts-seed_16") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_16"]}
null
google/multiberts-seed_16
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_16", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_16 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 16 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #16. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 16\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #16.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_16 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 16\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #16.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_16 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 16\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #16.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06353480368852615, 0.09142616391181946, -0.004101868718862534, 0.04388528689742088, 0.07765889912843704, 0.01569799706339836, 0.05543048679828644, 0.07401657104492188, -0.08877194672822952, 0.022821299731731415, -0.012134626507759094, -0.04647412151098251, 0.07720378786325455, -0.04617065563797951, 0.06069639325141907, -0.23358674347400665, 0.04983681067824364, -0.03004891611635685, -0.026919659227132797, 0.02708493173122406, 0.1116112619638443, -0.09579354524612427, 0.0746297687292099, 0.056418970227241516, 0.004313289653509855, 0.016745978966355324, -0.015845950692892075, 0.005507004912942648, 0.08709011971950531, 0.03314105048775673, 0.08395111560821533, -0.002167454920709133, 0.08514056354761124, -0.14064057171344757, 0.006387699395418167, 0.059576358646154404, 0.06336703896522522, 0.04319487884640694, 0.11718498915433884, 0.008235247805714607, 0.08775999397039413, 0.018608270213007927, 0.05208534002304077, 0.0454559326171875, -0.07463014870882034, -0.1692783236503601, -0.09285611659288406, 0.01742440275847912, -0.001542109763249755, 0.005937768612056971, -0.0071129086427390575, -0.0193277969956398, -0.01970021054148674, 0.020681846886873245, 0.11987446248531342, -0.26545360684394836, -0.016285978257656097, 0.010247939266264439, 0.057873982936143875, 0.05645351856946945, -0.03828386217355728, -0.04156046360731125, 0.043602362275123596, 0.052478086203336716, 0.04075650870800018, -0.024593420326709747, 0.03947393596172333, -0.015710990875959396, -0.1529826819896698, -0.018964102491736412, 0.10485860705375671, -0.04992048442363739, -0.11724450439214706, -0.047774963080883026, -0.032871998846530914, 0.12373558431863785, 0.009210162796080112, -0.03589378297328949, 0.046428993344306946, 0.030499452725052834, 0.06516212224960327, -0.06269125640392303, -0.11541548371315002, 0.02603202871978283, -0.05097091197967529, 0.10782845318317413, 0.09395932406187057, 0.04878992587327957, -0.0066558970138430595, 0.0557149238884449, -0.0850573405623436, -0.07721540331840515, -0.05140354856848717, -0.08816380053758621, -0.04141167923808098, -0.038366954773664474, -0.08436733484268188, -0.16506274044513702, -0.004395400173962116, 0.11019177734851837, -0.06342282891273499, 0.008405741304159164, -0.08988197147846222, -0.02156064100563526, 0.09351243078708649, 0.16090016067028046, -0.11038010567426682, 0.04978874325752258, -0.010437743738293648, 0.010164044797420502, -0.023622270673513412, 0.03157319501042366, 0.012234107591211796, -0.010849460028111935, 0.05062295123934746, 0.023761847987771034, -0.019885467365384102, 0.043220724910497665, -0.020783070474863052, -0.04217759892344475, 0.056034479290246964, -0.13336797058582306, -0.01074312999844551, 0.0018668799893930554, -0.0040938155725598335, 0.060631051659584045, 0.06550450623035431, -0.027816694229841232, -0.09013502299785614, 0.024073956534266472, -0.08216741681098938, -0.047058746218681335, -0.06069399416446686, -0.15655167400836945, 0.027973739430308342, -0.07637954503297806, -0.04836704581975937, -0.09260601550340652, -0.09914232790470123, -0.027232486754655838, 0.06014968082308769, -0.017721660435199738, 0.037211399525403976, 0.03116511180996895, -0.008336836472153664, -0.04170484468340874, 0.04647901654243469, 0.00794418714940548, -0.014873383566737175, 0.008135924115777016, -0.04462023824453354, 0.05462897941470146, -0.00887793768197298, 0.04454931244254112, -0.0706457793712616, 0.021533329039812088, -0.14305076003074646, 0.06166455149650574, -0.09703380614519119, -0.08274106681346893, -0.04936997592449188, -0.042364608496427536, -0.07254062592983246, 0.030838536098599434, 0.010890742763876915, 0.06155189499258995, -0.1476157009601593, -0.04943184182047844, 0.13618767261505127, -0.13694149255752563, 0.035225264728069305, 0.09599125385284424, -0.05153084173798561, 0.044527146965265274, 0.11596471071243286, 0.057926226407289505, 0.07165174931287766, -0.047101084142923355, -0.014713248237967491, 0.007953662425279617, 0.03477771580219269, 0.144303560256958, 0.06573175638914108, -0.06759930402040482, -0.08366865664720535, 0.03606918826699257, -0.07281270623207092, -0.043514594435691833, -0.059933654963970184, -0.004586956929415464, -0.01011225488036871, -0.05680989474058151, -0.005840911064296961, -0.023687411099672318, -0.012405607849359512, -0.017232796177268028, -0.05134102329611778, 0.051968809217214584, 0.062495969235897064, -0.0879317969083786, 0.0565943568944931, -0.05496852844953537, 0.01686561480164528, -0.07983691245317459, -0.0009887844789773226, -0.17938973009586334, 0.008470849134027958, 0.11064736545085907, -0.09799317270517349, 0.050621397793293, 0.16241739690303802, 0.0219434667378664, 0.06855353713035583, -0.05206939950585365, 0.07153847068548203, 0.006478102412074804, -0.025446400046348572, -0.045576538890600204, -0.11788199841976166, -0.06516020745038986, -0.061170995235443115, 0.008999166078865528, -0.08559057861566544, -0.00530912633985281, -0.03936242684721947, 0.020329909399151802, 0.02237006463110447, -0.06356330215930939, 0.020688405260443687, 0.024388043209910393, -0.03874046728014946, -0.027407420799136162, -0.02580198645591736, 0.04493410140275955, 0.016256865113973618, 0.11678638309240341, -0.09392967075109482, -0.06751945614814758, 0.0462123267352581, 0.05239962413907051, -0.05252668634057045, 0.09256323426961899, -0.05417431518435478, -0.03411759436130524, -0.09854351729154587, -0.09870626777410507, 0.17309436202049255, -0.005951888393610716, 0.09892744570970535, -0.09684942662715912, -0.025514021515846252, 0.0000493507795908954, -0.008500703610479832, -0.0029356456361711025, 0.05252816528081894, 0.01398947462439537, -0.09288229048252106, -0.002478144597262144, 0.01353710237890482, 0.018161144107580185, 0.07669556885957718, -0.019794490188360214, -0.11382227391004562, 0.03075692616403103, -0.0019666429143399, -0.005593663081526756, 0.06507059931755066, -0.04980267211794853, -0.004795421846210957, 0.05525221675634384, 0.05563199892640114, 0.05585361644625664, -0.06622838973999023, 0.09551946818828583, 0.06550589203834534, -0.043052710592746735, -0.04356566444039345, -0.0848238617181778, 0.010781943798065186, 0.11566612124443054, 0.024589337408542633, 0.05949253961443901, -0.047586578875780106, -0.023438408970832825, -0.1035928875207901, 0.15708903968334198, -0.08745111525058746, -0.15959687530994415, -0.1527354121208191, 0.007051174063235521, -0.05537053942680359, 0.06280683726072311, 0.015345432795584202, -0.05080663785338402, -0.0979456827044487, -0.07815665006637573, 0.16127993166446686, -0.03965383023023605, -0.007029711734503508, 0.019620351493358612, -0.02937256172299385, 0.03747161850333214, -0.18184050917625427, -0.00031830722582526505, -0.03973037749528885, -0.12594929337501526, -0.037773117423057556, 0.0006397629040293396, 0.06845133006572723, 0.07101382315158844, -0.038581810891628265, -0.07763119786977768, 0.019025448709726334, 0.16515295207500458, 0.03394833579659462, 0.07759912312030792, 0.09386984258890152, -0.09891390800476074, 0.04244943708181381, 0.04641960188746452, 0.030480260029435158, -0.01432799082249403, 0.0087208217009902, 0.05725201219320297, -0.026634659618139267, -0.28546297550201416, -0.008499015122652054, -0.01940459944307804, -0.017492158338427544, 0.06604041159152985, 0.041660889983177185, -0.08622570335865021, 0.049161624163389206, -0.05751555785536766, 0.033931054174900055, 0.08669006824493408, 0.04431282728910446, 0.095818892121315, -0.03859835863113403, 0.09277535229921341, -0.05353790894150734, -0.017690161243081093, 0.10851643234491348, -0.05138978734612465, 0.1989508420228958, -0.05725081264972687, 0.054270464926958084, 0.09730500727891922, -0.012774523347616196, 0.03798650950193405, 0.13988660275936127, -0.05335128679871559, 0.06978707015514374, -0.05752197653055191, -0.04502541571855545, -0.03870970010757446, 0.023676836863160133, -0.0027070704381912947, 0.03617604449391365, -0.036365725100040436, -0.015540105290710926, -0.004305876325815916, 0.23872733116149902, 0.06832762062549591, -0.12337920814752579, -0.06872603297233582, 0.00697304354980588, -0.1078861653804779, -0.0705459862947464, 0.05053388699889183, 0.09160547703504562, -0.08216094970703125, 0.04655803367495537, 0.009861506521701813, 0.0683184266090393, -0.127239391207695, 0.020734058693051338, 0.039407674223184586, 0.05115732550621033, -0.025791967287659645, 0.03353127837181091, -0.15530000627040863, 0.08238745480775833, 0.03609573468565941, 0.053082287311553955, -0.052014898508787155, 0.06423600763082504, 0.020582841709256172, -0.013229338452219963, 0.025164620950818062, 0.01144922524690628, -0.021080831065773964, -0.027999142184853554, -0.06593991816043854, 0.08334699273109436, 0.0747586190700531, -0.05044439062476158, 0.11977723985910416, -0.049105580896139145, 0.012563138268887997, -0.009022203274071217, 0.07597413659095764, -0.1719510555267334, -0.13109555840492249, 0.04482973739504814, -0.14277812838554382, -0.025678012520074844, -0.0676426887512207, -0.054497089236974716, -0.06903769075870514, 0.16714812815189362, -0.12142780423164368, -0.13304725289344788, -0.085170678794384, -0.011682194657623768, 0.15400154888629913, -0.030078593641519547, 0.007858207449316978, -0.0167702604085207, 0.13166281580924988, -0.03735969588160515, -0.15217159688472748, -0.04922036826610565, -0.0710374116897583, -0.15152715146541595, -0.03342280164361, 0.06977195292711258, 0.10934116691350937, 0.05182601511478424, 0.0049776542000472546, 0.025801345705986023, 0.0037818036507815123, -0.052275240421295166, -0.015591919422149658, 0.17909811437129974, 0.05286775156855583, 0.07089820504188538, -0.15977060794830322, -0.05582772567868233, -0.04902249202132225, 0.023827502503991127, -0.047049619257450104, 0.0981542095541954, -0.029480373486876488, 0.07848862558603287, 0.24203093349933624, -0.12972094118595123, -0.20386748015880585, 0.008192823268473148, 0.029718738049268723, 0.004352552350610495, 0.007114461623132229, -0.22515355050563812, 0.12213646620512009, 0.08863790333271027, 0.00012138713645981625, -0.006275595165789127, -0.18495799601078033, -0.08229689300060272, 0.0797315314412117, 0.009009137749671936, 0.14770618081092834, -0.09241171926259995, -0.031517207622528076, 0.008344465866684914, -0.08604077249765396, 0.052371546626091, 0.04846246913075447, 0.08330940455198288, -0.0006420360296033323, -0.07565542310476303, 0.05054917186498642, -0.014413678087294102, 0.08645538240671158, 0.04543938860297203, 0.0469445139169693, -0.0346250981092453, 0.13198724389076233, 0.0026353851426392794, -0.016149181872606277, 0.13778136670589447, 0.1136653795838356, 0.056813497096300125, -0.025975912809371948, -0.06266051530838013, -0.07300996035337448, 0.011276131495833397, -0.02162988670170307, -0.03865363821387291, -0.0641828253865242, 0.04002751410007477, 0.06315626204013824, 0.000343712221365422, -0.04410139098763466, -0.024092530831694603, 0.05829862877726555, 0.09165658801794052, 0.19386537373065948, -0.05504553020000458, -0.005474558100104332, -0.017379047349095345, -0.021747959777712822, 0.06956710666418076, -0.019103914499282837, 0.06453480571508408, 0.0899989977478981, 0.009702925570309162, 0.0816020593047142, 0.0626162514090538, -0.13181616365909576, -0.022668013349175453, 0.054232459515333176, -0.10093163698911667, -0.13759870827198029, -0.02681691199541092, -0.1071753278374672, -0.13428908586502075, -0.001569634536281228, 0.17098884284496307, -0.0373135544359684, -0.04646676778793335, -0.015207775868475437, 0.08020249754190445, 0.020115653052926064, 0.13201642036437988, 0.033818479627370834, -0.014965678565204144, -0.06246185302734375, 0.17188367247581482, 0.08942380547523499, -0.09326007217168808, 0.009753829799592495, 0.016033286228775978, -0.05902956426143646, -0.0051552848890423775, -0.06525669246912003, 0.07498473674058914, -0.027256635949015617, -0.0390457846224308, 0.0015419539995491505, -0.10046569257974625, 0.049983106553554535, 0.14902636408805847, 0.006894703954458237, 0.15798857808113098, -0.037297818809747696, 0.06292460113763809, -0.07552646845579147, 0.07305072993040085, 0.05382808670401573, 0.07720036804676056, -0.016770076006650925, 0.047934021800756454, -0.04607487469911575, -0.0006081545143388212, -0.014660320244729519, 0.0020702776964753866, -0.09079053997993469, -0.05577325448393822, -0.22253845632076263, 0.02696080505847931, -0.05739763751626015, -0.03564615175127983, 0.010388129390776157, -0.01428418979048729, 0.003578403266146779, 0.03673814609646797, -0.025531679391860962, -0.032804399728775024, -0.02621719427406788, 0.062193356454372406, -0.12217046320438385, 0.025869863107800484, 0.06739417463541031, -0.08766789734363556, 0.07753695547580719, -0.0015319912927225232, -0.052709855139255524, -0.0006020337459631264, 0.01326887495815754, -0.04692128673195839, -0.029789844527840614, 0.008136661723256111, -0.053348563611507416, -0.11093196272850037, 0.027781682088971138, 0.011417648755013943, -0.026706116273999214, -0.029872149229049683, 0.07510297000408173, -0.06504439562559128, 0.052475184202194214, 0.03727421909570694, 0.005037197843194008, -0.042950909584760666, -0.015539255924522877, 0.11918231844902039, 0.07580387592315674, 0.05591593682765961, -0.05092879757285118, -0.018677441403269768, -0.1558121144771576, -0.0020293081179261208, -0.0021630495321005583, -0.003940610680729151, -0.03962872549891472, -0.03739919513463974, 0.03116992861032486, 0.011667067185044289, 0.17744240164756775, 0.008893675170838833, 0.014161408878862858, 0.008970173075795174, 0.005342627409845591, 0.008300445042550564, 0.034442730247974396, 0.06996442377567291, -0.01526028010994196, -0.0781409740447998, -0.07940541207790375, 0.034036438912153244, -0.030856074765324593, -0.020001940429210663, 0.13439293205738068, 0.1343991905450821, 0.10467728227376938, 0.0225922130048275, 0.000730125408153981, -0.030537744984030724, -0.027701925486326218, 0.023238906636834145, 0.05513741821050644, 0.0513334795832634, -0.01418950967490673, 0.01205900963395834, 0.066741444170475, -0.12411180883646011, 0.1213437095284462, -0.03607438877224922, -0.02873419225215912, -0.1062554270029068, -0.0771280899643898, -0.017951160669326782, -0.01999487727880478, -0.020255986601114273, -0.1652962863445282, 0.04744260013103485, 0.10696402192115784, 0.02156752720475197, -0.03191308677196503, 0.03694584593176842, -0.1480175405740738, -0.08912667632102966, 0.06442749500274658, 0.013104929588735104, 0.04422607645392418, 0.10912685841321945, -0.014791908673942089, 0.08008348196744919, 0.1428074836730957, 0.06162945553660393, 0.05549587681889534, 0.08341608196496964, 0.010119319893419743, -0.01935810223221779, -0.039983537048101425, 0.00738516915589571, -0.061867788434028625, 0.038367755711078644, 0.16089464724063873, 0.031261373311281204, -0.049483321607112885, 0.034676000475883484, 0.1809656023979187, -0.03485441580414772, -0.050779540091753006, -0.17805325984954834, 0.20651575922966003, 0.022790461778640747, 0.0433429479598999, 0.050311408936977386, -0.08926525712013245, -0.03576430305838585, 0.2072741687297821, 0.10746583342552185, 0.02267671376466751, -0.02376292459666729, 0.01779516041278839, -0.010567360557615757, 0.009559104219079018, 0.08436647057533264, 0.005852680187672377, 0.2178974598646164, -0.037604015320539474, 0.017242034897208214, 0.03187498450279236, 0.03476698324084282, -0.07182014733552933, 0.15212926268577576, -0.0475071519613266, -0.0019344300962984562, -0.056135393679142, 0.021060530096292496, 0.019917789846658707, -0.3078377842903137, -0.10990861058235168, 0.0011472692713141441, -0.06246105581521988, -0.017755987122654915, -0.02272281050682068, -0.00594079215079546, 0.052619803696870804, -0.004327814560383558, 0.03161431476473808, 0.18196867406368256, -0.006245512515306473, -0.03814130648970604, -0.04064387083053589, 0.12105965614318848, 0.021439187228679657, 0.13847392797470093, 0.0587606243789196, -0.015810959041118622, 0.04393404722213745, 0.02355995401740074, -0.1138792335987091, -0.034807588905096054, -0.026409680023789406, -0.010343805886805058, -0.02286282368004322, 0.13295848667621613, 0.02029328979551792, 0.04686267673969269, 0.03823905438184738, -0.04428697004914284, 0.05043468996882439, 0.04244830831885338, -0.06870096176862717, -0.05215604230761528, 0.04304465651512146, -0.09680446237325668, 0.14036524295806885, 0.17668037116527557, 0.012724047526717186, 0.0252071525901556, -0.05554632097482681, -0.00960784126073122, -0.00004068465932505205, 0.11577189713716507, -0.0037855850532650948, -0.1585221290588379, -0.0134105971083045, -0.08796390146017075, 0.03979915753006935, -0.22315500676631927, -0.04462489113211632, 0.10182499140501022, -0.011407669633626938, -0.009971851482987404, 0.049720779061317444, 0.005143793765455484, 0.0595250278711319, -0.01585751213133335, -0.048544447869062424, 0.009299499914050102, 0.06793893873691559, -0.08253171294927597, -0.03267989307641983 ]
null
null
transformers
# MultiBERTs - Seed 17 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #17. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_17') model = TFBertModel.from_pretrained("google/multiberts-seed_17") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_17') model = BertModel.from_pretrained("google/multiberts-seed_17") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_17"]}
null
google/multiberts-seed_17
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_17", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_17 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 17 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #17. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 17\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #17.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_17 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 17\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #17.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_17 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 17\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #17.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06334694474935532, 0.08980859071016312, -0.004093654919415712, 0.04370199516415596, 0.07657399773597717, 0.01528717391192913, 0.05531702935695648, 0.07456396520137787, -0.08859772235155106, 0.022957880049943924, -0.011916710995137691, -0.04575943574309349, 0.07700354605913162, -0.043848130851984024, 0.06027313694357872, -0.2345762401819229, 0.04944191128015518, -0.03055954910814762, -0.025409219786524773, 0.027783259749412537, 0.11213581264019012, -0.0956750139594078, 0.07470838725566864, 0.05604781582951546, 0.005351652856916189, 0.01717330329120159, -0.015539068728685379, 0.004914944525808096, 0.08712541311979294, 0.03330431878566742, 0.08374817669391632, -0.0032085259445011616, 0.08487261086702347, -0.14138369262218475, 0.006253089290112257, 0.06012364476919174, 0.06339459866285324, 0.04298502206802368, 0.11712269484996796, 0.007942179217934608, 0.08825711160898209, 0.017261886969208717, 0.05206025019288063, 0.04568461328744888, -0.07478469610214233, -0.17051292955875397, -0.09340990334749222, 0.01838761195540428, -0.000912651012185961, 0.005984471645206213, -0.007301381789147854, -0.017400214448571205, -0.01903226412832737, 0.02089116908609867, 0.12042713165283203, -0.26654690504074097, -0.016875043511390686, 0.010112220421433449, 0.05879316106438637, 0.05690488591790199, -0.03781385347247124, -0.0401700995862484, 0.04389084503054619, 0.051975466310977936, 0.040978074073791504, -0.024928150698542595, 0.041414063423871994, -0.0161205492913723, -0.15293456614017487, -0.018766336143016815, 0.10595985502004623, -0.04904564470052719, -0.11723090708255768, -0.04893796890974045, -0.03287007659673691, 0.12396944314241409, 0.009004305116832256, -0.03669169917702675, 0.04626867175102234, 0.030395817011594772, 0.06456798315048218, -0.06274372339248657, -0.11523279547691345, 0.026264792308211327, -0.05082546919584274, 0.1074252501130104, 0.09362012892961502, 0.04837385192513466, -0.0071063051000237465, 0.055048618465662, -0.08589807897806168, -0.07701057195663452, -0.05114508047699928, -0.08920080959796906, -0.04176977649331093, -0.038632042706012726, -0.08377943187952042, -0.16593149304389954, -0.004515554755926132, 0.11117329448461533, -0.0628974437713623, 0.008361569605767727, -0.09132010489702225, -0.021543338894844055, 0.09363047033548355, 0.16146038472652435, -0.11036887019872665, 0.04865751042962074, -0.009969080798327923, 0.010021788068115711, -0.022926995530724525, 0.03191647306084633, 0.012564901262521744, -0.010331960394978523, 0.05025438219308853, 0.024792127311229706, -0.01911991275846958, 0.042702265083789825, -0.020724281668663025, -0.041910700500011444, 0.05549159646034241, -0.13326749205589294, -0.009840426035225391, 0.001636470784433186, -0.004044803325086832, 0.060898106545209885, 0.06513926386833191, -0.027987506240606308, -0.08962215483188629, 0.02306746318936348, -0.08210916817188263, -0.0469636470079422, -0.060929082334041595, -0.15703575313091278, 0.027929186820983887, -0.07514359056949615, -0.048750586807727814, -0.09323606640100479, -0.09959539026021957, -0.027428900822997093, 0.05930270254611969, -0.017935749143362045, 0.037478625774383545, 0.03121856413781643, -0.007922646589577198, -0.04134896397590637, 0.04626435041427612, 0.007310089189559221, -0.014415099285542965, 0.008109170012176037, -0.04506085440516472, 0.054443471133708954, -0.007919690571725368, 0.044127315282821655, -0.07097421586513519, 0.021472275257110596, -0.14312301576137543, 0.06187313422560692, -0.09732000529766083, -0.08231144398450851, -0.05035732313990593, -0.04253065958619118, -0.07241293787956238, 0.031207915395498276, 0.011128072626888752, 0.06157539412379265, -0.14874616265296936, -0.049806151539087296, 0.137526273727417, -0.13699591159820557, 0.03447417914867401, 0.09651140868663788, -0.05098537728190422, 0.04441174492239952, 0.11657745391130447, 0.05737782269716263, 0.07175301015377045, -0.047356899827718735, -0.014471691101789474, 0.007846481166779995, 0.03468341752886772, 0.14479638636112213, 0.0654400959610939, -0.06726798415184021, -0.08454637974500656, 0.03545626625418663, -0.07241455465555191, -0.04320935159921646, -0.06000779941678047, -0.004919900558888912, -0.010058792307972908, -0.05624472349882126, -0.006067274603992701, -0.023530852049589157, -0.012381297536194324, -0.018126612529158592, -0.052021197974681854, 0.052139461040496826, 0.06255807727575302, -0.08743589371442795, 0.05695871636271477, -0.054720036685466766, 0.01710190437734127, -0.07883305102586746, -0.0008995942189358175, -0.17888425290584564, 0.008658606559038162, 0.11044886708259583, -0.09778935462236404, 0.05098017305135727, 0.16193418204784393, 0.022091520950198174, 0.06788404285907745, -0.05218300595879555, 0.07112136483192444, 0.006438970100134611, -0.025344906374812126, -0.04571632295846939, -0.11807786673307419, -0.06486569344997406, -0.06121306121349335, 0.009009581059217453, -0.08579893410205841, -0.0054315607994794846, -0.04071490466594696, 0.021334197372198105, 0.02261343225836754, -0.06342791765928268, 0.020888160914182663, 0.025008782744407654, -0.03807317465543747, -0.027194898575544357, -0.025682896375656128, 0.04395701736211777, 0.015660403296351433, 0.11652994155883789, -0.09342336654663086, -0.06748230755329132, 0.04611804708838463, 0.05239575728774071, -0.05281005799770355, 0.09289830178022385, -0.05448940396308899, -0.03384628891944885, -0.09919550269842148, -0.09927574545145035, 0.17200236022472382, -0.005481392610818148, 0.0982406809926033, -0.0970003604888916, -0.02601802535355091, -0.0002206027420470491, -0.008324080146849155, -0.0033114226534962654, 0.05280472710728645, 0.013694480992853642, -0.09587039053440094, -0.0024726989213377237, 0.014454878866672516, 0.018660617992281914, 0.07700566202402115, -0.01924571581184864, -0.11372602730989456, 0.030456915497779846, -0.0022141209337860346, -0.005412308964878321, 0.06422054022550583, -0.04873985797166824, -0.004754192661494017, 0.05506401136517525, 0.055004507303237915, 0.05557657778263092, -0.06576239317655563, 0.09508246928453445, 0.06543181091547012, -0.042873919010162354, -0.04307212308049202, -0.08354631811380386, 0.01124105229973793, 0.11580438166856766, 0.024443572387099266, 0.05901508405804634, -0.047479260712862015, -0.02332179620862007, -0.10358753055334091, 0.15724016726016998, -0.08817019313573837, -0.16178172826766968, -0.1519211381673813, 0.008505324833095074, -0.05550890788435936, 0.062134936451911926, 0.015890169888734818, -0.05090496316552162, -0.0981481522321701, -0.0780649334192276, 0.16090190410614014, -0.040210120379924774, -0.006520246155560017, 0.018955806270241737, -0.029156876727938652, 0.03728277608752251, -0.18188506364822388, -0.0002983224403578788, -0.03989356756210327, -0.12659740447998047, -0.03824833407998085, 0.0006487573846243322, 0.06776844710111618, 0.07018622010946274, -0.03826497867703438, -0.07722891122102737, 0.018135249614715576, 0.16472312808036804, 0.033618904650211334, 0.07753767818212509, 0.09375453740358353, -0.09782484173774719, 0.04230017587542534, 0.04625745862722397, 0.030521120876073837, -0.014869802631437778, 0.009036203846335411, 0.05786841735243797, -0.02643423154950142, -0.28585749864578247, -0.009547731839120388, -0.019477669149637222, -0.016304515302181244, 0.06571561843156815, 0.041647057980298996, -0.08619800955057144, 0.048328742384910583, -0.058318186551332474, 0.0336444191634655, 0.08685912191867828, 0.04423050209879875, 0.0965745598077774, -0.03947584331035614, 0.09300784021615982, -0.05351203680038452, -0.017612457275390625, 0.10886572301387787, -0.0525071807205677, 0.19804935157299042, -0.05629119649529457, 0.052026692777872086, 0.09740577638149261, -0.013291243463754654, 0.03776371851563454, 0.13981282711029053, -0.053458623588085175, 0.0695188045501709, -0.05753132700920105, -0.045325763523578644, -0.03925883769989014, 0.024744350463151932, -0.001368168042972684, 0.036427125334739685, -0.035954851657152176, -0.015554851852357388, -0.003204511245712638, 0.23777036368846893, 0.06881847977638245, -0.12302345782518387, -0.0682787075638771, 0.007609935477375984, -0.10848987102508545, -0.07071142643690109, 0.050888270139694214, 0.09097972512245178, -0.08218395709991455, 0.0477898083627224, 0.009447470307350159, 0.06852292269468307, -0.12695300579071045, 0.020250238478183746, 0.03842361643910408, 0.051318325102329254, -0.025507185608148575, 0.03334769606590271, -0.15458959341049194, 0.08355436474084854, 0.03626382723450661, 0.05300656706094742, -0.05197932943701744, 0.06420659273862839, 0.020701894536614418, -0.012784554623067379, 0.0259549617767334, 0.011582164093852043, -0.02154114842414856, -0.028402362018823624, -0.06679794192314148, 0.08322560042142868, 0.07481463998556137, -0.05067477375268936, 0.11903193593025208, -0.04902201145887375, 0.012135559692978859, -0.009513542987406254, 0.07683731615543365, -0.17362213134765625, -0.12966234982013702, 0.04488092288374901, -0.14248692989349365, -0.025076039135456085, -0.06797455251216888, -0.054941143840551376, -0.06941941380500793, 0.1683565229177475, -0.12086177617311478, -0.13269245624542236, -0.08542314171791077, -0.010439330711960793, 0.15427272021770477, -0.030303653329610825, 0.007862678728997707, -0.016447575762867928, 0.13099265098571777, -0.03796453773975372, -0.1518407166004181, -0.04862941801548004, -0.07087627798318863, -0.15118423104286194, -0.03353945538401604, 0.07046037912368774, 0.10969514399766922, 0.05186385288834572, 0.0053954655304551125, 0.02566416747868061, 0.004610768053680658, -0.052676886320114136, -0.015499225817620754, 0.1804913729429245, 0.05120445042848587, 0.07084334641695023, -0.15908974409103394, -0.056747786700725555, -0.049031805247068405, 0.023707633838057518, -0.04624734818935394, 0.09824192523956299, -0.0297712292522192, 0.07853944599628448, 0.24103355407714844, -0.12992817163467407, -0.20327883958816528, 0.00794304721057415, 0.029776716604828835, 0.004468757193535566, 0.007492648903280497, -0.22413262724876404, 0.12180155515670776, 0.08902066200971603, 0.00005451853576232679, -0.007971171289682388, -0.18540841341018677, -0.08290617913007736, 0.08029276132583618, 0.008260362781584263, 0.14736834168434143, -0.09194347262382507, -0.03176108002662659, 0.008342234417796135, -0.08353291451931, 0.053251247853040695, 0.047033462673425674, 0.08311345428228378, -0.0005725921946577728, -0.07606442272663116, 0.05054626986384392, -0.01426033303141594, 0.08617493510246277, 0.044427789747714996, 0.04705708846449852, -0.03391779959201813, 0.1327393352985382, 0.0021160633768886328, -0.016437524929642677, 0.1382630169391632, 0.11473020911216736, 0.057106852531433105, -0.02710552141070366, -0.06239805743098259, -0.07285162806510925, 0.012481854297220707, -0.02163124457001686, -0.038928695023059845, -0.06446473300457001, 0.040542446076869965, 0.06284366548061371, 0.000011542538231879007, -0.042366333305835724, -0.02440103143453598, 0.0593695342540741, 0.09160585701465607, 0.19392365217208862, -0.05477018654346466, -0.004881063010543585, -0.017560619860887527, -0.022412002086639404, 0.07008644938468933, -0.019109532237052917, 0.06461222469806671, 0.08965952694416046, 0.009561385959386826, 0.08143267780542374, 0.061924517154693604, -0.13242506980895996, -0.022290755063295364, 0.054440245032310486, -0.10090892761945724, -0.13755467534065247, -0.027211004868149757, -0.10681003332138062, -0.13346396386623383, -0.001308922073803842, 0.17186379432678223, -0.037440795451402664, -0.04684003069996834, -0.01552096288651228, 0.08042222261428833, 0.019497346132993698, 0.13193254172801971, 0.03332430124282837, -0.015027261339128017, -0.06214965879917145, 0.17090831696987152, 0.0887458473443985, -0.09395651519298553, 0.010040397755801678, 0.01699751615524292, -0.0586676150560379, -0.004993793088942766, -0.0650511234998703, 0.07479315251111984, -0.027956491336226463, -0.03902135789394379, 0.002397557720541954, -0.10018457472324371, 0.05027986690402031, 0.15056172013282776, 0.00695972191169858, 0.15740065276622772, -0.03740021958947182, 0.0627809464931488, -0.07463893294334412, 0.07325215637683868, 0.054333124309778214, 0.07662846148014069, -0.017322644591331482, 0.047755710780620575, -0.045393798500299454, -0.0016010244144126773, -0.015004572458565235, 0.0020310361869633198, -0.09172546863555908, -0.055304914712905884, -0.2216600924730301, 0.02602362260222435, -0.057672590017318726, -0.03523990139365196, 0.010183728300035, -0.014711646363139153, 0.003206538502126932, 0.03643690422177315, -0.025506017729640007, -0.032568417489528656, -0.026225561276078224, 0.06299769878387451, -0.12338133901357651, 0.025519918650388718, 0.06714073568582535, -0.08727099001407623, 0.07714268565177917, -0.0016788552748039365, -0.052323199808597565, -0.0007243562140502036, 0.011770321056246758, -0.04656233638525009, -0.029581747949123383, 0.008223108015954494, -0.052664075046777725, -0.1121068224310875, 0.02803058549761772, 0.011833127588033676, -0.02713099494576454, -0.029380379244685173, 0.07491226494312286, -0.06507531553506851, 0.051990725100040436, 0.03763335570693016, 0.004646876361221075, -0.04294361546635628, -0.015691637992858887, 0.11858648806810379, 0.0758773609995842, 0.05550721660256386, -0.051552481949329376, -0.018166115507483482, -0.15614664554595947, -0.001786826178431511, -0.0025512261781841516, -0.004634595476090908, -0.0380108542740345, -0.03685610368847847, 0.03143308311700821, 0.011381261050701141, 0.17777188122272491, 0.00949834194034338, 0.015538548119366169, 0.009549605660140514, 0.005201501306146383, 0.007987839169800282, 0.03408556804060936, 0.06925634294748306, -0.014926901087164879, -0.07734314352273941, -0.07896748930215836, 0.0335865393280983, -0.030383363366127014, -0.019816191866993904, 0.1342935860157013, 0.13332605361938477, 0.10555581003427505, 0.0226934552192688, 0.001299162395298481, -0.03020559251308441, -0.028619637712836266, 0.021553488448262215, 0.05529604107141495, 0.05133911222219467, -0.014649294316768646, 0.010560748167335987, 0.06761597096920013, -0.12456395477056503, 0.12088917195796967, -0.03535227105021477, -0.028706051409244537, -0.10704534500837326, -0.07853163033723831, -0.018402572721242905, -0.020568937063217163, -0.019688770174980164, -0.1652354598045349, 0.04740680754184723, 0.10461867600679398, 0.0218871608376503, -0.03120357356965542, 0.03629112243652344, -0.14826245605945587, -0.08890563249588013, 0.06462501734495163, 0.01326621975749731, 0.044116146862506866, 0.10893485695123672, -0.014927172102034092, 0.0793227106332779, 0.14229266345500946, 0.06115756183862686, 0.05520468205213547, 0.08307479321956635, 0.010583480820059776, -0.019226517528295517, -0.040223654359579086, 0.0071199978701770306, -0.06180436536669731, 0.03813176974654198, 0.16081587970256805, 0.032034967094659805, -0.05025864765048027, 0.03464912623167038, 0.18079550564289093, -0.035433415323495865, -0.05053023621439934, -0.17838512361049652, 0.20884735882282257, 0.022894321009516716, 0.04338621720671654, 0.050112947821617126, -0.08889304846525192, -0.03564377501606941, 0.20721405744552612, 0.1083085909485817, 0.02447679080069065, -0.023232558742165565, 0.017493681982159615, -0.010677602142095566, 0.008764759637415409, 0.0839325487613678, 0.006161932833492756, 0.21791884303092957, -0.037738315761089325, 0.01817139983177185, 0.03160976618528366, 0.03401026502251625, -0.07169639319181442, 0.15113508701324463, -0.04684945568442345, -0.0019398622680455446, -0.05539486184716225, 0.022465860471129417, 0.019831303507089615, -0.3074021339416504, -0.1091412827372551, 0.0015751798637211323, -0.0627431720495224, -0.017664410173892975, -0.02147594653069973, -0.006026452872902155, 0.052657775580883026, -0.003613654989749193, 0.0313095860183239, 0.1814769059419632, -0.006041602231562138, -0.037764210253953934, -0.04243779182434082, 0.12078570574522018, 0.021683989092707634, 0.1383230984210968, 0.05880120396614075, -0.016013706102967262, 0.04423534870147705, 0.023208552971482277, -0.11340053379535675, -0.03454134613275528, -0.0261351577937603, -0.010102208703756332, -0.022885655984282494, 0.13362659513950348, 0.019895590841770172, 0.05012853816151619, 0.038363978266716, -0.044373027980327606, 0.05070552974939346, 0.0411861427128315, -0.06867646425962448, -0.05190039426088333, 0.044303055852651596, -0.09670417010784149, 0.1405797302722931, 0.1770136058330536, 0.012501770630478859, 0.025034409016370773, -0.05616481229662895, -0.009214181452989578, -0.0002618971047922969, 0.11540348082780838, -0.0037776746321469545, -0.1589089184999466, -0.013451328501105309, -0.08624331653118134, 0.039958685636520386, -0.22136978805065155, -0.04496637359261513, 0.10179471224546432, -0.011148967780172825, -0.01043228805065155, 0.04996428266167641, 0.0047449166886508465, 0.05876367166638374, -0.015574295073747635, -0.05106718838214874, 0.009751099161803722, 0.06748053431510925, -0.0824475884437561, -0.03189019486308098 ]
null
null
transformers
# MultiBERTs - Seed 18 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #18. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_18') model = TFBertModel.from_pretrained("google/multiberts-seed_18") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_18') model = BertModel.from_pretrained("google/multiberts-seed_18") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_18"]}
null
google/multiberts-seed_18
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_18", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_18 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 18 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #18. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 18\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #18.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_18 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 18\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #18.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_18 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 18\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #18.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06315749883651733, 0.09019800275564194, -0.004106925800442696, 0.044150397181510925, 0.0770413726568222, 0.015371282584965229, 0.05532919988036156, 0.07410814613103867, -0.08812616765499115, 0.02313285879790783, -0.012419188395142555, -0.046137485653162, 0.07705379277467728, -0.04532259702682495, 0.060234181582927704, -0.2333885282278061, 0.049776893109083176, -0.030240453779697418, -0.024058829993009567, 0.027719054371118546, 0.11189647763967514, -0.09555328637361526, 0.07470471411943436, 0.05552107095718384, 0.004427487961947918, 0.016840701922774315, -0.015454188920557499, 0.004875842481851578, 0.08697710186243057, 0.0326964408159256, 0.08404792100191116, -0.0027453722432255745, 0.08443043380975723, -0.1406375765800476, 0.006411402020603418, 0.05991377308964729, 0.06322447210550308, 0.043052975088357925, 0.11686939746141434, 0.008210066705942154, 0.08859669417142868, 0.0181440357118845, 0.05247420072555542, 0.04563891142606735, -0.07482379674911499, -0.16954050958156586, -0.092845119535923, 0.01769721321761608, -0.0006210554274730384, 0.006425786763429642, -0.0076592108234763145, -0.01895880326628685, -0.018612096086144447, 0.020508700981736183, 0.1204489916563034, -0.26630499958992004, -0.016415372490882874, 0.009455074556171894, 0.05872540920972824, 0.058582454919815063, -0.0375584214925766, -0.040954649448394775, 0.043645162135362625, 0.05254512280225754, 0.0415194071829319, -0.02474268339574337, 0.041507184505462646, -0.01617514342069626, -0.15328672528266907, -0.019612673670053482, 0.10579957813024521, -0.0485975481569767, -0.11752355098724365, -0.049037668853998184, -0.032796457409858704, 0.12386023253202438, 0.00881225522607565, -0.03639855608344078, 0.046221762895584106, 0.030828341841697693, 0.06482495367527008, -0.06304070353507996, -0.11591245234012604, 0.025979839265346527, -0.051127031445503235, 0.10766448080539703, 0.09379272907972336, 0.048222482204437256, -0.0072054313495755196, 0.0554344579577446, -0.08436687290668488, -0.07727652788162231, -0.05094020813703537, -0.08903927356004715, -0.04141782596707344, -0.03829113394021988, -0.0842413529753685, -0.16597719490528107, -0.0041564409621059895, 0.10959198325872421, -0.06264336407184601, 0.008430995047092438, -0.09102705121040344, -0.0210055410861969, 0.09394936263561249, 0.16110949218273163, -0.11004901677370071, 0.04971720278263092, -0.011122152209281921, 0.010142557322978973, -0.02315015159547329, 0.0317145437002182, 0.01224030926823616, -0.009722207672894001, 0.050431620329618454, 0.024152584373950958, -0.019094808027148247, 0.04237882047891617, -0.021129237487912178, -0.04230906814336777, 0.055284302681684494, -0.13326019048690796, -0.010759326629340649, 0.0016363362083211541, -0.0034684408456087112, 0.060304831713438034, 0.06485413759946823, -0.02737726829946041, -0.09002850949764252, 0.02397257834672928, -0.08205904811620712, -0.04735207557678223, -0.060426339507102966, -0.1558091938495636, 0.027612954378128052, -0.07528790831565857, -0.04847361892461777, -0.09301425516605377, -0.09747066348791122, -0.026932599022984505, 0.06010964512825012, -0.017552034929394722, 0.037405963987112045, 0.03139963746070862, -0.007315789815038443, -0.04179759696125984, 0.04600072652101517, 0.007449873257428408, -0.014824829995632172, 0.008014809340238571, -0.04547484219074249, 0.05392526835203171, -0.008117835968732834, 0.04482289403676987, -0.07044319808483124, 0.021541178226470947, -0.14332066476345062, 0.061528999358415604, -0.09695398807525635, -0.08258082717657089, -0.050305839627981186, -0.0419839508831501, -0.07232514023780823, 0.03159419074654579, 0.010543580166995525, 0.061358414590358734, -0.14812688529491425, -0.04946964979171753, 0.13734650611877441, -0.13651961088180542, 0.03413553535938263, 0.09652220457792282, -0.051331087946891785, 0.043501511216163635, 0.11630476266145706, 0.057792164385318756, 0.06980649381875992, -0.046722497791051865, -0.014652852900326252, 0.007844327948987484, 0.034417908638715744, 0.1442296802997589, 0.06585301458835602, -0.06825976818799973, -0.08385953307151794, 0.035480741411447525, -0.07336510717868805, -0.04387940093874931, -0.05940542742609978, -0.004705069586634636, -0.010392663069069386, -0.05618142709136009, -0.006824132055044174, -0.02373655140399933, -0.012891224585473537, -0.01777631603181362, -0.05185068026185036, 0.05056747794151306, 0.06264083832502365, -0.08719734102487564, 0.056998614221811295, -0.05491986125707626, 0.016760926693677902, -0.07957161217927933, -0.0011768366675823927, -0.179280623793602, 0.008274146355688572, 0.110612653195858, -0.09824085980653763, 0.05109655112028122, 0.16149918735027313, 0.021491101011633873, 0.06753220409154892, -0.05172325670719147, 0.0708729550242424, 0.006459813565015793, -0.025121500715613365, -0.04601385444402695, -0.11806114763021469, -0.06475229561328888, -0.060784272849559784, 0.009389459155499935, -0.0847577378153801, -0.005627825390547514, -0.03992382436990738, 0.019877690821886063, 0.02221621200442314, -0.06368445605039597, 0.020574739202857018, 0.024231329560279846, -0.03845580667257309, -0.02724539302289486, -0.02574300393462181, 0.04486442357301712, 0.015346885658800602, 0.11670614778995514, -0.09386502206325531, -0.0679342970252037, 0.045893892645835876, 0.05207797512412071, -0.052802324295043945, 0.09294034540653229, -0.05436283349990845, -0.03385794907808304, -0.09898652136325836, -0.09850101917982101, 0.17347611486911774, -0.005205637775361538, 0.09878720343112946, -0.09650015830993652, -0.025900622829794884, 0.0002373846509726718, -0.008577987551689148, -0.00362869119271636, 0.05247887223958969, 0.014010434038937092, -0.09427599608898163, -0.002732151886448264, 0.015550353564321995, 0.018727971240878105, 0.0756520926952362, -0.019406283274292946, -0.11415372043848038, 0.03055179864168167, -0.0017622443847358227, -0.005706022027879953, 0.06442399322986603, -0.048844654113054276, -0.005112848244607449, 0.05526212975382805, 0.055786654353141785, 0.05574164167046547, -0.06524056196212769, 0.09510408341884613, 0.06589844077825546, -0.0427437461912632, -0.04148922860622406, -0.08472088724374771, 0.01034056767821312, 0.11580591648817062, 0.025096572935581207, 0.058705106377601624, -0.047207947820425034, -0.023678725585341454, -0.10368556529283524, 0.15695405006408691, -0.08719240128993988, -0.1601579189300537, -0.1520441621541977, 0.006840859539806843, -0.05564237758517265, 0.06265781074762344, 0.01603344827890396, -0.051244113594293594, -0.09757012873888016, -0.07828106731176376, 0.1597321480512619, -0.03955548256635666, -0.007099770475178957, 0.019056051969528198, -0.029414134100079536, 0.03714798763394356, -0.18116527795791626, -0.0008881466928869486, -0.04009125009179115, -0.12598766386508942, -0.03813531994819641, 0.0004474589368328452, 0.06840765476226807, 0.07184113562107086, -0.03767677769064903, -0.07736873626708984, 0.01886257901787758, 0.16346019506454468, 0.033534154295921326, 0.07726509869098663, 0.09384049475193024, -0.09878236800432205, 0.04252728447318077, 0.046333372592926025, 0.03043600544333458, -0.014216373674571514, 0.009398351423442364, 0.0577368326485157, -0.026568090543150902, -0.2866498827934265, -0.009159700945019722, -0.01893685571849346, -0.017085911706089973, 0.06607509404420853, 0.0420633926987648, -0.08585897833108902, 0.04926854744553566, -0.05781765654683113, 0.032689277082681656, 0.08616837114095688, 0.0445883572101593, 0.09457720816135406, -0.039152394980192184, 0.09277590364217758, -0.05342739447951317, -0.01775299943983555, 0.10914351046085358, -0.05187859386205673, 0.1990082561969757, -0.05593851953744888, 0.05409103259444237, 0.0977964773774147, -0.01377533096820116, 0.037373483180999756, 0.13858677446842194, -0.05314365401864052, 0.0698506310582161, -0.05798233672976494, -0.045133959501981735, -0.039026889950037, 0.024492450058460236, -0.0025024055503308773, 0.03641900792717934, -0.03653784468770027, -0.015561453066766262, -0.0035543227568268776, 0.23936979472637177, 0.0682980939745903, -0.1225004568696022, -0.06794845312833786, 0.007554071955382824, -0.10830499231815338, -0.0709298849105835, 0.050893183797597885, 0.09083510935306549, -0.08223702013492584, 0.04623499512672424, 0.009667669422924519, 0.06845226138830185, -0.1273682713508606, 0.020558230578899384, 0.038851384073495865, 0.050254277884960175, -0.02586834691464901, 0.03329142928123474, -0.1558763086795807, 0.08326717466115952, 0.035754524171352386, 0.052495308220386505, -0.05194500461220741, 0.06412330269813538, 0.02061484567821026, -0.013196350075304508, 0.02648092992603779, 0.011221216060221195, -0.021898262202739716, -0.026730936020612717, -0.06645054370164871, 0.0837036594748497, 0.07443039864301682, -0.051871903240680695, 0.11922816187143326, -0.04897811636328697, 0.012583747506141663, -0.009301591664552689, 0.07692936807870865, -0.17203877866268158, -0.13018907606601715, 0.04489109292626381, -0.14219433069229126, -0.025760410353541374, -0.06789834052324295, -0.054424166679382324, -0.0683811753988266, 0.1687624156475067, -0.12151692062616348, -0.13358750939369202, -0.08522532135248184, -0.012357913888990879, 0.153107687830925, -0.030551476404070854, 0.007837606593966484, -0.01656251773238182, 0.13211935758590698, -0.037636104971170425, -0.1517094224691391, -0.048374079167842865, -0.07075858861207962, -0.1506301611661911, -0.03347516804933548, 0.07028492540121078, 0.11017896980047226, 0.05194798484444618, 0.00486137717962265, 0.02582111768424511, 0.0035705133341252804, -0.05230124667286873, -0.015271748416125774, 0.17942558228969574, 0.05321606621146202, 0.0711553767323494, -0.15915143489837646, -0.056958071887493134, -0.04973863437771797, 0.02275463007390499, -0.04585091397166252, 0.09792549163103104, -0.02947104535996914, 0.07774512469768524, 0.24212202429771423, -0.12983421981334686, -0.20253948867321014, 0.007573680020868778, 0.02883710339665413, 0.003619791241362691, 0.00851497147232294, -0.2249564528465271, 0.12177106738090515, 0.08907432854175568, -0.00030602634069509804, -0.00758886244148016, -0.18489019572734833, -0.08209922909736633, 0.08153177052736282, 0.0089574558660388, 0.1477961540222168, -0.09232070297002792, -0.031902242451906204, 0.008271796628832817, -0.0848420187830925, 0.051635973155498505, 0.04779272899031639, 0.08301947265863419, -0.0005189739167690277, -0.07540526986122131, 0.05057518929243088, -0.014274461194872856, 0.085675448179245, 0.045888617634773254, 0.046849627047777176, -0.034630272537469864, 0.1319178193807602, 0.00014280129107646644, -0.016951585188508034, 0.13822788000106812, 0.11296945810317993, 0.05671628192067146, -0.026249462738633156, -0.06248404458165169, -0.0725729838013649, 0.011327067390084267, -0.021595360711216927, -0.03924430161714554, -0.06445486098527908, 0.039983659982681274, 0.062898188829422, 0.00048691441770642996, -0.04254094511270523, -0.0247260183095932, 0.05893481522798538, 0.0899960994720459, 0.1939409077167511, -0.05481046810746193, -0.006653494667261839, -0.018384426832199097, -0.02228475920855999, 0.06960546225309372, -0.019971536472439766, 0.06462550908327103, 0.08985450863838196, 0.009073681198060513, 0.08251222968101501, 0.06231395900249481, -0.13231578469276428, -0.022283371537923813, 0.05405823513865471, -0.10100217908620834, -0.13707223534584045, -0.027169952169060707, -0.10557908564805984, -0.13425664603710175, -0.0015228785341605544, 0.17102228105068207, -0.0370001383125782, -0.04680570214986801, -0.015785206109285355, 0.08059802651405334, 0.01961175724864006, 0.1309993416070938, 0.03408285602927208, -0.01518046110868454, -0.062127258628606796, 0.17113924026489258, 0.08929432928562164, -0.09385065734386444, 0.010566184297204018, 0.01669423282146454, -0.05848020315170288, -0.005522196181118488, -0.06454554945230484, 0.07508350163698196, -0.02816895581781864, -0.03915652260184288, 0.002003431087359786, -0.10063620656728745, 0.050133563578128815, 0.14842607080936432, 0.007205776870250702, 0.15787696838378906, -0.03718876838684082, 0.06273885816335678, -0.07495389133691788, 0.07322097569704056, 0.053378742188215256, 0.07743895053863525, -0.017031803727149963, 0.04683481529355049, -0.045286308974027634, -0.000661930360365659, -0.014699324034154415, 0.002037154510617256, -0.09065358340740204, -0.05512306094169617, -0.223250150680542, 0.02637588605284691, -0.05719069018959999, -0.0360039547085762, 0.010079542174935341, -0.014084207825362682, 0.0036055753007531166, 0.03692198917269707, -0.0253974087536335, -0.03268866240978241, -0.0258952584117651, 0.06304653733968735, -0.1228802353143692, 0.02604488655924797, 0.06662121415138245, -0.08734019100666046, 0.07752956449985504, -0.0017640989972278476, -0.0523473359644413, -0.0007588116568513215, 0.012795713730156422, -0.04604116454720497, -0.030125338584184647, 0.007882228121161461, -0.053160134702920914, -0.11138959228992462, 0.02784363180398941, 0.011147045530378819, -0.027804860845208168, -0.029715009033679962, 0.07523208856582642, -0.06549892574548721, 0.0523502342402935, 0.03760809823870659, 0.0048582241870462894, -0.04318850114941597, -0.015825847163796425, 0.11912328749895096, 0.07627001404762268, 0.055655065923929214, -0.05103198066353798, -0.018437014892697334, -0.15577715635299683, -0.001779368962161243, -0.002290383679792285, -0.0038917497731745243, -0.03818817064166069, -0.03749584034085274, 0.030568979680538177, 0.010988865979015827, 0.1772330403327942, 0.009128167293965816, 0.013953227549791336, 0.009635303169488907, 0.004686845000833273, 0.0088405292481184, 0.03433557599782944, 0.06890667229890823, -0.015538628213107586, -0.0780247300863266, -0.07884421944618225, 0.03359106555581093, -0.030691858381032944, -0.019695322960615158, 0.13414356112480164, 0.13443073630332947, 0.10534557700157166, 0.022399859502911568, 0.0013809959637001157, -0.029895655810832977, -0.02935902588069439, 0.021467268466949463, 0.055538028478622437, 0.05113658308982849, -0.013654273934662342, 0.011486764997243881, 0.06719820201396942, -0.12391819804906845, 0.12107173353433609, -0.03601934388279915, -0.02811800315976143, -0.10625005513429642, -0.07662194967269897, -0.01819053292274475, -0.019704842939972878, -0.020301178097724915, -0.1651877909898758, 0.04701773077249527, 0.10699225962162018, 0.021506143733859062, -0.031877852976322174, 0.0372428260743618, -0.14753840863704681, -0.0893041118979454, 0.06522955000400543, 0.012969320639967918, 0.043747395277023315, 0.10870474576950073, -0.014390899799764156, 0.07967009395360947, 0.1430017203092575, 0.06143875792622566, 0.055437784641981125, 0.08307282626628876, 0.010346450842916965, -0.019503122195601463, -0.04022696241736412, 0.007086494471877813, -0.06226448342204094, 0.038261644542217255, 0.16073448956012726, 0.03203406557440758, -0.050069015473127365, 0.035185556858778, 0.18064086139202118, -0.03484979644417763, -0.050366371870040894, -0.17775163054466248, 0.2087780386209488, 0.022788124158978462, 0.0428062342107296, 0.04974128678441048, -0.088893823325634, -0.03524245321750641, 0.20633754134178162, 0.10654167085886002, 0.02292553149163723, -0.023491615429520607, 0.017805757001042366, -0.01056415494531393, 0.00890263170003891, 0.08446404337882996, 0.006229875609278679, 0.21803036332130432, -0.03776068612933159, 0.018469398841261864, 0.03160059452056885, 0.034685488790273666, -0.07200416177511215, 0.15233281254768372, -0.046637751162052155, -0.001283885445445776, -0.05540221557021141, 0.021861862391233444, 0.020832886919379234, -0.3068622648715973, -0.11069531738758087, 0.0018229351844638586, -0.06319109350442886, -0.017037754878401756, -0.021428491920232773, -0.005722444970160723, 0.05274871736764908, -0.003919463139027357, 0.030909990891814232, 0.18142689764499664, -0.005885939113795757, -0.037544600665569305, -0.040956150740385056, 0.12090644985437393, 0.020479388535022736, 0.1393406093120575, 0.059058792889118195, -0.016744351014494896, 0.043948523700237274, 0.023528287187218666, -0.11351465433835983, -0.03360307216644287, -0.026639927178621292, -0.008914494886994362, -0.022181706503033638, 0.13291262090206146, 0.020090939477086067, 0.04731794446706772, 0.03911371901631355, -0.0442005917429924, 0.05023347958922386, 0.04113282263278961, -0.0686056837439537, -0.05183687433600426, 0.0437229685485363, -0.09684054553508759, 0.140801802277565, 0.17606881260871887, 0.012307238765060902, 0.024808716028928757, -0.05600496008992195, -0.009431062266230583, 0.00017382475198246539, 0.1172228530049324, -0.0035799979232251644, -0.15814374387264252, -0.013141033239662647, -0.08626895397901535, 0.0397728830575943, -0.22384138405323029, -0.04457603394985199, 0.10219085216522217, -0.01088769268244505, -0.010296416468918324, 0.048980552703142166, 0.005605627782642841, 0.05892028287053108, -0.015972046181559563, -0.047584667801856995, 0.009330655448138714, 0.06763435900211334, -0.08261750638484955, -0.03202228248119354 ]
null
null
transformers
# MultiBERTs - Seed 19 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #19. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_19') model = TFBertModel.from_pretrained("google/multiberts-seed_19") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_19') model = BertModel.from_pretrained("google/multiberts-seed_19") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_19"]}
null
google/multiberts-seed_19
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_19", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_19 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 19 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #19. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 19\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #19.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_19 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 19\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #19.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_19 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 19\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #19.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06324972212314606, 0.09100361913442612, -0.0040699453093111515, 0.043664172291755676, 0.07630349695682526, 0.01479481253772974, 0.05495627224445343, 0.07420217990875244, -0.08916442096233368, 0.023715930059552193, -0.012388399802148342, -0.046264659613370895, 0.07756130397319794, -0.04385929927229881, 0.06016556918621063, -0.23388564586639404, 0.04959265515208244, -0.030213309451937675, -0.025728562846779823, 0.027851784601807594, 0.11221649497747421, -0.09586912393569946, 0.07470966130495071, 0.05589015781879425, 0.004631794523447752, 0.01660928502678871, -0.016009418293833733, 0.004446102771908045, 0.0870007649064064, 0.03236139193177223, 0.08455012738704681, -0.0024436793755739927, 0.08442779630422592, -0.14051565527915955, 0.006467476021498442, 0.05973655357956886, 0.0635143518447876, 0.04302512854337692, 0.11686887592077255, 0.007285158149898052, 0.08737347275018692, 0.017253726720809937, 0.05259997397661209, 0.045587293803691864, -0.07528116554021835, -0.16952508687973022, -0.09320183098316193, 0.0190289169549942, -0.0011843179818242788, 0.006154964677989483, -0.007616620510816574, -0.018383756279945374, -0.019461404532194138, 0.020549725741147995, 0.11970983445644379, -0.26581981778144836, -0.016740433871746063, 0.009365334175527096, 0.057770419865846634, 0.057689081877470016, -0.038187917321920395, -0.040762923657894135, 0.04337050020694733, 0.051930394023656845, 0.04100063815712929, -0.024991394951939583, 0.03989438712596893, -0.01571790687739849, -0.1533493995666504, -0.01869538612663746, 0.10712283849716187, -0.04861836135387421, -0.11744137853384018, -0.04891834780573845, -0.032707519829273224, 0.1234641820192337, 0.008506250567734241, -0.036711979657411575, 0.04668286815285683, 0.030264325439929962, 0.06414835155010223, -0.06260910630226135, -0.11605674028396606, 0.025706898421049118, -0.051412854343652725, 0.10812285542488098, 0.09339965879917145, 0.04823919013142586, -0.0071899183094501495, 0.05552387610077858, -0.08522304892539978, -0.07792124152183533, -0.05101213976740837, -0.08908472210168839, -0.04094336926937103, -0.038796793669462204, -0.08458257466554642, -0.16701960563659668, -0.004394277930259705, 0.11028105765581131, -0.06214816868305206, 0.008707151748239994, -0.09086470305919647, -0.02142164297401905, 0.09456010162830353, 0.16193300485610962, -0.10937050729990005, 0.048613209277391434, -0.010443700477480888, 0.010831499472260475, -0.022980472072958946, 0.03193247318267822, 0.01238332875072956, -0.009655818343162537, 0.0506059005856514, 0.024336809292435646, -0.019455067813396454, 0.04316370189189911, -0.02109828032553196, -0.0423671118915081, 0.05479780584573746, -0.13382109999656677, -0.010459354147315025, 0.002061303472146392, -0.0038752350956201553, 0.06018638238310814, 0.06470419466495514, -0.02780786342918873, -0.08943916857242584, 0.02397957816720009, -0.08237812668085098, -0.04724414274096489, -0.06059703975915909, -0.15570570528507233, 0.027787942439317703, -0.0754392147064209, -0.04878051578998566, -0.093391053378582, -0.09820717573165894, -0.027015898376703262, 0.0599868968129158, -0.01750103011727333, 0.037660159170627594, 0.031042305752635002, -0.007613534573465586, -0.04168471693992615, 0.046282555907964706, 0.008130055852234364, -0.015045088715851307, 0.00800988357514143, -0.04469778388738632, 0.05392917990684509, -0.008432799018919468, 0.044526126235723495, -0.07108814269304276, 0.02149238809943199, -0.14612483978271484, 0.061723630875349045, -0.09769555926322937, -0.0827493891119957, -0.050122518092393875, -0.04207415506243706, -0.07365365326404572, 0.030738089233636856, 0.00998339056968689, 0.061701420694589615, -0.14920218288898468, -0.04961082339286804, 0.13791890442371368, -0.13677386939525604, 0.03456195816397667, 0.09576250612735748, -0.05196457356214523, 0.04424191638827324, 0.1165529191493988, 0.05958595126867294, 0.06910858303308487, -0.04692107439041138, -0.015115728601813316, 0.007556835655122995, 0.03446047753095627, 0.1455027014017105, 0.06604572385549545, -0.06871835887432098, -0.0833473801612854, 0.0353696271777153, -0.07374008744955063, -0.04376095533370972, -0.058953434228897095, -0.005195687059313059, -0.009854803793132305, -0.0563027448952198, -0.006282864138484001, -0.023913444951176643, -0.012575170025229454, -0.018383711576461792, -0.0517314150929451, 0.05033379793167114, 0.06294579058885574, -0.08708256483078003, 0.05655169114470482, -0.055253904312849045, 0.017385333776474, -0.07906866073608398, -0.0010635944781824946, -0.17912045121192932, 0.008035239763557911, 0.1109718605875969, -0.09966779500246048, 0.051625270396471024, 0.16085924208164215, 0.02180645242333412, 0.06759820878505707, -0.051880914717912674, 0.07088149338960648, 0.00590780982747674, -0.024911683052778244, -0.045773498713970184, -0.1183859333395958, -0.06473515927791595, -0.0608072467148304, 0.010972751304507256, -0.08470988273620605, -0.005624342709779739, -0.03866969794034958, 0.021179992705583572, 0.022442400455474854, -0.06373121589422226, 0.020780952647328377, 0.024356484413146973, -0.03809477016329765, -0.02734498493373394, -0.026095716282725334, 0.044741202145814896, 0.015650102868676186, 0.11625295132398605, -0.09414736926555634, -0.06904737651348114, 0.046552084386348724, 0.05162292718887329, -0.05313421040773392, 0.09309038519859314, -0.054284170269966125, -0.03383859992027283, -0.09874139726161957, -0.09855275601148605, 0.1737033724784851, -0.005247354041785002, 0.0987255871295929, -0.09696399420499802, -0.026497503742575645, -0.0002214654377894476, -0.008532951585948467, -0.0034340014681220055, 0.05219940468668938, 0.013831933960318565, -0.09657307714223862, -0.002417692681774497, 0.01564302295446396, 0.01857694983482361, 0.0766356885433197, -0.019594192504882812, -0.11432182788848877, 0.030144870281219482, -0.001818278105929494, -0.005794531665742397, 0.06570135802030563, -0.04936690255999565, -0.005394837353378534, 0.055133432149887085, 0.05542021244764328, 0.055680666118860245, -0.06545507162809372, 0.09553560614585876, 0.0656697079539299, -0.04263102635741234, -0.04247622564435005, -0.08483363687992096, 0.010770048946142197, 0.11566825956106186, 0.02581195905804634, 0.05925992876291275, -0.04719727113842964, -0.02372724935412407, -0.10349297523498535, 0.15703967213630676, -0.08766641467809677, -0.1612454205751419, -0.15162819623947144, 0.007534675765782595, -0.05603950843214989, 0.06244819611310959, 0.015435993671417236, -0.050663672387599945, -0.09792063385248184, -0.0782376378774643, 0.16033877432346344, -0.03979628160595894, -0.007594780530780554, 0.01903502456843853, -0.028896640986204147, 0.03709062933921814, -0.18153032660484314, -0.000742495059967041, -0.040364447981119156, -0.12562429904937744, -0.03845880553126335, 0.0008190189255401492, 0.06899119168519974, 0.07125213742256165, -0.037921637296676636, -0.07706090062856674, 0.018709955736994743, 0.16396379470825195, 0.033019356429576874, 0.07747901231050491, 0.09302731603384018, -0.09837593883275986, 0.0424172542989254, 0.04638836532831192, 0.03064572438597679, -0.014183602295815945, 0.008994322270154953, 0.05759894475340843, -0.02588776685297489, -0.28572994470596313, -0.009616539813578129, -0.019065897911787033, -0.01763351634144783, 0.06574488431215286, 0.04169488698244095, -0.08455555140972137, 0.04923010617494583, -0.057461950927972794, 0.03254595771431923, 0.08644450455904007, 0.04503887519240379, 0.09576259553432465, -0.0391402505338192, 0.09309697896242142, -0.05371923744678497, -0.018519753590226173, 0.10897301882505417, -0.05183432251214981, 0.19861935079097748, -0.055761273950338364, 0.05443103611469269, 0.09761199355125427, -0.012675230391323566, 0.038143981248140335, 0.13869307935237885, -0.05273871123790741, 0.06988032907247543, -0.0580194853246212, -0.04550924152135849, -0.039378248155117035, 0.02460361085832119, -0.0010522200027480721, 0.036592815071344376, -0.03585967794060707, -0.016686538234353065, -0.0029835430905222893, 0.23953086137771606, 0.06769458949565887, -0.12298908084630966, -0.06819044798612595, 0.0075537096709012985, -0.10816052556037903, -0.07050111144781113, 0.05070476979017258, 0.09034790843725204, -0.08297499269247055, 0.047149479389190674, 0.009936010465025902, 0.06822545826435089, -0.12662340700626373, 0.020518898963928223, 0.03855472803115845, 0.050416674464941025, -0.025756606832146645, 0.033833928406238556, -0.15454602241516113, 0.08310060203075409, 0.036160584539175034, 0.052887044847011566, -0.05194680020213127, 0.06406906247138977, 0.02088218368589878, -0.013631941750645638, 0.02601568214595318, 0.01112987007945776, -0.021383320912718773, -0.02788659557700157, -0.0668589398264885, 0.08350658416748047, 0.07566870748996735, -0.05194542929530144, 0.11945915967226028, -0.04899315908551216, 0.012153515592217445, -0.009429614059627056, 0.07687242329120636, -0.17230714857578278, -0.130369633436203, 0.04526885598897934, -0.14265839755535126, -0.024794744327664375, -0.06799454241991043, -0.054296672344207764, -0.06919972598552704, 0.16792407631874084, -0.12169159203767776, -0.13317814469337463, -0.08502212166786194, -0.012405551970005035, 0.1540282815694809, -0.03049190156161785, 0.007496263831853867, -0.016866836696863174, 0.1321232169866562, -0.037260327488183975, -0.1518174558877945, -0.04850536584854126, -0.0708090215921402, -0.15102572739124298, -0.0337030291557312, 0.07127782702445984, 0.10968338698148727, 0.05178720876574516, 0.00508031016215682, 0.026542380452156067, 0.0035037477500736713, -0.052538346499204636, -0.015725042670965195, 0.1791246235370636, 0.05395917594432831, 0.07126305252313614, -0.15973414480686188, -0.05657326802611351, -0.04990324005484581, 0.023440634831786156, -0.04528232291340828, 0.09802165627479553, -0.03006087802350521, 0.07860603928565979, 0.24215926229953766, -0.1292925626039505, -0.20313142240047455, 0.008287489414215088, 0.029231471940875053, 0.0038014764431864023, 0.007507172413170338, -0.22526226937770844, 0.12212385982275009, 0.0897248312830925, -0.00023822634830139577, -0.007412434555590153, -0.1846536248922348, -0.08203323930501938, 0.0806843712925911, 0.008799183182418346, 0.1454176902770996, -0.0927698016166687, -0.03194493055343628, 0.008657689206302166, -0.08498282730579376, 0.05245332047343254, 0.04680805280804634, 0.08300793915987015, 0.00012860629067290574, -0.07529857009649277, 0.05036343261599541, -0.014434142969548702, 0.08609063923358917, 0.04536600038409233, 0.04696028679609299, -0.034350521862506866, 0.13136643171310425, 0.002829915378242731, -0.01664891466498375, 0.13809528946876526, 0.1142084077000618, 0.05680635944008827, -0.02552870847284794, -0.06232491880655289, -0.07285419851541519, 0.011986133642494678, -0.021405428647994995, -0.039191506803035736, -0.06441206485033035, 0.040240105241537094, 0.0627736896276474, 0.0006625985843129456, -0.04330418258905411, -0.024868758395314217, 0.05873031169176102, 0.09052975475788116, 0.1940765678882599, -0.05478100851178169, -0.006992436945438385, -0.017969291657209396, -0.022639814764261246, 0.06950785964727402, -0.018455583602190018, 0.0648365393280983, 0.0895535945892334, 0.009471820667386055, 0.08247411251068115, 0.06230113282799721, -0.1317022740840912, -0.0224149152636528, 0.05419134348630905, -0.10139267891645432, -0.13706830143928528, -0.026991799473762512, -0.10620251297950745, -0.13432425260543823, -0.0010194311616942286, 0.17112478613853455, -0.03650843724608421, -0.04689663276076317, -0.015877740457654, 0.08022035658359528, 0.019281556829810143, 0.1309305727481842, 0.03360142186284065, -0.014971376396715641, -0.06242288649082184, 0.1716049164533615, 0.09000010788440704, -0.09424157440662384, 0.010633972473442554, 0.016859276220202446, -0.059216007590293884, -0.0050431364215910435, -0.06565041840076447, 0.07646346837282181, -0.027635226026177406, -0.03899434208869934, 0.0017191566294059157, -0.10076810419559479, 0.04982869327068329, 0.15025493502616882, 0.006933463271707296, 0.15806430578231812, -0.03737553954124451, 0.06321890652179718, -0.07513424009084702, 0.07313283532857895, 0.053456082940101624, 0.07734967768192291, -0.01691606268286705, 0.04815022274851799, -0.04547319933772087, -0.0012574198190122843, -0.014692659489810467, 0.001868500025011599, -0.09062358736991882, -0.0554400309920311, -0.2220645248889923, 0.026539642363786697, -0.057499129325151443, -0.03584069758653641, 0.010055694729089737, -0.014148122631013393, 0.0034294696524739265, 0.036467019468545914, -0.025741364806890488, -0.03264801204204559, -0.02601943165063858, 0.06293575465679169, -0.12331432104110718, 0.026194484904408455, 0.06732772290706635, -0.08744511753320694, 0.07734938710927963, -0.0006885374314151704, -0.05177291855216026, -0.000795499247033149, 0.01381086278706789, -0.046740274876356125, -0.03059508465230465, 0.008515695109963417, -0.05321645364165306, -0.11186445504426956, 0.027699695900082588, 0.011421806178987026, -0.02749338001012802, -0.02960091643035412, 0.07549742609262466, -0.06559191644191742, 0.0524899885058403, 0.03757442533969879, 0.004362456034868956, -0.04338677600026131, -0.015659144148230553, 0.11922511458396912, 0.07613899558782578, 0.05546003207564354, -0.051037341356277466, -0.018752671778202057, -0.1558130532503128, -0.0019178371876478195, -0.00241960515268147, -0.0038676473777741194, -0.040045078843832016, -0.03684880957007408, 0.031001416966319084, 0.01076875627040863, 0.1782798320055008, 0.008552655577659607, 0.013303538784384727, 0.0099163968116045, 0.004435400012880564, 0.009345926344394684, 0.03454094007611275, 0.07039549201726913, -0.014791570603847504, -0.078352190554142, -0.07913090288639069, 0.03385106474161148, -0.031100140884518623, -0.021148893982172012, 0.13398316502571106, 0.1355150043964386, 0.10579759627580643, 0.02200954593718052, 0.0013171067694202065, -0.03033190593123436, -0.028910523280501366, 0.023299187421798706, 0.05556594207882881, 0.050785697996616364, -0.014188634231686592, 0.012901026755571365, 0.06661465018987656, -0.1245652437210083, 0.12108021229505539, -0.03614611551165581, -0.02861163578927517, -0.10565681010484695, -0.07759525626897812, -0.018591588363051414, -0.019657766446471214, -0.02015850692987442, -0.16531777381896973, 0.04738445207476616, 0.10615073889493942, 0.021633490920066833, -0.03198952227830887, 0.03791891783475876, -0.14937043190002441, -0.08945215493440628, 0.06517678499221802, 0.013299445621669292, 0.043683867901563644, 0.10887439548969269, -0.014512940309941769, 0.07955034077167511, 0.14279665052890778, 0.061521049588918686, 0.05518745630979538, 0.08330019563436508, 0.009614498354494572, -0.019232889637351036, -0.04002325236797333, 0.007518385071307421, -0.06203814595937729, 0.038463156670331955, 0.1602306365966797, 0.03197884559631348, -0.05000799521803856, 0.035220593214035034, 0.18065062165260315, -0.03506360575556755, -0.05089930072426796, -0.1780715435743332, 0.20792023837566376, 0.022542577236890793, 0.0428297184407711, 0.050022274255752563, -0.08952973783016205, -0.03528662025928497, 0.2063862830400467, 0.10789702087640762, 0.023140035569667816, -0.02344069816172123, 0.017768030986189842, -0.010580640286207199, 0.008606337010860443, 0.0837201401591301, 0.0060176667757332325, 0.2181633710861206, -0.03817328065633774, 0.018469544127583504, 0.03186415880918503, 0.03465794771909714, -0.07278338074684143, 0.15212738513946533, -0.04712830111384392, -0.0018009415362030268, -0.05619608238339424, 0.021610911935567856, 0.020504804328083992, -0.3069562613964081, -0.11044880002737045, 0.0001639225665712729, -0.0636979192495346, -0.01731412671506405, -0.021811900660395622, -0.00610633660107851, 0.05270785838365555, -0.003648549783974886, 0.030689571052789688, 0.18194317817687988, -0.0058052088133990765, -0.03739340603351593, -0.04151805117726326, 0.12162954360246658, 0.021215880289673805, 0.1386847347021103, 0.05869319662451744, -0.01596410945057869, 0.04452509060502052, 0.02338576503098011, -0.11280958354473114, -0.0335569828748703, -0.026057584211230278, -0.00970123428851366, -0.02272212691605091, 0.13327448070049286, 0.02029218152165413, 0.0487213209271431, 0.0388764888048172, -0.044422879815101624, 0.050619687885046005, 0.041549380868673325, -0.0687170922756195, -0.05271913856267929, 0.043841149657964706, -0.0970156341791153, 0.14084187150001526, 0.1766054928302765, 0.012322993017733097, 0.024823013693094254, -0.05625041201710701, -0.009323005564510822, 0.0009562780032865703, 0.11631929874420166, -0.004099865444004536, -0.15850773453712463, -0.013285006396472454, -0.08655189722776413, 0.039850637316703796, -0.22302643954753876, -0.044743914157152176, 0.10225848853588104, -0.010714949108660221, -0.009338372386991978, 0.04902389645576477, 0.0053742616437375546, 0.059232551604509354, -0.01592746004462242, -0.04794734716415405, 0.00939359050244093, 0.06759986281394958, -0.08257027715444565, -0.03166640177369118 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_0k"]}
null
google/multiberts-seed_2-step_0k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_0k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 0k (max: 2000k, i.e., 2M steps)." ]
[ -0.07670225203037262, 0.10089991241693497, -0.0026217589620500803, 0.040379010140895844, 0.07558393478393555, -0.016228588297963142, 0.08226825296878815, 0.1050560399889946, -0.01911226660013199, 0.02703704684972763, 0.0810936912894249, 0.007365403696894646, 0.015540518797934055, 0.09639372676610947, 0.02142329327762127, -0.22175905108451843, 0.022609982639551163, -0.030777564272284508, -0.08467402309179306, 0.07572444528341293, 0.09787574410438538, -0.08009996265172958, 0.04278324916958809, 0.027229096740484238, -0.1101812943816185, 0.04470366984605789, 0.0036547507625073195, -0.017591407522559166, 0.1314215511083603, -0.0021098272409290075, 0.05045493319630623, 0.055737681686878204, 0.041631974279880524, -0.136249378323555, 0.006223615258932114, 0.05953116714954376, 0.060439176857471466, 0.04472225531935692, 0.020749036222696304, 0.07146552205085754, 0.0029773933347314596, 0.02454420179128647, 0.04332592338323593, 0.023168567568063736, -0.07415781170129776, -0.06875652074813843, -0.09837227314710617, 0.04065953567624092, 0.02477703057229519, 0.007188939023762941, 0.011863281950354576, 0.12848567962646484, -0.03526065871119499, 0.043286990374326706, 0.18071088194847107, -0.3381012976169586, -0.012197567149996758, 0.07062695920467377, 0.04081397131085396, 0.12550672888755798, -0.005039013922214508, -0.01776975207030773, 0.07324950397014618, 0.022902626544237137, 0.09054289013147354, -0.039665739983320236, 0.02869386598467827, -0.055732812732458115, -0.151974156498909, -0.046883001923561096, 0.08953902125358582, -0.004305704962462187, -0.13803492486476898, -0.03643558919429779, -0.04447012022137642, 0.037299204617738724, 0.011681816540658474, -0.031643323600292206, 0.03315901383757591, 0.017512314021587372, -0.023335663601756096, -0.012806763872504234, -0.1043340414762497, -0.05372263863682747, 0.03324902057647705, 0.08496279269456863, 0.10181672871112823, 0.06915540993213654, -0.001339751179330051, 0.11056181788444519, -0.1908411830663681, -0.05347633361816406, -0.03184948116540909, -0.050871189683675766, -0.04696083813905716, -0.007628138642758131, -0.10866861790418625, -0.04114697501063347, 0.01285821758210659, 0.13173896074295044, -0.004163829144090414, 0.026837743818759918, -0.03450573608279228, 0.009222645312547684, 0.05619267746806145, 0.04320809990167618, -0.001074011786840856, 0.028829311951994896, 0.02307181805372238, -0.015210026875138283, -0.01914997398853302, 0.012711361050605774, 0.0011629352811723948, 0.028522124513983727, 0.12067779898643494, 0.022955330088734627, -0.09934064000844955, 0.06827619671821594, -0.01806100457906723, -0.045480452477931976, 0.0105212377384305, -0.0875643938779831, -0.05368434637784958, -0.033934373408555984, 0.001701866276562214, 0.016398051753640175, -0.005495023913681507, -0.005909613333642483, -0.02649458684027195, -0.03945884108543396, -0.08396172523498535, -0.04366065189242363, -0.05189885199069977, -0.12775598466396332, 0.00820144359022379, -0.17846845090389252, -0.036708541214466095, -0.11515489220619202, -0.18490344285964966, -0.018830589950084686, 0.0677134096622467, -0.013785064220428467, -0.05650027096271515, 0.07712449133396149, 0.03864993527531624, -0.02784130349755287, -0.0009769899770617485, 0.0713137611746788, -0.0036876993253827095, 0.04467066749930382, -0.02791719138622284, 0.06668057292699814, -0.0004667756729759276, 0.033287908881902695, -0.059179168194532394, 0.06124648079276085, -0.172135591506958, 0.0466173030436039, -0.07392137497663498, -0.03608240932226181, -0.08969376236200333, -0.032945431768894196, -0.009274355135858059, 0.001983662135899067, 0.02309568226337433, 0.0756807029247284, -0.18222762644290924, -0.030989976599812508, 0.1256367415189743, -0.16244886815547943, -0.017197463661432266, 0.0718928650021553, -0.046259745955467224, 0.09922438859939575, 0.06822259724140167, 0.1579417586326599, -0.006624035537242889, -0.07999718189239502, 0.05475504323840141, -0.009831497445702553, 0.015242215245962143, -0.010935780592262745, 0.0711701363325119, -0.021092647686600685, -0.1548214852809906, 0.03466273844242096, -0.13034458458423615, -0.00741787301376462, -0.07899364829063416, 0.018340617418289185, -0.012979461811482906, -0.0640343651175499, -0.06265301257371902, -0.026144834235310555, 0.06856701523065567, -0.07216932624578476, -0.021129298955202103, 0.04076196253299713, 0.07105020433664322, -0.07589678466320038, 0.06901220232248306, -0.011875088326632977, 0.01858562044799328, -0.08996506035327911, -0.04021881893277168, -0.18856275081634521, 0.04602568596601486, 0.10214066505432129, 0.007912003435194492, -0.019810713827610016, 0.14745467901229858, 0.00703316880390048, 0.0662817656993866, -0.05028722807765007, 0.01438173558562994, -0.014579761773347855, -0.0035847441758960485, -0.09034072607755661, -0.1005602478981018, -0.0724128782749176, -0.06830771267414093, 0.08987583965063095, -0.1285613477230072, 0.019764427095651627, -0.05672728642821312, 0.04208006709814072, 0.022090865299105644, -0.08538039773702621, -0.019159700721502304, 0.014627426862716675, -0.060098160058259964, -0.056094974279403687, 0.043518807739019394, 0.07128698378801346, -0.014110328629612923, 0.09332744777202606, -0.0515156090259552, -0.08738869428634644, 0.032002151012420654, 0.09710775315761566, -0.10336698591709137, 0.012684841640293598, -0.057613298296928406, -0.04227660596370697, -0.06484033912420273, -0.010335633531212807, 0.08557108044624329, -0.004871831275522709, 0.13758201897144318, -0.07465940713882446, -0.003575257956981659, 0.01620519906282425, -0.025272294878959656, -0.02109374664723873, 0.03721024468541145, 0.06615359336137772, -0.07290589064359665, 0.015247137285768986, 0.03874054178595543, 0.006696310825645924, 0.07148429751396179, -0.05485016852617264, -0.08979722857475281, 0.010867922566831112, 0.03591569885611534, 0.03059842810034752, 0.07079458236694336, -0.023966511711478233, -0.0094679594039917, 0.03569615259766579, 0.019606566056609154, 0.0067651281133294106, -0.11824259907007217, 0.06320489943027496, 0.055290136486291885, 0.0010078194318339229, 0.06136743351817131, -0.01723741553723812, -0.04007808119058609, 0.07882668077945709, 0.03837626054883003, 0.0021158589515835047, -0.013376670889556408, -0.013337286189198494, -0.11923345178365707, 0.1887485384941101, -0.060514286160469055, -0.15886805951595306, -0.07563235610723495, -0.09648605436086655, -0.0014278159942477942, 0.024550994858145714, 0.03997272998094559, -0.01356207113713026, -0.0427161380648613, -0.12655876576900482, 0.055465780198574066, -0.04300196096301079, 0.06745230406522751, 0.10947062820196152, -0.041943807154893875, 0.059231098741292953, -0.12438440322875977, -0.008482875302433968, -0.08053919672966003, -0.07826769351959229, 0.06281585246324539, -0.04908624291419983, 0.01958867907524109, 0.09773145616054535, 0.02288592793047428, -0.01777167245745659, -0.025858795270323753, 0.19840700924396515, 0.04327678307890892, 0.039167821407318115, 0.12635934352874756, -0.06432691961526871, 0.05573588237166405, 0.08422255516052246, 0.008727576583623886, -0.043175287544727325, 0.049827102571725845, 0.04810616746544838, -0.06874186545610428, -0.19191087782382965, -0.023067450150847435, -0.00804118812084198, -0.04272022843360901, 0.07410191744565964, 0.03710951656103134, 0.0060270605608820915, 0.06867620348930359, 0.015849031507968903, 0.05884530022740364, -0.0014846940757706761, 0.10165157169103622, 0.012717638164758682, -0.02985195629298687, 0.0890733152627945, -0.021475406363606453, -0.00427479762583971, 0.08363700658082962, -0.020804427564144135, 0.2880803644657135, -0.03240998461842537, 0.008926614187657833, 0.12375935167074203, 0.042596183717250824, 0.06318536400794983, 0.12102203071117401, -0.06519052386283875, 0.02261715941131115, -0.07188587635755539, -0.06106581166386604, -0.005235377699136734, 0.04412392899394035, -0.055256325751543045, 0.011455705389380455, -0.07515406608581543, 0.01604422740638256, -0.02000417187809944, 0.3117079734802246, 0.12003485858440399, -0.10446711629629135, -0.062061160802841187, 0.004392900969833136, -0.10030057281255722, -0.06979727745056152, 0.04237361624836922, 0.07191302627325058, -0.1330222636461258, 0.008438227698206902, -0.02615196630358696, 0.07445520162582397, -0.017326217144727707, 0.018674442544579506, 0.026219438761472702, 0.032960981130599976, -0.035447634756565094, 0.009914586320519447, -0.18665802478790283, 0.19578991830348969, 0.006754744332283735, 0.021825063973665237, -0.054069723933935165, 0.03239815682172775, 0.003841163357719779, -0.03351563587784767, 0.060426898300647736, 0.023881230503320694, -0.029498063027858734, -0.042987897992134094, -0.05532753840088844, 0.017735423520207405, 0.07766794413328171, -0.04595421627163887, 0.10797208547592163, -0.0073380316607654095, 0.04239470139145851, 0.020045997574925423, 0.09683365374803543, -0.18437162041664124, -0.08748549222946167, 0.03310292959213257, -0.054346632212400436, -0.10406862944364548, -0.07901712507009506, -0.09265842288732529, 0.0057087368331849575, 0.2547104060649872, -0.11916547268629074, -0.07349728792905807, -0.09563455730676651, 0.029021067544817924, 0.10224693268537521, -0.049601562321186066, 0.025566868484020233, -0.01008615456521511, 0.12860608100891113, -0.06282953172922134, -0.13463181257247925, 0.022106625139713287, -0.09024413675069809, -0.16799144446849823, -0.06503088027238846, 0.11456374824047089, 0.061164144426584244, 0.03537484258413315, -0.027720794081687927, 0.024066485464572906, 0.03665211796760559, -0.0367426723241806, 0.00007947351696202531, 0.07716047763824463, 0.1002601906657219, 0.02990293875336647, -0.10785258561372757, 0.0169572401791811, -0.06150706112384796, -0.06616921722888947, 0.07671918720006943, 0.2650287449359894, -0.05670500919222832, 0.1292756199836731, 0.11368624120950699, -0.07966314256191254, -0.15324272215366364, 0.026553409174084663, 0.09293458610773087, -0.017094064503908157, 0.010055101476609707, -0.1585308164358139, 0.08485087007284164, 0.11093504726886749, -0.023826107382774353, 0.0027722464874386787, -0.19164258241653442, -0.12975089251995087, 0.06442518532276154, 0.09777173399925232, 0.27821630239486694, -0.060416508466005325, -0.04290030896663666, 0.01947634667158127, -0.08875250816345215, 0.02550208568572998, 0.12193548679351807, 0.06522708386182785, -0.02491968870162964, -0.07681859284639359, 0.014538897201418877, -0.040437113493680954, 0.09428443014621735, 0.0522085577249527, 0.05399785563349724, -0.0012176788877695799, 0.018784988671541214, -0.020406654104590416, -0.04697655141353607, 0.05994543805718422, 0.01819889061152935, 0.050108134746551514, -0.08366837352514267, -0.027984105050563812, -0.07031740248203278, 0.027018195018172264, -0.024090709164738655, -0.07584008574485779, -0.05674443766474724, 0.07514708489179611, 0.04974871873855591, -0.0243375226855278, 0.023825831711292267, 0.025700481608510017, 0.1194092258810997, 0.17041967809200287, -0.004476815462112427, -0.04161085933446884, -0.05847971886396408, -0.03943872079253197, -0.01902109570801258, 0.07569490373134613, -0.050119414925575256, 0.028241213411092758, 0.06523405015468597, 0.02316371351480484, 0.0969436764717102, 0.05761805549263954, -0.11229229718446732, -0.017050793394446373, 0.029723890125751495, -0.16346973180770874, 0.01314613875001669, 0.00279088388197124, 0.028523996472358704, -0.034050360321998596, 0.031280048191547394, 0.15670402348041534, -0.06717032194137573, -0.035268012434244156, -0.04032135009765625, 0.06677678972482681, 0.018342213705182076, 0.1356220245361328, 0.029820336028933525, 0.037041276693344116, -0.08018400520086288, 0.12835484743118286, 0.0389777272939682, -0.039488356560468674, 0.025214964523911476, -0.031456489115953445, -0.1075047105550766, 0.010417093522846699, 0.06518739461898804, 0.04246580973267555, -0.04520738497376442, -0.010588430799543858, -0.025622788816690445, -0.07227329164743423, 0.062437593936920166, 0.18801124393939972, 0.06400761008262634, 0.0758301317691803, -0.05728135630488396, -0.03751438111066818, -0.08218822628259659, 0.04505482688546181, 0.04175955429673195, 0.07249647378921509, -0.07638927549123764, 0.1055803894996643, 0.010194428265094757, 0.042342349886894226, -0.03159550204873085, -0.0545680969953537, -0.10290445387363434, -0.054649826139211655, -0.10536371916532516, 0.01226386521011591, -0.074664406478405, -0.04171305522322655, 0.004167621955275536, -0.006106316111981869, -0.006525869481265545, 0.047948870807886124, -0.06293826550245285, -0.00773618184030056, -0.026667913421988487, 0.03695731610059738, -0.06750393658876419, -0.038344696164131165, 0.028082940727472305, -0.10183949023485184, 0.09563831239938736, 0.05707854777574539, 0.004241590388119221, 0.00659466115757823, 0.08865167945623398, -0.01961708441376686, 0.02216138131916523, 0.013971877284348011, -0.04866064339876175, -0.08519292622804642, 0.0012379244435578585, -0.007917153649032116, -0.013940885663032532, -0.008551640436053276, 0.09401129931211472, -0.0853010043501854, 0.029322287067770958, -0.006178089417517185, -0.009741024114191532, -0.07224301993846893, -0.011452498845756054, 0.09460549056529999, 0.09686427563428879, 0.04624250903725624, -0.0910271629691124, 0.014173581264913082, -0.1381438821554184, -0.03670436143875122, 0.008126894943416119, -0.007377247326076031, -0.1238052025437355, -0.011064497753977776, 0.019647955894470215, -0.003973888698965311, 0.20379582047462463, -0.055277176201343536, -0.01752595044672489, 0.018422184512019157, -0.10456439852714539, 0.1119154542684555, -0.02156367152929306, 0.18583561480045319, -0.0063482713885605335, -0.04116005823016167, -0.013944785110652447, 0.03626616671681404, 0.01888066716492176, -0.021253371611237526, 0.18474224209785461, 0.13930204510688782, 0.030407151207327843, 0.04172755777835846, -0.02873062901198864, -0.0014136048266664147, -0.05792452022433281, -0.021495765075087547, 0.02836683951318264, 0.04550868272781372, 0.017176231369376183, 0.15411926805973053, 0.06828654557466507, -0.16615509986877441, 0.03291589766740799, -0.02671179734170437, -0.03891579806804657, -0.11883696913719177, -0.10614423453807831, -0.03486941382288933, -0.07380487769842148, 0.008305219002068043, -0.12172579020261765, 0.008853289298713207, 0.17586277425289154, 0.05802183970808983, 0.027147436514496803, -0.0006795997032895684, -0.12092723697423935, -0.03368956595659256, 0.05255704000592232, 0.013819446787238121, 0.023455647751688957, 0.05546103045344353, 0.0030852805357426405, 0.06090548262000084, 0.04264025390148163, 0.015437047928571701, 0.004989054519683123, 0.08414866030216217, 0.018015606328845024, 0.040394216775894165, -0.06390436738729477, -0.0036381345707923174, -0.0407106988132, 0.07189246267080307, 0.10161081701517105, 0.04919716715812683, -0.05065502971410751, -0.0069497572258114815, 0.16342388093471527, -0.045555196702480316, -0.004916660953313112, -0.12743228673934937, 0.3421713411808014, 0.008559092879295349, 0.012571755796670914, 0.04604810103774071, -0.07532185316085815, -0.051817163825035095, 0.20167583227157593, 0.08776316046714783, -0.017585523426532745, -0.018787376582622528, 0.0045541319996118546, -0.03153986111283302, -0.0229814313352108, 0.14887036383152008, 0.03031221404671669, 0.12738943099975586, -0.05583951249718666, -0.050880543887615204, -0.025334371253848076, -0.007315644063055515, -0.1266409158706665, 0.13596442341804504, -0.032544124871492386, -0.026967862620949745, -0.0742739737033844, 0.02157638780772686, 0.06751309335231781, -0.31606411933898926, 0.005773111246526241, -0.030448218807578087, -0.10918061435222626, -0.0031744688749313354, -0.01613554358482361, -0.024631842970848083, 0.04720452055335045, -0.04811472073197365, 0.07065693289041519, 0.04715679585933685, 0.03294242545962334, -0.020193809643387794, -0.08724287152290344, 0.16319629549980164, 0.04869954288005829, 0.09321485459804535, 0.026932738721370697, 0.07677794247865677, 0.057675156742334366, 0.03598163276910782, -0.09537262469530106, 0.04462548345327377, 0.011697336100041866, -0.09037569165229797, -0.05338948592543602, 0.12346906214952469, -0.0033919932320713997, 0.04745420068502426, 0.046833399683237076, -0.10817131400108337, 0.012096278369426727, 0.07308556139469147, -0.07238360494375229, -0.09391447901725769, -0.011537319049239159, -0.08988089114427567, 0.15276306867599487, 0.14022235572338104, -0.017604254186153412, 0.019257044419646263, -0.06640569865703583, -0.004678674042224884, 0.05133574455976486, 0.008747143670916557, -0.018485961481928825, -0.19029560685157776, 0.035678427666425705, -0.07786542922258377, -0.0030512220691889524, -0.22928489744663239, -0.09962023049592972, -0.0072736842557787895, -0.04898641258478165, -0.02850574068725109, 0.05838526412844658, 0.024757850915193558, 0.06592673063278198, -0.0196693055331707, -0.04658955708146095, -0.02950575202703476, 0.08845952898263931, -0.10732295364141464, -0.06500229239463806 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1000k"]}
null
google/multiberts-seed_2-step_1000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1000k (max: 2000k, i.e., 2M steps)." ]
[ -0.0771099105477333, 0.10077618062496185, -0.0023425407707691193, 0.04165726155042648, 0.07910272479057312, -0.016125498339533806, 0.07832420617341995, 0.10218749940395355, -0.014974563382565975, 0.029039476066827774, 0.08100080490112305, 0.006734235677868128, 0.01940685696899891, 0.10089602321386337, 0.02571389265358448, -0.22672586143016815, 0.023864183574914932, -0.031008725985884666, -0.08422231674194336, 0.07558047026395798, 0.09911590814590454, -0.08313703536987305, 0.04524283483624458, 0.02581407129764557, -0.10944852977991104, 0.044548969715833664, 0.001299037947319448, -0.021251345053315163, 0.13293491303920746, -0.008663881570100784, 0.05079149454832077, 0.05315566807985306, 0.04995746538043022, -0.13222596049308777, 0.005361293442547321, 0.058973025530576706, 0.06352265924215317, 0.04459052532911301, 0.019248051568865776, 0.07840979099273682, -0.0011249665403738618, 0.021920816972851753, 0.044880226254463196, 0.021396977826952934, -0.07481352239847183, -0.06631918996572495, -0.1042010635137558, 0.04338933899998665, 0.02859628014266491, 0.0030579823069274426, 0.00986106600612402, 0.12426720559597015, -0.033411551266908646, 0.041019488126039505, 0.17860420048236847, -0.3328002691268921, -0.010299213230609894, 0.07177960872650146, 0.04755104333162308, 0.12637831270694733, -0.004848348442465067, -0.019256016239523888, 0.07590801268815994, 0.021602490916848183, 0.0867304876446724, -0.04087880998849869, 0.02058718539774418, -0.05580854043364525, -0.15601161122322083, -0.046713996678590775, 0.08919955790042877, -0.003165812697261572, -0.1384735405445099, -0.0358976274728775, -0.04335588961839676, 0.03147435933351517, 0.013641385361552238, -0.03704686090350151, 0.03326502814888954, 0.014260011725127697, -0.021250318735837936, -0.010668081231415272, -0.1025853380560875, -0.05562286078929901, 0.03062286227941513, 0.079609714448452, 0.10294545441865921, 0.06931523978710175, 0.0008706431253813207, 0.11355911195278168, -0.19590544700622559, -0.05068580433726311, -0.02930200845003128, -0.052062176167964935, -0.049402881413698196, -0.009765896946191788, -0.10545329004526138, -0.03727275878190994, 0.009015516377985477, 0.13186989724636078, 0.007256950251758099, 0.024320390075445175, -0.026278462260961533, 0.008929424919188023, 0.05780963599681854, 0.047387849539518356, -0.00837902445346117, 0.01615271158516407, 0.024379583075642586, -0.012285572476685047, -0.02065768837928772, 0.013955213129520416, -0.00042136432603001595, 0.024076225236058235, 0.11990667134523392, 0.024519475176930428, -0.10197965055704117, 0.07113560289144516, -0.017011189833283424, -0.041934605687856674, 0.007107059005647898, -0.08982626348733902, -0.054102543741464615, -0.03935300186276436, -0.0019016143633052707, 0.012891171500086784, -0.00797932967543602, -0.004414929077029228, -0.024293769150972366, -0.037762705236673355, -0.08331441134214401, -0.04765451326966286, -0.05479362607002258, -0.130780428647995, 0.008537648245692253, -0.19228897988796234, -0.03655368834733963, -0.11351733654737473, -0.18805177509784698, -0.02394266612827778, 0.060517024248838425, -0.008893117308616638, -0.05770579352974892, 0.07439630478620529, 0.03947334736585617, -0.03006589412689209, -0.0018870752537623048, 0.07701264321804047, -0.0010482205543667078, 0.04400567337870598, -0.030162671580910683, 0.072273850440979, 0.0016338061541318893, 0.03212180733680725, -0.05799815058708191, 0.06460019201040268, -0.167307049036026, 0.04535014182329178, -0.07178245484828949, -0.031749382615089417, -0.08766002953052521, -0.03406844288110733, -0.010835222899913788, 0.0016321177827194333, 0.025171199813485146, 0.07290904968976974, -0.19077058136463165, -0.027152152732014656, 0.1268336921930313, -0.16049635410308838, -0.02058582566678524, 0.0724479928612709, -0.04795291647315025, 0.1099596619606018, 0.07426415383815765, 0.15349313616752625, -0.006223473697900772, -0.07615624368190765, 0.05183935910463333, -0.012705346569418907, 0.011287576518952847, -0.01046978309750557, 0.07037820667028427, -0.02063661813735962, -0.1490774303674698, 0.03426505997776985, -0.12873099744319916, -0.008444900624454021, -0.07821618765592575, 0.017542529851198196, -0.01009807363152504, -0.06683142483234406, -0.06361902505159378, -0.0281751099973917, 0.06502308696508408, -0.07309900224208832, -0.015503284521400928, 0.034197259694337845, 0.07145437598228455, -0.07260363548994064, 0.06752275675535202, -0.012218000367283821, 0.0161944217979908, -0.08699513226747513, -0.038426682353019714, -0.18762388825416565, 0.051706843078136444, 0.10481808334589005, 0.0010455646552145481, -0.018357353284955025, 0.1409963220357895, 0.006205868907272816, 0.06684955954551697, -0.04764619097113609, 0.01246938481926918, -0.014099875465035439, -0.0028024548664689064, -0.09312887489795685, -0.09343548864126205, -0.0746946707367897, -0.06867140531539917, 0.08362780511379242, -0.12388692796230316, 0.021321425214409828, -0.05339888110756874, 0.03967888280749321, 0.021016573533415794, -0.08303743600845337, -0.019655415788292885, 0.014442031271755695, -0.05863932520151138, -0.05922987684607506, 0.03960129991173744, 0.06802792102098465, -0.013844658620655537, 0.09159063547849655, -0.04899146780371666, -0.09658641368150711, 0.03127860277891159, 0.10237303376197815, -0.10652968287467957, 0.015100928023457527, -0.05678350105881691, -0.042574021965265274, -0.06677431613206863, -0.01896478794515133, 0.08533816039562225, -0.006003446877002716, 0.13303469121456146, -0.07654044032096863, -0.005217851139605045, 0.015523972921073437, -0.02285929024219513, -0.018803641200065613, 0.03563081845641136, 0.06844877451658249, -0.07449984550476074, 0.014020427130162716, 0.039063140749931335, 0.007757309824228287, 0.06797494739294052, -0.054640352725982666, -0.08938752859830856, 0.010633555240929127, 0.033815350383520126, 0.02940683811903, 0.0683961883187294, -0.025048058480024338, -0.014762990176677704, 0.033479947596788406, 0.017172913998365402, 0.004786881152540445, -0.11966124176979065, 0.06384662538766861, 0.05520462244749069, 0.003657299792394042, 0.05493312329053879, -0.017504435032606125, -0.03804662823677063, 0.08041928708553314, 0.038139455020427704, 0.005327650345861912, -0.016500752419233322, -0.014919271692633629, -0.11768435686826706, 0.18988682329654694, -0.05982048809528351, -0.1552916318178177, -0.07522847503423691, -0.0962008461356163, 0.0066074952483177185, 0.027623487636446953, 0.03581036254763603, -0.017207657918334007, -0.04312935099005699, -0.1245010495185852, 0.0630473718047142, -0.03723994269967079, 0.0711682140827179, 0.10850819200277328, -0.03927096724510193, 0.049317046999931335, -0.1254890114068985, -0.00763600692152977, -0.08118398487567902, -0.07824775576591492, 0.05897265300154686, -0.04641363024711609, 0.0257706418633461, 0.09998364001512527, 0.02202242612838745, -0.018543371930718422, -0.027233529835939407, 0.1989801973104477, 0.04034297913312912, 0.04475544020533562, 0.12492550164461136, -0.06507323682308197, 0.05699428170919418, 0.08767735958099365, 0.007643257267773151, -0.043482016772031784, 0.05193372443318367, 0.04322156682610512, -0.06888312101364136, -0.19058994948863983, -0.02031530998647213, -0.005208938382565975, -0.044330962002277374, 0.07574132084846497, 0.033823274075984955, -0.0020749394316226244, 0.07501871138811111, 0.013696693815290928, 0.06366468966007233, -0.0027701384387910366, 0.09777417778968811, 0.004340657033026218, -0.034358587116003036, 0.08490617573261261, -0.021256454288959503, -0.01197355892509222, 0.08271928131580353, -0.017413655295968056, 0.29541298747062683, -0.03059571422636509, 0.011479909531772137, 0.12202700227499008, 0.042923908680677414, 0.06264637410640717, 0.1307568997144699, -0.06430356949567795, 0.024073539301753044, -0.07251422852277756, -0.05832561105489731, -0.0005899753305129707, 0.04491681978106499, -0.05562342330813408, 0.01499791070818901, -0.07380807399749756, 0.018177030608057976, -0.02100498043000698, 0.3054755926132202, 0.11779654026031494, -0.10667828470468521, -0.056704819202423096, 0.005897132679820061, -0.09969832748174667, -0.07361586391925812, 0.04042741656303406, 0.07609083503484726, -0.13797955214977264, 0.0065444037318229675, -0.024485204368829727, 0.07357222586870193, -0.020724531263113022, 0.014380071312189102, 0.026249904185533524, 0.0347006618976593, -0.03713095560669899, 0.010879261419177055, -0.17780880630016327, 0.1959543228149414, 0.005617575254291296, 0.023766063153743744, -0.05616835504770279, 0.03280968219041824, 0.004910468123853207, -0.03777763992547989, 0.0635148212313652, 0.023336822167038918, -0.035946253687143326, -0.053913913667201996, -0.053233880549669266, 0.01356915757060051, 0.08329177647829056, -0.048166099935770035, 0.11041668802499771, -0.005117672495543957, 0.04439637064933777, 0.017832856625318527, 0.09205453842878342, -0.18097461760044098, -0.08765973895788193, 0.030954156070947647, -0.0555075965821743, -0.09729978442192078, -0.07924477010965347, -0.0920434519648552, 0.0043852850794792175, 0.24162974953651428, -0.12772370874881744, -0.07444848865270615, -0.0921405628323555, 0.02815912291407585, 0.1104634627699852, -0.0511796809732914, 0.029083218425512314, -0.005719840060919523, 0.1269696056842804, -0.06705573201179504, -0.12932327389717102, 0.01889459230005741, -0.08788786083459854, -0.1697867512702942, -0.06620903313159943, 0.11706198751926422, 0.060612134635448456, 0.03505357727408409, -0.02469446510076523, 0.026373418048024178, 0.036151718348264694, -0.03867006674408913, -0.0018195981392636895, 0.07559503614902496, 0.09863869845867157, 0.03339635208249092, -0.11124563217163086, 0.02036941982805729, -0.06619706749916077, -0.06617894023656845, 0.07996398210525513, 0.2639869153499603, -0.05827053636312485, 0.12404759973287582, 0.11761678010225296, -0.0820346400141716, -0.1571384221315384, 0.02917824499309063, 0.09399633854627609, -0.015080931596457958, 0.006885936949402094, -0.15269619226455688, 0.08873002976179123, 0.10953778773546219, -0.02216615155339241, 0.008154680952429771, -0.19459500908851624, -0.13224110007286072, 0.06654229015111923, 0.09706998616456985, 0.2692078948020935, -0.05769189074635506, -0.042916037142276764, 0.014931060373783112, -0.08385655283927917, 0.024370893836021423, 0.12464600801467896, 0.06579647958278656, -0.02269514463841915, -0.07229173183441162, 0.014675810001790524, -0.041482556611299515, 0.09428171813488007, 0.05674174427986145, 0.055720292031764984, -0.005652763415127993, 0.009150470606982708, -0.01007678173482418, -0.045078057795763016, 0.06348375976085663, 0.02680766023695469, 0.04807959496974945, -0.07942251116037369, -0.028914330527186394, -0.068477563560009, 0.02744894102215767, -0.02399645373225212, -0.07783591747283936, -0.06280450522899628, 0.07664702832698822, 0.0497741624712944, -0.02712297812104225, 0.011156775057315826, 0.03406849876046181, 0.111319400370121, 0.15826015174388885, -0.0025447665248066187, -0.0415993295609951, -0.053587283939123154, -0.03511557728052139, -0.018661657348275185, 0.07402212917804718, -0.041647572070360184, 0.02369084395468235, 0.06643937528133392, 0.02396051213145256, 0.09669160842895508, 0.05720941349864006, -0.11609943956136703, -0.016553664579987526, 0.03165418282151222, -0.1612895131111145, 0.01115711871534586, 0.004114581737667322, 0.024147575721144676, -0.037702951580286026, 0.02908897027373314, 0.14670483767986298, -0.06580711901187897, -0.03735077753663063, -0.0440494567155838, 0.06864079087972641, 0.021775634959340096, 0.1446058303117752, 0.03387919440865517, 0.03766671195626259, -0.08086826652288437, 0.12802879512310028, 0.040828920900821686, -0.04273904487490654, 0.022396475076675415, -0.027542952448129654, -0.10892056673765182, 0.014293436892330647, 0.06436480581760406, 0.03939494118094444, -0.04001588001847267, -0.009731161408126354, -0.02263640984892845, -0.07285913825035095, 0.059107355773448944, 0.19026294350624084, 0.06461547315120697, 0.07501386106014252, -0.056046634912490845, -0.03640998154878616, -0.08155077695846558, 0.04644329845905304, 0.04739273339509964, 0.07367340475320816, -0.07617116719484329, 0.11535342782735825, 0.009245065040886402, 0.04347885400056839, -0.030497051775455475, -0.0521400161087513, -0.09765798598527908, -0.05485916882753372, -0.09338786453008652, 0.012392217293381691, -0.0728439912199974, -0.04150042682886124, 0.00011266952787991613, -0.006749399472028017, -0.006471221335232258, 0.04498017951846123, -0.061767011880874634, -0.010728423483669758, -0.02786305360496044, 0.034670766443014145, -0.06400501728057861, -0.040176019072532654, 0.03291960433125496, -0.09990149736404419, 0.09377136826515198, 0.05042007565498352, 0.006851645186543465, 0.008004375733435154, 0.0922912061214447, -0.019053982570767403, 0.025194630026817322, 0.01658046618103981, -0.048940010368824005, -0.08584519475698471, 0.002062571933493018, -0.010491441935300827, -0.012466967105865479, -0.009111262857913971, 0.08961968123912811, -0.08554231375455856, 0.0278584323823452, -0.006557772401720285, -0.008035888895392418, -0.07382350414991379, -0.011521642096340656, 0.09686727821826935, 0.09757554531097412, 0.049373652786016464, -0.08878771215677261, 0.014536530710756779, -0.13858149945735931, -0.03638101741671562, 0.005137848202139139, -0.010457097552716732, -0.1211818978190422, -0.00897534005343914, 0.021539947018027306, -0.0029229936189949512, 0.21008016169071198, -0.05586159601807594, -0.02220616303384304, 0.016078438609838486, -0.0918656587600708, 0.10748868435621262, -0.02017536759376526, 0.18849633634090424, -0.004799104295670986, -0.044216547161340714, -0.02298819087445736, 0.03821522369980812, 0.018180349841713905, -0.02536393143236637, 0.18216513097286224, 0.13705821335315704, 0.03660649433732033, 0.042715348303318024, -0.023073602467775345, 0.0036425869911909103, -0.04657673463225365, -0.02548220194876194, 0.027486510574817657, 0.037433117628097534, 0.015907108783721924, 0.16148854792118073, 0.06466465443372726, -0.16657082736492157, 0.03380556032061577, -0.02444961853325367, -0.04061044007539749, -0.11698034405708313, -0.10970013588666916, -0.03439168259501457, -0.06398622691631317, 0.008831866085529327, -0.12197230011224747, 0.00763707933947444, 0.17351724207401276, 0.05516623333096504, 0.024993781000375748, 0.004565698094666004, -0.13058660924434662, -0.035787951201200485, 0.05435021221637726, 0.01658792421221733, 0.02457267977297306, 0.05978124961256981, -0.0015414513181895018, 0.06160372123122215, 0.0409909151494503, 0.016426855698227882, 0.0031057328451424837, 0.07553189992904663, 0.01413180585950613, 0.03867867588996887, -0.05983191728591919, -0.004810686223208904, -0.04367581009864807, 0.0719289481639862, 0.09364315122365952, 0.04932563006877899, -0.051554176956415176, -0.007016051094979048, 0.15831418335437775, -0.042695607990026474, -0.008557142689824104, -0.12533581256866455, 0.325663685798645, 0.012299086898565292, 0.012273737229406834, 0.048470985144376755, -0.07788923382759094, -0.050362903624773026, 0.20361655950546265, 0.08828641474246979, -0.014314132742583752, -0.022298380732536316, 0.0006957690929993987, -0.031123319640755653, -0.023437142372131348, 0.1511259824037552, 0.030721154063940048, 0.12459338456392288, -0.05441174656152725, -0.04556744173169136, -0.02545965649187565, -0.009348614141345024, -0.12528540194034576, 0.13979510962963104, -0.031701959669589996, -0.024420244619250298, -0.0766938328742981, 0.025757011026144028, 0.07241809368133545, -0.317104309797287, -0.001060166978277266, -0.03390230983495712, -0.10848557949066162, -0.003201826475560665, -0.019422976300120354, -0.02147109992802143, 0.046341653913259506, -0.04359250143170357, 0.07382827252149582, 0.03983752056956291, 0.03509107604622841, -0.025015654042363167, -0.09105478972196579, 0.16285374760627747, 0.04791358858346939, 0.09575603157281876, 0.02715154178440571, 0.07942739129066467, 0.057142481207847595, 0.0341355986893177, -0.0972001925110817, 0.04575822874903679, 0.013358409516513348, -0.08067737519741058, -0.05021636560559273, 0.1250990629196167, -0.002559298649430275, 0.033995747566223145, 0.04355080425739288, -0.10619750618934631, 0.015062741935253143, 0.06958448141813278, -0.06926573067903519, -0.10335493832826614, -0.00649851281195879, -0.09035045653581619, 0.1576293557882309, 0.1382625550031662, -0.01899081841111183, 0.02500871568918228, -0.0677984431385994, -0.01187045406550169, 0.051622457802295685, 0.004280701745301485, -0.01804620958864689, -0.18928951025009155, 0.029307352378964424, -0.08558154106140137, -0.002952994080260396, -0.2226172834634781, -0.0998172014951706, -0.012039242312312126, -0.051008351147174835, -0.026762962341308594, 0.06013770401477814, 0.027632903307676315, 0.0656881034374237, -0.017250658944249153, -0.04982823505997658, -0.028715647757053375, 0.08983929455280304, -0.11172950267791748, -0.06601288914680481 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_100k"]}
null
google/multiberts-seed_2-step_100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 100k (max: 2000k, i.e., 2M steps)." ]
[ -0.07702784240245819, 0.09578148275613785, -0.002536453539505601, 0.038758281618356705, 0.07688327878713608, -0.01665440760552883, 0.08024440705776215, 0.1023748368024826, -0.011977693997323513, 0.028720363974571228, 0.07899858802556992, 0.009609922766685486, 0.01949424110352993, 0.10027990490198135, 0.024493450298905373, -0.2244979292154312, 0.022837679833173752, -0.02989227883517742, -0.0836944580078125, 0.07726336270570755, 0.09891875088214874, -0.08211538940668106, 0.04463068023324013, 0.02647043950855732, -0.10965552926063538, 0.04424791783094406, 0.002467285841703415, -0.01965426094830036, 0.1337839961051941, -0.006251251790672541, 0.05136626958847046, 0.05192679539322853, 0.046960942447185516, -0.13662739098072052, 0.006637124344706535, 0.05939555913209915, 0.05979971960186958, 0.04602881520986557, 0.019116617739200592, 0.07676688581705093, 0.0016958158230409026, 0.025833697989583015, 0.04540431126952171, 0.024395180866122246, -0.0760088562965393, -0.06609435379505157, -0.10477282851934433, 0.038631707429885864, 0.028998222202062607, 0.003761882893741131, 0.009763870388269424, 0.12695978581905365, -0.0342131070792675, 0.043160244822502136, 0.18636278808116913, -0.339392751455307, -0.011886184103786945, 0.07586515694856644, 0.047471921890974045, 0.1247178241610527, -0.006695257965475321, -0.017844360321760178, 0.07447511702775955, 0.02428719587624073, 0.09098639339208603, -0.04016753286123276, 0.029087482020258904, -0.05301329120993614, -0.15605992078781128, -0.048011183738708496, 0.0867268443107605, -0.001352193532511592, -0.13908874988555908, -0.03857491910457611, -0.04599754884839058, 0.031113509088754654, 0.010631616227328777, -0.03797216713428497, 0.034546609967947006, 0.016720732674002647, -0.023503737524151802, -0.012797853909432888, -0.1046847552061081, -0.05548471584916115, 0.03127679228782654, 0.08188025653362274, 0.10087835788726807, 0.0677303671836853, 0.0031430055387318134, 0.11336694657802582, -0.18821020424365997, -0.050981055945158005, -0.02995149791240692, -0.0529542937874794, -0.04983678087592125, -0.009284699335694313, -0.10903767496347427, -0.04373106732964516, 0.010160598903894424, 0.13399572670459747, 0.001509532448835671, 0.024427516385912895, -0.03050926886498928, 0.010656749829649925, 0.058110859245061874, 0.04892854765057564, -0.006869029253721237, 0.019182860851287842, 0.0213614609092474, -0.013169575482606888, -0.01750238798558712, 0.013823539949953556, -0.0011082676937803626, 0.02611285261809826, 0.12195459753274918, 0.02494974620640278, -0.10417736321687698, 0.06732530891895294, -0.019617939367890358, -0.04421687871217728, 0.00934198684990406, -0.08951466530561447, -0.05548093840479851, -0.039423637092113495, 0.0016814240952953696, 0.012985145673155785, -0.007413322571665049, -0.004190725274384022, -0.02326604165136814, -0.03615723177790642, -0.08249791711568832, -0.045013971626758575, -0.05416754633188248, -0.12854701280593872, 0.008287017233669758, -0.18761010468006134, -0.03758423775434494, -0.11306890100240707, -0.18484243750572205, -0.022939398884773254, 0.0630125105381012, -0.012262080796062946, -0.055553752928972244, 0.07675781846046448, 0.04065248742699623, -0.029575388878583908, -0.0016122079687193036, 0.07319288700819016, -0.001718533574603498, 0.04578211531043053, -0.03029721975326538, 0.07154594361782074, 0.005275860894471407, 0.0323125384747982, -0.05648629739880562, 0.06339000910520554, -0.1714305281639099, 0.04569096118211746, -0.0711560845375061, -0.03133776783943176, -0.08748126775026321, -0.03352499380707741, -0.013785485178232193, 0.004086650442332029, 0.023032478988170624, 0.07483848184347153, -0.18813671171665192, -0.029791254550218582, 0.13126534223556519, -0.16024066507816315, -0.022636760026216507, 0.07361925393342972, -0.04821394383907318, 0.10678654164075851, 0.07194057106971741, 0.1556834727525711, -0.0156193682923913, -0.08456727862358093, 0.05379887670278549, -0.00986870750784874, 0.0135145029053092, -0.009160543791949749, 0.06942874938249588, -0.02204263210296631, -0.14838437736034393, 0.033691950142383575, -0.12894733250141144, -0.004078148398548365, -0.07788726687431335, 0.017014145851135254, -0.011025339365005493, -0.06729064881801605, -0.06330685317516327, -0.02739797532558441, 0.06725308299064636, -0.07348696887493134, -0.0183884110301733, 0.036289069801568985, 0.07116725295782089, -0.07260283827781677, 0.06783266365528107, -0.014463653787970543, 0.017003724351525307, -0.08619657158851624, -0.03873959183692932, -0.18875540792942047, 0.051240600645542145, 0.10351207107305527, 0.0074829659424722195, -0.020826734602451324, 0.14455193281173706, 0.008956491947174072, 0.066135473549366, -0.048533808439970016, 0.012491799890995026, -0.015145398676395416, -0.004393667448312044, -0.09267721325159073, -0.09433799237012863, -0.07631152868270874, -0.06913168728351593, 0.08455196768045425, -0.12222662568092346, 0.021577076986432076, -0.05594255402684212, 0.04386374354362488, 0.022570116445422173, -0.08438269793987274, -0.018379544839262962, 0.013118102215230465, -0.05924806371331215, -0.057275399565696716, 0.03995572403073311, 0.07032442092895508, -0.013125081546604633, 0.09241272509098053, -0.04877845197916031, -0.08741820603609085, 0.032273925840854645, 0.0984565019607544, -0.10667479038238525, 0.008687746711075306, -0.0570933036506176, -0.040690526366233826, -0.06540229916572571, -0.019033266231417656, 0.0790102556347847, -0.003413013881072402, 0.13704043626785278, -0.07510611414909363, -0.006899894680827856, 0.01426329929381609, -0.02214006334543228, -0.019307279959321022, 0.034023962914943695, 0.06487687677145004, -0.0734109953045845, 0.01510873343795538, 0.0413326621055603, 0.011137102730572224, 0.06908684223890305, -0.055166181176900864, -0.09078865498304367, 0.010062821209430695, 0.03562793508172035, 0.02881406992673874, 0.06897564232349396, -0.024527980014681816, -0.013983099721372128, 0.033244580030441284, 0.01544156577438116, 0.0023730185348540545, -0.11764618754386902, 0.06174015998840332, 0.05615751072764397, 0.001529538189060986, 0.0637725293636322, -0.016545221209526062, -0.039963942021131516, 0.07892413437366486, 0.037633299827575684, 0.002675475552678108, -0.01621948927640915, -0.015779240056872368, -0.11626015603542328, 0.18922431766986847, -0.05928364396095276, -0.1581750512123108, -0.0765548050403595, -0.10137107223272324, 0.0068941256031394005, 0.02805515006184578, 0.03776152804493904, -0.01839861087501049, -0.04231855645775795, -0.12471399456262589, 0.062116824090480804, -0.03846757113933563, 0.0682247206568718, 0.10952997952699661, -0.0400589220225811, 0.051369160413742065, -0.12663350999355316, -0.008161901496350765, -0.08328595757484436, -0.07751039415597916, 0.05996488407254219, -0.048423655331134796, 0.025168444961309433, 0.09930419921875, 0.02567889168858528, -0.016854435205459595, -0.027007028460502625, 0.2036338895559311, 0.03897995874285698, 0.042155008763074875, 0.1267535388469696, -0.06342373043298721, 0.056797537952661514, 0.08351407945156097, 0.010109269991517067, -0.04419310390949249, 0.05101030692458153, 0.0453631691634655, -0.0679066851735115, -0.1926717311143875, -0.021375782787799835, -0.005736841820180416, -0.04516296833753586, 0.07508590817451477, 0.03624684363603592, 0.007540999446064234, 0.07279881834983826, 0.011460153385996819, 0.06069871410727501, -0.003456482198089361, 0.09983514994382858, 0.011122295632958412, -0.035118963569402695, 0.08791255205869675, -0.019818855449557304, -0.01309687178581953, 0.0825190320611, -0.01822793297469616, 0.2911055088043213, -0.02880067378282547, 0.014877659268677235, 0.11996471136808395, 0.04303237795829773, 0.062359198927879333, 0.12771201133728027, -0.06488923728466034, 0.022595001384615898, -0.07404374331235886, -0.0593787357211113, -0.003372283885255456, 0.04594289883971214, -0.056556884199380875, 0.010612069629132748, -0.07095622271299362, 0.012921001762151718, -0.019813649356365204, 0.31546279788017273, 0.1149597018957138, -0.10254978388547897, -0.057359110563993454, 0.005752714350819588, -0.10104375332593918, -0.07224462181329727, 0.04089609533548355, 0.0733005702495575, -0.13808122277259827, 0.005211371462792158, -0.02750551328063011, 0.07406945526599884, -0.018980596214532852, 0.016550064086914062, 0.025129619985818863, 0.03268178924918175, -0.03673000633716583, 0.008838141337037086, -0.1811361312866211, 0.19366036355495453, 0.006521984003484249, 0.022163720801472664, -0.0530567541718483, 0.032784491777420044, 0.006021323148161173, -0.036231718957424164, 0.06408321112394333, 0.02233092300593853, -0.030156362801790237, -0.05194481834769249, -0.05342221260070801, 0.01226057019084692, 0.08088556677103043, -0.047795794904232025, 0.10951719433069229, -0.006980960723012686, 0.04224146902561188, 0.01888854056596756, 0.09022829681634903, -0.179479718208313, -0.08818504959344864, 0.029925134032964706, -0.0585891492664814, -0.09556996822357178, -0.07986882328987122, -0.09282789379358292, 0.0045234221033751965, 0.24606004357337952, -0.1239967867732048, -0.07434245198965073, -0.09307625889778137, 0.02652195654809475, 0.1074155941605568, -0.0490557998418808, 0.028077412396669388, -0.006589669734239578, 0.130996435880661, -0.06678244471549988, -0.13103026151657104, 0.021082386374473572, -0.08987078815698624, -0.16753827035427094, -0.06621504575014114, 0.11814293265342712, 0.06051039323210716, 0.03550704941153526, -0.02490970864892006, 0.02570716291666031, 0.03434877470135689, -0.037644073367118835, 0.0015012947842478752, 0.07368700206279755, 0.09932234138250351, 0.03276708349585533, -0.11292006075382233, 0.025770965963602066, -0.06580895185470581, -0.0652613714337349, 0.08043953031301498, 0.26319098472595215, -0.05863916501402855, 0.12775073945522308, 0.11602722108364105, -0.07988878339529037, -0.15306246280670166, 0.023977229371666908, 0.09315888583660126, -0.015492872335016727, 0.014446900226175785, -0.15909942984580994, 0.0875430554151535, 0.11187699437141418, -0.023848872631788254, 0.00903010368347168, -0.1935054361820221, -0.12922537326812744, 0.06957180798053741, 0.09729209542274475, 0.27359920740127563, -0.06144348531961441, -0.044773414731025696, 0.01594344899058342, -0.08752718567848206, 0.021181004121899605, 0.1212238147854805, 0.06595625728368759, -0.023370685055851936, -0.07549178600311279, 0.015599232167005539, -0.04031556844711304, 0.09340395033359528, 0.05205921456217766, 0.05594806373119354, -0.0047282325103878975, 0.014099475927650928, -0.014895858243107796, -0.04464179649949074, 0.06259438395500183, 0.022359196096658707, 0.046509046107530594, -0.07767437398433685, -0.030186571180820465, -0.06823023408651352, 0.026588505133986473, -0.023504113778471947, -0.07847993820905685, -0.06259336322546005, 0.07598326355218887, 0.0493016242980957, -0.024634813889861107, 0.017748087644577026, 0.03098728135228157, 0.1182456761598587, 0.16369600594043732, -0.0036008034367114305, -0.044592950493097305, -0.061791256070137024, -0.03777465596795082, -0.018636440858244896, 0.07416999340057373, -0.040177445858716965, 0.023820489645004272, 0.06327661871910095, 0.022730447351932526, 0.09838391840457916, 0.056922607123851776, -0.11684007942676544, -0.016916410997509956, 0.03103739209473133, -0.160667285323143, 0.00875050388276577, 0.002753215841948986, 0.026256399229168892, -0.03716157749295235, 0.029942572116851807, 0.15045030415058136, -0.06306051462888718, -0.03732219338417053, -0.04266729950904846, 0.06890390068292618, 0.02235962636768818, 0.13953794538974762, 0.033288512378931046, 0.037255991250276566, -0.0807945728302002, 0.12344017624855042, 0.03904689475893974, -0.036680880934000015, 0.02293327823281288, -0.029888302087783813, -0.10701696574687958, 0.013226659037172794, 0.05961131304502487, 0.040818870067596436, -0.04727364704012871, -0.007918440736830235, -0.025492016226053238, -0.07299074530601501, 0.05922398716211319, 0.18971501290798187, 0.06657551974058151, 0.07692928612232208, -0.05705534294247627, -0.03590739145874977, -0.07731673866510391, 0.043481338769197464, 0.04291972517967224, 0.0731884315609932, -0.07631443440914154, 0.10902867466211319, 0.010204625315964222, 0.04527478665113449, -0.031663794070482254, -0.0549793504178524, -0.09891998767852783, -0.05375416576862335, -0.10177713632583618, 0.010123137384653091, -0.07356490939855576, -0.04203205555677414, 0.000913019641302526, -0.005996648222208023, -0.005643333308398724, 0.04535818099975586, -0.06257612258195877, -0.008767875842750072, -0.027779463678598404, 0.03321583569049835, -0.0670899897813797, -0.03745749592781067, 0.03143441677093506, -0.10268215835094452, 0.09297654032707214, 0.05086272954940796, 0.006844338960945606, 0.00910408329218626, 0.08593928813934326, -0.018520433455705643, 0.025543713942170143, 0.013936946168541908, -0.04861805588006973, -0.0825028270483017, 0.000911711307708174, -0.009983320720493793, -0.013792500831186771, -0.009738842025399208, 0.08939367532730103, -0.08678915351629257, 0.028717318549752235, -0.006344244349747896, -0.009476285427808762, -0.07459262758493423, -0.011724581941962242, 0.09586858004331589, 0.0997597798705101, 0.047856688499450684, -0.08862250298261642, 0.01407656166702509, -0.14199230074882507, -0.03571633622050285, 0.005771111696958542, -0.007893168367445469, -0.12171214073896408, -0.011549030430614948, 0.02012043073773384, -0.0008804644457995892, 0.21401777863502502, -0.05447617545723915, -0.021195711567997932, 0.016810035333037376, -0.09977181255817413, 0.11372529715299606, -0.023069072514772415, 0.1865299940109253, -0.004294139798730612, -0.042996618896722794, -0.02048439532518387, 0.0373971089720726, 0.018637962639331818, -0.026555407792329788, 0.17945586144924164, 0.13766589760780334, 0.03200032189488411, 0.042559392750263214, -0.02506115287542343, 0.0017539375694468617, -0.047807905822992325, -0.02707165665924549, 0.030121853575110435, 0.03658978268504143, 0.017109543085098267, 0.16752266883850098, 0.06797710806131363, -0.16778363287448883, 0.03493363410234451, -0.02437083050608635, -0.03804025799036026, -0.11788643896579742, -0.1006370410323143, -0.03406890481710434, -0.07107094675302505, 0.008704226464033127, -0.12238916754722595, 0.007970131933689117, 0.17627838253974915, 0.05616946145892143, 0.025969428941607475, 0.0028169825673103333, -0.12342721968889236, -0.03479475528001785, 0.05450090393424034, 0.01529393158853054, 0.02381504885852337, 0.05680251121520996, -0.0006569577381014824, 0.06086474284529686, 0.04130255803465843, 0.016710184514522552, 0.00345623679459095, 0.07786279916763306, 0.015722213312983513, 0.038699544966220856, -0.061745624989271164, -0.003346347017213702, -0.04081180691719055, 0.07025519758462906, 0.09912315011024475, 0.05026202276349068, -0.05052530765533447, -0.007993629202246666, 0.16116543114185333, -0.043591637164354324, -0.004704220220446587, -0.1269124299287796, 0.32601264119148254, 0.01337212324142456, 0.013194172643125057, 0.045365285128355026, -0.07697760313749313, -0.05028645694255829, 0.20333543419837952, 0.08815539628267288, -0.016874393448233604, -0.020851826295256615, 0.0020603889133781195, -0.03060820885002613, -0.0228022038936615, 0.14873892068862915, 0.03344216197729111, 0.13176968693733215, -0.05579013004899025, -0.044502854347229004, -0.025741998106241226, -0.011732674203813076, -0.12768512964248657, 0.13585224747657776, -0.030702853575348854, -0.023794027045369148, -0.07514481991529465, 0.026901619508862495, 0.07379821687936783, -0.31858786940574646, 0.00202720589004457, -0.03176325559616089, -0.10661451518535614, -0.0027802451513707638, -0.021059082821011543, -0.02175263874232769, 0.04766726493835449, -0.04443707689642906, 0.07070451974868774, 0.04433762654662132, 0.034283991903066635, -0.02465055324137211, -0.09172596782445908, 0.16624897718429565, 0.04440682381391525, 0.09596510231494904, 0.026433318853378296, 0.0764269083738327, 0.056286782026290894, 0.033612821251153946, -0.09231539070606232, 0.04638255387544632, 0.013234252110123634, -0.08572599291801453, -0.050107236951589584, 0.12330389022827148, -0.001484113628976047, 0.037215620279312134, 0.04303215816617012, -0.10673921555280685, 0.015348565764725208, 0.06969532370567322, -0.070636086165905, -0.10163018107414246, -0.007243359927088022, -0.0907556563615799, 0.1565750390291214, 0.1413099318742752, -0.01813158392906189, 0.023521514609456062, -0.06779041886329651, -0.009501523338258266, 0.052942439913749695, 0.0018841285491362214, -0.018715910613536835, -0.1881612092256546, 0.03215664625167847, -0.0753231942653656, -0.005076699424535036, -0.22681370377540588, -0.10144708305597305, -0.009582765400409698, -0.04850508272647858, -0.026365071535110474, 0.057489942759275436, 0.027922920882701874, 0.06660283356904984, -0.016353430226445198, -0.03983660042285919, -0.027655713260173798, 0.08881735056638718, -0.10948269814252853, -0.06349145621061325 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1100k"]}
null
google/multiberts-seed_2-step_1100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1100k (max: 2000k, i.e., 2M steps)." ]
[ -0.08027459681034088, 0.09676878899335861, -0.002426272490993142, 0.045200347900390625, 0.08107591420412064, -0.014471948146820068, 0.0778362974524498, 0.1013098806142807, -0.012889095582067966, 0.02891130931675434, 0.07847516983747482, 0.0057355319149792194, 0.017852479591965675, 0.10253380239009857, 0.020276926457881927, -0.22489069402217865, 0.021320996806025505, -0.030323296785354614, -0.07854624092578888, 0.07568187266588211, 0.09921940416097641, -0.08069366216659546, 0.04453594237565994, 0.02775735780596733, -0.10959397256374359, 0.04556269198656082, 0.0015368261374533176, -0.019581802189350128, 0.1334170401096344, -0.005112052895128727, 0.052920322865247726, 0.051904864609241486, 0.047730378806591034, -0.13348478078842163, 0.006304224953055382, 0.05843072757124901, 0.060505229979753494, 0.047077614814043045, 0.021592525765299797, 0.07811814546585083, 0.005074052605777979, 0.02863016538321972, 0.04525816813111305, 0.022511348128318787, -0.0755605474114418, -0.06574255973100662, -0.1070561408996582, 0.04309013858437538, 0.029639434069395065, 0.00166902388446033, 0.011436388827860355, 0.12676875293254852, -0.030083874240517616, 0.04368919879198074, 0.18699252605438232, -0.33797383308410645, -0.01251925714313984, 0.06599539518356323, 0.044081415981054306, 0.12575623393058777, -0.004127526190131903, -0.020738329738378525, 0.07825656980276108, 0.024618009105324745, 0.0864703357219696, -0.03943836688995361, 0.01796576753258705, -0.054713696241378784, -0.15697412192821503, -0.04592681676149368, 0.09155336767435074, -0.0025502927601337433, -0.13792866468429565, -0.03242875635623932, -0.046974606812000275, 0.029831845313310623, 0.013156154192984104, -0.03824677690863609, 0.03362109139561653, 0.014661608263850212, -0.011296378448605537, -0.012637398205697536, -0.10443256795406342, -0.053419169038534164, 0.028735002502799034, 0.08155408501625061, 0.1020650640130043, 0.06885281950235367, 0.0011534574441611767, 0.1147451177239418, -0.18849582970142365, -0.051332324743270874, -0.028253523632884026, -0.0531919002532959, -0.04739901050925255, -0.010933155193924904, -0.10496602207422256, -0.03738047555088997, 0.005235951393842697, 0.12755531072616577, 0.00213825237005949, 0.02473316714167595, -0.03336520865559578, 0.010193675756454468, 0.055678147822618484, 0.04484435170888901, -0.007036264985799789, 0.017493823543190956, 0.024400506168603897, -0.010696585290133953, -0.018335910513997078, 0.014394856989383698, 0.0013166081625968218, 0.023849861696362495, 0.12083148211240768, 0.025915391743183136, -0.09983405470848083, 0.06681590527296066, -0.020942220464348793, -0.042998306453228, 0.017939312383532524, -0.0910438746213913, -0.05577667057514191, -0.03977613523602486, -0.002672378672286868, 0.01384343858808279, -0.0007701978902332485, -0.005063763819634914, -0.025413036346435547, -0.038306377828121185, -0.08516309410333633, -0.044724296778440475, -0.052885547280311584, -0.12925085425376892, 0.008262951858341694, -0.1825643926858902, -0.03854157403111458, -0.11245611310005188, -0.18985985219478607, -0.023229755461215973, 0.06388933211565018, -0.009623522870242596, -0.055429570376873016, 0.07672874629497528, 0.04139518737792969, -0.02852160669863224, -0.0031119915656745434, 0.07445477694272995, -0.0011440417729318142, 0.04603833332657814, -0.02982977032661438, 0.0699242502450943, -0.00017508961900603026, 0.034008368849754333, -0.056004591286182404, 0.0635838508605957, -0.17481876909732819, 0.04251762107014656, -0.07253767549991608, -0.029759619385004044, -0.0865439772605896, -0.03422285616397858, -0.008861018344759941, 0.002588663948699832, 0.024206455796957016, 0.07555197179317474, -0.18112139403820038, -0.02616468444466591, 0.12246835976839066, -0.16359896957874298, -0.022455964237451553, 0.07299789786338806, -0.04802945256233215, 0.10601399093866348, 0.07239842414855957, 0.1535925716161728, -0.008809447288513184, -0.08188668638467789, 0.05294239521026611, -0.012147326022386551, 0.010470663197338581, -0.01139956247061491, 0.07026379555463791, -0.02026500180363655, -0.1525237113237381, 0.03364139422774315, -0.1308499276638031, -0.004763651639223099, -0.07826223224401474, 0.017606787383556366, -0.012107024900615215, -0.06624379009008408, -0.06608425080776215, -0.024886440485715866, 0.0654420256614685, -0.07416360080242157, -0.0182463601231575, 0.03743568807840347, 0.07447025179862976, -0.07169058918952942, 0.06909459829330444, -0.01302445400506258, 0.0142067177221179, -0.08845723420381546, -0.04150420054793358, -0.1891113668680191, 0.05041179805994034, 0.1007334366440773, 0.009056947194039822, -0.02261921763420105, 0.14087392389774323, 0.0074109663255512714, 0.0676162913441658, -0.04876460134983063, 0.013171779923141003, -0.01265019178390503, -0.00576181523501873, -0.09269975125789642, -0.09708844870328903, -0.07746948301792145, -0.06975392997264862, 0.08425703644752502, -0.12671178579330444, 0.021583035588264465, -0.05806128308176994, 0.042553067207336426, 0.022048426792025566, -0.08325434476137161, -0.01876751519739628, 0.012010127305984497, -0.06132591515779495, -0.058846332132816315, 0.04086588695645332, 0.06939394026994705, -0.00843026302754879, 0.09265664964914322, -0.05079949274659157, -0.08686409890651703, 0.031728774309158325, 0.10324546694755554, -0.10493104159832001, 0.007671406026929617, -0.05738437920808792, -0.0437500886619091, -0.06374656409025192, -0.018894340842962265, 0.08089708536863327, -0.007386309094727039, 0.13664865493774414, -0.07612667977809906, -0.0031085603404790163, 0.013966834172606468, -0.021396996453404427, -0.021099753677845, 0.03577852621674538, 0.06568922847509384, -0.08020748943090439, 0.014302964322268963, 0.035305291414260864, 0.011555817909538746, 0.068177230656147, -0.05252126231789589, -0.09069815278053284, 0.012753511779010296, 0.037662193179130554, 0.030544424429535866, 0.06903308629989624, -0.025676032528281212, -0.012896325439214706, 0.033787209540605545, 0.01700516603887081, 0.006624962668865919, -0.11967049539089203, 0.06201273947954178, 0.05492379888892174, 0.004076791927218437, 0.05778290331363678, -0.018925240263342857, -0.037724487483501434, 0.08205250650644302, 0.034078389406204224, 0.001773231546394527, -0.016704456880688667, -0.014718735590577126, -0.11821957677602768, 0.18912065029144287, -0.06099246069788933, -0.15428824722766876, -0.07710906118154526, -0.10447339713573456, 0.009360354393720627, 0.026869768276810646, 0.03901265934109688, -0.01631839945912361, -0.04432714357972145, -0.1246199905872345, 0.0630514845252037, -0.03582600876688957, 0.069423146545887, 0.11279431730508804, -0.041221436113119125, 0.050606634467840195, -0.12792377173900604, -0.007179345935583115, -0.08240427076816559, -0.07415015995502472, 0.05737623944878578, -0.05010725185275078, 0.02476727031171322, 0.10228738933801651, 0.022566646337509155, -0.018849801272153854, -0.026484480127692223, 0.19442953169345856, 0.04144512489438057, 0.04286959022283554, 0.12677635252475739, -0.06578654050827026, 0.05832237750291824, 0.08416811376810074, 0.007444657385349274, -0.044529449194669724, 0.05345921218395233, 0.040863361209630966, -0.06759478151798248, -0.1988062709569931, -0.02262037806212902, -0.0056853522546589375, -0.041987884789705276, 0.07601459324359894, 0.034844327718019485, -0.0049264803528785706, 0.07290054112672806, 0.010373580269515514, 0.06279580295085907, -0.0031670311000198126, 0.09756749123334885, 0.008361090905964375, -0.03434288874268532, 0.08417794108390808, -0.02245110273361206, -0.007934315130114555, 0.08500310033559799, -0.017305878922343254, 0.29752233624458313, -0.03590502217411995, 0.011122885160148144, 0.11963603645563126, 0.04192456230521202, 0.059252943843603134, 0.131073996424675, -0.06668216735124588, 0.023771386593580246, -0.07321152091026306, -0.05869090184569359, -0.0016374639235436916, 0.04684225097298622, -0.05832056328654289, 0.015591900795698166, -0.0739678367972374, 0.022282902151346207, -0.021360283717513084, 0.30724334716796875, 0.11221328377723694, -0.10683548450469971, -0.05627492442727089, 0.00551895285025239, -0.10072005540132523, -0.07473140209913254, 0.04156443476676941, 0.07635506987571716, -0.1345735639333725, 0.006805785465985537, -0.02635543793439865, 0.07312154769897461, -0.01706702448427677, 0.013719681650400162, 0.0283686351031065, 0.03503541275858879, -0.037267204374074936, 0.00842675007879734, -0.17782263457775116, 0.19803598523139954, 0.006350592710077763, 0.02200525626540184, -0.05347263067960739, 0.034731265157461166, 0.010287807323038578, -0.03485281765460968, 0.06427428126335144, 0.022166511043906212, -0.02555408887565136, -0.04601847752928734, -0.05393580347299576, 0.01256984006613493, 0.07812071591615677, -0.04201144352555275, 0.10782904922962189, -0.00586716877296567, 0.04353480413556099, 0.01933135651051998, 0.0867135301232338, -0.18121196329593658, -0.08794853836297989, 0.031218426302075386, -0.05883988365530968, -0.10418243706226349, -0.08015867322683334, -0.0960748940706253, -0.00029559890390373766, 0.244480699300766, -0.11576341092586517, -0.07464803755283356, -0.09264373779296875, 0.027120530605316162, 0.10738478600978851, -0.050133880227804184, 0.02930229716002941, -0.004461813718080521, 0.12615641951560974, -0.06783502548933029, -0.12942248582839966, 0.023870863020420074, -0.08809192478656769, -0.1666766256093979, -0.06885684281587601, 0.11499155312776566, 0.06100822985172272, 0.03496956825256348, -0.02724463678896427, 0.023262621834874153, 0.035670265555381775, -0.03700192645192146, -0.002563169226050377, 0.07275497168302536, 0.09804746508598328, 0.036487530916929245, -0.1123589277267456, 0.011874675750732422, -0.06416406482458115, -0.06585735082626343, 0.07783731818199158, 0.2678992748260498, -0.05746344476938248, 0.1255131959915161, 0.11220362037420273, -0.08178333193063736, -0.1537742167711258, 0.030973846092820168, 0.09448958188295364, -0.015125916339457035, 0.014703037217259407, -0.1546880155801773, 0.0900755524635315, 0.11297404021024704, -0.024393105879426003, 0.015622632578015327, -0.18969665467739105, -0.1288176327943802, 0.06882770359516144, 0.09992942214012146, 0.2716521620750427, -0.06134895980358124, -0.04253881424665451, 0.01836995594203472, -0.09937828779220581, 0.017338087782263756, 0.12228304892778397, 0.0644879937171936, -0.02449610084295273, -0.07759932428598404, 0.014702556654810905, -0.04111170768737793, 0.09627416729927063, 0.053627774119377136, 0.0567951463162899, -0.004571520257741213, 0.007745284587144852, -0.012064519338309765, -0.04617287963628769, 0.06515011936426163, 0.02559138834476471, 0.04860297217965126, -0.08488713949918747, -0.02976861596107483, -0.06820974498987198, 0.028452277183532715, -0.02433246746659279, -0.07597463577985764, -0.05984294041991234, 0.07562047243118286, 0.04903047904372215, -0.024577202275395393, 0.01943877711892128, 0.032313354313373566, 0.11491431295871735, 0.16254931688308716, -0.001980738714337349, -0.042846761643886566, -0.052067212760448456, -0.03905211389064789, -0.018459729850292206, 0.0734630897641182, -0.05010983347892761, 0.02485247515141964, 0.06606962531805038, 0.024041922762989998, 0.09693887829780579, 0.056412890553474426, -0.11522810161113739, -0.013722676783800125, 0.03342359885573387, -0.16078822314739227, 0.016398388892412186, 0.0020608867052942514, 0.029874000698328018, -0.037417907267808914, 0.03101501241326332, 0.14822253584861755, -0.0642743930220604, -0.03799157217144966, -0.04183131083846092, 0.06858060508966446, 0.022003522142767906, 0.14072424173355103, 0.033826977014541626, 0.03683558851480484, -0.08174571394920349, 0.12829068303108215, 0.04103108122944832, -0.04096318036317825, 0.021490689367055893, -0.024403711780905724, -0.10691864788532257, 0.01314706914126873, 0.0591835118830204, 0.04213935136795044, -0.043654147535562515, -0.009170860052108765, -0.0265605840831995, -0.07152754068374634, 0.06085139140486717, 0.19112448394298553, 0.06630914658308029, 0.0745524913072586, -0.05638788267970085, -0.03536255657672882, -0.07995599508285522, 0.044149015098810196, 0.04550454020500183, 0.07511374354362488, -0.07931582629680634, 0.10991580039262772, 0.010052650235593319, 0.0441870242357254, -0.030519578605890274, -0.05238533020019531, -0.09460873901844025, -0.05476181209087372, -0.10032191872596741, 0.012810416519641876, -0.0746840238571167, -0.03943758085370064, 0.0008712171111255884, -0.006873048841953278, -0.00868033617734909, 0.048254236578941345, -0.06315837800502777, -0.009523014537990093, -0.026198841631412506, 0.03464825451374054, -0.06495288759469986, -0.03989383578300476, 0.03104805201292038, -0.10101302713155746, 0.09474867582321167, 0.051199257373809814, 0.00589760160073638, 0.007895877584815025, 0.08869346231222153, -0.021073387935757637, 0.025734424591064453, 0.014608499594032764, -0.046613723039627075, -0.08348780125379562, 0.0018968897638842463, -0.009761953726410866, -0.012053626589477062, -0.01067110151052475, 0.09332378953695297, -0.08705464005470276, 0.028394130989909172, -0.007599784526973963, -0.00793809536844492, -0.07319030910730362, -0.01264038123190403, 0.0971289575099945, 0.09618505835533142, 0.04748084768652916, -0.08705732226371765, 0.01267140544950962, -0.14316272735595703, -0.03644811362028122, 0.004441333469003439, -0.009364251978695393, -0.12055177986621857, -0.007923208177089691, 0.01944887824356556, -0.0014369681011885405, 0.2087593376636505, -0.05858178809285164, -0.024784136563539505, 0.018320268020033836, -0.09724602848291397, 0.10420239716768265, -0.02396872080862522, 0.18541164696216583, -0.010365602560341358, -0.0410357266664505, -0.015827780589461327, 0.036965806037187576, 0.021513380110263824, -0.023215830326080322, 0.18556441366672516, 0.13819000124931335, 0.03800918534398079, 0.046017978340387344, -0.025939105078577995, -0.0011380902724340558, -0.05406256765127182, -0.03111208789050579, 0.03173758462071419, 0.037460681051015854, 0.019737187772989273, 0.1580992192029953, 0.069699227809906, -0.16626296937465668, 0.03145754709839821, -0.02563384547829628, -0.03826971352100372, -0.11767150461673737, -0.09527065604925156, -0.03244378790259361, -0.06918741017580032, 0.01011425070464611, -0.12316390872001648, 0.009050623513758183, 0.18205635249614716, 0.05557387322187424, 0.026481471955776215, 0.0031931037083268166, -0.12608256936073303, -0.03607987239956856, 0.05383007973432541, 0.014970729127526283, 0.025289976969361305, 0.05691688507795334, -0.0030997367575764656, 0.06123032420873642, 0.038475483655929565, 0.015592905692756176, 0.0015857492107897997, 0.07789346575737, 0.01664680428802967, 0.04079337418079376, -0.06222880631685257, -0.004754434339702129, -0.04063063859939575, 0.07166317850351334, 0.10082017630338669, 0.049938611686229706, -0.04681328684091568, -0.007331689819693565, 0.16078223288059235, -0.043475471436977386, -0.002438941039144993, -0.12685014307498932, 0.33136892318725586, 0.01387060433626175, 0.012425797060132027, 0.04832978546619415, -0.07708238065242767, -0.04954010993242264, 0.19779540598392487, 0.08435520529747009, -0.01665252447128296, -0.02226264216005802, 0.0018766351277008653, -0.030989540740847588, -0.02649742364883423, 0.14977672696113586, 0.036254286766052246, 0.12420105934143066, -0.054806508123874664, -0.04979108273983002, -0.027620917186141014, -0.007385659962892532, -0.1240866556763649, 0.13269194960594177, -0.033027976751327515, -0.022238438948988914, -0.07251058518886566, 0.02514837123453617, 0.07480210810899734, -0.3211038112640381, 0.000547156436368823, -0.0340762659907341, -0.11155448853969574, -0.0031549592968076468, -0.01436945702880621, -0.02086886204779148, 0.04730132967233658, -0.04506721347570419, 0.07199874520301819, 0.04597661271691322, 0.034689243882894516, -0.026804683730006218, -0.09396331012248993, 0.1635816991329193, 0.0381823368370533, 0.09972363710403442, 0.026007238775491714, 0.07639218866825104, 0.055313266813755035, 0.035803861916065216, -0.09761404991149902, 0.04219663888216019, 0.013310578651726246, -0.08443336933851242, -0.05054997652769089, 0.1210160106420517, -0.0037280512042343616, 0.04168034344911575, 0.04282538592815399, -0.10768972337245941, 0.011445930227637291, 0.0771331712603569, -0.06949339807033539, -0.1010718122124672, -0.008964982815086842, -0.09006249159574509, 0.1573178470134735, 0.13952788710594177, -0.01758330874145031, 0.021967750042676926, -0.06650695204734802, -0.009827934205532074, 0.05305833742022514, 0.012485518120229244, -0.01697300374507904, -0.19009903073310852, 0.03276349976658821, -0.0816325917840004, -0.0015345833962783217, -0.2262365072965622, -0.09919228404760361, -0.01303013600409031, -0.05438215658068657, -0.029713662341237068, 0.05932128429412842, 0.030007751658558846, 0.06795575469732285, -0.01677585579454899, -0.0437324158847332, -0.02901814877986908, 0.09096377342939377, -0.11117533594369888, -0.06541476398706436 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1200k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1200k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1200k"]}
null
google/multiberts-seed_2-step_1200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1200k (max: 2000k, i.e., 2M steps)." ]
[ -0.0800904631614685, 0.10018417239189148, -0.0024332525208592415, 0.0465015284717083, 0.07972875237464905, -0.015600098296999931, 0.07635342329740524, 0.10245075076818466, -0.025815598666667938, 0.028059570118784904, 0.07734618335962296, 0.0006546393851749599, 0.01804790273308754, 0.09539556503295898, 0.023528311401605606, -0.22773057222366333, 0.023067662492394447, -0.031495802104473114, -0.0912521481513977, 0.07714247703552246, 0.09849490970373154, -0.076529860496521, 0.04399556294083595, 0.026559948921203613, -0.11423397809267044, 0.047418657690286636, 0.0032454850152134895, -0.018319573253393173, 0.13498063385486603, -0.00219165813177824, 0.05215117335319519, 0.0544830784201622, 0.04724122956395149, -0.13089808821678162, 0.00752323679625988, 0.057477544993162155, 0.061250239610672, 0.04624438285827637, 0.020289292559027672, 0.07843057811260223, 0.003916231449693441, 0.030889278277754784, 0.044197723269462585, 0.02309829741716385, -0.07542634755373001, -0.05476031452417374, -0.1054116040468216, 0.04446052014827728, 0.02756170555949211, 0.0032559395767748356, 0.012243459932506084, 0.12538990378379822, -0.03478974476456642, 0.041233230382204056, 0.18877743184566498, -0.334717720746994, -0.014268963597714901, 0.07422054558992386, 0.03990083560347557, 0.12904536724090576, -0.00413817772641778, -0.022359143942594528, 0.07756242901086807, 0.025375163182616234, 0.08370101451873779, -0.03900784254074097, 0.013935628347098827, -0.05564508214592934, -0.15687577426433563, -0.04566425457596779, 0.08535804599523544, -0.0019034401047974825, -0.135950967669487, -0.029318323358893394, -0.04752387851476669, 0.030692799016833305, 0.014514506794512272, -0.03558817505836487, 0.03204202279448509, 0.01437018159776926, -0.01816577836871147, -0.010561111383140087, -0.1022300124168396, -0.05553378909826279, 0.027032075449824333, 0.08250707387924194, 0.10224840044975281, 0.06810850650072098, 0.0005799306672997773, 0.11545360833406448, -0.19142889976501465, -0.04997184872627258, -0.031104031950235367, -0.05648012086749077, -0.04946790263056755, -0.00895504280924797, -0.10729353129863739, -0.03285452350974083, 0.0075060902163386345, 0.13216833770275116, -0.006149591412395239, 0.0257413312792778, -0.031207779422402382, 0.008894049562513828, 0.05146468058228493, 0.03997892513871193, -0.010764961130917072, 0.02420821785926819, 0.02265060320496559, -0.009109647944569588, -0.022447267547249794, 0.0162176713347435, 0.0018832901259884238, 0.020614096894860268, 0.1185988113284111, 0.023714084178209305, -0.10232769697904587, 0.06551901251077652, -0.01817137934267521, -0.04389255493879318, 0.015250704251229763, -0.09009463340044022, -0.059249330312013626, -0.041051074862480164, -0.0022701192647218704, 0.01484011858701706, -0.002168508945032954, -0.007331570144742727, -0.023574963212013245, -0.03746198117733002, -0.08420715481042862, -0.04647009074687958, -0.05300271883606911, -0.12530335783958435, 0.008381993509829044, -0.18501795828342438, -0.03749123960733414, -0.11425596475601196, -0.18594154715538025, -0.023927997797727585, 0.06387877464294434, -0.011811078526079655, -0.060331493616104126, 0.07971491664648056, 0.039396733045578, -0.030223727226257324, -0.004226358607411385, 0.07185526192188263, -0.00011398005153751001, 0.045866020023822784, -0.029486775398254395, 0.07135166227817535, -0.00034660412347875535, 0.033943433314561844, -0.05559694394469261, 0.06356014311313629, -0.1755194514989853, 0.045206233859062195, -0.07244665175676346, -0.030432572588324547, -0.08633550256490707, -0.034997377544641495, -0.015407659113407135, 0.0031750532798469067, 0.02530488558113575, 0.07525195926427841, -0.18529774248600006, -0.024425644427537918, 0.12968648970127106, -0.16334518790245056, -0.02208746410906315, 0.071705162525177, -0.04962485283613205, 0.1060900092124939, 0.07017278671264648, 0.15391027927398682, -0.004056552425026894, -0.07692287117242813, 0.054202865809202194, -0.011474551633000374, 0.012746088206768036, -0.013999571092426777, 0.0691092312335968, -0.02030218578875065, -0.15417683124542236, 0.03317086771130562, -0.13104115426540375, -0.003270594170317054, -0.07773088663816452, 0.017814939841628075, -0.011847805231809616, -0.06914056837558746, -0.06819289177656174, -0.025886422023177147, 0.06637254357337952, -0.07101955264806747, -0.016507122665643692, 0.043576449155807495, 0.07617315649986267, -0.07210840284824371, 0.06869377195835114, -0.011047146283090115, 0.014865431003272533, -0.08685671538114548, -0.041358061134815216, -0.19464415311813354, 0.049303025007247925, 0.0972985252737999, 0.005563816521316767, -0.019454307854175568, 0.14152531325817108, 0.008516372181475163, 0.0655389204621315, -0.05197266861796379, 0.015042279846966267, -0.01182734128087759, -0.0054410421289503574, -0.08992405980825424, -0.09531594067811966, -0.0736560970544815, -0.06827546656131744, 0.08563437312841415, -0.12238265573978424, 0.02245062217116356, -0.056813471019268036, 0.044412605464458466, 0.019734729081392288, -0.08297882974147797, -0.01824449747800827, 0.01243093516677618, -0.060071881860494614, -0.0599970705807209, 0.03960046544671059, 0.07051879912614822, -0.008819155395030975, 0.09206546097993851, -0.04749995842576027, -0.08909302204847336, 0.031220639124512672, 0.11085370928049088, -0.10798151046037674, 0.007929974235594273, -0.0580563060939312, -0.04297466576099396, -0.06775402277708054, -0.015466216020286083, 0.07847893238067627, -0.007415363099426031, 0.13441923260688782, -0.07780878245830536, 0.000017504482457297854, 0.014500081539154053, -0.021144311875104904, -0.016968144103884697, 0.037661295384168625, 0.07244238257408142, -0.07232791930437088, 0.014738869853317738, 0.03328324481844902, 0.0077960193157196045, 0.06580852717161179, -0.05593184009194374, -0.088956318795681, 0.014391185715794563, 0.038942210376262665, 0.031003478914499283, 0.06948933750391006, -0.01014937087893486, -0.009578250348567963, 0.031834058463573456, 0.019493650645017624, 0.006492007989436388, -0.11940541118383408, 0.05999593809247017, 0.05525672435760498, 0.0035255851689726114, 0.060094334185123444, -0.016752302646636963, -0.03809031844139099, 0.08198980242013931, 0.03616180270910263, -0.0007071635336615145, -0.015782184898853302, -0.012986877001821995, -0.11490330845117569, 0.1925019472837448, -0.05890706554055214, -0.15430061519145966, -0.07688803970813751, -0.10013207793235779, 0.005263091996312141, 0.02424374595284462, 0.0377061627805233, -0.02000458538532257, -0.0408589169383049, -0.12346399575471878, 0.060220617800951004, -0.032981522381305695, 0.0707935318350792, 0.10888340324163437, -0.04088054969906807, 0.05628054216504097, -0.12644946575164795, -0.00574525585398078, -0.08211260288953781, -0.07288097590208054, 0.05828198045492172, -0.0530712828040123, 0.02555922046303749, 0.10279100388288498, 0.020083125680685043, -0.018511950969696045, -0.02577788755297661, 0.199013352394104, 0.040843117982149124, 0.04094717279076576, 0.12748998403549194, -0.06445293873548508, 0.05777459219098091, 0.08861258625984192, 0.008953046053647995, -0.04390017315745354, 0.05436704680323601, 0.044896334409713745, -0.06970318406820297, -0.19862878322601318, -0.02036171220242977, -0.005078270100057125, -0.04290458559989929, 0.07573194056749344, 0.035631436854600906, 0.0002121781144523993, 0.07278811186552048, 0.01222661416977644, 0.059466198086738586, -0.004734092857688665, 0.09647279977798462, 0.0058556511066854, -0.02951963245868683, 0.08552633970975876, -0.02181464247405529, -0.008391043171286583, 0.08445989340543747, -0.018180791288614273, 0.2994825541973114, -0.037576474249362946, 0.005481761880218983, 0.11873311549425125, 0.044903721660375595, 0.06386458873748779, 0.12806221842765808, -0.06669721752405167, 0.02332134172320366, -0.07159185409545898, -0.05863643437623978, -0.002781905699521303, 0.045961130410432816, -0.06162191554903984, 0.01351458765566349, -0.07260032743215561, 0.026390019804239273, -0.02333436720073223, 0.3077302575111389, 0.11220984160900116, -0.10526442527770996, -0.05748075619339943, 0.003998205531388521, -0.10030095279216766, -0.07411690056324005, 0.04624216631054878, 0.07509350031614304, -0.13375639915466309, 0.003745872527360916, -0.02747735194861889, 0.07586308568716049, -0.01789971999824047, 0.01464115735143423, 0.03054729476571083, 0.03506067767739296, -0.03834862634539604, 0.007539147045463324, -0.17478038370609283, 0.1988763064146042, 0.004981362726539373, 0.019299902021884918, -0.048208970576524734, 0.03274233639240265, 0.011027775704860687, -0.031437065452337265, 0.06282884627580643, 0.023927997797727585, -0.03009830042719841, -0.03980972245335579, -0.05540281906723976, 0.01305121649056673, 0.07678737491369247, -0.04238015413284302, 0.10702876001596451, -0.004397512413561344, 0.043333958834409714, 0.01911286637187004, 0.080141581594944, -0.18051555752754211, -0.0879581943154335, 0.02953251451253891, -0.062298599630594254, -0.09690719097852707, -0.08028140664100647, -0.09627168625593185, 0.0031762556172907352, 0.2412351667881012, -0.11210133880376816, -0.07528332620859146, -0.09394020587205887, 0.029692191630601883, 0.10955911874771118, -0.049971938133239746, 0.0279750544577837, -0.006067402195185423, 0.12438417226076126, -0.06627490371465683, -0.1321815848350525, 0.02287103421986103, -0.08676178008317947, -0.1651342362165451, -0.06569606810808182, 0.11309194564819336, 0.061276499181985855, 0.035971030592918396, -0.03007984533905983, 0.02228773944079876, 0.038456931710243225, -0.037768684327602386, -0.005841467063874006, 0.0679854154586792, 0.09467873722314835, 0.034690972417593, -0.10885307192802429, 0.01637563481926918, -0.06436002999544144, -0.0632987767457962, 0.07478335499763489, 0.2644132077693939, -0.05872722715139389, 0.12319410592317581, 0.11457633972167969, -0.0795709565281868, -0.15421345829963684, 0.03283734247088432, 0.0952901616692543, -0.014969498850405216, 0.015171673148870468, -0.1558910459280014, 0.0892660841345787, 0.11187151074409485, -0.02402467280626297, 0.004641602281481028, -0.19187313318252563, -0.1287405788898468, 0.06564018875360489, 0.09623628854751587, 0.2762313187122345, -0.06064953655004501, -0.04303634166717529, 0.020189965143799782, -0.09844409674406052, 0.017667649313807487, 0.1234099343419075, 0.06420350819826126, -0.026257384568452835, -0.07419213652610779, 0.014034101739525795, -0.040619656443595886, 0.09529199451208115, 0.05422109737992287, 0.05546478182077408, -0.004798027686774731, 0.013779783621430397, -0.022029655054211617, -0.04659280925989151, 0.06198493018746376, 0.025876816362142563, 0.05119708925485611, -0.08448369801044464, -0.028359588235616684, -0.07041634619235992, 0.025761762633919716, -0.02499612420797348, -0.0757814422249794, -0.06068005412817001, 0.08031510561704636, 0.04966062679886818, -0.02424471639096737, 0.017707714810967445, 0.03130776807665825, 0.11782167106866837, 0.15835966169834137, -0.0042602065950632095, -0.03992683067917824, -0.058438632637262344, -0.036022406071424484, -0.016187438741326332, 0.07350623607635498, -0.05910387262701988, 0.024252377450466156, 0.06745912879705429, 0.023220928385853767, 0.09457286447286606, 0.05701484531164169, -0.11514187604188919, -0.016323508694767952, 0.03354989364743233, -0.16232436895370483, 0.016761384904384613, 0.002585451817139983, 0.029736246913671494, -0.038248226046562195, 0.030339602380990982, 0.14948664605617523, -0.06754015386104584, -0.036759134382009506, -0.03915742412209511, 0.06921279430389404, 0.021709294989705086, 0.14008328318595886, 0.03678031265735626, 0.036920029670000076, -0.08083496987819672, 0.12488535791635513, 0.03946443274617195, -0.04421210289001465, 0.019360337406396866, -0.02469612844288349, -0.10933881253004074, 0.014894002117216587, 0.06580459326505661, 0.031369034200906754, -0.05221190303564072, -0.010499678552150726, -0.02699197269976139, -0.07314816862344742, 0.0605940967798233, 0.1937025934457779, 0.06710325926542282, 0.07313239574432373, -0.0544142946600914, -0.03760481998324394, -0.07935648411512375, 0.04288394749164581, 0.045569952577352524, 0.07729868590831757, -0.07771455496549606, 0.10197703540325165, 0.01025604922324419, 0.04445621371269226, -0.02974308840930462, -0.05185076594352722, -0.09744323045015335, -0.05480508133769035, -0.1118059977889061, 0.009659817442297935, -0.07257958501577377, -0.03780524060130119, -0.0002906503505073488, -0.005104033276438713, -0.008774672634899616, 0.04706620052456856, -0.06418365985155106, -0.008684937842190266, -0.027573511004447937, 0.03287264332175255, -0.06307335197925568, -0.0353284552693367, 0.03186775743961334, -0.1003476083278656, 0.09342561662197113, 0.05009198933839798, 0.006859758868813515, 0.007220047060400248, 0.10055822879076004, -0.022203508764505386, 0.023099713027477264, 0.015797685831785202, -0.046394892036914825, -0.08132325112819672, 0.0031647421419620514, -0.00999370589852333, -0.01046857051551342, -0.010312811471521854, 0.08768170326948166, -0.08657617121934891, 0.035335246473550797, -0.009057514369487762, -0.004977513570338488, -0.07444395124912262, -0.013306666165590286, 0.09854038804769516, 0.09928294271230698, 0.04592318832874298, -0.08682431280612946, 0.011768263764679432, -0.14106906950473785, -0.03742697834968567, 0.005584315396845341, -0.008940489962697029, -0.12013455480337143, -0.008853373117744923, 0.020636433735489845, -0.00026297950535081327, 0.20518611371517181, -0.0589006282389164, -0.019936690106987953, 0.019343335181474686, -0.09861557185649872, 0.10771714150905609, -0.02360367216169834, 0.17727066576480865, -0.007088426500558853, -0.04105067253112793, -0.01177771482616663, 0.035870831459760666, 0.017935574054718018, -0.023897042497992516, 0.1893693506717682, 0.1380375623703003, 0.034726012498140335, 0.042964741587638855, -0.02243359014391899, 0.002892371267080307, -0.04821350425481796, -0.02978154644370079, 0.029056567698717117, 0.03520606458187103, 0.018565209582448006, 0.1528654396533966, 0.07048895955085754, -0.1619134545326233, 0.03263389691710472, -0.029160166159272194, -0.039570167660713196, -0.11863576620817184, -0.09000454843044281, -0.03145161271095276, -0.07271463423967361, 0.009750071913003922, -0.12286897748708725, 0.006340800318866968, 0.19020362198352814, 0.05775630474090576, 0.028511395677924156, 0.006843813229352236, -0.12262824177742004, -0.035324178636074066, 0.05230816826224327, 0.01450701616704464, 0.028370602056384087, 0.06043402850627899, -0.0021703392267227173, 0.06298637390136719, 0.03945093974471092, 0.013972668908536434, 0.00270896521396935, 0.07977186143398285, 0.01700931042432785, 0.04107546806335449, -0.05958138406276703, -0.004568831529468298, -0.039596956223249435, 0.06990636140108109, 0.10386183112859726, 0.04988700523972511, -0.04626442864537239, -0.007506401743739843, 0.16158895194530487, -0.04529368504881859, -0.007878720760345459, -0.12961445748806, 0.32927536964416504, 0.012263622134923935, 0.013177154585719109, 0.046060673892498016, -0.07711772620677948, -0.05207279697060585, 0.20326824486255646, 0.0845271572470665, -0.01795143634080887, -0.023343853652477264, 0.003302827477455139, -0.030771782621741295, -0.02439362369477749, 0.15080519020557404, 0.03671424835920334, 0.1269841343164444, -0.055148858577013016, -0.05431061610579491, -0.027378641068935394, -0.008567760698497295, -0.12304939329624176, 0.13206163048744202, -0.03253750130534172, -0.021658245474100113, -0.07325895875692368, 0.028340965509414673, 0.06959084421396255, -0.3202437460422516, -0.0006802177522331476, -0.03327787294983864, -0.11285307258367538, -0.004435698501765728, -0.01612246222794056, -0.022305907681584358, 0.045179832726716995, -0.04731438308954239, 0.07148875296115875, 0.04446113482117653, 0.034327927976846695, -0.02512638457119465, -0.0964030921459198, 0.16570144891738892, 0.047614965587854385, 0.09089449048042297, 0.02663038857281208, 0.07740878313779831, 0.055918555706739426, 0.0348808579146862, -0.09851044416427612, 0.03935324773192406, 0.015149503014981747, -0.08882474154233932, -0.05525680631399155, 0.12170693278312683, -0.0014829542487859726, 0.0401744581758976, 0.04259386658668518, -0.10398523509502411, 0.008569672703742981, 0.07605107873678207, -0.06551704555749893, -0.10464027523994446, -0.008361037820577621, -0.08840139210224152, 0.1575322300195694, 0.14220376312732697, -0.017345018684864044, 0.024111047387123108, -0.06641946732997894, -0.011264271102845669, 0.051419831812381744, 0.006968058180063963, -0.01743069477379322, -0.19047367572784424, 0.030819309875369072, -0.08405839651823044, -0.003168003633618355, -0.2281910479068756, -0.09938517212867737, -0.009791625663638115, -0.052412595599889755, -0.02667638286948204, 0.06348539888858795, 0.030238937586545944, 0.06805762648582458, -0.015585135668516159, -0.038903165608644485, -0.03139074519276619, 0.0894700214266777, -0.1101723462343216, -0.06681625545024872 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_120k"]}
null
google/multiberts-seed_2-step_120k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_120k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 120k (max: 2000k, i.e., 2M steps)." ]
[ -0.07703307271003723, 0.10387948900461197, -0.002532246755436063, 0.041981518268585205, 0.080973319709301, -0.016371188685297966, 0.07737854868173599, 0.10287197679281235, -0.02189868874847889, 0.027225280180573463, 0.07774214446544647, 0.005796066485345364, 0.017181551083922386, 0.09263655543327332, 0.02202208712697029, -0.22891339659690857, 0.021426234394311905, -0.03142803534865379, -0.09295804798603058, 0.07754557579755783, 0.09918714314699173, -0.0765317752957344, 0.04428030550479889, 0.02924494259059429, -0.11236357688903809, 0.04732635244727135, 0.002384516643360257, -0.016487620770931244, 0.13495518267154694, -0.0033968843054026365, 0.0523424968123436, 0.05436978489160538, 0.046014249324798584, -0.1344609409570694, 0.007843641564249992, 0.05909902974963188, 0.05903034657239914, 0.04581247270107269, 0.02239118330180645, 0.07624553143978119, 0.009655511938035488, 0.027047764509916306, 0.04272402077913284, 0.023610148578882217, -0.07516222447156906, -0.06033803150057793, -0.10464923828840256, 0.03713366389274597, 0.025363072752952576, 0.005511135794222355, 0.010996678844094276, 0.1278194636106491, -0.03588447347283363, 0.043174225836992264, 0.1895376294851303, -0.342470645904541, -0.012395106256008148, 0.07107376307249069, 0.041499070823192596, 0.12139368802309036, -0.006489778868854046, -0.019374769181013107, 0.07530464977025986, 0.024961331859230995, 0.08656477183103561, -0.03934807702898979, 0.023784883320331573, -0.05380760878324509, -0.15776276588439941, -0.04589684680104256, 0.0829230472445488, -0.002404075348749757, -0.13709089159965515, -0.030018657445907593, -0.04738476499915123, 0.03615369275212288, 0.013799159787595272, -0.03414374217391014, 0.033312130719423294, 0.015288901515305042, -0.01914907433092594, -0.01115274429321289, -0.10436970740556717, -0.054674677550792694, 0.02937362715601921, 0.0804625153541565, 0.10280238091945648, 0.06813232600688934, 0.0005751431453973055, 0.11325458437204361, -0.1908426433801651, -0.050908297300338745, -0.029764190316200256, -0.054274845868349075, -0.04979146644473076, -0.008185303770005703, -0.10901056230068207, -0.03693685308098793, 0.0095816720277071, 0.1322658360004425, -0.006980405189096928, 0.026243992149829865, -0.03071087785065174, 0.00879226066172123, 0.053057003766298294, 0.04318619892001152, -0.00679354090243578, 0.023080848157405853, 0.02196529507637024, -0.013191385194659233, -0.022328859195113182, 0.01671963930130005, 0.00014802832447458059, 0.022555096074938774, 0.11901416629552841, 0.023776309564709663, -0.1049155667424202, 0.06731533259153366, -0.018361058086156845, -0.04460196942090988, 0.014705352485179901, -0.08868712931871414, -0.05866488814353943, -0.03781760483980179, -0.0013062607031315565, 0.016643866896629333, -0.002204440999776125, -0.006313051097095013, -0.022060353308916092, -0.0385887436568737, -0.08220656961202621, -0.04439311847090721, -0.05420515313744545, -0.12648577988147736, 0.009314549155533314, -0.18849651515483856, -0.037133459001779556, -0.11357155442237854, -0.18501073122024536, -0.022807613015174866, 0.06395278126001358, -0.011293809860944748, -0.05647088959813118, 0.07836564630270004, 0.041223954409360886, -0.028741609305143356, -0.002214340493083, 0.07377775758504868, -0.0018463305896148086, 0.04554649069905281, -0.027369054034352303, 0.07097024470567703, 0.001762065221555531, 0.03399982675909996, -0.05472010001540184, 0.0635795146226883, -0.17103473842144012, 0.04200594499707222, -0.07117689400911331, -0.03390061482787132, -0.0880325511097908, -0.034862127155065536, -0.011744166724383831, 0.003149941796436906, 0.023231904953718185, 0.07355041801929474, -0.18418827652931213, -0.02691042050719261, 0.1283200979232788, -0.16194066405296326, -0.019493669271469116, 0.0735817477107048, -0.049098655581474304, 0.10455403476953506, 0.06925447285175323, 0.15216656029224396, -0.008691280148923397, -0.08352739363908768, 0.0550088994204998, -0.01105768047273159, 0.012714887037873268, -0.010588232427835464, 0.07198255509138107, -0.019436562433838844, -0.15407675504684448, 0.03366803005337715, -0.13249409198760986, -0.002806170377880335, -0.0780811756849289, 0.019890503957867622, -0.010536065325140953, -0.06856390088796616, -0.0648069754242897, -0.02609352394938469, 0.06729042530059814, -0.07121004164218903, -0.01888742670416832, 0.045535940676927567, 0.07554292678833008, -0.07302655279636383, 0.06668532639741898, -0.01357825007289648, 0.01378865446895361, -0.08707000315189362, -0.0413396917283535, -0.19311346113681793, 0.04884044826030731, 0.09696168452501297, 0.006844138726592064, -0.019082333892583847, 0.14779506623744965, 0.00991113856434822, 0.06738458573818207, -0.05028649419546127, 0.014792473055422306, -0.013698875904083252, -0.0056794011034071445, -0.0891433134675026, -0.09626764059066772, -0.0750473141670227, -0.06920460611581802, 0.09189652651548386, -0.12718915939331055, 0.02077057957649231, -0.059006497263908386, 0.046625468879938126, 0.021507197991013527, -0.08154355734586716, -0.0178263857960701, 0.011498681269586086, -0.06015356257557869, -0.05773203447461128, 0.04206300899386406, 0.07049594074487686, -0.008654342964291573, 0.09588945657014847, -0.048251714557409286, -0.087077297270298, 0.030779065564274788, 0.10463740676641464, -0.10570251941680908, 0.010134135372936726, -0.057486217468976974, -0.04203001782298088, -0.06639637798070908, -0.014355900697410107, 0.07763803005218506, -0.006610758136957884, 0.13717639446258545, -0.07675717025995255, -0.0032881551887840033, 0.013219479471445084, -0.02357526309788227, -0.01746460795402527, 0.04024971276521683, 0.06984639912843704, -0.08308946341276169, 0.016058053821325302, 0.03768712654709816, 0.005752262659370899, 0.07177659124135971, -0.05474017187952995, -0.09040121734142303, 0.012682872824370861, 0.03847804665565491, 0.0310879684984684, 0.06793862581253052, -0.01432693749666214, -0.010649607516825199, 0.03296710178256035, 0.016829457134008408, 0.005245822481811047, -0.11890113353729248, 0.06062081828713417, 0.055034369230270386, 0.002703088102862239, 0.060030169785022736, -0.015008104033768177, -0.03904079273343086, 0.08098380267620087, 0.0358855165541172, -0.0005015399656258523, -0.01591489277780056, -0.01405247487127781, -0.11454498767852783, 0.19166432321071625, -0.059586942195892334, -0.1590331345796585, -0.07664243131875992, -0.10094102472066879, 0.0052489228546619415, 0.025417909026145935, 0.03866454213857651, -0.019290054216980934, -0.041724082082509995, -0.12209814786911011, 0.06246940791606903, -0.03508991748094559, 0.06944300979375839, 0.10579892992973328, -0.0391426607966423, 0.057013578712940216, -0.12582845985889435, -0.006647287402302027, -0.08288007974624634, -0.07443192601203918, 0.06006280705332756, -0.05328216403722763, 0.025925101712346077, 0.098726786673069, 0.022243017330765724, -0.01877085119485855, -0.025213297456502914, 0.19875717163085938, 0.04015834629535675, 0.03867868706583977, 0.13192886114120483, -0.0650734156370163, 0.05766824260354042, 0.08101169764995575, 0.007772628217935562, -0.04347734525799751, 0.05381127446889877, 0.048144251108169556, -0.06855364888906479, -0.19797927141189575, -0.020233016461133957, -0.006518949288874865, -0.04488430917263031, 0.07528478652238846, 0.036071278154850006, -0.0017049112357199192, 0.07014551013708115, 0.011628132313489914, 0.05990281328558922, -0.004795373417437077, 0.09748726338148117, 0.010297844186425209, -0.030914004892110825, 0.08679983764886856, -0.022946447134017944, -0.011221606284379959, 0.08318385481834412, -0.017701486125588417, 0.29269158840179443, -0.03388083353638649, 0.013137190602719784, 0.12018986791372299, 0.04483122006058693, 0.06358980387449265, 0.12753884494304657, -0.06679297983646393, 0.022141192108392715, -0.07339948415756226, -0.05929212644696236, -0.004725873935967684, 0.04582258686423302, -0.05671051889657974, 0.010224426165223122, -0.07150537520647049, 0.023257536813616753, -0.02330605871975422, 0.3099575340747833, 0.11499527096748352, -0.10693475604057312, -0.057503506541252136, 0.003396327141672373, -0.09968192875385284, -0.07255630195140839, 0.04319874942302704, 0.0726754441857338, -0.13501965999603271, 0.0059483665972948074, -0.029014745727181435, 0.0760750025510788, -0.018511980772018433, 0.01630392298102379, 0.029411302879452705, 0.03517292067408562, -0.03670160844922066, 0.010275818407535553, -0.17880026996135712, 0.19577208161354065, 0.005703283939510584, 0.01907140202820301, -0.050440676510334015, 0.03082595206797123, 0.010631111450493336, -0.033453844487667084, 0.06199944019317627, 0.021721886470913887, -0.03134699910879135, -0.04244678467512131, -0.05268608033657074, 0.013455541804432869, 0.08046411722898483, -0.0442371629178524, 0.1099831834435463, -0.007495018187910318, 0.041124533861875534, 0.01932814158499241, 0.08311906456947327, -0.18034817278385162, -0.0873747318983078, 0.028517885133624077, -0.06178852915763855, -0.09970352053642273, -0.07856500148773193, -0.09483860433101654, 0.0014772703871130943, 0.2452044039964676, -0.11300431936979294, -0.07248463481664658, -0.09461881965398788, 0.027822235599160194, 0.10653190314769745, -0.050696417689323425, 0.02607312612235546, -0.006857896223664284, 0.1292526125907898, -0.06655649095773697, -0.13420531153678894, 0.02279147319495678, -0.08854646980762482, -0.16665372252464294, -0.06518377363681793, 0.11520452052354813, 0.061738256365060806, 0.03581603616476059, -0.027857668697834015, 0.022600114345550537, 0.03562535345554352, -0.036043036729097366, -0.0015794233186170459, 0.06842329353094101, 0.09831997007131577, 0.034058332443237305, -0.11043485999107361, 0.023399166762828827, -0.06357592344284058, -0.06243351846933365, 0.07691733539104462, 0.265311062335968, -0.05681341513991356, 0.1255795955657959, 0.1101185530424118, -0.07903963327407837, -0.15406018495559692, 0.029456546530127525, 0.09722578525543213, -0.014979670755565166, 0.018004201352596283, -0.1584840714931488, 0.08799264580011368, 0.11009914427995682, -0.02486775442957878, 0.009070458821952343, -0.18691548705101013, -0.12701526284217834, 0.06670989841222763, 0.09643162041902542, 0.27390211820602417, -0.06130455806851387, -0.041857220232486725, 0.016801981255412102, -0.09741362184286118, 0.023177916184067726, 0.1143355518579483, 0.06675020605325699, -0.025391960516572, -0.07244080305099487, 0.01412759255617857, -0.04018222540616989, 0.09436433762311935, 0.05050751939415932, 0.05478942394256592, -0.0033136317506432533, 0.016721686348319054, -0.020687347277998924, -0.04589344933629036, 0.06348161399364471, 0.020130684599280357, 0.04931644722819328, -0.08402227610349655, -0.029495423659682274, -0.0704067051410675, 0.02929667942225933, -0.024550527334213257, -0.07490770518779755, -0.05856101214885712, 0.07895802706480026, 0.0477365106344223, -0.023160388693213463, 0.023382993414998055, 0.030184246599674225, 0.11811165511608124, 0.16437023878097534, -0.0052080401219427586, -0.03446114435791969, -0.060220781713724136, -0.038556262850761414, -0.015936456620693207, 0.07411305606365204, -0.054915934801101685, 0.024870870634913445, 0.06407655775547028, 0.02334691397845745, 0.09671001881361008, 0.05550764128565788, -0.11735901236534119, -0.01666228659451008, 0.0318731851875782, -0.16371680796146393, 0.015013043768703938, 0.001819900586269796, 0.029889065772294998, -0.035327401012182236, 0.03185103461146355, 0.1531457006931305, -0.06572927534580231, -0.03614329546689987, -0.03980383276939392, 0.06785120815038681, 0.021786067634820938, 0.13802340626716614, 0.035636965185403824, 0.037544459104537964, -0.08049414306879044, 0.12356717884540558, 0.03747383877635002, -0.04000430554151535, 0.020628705620765686, -0.028588173910975456, -0.1081017479300499, 0.012646530754864216, 0.06619403511285782, 0.04038073495030403, -0.05273551121354103, -0.01262422651052475, -0.028689244762063026, -0.0712600126862526, 0.0607081837952137, 0.19229502975940704, 0.06910453736782074, 0.07422914355993271, -0.05498537793755531, -0.03696455806493759, -0.07915481179952621, 0.04238390550017357, 0.04328688234090805, 0.07482253015041351, -0.07762384414672852, 0.1010824665427208, 0.011098326183855534, 0.046779658645391464, -0.031063809990882874, -0.05269294232130051, -0.09932533651590347, -0.055075503885746, -0.10834772139787674, 0.010925772599875927, -0.070672407746315, -0.038188010454177856, 0.0011078561656177044, -0.005472936201840639, -0.006699908059090376, 0.048109252005815506, -0.06499271839857101, -0.008742492645978928, -0.027257224544882774, 0.03325005620718002, -0.06564347445964813, -0.03704722225666046, 0.032327890396118164, -0.10174249857664108, 0.0925384908914566, 0.05182887241244316, 0.007599025033414364, 0.011294483207166195, 0.09325605630874634, -0.022199196740984917, 0.02471954934298992, 0.014067327603697777, -0.04769401624798775, -0.08319804817438126, 0.0023384857922792435, -0.01025380752980709, -0.011583052575588226, -0.011659009382128716, 0.08820640295743942, -0.08600309491157532, 0.03402171656489372, -0.008646921254694462, -0.006178883370012045, -0.0735039934515953, -0.013691281899809837, 0.09301192313432693, 0.10041280835866928, 0.04863690957427025, -0.08751490712165833, 0.013256533071398735, -0.1405036598443985, -0.03758420795202255, 0.006526962388306856, -0.00877283327281475, -0.1223715990781784, -0.009496643207967281, 0.019958052784204483, -0.0017966553568840027, 0.20409198105335236, -0.056751400232315063, -0.013709800317883492, 0.017130576074123383, -0.09803380072116852, 0.10848737508058548, -0.025316687300801277, 0.17694275081157684, -0.007452104706317186, -0.04000845178961754, -0.014240723103284836, 0.03600461035966873, 0.018315205350518227, -0.025112126022577286, 0.18669147789478302, 0.13923366367816925, 0.031423844397068024, 0.04203961044549942, -0.022894538938999176, 0.0028279966209083796, -0.054903384298086166, -0.02684897370636463, 0.030907107517123222, 0.036365944892168045, 0.018218569457530975, 0.15961399674415588, 0.07298662513494492, -0.16442768275737762, 0.031974952667951584, -0.02972383424639702, -0.037371426820755005, -0.11979745328426361, -0.09595201164484024, -0.03436458110809326, -0.07138535380363464, 0.010857870802283287, -0.12096143513917923, 0.007957379333674908, 0.18816302716732025, 0.05781112611293793, 0.02767554484307766, 0.0021847481839358807, -0.1217237263917923, -0.036936867982149124, 0.05276940390467644, 0.013900574296712875, 0.025628985837101936, 0.06046922877430916, 0.0010273873340338469, 0.06392570585012436, 0.038404472172260284, 0.016094310209155083, 0.001784139545634389, 0.08064988255500793, 0.018213944509625435, 0.0401463620364666, -0.061582621186971664, -0.003828610060736537, -0.03591284528374672, 0.07101297378540039, 0.10258505493402481, 0.04969869926571846, -0.04693424329161644, -0.008441277779638767, 0.16185055673122406, -0.04366244748234749, -0.0046783690340816975, -0.12787456810474396, 0.33361533284187317, 0.012777404859662056, 0.014789106324315071, 0.04551563411951065, -0.07648388296365738, -0.049509234726428986, 0.20145738124847412, 0.08477114140987396, -0.0197472982108593, -0.021462930366396904, 0.0021302022505551577, -0.03006700798869133, -0.022607387974858284, 0.14888739585876465, 0.03750521317124367, 0.13016290962696075, -0.05693869665265083, -0.05519664287567139, -0.02803538180887699, -0.008387680165469646, -0.12407104671001434, 0.13123834133148193, -0.03165619075298309, -0.02255439944565296, -0.07183101773262024, 0.026662878692150116, 0.06870727241039276, -0.32762035727500916, -0.0010300448630005121, -0.03102538175880909, -0.11159143596887589, -0.004627087619155645, -0.014840047806501389, -0.021869009360671043, 0.04701561480760574, -0.04904339462518692, 0.06956002861261368, 0.044861771166324615, 0.03472055122256279, -0.024934254586696625, -0.09152255207300186, 0.16592951118946075, 0.047733087092638016, 0.08849415928125381, 0.025829914957284927, 0.07755503803491592, 0.05604279041290283, 0.03441188111901283, -0.09491130709648132, 0.04277907684445381, 0.013406570069491863, -0.09300772845745087, -0.05326196923851967, 0.12302158027887344, -0.002275422215461731, 0.04041365906596184, 0.04271836206316948, -0.10554006695747375, 0.011989252641797066, 0.0753173828125, -0.06714620441198349, -0.101448655128479, -0.005771992262452841, -0.09035257250070572, 0.1568475067615509, 0.14367534220218658, -0.01523116696625948, 0.023620430380105972, -0.06855125725269318, -0.007055702619254589, 0.05371394753456116, 0.0016498554032295942, -0.019252164289355278, -0.1861298829317093, 0.03141835331916809, -0.07950436323881149, -0.005072443746030331, -0.2289879024028778, -0.10019544512033463, -0.009531666524708271, -0.051388777792453766, -0.0264523196965456, 0.0587785579264164, 0.02906906232237816, 0.0685638040304184, -0.016565054655075073, -0.042841386049985886, -0.02984544262290001, 0.08813575655221939, -0.11114177852869034, -0.0671735629439354 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1300k"]}
null
google/multiberts-seed_2-step_1300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07661601901054382, 0.0983516201376915, -0.0024010741617530584, 0.04610903561115265, 0.07735855132341385, -0.015899568796157837, 0.07292217016220093, 0.10241318494081497, -0.02442634105682373, 0.026067888364195824, 0.07916810363531113, 0.001252902438864112, 0.016815464943647385, 0.1005169004201889, 0.02763901837170124, -0.23271778225898743, 0.023364316672086716, -0.03613637760281563, -0.08576293289661407, 0.07672220468521118, 0.10020920634269714, -0.07692163437604904, 0.043516840785741806, 0.029088187962770462, -0.10437734425067902, 0.04948015883564949, 0.0028941589407622814, -0.01966973766684532, 0.13146451115608215, -0.002078823046758771, 0.05224468186497688, 0.05415726453065872, 0.04598681628704071, -0.13773275911808014, 0.006181980948895216, 0.05632861703634262, 0.06114231050014496, 0.04572908952832222, 0.017573954537510872, 0.07777056843042374, 0.007917963899672031, 0.02664237469434738, 0.04771124944090843, 0.02144460752606392, -0.07692321389913559, -0.0564645379781723, -0.10780506581068039, 0.04444793239235878, 0.02849264070391655, 0.004872739315032959, 0.013400290161371231, 0.12702776491641998, -0.032190561294555664, 0.044215019792318344, 0.18309910595417023, -0.32701146602630615, -0.015693292021751404, 0.07935981452465057, 0.045088864862918854, 0.12852483987808228, -0.004016098100692034, -0.019474979490041733, 0.07394258677959442, 0.02265215292572975, 0.08187271654605865, -0.0394788421690464, 0.015987370163202286, -0.053938642144203186, -0.15778550505638123, -0.05057704076170921, 0.08586244285106659, -0.0016286632744595408, -0.13261890411376953, -0.03242700546979904, -0.047594230622053146, 0.02388516440987587, 0.011146236211061478, -0.04018678143620491, 0.033169522881507874, 0.01540201436728239, -0.018064303323626518, -0.013557049445807934, -0.10139580070972443, -0.0540006048977375, 0.026459285989403725, 0.07775883376598358, 0.09917879104614258, 0.06735686212778091, 0.0019061819184571505, 0.11267019808292389, -0.1965918093919754, -0.048507947474718094, -0.030044712126255035, -0.05376012995839119, -0.049795784056186676, -0.013103960081934929, -0.10699895769357681, -0.03691655769944191, 0.009332568384706974, 0.14118842780590057, -0.013774733059108257, 0.027654264122247696, -0.029683316126465797, 0.008788044564425945, 0.05276935547590256, 0.04273797944188118, -0.012743514031171799, 0.025434207171201706, 0.026878075674176216, -0.013561132363975048, -0.01684979721903801, 0.013389422558248043, 0.004367041867226362, 0.019331682473421097, 0.1171170175075531, 0.021736524999141693, -0.09672754257917404, 0.06915921717882156, -0.017103826627135277, -0.04202016070485115, 0.020560406148433685, -0.09173227101564407, -0.0551987923681736, -0.04052095487713814, 0.0017779232002794743, 0.011578126810491085, -0.000812836573459208, -0.001584403682500124, -0.02118283323943615, -0.044058285653591156, -0.08257913589477539, -0.05070192739367485, -0.053255971521139145, -0.12690764665603638, 0.011810713447630405, -0.1613008677959442, -0.03815705329179764, -0.11124639213085175, -0.1929621696472168, -0.02202075719833374, 0.06543729454278946, -0.010132801719009876, -0.06260819733142853, 0.07770141959190369, 0.041082870215177536, -0.028049413114786148, -0.0012972422409802675, 0.07383913546800613, 0.0009349522297270596, 0.04394235834479332, -0.02868930995464325, 0.06722485274076462, 0.0006195887108333409, 0.03024866431951523, -0.0580197237432003, 0.06435241550207138, -0.18183216452598572, 0.04368235915899277, -0.07408275455236435, -0.029158255085349083, -0.08491534739732742, -0.03489423170685768, -0.017838487401604652, 0.0031605451367795467, 0.023500952869653702, 0.07460515946149826, -0.16988727450370789, -0.027237655594944954, 0.11780183762311935, -0.16493083536624908, -0.020661141723394394, 0.07346571981906891, -0.048507336527109146, 0.10428681969642639, 0.0680001825094223, 0.15519103407859802, 0.005390714854001999, -0.07931474596261978, 0.059990040957927704, -0.006873418111354113, 0.009055154398083687, -0.010315099731087685, 0.07053804397583008, -0.019757062196731567, -0.15739378333091736, 0.03509290888905525, -0.13442125916481018, -0.0024184745270758867, -0.07804513722658157, 0.014216096140444279, -0.009291494265198708, -0.0643165111541748, -0.06666047871112823, -0.026172906160354614, 0.06624352186918259, -0.07104271650314331, -0.017029687762260437, 0.03954894095659256, 0.07415524870157242, -0.07238729298114777, 0.07237666100263596, -0.007386108860373497, 0.015479601919651031, -0.08267537504434586, -0.04222786799073219, -0.18629781901836395, 0.045369330793619156, 0.09798959642648697, 0.005093266721814871, -0.023793937638401985, 0.13386142253875732, 0.009872126393020153, 0.06278249621391296, -0.05165548250079155, 0.019939016550779343, -0.013808428309857845, -0.003460593754425645, -0.08687139302492142, -0.09551014006137848, -0.0748399943113327, -0.06877664476633072, 0.09398908913135529, -0.12815409898757935, 0.024068960919976234, -0.0548025518655777, 0.041522275656461716, 0.01768072322010994, -0.08514219522476196, -0.01694076880812645, 0.011648355983197689, -0.05998856946825981, -0.05616983398795128, 0.03993424400687218, 0.07102632522583008, -0.013700731098651886, 0.09100309759378433, -0.05041772499680519, -0.08985712379217148, 0.03057256154716015, 0.10036493092775345, -0.10937516391277313, 0.001301536220125854, -0.059214599430561066, -0.04521834850311279, -0.06716794520616531, -0.02180773951113224, 0.07651565968990326, -0.00870247557759285, 0.13304269313812256, -0.07556602358818054, -0.0035454323515295982, 0.01499454490840435, -0.022316094487905502, -0.022806372493505478, 0.037132613360881805, 0.06531797349452972, -0.06309599429368973, 0.015969807282090187, 0.027609867975115776, 0.005190877243876457, 0.0678386241197586, -0.05326102301478386, -0.0874401330947876, 0.015100463293492794, 0.04020441696047783, 0.030952971428632736, 0.06356051564216614, -0.018055060878396034, -0.005649095866829157, 0.03206498175859451, 0.020344264805316925, 0.00843968614935875, -0.11728990823030472, 0.05944512039422989, 0.05820172652602196, 0.0009146149386651814, 0.053900014609098434, -0.01660054549574852, -0.0385587215423584, 0.07814386487007141, 0.03522365167737007, 0.0044012959115207195, -0.014544093981385231, -0.014648649841547012, -0.11974886804819107, 0.19044549763202667, -0.06052897498011589, -0.1575716733932495, -0.081135094165802, -0.1027136817574501, 0.004960311576724052, 0.023394010961055756, 0.03552539646625519, -0.014093155972659588, -0.0414188876748085, -0.12647105753421783, 0.056883860379457474, -0.03861277550458908, 0.06932742893695831, 0.11266885697841644, -0.0422518327832222, 0.05718123912811279, -0.12495611608028412, -0.00499437702819705, -0.08081073313951492, -0.07765018194913864, 0.05573882907629013, -0.05299464240670204, 0.028580915182828903, 0.1013861894607544, 0.020495302975177765, -0.01816321164369583, -0.02789594605565071, 0.20284315943717957, 0.04035920277237892, 0.04236876592040062, 0.12547940015792847, -0.06212659552693367, 0.057335447520017624, 0.0893612653017044, 0.008933709003031254, -0.04150858521461487, 0.052922435104846954, 0.04229162260890007, -0.07163205742835999, -0.19312097132205963, -0.023326516151428223, -0.007857886143028736, -0.04073605686426163, 0.07363014668226242, 0.03688985854387283, -0.005010418128222227, 0.06938605010509491, 0.012274599634110928, 0.06238085776567459, 0.004568221978843212, 0.09736356884241104, 0.01877746731042862, -0.03130991756916046, 0.08197885751724243, -0.019057974219322205, -0.007458684500306845, 0.08466658741235733, -0.012220976874232292, 0.28203415870666504, -0.03637523204088211, 0.009751717559993267, 0.11656340956687927, 0.043991025537252426, 0.06207211688160896, 0.12482248246669769, -0.06824342906475067, 0.022518962621688843, -0.07039462774991989, -0.05971762537956238, -0.0010355141712352633, 0.04496403783559799, -0.060977861285209656, 0.01413390226662159, -0.0737554281949997, 0.023559316992759705, -0.017570331692695618, 0.29600948095321655, 0.10899870097637177, -0.10619557648897171, -0.057441625744104385, 0.003460991894826293, -0.10040568560361862, -0.06890920549631119, 0.04519684612751007, 0.069418765604496, -0.13468226790428162, 0.0096691669896245, -0.026839381083846092, 0.07318604737520218, -0.014824487268924713, 0.014587122946977615, 0.032194722443819046, 0.03807874023914337, -0.038163088262081146, 0.010848664678633213, -0.17481127381324768, 0.20032261312007904, 0.005418439395725727, 0.01756225898861885, -0.04894881695508957, 0.034840382635593414, 0.006920004263520241, -0.03243095427751541, 0.0660252720117569, 0.02540326490998268, -0.0333082340657711, -0.041131917387247086, -0.05431831628084183, 0.014772755093872547, 0.07284452021121979, -0.042026277631521225, 0.10392869263887405, -0.005653614178299904, 0.04222708195447922, 0.020701292902231216, 0.08563306927680969, -0.18275976181030273, -0.08980761468410492, 0.031780242919921875, -0.05962654948234558, -0.10689685493707657, -0.07900635898113251, -0.09522690623998642, -0.007472363766282797, 0.24867892265319824, -0.1166934072971344, -0.07355380803346634, -0.09583650529384613, 0.03720346465706825, 0.10873475670814514, -0.050050582736730576, 0.028710685670375824, -0.004707247018814087, 0.126807302236557, -0.06892798095941544, -0.13077184557914734, 0.024980716407299042, -0.08780267834663391, -0.16692738234996796, -0.06552433222532272, 0.11210303008556366, 0.059401735663414, 0.036110106855630875, -0.030638782307505608, 0.023203780874609947, 0.03818810358643532, -0.040531568229198456, -0.008438058197498322, 0.07784353196620941, 0.08724863827228546, 0.03136468306183815, -0.10793621093034744, 0.02015792578458786, -0.060872986912727356, -0.06510328501462936, 0.07683402299880981, 0.2726118564605713, -0.05972008407115936, 0.12757278978824615, 0.11629118025302887, -0.08303679525852203, -0.15713289380073547, 0.02905883640050888, 0.09239780157804489, -0.016762681305408478, 0.021588223055005074, -0.15038564801216125, 0.08674308657646179, 0.1193835660815239, -0.025643356144428253, -0.005232773721218109, -0.19701224565505981, -0.13078051805496216, 0.06378114968538284, 0.09773889183998108, 0.2715682089328766, -0.057413674890995026, -0.04513245075941086, 0.022731715813279152, -0.09980393946170807, 0.009573161602020264, 0.12273833155632019, 0.06112593039870262, -0.022679690271615982, -0.0747210904955864, 0.014520492404699326, -0.04213816672563553, 0.09616117924451828, 0.05253351107239723, 0.05292947217822075, -0.004885170143097639, 0.01617106981575489, -0.010768311098217964, -0.045860908925533295, 0.06119760498404503, 0.03101702220737934, 0.05089501664042473, -0.08020149171352386, -0.028512774035334587, -0.07099340111017227, 0.030550779774785042, -0.02689267508685589, -0.0752430185675621, -0.06400390714406967, 0.07929475605487823, 0.054051317274570465, -0.026880953460931778, 0.022007746621966362, 0.030279645696282387, 0.11720292270183563, 0.17119200527668, -0.0038396292366087437, -0.039073746651411057, -0.045759402215480804, -0.033790118992328644, -0.01813557930290699, 0.07054075598716736, -0.04434121027588844, 0.0258135087788105, 0.06733821332454681, 0.024314984679222107, 0.09098812192678452, 0.056877415627241135, -0.11464076489210129, -0.01715126261115074, 0.03392428532242775, -0.16397438943386078, 0.017312632873654366, -0.0012414617231115699, 0.025732826441526413, -0.04186245799064636, 0.02418268658220768, 0.14972898364067078, -0.06816175580024719, -0.035764388740062714, -0.03602176532149315, 0.06986124813556671, 0.021110694855451584, 0.139473557472229, 0.03325100988149643, 0.03551842272281647, -0.07974823564291, 0.12601026892662048, 0.041658926755189896, -0.050343189388513565, 0.0171789713203907, -0.022450314834713936, -0.10776432603597641, 0.015005558729171753, 0.061403170228004456, 0.0292728953063488, -0.056000567972660065, -0.006561917252838612, -0.02769426256418228, -0.0702950581908226, 0.06039856746792793, 0.1919519007205963, 0.06720121204853058, 0.07466831058263779, -0.05172622203826904, -0.03279181569814682, -0.08188699930906296, 0.045276109129190445, 0.042793504893779755, 0.07502744346857071, -0.07945969700813293, 0.10151167213916779, 0.009454903192818165, 0.03981655463576317, -0.031229501590132713, -0.054916854947805405, -0.10226579010486603, -0.0534939281642437, -0.08516339957714081, 0.00813028123229742, -0.07985688000917435, -0.037451837211847305, 0.0007679970585741103, -0.0051376656629145145, -0.012097141705453396, 0.048646584153175354, -0.061518121510744095, -0.008782802149653435, -0.03082149848341942, 0.0351102314889431, -0.06508652865886688, -0.03595024719834328, 0.03556331247091293, -0.0984875038266182, 0.09310701489448547, 0.04837146773934364, 0.008581672795116901, 0.006778845563530922, 0.07967209815979004, -0.019002186134457588, 0.02157905325293541, 0.014209765940904617, -0.047524090856313705, -0.08479262888431549, 0.0010038024047389627, -0.0076491148211061954, -0.01568160578608513, -0.00884493999183178, 0.09166418015956879, -0.08827957510948181, 0.03153605759143829, -0.005612038541585207, -0.009757420979440212, -0.0742299035191536, -0.013152141124010086, 0.09731225669384003, 0.0961146205663681, 0.04327431693673134, -0.09116426110267639, 0.010195286013185978, -0.1436464786529541, -0.03736284002661705, 0.007082611788064241, -0.008417574688792229, -0.12229085713624954, -0.004495921544730663, 0.0206394512206316, 0.0010741224978119135, 0.21875286102294922, -0.05872346833348274, -0.021776042878627777, 0.021158305928111076, -0.10369577258825302, 0.11244338750839233, -0.024002470076084137, 0.18891644477844238, -0.006723265163600445, -0.0411926694214344, -0.009786141104996204, 0.0378606840968132, 0.019939204677939415, -0.02381295897066593, 0.1850925087928772, 0.134304940700531, 0.03661390021443367, 0.04466133937239647, -0.02191554382443428, 0.008225108496844769, -0.04593925550580025, -0.02935640513896942, 0.030150441452860832, 0.03802698105573654, 0.01621747948229313, 0.14061328768730164, 0.07897753268480301, -0.16933684051036835, 0.03371695801615715, -0.02679264172911644, -0.04098494350910187, -0.12279393523931503, -0.10428120940923691, -0.03213544562458992, -0.07852686196565628, 0.009890355169773102, -0.12595613300800323, 0.008294527418911457, 0.1798045039176941, 0.056538987904787064, 0.03153756633400917, 0.005227158311754465, -0.12429217249155045, -0.03280866518616676, 0.04622773453593254, 0.012736506760120392, 0.02977162040770054, 0.06017865613102913, -0.008019750006496906, 0.06247162073850632, 0.03986005112528801, 0.012946836650371552, -0.00044658800470642745, 0.08526284992694855, 0.017484109848737717, 0.039557673037052155, -0.06060546636581421, -0.005868629086762667, -0.04150781035423279, 0.07044538855552673, 0.09463857859373093, 0.04973205551505089, -0.048667024821043015, -0.007238050922751427, 0.1642296463251114, -0.04352238401770592, -0.001972345868125558, -0.1328062117099762, 0.3359214961528778, 0.016659606248140335, 0.012216671369969845, 0.04610176384449005, -0.07845190912485123, -0.05099251866340637, 0.20526644587516785, 0.09234151244163513, -0.016288770362734795, -0.02125214971601963, 0.001842609024606645, -0.03028656542301178, -0.020838521420955658, 0.14992862939834595, 0.032623641192913055, 0.12002922594547272, -0.05271320790052414, -0.057530373334884644, -0.027636051177978516, -0.009626024402678013, -0.12477704137563705, 0.13436171412467957, -0.030694210901856422, -0.02309887483716011, -0.07237161695957184, 0.03059827908873558, 0.06912845373153687, -0.3173801004886627, -0.00563339376822114, -0.033535152673721313, -0.10741215199232101, -0.0036632781848311424, -0.015949102118611336, -0.021284008398652077, 0.04316763952374458, -0.045153602957725525, 0.07164009660482407, 0.03721078485250473, 0.03701392188668251, -0.02342846430838108, -0.09584125131368637, 0.16557367146015167, 0.061120737344026566, 0.1031571626663208, 0.028483672067523003, 0.07179738581180573, 0.056354910135269165, 0.03538937121629715, -0.09914755821228027, 0.04174334555864334, 0.017470207065343857, -0.08624560385942459, -0.055206842720508575, 0.1221022978425026, -0.002487804275006056, 0.04978169873356819, 0.04114843159914017, -0.10776795446872711, 0.013356706127524376, 0.06721743941307068, -0.06379184871912003, -0.10040238499641418, -0.010192323476076126, -0.08860712498426437, 0.1585586965084076, 0.1427941620349884, -0.015111997723579407, 0.025235068053007126, -0.0657329112291336, -0.011311323381960392, 0.04863458499312401, 0.01342752669006586, -0.017615094780921936, -0.1905527412891388, 0.029628360643982887, -0.08262450248003006, -0.00448707165196538, -0.22013480961322784, -0.1032211035490036, -0.011539378203451633, -0.05174281448125839, -0.02464219368994236, 0.06562257558107376, 0.029721714556217194, 0.06395704299211502, -0.015074829570949078, -0.03452245146036148, -0.028508784249424934, 0.09163545072078705, -0.11285507678985596, -0.06470565497875214 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1400k"]}
null
google/multiberts-seed_2-step_1400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1400k (max: 2000k, i.e., 2M steps)." ]
[ -0.0798455998301506, 0.10067134350538254, -0.0026154767256230116, 0.04468807950615883, 0.07974309474229813, -0.011797654442489147, 0.07604966312646866, 0.10198478400707245, -0.022050000727176666, 0.025722678750753403, 0.07727465033531189, -0.0036845370195806026, 0.016517452895641327, 0.09241434186697006, 0.026416411623358727, -0.2266392707824707, 0.020623445510864258, -0.03319935500621796, -0.09386685490608215, 0.07592745125293732, 0.10084063559770584, -0.07865267992019653, 0.04467747360467911, 0.030758148059248924, -0.11183227598667145, 0.04654795676469803, 0.0035668988712131977, -0.018109312281012535, 0.1349257230758667, -0.001633702078834176, 0.05265715345740318, 0.05313805863261223, 0.04612809792160988, -0.1319858878850937, 0.0069870916195213795, 0.05877838283777237, 0.0586327463388443, 0.04708480462431908, 0.02090364880859852, 0.07856565713882446, 0.004664799198508263, 0.02720341645181179, 0.04443400353193283, 0.02362104132771492, -0.07616105675697327, -0.07352098077535629, -0.1030980795621872, 0.04461072012782097, 0.025296911597251892, 0.0036274802405387163, 0.012281294912099838, 0.11931146681308746, -0.032280225306749344, 0.04165436699986458, 0.17557764053344727, -0.334860622882843, -0.012886162847280502, 0.06723222881555557, 0.039864346385002136, 0.12723447382450104, -0.006278065498918295, -0.01867794431746006, 0.07589534670114517, 0.026710325852036476, 0.09000027179718018, -0.039906587451696396, 0.02707032673060894, -0.05370756611227989, -0.1548585146665573, -0.04645256698131561, 0.08677065372467041, -0.003480283310636878, -0.1361168771982193, -0.03418072685599327, -0.04617379233241081, 0.03912641480565071, 0.01070303563028574, -0.03692622110247612, 0.03398556634783745, 0.016489284113049507, -0.01408481877297163, -0.013810254633426666, -0.10423847287893295, -0.0522613525390625, 0.029775822535157204, 0.0820075124502182, 0.10135076940059662, 0.0685330182313919, 0.0015327776782214642, 0.11038856208324432, -0.19079004228115082, -0.05223875120282173, -0.02837260253727436, -0.05415581539273262, -0.05001169815659523, -0.009853602387011051, -0.10775525867938995, -0.03238854184746742, 0.00935499370098114, 0.13119271397590637, -0.014068218879401684, 0.0264572910964489, -0.024968404322862625, 0.007772873621433973, 0.05403205007314682, 0.038395337760448456, -0.010669074952602386, 0.020464720204472542, 0.024677664041519165, -0.014561283402144909, -0.02018057182431221, 0.014399579726159573, 0.001945872325450182, 0.021024314686655998, 0.11771821975708008, 0.021285802125930786, -0.09871649742126465, 0.06611280143260956, -0.015649665147066116, -0.04341118782758713, 0.015161514282226562, -0.09013815969228745, -0.05509687587618828, -0.03762591630220413, 0.0006433988455682993, 0.012636722065508366, -0.0020677531138062477, -0.005841516423970461, -0.023662906140089035, -0.03842611238360405, -0.08508802205324173, -0.04764498770236969, -0.05042847618460655, -0.1277804970741272, 0.00908169150352478, -0.1686611920595169, -0.03763974457979202, -0.11516834050416946, -0.18766452372074127, -0.022715726867318153, 0.06439121067523956, -0.01123170368373394, -0.05891109257936478, 0.08392538875341415, 0.043227676302194595, -0.02801978960633278, -0.0015319314552471042, 0.06883087754249573, -0.0006829928606748581, 0.045225534588098526, -0.02625318244099617, 0.06977210193872452, 0.0017100689001381397, 0.033039312809705734, -0.05511302128434181, 0.06408955156803131, -0.17981590330600739, 0.04513569548726082, -0.07111214846372604, -0.027596747502684593, -0.08559021353721619, -0.03874657675623894, -0.01268325187265873, 0.004553820472210646, 0.023663658648729324, 0.0759970173239708, -0.17704221606254578, -0.02944173291325569, 0.11850769817829132, -0.16575177013874054, -0.02373848669230938, 0.07451633363962173, -0.04741466045379639, 0.1056162640452385, 0.06918681412935257, 0.15758223831653595, 0.004343684762716293, -0.08242611587047577, 0.05955464392900467, -0.009242793545126915, 0.008898616768419743, -0.009989161044359207, 0.07052639871835709, -0.01985800266265869, -0.1532038450241089, 0.0344761498272419, -0.13068051636219025, -0.0016498238546773791, -0.07820670306682587, 0.016362257301807404, -0.011127334088087082, -0.06599225848913193, -0.06381857395172119, -0.0261137243360281, 0.06810247153043747, -0.07120351493358612, -0.015205936506390572, 0.046769868582487106, 0.0756424069404602, -0.07185971736907959, 0.07014653831720352, -0.010150271467864513, 0.018266549333930016, -0.08253344148397446, -0.03875582292675972, -0.19033174216747284, 0.04711339250206947, 0.09650358557701111, -0.0006361492560245097, -0.02164679393172264, 0.13948161900043488, 0.009484121575951576, 0.06945571303367615, -0.05318189039826393, 0.01622510701417923, -0.011849567294120789, -0.004102714825421572, -0.08909931033849716, -0.1009429395198822, -0.0759267807006836, -0.06496820598840714, 0.09593461453914642, -0.1292400360107422, 0.023184122517704964, -0.05842828378081322, 0.0442408062517643, 0.019149813801050186, -0.08161341398954391, -0.02018585614860058, 0.011604931205511093, -0.05971749499440193, -0.05638762190937996, 0.041613154113292694, 0.0724555253982544, -0.010449486784636974, 0.09424202144145966, -0.04568994417786598, -0.08046701550483704, 0.03142685815691948, 0.09537158161401749, -0.1071760505437851, 0.007634339854121208, -0.056907735764980316, -0.04426174983382225, -0.0636695846915245, -0.019979672506451607, 0.07702333480119705, -0.00952993892133236, 0.1386994570493698, -0.07515337318181992, -0.001736957230605185, 0.01528877206146717, -0.022424161434173584, -0.02025294490158558, 0.03514004498720169, 0.05886734277009964, -0.06752157211303711, 0.014510939829051495, 0.035742416977882385, 0.011049563065171242, 0.06853105127811432, -0.053968802094459534, -0.08824712783098221, 0.010834152810275555, 0.035291437059640884, 0.02849290333688259, 0.06759289652109146, -0.019316278398036957, -0.008860591799020767, 0.03484731912612915, 0.019233688712120056, 0.007047280669212341, -0.11668884754180908, 0.06118365377187729, 0.0583173893392086, 0.003655154723674059, 0.05256626009941101, -0.018680311739444733, -0.038548633456230164, 0.08064153045415878, 0.03684007003903389, 0.006277202628552914, -0.014843047596514225, -0.014329221099615097, -0.11849886178970337, 0.1897120326757431, -0.06250544637441635, -0.16012433171272278, -0.08430696278810501, -0.1037229374051094, 0.004894754383713007, 0.02563438192009926, 0.03904161602258682, -0.01769447885453701, -0.04175478219985962, -0.12061402201652527, 0.05990612506866455, -0.03716294467449188, 0.0692112147808075, 0.11020340025424957, -0.0401933416724205, 0.06107918918132782, -0.12488622963428497, -0.005033510271459818, -0.08126070350408554, -0.06492845714092255, 0.05848946422338486, -0.048256367444992065, 0.02682722918689251, 0.10071524977684021, 0.022678453475236893, -0.020351557061076164, -0.024460935965180397, 0.20794150233268738, 0.038898248225450516, 0.04308653622865677, 0.13177475333213806, -0.0639529600739479, 0.058069273829460144, 0.08453462272882462, 0.011511394754052162, -0.04184991493821144, 0.05042559280991554, 0.04196065291762352, -0.06752242147922516, -0.19356456398963928, -0.024560119956731796, -0.00878253486007452, -0.04687678441405296, 0.07445009052753448, 0.034871842712163925, 0.0025615720078349113, 0.06712909042835236, 0.013101471588015556, 0.0643177255988121, -0.0010080802021548152, 0.09770895540714264, 0.022693028673529625, -0.032322321087121964, 0.08404302597045898, -0.021180767565965652, -0.00774840684607625, 0.08714189380407333, -0.022657981142401695, 0.28964170813560486, -0.035681188106536865, 0.012817246839404106, 0.11864734441041946, 0.047089941799640656, 0.06346892565488815, 0.12380640208721161, -0.06726659834384918, 0.023396510630846024, -0.07114673405885696, -0.06029890850186348, -0.00021017844846937805, 0.04600299894809723, -0.061592377722263336, 0.01247742772102356, -0.07544980943202972, 0.020358948037028313, -0.020230084657669067, 0.30791833996772766, 0.11269887536764145, -0.10501691699028015, -0.06362096220254898, 0.004138330463320017, -0.09959343820810318, -0.07294648140668869, 0.040840789675712585, 0.0773300975561142, -0.1329069584608078, 0.007547395769506693, -0.023992639034986496, 0.07439413666725159, -0.012719220481812954, 0.017660066485404968, 0.03406992927193642, 0.03799097612500191, -0.038829583674669266, 0.0097890580072999, -0.17497891187667847, 0.19486577808856964, 0.0071817790158092976, 0.018708746880292892, -0.04812317714095116, 0.0328112430870533, 0.0093449167907238, -0.022978218272328377, 0.060479506850242615, 0.027059998363256454, -0.02953237108886242, -0.041647203266620636, -0.04978811368346214, 0.011990807019174099, 0.07646159827709198, -0.04159536585211754, 0.10512986779212952, -0.006858161650598049, 0.041898153722286224, 0.020085256546735764, 0.08587461709976196, -0.17853350937366486, -0.0874805599451065, 0.03152124211192131, -0.05967269837856293, -0.10066717863082886, -0.08037928491830826, -0.09533605724573135, -0.0001585787395015359, 0.24525980651378632, -0.11580885946750641, -0.07635540515184402, -0.09745343774557114, 0.02940884791314602, 0.10793478786945343, -0.05004138872027397, 0.029005398973822594, -0.00501156784594059, 0.1310250461101532, -0.06516804546117783, -0.13293452560901642, 0.02144305594265461, -0.08867309242486954, -0.16494488716125488, -0.06625650078058243, 0.11582133919000626, 0.05817173793911934, 0.03569050133228302, -0.02826547995209694, 0.02182815410196781, 0.03320564329624176, -0.038977086544036865, -0.002729391446337104, 0.06481962651014328, 0.09894969314336777, 0.03145580738782883, -0.11034592986106873, 0.01685440167784691, -0.06132585182785988, -0.06384526938199997, 0.0744105875492096, 0.26723840832710266, -0.06003090739250183, 0.12551109492778778, 0.12322042882442474, -0.0806865468621254, -0.15392710268497467, 0.028911715373396873, 0.09242124110460281, -0.01590311899781227, 0.014460353180766106, -0.15644624829292297, 0.0887676253914833, 0.1127152293920517, -0.023742755874991417, 0.006475682836025953, -0.1881374716758728, -0.13191212713718414, 0.06379425525665283, 0.09494180977344513, 0.27344831824302673, -0.060721248388290405, -0.04489896073937416, 0.018313229084014893, -0.10018780082464218, 0.010974152944982052, 0.11839437484741211, 0.062046393752098083, -0.024959327653050423, -0.07599857449531555, 0.01416232530027628, -0.03998975083231926, 0.09926305711269379, 0.05388938635587692, 0.055225010961294174, -0.004552360624074936, 0.020702052861452103, -0.013486240059137344, -0.045260295271873474, 0.05976502597332001, 0.028879916295409203, 0.05037363991141319, -0.0872194841504097, -0.027856076136231422, -0.07083039730787277, 0.02736368402838707, -0.026202045381069183, -0.07544174790382385, -0.060858432203531265, 0.07862538844347, 0.049754612147808075, -0.026281531900167465, 0.016057468950748444, 0.030547451227903366, 0.11804112046957016, 0.16754481196403503, -0.008218531496822834, -0.043854400515556335, -0.05874891206622124, -0.035340651869773865, -0.017495950683951378, 0.07263997197151184, -0.05477828159928322, 0.02753346599638462, 0.06691381335258484, 0.024711083620786667, 0.09627829492092133, 0.05613492801785469, -0.11352292448282242, -0.018035635352134705, 0.035058751702308655, -0.1651800572872162, 0.013588444329798222, -0.0008160123834386468, 0.01826162450015545, -0.038174428045749664, 0.024306464940309525, 0.1504114717245102, -0.06598944216966629, -0.03541811928153038, -0.03910967335104942, 0.06754815578460693, 0.01965678669512272, 0.14079855382442474, 0.036145683377981186, 0.03749177232384682, -0.08170369267463684, 0.12393616139888763, 0.04111354053020477, -0.04262365773320198, 0.01732822135090828, -0.02386106550693512, -0.10994607955217361, 0.012364501133561134, 0.05832478404045105, 0.03512108698487282, -0.04949890449643135, -0.01257680356502533, -0.027349546551704407, -0.07508469372987747, 0.06048651784658432, 0.18389248847961426, 0.0661703422665596, 0.07270622253417969, -0.05398990213871002, -0.03656810149550438, -0.08058237284421921, 0.04458082094788551, 0.04371443763375282, 0.07311874628067017, -0.07920730113983154, 0.11013634502887726, 0.01045693177729845, 0.04621399939060211, -0.0324050635099411, -0.05446986109018326, -0.09960553050041199, -0.055791307240724564, -0.11035806685686111, 0.008662853389978409, -0.07485488057136536, -0.037555571645498276, -0.0002997790288645774, -0.008347513154149055, -0.010115426033735275, 0.048529356718063354, -0.06176963448524475, -0.008887073956429958, -0.024863610044121742, 0.03487367182970047, -0.06528694182634354, -0.03752245754003525, 0.031993087381124496, -0.10100696235895157, 0.09614359587430954, 0.05393263325095177, 0.007395481690764427, 0.006803132127970457, 0.10273922234773636, -0.021028276532888412, 0.022350601851940155, 0.01396241970360279, -0.045390743762254715, -0.08709380030632019, 0.001611063489690423, -0.009738210588693619, -0.017288941890001297, -0.008786579594016075, 0.08971782773733139, -0.08519110083580017, 0.03560551255941391, -0.007575140334665775, -0.007836679928004742, -0.07420644909143448, -0.014356985688209534, 0.09892856329679489, 0.0965084657073021, 0.04834706708788872, -0.08896665275096893, 0.011394760571420193, -0.1448569893836975, -0.0384315587580204, 0.005491688847541809, -0.00848335400223732, -0.11707314848899841, -0.009813857264816761, 0.01922699064016342, -0.0002592343953438103, 0.21063292026519775, -0.05976101756095886, -0.01760399155318737, 0.020731858909130096, -0.09577495604753494, 0.10248289257287979, -0.023086510598659515, 0.18054594099521637, -0.009235670790076256, -0.041543666273355484, -0.012470642104744911, 0.03927699476480484, 0.021201523020863533, -0.01807997189462185, 0.179975226521492, 0.1381656974554062, 0.037362147122621536, 0.040915749967098236, -0.02348780445754528, 0.003843847429379821, -0.05470655485987663, -0.02496190369129181, 0.029001612216234207, 0.0383274182677269, 0.018488463014364243, 0.14890551567077637, 0.07351420074701309, -0.16777655482292175, 0.03517964482307434, -0.030685290694236755, -0.03956323862075806, -0.11612828820943832, -0.08796077966690063, -0.030334167182445526, -0.07549645006656647, 0.006695905700325966, -0.12351400405168533, 0.007825633510947227, 0.17873218655586243, 0.05571003258228302, 0.026795262470841408, 0.003141069784760475, -0.12344297766685486, -0.036147452890872955, 0.049767252057790756, 0.014222358353435993, 0.027778467163443565, 0.06237579137086868, -0.0032140384428203106, 0.062087103724479675, 0.04003671184182167, 0.01278909482061863, 0.0015220829518511891, 0.08235367387533188, 0.017772292718291283, 0.03854960948228836, -0.06217602640390396, -0.004637222737073898, -0.03882226720452309, 0.06952963769435883, 0.09533515572547913, 0.04739735648036003, -0.04753043130040169, -0.008612828329205513, 0.16654454171657562, -0.04230813682079315, -0.004473770037293434, -0.13078457117080688, 0.3337175250053406, 0.013653984293341637, 0.011689091101288795, 0.047227904200553894, -0.07752174139022827, -0.05091576650738716, 0.20662368834018707, 0.0897175669670105, -0.02104160562157631, -0.021982965990900993, 0.0029808294493705034, -0.030672740191221237, -0.020161623135209084, 0.15120020508766174, 0.03449184447526932, 0.12571479380130768, -0.05135715380311012, -0.050268642604351044, -0.030797095969319344, -0.007809664122760296, -0.12605531513690948, 0.143406480550766, -0.032355379313230515, -0.023411598056554794, -0.07123034447431564, 0.027854932472109795, 0.07334695756435394, -0.3271406590938568, 0.0009873202070593834, -0.03262341022491455, -0.11000284552574158, -0.004301175009459257, -0.018650947138667107, -0.02159113995730877, 0.0454300157725811, -0.045736849308013916, 0.06993040442466736, 0.04738700017333031, 0.03444533795118332, -0.023141736164689064, -0.09618198126554489, 0.16903863847255707, 0.047179896384477615, 0.09616163372993469, 0.02646343968808651, 0.07465090602636337, 0.05489807948470116, 0.0359966941177845, -0.0983586236834526, 0.03801041841506958, 0.013212090358138084, -0.08886625617742538, -0.05420706048607826, 0.12136281281709671, -0.0016915167216211557, 0.0350455567240715, 0.04329677298665047, -0.10947687178850174, 0.00906227994710207, 0.07215022295713425, -0.06941942125558853, -0.09778532385826111, -0.011548815295100212, -0.08737237751483917, 0.1549721211194992, 0.14118243753910065, -0.017004135996103287, 0.023533279076218605, -0.0657673254609108, -0.009440218098461628, 0.05440327525138855, 0.010488243773579597, -0.017673436552286148, -0.19168245792388916, 0.03289926424622536, -0.08616778999567032, -0.0049339113757014275, -0.2284073382616043, -0.10294021666049957, -0.008466931991279125, -0.04995635896921158, -0.023951420560479164, 0.06434997916221619, 0.030337901785969734, 0.0666964128613472, -0.015371322631835938, -0.03915100544691086, -0.02952423319220543, 0.09112296998500824, -0.1078813448548317, -0.06552460044622421 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_140k"]}
null
google/multiberts-seed_2-step_140k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_140k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 140k (max: 2000k, i.e., 2M steps)." ]
[ -0.07770475000143051, 0.10056504607200623, -0.002634833799675107, 0.04189005866646767, 0.07965799421072006, -0.012383861467242241, 0.0769602581858635, 0.10265593975782394, -0.020472118631005287, 0.026183323934674263, 0.07824911177158356, 0.0019986520055681467, 0.016457557678222656, 0.09407862275838852, 0.025092002004384995, -0.22779475152492523, 0.020734263584017754, -0.03160152584314346, -0.09158185869455338, 0.07604394853115082, 0.1009778380393982, -0.07888270169496536, 0.04403143748641014, 0.031493473798036575, -0.1129436120390892, 0.04606996849179268, 0.004159827250987291, -0.01718256250023842, 0.13398899137973785, -0.0008367881528101861, 0.052835021167993546, 0.05317385122179985, 0.0444546714425087, -0.13447675108909607, 0.007319858763366938, 0.05949346348643303, 0.05858587101101875, 0.04750886186957359, 0.02177811786532402, 0.0783245861530304, 0.004969126544892788, 0.026663674041628838, 0.04326851665973663, 0.02339746616780758, -0.07538340985774994, -0.07752912491559982, -0.10214712470769882, 0.03967700153589249, 0.025169625878334045, 0.0034886719658970833, 0.011506152339279652, 0.12139248102903366, -0.03307664021849632, 0.04199400544166565, 0.17807355523109436, -0.3409729599952698, -0.012102576903998852, 0.0679185763001442, 0.04251910373568535, 0.12209656834602356, -0.0056584798730909824, -0.017261812463402748, 0.07486102730035782, 0.025588516145944595, 0.092735156416893, -0.03927427530288696, 0.027110841125249863, -0.05343785136938095, -0.15624184906482697, -0.04631870612502098, 0.08799108117818832, -0.0036928218323737383, -0.13815610110759735, -0.03515752777457237, -0.0457414947450161, 0.04314018785953522, 0.010436831042170525, -0.036846887320280075, 0.0330662839114666, 0.01866322010755539, -0.016536924988031387, -0.013987837359309196, -0.10644270479679108, -0.05402682349085808, 0.03060123324394226, 0.08074067533016205, 0.10167977213859558, 0.06839066743850708, 0.0011305673979222775, 0.11181607097387314, -0.19270069897174835, -0.05159732326865196, -0.028012892231345177, -0.0536826029419899, -0.04926219582557678, -0.009351317770779133, -0.10913495719432831, -0.037314917892217636, 0.010965768247842789, 0.13083072006702423, -0.009947801008820534, 0.02549147605895996, -0.02823966182768345, 0.008507090620696545, 0.0554334931075573, 0.04283268004655838, -0.009010815061628819, 0.02428313158452511, 0.024439893662929535, -0.016669919714331627, -0.020604364573955536, 0.014396223239600658, 0.00018628516409080476, 0.022867824882268906, 0.11785046011209488, 0.022012289613485336, -0.10180673003196716, 0.06796116381883621, -0.01757727935910225, -0.04457894340157509, 0.016632214188575745, -0.08907083421945572, -0.05462460219860077, -0.035770442336797714, 0.0017023792024701834, 0.015265173278748989, -0.003154144622385502, -0.00511776702478528, -0.02249538153409958, -0.03812570497393608, -0.08328521251678467, -0.04577547684311867, -0.051495857536792755, -0.12864314019680023, 0.008913933299481869, -0.17213870584964752, -0.036631111055612564, -0.1144222542643547, -0.18648885190486908, -0.020615950226783752, 0.06399484723806381, -0.011225077323615551, -0.057069748640060425, 0.08253870159387589, 0.04353058338165283, -0.02740911766886711, -0.0011971909552812576, 0.0727979764342308, -0.002053249394521117, 0.04515215754508972, -0.02568131871521473, 0.0696767196059227, 0.002266919007524848, 0.032959192991256714, -0.0547306090593338, 0.06432566791772842, -0.1718686819076538, 0.04439542815089226, -0.07152334600687027, -0.032334424555301666, -0.0867268294095993, -0.0368848517537117, -0.010555978864431381, 0.005048027262091637, 0.02256755344569683, 0.07379384338855743, -0.18110394477844238, -0.029836704954504967, 0.1253596395254135, -0.16382010281085968, -0.02130582556128502, 0.0756320059299469, -0.04814503341913223, 0.106171615421772, 0.06927810609340668, 0.15571711957454681, 0.0005040651885792613, -0.08528647571802139, 0.06001267582178116, -0.008234123699367046, 0.010189983062446117, -0.006497317459434271, 0.07140211015939713, -0.018847813829779625, -0.15453025698661804, 0.03516177460551262, -0.13246549665927887, -0.002002654131501913, -0.07821033149957657, 0.017724016681313515, -0.012130706571042538, -0.06572133302688599, -0.061456385999917984, -0.027185721322894096, 0.06844744831323624, -0.07065021246671677, -0.01779095269739628, 0.04623705893754959, 0.07454050332307816, -0.07387851923704147, 0.06797460466623306, -0.012073973193764687, 0.017019370570778847, -0.08387789130210876, -0.038847316056489944, -0.18949049711227417, 0.0489102378487587, 0.0995146781206131, 0.002089726272970438, -0.02236391231417656, 0.14366792142391205, 0.009030214510858059, 0.06952190399169922, -0.05157392844557762, 0.015636399388313293, -0.013225890696048737, -0.0043851593509316444, -0.08888062089681625, -0.09949073195457458, -0.07676196098327637, -0.06706101447343826, 0.09380394965410233, -0.1310162991285324, 0.022075241431593895, -0.057651352137327194, 0.04404187574982643, 0.02030079998075962, -0.08106592297554016, -0.01936851255595684, 0.011277474462985992, -0.06016688793897629, -0.055745817720890045, 0.04164471477270126, 0.0720042884349823, -0.011445961892604828, 0.09636828303337097, -0.04747316241264343, -0.08151450008153915, 0.030879775062203407, 0.09505882859230042, -0.10600738227367401, 0.007293861825019121, -0.05709114670753479, -0.04343164339661598, -0.06358831375837326, -0.01934157684445381, 0.07777750492095947, -0.009367105551064014, 0.1391948163509369, -0.07501494139432907, -0.0036726410035043955, 0.014028850011527538, -0.023371616378426552, -0.020438311621546745, 0.03452235087752342, 0.06094883754849434, -0.07305657863616943, 0.01542294304817915, 0.039624009281396866, 0.009018156677484512, 0.07182551920413971, -0.05457137152552605, -0.08985695987939835, 0.010337593033909798, 0.03627348318696022, 0.028979992493987083, 0.06773635745048523, -0.021186083555221558, -0.009289571084082127, 0.03520495817065239, 0.01731606386601925, 0.006369544193148613, -0.11807884275913239, 0.061404988169670105, 0.05809490382671356, 0.0015340319368988276, 0.05853113904595375, -0.017595376819372177, -0.03953556343913078, 0.08011899888515472, 0.03647076338529587, 0.006372931879013777, -0.01467759907245636, -0.014093109406530857, -0.11806025356054306, 0.19042088091373444, -0.06280422955751419, -0.1630164384841919, -0.08131147176027298, -0.10138308256864548, 0.00722249411046505, 0.02666272409260273, 0.03964735195040703, -0.017406735569238663, -0.0424971729516983, -0.12208659201860428, 0.06183456629514694, -0.03877313807606697, 0.06933993101119995, 0.10787662118673325, -0.04149531200528145, 0.05981753394007683, -0.1250336766242981, -0.005185763817280531, -0.08083868771791458, -0.06922638416290283, 0.05985438823699951, -0.048460010439157486, 0.02575698308646679, 0.09847821295261383, 0.02368200570344925, -0.0199549812823534, -0.02474808879196644, 0.20523066818714142, 0.04088669642806053, 0.042141396552324295, 0.13323082029819489, -0.0654463917016983, 0.057787153869867325, 0.07928424328565598, 0.009867174550890923, -0.04212222248315811, 0.05041297525167465, 0.04357424005866051, -0.06768417358398438, -0.1934409737586975, -0.023410173133015633, -0.007503671571612358, -0.04556842893362045, 0.07357870787382126, 0.03520726040005684, 0.003183288499712944, 0.06886190176010132, 0.012369363568723202, 0.06323060393333435, -0.001425186637789011, 0.09794184565544128, 0.02207041159272194, -0.03329060599207878, 0.08630327135324478, -0.02096235565841198, -0.009031851775944233, 0.08587776124477386, -0.020415492355823517, 0.28572192788124084, -0.033343520015478134, 0.01335757877677679, 0.12002385407686234, 0.04678020626306534, 0.06429175287485123, 0.12438774108886719, -0.06773164868354797, 0.02265256457030773, -0.0726792961359024, -0.060664743185043335, -0.0010282035218551755, 0.04592520743608475, -0.05934973433613777, 0.01048869825899601, -0.07421772927045822, 0.01796397939324379, -0.021419577300548553, 0.30750763416290283, 0.1151440218091011, -0.10446189343929291, -0.06347799301147461, 0.0037744808942079544, -0.0982048287987709, -0.07331550121307373, 0.039691053330898285, 0.0768490731716156, -0.13451144099235535, 0.006310688331723213, -0.026438700035214424, 0.07467973232269287, -0.013799958862364292, 0.017793113365769386, 0.033132217824459076, 0.037685591727495193, -0.037263352423906326, 0.01084712240844965, -0.17983874678611755, 0.19117240607738495, 0.007525213528424501, 0.019281992688775063, -0.05023183301091194, 0.03358861431479454, 0.007841336540877819, -0.027499588206410408, 0.05916544795036316, 0.024189025163650513, -0.029674343764781952, -0.04420527443289757, -0.0505807101726532, 0.013020177371799946, 0.07808414101600647, -0.04383233189582825, 0.10644825547933578, -0.0076629179529845715, 0.041724998503923416, 0.021135523915290833, 0.08934327960014343, -0.18097537755966187, -0.08831128478050232, 0.031126346439123154, -0.05734352767467499, -0.09963131695985794, -0.07993286848068237, -0.09425424784421921, 0.0016796588897705078, 0.2498558908700943, -0.1195598691701889, -0.07466056197881699, -0.09620554000139236, 0.029858700931072235, 0.10665994882583618, -0.04934222996234894, 0.028657546266913414, -0.007162780500948429, 0.13257679343223572, -0.06449127197265625, -0.13502994179725647, 0.021893395110964775, -0.08997286856174469, -0.16692908108234406, -0.06681335717439651, 0.11727870255708694, 0.058849141001701355, 0.03471602872014046, -0.02562839351594448, 0.0216938816010952, 0.03334301337599754, -0.0385233610868454, -0.0009297064389102161, 0.06861921399831772, 0.0986965224146843, 0.030659137293696404, -0.11278052628040314, 0.019899144768714905, -0.060943953692913055, -0.0640595406293869, 0.07708266377449036, 0.2653699517250061, -0.05993033945560455, 0.12724153697490692, 0.1159600019454956, -0.08066988736391068, -0.15228131413459778, 0.026135258376598358, 0.09503474831581116, -0.015359422191977501, 0.01631764881312847, -0.160436749458313, 0.08853017538785934, 0.11209899187088013, -0.024099335074424744, 0.009963211603462696, -0.1879992038011551, -0.12990663945674896, 0.06525816023349762, 0.09613823890686035, 0.2721916437149048, -0.0620628297328949, -0.04420868307352066, 0.017967183142900467, -0.09536578506231308, 0.020694652572274208, 0.11609229445457458, 0.06374071538448334, -0.02431465871632099, -0.07539556175470352, 0.014473176561295986, -0.03928669914603233, 0.09854589402675629, 0.05092979967594147, 0.054985228925943375, -0.0035447957925498486, 0.022448087111115456, -0.012711303308606148, -0.04366514831781387, 0.061556167900562286, 0.02292398363351822, 0.049954935908317566, -0.08685598522424698, -0.029641715809702873, -0.06911477446556091, 0.028109444305300713, -0.02551775611937046, -0.07566745579242706, -0.05957694351673126, 0.07563665509223938, 0.04827636852860451, -0.02470587193965912, 0.01632949337363243, 0.03095012903213501, 0.11772235482931137, 0.16667278110980988, -0.007754485588520765, -0.03726738318800926, -0.05856624245643616, -0.03831440210342407, -0.017521720379590988, 0.07496737688779831, -0.05209846422076225, 0.02802078053355217, 0.06435911357402802, 0.023089954629540443, 0.09699078649282455, 0.055225782096385956, -0.11599940806627274, -0.01717664673924446, 0.03257380798459053, -0.1663254201412201, 0.013851940631866455, 0.00020165614841971546, 0.022525208070874214, -0.03586159646511078, 0.026647835969924927, 0.1516764909029007, -0.06432321667671204, -0.03614572435617447, -0.039952706545591354, 0.0672154352068901, 0.021223215386271477, 0.14023616909980774, 0.03430354222655296, 0.037116456776857376, -0.08038143813610077, 0.12151926010847092, 0.03952234983444214, -0.039117321372032166, 0.020349888131022453, -0.02933325432240963, -0.10797808319330215, 0.011617864482104778, 0.05974027141928673, 0.03635568916797638, -0.04760558903217316, -0.01404202077537775, -0.02567368559539318, -0.07379865646362305, 0.06019168347120285, 0.18527722358703613, 0.06689350306987762, 0.07624882459640503, -0.05533604696393013, -0.03634955734014511, -0.0796508640050888, 0.044114407151937485, 0.0432903952896595, 0.07311708480119705, -0.07923971116542816, 0.10976113379001617, 0.010879572480916977, 0.04581350460648537, -0.03270566090941429, -0.05461452156305313, -0.10016924887895584, -0.05691229924559593, -0.10988789051771164, 0.011697175912559032, -0.07283465564250946, -0.0391746461391449, 0.0011504123685881495, -0.007404467556625605, -0.00672675808891654, 0.04883871600031853, -0.061437077820301056, -0.008826159872114658, -0.026626206934452057, 0.03455892950296402, -0.0671621561050415, -0.03819829225540161, 0.03152548894286156, -0.10185923427343369, 0.09574341028928757, 0.054778147488832474, 0.008096791803836823, 0.008722690865397453, 0.09146527945995331, -0.019518699496984482, 0.024352271109819412, 0.013707391917705536, -0.04817518964409828, -0.0851125419139862, 0.002472404157742858, -0.009620090015232563, -0.016422521322965622, -0.010434391908347607, 0.09294626116752625, -0.08580198138952255, 0.03252177685499191, -0.0068140714429318905, -0.007050594314932823, -0.07252270728349686, -0.01437566988170147, 0.09574684500694275, 0.09854716807603836, 0.04754676669836044, -0.08979783952236176, 0.012730764225125313, -0.14376579225063324, -0.037900812923908234, 0.0047521330416202545, -0.00773548474535346, -0.11975690722465515, -0.009901261888444424, 0.01839223876595497, -0.0014284771168604493, 0.21198002994060516, -0.056813038885593414, -0.015691597014665604, 0.017824148759245872, -0.09911985695362091, 0.11144907027482986, -0.022590767592191696, 0.18286341428756714, -0.008697562851011753, -0.040638267993927, -0.01569310389459133, 0.03864995017647743, 0.02008483000099659, -0.021836787462234497, 0.17701923847198486, 0.1374215930700302, 0.028685513883829117, 0.04064115881919861, -0.024870609864592552, 0.0026526611763983965, -0.054031483829021454, -0.026371419429779053, 0.028734240680933, 0.03836030885577202, 0.017285097390413284, 0.15666399896144867, 0.07087991386651993, -0.16774731874465942, 0.033157531172037125, -0.02848123013973236, -0.03893309086561203, -0.11720690876245499, -0.09618660807609558, -0.033130355179309845, -0.07343745976686478, 0.0070151411928236485, -0.1230820044875145, 0.007856231182813644, 0.17540818452835083, 0.05511748790740967, 0.025542225688695908, 0.0015755961649119854, -0.11862929165363312, -0.03693484887480736, 0.05225657671689987, 0.014317529276013374, 0.02517733722925186, 0.06185052916407585, -0.0010630277683958411, 0.06357953697443008, 0.0414724163711071, 0.013705774210393429, 0.0014693740522488952, 0.08321794867515564, 0.017714668065309525, 0.03801663592457771, -0.06221381202340126, -0.004836471285670996, -0.03847116604447365, 0.07030831277370453, 0.09410760551691055, 0.04828568920493126, -0.0487460158765316, -0.008470028638839722, 0.16445334255695343, -0.04081769287586212, -0.0009574590367265046, -0.12971992790699005, 0.33409637212753296, 0.011510846205055714, 0.013556621968746185, 0.04724637791514397, -0.07559817284345627, -0.04980592429637909, 0.20369642972946167, 0.08760427683591843, -0.02100978046655655, -0.020793886855244637, 0.0023464225232601166, -0.03071661852300167, -0.020285068079829216, 0.1514962911605835, 0.035175904631614685, 0.12744155526161194, -0.05345670506358147, -0.05205536261200905, -0.030031029134988785, -0.0081711420789361, -0.12715986371040344, 0.1383049339056015, -0.031838931143283844, -0.02416703850030899, -0.07087812572717667, 0.026274889707565308, 0.07382932305335999, -0.3245113492012024, -0.000947608845308423, -0.030143141746520996, -0.1089329943060875, -0.00402560131624341, -0.01975978910923004, -0.021696772426366806, 0.04521886259317398, -0.04735011234879494, 0.06983564049005508, 0.04790734499692917, 0.03449200093746185, -0.023464636877179146, -0.09002801775932312, 0.16690288484096527, 0.043177224695682526, 0.09483041614294052, 0.02625395357608795, 0.07751638442277908, 0.05435226112604141, 0.03557778522372246, -0.09521789103746414, 0.0411522202193737, 0.013109470717608929, -0.09125224500894547, -0.05289285257458687, 0.12093734741210938, -0.0012235019821673632, 0.03663860261440277, 0.04348769038915634, -0.10851433873176575, 0.011459290981292725, 0.07045870274305344, -0.07101427763700485, -0.0968380942940712, -0.010256201960146427, -0.0898362472653389, 0.1545625478029251, 0.1418645828962326, -0.018074821680784225, 0.022376179695129395, -0.06710587441921234, -0.006626596674323082, 0.05432656779885292, 0.008249347098171711, -0.018305981531739235, -0.1891273856163025, 0.03275264799594879, -0.08234531432390213, -0.004960750695317984, -0.22733287513256073, -0.10230106860399246, -0.00913187675178051, -0.04917314276099205, -0.02407091110944748, 0.06097213178873062, 0.02884332463145256, 0.06740954518318176, -0.01636236160993576, -0.04200199991464615, -0.029281185939908028, 0.08992714434862137, -0.10878477990627289, -0.06544115394353867 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1500k"]}
null
google/multiberts-seed_2-step_1500k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1500k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps)." ]
[ -0.08090256154537201, 0.09823481738567352, -0.002780925715342164, 0.04552459716796875, 0.08324122428894043, -0.014097125269472599, 0.07506359368562698, 0.10214608162641525, -0.02118564583361149, 0.024871258065104485, 0.07788797467947006, -0.00040252311737276614, 0.019194945693016052, 0.09430275857448578, 0.02198762446641922, -0.21682676672935486, 0.02132822759449482, -0.03511376678943634, -0.1053234413266182, 0.07478383928537369, 0.09984473139047623, -0.08079405128955841, 0.044989898800849915, 0.029217738658189774, -0.11503975093364716, 0.047862742096185684, 0.0037266763392835855, -0.01680578850209713, 0.13147473335266113, 0.0034038894809782505, 0.05077558755874634, 0.055181171745061874, 0.04479223117232323, -0.13632988929748535, 0.007569241337478161, 0.05722976475954056, 0.059218816459178925, 0.04702925309538841, 0.024327928200364113, 0.07823416590690613, -0.007454389240592718, 0.02939108945429325, 0.041755419224500656, 0.026121102273464203, -0.07468809932470322, -0.052856869995594025, -0.10235185921192169, 0.04867654666304588, 0.02535729855298996, -0.0005112991784699261, 0.014624632894992828, 0.1124814823269844, -0.03520343080163002, 0.042930133640766144, 0.1804618388414383, -0.3244260549545288, -0.014529017731547356, 0.07669244706630707, 0.03720211982727051, 0.1285557895898819, -0.001488359528593719, -0.016048520803451538, 0.07644680142402649, 0.024201462045311928, 0.08954503387212753, -0.04032329097390175, 0.027155645191669464, -0.05304906144738197, -0.15460282564163208, -0.04844556003808975, 0.08514747023582458, -0.003795234952121973, -0.13606372475624084, -0.031552765518426895, -0.044321026653051376, 0.038445983082056046, 0.010541781783103943, -0.03977327421307564, 0.032323312014341354, 0.015613864175975323, -0.010757343843579292, -0.016039138659834862, -0.10061399638652802, -0.05656551569700241, 0.035348497331142426, 0.0842147171497345, 0.1015963926911354, 0.07049471139907837, -0.0009533982956781983, 0.10659535974264145, -0.19641771912574768, -0.04986730217933655, -0.030578937381505966, -0.05313738062977791, -0.05033230409026146, -0.011849512346088886, -0.10707349330186844, -0.04801955074071884, 0.010736961849033833, 0.13380300998687744, -0.0143357552587986, 0.02545536495745182, -0.028393801301717758, 0.007065474521368742, 0.05503708869218826, 0.03704333305358887, -0.014207462780177593, 0.0240262933075428, 0.026521913707256317, -0.010380520485341549, -0.025879373773932457, 0.014004180207848549, 0.0011280798353254795, 0.022101903334259987, 0.11613065749406815, 0.025721237063407898, -0.1015448346734047, 0.0647735521197319, -0.0167987197637558, -0.04534521326422691, 0.017722753807902336, -0.08782816678285599, -0.05676627904176712, -0.03967198729515076, 0.0006227431003935635, 0.0033543920144438744, -0.002754346700385213, -0.003713797079399228, -0.025837412104010582, -0.03146245703101158, -0.08333335816860199, -0.045909855514764786, -0.05202765390276909, -0.13054920732975006, 0.007560623809695244, -0.17966052889823914, -0.03601062297821045, -0.1161666288971901, -0.1921185553073883, -0.02115384116768837, 0.06480765342712402, -0.013746640644967556, -0.06165661662817001, 0.08226978778839111, 0.03979409113526344, -0.028667867183685303, 0.000004205243840260664, 0.07355396449565887, 0.000864511588588357, 0.04312949255108833, -0.026078345254063606, 0.07019147276878357, 0.005529540125280619, 0.03533477336168289, -0.05162340775132179, 0.06175076216459274, -0.17586347460746765, 0.0505293570458889, -0.07494334131479263, -0.02751798927783966, -0.08578314632177353, -0.033797916024923325, -0.014885997399687767, 0.004371939226984978, 0.028493667021393776, 0.0790763571858406, -0.18370653688907623, -0.02878919616341591, 0.11980997025966644, -0.16487465798854828, -0.025545407086610794, 0.07350564002990723, -0.047191962599754333, 0.1028747409582138, 0.06695301830768585, 0.15274585783481598, 0.004536193795502186, -0.08027263730764389, 0.06254053860902786, -0.010138175450265408, 0.00803358294069767, -0.013070865534245968, 0.07089430093765259, -0.018361400812864304, -0.16037915647029877, 0.03429148718714714, -0.13003183901309967, 0.0007446389063261449, -0.08122286945581436, 0.015443295240402222, -0.01180358324199915, -0.07241746783256531, -0.0657605528831482, -0.028794951736927032, 0.06814519315958023, -0.07053584605455399, -0.012120429426431656, 0.046289823949337006, 0.07104913145303726, -0.06747294217348099, 0.06711707264184952, -0.010090605355799198, 0.01790783368051052, -0.08949152380228043, -0.03744116798043251, -0.19239665567874908, 0.060137681663036346, 0.09835896641016006, 0.0024113720282912254, -0.020424285903573036, 0.14037179946899414, 0.009038865566253662, 0.06671568006277084, -0.05254078656435013, 0.016727017238736153, -0.012676884420216084, -0.005862714257091284, -0.08880525082349777, -0.09599459171295166, -0.07092557102441788, -0.06466459482908249, 0.07431360334157944, -0.12124691158533096, 0.024378027766942978, -0.06009168550372124, 0.041081465780735016, 0.021696340292692184, -0.0836866945028305, -0.017547141760587692, 0.014201398007571697, -0.05806184187531471, -0.05483368784189224, 0.040697235614061356, 0.07047731429338455, -0.004528685938566923, 0.09187623858451843, -0.037220872938632965, -0.07809749990701675, 0.0283798947930336, 0.1016213446855545, -0.10709664970636368, 0.011647265404462814, -0.05547022819519043, -0.04117799177765846, -0.06839444488286972, -0.017954520881175995, 0.07457278668880463, -0.0058622779324650764, 0.1379607766866684, -0.07833260297775269, -0.000042171650420641527, 0.018332237377762794, -0.02008720114827156, -0.021162111312150955, 0.036045003682374954, 0.07195622473955154, -0.06536506861448288, 0.01467195339500904, 0.028891725465655327, 0.012275573797523975, 0.06689818203449249, -0.05131121352314949, -0.0860801637172699, 0.011629398912191391, 0.03739297017455101, 0.031161006540060043, 0.06769958883523941, -0.025215672329068184, -0.008746429346501827, 0.0326162651181221, 0.018432622775435448, 0.007866065949201584, -0.11629275232553482, 0.060134369879961014, 0.06129477918148041, 0.001991651486605406, 0.05395721644163132, -0.01754739135503769, -0.037617139518260956, 0.08044134080410004, 0.03499400615692139, 0.007925521582365036, -0.016712216660380363, -0.015209140256047249, -0.11822176724672318, 0.18805071711540222, -0.06265873461961746, -0.1733606457710266, -0.08351520448923111, -0.09292306005954742, 0.0028498524334281683, 0.025416169315576553, 0.038768164813518524, -0.019440488889813423, -0.04441889747977257, -0.12011217325925827, 0.06730686873197556, -0.03749720752239227, 0.06985288858413696, 0.11674684286117554, -0.03994322195649147, 0.059530094265937805, -0.12613658607006073, -0.0043602087534964085, -0.08049798011779785, -0.0669940859079361, 0.05715414509177208, -0.04271475970745087, 0.029963674023747444, 0.09657756239175797, 0.01863773725926876, -0.018527615815401077, -0.025338653475046158, 0.21513545513153076, 0.042301371693611145, 0.04011666402220726, 0.13066262006759644, -0.06460035592317581, 0.05668704956769943, 0.0903453603386879, 0.012853823602199554, -0.04408175125718117, 0.05209137871861458, 0.04700513556599617, -0.06741610169410706, -0.19305400550365448, -0.021800342947244644, -0.00925610214471817, -0.04522892087697983, 0.07201585173606873, 0.03406189754605293, 0.004542144946753979, 0.06815163046121597, 0.013156330212950706, 0.06312786042690277, -0.0014707411173731089, 0.09386304765939713, 0.01353191677480936, -0.03262563794851303, 0.08623701333999634, -0.017878089100122452, -0.006186080630868673, 0.08579284697771072, -0.021993299946188927, 0.28750747442245483, -0.03439171239733696, 0.01149466447532177, 0.1201760545372963, 0.04254446551203728, 0.06573802977800369, 0.13018788397312164, -0.07098188251256943, 0.021107440814375877, -0.06940645724534988, -0.05703737959265709, -0.00454326905310154, 0.04256822541356087, -0.05833839625120163, 0.015389573760330677, -0.07575508952140808, 0.03133611008524895, -0.01974743977189064, 0.3098337948322296, 0.10608821362257004, -0.09312597662210464, -0.06056399643421173, 0.001988127361983061, -0.09949196875095367, -0.07360566407442093, 0.04207092151045799, 0.08374136686325073, -0.13147231936454773, 0.003485203953459859, -0.026990098878741264, 0.07771597057580948, -0.008403285406529903, 0.01756865158677101, 0.030472740530967712, 0.039577893912792206, -0.039128925651311874, 0.008036555722355843, -0.1910228729248047, 0.19184426963329315, 0.007914621382951736, 0.019521260634064674, -0.048259150236845016, 0.03432799503207207, 0.006465424317866564, -0.02782497927546501, 0.063021220266819, 0.02710792049765587, -0.025164887309074402, -0.04879891499876976, -0.05122266337275505, 0.01112157478928566, 0.07615412771701813, -0.043078262358903885, 0.10128819197416306, -0.005590819288045168, 0.041763778775930405, 0.019518347457051277, 0.09452252835035324, -0.18852385878562927, -0.08976143598556519, 0.03209059685468674, -0.06480119377374649, -0.10491635650396347, -0.08020836114883423, -0.09376371651887894, -0.0007805913919582963, 0.2401823103427887, -0.12261192500591278, -0.07637585699558258, -0.09789057075977325, 0.032173071056604385, 0.10524021834135056, -0.051063138991594315, 0.03090042620897293, -0.0076295193284749985, 0.12976352870464325, -0.07099690288305283, -0.13202878832817078, 0.018405595794320107, -0.09232378005981445, -0.16342060267925262, -0.06483369320631027, 0.11222925037145615, 0.05959651619195938, 0.03500283882021904, -0.03079560585319996, 0.019930537790060043, 0.04147296026349068, -0.037893619388341904, -0.002797007095068693, 0.06612994521856308, 0.08907833695411682, 0.03464888781309128, -0.106687530875206, 0.01485081110149622, -0.06219693273305893, -0.0666956752538681, 0.07535931468009949, 0.26288264989852905, -0.058156825602054596, 0.1276913285255432, 0.11619749665260315, -0.08121146261692047, -0.1598302721977234, 0.03230305016040802, 0.09704669564962387, -0.01457219012081623, 0.013165120035409927, -0.15700985491275787, 0.08698339015245438, 0.10907138139009476, -0.021293293684720993, 0.0019720238633453846, -0.19121403992176056, -0.1341003179550171, 0.0618211068212986, 0.09895306080579758, 0.27482545375823975, -0.05792641639709473, -0.045187126845121384, 0.021574223414063454, -0.10049638897180557, 0.01988326944410801, 0.13428783416748047, 0.05950203537940979, -0.02538446895778179, -0.0802239403128624, 0.01654159277677536, -0.041194964200258255, 0.09421607851982117, 0.051517680287361145, 0.05895378440618515, -0.0023479729425162077, 0.014417354017496109, -0.025667304173111916, -0.04533333703875542, 0.060773495584726334, 0.023160725831985474, 0.052790310233831406, -0.07717564702033997, -0.028080638498067856, -0.06916425377130508, 0.026036038994789124, -0.02706153132021427, -0.07489075511693954, -0.05903457850217819, 0.0792667418718338, 0.049178458750247955, -0.024798264726996422, 0.021702831611037254, 0.03136434406042099, 0.11580780148506165, 0.17093870043754578, -0.00548880361020565, -0.057476747781038284, -0.05545147508382797, -0.035708438605070114, -0.016208836808800697, 0.07619070261716843, -0.05248793959617615, 0.03144359588623047, 0.06725870072841644, 0.024285778403282166, 0.09972263872623444, 0.05506390705704689, -0.11172334849834442, -0.02090456895530224, 0.03543887659907341, -0.16176734864711761, 0.0049841031432151794, -0.0040283240377902985, 0.021103914827108383, -0.037179846316576004, 0.020546134561300278, 0.15002156794071198, -0.0682426169514656, -0.03559916466474533, -0.041988421231508255, 0.06993814557790756, 0.023265907540917397, 0.14601127803325653, 0.03378579393029213, 0.040072519332170486, -0.08240167796611786, 0.12709859013557434, 0.03923500329256058, -0.0387350395321846, 0.017748836427927017, -0.028151484206318855, -0.10740073025226593, 0.014290105551481247, 0.06578207015991211, 0.04038491100072861, -0.04965071752667427, -0.009470201097428799, -0.026414060965180397, -0.07526792585849762, 0.06332442164421082, 0.1948186159133911, 0.06390687823295593, 0.0688130259513855, -0.05280466750264168, -0.03576549142599106, -0.07720047235488892, 0.04969169944524765, 0.044755905866622925, 0.07179020345211029, -0.07901842147111893, 0.10850906372070312, 0.009320155717432499, 0.044293832033872604, -0.031052904203534126, -0.05085551738739014, -0.1015995591878891, -0.055467743426561356, -0.11430668085813522, 0.012241142801940441, -0.07405208796262741, -0.036561526358127594, 0.0002970023488160223, -0.008578883484005928, -0.008802366442978382, 0.04982226714491844, -0.062026627361774445, -0.009262030012905598, -0.026449374854564667, 0.033320002257823944, -0.06471046060323715, -0.038002632558345795, 0.03180951252579689, -0.09788087010383606, 0.09277412295341492, 0.048058535903692245, 0.005166473798453808, 0.006484838668256998, 0.09092110395431519, -0.02164219133555889, 0.02192617952823639, 0.016118137165904045, -0.04573357105255127, -0.08576211333274841, 0.007137152832001448, -0.009157363325357437, -0.01882111094892025, -0.009577062912285328, 0.08627394586801529, -0.0856701210141182, 0.03644412010908127, -0.007849571295082569, -0.0024492451921105385, -0.07223495841026306, -0.011479518376290798, 0.10114123672246933, 0.09732905775308609, 0.045511890202760696, -0.08745460212230682, 0.013233756646513939, -0.1433328539133072, -0.036635592579841614, 0.006711806170642376, -0.007582532241940498, -0.13256072998046875, -0.008040840737521648, 0.019413426518440247, -0.0017719089519232512, 0.20728106796741486, -0.05134078115224838, -0.018328193575143814, 0.019793057814240456, -0.09176011383533478, 0.10583145916461945, -0.022686796262860298, 0.17361073195934296, -0.008011966943740845, -0.04257923737168312, -0.015252926386892796, 0.04042729362845421, 0.022107230499386787, -0.02725794166326523, 0.1860480159521103, 0.13731132447719574, 0.030903423205018044, 0.03876176476478577, -0.022042496129870415, 0.000567741459235549, -0.04388812184333801, -0.025470824912190437, 0.026070769876241684, 0.036121003329753876, 0.01633213832974434, 0.14350366592407227, 0.07016702741384506, -0.16848453879356384, 0.03940436616539955, -0.027740465477108955, -0.039386261254549026, -0.11850070208311081, -0.09565499424934387, -0.030468491837382317, -0.07440488040447235, 0.00921829417347908, -0.1269810050725937, 0.0057242438197135925, 0.17545513808727264, 0.055584926158189774, 0.026279449462890625, -0.0014195321127772331, -0.12499845772981644, -0.031064089387655258, 0.05133935064077377, 0.013278940692543983, 0.028062645345926285, 0.059254832565784454, -0.001145603833720088, 0.06445667892694473, 0.04394742101430893, 0.013950474560260773, 0.0018249377608299255, 0.07707628607749939, 0.016117941588163376, 0.040356993675231934, -0.061414338648319244, -0.0033084803726524115, -0.04481497406959534, 0.06651677936315536, 0.10549455881118774, 0.04812842607498169, -0.04391395300626755, -0.007513254880905151, 0.16761161386966705, -0.039173342287540436, -0.0032825095113366842, -0.1333920806646347, 0.31661614775657654, 0.015898626297712326, 0.020995602011680603, 0.04916863143444061, -0.0775371715426445, -0.05643630027770996, 0.21160021424293518, 0.08750080317258835, -0.019615961238741875, -0.021764123812317848, 0.002760907867923379, -0.0306661669164896, -0.020179281011223793, 0.1487671285867691, 0.034518297761678696, 0.12053398787975311, -0.05145999416708946, -0.046593114733695984, -0.02811856009066105, -0.01117687113583088, -0.11769887059926987, 0.1353449672460556, -0.029407916590571404, -0.02209845930337906, -0.07099779695272446, 0.02467484213411808, 0.0670449361205101, -0.32247474789619446, -0.002179978182539344, -0.033999793231487274, -0.10703770071268082, -0.008088518865406513, -0.022286266088485718, -0.022705359384417534, 0.042295798659324646, -0.04340432956814766, 0.07135555148124695, 0.04635760188102722, 0.033413756638765335, -0.021297279745340347, -0.10227994620800018, 0.16504378616809845, 0.05075711011886597, 0.09190435707569122, 0.028015311807394028, 0.06856321543455124, 0.05466223880648613, 0.037952765822410583, -0.09890321642160416, 0.03434386104345322, 0.011881566606462002, -0.08515026420354843, -0.056797195225954056, 0.12634950876235962, -0.0006026949267834425, 0.04435909539461136, 0.04161902889609337, -0.10961799323558807, 0.007050903979688883, 0.06858092546463013, -0.06831420958042145, -0.09792532026767731, -0.006089285481721163, -0.0876840129494667, 0.151569664478302, 0.14297941327095032, -0.015458722598850727, 0.02559518814086914, -0.06761437654495239, -0.006541662849485874, 0.05088888108730316, 0.019222870469093323, -0.018114862963557243, -0.19482988119125366, 0.03500206395983696, -0.08877827972173691, -0.005495554767549038, -0.22588123381137848, -0.1021316722035408, -0.009767220355570316, -0.04926747828722, -0.022889139130711555, 0.0646924152970314, 0.03712005540728569, 0.06924010813236237, -0.01498037576675415, -0.045177534222602844, -0.029643263667821884, 0.09160145372152328, -0.10129310190677643, -0.06126130744814873 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1600k"]}
null
google/multiberts-seed_2-step_1600k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1600k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1600k (max: 2000k, i.e., 2M steps)." ]
[ -0.08043377101421356, 0.0899607315659523, -0.002596484962850809, 0.04875752702355385, 0.08132443577051163, -0.013677356764674187, 0.07072215527296066, 0.10200387239456177, -0.021827060729265213, 0.02517426200211048, 0.07678060978651047, 0.002166241407394409, 0.019656851887702942, 0.09522471576929092, 0.024256117641925812, -0.21588172018527985, 0.017760949209332466, -0.036597494035959244, -0.0973391905426979, 0.07545823603868484, 0.10030815005302429, -0.0811445415019989, 0.04718560352921486, 0.028491593897342682, -0.1207084059715271, 0.05225498229265213, 0.006247288081794977, -0.01961507648229599, 0.13471364974975586, -0.0016874057473614812, 0.05380113050341606, 0.0572197251021862, 0.048763323575258255, -0.1270262598991394, 0.006289878394454718, 0.059044770896434784, 0.060235440731048584, 0.04486583173274994, 0.02610161155462265, 0.07930505275726318, 0.007581964135169983, 0.025699935853481293, 0.04404853284358978, 0.024777807295322418, -0.07627759873867035, -0.06553616374731064, -0.10255411267280579, 0.03328913822770119, 0.02305932156741619, 0.002378998091444373, 0.012238450348377228, 0.11639167368412018, -0.03143147751688957, 0.04419159144163132, 0.17708231508731842, -0.3270355463027954, -0.014235438778996468, 0.07136175036430359, 0.03865377977490425, 0.1348709911108017, -0.0018707284471020103, -0.01841532625257969, 0.07653538137674332, 0.024635838344693184, 0.08920595049858093, -0.042107343673706055, 0.02138938196003437, -0.05278339982032776, -0.15303632616996765, -0.04704564809799194, 0.09308453649282455, -0.007354321889579296, -0.13732463121414185, -0.02842501364648342, -0.046505723148584366, 0.03851645812392235, 0.012621228583157063, -0.03860843926668167, 0.03418957442045212, 0.016775669530034065, -0.016670074313879013, -0.012954531237483025, -0.10519931465387344, -0.055500391870737076, 0.02992861531674862, 0.07500636577606201, 0.10146167874336243, 0.07240233570337296, 0.0006034004036337137, 0.10604830086231232, -0.187586709856987, -0.050765931606292725, -0.026507502421736717, -0.05442004278302193, -0.052910223603248596, -0.008215434849262238, -0.10595158487558365, -0.03928812965750694, 0.008810441941022873, 0.1262088268995285, -0.019782740622758865, 0.029527748003602028, -0.038009777665138245, 0.007131468970328569, 0.0520671121776104, 0.03740239143371582, -0.007269380148500204, 0.024218503385782242, 0.02548304945230484, -0.01606622524559498, -0.02230481617152691, 0.013524430803954601, 0.0038516479544341564, 0.02507488802075386, 0.10996687412261963, 0.02250734716653824, -0.1009758934378624, 0.06587691605091095, -0.019196074455976486, -0.0426429808139801, 0.016788601875305176, -0.0918707326054573, -0.05545039102435112, -0.037788406014442444, 0.0008888881420716643, 0.006869734730571508, -0.0020840843208134174, -0.007887108251452446, -0.0233903955668211, -0.04110654443502426, -0.08335278928279877, -0.050102923065423965, -0.0539497546851635, -0.1298719346523285, 0.009219963103532791, -0.1745101362466812, -0.03683435544371605, -0.1154390498995781, -0.1891362965106964, -0.020188283175230026, 0.061238259077072144, -0.012829053215682507, -0.05658479407429695, 0.0819813460111618, 0.039601705968379974, -0.030341986566781998, -0.00012926923227496445, 0.08284357190132141, -0.0005756881437264383, 0.044195305556058884, -0.023183055222034454, 0.07253775000572205, 0.007579233963042498, 0.03385144844651222, -0.05394994840025902, 0.06115747615695, -0.17224276065826416, 0.047234851866960526, -0.07498173415660858, -0.030907904729247093, -0.08441358804702759, -0.03603352978825569, -0.01224267203360796, 0.005813729017972946, 0.024792123585939407, 0.07679641246795654, -0.1808546632528305, -0.030857549980282784, 0.11933691799640656, -0.1677657961845398, -0.021250780671834946, 0.07533387839794159, -0.04721379280090332, 0.10502631962299347, 0.0668642595410347, 0.1590825468301773, -0.007944418117403984, -0.07846115529537201, 0.06294385343790054, -0.011443216353654861, 0.007182038854807615, -0.010126982815563679, 0.06962885707616806, -0.016980862244963646, -0.15822790563106537, 0.03574177995324135, -0.12540222704410553, -0.005615144036710262, -0.07938139140605927, 0.016497816890478134, -0.01205309946089983, -0.06716810166835785, -0.06443566083908081, -0.023894818499684334, 0.06489786505699158, -0.07712005078792572, -0.01649601384997368, 0.03157579526305199, 0.07153579592704773, -0.06992616504430771, 0.06935176998376846, -0.01322965044528246, 0.010459337383508682, -0.08004190027713776, -0.03807128593325615, -0.1910065859556198, 0.05319298803806305, 0.10004536807537079, 0.010338305495679379, -0.021945424377918243, 0.14374268054962158, 0.0073461150750517845, 0.06865549832582474, -0.05052239075303078, 0.017071446403861046, -0.013789940625429153, -0.005267785862088203, -0.08610891550779343, -0.1012381911277771, -0.07293203473091125, -0.06748224049806595, 0.08405279368162155, -0.12303479760885239, 0.02317666821181774, -0.05195820704102516, 0.039080724120140076, 0.02028227597475052, -0.08426851034164429, -0.021365970373153687, 0.012999318540096283, -0.05844597518444061, -0.05697626993060112, 0.03955603763461113, 0.07092518359422684, -0.006035507656633854, 0.09340957552194595, -0.04503096640110016, -0.08822210133075714, 0.033223558217287064, 0.0945892333984375, -0.10829755663871765, 0.02056030184030533, -0.05748496949672699, -0.04363958537578583, -0.06534331291913986, -0.020167943090200424, 0.07569964975118637, -0.01126504223793745, 0.13598433136940002, -0.07555467635393143, 0.00029931895551271737, 0.018309904262423515, -0.0198591947555542, -0.020721526816487312, 0.040192555636167526, 0.06261500716209412, -0.06541776657104492, 0.013509837910532951, 0.03433593362569809, 0.012827246449887753, 0.06537268310785294, -0.05295824632048607, -0.08726252615451813, 0.012513026595115662, 0.03411942720413208, 0.03283509612083435, 0.06656312942504883, -0.029384108260273933, -0.010159128345549107, 0.034489259123802185, 0.016422277316451073, 0.0074882833287119865, -0.11818515509366989, 0.06212775409221649, 0.0588100403547287, 0.0024946187622845173, 0.05803376063704491, -0.018451718613505363, -0.03834477812051773, 0.08278496563434601, 0.030962346121668816, 0.004597456194460392, -0.015839459374547005, -0.016143716871738434, -0.1193624883890152, 0.18835170567035675, -0.06497330963611603, -0.16683049499988556, -0.08129224181175232, -0.10052816569805145, 0.00872142892330885, 0.02884209156036377, 0.03930116817355156, -0.022703319787979126, -0.045682378113269806, -0.12212541699409485, 0.062863789498806, -0.04378654062747955, 0.06900838762521744, 0.11739633232355118, -0.03981949761509895, 0.05831829458475113, -0.12390535324811935, -0.0066237738355994225, -0.0803179144859314, -0.07816793769598007, 0.06220252811908722, -0.046597111970186234, 0.029005907475948334, 0.0969659760594368, 0.01917755976319313, -0.02053646557033062, -0.024631686508655548, 0.19733591377735138, 0.041861847043037415, 0.04343792423605919, 0.13448359072208405, -0.06336689740419388, 0.0561370849609375, 0.08451312780380249, 0.009944192133843899, -0.043710317462682724, 0.05309329926967621, 0.04165186360478401, -0.07272183150053024, -0.20057977735996246, -0.02092347852885723, -0.009555413387715816, -0.038758937269449234, 0.07079999893903732, 0.03352423757314682, -0.006479224190115929, 0.06824219971895218, 0.01576928049325943, 0.062068745493888855, -0.0017974498914554715, 0.0942905992269516, 0.021986668929457664, -0.036541614681482315, 0.08713392168283463, -0.01954592578113079, -0.006137704011052847, 0.08858595043420792, -0.02617029659450054, 0.28879058361053467, -0.034564804285764694, 0.015992388129234314, 0.11937570571899414, 0.04704255238175392, 0.061344247311353683, 0.1259617805480957, -0.06369764357805252, 0.024674605578184128, -0.07230299711227417, -0.058179207146167755, -0.0074530490674078465, 0.04529444873332977, -0.06618659198284149, 0.01029623206704855, -0.07578867673873901, 0.0314817950129509, -0.019960930570960045, 0.29802843928337097, 0.1083153486251831, -0.10352872312068939, -0.06084442138671875, 0.003523255465552211, -0.09519659727811813, -0.07106009870767593, 0.042558010667562485, 0.08473390340805054, -0.13126668334007263, 0.005353470798581839, -0.024359576404094696, 0.07224956899881363, -0.008897869847714901, 0.01787465810775757, 0.03158911317586899, 0.04007817804813385, -0.037076760083436966, 0.007700915448367596, -0.1812427043914795, 0.1947827935218811, 0.007564583793282509, 0.01791711337864399, -0.05120493099093437, 0.03652185946702957, 0.00765635073184967, -0.03166751563549042, 0.06499689072370529, 0.025316014885902405, -0.04764952138066292, -0.04541840776801109, -0.04873038828372955, 0.014031213708221912, 0.07801298052072525, -0.03923243656754494, 0.10238900780677795, -0.005019418895244598, 0.043575581163167953, 0.021185312420129776, 0.0939539447426796, -0.18176455795764923, -0.09022293239831924, 0.0307938065379858, -0.062350254505872726, -0.11570524424314499, -0.08095608651638031, -0.09229335933923721, 0.005202551372349262, 0.2545953094959259, -0.1191239058971405, -0.07643129676580429, -0.09723318368196487, 0.035430312156677246, 0.10533714294433594, -0.04920053109526634, 0.026705149561166763, -0.003858714597299695, 0.12973551452159882, -0.0679979994893074, -0.1332302987575531, 0.02149266004562378, -0.0909208357334137, -0.16620472073554993, -0.06740887463092804, 0.11587072163820267, 0.060250911861658096, 0.035963594913482666, -0.029052279889583588, 0.023416345939040184, 0.03648184612393379, -0.037052225321531296, 0.004090458620339632, 0.06428855657577515, 0.09509482979774475, 0.0326327346265316, -0.10809996724128723, 0.011921162717044353, -0.05958329513669014, -0.06839949637651443, 0.07138308137655258, 0.264352947473526, -0.05836436152458191, 0.1284169703722, 0.11552582681179047, -0.08311837911605835, -0.15886066854000092, 0.033726610243320465, 0.09282661974430084, -0.016223054379224777, 0.017992818728089333, -0.15676096081733704, 0.08900847285985947, 0.11146100610494614, -0.021732235327363014, 0.00045642489567399025, -0.18834303319454193, -0.1313895583152771, 0.06022024527192116, 0.09928981214761734, 0.272830605506897, -0.0599210262298584, -0.04332158714532852, 0.02043374814093113, -0.09562507271766663, 0.012527395971119404, 0.12040182203054428, 0.06011795997619629, -0.024986958131194115, -0.07271242886781693, 0.015540726482868195, -0.040559180080890656, 0.09436846524477005, 0.05382132530212402, 0.055795252323150635, -0.0034443966578692198, 0.019085176289081573, -0.013032372109591961, -0.040939074009656906, 0.05665527284145355, 0.027433155104517937, 0.05196356773376465, -0.07988225668668747, -0.027770275250077248, -0.06876761466264725, 0.028969231992959976, -0.02746902033686638, -0.07525976747274399, -0.06094307824969292, 0.0776783898472786, 0.04740701615810394, -0.02752716653048992, 0.012260165065526962, 0.031996965408325195, 0.11642570793628693, 0.18021488189697266, -0.0064049395732581615, -0.0492238886654377, -0.046462032943964005, -0.033491071313619614, -0.01722852699458599, 0.07081586867570877, -0.05494370311498642, 0.02766447514295578, 0.06627444177865982, 0.02198871597647667, 0.09362347424030304, 0.057292621582746506, -0.11544764786958694, -0.01782609522342682, 0.03635137900710106, -0.16531702876091003, 0.01324667688459158, 0.00027589601813815534, 0.023490052670240402, -0.03584114834666252, 0.019848313182592392, 0.1499345302581787, -0.06464873999357224, -0.03502362221479416, -0.04272906109690666, 0.07247114926576614, 0.024468375369906425, 0.14622509479522705, 0.031516674906015396, 0.03666653111577034, -0.08312910050153732, 0.12610958516597748, 0.04159844294190407, -0.0426965169608593, 0.018212104216217995, -0.023377003148198128, -0.10831159353256226, 0.013679008930921555, 0.06392425298690796, 0.035390544682741165, -0.04799012467265129, -0.009588399901986122, -0.025961464270949364, -0.07778500765562057, 0.060669317841529846, 0.1787334680557251, 0.06444696336984634, 0.07206930965185165, -0.05163250118494034, -0.03417733311653137, -0.0798058733344078, 0.04726170003414154, 0.04335467144846916, 0.07275712490081787, -0.0726090744137764, 0.11447811871767044, 0.008828047662973404, 0.0457925945520401, -0.03126439079642296, -0.0484163761138916, -0.0977487564086914, -0.053788501769304276, -0.10194326937198639, 0.013945897109806538, -0.0720420554280281, -0.041236765682697296, 0.0007857312448322773, -0.00817013718187809, -0.010630049742758274, 0.051650118082761765, -0.061349645256996155, -0.010570869781076908, -0.02725185453891754, 0.035240426659584045, -0.06718230992555618, -0.03923661634325981, 0.033271171152591705, -0.10140364617109299, 0.09284795820713043, 0.05240920931100845, 0.006298094987869263, 0.009485282003879547, 0.09047345072031021, -0.02053428441286087, 0.02199470065534115, 0.018304571509361267, -0.04529339820146561, -0.08319316059350967, 0.005516596604138613, -0.008011634461581707, -0.022204233333468437, -0.011458228342235088, 0.08899452537298203, -0.0859442800283432, 0.04008166491985321, -0.009271477349102497, -0.008099403232336044, -0.07318908721208572, -0.011511018499732018, 0.10185591131448746, 0.09831216186285019, 0.04248509556055069, -0.09148656576871872, 0.010670635849237442, -0.14583434164524078, -0.03869602829217911, 0.0070974272675812244, -0.010697206482291222, -0.1200992614030838, -0.010153691284358501, 0.022571485489606857, -0.0028957161121070385, 0.20916888117790222, -0.050299134105443954, -0.018129467964172363, 0.020729416981339455, -0.09934575110673904, 0.11111444979906082, -0.022966556251049042, 0.17380346357822418, -0.012971465475857258, -0.04178515821695328, -0.011816214770078659, 0.03510519117116928, 0.023023447021842003, -0.019305111840367317, 0.18876323103904724, 0.13681693375110626, 0.032127685844898224, 0.03755604848265648, -0.022264588624238968, -0.0002562273293733597, -0.04776406288146973, -0.02504386007785797, 0.025656603276729584, 0.03641461208462715, 0.01789803057909012, 0.1438356339931488, 0.06970897316932678, -0.16792932152748108, 0.0367746539413929, -0.03225792944431305, -0.04011952504515648, -0.11853423714637756, -0.08598805218935013, -0.03306341543793678, -0.07076144218444824, 0.008406872861087322, -0.1265670210123062, 0.010745844803750515, 0.17725765705108643, 0.05541967228055, 0.025206532329320908, 0.0013132902095094323, -0.12131880223751068, -0.03183881938457489, 0.04889695346355438, 0.01452152244746685, 0.024349592626094818, 0.06511938571929932, -0.005110591184347868, 0.06370853632688522, 0.046075914055109024, 0.013907239772379398, 0.0012934344122186303, 0.07965700328350067, 0.014935843646526337, 0.03859592229127884, -0.05923394113779068, -0.00620881374925375, -0.04445326328277588, 0.06918153911828995, 0.09549002349376678, 0.04903759807348251, -0.04667748883366585, -0.00636841868981719, 0.16374172270298004, -0.04035565257072449, 0.0022268053144216537, -0.12708747386932373, 0.32228028774261475, 0.014114965684711933, 0.013798301108181477, 0.05050664022564888, -0.07723409682512283, -0.05300242453813553, 0.20727825164794922, 0.09038052707910538, -0.01827528141438961, -0.022733982652425766, -0.0009417851106263697, -0.030642559751868248, -0.020425468683242798, 0.15193988382816315, 0.034419573843479156, 0.1176241859793663, -0.0517120398581028, -0.051348112523555756, -0.029861606657505035, -0.00831642746925354, -0.12541161477565765, 0.13848447799682617, -0.02959304116666317, -0.02374022640287876, -0.07028598338365555, 0.02308858558535576, 0.07554766535758972, -0.33429884910583496, 0.00909514632076025, -0.03438869118690491, -0.10494022816419601, -0.0022756988182663918, -0.017061060294508934, -0.023341381922364235, 0.046665776520967484, -0.047586433589458466, 0.07320797443389893, 0.039201267063617706, 0.035471878945827484, -0.024848710745573044, -0.09164793789386749, 0.16477207839488983, 0.041687216609716415, 0.09699226915836334, 0.026324545964598656, 0.0751563310623169, 0.053913865238428116, 0.037715718150138855, -0.09884956479072571, 0.040941692888736725, 0.012538905255496502, -0.08724227547645569, -0.05381263792514801, 0.12530463933944702, -0.004210581537336111, 0.03820446878671646, 0.043439581990242004, -0.10549256205558777, 0.00935298576951027, 0.07051797956228256, -0.06692090630531311, -0.09425488859415054, -0.012238782830536366, -0.09129167348146439, 0.1523638665676117, 0.14331787824630737, -0.014420821331441402, 0.025814594700932503, -0.06829854846000671, -0.010397274047136307, 0.05285754054784775, 0.019516685977578163, -0.015746675431728363, -0.1936882883310318, 0.03195415809750557, -0.0795150101184845, -0.004292509518563747, -0.22661146521568298, -0.10151229053735733, -0.01136095356196165, -0.05020963028073311, -0.026949873194098473, 0.06527385115623474, 0.030984463170170784, 0.06628004461526871, -0.014902417548000813, -0.03511153534054756, -0.027402734383940697, 0.09327394515275955, -0.10398240387439728, -0.06218574941158295 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_160k"]}
null
google/multiberts-seed_2-step_160k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_160k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 160k (max: 2000k, i.e., 2M steps)." ]
[ -0.07776134461164474, 0.09578780829906464, -0.0026814399752765894, 0.04437217861413956, 0.08191405981779099, -0.01645676977932453, 0.07422352582216263, 0.10191016644239426, -0.018777448683977127, 0.026278121396899223, 0.07790222018957138, 0.00304117938503623, 0.01905185543000698, 0.10065922886133194, 0.023009127005934715, -0.22265861928462982, 0.017990190535783768, -0.03294292837381363, -0.09170927107334137, 0.075876884162426, 0.10126486420631409, -0.0793590322136879, 0.04597336798906326, 0.02994001843035221, -0.11878583580255508, 0.051457446068525314, 0.00328615284524858, -0.01525974553078413, 0.13234011828899384, -0.0010343915782868862, 0.05357404425740242, 0.05606919899582863, 0.04468211159110069, -0.13138478994369507, 0.006145342718809843, 0.05869107320904732, 0.059383440762758255, 0.045599643141031265, 0.02809094451367855, 0.07732003927230835, 0.011728684417903423, 0.024739079177379608, 0.041334476321935654, 0.024126868695020676, -0.07486966997385025, -0.062654510140419, -0.10229738801717758, 0.03075561672449112, 0.023541556671261787, 0.0026044517289847136, 0.010583968833088875, 0.12156203389167786, -0.03177162632346153, 0.0444316565990448, 0.18663103878498077, -0.3368266224861145, -0.013660019263625145, 0.06933515518903732, 0.04118813946843147, 0.12503884732723236, -0.0011579832062125206, -0.018472084775567055, 0.07614404708147049, 0.024966396391391754, 0.08751648664474487, -0.039764657616615295, 0.024519475176930428, -0.055091340094804764, -0.1554272621870041, -0.04680268466472626, 0.09017646312713623, -0.00759535189718008, -0.1376199871301651, -0.030429890379309654, -0.04693650081753731, 0.04276224970817566, 0.013625404797494411, -0.03807397559285164, 0.03433270752429962, 0.017753032967448235, -0.014855694957077503, -0.012535465881228447, -0.1058310866355896, -0.05464719608426094, 0.02902628667652607, 0.07289131730794907, 0.1022566705942154, 0.06948982179164886, 0.0010507687693461776, 0.11019986867904663, -0.19142749905586243, -0.051254455000162125, -0.027294345200061798, -0.05210835486650467, -0.04807853326201439, -0.008682609535753727, -0.1066298857331276, -0.04573425278067589, 0.010183664038777351, 0.12167104333639145, -0.014847063459455967, 0.02437560446560383, -0.03970373421907425, 0.007840857841074467, 0.05547028407454491, 0.04208366572856903, -0.005221391562372446, 0.024506736546754837, 0.023786386474967003, -0.016175702214241028, -0.024240275844931602, 0.014896642416715622, 0.001164300017990172, 0.023750711232423782, 0.11620038002729416, 0.023934809491038322, -0.10069718956947327, 0.06620575487613678, -0.02118375152349472, -0.043877676129341125, 0.015070648863911629, -0.09075450152158737, -0.055641598999500275, -0.037573061883449554, 0.001657630316913128, 0.012879690155386925, -0.0007666824967600405, -0.007034752983599901, -0.023862052708864212, -0.04265314340591431, -0.08174814283847809, -0.04544723778963089, -0.05494328588247299, -0.12940631806850433, 0.008330418728291988, -0.1829935610294342, -0.03731170669198036, -0.11614397913217545, -0.18726585805416107, -0.020522400736808777, 0.060464292764663696, -0.01196636725217104, -0.05492643639445305, 0.07789646834135056, 0.040893640369176865, -0.030570348724722862, -0.0006297187646850944, 0.08311980217695236, -0.0012415752280503511, 0.04485021159052849, -0.024253806099295616, 0.0695507675409317, 0.006592493504285812, 0.03438296914100647, -0.05510615557432175, 0.061930544674396515, -0.16633380949497223, 0.04643487557768822, -0.07201757282018661, -0.03366106376051903, -0.08680182695388794, -0.0334576852619648, -0.009152044542133808, 0.005905304569751024, 0.023044323548674583, 0.07607848197221756, -0.18704338371753693, -0.030120817944407463, 0.12342669814825058, -0.164934903383255, -0.01664421334862709, 0.07553551346063614, -0.04780014976859093, 0.10574192553758621, 0.06991759687662125, 0.1553552746772766, -0.007924200966954231, -0.08032182604074478, 0.05863272771239281, -0.010397376492619514, 0.011815928854048252, -0.006598904263228178, 0.07082977890968323, -0.01752011850476265, -0.15588398277759552, 0.03585373982787132, -0.13270843029022217, -0.0038890154100954533, -0.07969994843006134, 0.019409481436014175, -0.012577995657920837, -0.06711488962173462, -0.06437886506319046, -0.02446848340332508, 0.06625829637050629, -0.07407316565513611, -0.0183704886585474, 0.04142855480313301, 0.07117009907960892, -0.07113324105739594, 0.06800322234630585, -0.015205685980618, 0.010893180035054684, -0.08419809490442276, -0.03866765648126602, -0.1918865442276001, 0.053536396473646164, 0.10031317174434662, 0.013826395384967327, -0.021227030083537102, 0.1518886685371399, 0.008697974495589733, 0.06780056655406952, -0.04858710989356041, 0.015103664249181747, -0.013650047592818737, -0.00577230378985405, -0.08856711536645889, -0.09964951872825623, -0.07464437931776047, -0.06997327506542206, 0.08257249742746353, -0.12546668946743011, 0.02096245251595974, -0.052755724638700485, 0.044191874563694, 0.022751888260245323, -0.08338429778814316, -0.018414955586194992, 0.012606771662831306, -0.0608009397983551, -0.05712096393108368, 0.0394303984940052, 0.07015527039766312, -0.00798326451331377, 0.09581118077039719, -0.04637369140982628, -0.08474408090114594, 0.03088572435081005, 0.09948944300413132, -0.10481676459312439, 0.017858317121863365, -0.05765495449304581, -0.04236000403761864, -0.06580958515405655, -0.017796648666262627, 0.07766924798488617, -0.009911284781992435, 0.1364537477493286, -0.0754266306757927, -0.002855042228475213, 0.013004042208194733, -0.023497987538576126, -0.022046899423003197, 0.041685476899147034, 0.05845337733626366, -0.07575242221355438, 0.01649581640958786, 0.03852342814207077, 0.010115974582731724, 0.07311207801103592, -0.05333111807703972, -0.08983533829450607, 0.01163097657263279, 0.039127167314291, 0.033811330795288086, 0.06383268535137177, -0.02416965924203396, -0.011510031297802925, 0.03454839065670967, 0.014711149036884308, 0.006437505129724741, -0.11784857511520386, 0.06292344629764557, 0.0581291988492012, 0.000267910014372319, 0.06494463235139847, -0.01741611957550049, -0.038735952228307724, 0.08215261250734329, 0.03168993815779686, 0.004221756011247635, -0.016519350931048393, -0.015117249451577663, -0.11768869310617447, 0.18910212814807892, -0.06309355050325394, -0.16651217639446259, -0.07555124908685684, -0.09850507974624634, 0.007823443971574306, 0.029096761718392372, 0.03813923895359039, -0.02058420702815056, -0.044490423053503036, -0.12381688505411148, 0.06612797826528549, -0.041352707892656326, 0.07005669921636581, 0.11074630916118622, -0.03837749361991882, 0.05879418924450874, -0.12444832921028137, -0.006642757449299097, -0.08070157468318939, -0.08168874680995941, 0.060111649334430695, -0.048616934567689896, 0.026421992108225822, 0.09353452920913696, 0.021623756736516953, -0.01933233253657818, -0.024366330355405807, 0.1946825534105301, 0.04434499889612198, 0.039828281849622726, 0.1364406794309616, -0.06472665816545486, 0.05523113161325455, 0.08069974929094315, 0.006766077596694231, -0.043184712529182434, 0.05281856656074524, 0.043351657688617706, -0.07098085433244705, -0.19813482463359833, -0.020069211721420288, -0.008366037160158157, -0.03928679600358009, 0.07376587390899658, 0.035524968057870865, -0.00891706719994545, 0.0684068351984024, 0.012413487769663334, 0.06511068344116211, -0.0031415431294590235, 0.09391116350889206, 0.013700089417397976, -0.03561725094914436, 0.08790034800767899, -0.02065877430140972, -0.008149764500558376, 0.08658242970705032, -0.02210642769932747, 0.28826865553855896, -0.03414550796151161, 0.01376806478947401, 0.12057515233755112, 0.04474648833274841, 0.06251843273639679, 0.12618401646614075, -0.06585978716611862, 0.023710617795586586, -0.07380208373069763, -0.059570830315351486, -0.007834934629499912, 0.04631432145833969, -0.05673811957240105, 0.01249639317393303, -0.07257018238306046, 0.02713479846715927, -0.020975984632968903, 0.29920288920402527, 0.11118842661380768, -0.10346505790948868, -0.058984119445085526, 0.005812323186546564, -0.0979037955403328, -0.07333943992853165, 0.04011167585849762, 0.080669105052948, -0.13344833254814148, 0.004561758600175381, -0.02682657726109028, 0.07379408180713654, -0.01560417003929615, 0.017772451043128967, 0.028120480477809906, 0.03950053080916405, -0.03528599068522453, 0.009626028127968311, -0.1913418173789978, 0.19347217679023743, 0.007195580285042524, 0.019254393875598907, -0.05161336064338684, 0.036304254084825516, 0.006913072895258665, -0.033513035625219345, 0.06310924142599106, 0.023058509454131126, -0.038119059056043625, -0.04264412820339203, -0.049986831843853, 0.013986099511384964, 0.07683587819337845, -0.04496591538190842, 0.10494238138198853, -0.00635520089417696, 0.04380866140127182, 0.019570844247937202, 0.09138559550046921, -0.18474186956882477, -0.08909395337104797, 0.030592529103159904, -0.06278415024280548, -0.10988970100879669, -0.08122583478689194, -0.09290313720703125, 0.006879156921058893, 0.255831241607666, -0.12342824786901474, -0.07601883262395859, -0.09568069130182266, 0.03727284073829651, 0.10260578244924545, -0.049955952912569046, 0.025259416550397873, -0.00545827392488718, 0.13176612555980682, -0.06956739723682404, -0.13532601296901703, 0.021842999383807182, -0.09192220121622086, -0.16781732439994812, -0.0664813369512558, 0.1160409227013588, 0.06252944469451904, 0.03655455633997917, -0.027519993484020233, 0.021832330152392387, 0.035551976412534714, -0.03470885381102562, 0.001212102361023426, 0.07283087074756622, 0.09360812604427338, 0.03341137617826462, -0.10760984569787979, 0.010276220738887787, -0.06015472114086151, -0.06634334474802017, 0.07434946298599243, 0.2639552354812622, -0.0566418282687664, 0.1297464370727539, 0.10872483998537064, -0.08261562138795853, -0.15522781014442444, 0.031229792162775993, 0.09925568848848343, -0.01478642225265503, 0.02158379554748535, -0.15905733406543732, 0.087325319647789, 0.10886447876691818, -0.023093990981578827, 0.0070565566420555115, -0.18831905722618103, -0.12849384546279907, 0.06592442840337753, 0.09817589819431305, 0.2723003327846527, -0.0608508475124836, -0.04402777552604675, 0.017420612275600433, -0.09498586505651474, 0.020158590748906136, 0.12011542916297913, 0.06175679340958595, -0.02390453964471817, -0.07105611264705658, 0.01590675674378872, -0.038266975432634354, 0.09452208131551743, 0.05101470649242401, 0.05539269000291824, -0.0034101265482604504, 0.018624505028128624, -0.01896592602133751, -0.0424501933157444, 0.05987196043133736, 0.02064022794365883, 0.04871717095375061, -0.08372911810874939, -0.029264988377690315, -0.06814415752887726, 0.03257770091295242, -0.025185279548168182, -0.0758214145898819, -0.05809176340699196, 0.0762806162238121, 0.04611632600426674, -0.024417350068688393, 0.01430061087012291, 0.029642188921570778, 0.11600621789693832, 0.1760568618774414, -0.004483347292989492, -0.039858169853687286, -0.04876330494880676, -0.03766928240656853, -0.01553310640156269, 0.07400307059288025, -0.051971595734357834, 0.02655669115483761, 0.06350017338991165, 0.021131543442606926, 0.0943942442536354, 0.05542954429984093, -0.12000863254070282, -0.0168045312166214, 0.03284472972154617, -0.1662868857383728, 0.014591376297175884, 0.00020884220430161804, 0.03185100108385086, -0.03445041924715042, 0.024872764945030212, 0.15421977639198303, -0.06599092483520508, -0.036337077617645264, -0.04152035713195801, 0.07042756676673889, 0.02267579548060894, 0.14251980185508728, 0.031961698085069656, 0.03639109060168266, -0.08135587722063065, 0.12342321127653122, 0.03878137096762657, -0.03588280826807022, 0.0211946964263916, -0.029271388426423073, -0.1055087074637413, 0.013359935022890568, 0.06542184948921204, 0.04109025001525879, -0.04741682857275009, -0.01113197859376669, -0.025570470839738846, -0.07540479302406311, 0.061118949204683304, 0.1838192641735077, 0.06709064543247223, 0.07612258195877075, -0.05420299619436264, -0.03416934236884117, -0.07758474349975586, 0.045049771666526794, 0.04489939659833908, 0.07404282689094543, -0.07485222071409225, 0.11182290315628052, 0.008553599938750267, 0.045391593128442764, -0.031670164316892624, -0.048474449664354324, -0.09899043291807175, -0.05422716960310936, -0.0970868468284607, 0.014896059408783913, -0.07127329707145691, -0.04162835329771042, 0.0021516173146665096, -0.008684402331709862, -0.007169610355049372, 0.05203559994697571, -0.06152735650539398, -0.00972552876919508, -0.02919822558760643, 0.035631101578474045, -0.0677642971277237, -0.03942535072565079, 0.03233521431684494, -0.10195290297269821, 0.0922989472746849, 0.05194779857993126, 0.006589358206838369, 0.010809485800564289, 0.07905939966440201, -0.02141890488564968, 0.02439109981060028, 0.015405042096972466, -0.04668677970767021, -0.08216048777103424, 0.0047739907167851925, -0.007015475071966648, -0.018519282341003418, -0.012386971153318882, 0.09326478838920593, -0.08619162440299988, 0.03575921431183815, -0.007837492041289806, -0.005394351202994585, -0.07209829241037369, -0.010035369545221329, 0.09809348732233047, 0.10074307024478912, 0.04476775974035263, -0.09084997326135635, 0.012112553231418133, -0.14366395771503448, -0.03793518990278244, 0.006535007618367672, -0.010430804453790188, -0.12457669526338577, -0.009838799014687538, 0.021466832607984543, -0.002656039781868458, 0.2078731805086136, -0.04901622608304024, -0.014966492541134357, 0.01802769862115383, -0.09929196536540985, 0.11554688215255737, -0.024021029472351074, 0.17510922253131866, -0.012830154970288277, -0.038563072681427, -0.015466026030480862, 0.034549281001091, 0.020767077803611755, -0.024778107181191444, 0.18535172939300537, 0.13607531785964966, 0.02616085670888424, 0.04061626270413399, -0.024667544290423393, 0.0027440963312983513, -0.05293218418955803, -0.025516338646411896, 0.028246454894542694, 0.03707626461982727, 0.01783924549818039, 0.15355956554412842, 0.0708182230591774, -0.16881074011325836, 0.03329140692949295, -0.029074283316731453, -0.03736988082528114, -0.11887875944375992, -0.09776778519153595, -0.034963179379701614, -0.06974088400602341, 0.0094061940908432, -0.1242949515581131, 0.012206677347421646, 0.17965930700302124, 0.05501209944486618, 0.025698676705360413, 0.00043685489799827337, -0.11934539675712585, -0.03478361666202545, 0.053170956671237946, 0.013174830004572868, 0.024360068142414093, 0.061170030385255814, -0.0017513129860162735, 0.06420183181762695, 0.045935772359371185, 0.014415360987186432, 0.0013344279723241925, 0.08107050508260727, 0.015750015154480934, 0.039724767208099365, -0.06127476692199707, -0.00497381342574954, -0.04297095537185669, 0.06830263882875443, 0.09894748032093048, 0.05018596723675728, -0.04868130013346672, -0.00687676016241312, 0.16015689074993134, -0.04029013589024544, 0.0013443682109937072, -0.12619353830814362, 0.32507479190826416, 0.012606920674443245, 0.015577881596982479, 0.048263732343912125, -0.07507359236478806, -0.049812041223049164, 0.19824932515621185, 0.08550985902547836, -0.019401507452130318, -0.020980237051844597, -0.0018539732554927468, -0.03032226487994194, -0.0214735995978117, 0.15010623633861542, 0.034750014543533325, 0.12366105616092682, -0.05486871674656868, -0.05295542627573013, -0.02945712022483349, -0.0090131014585495, -0.12605813145637512, 0.13238035142421722, -0.030420737341046333, -0.021827522665262222, -0.06977720558643341, 0.023565327748656273, 0.07375446707010269, -0.333383709192276, 0.00444983784109354, -0.0318826399743557, -0.10632447898387909, -0.004250739701092243, -0.011527772061526775, -0.022166414186358452, 0.046166256070137024, -0.049631353467702866, 0.07307608425617218, 0.040707021951675415, 0.03536122664809227, -0.02379816584289074, -0.08703722059726715, 0.16272571682929993, 0.04287974536418915, 0.09227573871612549, 0.025707634165883064, 0.0736585184931755, 0.05258066952228546, 0.03638594225049019, -0.09641460329294205, 0.04261135309934616, 0.012183799408376217, -0.08887051045894623, -0.0526711530983448, 0.12498113512992859, -0.002818322740495205, 0.04127047583460808, 0.0446961484849453, -0.10606127232313156, 0.012277352623641491, 0.0724082738161087, -0.06856591254472733, -0.09692183136940002, -0.007055224850773811, -0.09241177886724472, 0.15211503207683563, 0.14298856258392334, -0.014811892993748188, 0.02233986184000969, -0.07044368237257004, -0.006112110335379839, 0.05178065598011017, 0.018343990668654442, -0.016269149258732796, -0.18796394765377045, 0.03120153397321701, -0.07277623564004898, -0.003179413266479969, -0.22364714741706848, -0.1008441373705864, -0.013146805576980114, -0.05112005025148392, -0.028615234419703484, 0.061583563685417175, 0.029359664767980576, 0.06731874495744705, -0.015648001804947853, -0.04286478832364082, -0.027457069605588913, 0.09040055423974991, -0.10648481547832489, -0.06302710622549057 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1700k"]}
null
google/multiberts-seed_2-step_1700k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1700k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps)." ]
[ -0.0804850310087204, 0.09349039196968079, -0.002443421632051468, 0.04460965842008591, 0.07555528730154037, -0.015478670597076416, 0.0691060870885849, 0.10028912127017975, -0.014210173860192299, 0.02659735269844532, 0.08292638510465622, 0.004308972507715225, 0.01940999925136566, 0.09993471950292587, 0.023499371483922005, -0.22149772942066193, 0.020976882427930832, -0.0313911996781826, -0.08529628068208694, 0.07731728255748749, 0.100089892745018, -0.08192582428455353, 0.045451339334249496, 0.029700273647904396, -0.11597567051649094, 0.04870142787694931, 0.003723646281287074, -0.020897192880511284, 0.1322980374097824, -0.00023486099962610751, 0.04861219599843025, 0.05774436891078949, 0.04487985745072365, -0.12853795289993286, 0.006475407630205154, 0.05775422230362892, 0.059453677386045456, 0.04539448767900467, 0.023722413927316666, 0.0787227526307106, 0.013904892839491367, 0.028668927028775215, 0.04520058631896973, 0.0255594402551651, -0.0750654861330986, -0.06667326390743256, -0.10284440964460373, 0.04383914917707443, 0.02484883740544319, 0.00007295491377590224, 0.011921904049813747, 0.12538602948188782, -0.030004121363162994, 0.044716157019138336, 0.17802150547504425, -0.3354773223400116, -0.015924163162708282, 0.07485170662403107, 0.04367145150899887, 0.13509736955165863, -0.001914756721816957, -0.01774616539478302, 0.0772346705198288, 0.024383533746004105, 0.09132616966962814, -0.04002344608306885, 0.03160674124956131, -0.054734352976083755, -0.15651409327983856, -0.04892741143703461, 0.08618466556072235, -0.003413915168493986, -0.13538597524166107, -0.035849496722221375, -0.04574758559465408, 0.035908523947000504, 0.012396886013448238, -0.041151221841573715, 0.03153066337108612, 0.017140762880444527, -0.014155986718833447, -0.015264593996107578, -0.10427650064229965, -0.05443836748600006, 0.03182404488325119, 0.07812611013650894, 0.10231497138738632, 0.0709686353802681, 0.0007550838054157794, 0.10897330939769745, -0.1852630227804184, -0.049075089395046234, -0.029533391818404198, -0.05535213649272919, -0.05014416575431824, -0.010421071201562881, -0.10339538007974625, -0.03883443400263786, 0.0059376428835093975, 0.1252114325761795, -0.010495807975530624, 0.029010748490691185, -0.03839268535375595, 0.009210951626300812, 0.055617231875658035, 0.04163477569818497, -0.007059949450194836, 0.02034970186650753, 0.023440644145011902, -0.011531897820532322, -0.02217784710228443, 0.013677176088094711, 0.005683066789060831, 0.022005772218108177, 0.1181124895811081, 0.024590548127889633, -0.09694741666316986, 0.06218276172876358, -0.017503023147583008, -0.045993126928806305, 0.025504378601908684, -0.0872001126408577, -0.055144451558589935, -0.03951329365372658, 0.0035833027213811874, 0.012416599318385124, -0.002760704141110182, -0.006291011348366737, -0.023983215913176537, -0.044517699629068375, -0.08611828833818436, -0.051123227924108505, -0.051327940076589584, -0.1255079060792923, 0.007314859423786402, -0.17712467908859253, -0.039794377982616425, -0.11426398158073425, -0.18994230031967163, -0.022750133648514748, 0.06065572425723076, -0.011997702531516552, -0.05730979144573212, 0.08210164308547974, 0.04457971453666687, -0.02892235852777958, -0.0019124463433399796, 0.0786462351679802, 0.000989785767160356, 0.04521318897604942, -0.029406625777482986, 0.0721496120095253, 0.007309553679078817, 0.033128660172224045, -0.0562271848320961, 0.06263882666826248, -0.17570878565311432, 0.04689222201704979, -0.07380464673042297, -0.029882559552788734, -0.0867677852511406, -0.03615403175354004, -0.01149366982281208, 0.005125593394041061, 0.0206869188696146, 0.07381880283355713, -0.17809374630451202, -0.029712574556469917, 0.12781046330928802, -0.16766665875911713, -0.022094624117016792, 0.0763625055551529, -0.04583660140633583, 0.1019451841711998, 0.07127434015274048, 0.1517840325832367, -0.003710867604240775, -0.07405878603458405, 0.06044737994670868, -0.012957654893398285, 0.0077185179106891155, -0.015443742275238037, 0.06937382370233536, -0.018978595733642578, -0.16699200868606567, 0.03498527407646179, -0.13077601790428162, -0.0035788039676845074, -0.07897122949361801, 0.017083289101719856, -0.013587935827672482, -0.06689177453517914, -0.0715389996767044, -0.0241668950766325, 0.0651487484574318, -0.07680030167102814, -0.015888314694166183, 0.029640281572937965, 0.0736689567565918, -0.07094424962997437, 0.06933385878801346, -0.01183791272342205, 0.008612199686467648, -0.07900899648666382, -0.03703569993376732, -0.18912464380264282, 0.05834058299660683, 0.10089670866727829, 0.00816065538674593, -0.022183645516633987, 0.1400422751903534, 0.007391606457531452, 0.06841906160116196, -0.049363430589437485, 0.014057474210858345, -0.009595799259841442, -0.0053585185669362545, -0.08823787420988083, -0.10260482132434845, -0.07445373386144638, -0.06900791823863983, 0.08337268978357315, -0.12539446353912354, 0.021566683426499367, -0.05969894677400589, 0.04300646856427193, 0.02096276730298996, -0.08539939671754837, -0.019556615501642227, 0.012351463548839092, -0.05843956023454666, -0.05632510036230087, 0.03901912271976471, 0.06932453066110611, -0.011432039551436901, 0.0949188694357872, -0.04911631718277931, -0.08835320174694061, 0.03138567879796028, 0.100046806037426, -0.10448187589645386, 0.011564071290194988, -0.05823487043380737, -0.04399119317531586, -0.06445260345935822, -0.018842853605747223, 0.071088045835495, -0.009389174170792103, 0.13534396886825562, -0.07858116924762726, -0.002140217926353216, 0.017420336604118347, -0.018761325627565384, -0.026189716532826424, 0.03818200156092644, 0.0638992190361023, -0.08560767769813538, 0.012966143898665905, 0.038954056799411774, 0.016816645860671997, 0.07140517234802246, -0.05019799619913101, -0.08685383200645447, 0.011976931244134903, 0.037958551198244095, 0.030720748007297516, 0.0633779764175415, -0.024546826258301735, -0.010808492079377174, 0.03310571610927582, 0.017687911167740822, 0.008137037977576256, -0.11740215867757797, 0.06124936416745186, 0.057848043739795685, 0.0038771566469222307, 0.06239242106676102, -0.01680281199514866, -0.03865731880068779, 0.08246633410453796, 0.03361918404698372, 0.0006856528925709426, -0.016997648403048515, -0.014452281408011913, -0.12007120251655579, 0.19086331129074097, -0.06185164302587509, -0.16792400181293488, -0.07658162713050842, -0.09845707565546036, 0.007102206815034151, 0.025865286588668823, 0.038675591349601746, -0.020413069054484367, -0.044179145246744156, -0.12528203427791595, 0.059112198650836945, -0.043783362954854965, 0.07134826481342316, 0.11581453680992126, -0.0406038723886013, 0.05404704809188843, -0.1250828206539154, -0.007723470218479633, -0.08427757024765015, -0.07359451055526733, 0.05966315045952797, -0.05033549293875694, 0.025217782706022263, 0.10009606927633286, 0.023828931152820587, -0.018392525613307953, -0.025600502267479897, 0.19874173402786255, 0.04375981539487839, 0.04136717692017555, 0.12972362339496613, -0.061773549765348434, 0.05583970248699188, 0.07942270487546921, 0.008737960830330849, -0.04527265205979347, 0.05138593167066574, 0.04007057100534439, -0.0715126097202301, -0.1967308223247528, -0.022926028817892075, -0.008140388876199722, -0.037853654474020004, 0.07870949804782867, 0.03538835048675537, -0.0014363336376845837, 0.06782954186201096, 0.010439516045153141, 0.06023070961236954, -0.00015486903430428356, 0.09608720988035202, 0.0135630052536726, -0.03596537560224533, 0.08751577138900757, -0.019940050318837166, -0.0036188706289976835, 0.08780788630247116, -0.022732850164175034, 0.29034852981567383, -0.030165597796440125, 0.011857868172228336, 0.12090479582548141, 0.04346425086259842, 0.06205306947231293, 0.12431962788105011, -0.06662706285715103, 0.022323409095406532, -0.0736737847328186, -0.0590018555521965, -0.0056545729748904705, 0.04795706644654274, -0.05779257044196129, 0.012114755809307098, -0.07424993067979813, 0.0285189226269722, -0.02011944353580475, 0.30391737818717957, 0.10603121668100357, -0.10288634151220322, -0.06034492701292038, 0.0061361296102404594, -0.09955707937479019, -0.0733654797077179, 0.04421558976173401, 0.07666388154029846, -0.13137707114219666, 0.00789208896458149, -0.023730436339974403, 0.07429604977369308, -0.012515727430582047, 0.015423858538269997, 0.024443047121167183, 0.03870411962270737, -0.03648028522729874, 0.005952981300652027, -0.17607064545154572, 0.19912564754486084, 0.006199415773153305, 0.017870977520942688, -0.05317864567041397, 0.03380601108074188, 0.006553911603987217, -0.02825157344341278, 0.06465902179479599, 0.02557416446506977, -0.040891315788030624, -0.04271094501018524, -0.049477603286504745, 0.012330302968621254, 0.07328437268733978, -0.04078124091029167, 0.1012062057852745, -0.004896633327007294, 0.042132340371608734, 0.020272839814424515, 0.08514630049467087, -0.18363358080387115, -0.08711555600166321, 0.03067311830818653, -0.05870448797941208, -0.11368601024150848, -0.08182433247566223, -0.09343860298395157, 0.002808936173096299, 0.2536589503288269, -0.11989836394786835, -0.07379554212093353, -0.0949607640504837, 0.03575309365987778, 0.10678552836179733, -0.050548113882541656, 0.02740061841905117, -0.007078668102622032, 0.12879176437854767, -0.06965322047472, -0.13156737387180328, 0.02401399053633213, -0.09285930544137955, -0.16711843013763428, -0.06625040620565414, 0.11662229895591736, 0.06317824125289917, 0.034861985594034195, -0.026607394218444824, 0.021606754511594772, 0.03606307506561279, -0.03892285376787186, 0.0041922773234546185, 0.07066131383180618, 0.08985710144042969, 0.033440764993429184, -0.10184123367071152, 0.00566435419023037, -0.06046108901500702, -0.0688716396689415, 0.07401629537343979, 0.2698538601398468, -0.059362173080444336, 0.12982353568077087, 0.11947145313024521, -0.07953531295061111, -0.15107578039169312, 0.03213632479310036, 0.08986169099807739, -0.017299683764576912, 0.01648099720478058, -0.15367022156715393, 0.08803617209196091, 0.11206241697072983, -0.024076925590634346, -0.00031065696384757757, -0.19444212317466736, -0.13058394193649292, 0.06959899514913559, 0.09910093247890472, 0.27907806634902954, -0.05772564932703972, -0.044067587703466415, 0.02177436277270317, -0.09228475391864777, 0.018159380182623863, 0.12649397552013397, 0.059729669243097305, -0.027059296146035194, -0.08254919201135635, 0.015222433023154736, -0.041663940995931625, 0.09444074332714081, 0.05138501152396202, 0.05502699688076973, -0.0005059504183009267, 0.022606035694479942, -0.022592656314373016, -0.04269373416900635, 0.05904830992221832, 0.02417820319533348, 0.05266591161489487, -0.08007185161113739, -0.03070608153939247, -0.07121185958385468, 0.028621751815080643, -0.02529209852218628, -0.07477281242609024, -0.06025194004178047, 0.07920797169208527, 0.04867831617593765, -0.02624700590968132, 0.014883694238960743, 0.02878241054713726, 0.11843986809253693, 0.1749514937400818, -0.004639559891074896, -0.05370285362005234, -0.046961698681116104, -0.038602884858846664, -0.019043974578380585, 0.07432898879051208, -0.050780970603227615, 0.0249905064702034, 0.06347234547138214, 0.021869678050279617, 0.09506064653396606, 0.0554109662771225, -0.11744800955057144, -0.019288554787635803, 0.0352531336247921, -0.16420835256576538, 0.010506751947104931, 0.00024211952404584736, 0.03181954845786095, -0.033291030675172806, 0.023508775979280472, 0.14842091500759125, -0.06497815996408463, -0.036865007132291794, -0.0422140397131443, 0.0710945725440979, 0.02463570050895214, 0.1388184130191803, 0.030797528102993965, 0.03690270707011223, -0.08195069432258606, 0.12323232740163803, 0.04193035885691643, -0.04496527835726738, 0.018526770174503326, -0.020260872319340706, -0.10741620510816574, 0.01297166757285595, 0.05672714114189148, 0.03230902552604675, -0.05385560169816017, -0.008925765752792358, -0.02273526042699814, -0.07524963468313217, 0.06562907248735428, 0.18334829807281494, 0.06533823162317276, 0.07182500511407852, -0.05432696267962456, -0.035202328115701675, -0.07737403362989426, 0.04328195005655289, 0.04091152548789978, 0.0731833428144455, -0.0741250067949295, 0.10848989337682724, 0.01290938537567854, 0.044602882117033005, -0.030766254290938377, -0.051850996911525726, -0.09786422550678253, -0.05339982733130455, -0.10147664695978165, 0.009520106948912144, -0.0799553170800209, -0.03915540874004364, -0.0007715333485975862, -0.0090062590315938, -0.01073413249105215, 0.0495842806994915, -0.060858774930238724, -0.009518122300505638, -0.0257972851395607, 0.03710607811808586, -0.0680433064699173, -0.03807317838072777, 0.032624829560518265, -0.10045073926448822, 0.09416513890028, 0.04926903918385506, 0.006174607202410698, 0.006940918043255806, 0.09368856251239777, -0.020001934841275215, 0.022923840209841728, 0.014987723901867867, -0.04636051878333092, -0.08589497953653336, 0.004215076565742493, -0.006467235274612904, -0.021759305149316788, -0.008985403925180435, 0.08906204253435135, -0.08647192269563675, 0.033433277159929276, -0.0062699769623577595, -0.009671790525317192, -0.07283104211091995, -0.011328226886689663, 0.10024554282426834, 0.0949121043086052, 0.041634585708379745, -0.0896618664264679, 0.010096275247633457, -0.14618343114852905, -0.03733038902282715, 0.005079828668385744, -0.010447578504681587, -0.12127522379159927, -0.006425903178751469, 0.020864402875304222, -0.0025874401908367872, 0.20973330736160278, -0.05786479264497757, -0.020769448950886726, 0.02243695594370365, -0.09990457445383072, 0.10731706768274307, -0.02512975037097931, 0.1806078404188156, -0.010368735529482365, -0.040502291172742844, -0.007580332458019257, 0.03502008691430092, 0.022870078682899475, -0.01737298257648945, 0.19028042256832123, 0.13696056604385376, 0.037693895399570465, 0.04073739051818848, -0.02401040494441986, 0.002023128792643547, -0.05762157589197159, -0.028119739145040512, 0.028019580990076065, 0.03774779289960861, 0.019879736006259918, 0.14243163168430328, 0.07506252825260162, -0.16844542324543, 0.03260309249162674, -0.027271103113889694, -0.03723977506160736, -0.12012113630771637, -0.09291239082813263, -0.03276876360177994, -0.07061256468296051, 0.00848793052136898, -0.125116229057312, 0.010692578740417957, 0.16524486243724823, 0.056626494973897934, 0.026840034872293472, -0.00012985203647986054, -0.11775663495063782, -0.03256932646036148, 0.05270649865269661, 0.01623205654323101, 0.02628426067531109, 0.059975337237119675, -0.002820459892973304, 0.06138625741004944, 0.04187268391251564, 0.01245327852666378, 0.00004591856122715399, 0.07640525698661804, 0.01847189851105213, 0.03985394537448883, -0.06224872171878815, -0.0055181169882416725, -0.043812479823827744, 0.07098621875047684, 0.0969415158033371, 0.051577720791101456, -0.04784644395112991, -0.007356400601565838, 0.16061227023601532, -0.03985247761011124, 0.0024969845544546843, -0.12584994733333588, 0.3352486491203308, 0.01523655652999878, 0.012062917463481426, 0.05173886567354202, -0.0729614794254303, -0.05219404771924019, 0.20213666558265686, 0.08864495903253555, -0.016294803470373154, -0.020869499072432518, -0.0013476123567670584, -0.03139572963118553, -0.02200246974825859, 0.15414172410964966, 0.03452229127287865, 0.1257963925600052, -0.05125836282968521, -0.04788795858621597, -0.03099238872528076, -0.010714647360146046, -0.12248322367668152, 0.13477188348770142, -0.026863079518079758, -0.022653402760624886, -0.06995978206396103, 0.027005314826965332, 0.07499532401561737, -0.3181912899017334, 0.004826826974749565, -0.03193912282586098, -0.10718866437673569, -0.0033117954153567553, -0.015482296235859394, -0.025156617164611816, 0.04501540586352348, -0.04574957117438316, 0.07127366960048676, 0.037038110196590424, 0.034496769309043884, -0.024762917309999466, -0.09784416854381561, 0.16621030867099762, 0.05630716308951378, 0.09843180328607559, 0.026186924427747726, 0.07294954359531403, 0.05525851994752884, 0.03780578449368477, -0.10173529386520386, 0.037833068519830704, 0.012493002228438854, -0.08084305375814438, -0.053238194435834885, 0.1235065683722496, -0.0021114307455718517, 0.04679664969444275, 0.045521847903728485, -0.1090838611125946, 0.008652039803564548, 0.0670415610074997, -0.06609642505645752, -0.09549079835414886, -0.006199665833264589, -0.08745930343866348, 0.15632830560207367, 0.14021286368370056, -0.016969988122582436, 0.019261980429291725, -0.0663277730345726, -0.0074497307650744915, 0.052005164325237274, 0.022523246705532074, -0.01618964783847332, -0.19353994727134705, 0.03381214663386345, -0.07878580689430237, -0.0011579931015148759, -0.2247626632452011, -0.1029510647058487, -0.012294100597500801, -0.05098658427596092, -0.029459629207849503, 0.06463732570409775, 0.026924768462777138, 0.06543046981096268, -0.015045860782265663, -0.03688559681177139, -0.02923484519124031, 0.08986574411392212, -0.10843507945537567, -0.062285903841257095 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1800k"]}
null
google/multiberts-seed_2-step_1800k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1800k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps)." ]
[ -0.07638708502054214, 0.1028418019413948, -0.002597078215330839, 0.0419437475502491, 0.07694916427135468, -0.01484489906579256, 0.07759273797273636, 0.10077356547117233, -0.017882969230413437, 0.024676235392689705, 0.07789377123117447, -0.0014922389527782798, 0.01717465929687023, 0.09721887856721878, 0.025023603811860085, -0.21813832223415375, 0.020031308755278587, -0.03137301653623581, -0.09068998694419861, 0.07644812017679214, 0.10000436007976532, -0.0801793560385704, 0.044949181377887726, 0.030404645949602127, -0.11234834790229797, 0.047916095703840256, 0.0031497222371399403, -0.02099643647670746, 0.13164329528808594, -0.0030241655185818672, 0.054729361087083817, 0.0545799545943737, 0.04304268956184387, -0.13402217626571655, 0.00607320899143815, 0.05831020325422287, 0.06006086245179176, 0.04496363177895546, 0.021420827135443687, 0.07192578911781311, 0.003057992085814476, 0.02852260135114193, 0.047200750559568405, 0.025462834164500237, -0.07722410559654236, -0.05719577521085739, -0.10171359032392502, 0.03597554191946983, 0.025303607806563377, 0.007197179831564426, 0.011983435600996017, 0.1250670701265335, -0.03301815688610077, 0.04132812097668648, 0.18038733303546906, -0.32855090498924255, -0.013328826054930687, 0.07125009596347809, 0.03784552589058876, 0.13121944665908813, -0.0022352878004312515, -0.020282074809074402, 0.07474809885025024, 0.024044286459684372, 0.08983495831489563, -0.04018707200884819, 0.029032226651906967, -0.051858190447092056, -0.154673770070076, -0.048387013375759125, 0.08928582072257996, -0.0034731486812233925, -0.135429248213768, -0.033382806926965714, -0.043133992701768875, 0.02818678319454193, 0.0117014916613698, -0.03680695965886116, 0.03423844650387764, 0.015579290688037872, -0.018179306760430336, -0.013477038592100143, -0.10557112097740173, -0.051783040165901184, 0.03126298263669014, 0.07882558554410934, 0.10017742961645126, 0.06845703721046448, -0.0009902530582621694, 0.1080300360918045, -0.1891224980354309, -0.050875768065452576, -0.028027964755892754, -0.053351301699876785, -0.0523989237844944, -0.010122508741915226, -0.11193099617958069, -0.04493085294961929, 0.00636383518576622, 0.13116630911827087, -0.01129861269146204, 0.027734724804759026, -0.034613896161317825, 0.00958478543907404, 0.05753643065690994, 0.04201047122478485, -0.005503173917531967, 0.02726907655596733, 0.019055604934692383, -0.013084370642900467, -0.022216180339455605, 0.013226778246462345, 0.0023234731052070856, 0.028979258611798286, 0.11809098720550537, 0.022643379867076874, -0.09923837333917618, 0.06295762956142426, -0.020956091582775116, -0.04837643727660179, 0.01025821641087532, -0.09079182147979736, -0.05730101466178894, -0.04011164605617523, 0.0024732525926083326, 0.008684379979968071, -0.0026658002752810717, -0.0020351677667349577, -0.023572325706481934, -0.03792569413781166, -0.08390217274427414, -0.04784562438726425, -0.05465765669941902, -0.1222226545214653, 0.007738406304270029, -0.1814536303281784, -0.03801080957055092, -0.1136329397559166, -0.18616604804992676, -0.02158569172024727, 0.06710474193096161, -0.011592135764658451, -0.05854678899049759, 0.08117314428091049, 0.04302937909960747, -0.029813619330525398, -0.0017233690014109015, 0.07260461896657944, -0.00012139206955907866, 0.04286766052246094, -0.031513508409261703, 0.06765232980251312, 0.003560525132343173, 0.03603789582848549, -0.056841857731342316, 0.060831218957901, -0.17750269174575806, 0.04467339441180229, -0.07091920077800751, -0.028085000813007355, -0.0859348326921463, -0.03424161672592163, -0.013164129108190536, 0.00509006530046463, 0.021225396543741226, 0.0726587101817131, -0.17745563387870789, -0.030458973720669746, 0.11602895706892014, -0.16358478367328644, -0.021327489987015724, 0.0723772644996643, -0.049124348908662796, 0.10173242539167404, 0.06783106923103333, 0.158035546541214, -0.005998888984322548, -0.07336167991161346, 0.06084483116865158, -0.0166622381657362, 0.010795565322041512, -0.008699363097548485, 0.07086679339408875, -0.021853065118193626, -0.1542910486459732, 0.03333880752325058, -0.1313389390707016, -0.004344469401985407, -0.07676195353269577, 0.014214799739420414, -0.010670897550880909, -0.06820596009492874, -0.06808732450008392, -0.025224948301911354, 0.06552833318710327, -0.07497964799404144, -0.018291695043444633, 0.035577572882175446, 0.07322685420513153, -0.06906847655773163, 0.07004249840974808, -0.014584372751414776, 0.007174412254244089, -0.07916219532489777, -0.03993914648890495, -0.19105641543865204, 0.05083560571074486, 0.09864982962608337, 0.007645476143807173, -0.016457824036478996, 0.1407642811536789, 0.006795336026698351, 0.06234479323029518, -0.04941992089152336, 0.014706632122397423, -0.016876189038157463, -0.004409827291965485, -0.08515892922878265, -0.10041812062263489, -0.0723237693309784, -0.06724610924720764, 0.09237474203109741, -0.12095660716295242, 0.021821722388267517, -0.05659082159399986, 0.04202871024608612, 0.02177225612103939, -0.08563157916069031, -0.02012646198272705, 0.012433549389243126, -0.06035474315285683, -0.05472284182906151, 0.04005809500813484, 0.0722406879067421, -0.010430256836116314, 0.09564435482025146, -0.04998219013214111, -0.09031709283590317, 0.03273867443203926, 0.09453960508108139, -0.10545776784420013, 0.014411192387342453, -0.0569954589009285, -0.04332035779953003, -0.06335382908582687, -0.017093507573008537, 0.08093148469924927, -0.007089170161634684, 0.13551098108291626, -0.07574687153100967, -0.0035291239619255066, 0.015744337812066078, -0.02177545614540577, -0.02354772388935089, 0.03529265522956848, 0.06544958055019379, -0.06866415590047836, 0.01423319336026907, 0.04095402732491493, 0.011870705522596836, 0.07018265873193741, -0.05219069495797157, -0.08892835676670074, 0.012546584941446781, 0.034715112298727036, 0.031888410449028015, 0.06653379648923874, -0.021479332819581032, -0.01095554418861866, 0.033789634704589844, 0.017992716282606125, 0.007823319174349308, -0.1158863753080368, 0.061788223683834076, 0.05901733785867691, 0.005460201296955347, 0.06556340306997299, -0.02132989466190338, -0.0380944162607193, 0.07966973632574081, 0.03644362837076187, 0.0012710406444966793, -0.015493497252464294, -0.016102571040391922, -0.11964914947748184, 0.18884362280368805, -0.0626162514090538, -0.16844744980335236, -0.07981320470571518, -0.10698666423559189, 0.005169316660612822, 0.027035346254706383, 0.03743107244372368, -0.021279126405715942, -0.044775690883398056, -0.12446390092372894, 0.054998233914375305, -0.04242338240146637, 0.067196324467659, 0.11546240001916885, -0.037954650819301605, 0.05706587806344032, -0.12387464195489883, -0.008026108145713806, -0.08281300961971283, -0.07375474274158478, 0.06202448531985283, -0.048075102269649506, 0.02610447257757187, 0.1051015630364418, 0.02314046025276184, -0.017542777583003044, -0.02422979474067688, 0.19490540027618408, 0.039279356598854065, 0.039881810545921326, 0.1279839128255844, -0.06736229360103607, 0.0551287904381752, 0.08431747555732727, 0.009211249649524689, -0.0427304245531559, 0.053648874163627625, 0.045380301773548126, -0.06998861581087112, -0.1996547281742096, -0.026163984090089798, -0.007560067810118198, -0.04321203753352165, 0.07745160907506943, 0.03617466986179352, 0.008866759948432446, 0.06806635111570358, 0.013219624757766724, 0.05721386522054672, -0.001499962992966175, 0.09748297929763794, 0.012915089726448059, -0.03263891860842705, 0.08656913042068481, -0.019666289910674095, -0.009371898137032986, 0.08592066913843155, -0.02378838136792183, 0.29365506768226624, -0.028672311455011368, 0.01688234880566597, 0.12186337262392044, 0.03749759867787361, 0.06357911974191666, 0.12015146762132645, -0.0659276694059372, 0.022649168968200684, -0.073039211332798, -0.059364818036556244, -0.00395919056609273, 0.04909472540020943, -0.05972806736826897, 0.012675684876739979, -0.0722908303141594, 0.02411497011780739, -0.018853571265935898, 0.30766451358795166, 0.11023958772420883, -0.10207968205213547, -0.05565768480300903, 0.004506607074290514, -0.09786076098680496, -0.07005900144577026, 0.043761737644672394, 0.06788857281208038, -0.13331830501556396, 0.006991542410105467, -0.026588037610054016, 0.07402895390987396, -0.010986587963998318, 0.017509281635284424, 0.031432684510946274, 0.03359255567193031, -0.036888692528009415, 0.008491825312376022, -0.18367719650268555, 0.19689059257507324, 0.005843614228069782, 0.015661532059311867, -0.05087278410792351, 0.034138623625040054, 0.007726912386715412, -0.032852400094270706, 0.06294509023427963, 0.025401949882507324, -0.030750099569559097, -0.038301534950733185, -0.0509893037378788, 0.012801352888345718, 0.0779171958565712, -0.04498280957341194, 0.10467340052127838, -0.004587661474943161, 0.04286141321063042, 0.021510276943445206, 0.08819536119699478, -0.18165719509124756, -0.0915323793888092, 0.03358469903469086, -0.05761542171239853, -0.10675659775733948, -0.08151676505804062, -0.09381985664367676, 0.0015669558197259903, 0.2540406882762909, -0.11286720633506775, -0.07419247925281525, -0.09453567862510681, 0.030388332903385162, 0.10528136789798737, -0.04821668937802315, 0.029922230169177055, -0.005493059754371643, 0.1325587034225464, -0.06794966012239456, -0.13156667351722717, 0.02140800654888153, -0.08971016854047775, -0.1636740118265152, -0.0667840987443924, 0.1168859675526619, 0.06208094581961632, 0.03717949986457825, -0.03130718320608139, 0.026386834681034088, 0.03414883837103844, -0.036363255232572556, -0.0004395894065964967, 0.06734641641378403, 0.09486941248178482, 0.03777606412768364, -0.10716158151626587, 0.009867102839052677, -0.0644872710108757, -0.06915922462940216, 0.07888142019510269, 0.26376068592071533, -0.05781415477395058, 0.13054808974266052, 0.11709413677453995, -0.08064902573823929, -0.15267786383628845, 0.03243134915828705, 0.09103450924158096, -0.018080133944749832, 0.019222317263484, -0.15979236364364624, 0.08926030993461609, 0.10936705768108368, -0.02354525960981846, -0.0009000421268865466, -0.1881195455789566, -0.12976862490177155, 0.06958997994661331, 0.09641927480697632, 0.2726430296897888, -0.058911047875881195, -0.04454413428902626, 0.018980341032147408, -0.09896285086870193, 0.019829383119940758, 0.12329366058111191, 0.06004271283745766, -0.023691801354289055, -0.07575076073408127, 0.015139369294047356, -0.041113853454589844, 0.09343982487916946, 0.054383039474487305, 0.05402219668030739, -0.00321589526720345, 0.01665792427957058, -0.019506504759192467, -0.0455411821603775, 0.060226719826459885, 0.025945091620087624, 0.048861581832170486, -0.0803542360663414, -0.02899261564016342, -0.06898178905248642, 0.028348566964268684, -0.0254619512706995, -0.07708388566970825, -0.060942381620407104, 0.08023606240749359, 0.04871438443660736, -0.024919753894209862, 0.01934218965470791, 0.0291560310870409, 0.11570697277784348, 0.16964487731456757, -0.0040338123217225075, -0.054906733334064484, -0.05520812049508095, -0.03849305957555771, -0.01692650280892849, 0.0710965245962143, -0.050944823771715164, 0.02722161076962948, 0.06496922671794891, 0.022037789225578308, 0.09760117530822754, 0.056748222559690475, -0.1180822104215622, -0.02034459076821804, 0.03503482788801193, -0.16374458372592926, 0.018248500302433968, -0.0025263179559260607, 0.037019647657871246, -0.035495828837156296, 0.02421058714389801, 0.14918209612369537, -0.06469399482011795, -0.035573430359363556, -0.03928660973906517, 0.06978236883878708, 0.024459945037961006, 0.1348622441291809, 0.0335218645632267, 0.03644566237926483, -0.08167269080877304, 0.12657378613948822, 0.04366880655288696, -0.043148305267095566, 0.021617859601974487, -0.022523362189531326, -0.10738685727119446, 0.01295842882245779, 0.060145601630210876, 0.03844909369945526, -0.05136330425739288, -0.009770546108484268, -0.027300024405121803, -0.07473597675561905, 0.06382948160171509, 0.1846267133951187, 0.0665270984172821, 0.07215841114521027, -0.05437877029180527, -0.036739032715559006, -0.07750511169433594, 0.0447048544883728, 0.03967800736427307, 0.07448606193065643, -0.07450402528047562, 0.10433954745531082, 0.013758626766502857, 0.04550950229167938, -0.02992304600775242, -0.05546910688281059, -0.09680506587028503, -0.05141390860080719, -0.09686953574419022, 0.007947965525090694, -0.07429930567741394, -0.04125872626900673, 0.00023580707784276456, -0.006551553029567003, -0.01131089124828577, 0.0495138056576252, -0.0614171139895916, -0.009770624339580536, -0.027503184974193573, 0.03474027290940285, -0.06549136340618134, -0.037006184458732605, 0.032293643802404404, -0.10036876052618027, 0.09201555699110031, 0.04933464899659157, 0.006025835406035185, 0.007434865925461054, 0.09325314313173294, -0.022389406338334084, 0.019100433215498924, 0.0158134326338768, -0.047743234783411026, -0.0888093113899231, 0.0011979839764535427, -0.00801369734108448, -0.0187554769217968, -0.010514571331441402, 0.08812476694583893, -0.08670490980148315, 0.033746931701898575, -0.006065131165087223, -0.00946204923093319, -0.07432964444160461, -0.013482000678777695, 0.09796512871980667, 0.09644828736782074, 0.045330118387937546, -0.08579576015472412, 0.013213190250098705, -0.14355242252349854, -0.03675954043865204, 0.005012253299355507, -0.0059037418104708195, -0.12478362023830414, -0.00858111958950758, 0.017448104918003082, -0.003327451180666685, 0.21034570038318634, -0.05605795979499817, -0.02338261716067791, 0.022732723504304886, -0.09905409812927246, 0.10832688212394714, -0.021883506327867508, 0.17832492291927338, -0.007373512256890535, -0.04217168688774109, -0.011765341274440289, 0.03338758647441864, 0.0216358695179224, -0.02156851626932621, 0.18708953261375427, 0.14126721024513245, 0.04160795733332634, 0.03891308605670929, -0.022328734397888184, 0.002939564175903797, -0.04789051041007042, -0.019718753173947334, 0.02866259030997753, 0.03618452325463295, 0.023574456572532654, 0.15136778354644775, 0.07371166348457336, -0.16597825288772583, 0.036424148827791214, -0.0304515790194273, -0.03713792562484741, -0.11509339511394501, -0.08738932013511658, -0.032639916986227036, -0.07259897142648697, 0.00706349965184927, -0.1250515878200531, 0.008822834119200706, 0.1802624762058258, 0.05638115108013153, 0.026735901832580566, 0.0031320350244641304, -0.12787070870399475, -0.03454415127635002, 0.05118453502655029, 0.013410834595561028, 0.02671218104660511, 0.05795411393046379, -0.00038913614116609097, 0.059899017214775085, 0.04601321369409561, 0.013787563890218735, 0.002698551630601287, 0.0820758044719696, 0.017043547704815865, 0.04128488525748253, -0.06336992233991623, -0.0030563774053007364, -0.04589422792196274, 0.07083945721387863, 0.09405320882797241, 0.04742119461297989, -0.04665205255150795, -0.006348244845867157, 0.16352543234825134, -0.04066159203648567, -0.004225396551191807, -0.1290666162967682, 0.3265684247016907, 0.01422622799873352, 0.01138707809150219, 0.047821830958127975, -0.07667853683233261, -0.0510677769780159, 0.20326395332813263, 0.09015797823667526, -0.020384011790156364, -0.020946132019162178, 0.0026355900336056948, -0.0301880594342947, -0.022557683289051056, 0.1488116830587387, 0.03395594283938408, 0.1256859451532364, -0.053773511201143265, -0.04986006021499634, -0.03067437931895256, -0.008866541087627411, -0.12436577677726746, 0.13656961917877197, -0.026626277714967728, -0.022721558809280396, -0.07021293044090271, 0.026913190260529518, 0.07346182316541672, -0.31588277220726013, 0.0008397040073759854, -0.03885501250624657, -0.1083444207906723, -0.00309684406965971, -0.013915777206420898, -0.027462538331747055, 0.04650570824742317, -0.04558003693819046, 0.06807713210582733, 0.0371423177421093, 0.03579855337738991, -0.02330200746655464, -0.09555783867835999, 0.16784124076366425, 0.05002708360552788, 0.09788987785577774, 0.02617965266108513, 0.07215665280818939, 0.05524507537484169, 0.03700483590364456, -0.09739259630441666, 0.039871424436569214, 0.012399132363498211, -0.0824570283293724, -0.05330980196595192, 0.12196196615695953, -0.002319005550816655, 0.04431547969579697, 0.04585900157690048, -0.10743305832147598, 0.01022628415375948, 0.06905785948038101, -0.06627300381660461, -0.09523594379425049, -0.009364387020468712, -0.09101448208093643, 0.15439531207084656, 0.13891777396202087, -0.016268745064735413, 0.02045811153948307, -0.06607218086719513, -0.009360944852232933, 0.05125473812222481, 0.01766263134777546, -0.01673070713877678, -0.1930021196603775, 0.03484627604484558, -0.07726342976093292, -0.0029945073183625937, -0.23569433391094208, -0.10220964252948761, -0.008533690124750137, -0.049671925604343414, -0.02606850676238537, 0.06169816479086876, 0.03272265940904617, 0.06687233597040176, -0.017527630552649498, -0.02857665717601776, -0.027292829006910324, 0.09016336500644684, -0.10778731107711792, -0.06377080082893372 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_180k"]}
null
google/multiberts-seed_2-step_180k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_180k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 180k (max: 2000k, i.e., 2M steps)." ]
[ -0.07583363354206085, 0.0914754644036293, -0.0025821093004196882, 0.04073618724942207, 0.07481149584054947, -0.017242539674043655, 0.07377652823925018, 0.10065759718418121, -0.020771054551005363, 0.0269455686211586, 0.07927268743515015, 0.006784132681787014, 0.016553286463022232, 0.10226816684007645, 0.024322660639882088, -0.22581110894680023, 0.02068740874528885, -0.02990736998617649, -0.09520290046930313, 0.07798502594232559, 0.09953386336565018, -0.07784047722816467, 0.04486953839659691, 0.031681183725595474, -0.11084554344415665, 0.045365527272224426, 0.002009548479691148, -0.016817724332213402, 0.1347186267375946, 0.0004965075640939176, 0.052366819232702255, 0.05366193875670433, 0.04310235381126404, -0.13395696878433228, 0.006786548066884279, 0.05976288765668869, 0.059325188398361206, 0.04646293446421623, 0.024029888212680817, 0.07400228828191757, 0.010773156769573689, 0.025315823033452034, 0.04361042007803917, 0.024751856923103333, -0.07660365849733353, -0.06203577294945717, -0.1025748997926712, 0.03639455884695053, 0.02599528804421425, 0.008292204700410366, 0.009880779311060905, 0.12354258447885513, -0.03350592032074928, 0.04157614707946777, 0.1872757524251938, -0.3362855613231659, -0.014539387077093124, 0.06440629065036774, 0.04150024428963661, 0.12431153655052185, -0.003149206517264247, -0.01747666858136654, 0.0772174820303917, 0.025416024029254913, 0.0935400202870369, -0.03889404237270355, 0.03376700356602669, -0.05587942525744438, -0.15822185575962067, -0.046865321695804596, 0.08442054688930511, -0.001999570755288005, -0.13526390492916107, -0.036813512444496155, -0.046344682574272156, 0.03500840440392494, 0.012719743885099888, -0.03745992109179497, 0.0313480906188488, 0.01599782519042492, -0.019561350345611572, -0.014288779348134995, -0.10740083456039429, -0.05516725406050682, 0.027628028765320778, 0.08565502613782883, 0.1015896126627922, 0.0664861872792244, 0.0005097747780382633, 0.11017880588769913, -0.1844140738248825, -0.05078519508242607, -0.027989182621240616, -0.05528014898300171, -0.05056029558181763, -0.008908162824809551, -0.10672885924577713, -0.04340360686182976, 0.00847754254937172, 0.13043443858623505, -0.012261440977454185, 0.02501830831170082, -0.038210898637771606, 0.008299639448523521, 0.05600973591208458, 0.0446498766541481, -0.007862776517868042, 0.030624546110630035, 0.018820319324731827, -0.01134407613426447, -0.021557826548814774, 0.014704649336636066, 0.004516636952757835, 0.022838611155748367, 0.11782818287611008, 0.025618858635425568, -0.10183841735124588, 0.06660578399896622, -0.01961897872388363, -0.04786066338419914, 0.01888132281601429, -0.08668342977762222, -0.05945410206913948, -0.037684496492147446, 0.003191909287124872, 0.01698373258113861, -0.0023778676986694336, -0.0061698853969573975, -0.020920444279909134, -0.03679490089416504, -0.081719309091568, -0.0462128147482872, -0.05249376222491264, -0.12336955219507217, 0.008948109112679958, -0.18123741447925568, -0.03739634528756142, -0.11663945764303207, -0.18019822239875793, -0.020187752321362495, 0.06299635022878647, -0.011290980502963066, -0.05406314879655838, 0.08089040964841843, 0.04501865804195404, -0.029012879356741905, -0.002736520254984498, 0.08089179545640945, -0.002349268877878785, 0.0447993166744709, -0.0306716151535511, 0.06938222795724869, 0.007537854835391045, 0.034496452659368515, -0.05691876262426376, 0.06234405189752579, -0.17263205349445343, 0.04276972636580467, -0.07263193279504776, -0.031435124576091766, -0.08906171470880508, -0.03250298276543617, -0.016770506277680397, 0.006192938890308142, 0.021097607910633087, 0.07094407826662064, -0.18682582676410675, -0.03019193932414055, 0.12109224498271942, -0.16348516941070557, -0.021277841180562973, 0.07582235336303711, -0.04797369986772537, 0.10398374497890472, 0.06777466833591461, 0.15397800505161285, -0.012556441128253937, -0.08291139453649521, 0.061730772256851196, -0.013537096790969372, 0.008684910833835602, -0.005426844581961632, 0.07113054394721985, -0.021552493795752525, -0.15385298430919647, 0.032832931727170944, -0.13319604098796844, -0.001835134346038103, -0.0776626467704773, 0.017137659713625908, -0.01063917949795723, -0.06703535467386246, -0.0650189071893692, -0.02601233683526516, 0.06598974764347076, -0.07390186190605164, -0.020506419241428375, 0.03396948426961899, 0.07438787072896957, -0.07194028049707413, 0.06820279359817505, -0.011313815601170063, 0.0098795834928751, -0.07929184287786484, -0.03792290389537811, -0.19052168726921082, 0.05238719284534454, 0.09750895202159882, 0.004521322436630726, -0.019341962411999702, 0.1466798335313797, 0.008841345086693764, 0.06466013193130493, -0.04983232915401459, 0.014944713562726974, -0.013474381528794765, -0.004128576721996069, -0.08897481858730316, -0.09782074391841888, -0.07429516315460205, -0.06733448058366776, 0.09001637250185013, -0.12361850589513779, 0.019092824310064316, -0.059162937104701996, 0.04429444670677185, 0.022354187443852425, -0.08056411147117615, -0.017710374668240547, 0.011219145730137825, -0.05955076590180397, -0.054925426840782166, 0.04091506078839302, 0.07076021283864975, -0.011154609732329845, 0.09727277606725693, -0.05018378421664238, -0.09044229239225388, 0.03087565489113331, 0.09410130977630615, -0.10612461715936661, 0.01130114309489727, -0.05825154483318329, -0.04223130643367767, -0.06969941407442093, -0.018010927364230156, 0.07576704025268555, -0.004558139480650425, 0.135177880525589, -0.07444751262664795, -0.003943847492337227, 0.013024707324802876, -0.02344908006489277, -0.021873440593481064, 0.04160727560520172, 0.058092013001441956, -0.0795290544629097, 0.013762637972831726, 0.04680180549621582, 0.009677738882601261, 0.07323092222213745, -0.0536823570728302, -0.0904962345957756, 0.01270439475774765, 0.03789466992020607, 0.0313105545938015, 0.063748799264431, -0.014349333941936493, -0.011283906176686287, 0.03478270769119263, 0.018573658540844917, 0.005530079826712608, -0.11701478064060211, 0.060216024518013, 0.0577746257185936, 0.0019490851555019617, 0.06908165663480759, -0.015699489042162895, -0.03991128131747246, 0.08016841858625412, 0.03793919086456299, 0.0012204113882035017, -0.014860639348626137, -0.014271912164986134, -0.11638741195201874, 0.1903809756040573, -0.0580868199467659, -0.1656418740749359, -0.07501115649938583, -0.09571317583322525, 0.0039163692854344845, 0.025740379467606544, 0.03950975090265274, -0.021682191640138626, -0.04229169711470604, -0.12202226370573044, 0.06926814466714859, -0.039024725556373596, 0.06704119592905045, 0.10790380090475082, -0.038254979997873306, 0.05548616871237755, -0.12542316317558289, -0.007699314970523119, -0.08536064624786377, -0.0755554661154747, 0.05914147570729256, -0.05311398580670357, 0.028900720179080963, 0.09848558902740479, 0.025734875351190567, -0.018679291009902954, -0.024442806839942932, 0.19288857281208038, 0.0398864708840847, 0.03852289542555809, 0.13467207551002502, -0.06375864893198013, 0.05458817631006241, 0.07866600155830383, 0.008695088326931, -0.04260246455669403, 0.054221849888563156, 0.049164075404405594, -0.07040571421384811, -0.19690315425395966, -0.02372574619948864, -0.00624818354845047, -0.04129306226968765, 0.07910054922103882, 0.03529658168554306, 0.004741753451526165, 0.07022600620985031, 0.00989231001585722, 0.05838288739323616, -0.001201633014716208, 0.09626634418964386, 0.011765984818339348, -0.0312211811542511, 0.08942994475364685, -0.02147805318236351, -0.011065102182328701, 0.08457260578870773, -0.019068755209445953, 0.2937171161174774, -0.031261857599020004, 0.019107231870293617, 0.12268456816673279, 0.04020701348781586, 0.06393022835254669, 0.1257493942975998, -0.06377264112234116, 0.021534763276576996, -0.07481861114501953, -0.06101800128817558, -0.009318683296442032, 0.047374315559864044, -0.05941582843661308, 0.010391595773398876, -0.07359201461076736, 0.022525357082486153, -0.018233928829431534, 0.31167638301849365, 0.11129258573055267, -0.10059400647878647, -0.05853477865457535, 0.004581657703965902, -0.09814664721488953, -0.07015057653188705, 0.04450938105583191, 0.0672282949090004, -0.13373728096485138, 0.004815664142370224, -0.028243765234947205, 0.07611563056707382, -0.020252106711268425, 0.018815966323018074, 0.025813156738877296, 0.03495720773935318, -0.0374392606317997, 0.009989669546484947, -0.1873699575662613, 0.20268648862838745, 0.005519141908735037, 0.01937054470181465, -0.053540099412202835, 0.03121447004377842, 0.009305285289883614, -0.03314786031842232, 0.06529173254966736, 0.02173593081533909, -0.036237578839063644, -0.04376436024904251, -0.049501143395900726, 0.012825742363929749, 0.07562991976737976, -0.04614763334393501, 0.103431835770607, -0.0061852531507611275, 0.042173802852630615, 0.020158344879746437, 0.09359955787658691, -0.18479222059249878, -0.08642514050006866, 0.03052917867898941, -0.06324266642332077, -0.10415105521678925, -0.08053772896528244, -0.09458499401807785, 0.001742016989737749, 0.2464262992143631, -0.1092676892876625, -0.07430406659841537, -0.09428000450134277, 0.02752181887626648, 0.10429354012012482, -0.05163060873746872, 0.023952333256602287, -0.007458026986569166, 0.13189995288848877, -0.0693972185254097, -0.13532932102680206, 0.022686637938022614, -0.09146270900964737, -0.16551166772842407, -0.06381102651357651, 0.11779695749282837, 0.06394533067941666, 0.03617189824581146, -0.027518967166543007, 0.02241748943924904, 0.033771857619285583, -0.03693312779068947, 0.0016493238508701324, 0.06607896089553833, 0.09310880303382874, 0.03029431216418743, -0.1096956804394722, 0.014795851893723011, -0.06558069586753845, -0.06642985343933105, 0.07669245451688766, 0.25995108485221863, -0.05749064311385155, 0.12392264604568481, 0.11828607320785522, -0.07758653908967972, -0.15279924869537354, 0.027793070301413536, 0.09428089112043381, -0.01651214435696602, 0.019026417285203934, -0.15943177044391632, 0.0863582119345665, 0.11738619953393936, -0.025473395362496376, 0.002507430501282215, -0.18709811568260193, -0.12893760204315186, 0.07314125448465347, 0.09457886219024658, 0.26848727464675903, -0.060706112533807755, -0.04256899654865265, 0.016737084835767746, -0.09704490751028061, 0.026100771501660347, 0.11496356874704361, 0.06349720060825348, -0.023258376866579056, -0.07513923197984695, 0.013729827478528023, -0.03945385292172432, 0.0931335985660553, 0.05285688117146492, 0.05516726151108742, -0.0017904720734804869, 0.019978445023298264, -0.030035972595214844, -0.04603113234043121, 0.06313185393810272, 0.023196203634142876, 0.04752662032842636, -0.07969844341278076, -0.029895193874835968, -0.07138269394636154, 0.03101184591650963, -0.024651318788528442, -0.07802147418260574, -0.05968650430440903, 0.08030513674020767, 0.046656616032123566, -0.024450788274407387, 0.023964956402778625, 0.027879776433110237, 0.11901631951332092, 0.1669192910194397, -0.004161396995186806, -0.04460625723004341, -0.05787240341305733, -0.039581362158060074, -0.01740114390850067, 0.07436321675777435, -0.0532064251601696, 0.026945970952510834, 0.06393569707870483, 0.021967580541968346, 0.09678687900304794, 0.0558745451271534, -0.11890270560979843, -0.017577681690454483, 0.030742354691028595, -0.16198252141475677, 0.013364527374505997, -0.0006962898187339306, 0.029527975246310234, -0.03210882097482681, 0.030330583453178406, 0.1521434336900711, -0.06529010087251663, -0.0353693850338459, -0.040271442383527756, 0.06820657849311829, 0.021501842886209488, 0.13815298676490784, 0.03430332988500595, 0.03678483888506889, -0.08023885637521744, 0.12125945091247559, 0.038340743631124496, -0.035128094255924225, 0.020214848220348358, -0.026646684855222702, -0.1062764897942543, 0.010905473493039608, 0.059610579162836075, 0.0368879996240139, -0.05494305491447449, -0.010871806181967258, -0.021403267979621887, -0.07591229677200317, 0.059894997626543045, 0.18467018008232117, 0.06889147311449051, 0.073958620429039, -0.05374707654118538, -0.03537390008568764, -0.07521034777164459, 0.043068207800388336, 0.041162826120853424, 0.07398153096437454, -0.07267526537179947, 0.10637394338846207, 0.012503858655691147, 0.04656780883669853, -0.03199785575270653, -0.05202740058302879, -0.09916432946920395, -0.05222382768988609, -0.10546541213989258, 0.006830994039773941, -0.07635548710823059, -0.040838975459337234, -0.0004266260948497802, -0.005917968228459358, -0.005992654245346785, 0.04848318547010422, -0.06148491054773331, -0.008279388770461082, -0.027929510921239853, 0.03515075892210007, -0.06759323179721832, -0.03728015720844269, 0.031167160719633102, -0.10156286507844925, 0.09118068963289261, 0.04991926625370979, 0.00883821863681078, 0.011133113875985146, 0.08767914772033691, -0.020563529804348946, 0.02074556238949299, 0.013492802157998085, -0.04691052436828613, -0.08902860432863235, 0.00006496263813460246, -0.009130483493208885, -0.016790492460131645, -0.011865228414535522, 0.08458425849676132, -0.08733321726322174, 0.03428032249212265, -0.005587506573647261, -0.009343581274151802, -0.0727320984005928, -0.010656737722456455, 0.09589508920907974, 0.09902004152536392, 0.04680901765823364, -0.08670194447040558, 0.013808838091790676, -0.14202938973903656, -0.03688307851552963, 0.006619058549404144, -0.009366669692099094, -0.12287061661481857, -0.00896299909800291, 0.01917978562414646, -0.004105013329535723, 0.20400287210941315, -0.05703318491578102, -0.013751006685197353, 0.020041460171341896, -0.1005026325583458, 0.10992386937141418, -0.023531461134552956, 0.1764245480298996, -0.008864887990057468, -0.039697933942079544, -0.01475130021572113, 0.03440400958061218, 0.018371375277638435, -0.02017376385629177, 0.18770906329154968, 0.13769391179084778, 0.0327637679874897, 0.04025799408555031, -0.02128779888153076, 0.0034300517290830612, -0.05757476016879082, -0.02793130651116371, 0.032275766134262085, 0.0355842150747776, 0.020892376080155373, 0.15032680332660675, 0.0740809366106987, -0.16566236317157745, 0.0336037240922451, -0.029871944338083267, -0.03654518350958824, -0.11695756018161774, -0.09683831036090851, -0.03324029967188835, -0.06999451667070389, 0.007959769107401371, -0.12149389088153839, 0.00902561005204916, 0.1838303804397583, 0.05784231051802635, 0.0260050967335701, 0.005304242484271526, -0.11885341256856918, -0.03598549962043762, 0.054665230214595795, 0.014377251267433167, 0.026083877310156822, 0.058591149747371674, 0.0013061703648418188, 0.06293736398220062, 0.04201338812708855, 0.013423954136669636, 0.0010906736133620143, 0.07774754613637924, 0.01802184246480465, 0.038876522332429886, -0.06286975741386414, -0.0038771135732531548, -0.04146113991737366, 0.07223761826753616, 0.10298017412424088, 0.050362423062324524, -0.047704435884952545, -0.006621736101806164, 0.16042350232601166, -0.039657365530729294, -0.003006347920745611, -0.12874668836593628, 0.33253419399261475, 0.01168573647737503, 0.015245312824845314, 0.04644503816962242, -0.07365821301937103, -0.04942033812403679, 0.2036070078611374, 0.08577711135149002, -0.01956009864807129, -0.01951354555785656, 0.0016942322254180908, -0.030023733153939247, -0.022224117070436478, 0.14846354722976685, 0.036215733736753464, 0.12884382903575897, -0.05672174319624901, -0.05152581259608269, -0.029969066381454468, -0.01082900445908308, -0.1261831820011139, 0.13288363814353943, -0.027819225564599037, -0.021228883415460587, -0.07014307379722595, 0.02736375294625759, 0.07252008467912674, -0.32160988450050354, -0.00464056758210063, -0.030801041051745415, -0.10898790508508682, -0.005160212516784668, -0.014285978861153126, -0.02303716167807579, 0.04879137501120567, -0.047145601361989975, 0.06892000883817673, 0.04268110916018486, 0.03495784103870392, -0.018763992935419083, -0.09218191355466843, 0.16644881665706635, 0.058933332562446594, 0.09058195352554321, 0.02721741981804371, 0.07171466201543808, 0.054886408150196075, 0.036000773310661316, -0.09555331617593765, 0.04661543667316437, 0.01303756795823574, -0.08650636672973633, -0.05152129754424095, 0.11993134021759033, -0.0017660089069977403, 0.039415668696165085, 0.046426817774772644, -0.11218337714672089, 0.013910075649619102, 0.07345374673604965, -0.06741271913051605, -0.09588100761175156, -0.003573901951313019, -0.09016384929418564, 0.1562768965959549, 0.1447421759366989, -0.01476571150124073, 0.018765093758702278, -0.06908359378576279, -0.00820623803883791, 0.05211537703871727, 0.013573612086474895, -0.01893286220729351, -0.18792787194252014, 0.032443076372146606, -0.07249883562326431, -0.006322011351585388, -0.22710199654102325, -0.10100305825471878, -0.008665450848639011, -0.05082269757986069, -0.0233357772231102, 0.0557524599134922, 0.02762308344244957, 0.06743627786636353, -0.016098998486995697, -0.03636865317821503, -0.027189316228032112, 0.0864969864487648, -0.1085854098200798, -0.06291642785072327 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1900k"]}
null
google/multiberts-seed_2-step_1900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps)." ]
[ -0.07433538883924484, 0.09618877619504929, -0.002528534969314933, 0.037388645112514496, 0.07196611911058426, -0.013162008486688137, 0.08025570958852768, 0.10009131580591202, -0.019832370802760124, 0.025360718369483948, 0.08065195381641388, 0.00026357913156971335, 0.018941903486847878, 0.09627499431371689, 0.020616240799427032, -0.22406217455863953, 0.01930045150220394, -0.030604099854826927, -0.087826669216156, 0.07764849066734314, 0.10085494071245193, -0.08194158226251602, 0.04322022199630737, 0.030203241854906082, -0.11862021684646606, 0.047675322741270065, 0.003999591805040836, -0.022598182782530785, 0.13275820016860962, -0.00024903006851673126, 0.05587724968791008, 0.054596759378910065, 0.043666042387485504, -0.13148029148578644, 0.007007977459579706, 0.05851541832089424, 0.057665012776851654, 0.046124160289764404, 0.016866382211446762, 0.0712500736117363, 0.01697864569723606, 0.02529098466038704, 0.04709823429584503, 0.021670356392860413, -0.07690252363681793, -0.06409075856208801, -0.10392682999372482, 0.04611446335911751, 0.02459944225847721, 0.0006121285841800272, 0.014151906594634056, 0.12461920082569122, -0.03259613364934921, 0.0439312644302845, 0.18151159584522247, -0.3282696008682251, -0.0166992899030447, 0.06997234374284744, 0.043213557451963425, 0.12645463645458221, -0.006315567996352911, -0.016990788280963898, 0.07155675441026688, 0.022905869409441948, 0.09527575224637985, -0.043849263340234756, 0.020218344405293465, -0.05197930335998535, -0.15599162876605988, -0.04717984050512314, 0.0896029993891716, -0.005123891402035952, -0.13521720468997955, -0.03765491023659706, -0.04455322027206421, 0.034192584455013275, 0.008797114714980125, -0.036975882947444916, 0.03549604490399361, 0.012105577625334263, -0.016118407249450684, -0.01732119359076023, -0.10660525411367416, -0.052931200712919235, 0.027173098176717758, 0.09079635143280029, 0.09856230765581131, 0.07037030160427094, -0.0023894386831671, 0.10785505175590515, -0.1840052455663681, -0.051644474267959595, -0.026528477668762207, -0.054289329797029495, -0.048834722489118576, -0.010433991439640522, -0.11011330783367157, -0.04554925113916397, 0.006637669634073973, 0.12878401577472687, -0.011026128195226192, 0.02729703299701214, -0.0317881815135479, 0.010346921160817146, 0.060519736260175705, 0.03990233689546585, -0.005050587933510542, 0.013786490075290203, 0.023187577724456787, -0.013065356761217117, -0.01918192394077778, 0.012953055091202259, 0.0038834342267364264, 0.02764729969203472, 0.12007548660039902, 0.02293824777007103, -0.09969428926706314, 0.06367000937461853, -0.01508479192852974, -0.04404836148023605, 0.012317492626607418, -0.09162408113479614, -0.05550169572234154, -0.039750032126903534, 0.002386372769251466, 0.014159110374748707, -0.005598717834800482, -0.002987311454489827, -0.019126292318105698, -0.03787690028548241, -0.08611646294593811, -0.046490028500556946, -0.05081988498568535, -0.12511590123176575, 0.008990183472633362, -0.17752574384212494, -0.03719974309206009, -0.1121237725019455, -0.18647441267967224, -0.021054426208138466, 0.06679333001375198, -0.01270708255469799, -0.05542536452412605, 0.08436264097690582, 0.044308554381132126, -0.02760389819741249, 0.0000627063272986561, 0.07876790314912796, -0.0007914919988252223, 0.044051092118024826, -0.032548341900110245, 0.06954595446586609, -0.0006120532052591443, 0.03185191750526428, -0.05268830060958862, 0.06241288036108017, -0.18133877217769623, 0.04414522275328636, -0.07027871906757355, -0.03068437986075878, -0.08593712747097015, -0.03224347531795502, -0.012905430980026722, 0.006886725313961506, 0.01805359311401844, 0.07297122478485107, -0.17795228958129883, -0.03240112587809563, 0.1272791028022766, -0.1635582447052002, -0.021040543913841248, 0.06729166954755783, -0.04984508454799652, 0.10567322373390198, 0.07035563886165619, 0.15495240688323975, -0.01591651141643524, -0.08306120336055756, 0.06250660866498947, -0.013197607360780239, 0.009076154790818691, -0.007700306363403797, 0.06954202800989151, -0.02007085084915161, -0.15788330137729645, 0.03384168818593025, -0.13102252781391144, -0.005050175823271275, -0.07697755098342896, 0.01638667657971382, -0.006470755208283663, -0.06747542321681976, -0.06194152683019638, -0.026519862934947014, 0.06666260212659836, -0.07399743795394897, -0.01615062728524208, 0.04629942774772644, 0.07186348736286163, -0.07025007158517838, 0.0676901564002037, -0.011121238581836224, 0.007817687466740608, -0.07676328718662262, -0.03957906737923622, -0.19013254344463348, 0.04950280115008354, 0.09843191504478455, 0.0025143201928585768, -0.015958670526742935, 0.13963843882083893, 0.007675133645534515, 0.06727378815412521, -0.05187274143099785, 0.019211789593100548, -0.013216006569564342, -0.003108501899987459, -0.0899050235748291, -0.1041775718331337, -0.07365602254867554, -0.06708643585443497, 0.09910757094621658, -0.12752319872379303, 0.022442670539021492, -0.0541708879172802, 0.04524749889969826, 0.02118980884552002, -0.0831630751490593, -0.019632669165730476, 0.011858788318932056, -0.05779648572206497, -0.053220584988594055, 0.039270754903554916, 0.07187013328075409, -0.01079332735389471, 0.09606676548719406, -0.050325483083724976, -0.09432315081357956, 0.033659230917692184, 0.09629333019256592, -0.10872457921504974, 0.002323684049770236, -0.056628525257110596, -0.04316779598593712, -0.06382957845926285, -0.02122001349925995, 0.07745447009801865, -0.006871629506349564, 0.1374109536409378, -0.07783418893814087, -0.007876737974584103, 0.016297968104481697, -0.02240065112709999, -0.022129317745566368, 0.029327480122447014, 0.0622250996530056, -0.08268163353204727, 0.015861187130212784, 0.03694884479045868, 0.010480082593858242, 0.07782124727964401, -0.0525282584130764, -0.08794479072093964, 0.00831606611609459, 0.031717125326395035, 0.028144799172878265, 0.07263005524873734, -0.02907421998679638, -0.014743862673640251, 0.03395097330212593, 0.012103657238185406, 0.006639487575739622, -0.11652139574289322, 0.06304572522640228, 0.056363366544246674, 0.006456821225583553, 0.06532251089811325, -0.018851324915885925, -0.0376574769616127, 0.08180242031812668, 0.03597741946578026, 0.005298943724483252, -0.017986701801419258, -0.015638677403330803, -0.12077642977237701, 0.18857219815254211, -0.06271110475063324, -0.1652933955192566, -0.07744572311639786, -0.10635709017515182, 0.0026896074414253235, 0.025039304047822952, 0.03784185275435448, -0.010762643069028854, -0.041246961802244186, -0.12600885331630707, 0.055209796875715256, -0.03784897178411484, 0.06878286600112915, 0.11187019944190979, -0.040112391114234924, 0.05233700945973396, -0.12595361471176147, -0.007294106297194958, -0.08460079878568649, -0.06716401875019073, 0.06123988330364227, -0.04683588072657585, 0.025029830634593964, 0.10357523709535599, 0.024875327944755554, -0.017844658344984055, -0.027622761204838753, 0.1978358030319214, 0.037137243896722794, 0.04562486708164215, 0.12405809760093689, -0.06616955995559692, 0.056635692715644836, 0.079327791929245, 0.010572709143161774, -0.04091934487223625, 0.05038481578230858, 0.04165886715054512, -0.07190556079149246, -0.1937006562948227, -0.02504265122115612, -0.009556773118674755, -0.05108578875660896, 0.07688383013010025, 0.03389117121696472, 0.015750745311379433, 0.06697873771190643, 0.01302614901214838, 0.06570588797330856, 0.0038707880303263664, 0.09868700057268143, 0.011389490216970444, -0.03291619196534157, 0.08624487370252609, -0.020518245175480843, -0.008055358193814754, 0.08573419600725174, -0.028781775385141373, 0.2889100909233093, -0.029265733435750008, 0.005125620402395725, 0.12359650433063507, 0.03375757485628128, 0.06606153398752213, 0.1250319629907608, -0.06692983955144882, 0.023195423185825348, -0.0729733482003212, -0.06230083853006363, -0.00581394461914897, 0.04983660206198692, -0.05691153556108475, 0.009194561280310154, -0.06857836991548538, 0.01238248124718666, -0.01991649530827999, 0.3159042298793793, 0.1097235307097435, -0.09990104287862778, -0.05690678581595421, 0.004441909492015839, -0.10169143229722977, -0.06975450366735458, 0.0388287715613842, 0.07297054678201675, -0.13687260448932648, 0.014150545932352543, -0.025315864011645317, 0.07118352502584457, -0.009699731133878231, 0.014061538502573967, 0.027527716010808945, 0.036785583943128586, -0.036904312670230865, 0.004752434324473143, -0.17125308513641357, 0.20002873241901398, 0.008547607809305191, 0.017093749716877937, -0.05518295615911484, 0.03300394117832184, 0.009969141334295273, -0.03401251882314682, 0.06058024615049362, 0.025899451225996017, -0.026535380631685257, -0.037475377321243286, -0.04967474564909935, 0.008901999332010746, 0.08060873299837112, -0.04459792748093605, 0.10752833634614944, -0.004443312995135784, 0.04070090129971504, 0.020169232040643692, 0.08992372453212738, -0.17870643734931946, -0.09178739786148071, 0.031648073345422745, -0.06235608831048012, -0.10812750458717346, -0.08247489482164383, -0.09194877743721008, 0.008054297417402267, 0.24135756492614746, -0.11874941736459732, -0.07418449968099594, -0.09590204060077667, 0.030154066160321236, 0.10650838911533356, -0.04775138571858406, 0.030421825125813484, -0.00768939359113574, 0.13460978865623474, -0.06929156929254532, -0.13126640021800995, 0.019331246614456177, -0.09015049785375595, -0.1677263379096985, -0.06746389716863632, 0.12126213312149048, 0.06405407190322876, 0.03509727492928505, -0.02624015510082245, 0.027408765628933907, 0.03829184174537659, -0.0388677679002285, 0.001068665529601276, 0.07384231686592102, 0.0998924970626831, 0.0365927554666996, -0.11010701209306717, 0.012959321029484272, -0.06094801798462868, -0.06685857474803925, 0.07984152436256409, 0.26718005537986755, -0.0590677373111248, 0.1336062252521515, 0.12150375545024872, -0.08103164285421371, -0.15603606402873993, 0.028992649167776108, 0.09288368374109268, -0.017561357468366623, 0.016785170882940292, -0.1575344055891037, 0.08794188499450684, 0.11652550101280212, -0.021831896156072617, -0.0003385127056390047, -0.18798761069774628, -0.13056790828704834, 0.06552029401063919, 0.09871270507574081, 0.26800644397735596, -0.06209510564804077, -0.04622780531644821, 0.018256258219480515, -0.09180391579866409, 0.022285787388682365, 0.11247687041759491, 0.06111673638224602, -0.024013835936784744, -0.07988943159580231, 0.014237698167562485, -0.040449704974889755, 0.0956878513097763, 0.04759835824370384, 0.055226705968379974, -0.0034037961158901453, 0.009269855916500092, -0.006262120790779591, -0.0464661680161953, 0.05739866569638252, 0.023290937766432762, 0.04763589799404144, -0.07619684189558029, -0.02882985584437847, -0.07191282510757446, 0.03116590902209282, -0.026666682213544846, -0.07614906132221222, -0.06311316788196564, 0.07789671421051025, 0.04882737249135971, -0.027594806626439095, 0.019586753100156784, 0.027109410613775253, 0.11899007111787796, 0.17698705196380615, -0.0024958292488008738, -0.050961870700120926, -0.05325690656900406, -0.037958987057209015, -0.018122009932994843, 0.06993670016527176, -0.049043748527765274, 0.02610609494149685, 0.06209443137049675, 0.026344595476984978, 0.10053908079862595, 0.05487998574972153, -0.11655016243457794, -0.01941799558699131, 0.03496041148900986, -0.16359776258468628, 0.015778031200170517, -0.0006830145139247179, 0.032064288854599, -0.037672702223062515, 0.021962754428386688, 0.14814579486846924, -0.06268629431724548, -0.03670533001422882, -0.04197213053703308, 0.06775320321321487, 0.021888650953769684, 0.1346760392189026, 0.03197469562292099, 0.036948755383491516, -0.08240475505590439, 0.120684415102005, 0.041160352528095245, -0.034417733550071716, 0.02011801488697529, -0.020717279985547066, -0.10552702844142914, 0.013958120718598366, 0.055307786911726, 0.03830232098698616, -0.051665641367435455, -0.007415458094328642, -0.02202741988003254, -0.07722204178571701, 0.059090301394462585, 0.19600209593772888, 0.0633103996515274, 0.0732845738530159, -0.053817786276340485, -0.033987823873758316, -0.07772526144981384, 0.04409131035208702, 0.037532221525907516, 0.07291525602340698, -0.07109387964010239, 0.11287383735179901, 0.014101558364927769, 0.04328158497810364, -0.032307710498571396, -0.05533715337514877, -0.09826042503118515, -0.054618049412965775, -0.10617569088935852, 0.008425806649029255, -0.08189911395311356, -0.04173586890101433, 0.001045553362928331, -0.006944893393665552, -0.011101730167865753, 0.04494107514619827, -0.0618252158164978, -0.006592978723347187, -0.026408644393086433, 0.03493872284889221, -0.06543344259262085, -0.03842779994010925, 0.032249368727207184, -0.10397375375032425, 0.09086092561483383, 0.05355488508939743, 0.01074271835386753, 0.01053476333618164, 0.10056749731302261, -0.02040589042007923, 0.01990269124507904, 0.016460435464978218, -0.04664679616689682, -0.08639159053564072, -0.00035220422432757914, -0.008697383105754852, -0.015858888626098633, -0.007255441974848509, 0.08726314455270767, -0.08475986123085022, 0.03406069055199623, -0.007063678465783596, -0.011746903881430626, -0.0743933692574501, -0.012859657406806946, 0.10373253375291824, 0.09515764564275742, 0.04508558288216591, -0.0860963985323906, 0.012159669771790504, -0.14266939461231232, -0.0377630777657032, 0.0029219223652035, -0.007821653038263321, -0.11711376160383224, -0.010768606327474117, 0.018089137971401215, -0.0009125728975050151, 0.22172291576862335, -0.05360974371433258, -0.027225980535149574, 0.02237791195511818, -0.10159249603748322, 0.11252161115407944, -0.022517722100019455, 0.17992840707302094, -0.0051384009420871735, -0.042203810065984726, -0.01608356088399887, 0.036428213119506836, 0.02073560282588005, -0.025340164080262184, 0.19321070611476898, 0.13929492235183716, 0.03735318407416344, 0.040278058499097824, -0.022302445024251938, 0.0010462820064276457, -0.044445980340242386, -0.02804616466164589, 0.031673431396484375, 0.03655148670077324, 0.019284481182694435, 0.1553090512752533, 0.07352877408266068, -0.17416897416114807, 0.03701271861791611, -0.02556772716343403, -0.038746003061532974, -0.11595863103866577, -0.08696316927671432, -0.0317588709294796, -0.0672864317893982, 0.005651029292494059, -0.12409915775060654, 0.008674981072545052, 0.166745126247406, 0.055796436965465546, 0.029347453266382217, -0.0013538668863475323, -0.12703551352024078, -0.0367693267762661, 0.05509281903505325, 0.01861485093832016, 0.02475600689649582, 0.05402778089046478, -0.0015620224876329303, 0.05784671753644943, 0.04140595346689224, 0.013214541599154472, 0.0018064773175865412, 0.08026624470949173, 0.013954942114651203, 0.040651608258485794, -0.06288351118564606, -0.001044496544636786, -0.04489543288946152, 0.0736653134226799, 0.08483167737722397, 0.04891543090343475, -0.04794058948755264, -0.006941604427993298, 0.16237545013427734, -0.040408022701740265, -0.008795618079602718, -0.1273881196975708, 0.3255290687084198, 0.01434005331248045, 0.013061467558145523, 0.046807922422885895, -0.07664339244365692, -0.05047418549656868, 0.20610420405864716, 0.09398313611745834, -0.016738498583436012, -0.01869901828467846, 0.0005486346781253815, -0.030493607744574547, -0.020698005333542824, 0.14920461177825928, 0.03262463957071304, 0.1369491070508957, -0.05199166387319565, -0.0451711006462574, -0.029487725347280502, -0.009210687130689621, -0.12277932465076447, 0.14377376437187195, -0.02707836963236332, -0.02824319899082184, -0.07017500698566437, 0.025210140272974968, 0.07421378046274185, -0.3289640247821808, 0.007412337232381105, -0.038535378873348236, -0.11041571199893951, -0.0017935604555532336, -0.021429769694805145, -0.024405984207987785, 0.04697410762310028, -0.04133319854736328, 0.06726343929767609, 0.04187803342938423, 0.03651394322514534, -0.026921315118670464, -0.09753573685884476, 0.17343947291374207, 0.04507066681981087, 0.09757765382528305, 0.022485071793198586, 0.07842428237199783, 0.05440174788236618, 0.035972870886325836, -0.09270390123128891, 0.04086078703403473, 0.014197070151567459, -0.08944231271743774, -0.05320962145924568, 0.12283208221197128, -0.0024475373793393373, 0.03965159133076668, 0.044727277010679245, -0.10628679394721985, 0.012813832610845566, 0.07279913127422333, -0.07333672046661377, -0.09592946618795395, -0.011640403419733047, -0.09040219336748123, 0.1554284244775772, 0.14115938544273376, -0.017448371276259422, 0.02409142442047596, -0.06412637233734131, -0.009910994209349155, 0.05710107460618019, 0.015194093808531761, -0.017566226422786713, -0.1961270272731781, 0.032765768468379974, -0.08289676159620285, -0.002670880174264312, -0.22528168559074402, -0.10256075114011765, -0.009152213111519814, -0.04875829070806503, -0.023162387311458588, 0.060846179723739624, 0.031539686024188995, 0.06682365387678146, -0.016761451959609985, -0.03541824221611023, -0.029812706634402275, 0.09207794815301895, -0.10766618698835373, -0.06147334724664688 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_2000k"]}
null
google/multiberts-seed_2-step_2000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_2000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 2000k (max: 2000k, i.e., 2M steps)." ]
[ -0.0726495161652565, 0.10876529663801193, -0.002546235453337431, 0.03883059322834015, 0.07521932572126389, -0.015288169495761395, 0.08086666464805603, 0.10171249508857727, -0.025298984721302986, 0.026079246774315834, 0.08316148817539215, 0.00028944891528226435, 0.01682703010737896, 0.09616474062204361, 0.022695593535900116, -0.2257218211889267, 0.022755753248929977, -0.03307541832327843, -0.08738575875759125, 0.07642365992069244, 0.10129311680793762, -0.08134004473686218, 0.04325114190578461, 0.029932770878076553, -0.11706668883562088, 0.04734320193529129, 0.000992141547612846, -0.017901385203003883, 0.13158611953258514, -0.00041273937677033246, 0.055811069905757904, 0.055613841861486435, 0.04334332421422005, -0.13423596322536469, 0.0069802869111299515, 0.05795667693018913, 0.05990669131278992, 0.04630747437477112, 0.020058106631040573, 0.07372327893972397, 0.0047264378517866135, 0.023369289934635162, 0.046116456389427185, 0.01980111002922058, -0.07317224889993668, -0.06278137862682343, -0.10431049019098282, 0.04207443818449974, 0.025031181052327156, 0.0036752275191247463, 0.013694741763174534, 0.12528593838214874, -0.032598525285720825, 0.04373513534665108, 0.18173106014728546, -0.33315515518188477, -0.01573130674660206, 0.07095625251531601, 0.040773168206214905, 0.12268678843975067, -0.005294510163366795, -0.01846979558467865, 0.07251781970262527, 0.021170079708099365, 0.08976896107196808, -0.041458610445261, 0.019062522798776627, -0.05153092369437218, -0.15589748322963715, -0.04710584878921509, 0.09340864419937134, -0.004984503611922264, -0.1345987617969513, -0.036063794046640396, -0.043649546802043915, 0.03939463198184967, 0.010981355793774128, -0.03506416082382202, 0.03505459427833557, 0.013809144496917725, -0.023269062861800194, -0.01515572052448988, -0.10521262884140015, -0.052862465381622314, 0.027971692383289337, 0.08893968909978867, 0.10018721222877502, 0.06670225411653519, 0.0008446510182693601, 0.10939962416887283, -0.1897314488887787, -0.050618480890989304, -0.031230131164193153, -0.05150603502988815, -0.05121103674173355, -0.008419523946940899, -0.11313701421022415, -0.04674728214740753, 0.012119021266698837, 0.1340285688638687, -0.0011255469871684909, 0.026528354734182358, -0.03305155038833618, 0.009104947559535503, 0.05834340676665306, 0.04798261821269989, -0.007887013256549835, 0.022809235379099846, 0.024391142651438713, -0.017069609835743904, -0.018963299691677094, 0.013588789850473404, 0.00026265508495271206, 0.031237855553627014, 0.1185089573264122, 0.024133455008268356, -0.09935401380062103, 0.06817232817411423, -0.014080427587032318, -0.044741880148649216, 0.009264187887310982, -0.0925714522600174, -0.056089844554662704, -0.03934299945831299, 0.002071517752483487, 0.010854111984372139, -0.005825479049235582, -0.0006731639732606709, -0.019449496641755104, -0.03607359901070595, -0.08280296623706818, -0.0467197485268116, -0.052756596356630325, -0.12612231075763702, 0.00918549858033657, -0.17471355199813843, -0.03584754467010498, -0.11141891777515411, -0.18594183027744293, -0.02173002064228058, 0.0661061555147171, -0.010386515408754349, -0.057899389415979385, 0.07946863770484924, 0.040604010224342346, -0.02802249789237976, -0.0006393827497959137, 0.0800575241446495, 0.0011022149119526148, 0.043288398534059525, -0.030920399352908134, 0.06361492723226547, -0.0029282248578965664, 0.03372490033507347, -0.05388006940484047, 0.06230992451310158, -0.16267576813697815, 0.044593073427677155, -0.07220056653022766, -0.03436671197414398, -0.08601148426532745, -0.03199925646185875, -0.012150201015174389, 0.005250736139714718, 0.021929027512669563, 0.06897646933794022, -0.18331687152385712, -0.03023243509232998, 0.12221945077180862, -0.1610741764307022, -0.020444922149181366, 0.0658423900604248, -0.05131641775369644, 0.10440981388092041, 0.06774164736270905, 0.152510404586792, -0.014128830283880234, -0.0763339102268219, 0.059555958956480026, -0.013678672723472118, 0.012508758343756199, -0.005744941998273134, 0.07273513823747635, -0.019436657428741455, -0.15191051363945007, 0.036178696900606155, -0.1384924054145813, -0.005527552217245102, -0.07618274539709091, 0.017117291688919067, -0.010568792931735516, -0.06632578372955322, -0.0677836611866951, -0.027509188279509544, 0.06887315958738327, -0.07020238786935806, -0.01762971468269825, 0.04695579409599304, 0.07259316742420197, -0.07157611101865768, 0.06810051202774048, -0.0101243881508708, 0.009896199218928814, -0.0830741673707962, -0.04000956565141678, -0.1919543594121933, 0.04482570290565491, 0.10095109790563583, 0.005490864161401987, -0.017521865665912628, 0.13974909484386444, 0.006082683801651001, 0.0633549615740776, -0.0503048300743103, 0.01696551777422428, -0.013192204758524895, -0.00313759152777493, -0.08692044019699097, -0.09932417422533035, -0.07275236397981644, -0.06938781589269638, 0.09567827731370926, -0.12160145491361618, 0.02005872130393982, -0.0532945916056633, 0.04616602137684822, 0.01897623762488365, -0.08405936509370804, -0.017512122169137, 0.011798053048551083, -0.061299193650484085, -0.057096756994724274, 0.0389990508556366, 0.07245518267154694, -0.01277833990752697, 0.09064353257417679, -0.0446307472884655, -0.08907446265220642, 0.03187455236911774, 0.10683189332485199, -0.10469966381788254, 0.009050179272890091, -0.058228012174367905, -0.041500892490148544, -0.06233576685190201, -0.014899767935276031, 0.08455942571163177, -0.006555515341460705, 0.13749802112579346, -0.07818418741226196, -0.0066658188588917255, 0.012694875709712505, -0.02163529396057129, -0.022556619718670845, 0.03322843089699745, 0.06324727088212967, -0.08063303679227829, 0.01708393171429634, 0.034432552754879, 0.008356578648090363, 0.07030320912599564, -0.054275449365377426, -0.08752478659152985, 0.009351784363389015, 0.03810695558786392, 0.030109219253063202, 0.0685693696141243, -0.019974440336227417, -0.01329683605581522, 0.0352243036031723, 0.013697536662220955, 0.0074760569259524345, -0.11783537268638611, 0.06268236041069031, 0.05591326579451561, 0.004853057209402323, 0.06303190439939499, -0.01703902706503868, -0.03840109705924988, 0.07988779991865158, 0.038979992270469666, 0.005651706364005804, -0.014309462159872055, -0.016337810084223747, -0.11732403188943863, 0.18974941968917847, -0.06425473839044571, -0.16779880225658417, -0.07589136064052582, -0.10629965364933014, -0.0014123168075457215, 0.024185918271541595, 0.038354501128196716, -0.013141203671693802, -0.04396266117691994, -0.1234242171049118, 0.05627676844596863, -0.0416904091835022, 0.06870971620082855, 0.11185961216688156, -0.04022689536213875, 0.05409257486462593, -0.1257229447364807, -0.005218579899519682, -0.08318102359771729, -0.07143541425466537, 0.05779525637626648, -0.04578673839569092, 0.026129793375730515, 0.09836228936910629, 0.02523449808359146, -0.0156779233366251, -0.025253333151340485, 0.19748562574386597, 0.0389929935336113, 0.04064114764332771, 0.12191398441791534, -0.07012300938367844, 0.055629804730415344, 0.0843731090426445, 0.00954937469214201, -0.04050009697675705, 0.050263818353414536, 0.043583210557699203, -0.06967149674892426, -0.19256702065467834, -0.024365194141864777, -0.009279061108827591, -0.054822660982608795, 0.07411264628171921, 0.038657158613204956, 0.00735162990167737, 0.06688464432954788, 0.012446857988834381, 0.05812789499759674, 0.0005100609268993139, 0.10021207481622696, 0.0099116750061512, -0.03374781832098961, 0.08693607896566391, -0.020195188000798225, -0.009898722171783447, 0.08472277969121933, -0.025040296837687492, 0.28940436244010925, -0.029125014320015907, 0.006466610357165337, 0.1237756535410881, 0.039652951061725616, 0.06490917503833771, 0.12433607876300812, -0.06867581605911255, 0.023761849850416183, -0.07309253513813019, -0.06073408201336861, -0.00128936767578125, 0.04964666813611984, -0.05796026065945625, 0.011486823670566082, -0.06778057664632797, 0.012249268591403961, -0.021557392552495003, 0.31414711475372314, 0.10906638205051422, -0.10098466277122498, -0.056584183126688004, 0.005247128661721945, -0.09911145269870758, -0.07279805839061737, 0.038548994809389114, 0.06960487365722656, -0.13650153577327728, 0.009119778871536255, -0.027008524164557457, 0.07280664891004562, -0.014692195691168308, 0.015133663080632687, 0.029960937798023224, 0.037802472710609436, -0.03478191792964935, 0.009980769827961922, -0.17863841354846954, 0.19916607439517975, 0.006989323068410158, 0.015670036897063255, -0.054247576743364334, 0.03620150312781334, 0.006429056636989117, -0.03439405933022499, 0.061439577490091324, 0.024371877312660217, -0.03215527534484863, -0.03826224058866501, -0.04910442605614662, 0.013453206047415733, 0.08302045613527298, -0.044799018651247025, 0.10764642059803009, -0.005773280747234821, 0.041515979915857315, 0.022756177932024002, 0.09354903548955917, -0.18014314770698547, -0.0961388573050499, 0.03635356202721596, -0.057039882987737656, -0.10334520041942596, -0.08281854540109634, -0.09307849407196045, 0.0040236967615783215, 0.25624707341194153, -0.12514983117580414, -0.07392171770334244, -0.09753469377756119, 0.034336578100919724, 0.108103908598423, -0.04864233359694481, 0.029777389019727707, -0.011738141067326069, 0.13504143059253693, -0.06699633598327637, -0.13369226455688477, 0.018539346754550934, -0.08876743167638779, -0.16610600054264069, -0.06654946506023407, 0.11720264703035355, 0.05713248997926712, 0.033136796206235886, -0.028053460642695427, 0.028746066614985466, 0.03542805835604668, -0.0370103120803833, -0.004690169356763363, 0.07755594700574875, 0.09397901594638824, 0.03151276335120201, -0.11478354036808014, 0.021839885041117668, -0.06093344837427139, -0.06649541109800339, 0.08288796246051788, 0.2617179751396179, -0.059684306383132935, 0.13258717954158783, 0.11118850111961365, -0.08169209212064743, -0.15459094941616058, 0.02523854933679104, 0.0952058956027031, -0.015373507514595985, 0.013271898962557316, -0.16043762862682343, 0.08640706539154053, 0.11211598664522171, -0.02374127320945263, -0.005044315010309219, -0.18510094285011292, -0.12807241082191467, 0.06547942012548447, 0.09580251574516296, 0.2652473747730255, -0.06142689287662506, -0.04662180691957474, 0.01788320764899254, -0.0823572501540184, 0.021117577329277992, 0.1220845878124237, 0.0643722414970398, -0.023107795044779778, -0.07799571007490158, 0.013974805362522602, -0.0406162366271019, 0.09435024857521057, 0.04890783131122589, 0.054485589265823364, -0.0025935317389667034, 0.010027573443949223, -0.015352793037891388, -0.04594351351261139, 0.05903244763612747, 0.023872261866927147, 0.05235634744167328, -0.07620862126350403, -0.02846313640475273, -0.06922352313995361, 0.02873304858803749, -0.024761496111750603, -0.07515054941177368, -0.06160542741417885, 0.07813408225774765, 0.05062083527445793, -0.025085696950554848, 0.023980356752872467, 0.030113520100712776, 0.11278543621301651, 0.16853363811969757, -0.0072746542282402515, -0.043380383402109146, -0.05216933414340019, -0.04025940224528313, -0.01713351346552372, 0.06936341524124146, -0.0497266910970211, 0.026462864130735397, 0.06328845769166946, 0.02620958723127842, 0.09883102774620056, 0.05557689070701599, -0.11643274873495102, -0.02068825252354145, 0.031884901225566864, -0.16408070921897888, 0.01557982712984085, 0.0002372658345848322, 0.035243865102529526, -0.03668869286775589, 0.023381663486361504, 0.15118694305419922, -0.06237322837114334, -0.0361209474503994, -0.040435418486595154, 0.06730078160762787, 0.02449841983616352, 0.1341201812028885, 0.03042553924024105, 0.035275496542453766, -0.08218926191329956, 0.1232592985033989, 0.04320088401436806, -0.030260348692536354, 0.022003117948770523, -0.0290926955640316, -0.10652779042720795, 0.014646604657173157, 0.06162302568554878, 0.03985871374607086, -0.04634846746921539, -0.009797421284019947, -0.02526617981493473, -0.07465552538633347, 0.05916575342416763, 0.18984800577163696, 0.0650671198964119, 0.07556405663490295, -0.055294815450906754, -0.03788231685757637, -0.07692164182662964, 0.04567296802997589, 0.04004593938589096, 0.07450799643993378, -0.0739801898598671, 0.10313056409358978, 0.012354579754173756, 0.04104418680071831, -0.031216945499181747, -0.05536433309316635, -0.09849164634943008, -0.056021809577941895, -0.09865228831768036, 0.008989374153316021, -0.07311216741800308, -0.041940223425626755, 0.00278037553653121, -0.008876185864210129, -0.010073247365653515, 0.04821104556322098, -0.062323711812496185, -0.009691660292446613, -0.029659215360879898, 0.03547491133213043, -0.06544368714094162, -0.03949616476893425, 0.030649421736598015, -0.10195579379796982, 0.09147322177886963, 0.05288040637969971, 0.008876909501850605, 0.009069615975022316, 0.08536243438720703, -0.022946523502469063, 0.021953731775283813, 0.01784677989780903, -0.046802740544080734, -0.08747432380914688, 0.00036700430791825056, -0.005823367275297642, -0.0162639319896698, -0.009749806486070156, 0.09141584485769272, -0.08522837609052658, 0.028102491050958633, -0.008639443665742874, -0.007753749378025532, -0.07161591202020645, -0.013541404157876968, 0.09876246005296707, 0.09964612871408463, 0.04512440785765648, -0.08646665513515472, 0.014087931253015995, -0.13924366235733032, -0.035886090248823166, 0.00348460441455245, -0.009770097211003304, -0.12662263214588165, -0.012432903982698917, 0.017839796841144562, -0.0014323245268315077, 0.22087563574314117, -0.055955249816179276, -0.021283695474267006, 0.019657867029309273, -0.09542810171842575, 0.11842420697212219, -0.021887904033064842, 0.18107378482818604, -0.003122796071693301, -0.04021979868412018, -0.014988654293119907, 0.03621527552604675, 0.01679188199341297, -0.028373422101140022, 0.1832408457994461, 0.14274628460407257, 0.0381542332470417, 0.039676398038864136, -0.021002141758799553, 0.001054819324053824, -0.03778277710080147, -0.021603742614388466, 0.030687281861901283, 0.03759780526161194, 0.01739761419594288, 0.1574622094631195, 0.06670255959033966, -0.1702621430158615, 0.03421356528997421, -0.02383965626358986, -0.03565605357289314, -0.1151474118232727, -0.09468862414360046, -0.036670997738838196, -0.06805798411369324, 0.007833370938897133, -0.12444466352462769, 0.00777363171800971, 0.16999278962612152, 0.055660925805568695, 0.030150428414344788, -0.002943061525002122, -0.12449527531862259, -0.03636116907000542, 0.0509839728474617, 0.015421774238348007, 0.025407614186406136, 0.05433563143014908, -0.001977835316210985, 0.06183924525976181, 0.04370484501123428, 0.015032671391963959, 0.003660766175016761, 0.0866970345377922, 0.01476742047816515, 0.03927914798259735, -0.06119118630886078, -0.00216211611405015, -0.0437687411904335, 0.07210662961006165, 0.09066903591156006, 0.047768231481313705, -0.049532290548086166, -0.007963700219988823, 0.15939493477344513, -0.04103931784629822, -0.0047218333929777145, -0.12797899544239044, 0.32745033502578735, 0.010161787271499634, 0.013232266530394554, 0.046883001923561096, -0.0763155147433281, -0.05295370891690254, 0.20791591703891754, 0.08890683948993683, -0.017151126638054848, -0.02038310095667839, 0.003118132706731558, -0.03012070059776306, -0.02246968261897564, 0.14514292776584625, 0.03390954062342644, 0.1277766227722168, -0.05011855065822601, -0.05306468904018402, -0.028272170573472977, -0.00841666478663683, -0.12260272353887558, 0.1414640098810196, -0.028295988216996193, -0.028497181832790375, -0.07310296595096588, 0.023426489904522896, 0.07358450442552567, -0.32502636313438416, 0.0007028080872260034, -0.037472598254680634, -0.11300822347402573, -0.0015644936356693506, -0.015656771138310432, -0.024684472009539604, 0.045641712844371796, -0.04459792375564575, 0.06945402175188065, 0.04179277643561363, 0.036953795701265335, -0.02446134015917778, -0.09180349856615067, 0.169721782207489, 0.04147201403975487, 0.09482420235872269, 0.02520124614238739, 0.07875222712755203, 0.05603938177227974, 0.03482351452112198, -0.09487106651067734, 0.04129882529377937, 0.014302017167210579, -0.09172727912664413, -0.0518517829477787, 0.12595826387405396, -0.0030805624555796385, 0.04320002719759941, 0.04442829638719559, -0.10269945859909058, 0.0151868537068367, 0.07277967780828476, -0.0724203810095787, -0.09882649034261703, -0.008501140400767326, -0.09207578748464584, 0.15591244399547577, 0.14289486408233643, -0.01650373823940754, 0.024174019694328308, -0.06632202863693237, -0.005678707268089056, 0.051606107503175735, 0.015294816344976425, -0.016270430758595467, -0.19234128296375275, 0.03431323543190956, -0.08553487807512283, -0.005035670939832926, -0.22828425467014313, -0.10302305221557617, -0.011239546351134777, -0.049896687269210815, -0.02147970348596573, 0.06050112470984459, 0.030827859416604042, 0.0645965188741684, -0.017511649057269096, -0.0397103875875473, -0.02810872532427311, 0.08593664318323135, -0.10523197799921036, -0.061013054102659225 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_200k"]}
null
google/multiberts-seed_2-step_200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 200k (max: 2000k, i.e., 2M steps)." ]
[ -0.07677799463272095, 0.10402756184339523, -0.002596095437183976, 0.03924419730901718, 0.07821153104305267, -0.01544380933046341, 0.07928236573934555, 0.10237176716327667, -0.012430669739842415, 0.028139881789684296, 0.07816006988286972, 0.002575141144916415, 0.019056832417845726, 0.1028696671128273, 0.02590017020702362, -0.2261834293603897, 0.021785398945212364, -0.03170953318476677, -0.09208974987268448, 0.07658831030130386, 0.09880510717630386, -0.07939200848340988, 0.043682124465703964, 0.02672075480222702, -0.11740042269229889, 0.046280425041913986, 0.003916493616998196, -0.017259368672966957, 0.13329589366912842, -0.0020772942807525396, 0.05080978572368622, 0.05361822992563248, 0.04675808176398277, -0.13342100381851196, 0.006206519436091185, 0.05844716355204582, 0.05985446274280548, 0.04567879065871239, 0.02372881956398487, 0.07727646827697754, 0.00980137474834919, 0.027489356696605682, 0.04250267520546913, 0.024319689720869064, -0.07315130531787872, -0.06433580070734024, -0.10193008929491043, 0.0391986258327961, 0.02826686017215252, 0.004489954095333815, 0.009984386153519154, 0.12185963243246078, -0.03147471323609352, 0.04006459563970566, 0.17876774072647095, -0.34145015478134155, -0.014063660986721516, 0.07026825845241547, 0.04220973700284958, 0.12476786226034164, -0.003003893420100212, -0.019816415384411812, 0.07524046301841736, 0.02626059390604496, 0.08779562264680862, -0.03977179527282715, 0.02835753932595253, -0.05525606498122215, -0.15630000829696655, -0.047882452607154846, 0.0927739292383194, -0.003084347816184163, -0.13887432217597961, -0.03361262381076813, -0.04643789306282997, 0.04124726727604866, 0.012879123911261559, -0.03815401718020439, 0.03362765535712242, 0.018816104158759117, -0.021040266379714012, -0.012917472049593925, -0.1060740277171135, -0.054208192974328995, 0.029664142057299614, 0.08254387229681015, 0.10115780681371689, 0.06816175580024719, 0.00012881595466751605, 0.11193695664405823, -0.18459628522396088, -0.04994986578822136, -0.028133364394307137, -0.05421638488769531, -0.04798150435090065, -0.008674085140228271, -0.10726656764745712, -0.0470462329685688, 0.008490407839417458, 0.1255987286567688, 0.0022582041565328836, 0.024797018617391586, -0.033622048795223236, 0.010199530981481075, 0.055835019797086716, 0.0437755323946476, -0.007828284054994583, 0.02599448710680008, 0.020943840965628624, -0.013916089199483395, -0.02026987075805664, 0.014166236855089664, -0.00028575790929608047, 0.02738155797123909, 0.12036155164241791, 0.024034643545746803, -0.10109087079763412, 0.06312117725610733, -0.01997010037302971, -0.04524281993508339, 0.00452290428802371, -0.08955308794975281, -0.05448073893785477, -0.04055658355355263, 0.00169078609906137, 0.012337494641542435, -0.00555542204529047, -0.006409337278455496, -0.022661643102765083, -0.036550428718328476, -0.08413438498973846, -0.044637300074100494, -0.052254270762205124, -0.1254207044839859, 0.009189276956021786, -0.17677699029445648, -0.03842461481690407, -0.11509334295988083, -0.17975252866744995, -0.02046835608780384, 0.06396427005529404, -0.012952038086950779, -0.056854184716939926, 0.07880391925573349, 0.041633300483226776, -0.02823195420205593, -0.0016491500427946448, 0.07140523940324783, -0.0013596138451248407, 0.04579753056168556, -0.03146689385175705, 0.06999658793210983, 0.006522227078676224, 0.032852839678525925, -0.05533184856176376, 0.06359753012657166, -0.16794688999652863, 0.04381430894136429, -0.07054741680622101, -0.03369826823472977, -0.08722997456789017, -0.03387739136815071, -0.012931370176374912, 0.005845905281603336, 0.02218650095164776, 0.0757620707154274, -0.19485262036323547, -0.03014439158141613, 0.13226620852947235, -0.16228348016738892, -0.01883402280509472, 0.07268564403057098, -0.04641124978661537, 0.1063743308186531, 0.0700010433793068, 0.15409770607948303, -0.01209616381675005, -0.07913503795862198, 0.055627454072237015, -0.011509633623063564, 0.012026974931359291, -0.009914224967360497, 0.07036696374416351, -0.020807217806577682, -0.15530358254909515, 0.03359800949692726, -0.1285814791917801, -0.004280657507479191, -0.07793592661619186, 0.01704826019704342, -0.012543240562081337, -0.0651019737124443, -0.06265069544315338, -0.026950906962156296, 0.06497018039226532, -0.07399917393922806, -0.017902176827192307, 0.04080581292510033, 0.07304193824529648, -0.07087129354476929, 0.06618379056453705, -0.013788276351988316, 0.011897744610905647, -0.08486779034137726, -0.03664275258779526, -0.18922138214111328, 0.05040683224797249, 0.10083334147930145, 0.0054587568156421185, -0.01957864686846733, 0.14898928999900818, 0.006782955024391413, 0.06767792999744415, -0.049673739820718765, 0.012657025828957558, -0.013994533568620682, -0.0053856284357607365, -0.09111333638429642, -0.09561450034379959, -0.07575821876525879, -0.06712963432073593, 0.08792649954557419, -0.12675271928310394, 0.020395712926983833, -0.053316403180360794, 0.045679427683353424, 0.022641725838184357, -0.08316975086927414, -0.017835019156336784, 0.01217682845890522, -0.05892280489206314, -0.05846340209245682, 0.038956400007009506, 0.0714796930551529, -0.013527710922062397, 0.09210187196731567, -0.04716269299387932, -0.08221492916345596, 0.03195498511195183, 0.10600647330284119, -0.10396397113800049, 0.016422856599092484, -0.05834861844778061, -0.04126901552081108, -0.0677080824971199, -0.016955671831965446, 0.07474470883607864, -0.004637038800865412, 0.1346370130777359, -0.07437901943922043, -0.0022441158071160316, 0.013915283605456352, -0.02434227429330349, -0.02255895920097828, 0.03564215078949928, 0.06344705075025558, -0.07946474105119705, 0.015143787488341331, 0.04088548198342323, 0.012662379071116447, 0.06972633302211761, -0.05262003839015961, -0.08909192681312561, 0.009403897449374199, 0.03870682418346405, 0.03139294683933258, 0.06819292157888412, -0.014505833387374878, -0.011189879849553108, 0.03294375166296959, 0.017115429043769836, 0.0040183402597904205, -0.11897137016057968, 0.06021376699209213, 0.05678162723779678, 0.0018258566269651055, 0.06418855488300323, -0.016308490186929703, -0.03981608524918556, 0.08204719424247742, 0.037233106791973114, 0.0035210149362683296, -0.014365613460540771, -0.015155518427491188, -0.1181761771440506, 0.18959355354309082, -0.06282119452953339, -0.16707000136375427, -0.07786526530981064, -0.09448990225791931, 0.004536218475550413, 0.0283501036465168, 0.03798334300518036, -0.021326685324311256, -0.04278912395238876, -0.12337861955165863, 0.05974584445357323, -0.038424476981163025, 0.06820820271968842, 0.10692697763442993, -0.03840314969420433, 0.05810843035578728, -0.12471730262041092, -0.008253178559243679, -0.08179979026317596, -0.07674496620893478, 0.060202013701200485, -0.04791121929883957, 0.025937890633940697, 0.09966489672660828, 0.02545916847884655, -0.018031621351838112, -0.022960402071475983, 0.19855666160583496, 0.04233551025390625, 0.039970386773347855, 0.1292552500963211, -0.06367845833301544, 0.05663931742310524, 0.08465559780597687, 0.009437077678740025, -0.04501170665025711, 0.05341244488954544, 0.04376249387860298, -0.06868555396795273, -0.1959359347820282, -0.024481669068336487, -0.006791202817112207, -0.044065531343221664, 0.07762479037046432, 0.03788815811276436, 0.0019886691588908434, 0.06872368603944778, 0.011512520723044872, 0.06172255054116249, -0.003466755850240588, 0.09792932868003845, 0.00747070973739028, -0.03336251527070999, 0.08788338303565979, -0.020196232944726944, -0.010169722139835358, 0.08544786274433136, -0.021105289459228516, 0.2948204576969147, -0.02843361534178257, 0.007145938463509083, 0.12078680098056793, 0.04330098256468773, 0.06422311067581177, 0.12496664375066757, -0.06156450882554054, 0.023303542286157608, -0.07358763366937637, -0.05979886278510094, -0.005502796731889248, 0.049626532942056656, -0.05523191764950752, 0.013513850048184395, -0.07442958652973175, 0.02183311991393566, -0.020636381581425667, 0.3108159005641937, 0.11397659778594971, -0.10091898590326309, -0.058949656784534454, 0.00879939366132021, -0.10093026608228683, -0.07452784478664398, 0.04209918528795242, 0.08069972693920135, -0.13654397428035736, 0.003382918192073703, -0.02767101675271988, 0.07356245070695877, -0.017644520848989487, 0.016672439873218536, 0.02741052582859993, 0.034599777311086655, -0.034970834851264954, 0.0095436479896307, -0.1801346242427826, 0.19759415090084076, 0.0064915623515844345, 0.01992260478436947, -0.0512746125459671, 0.03349824622273445, 0.007576161064207554, -0.03462240844964981, 0.06430122256278992, 0.024082312360405922, -0.040090035647153854, -0.045692961663007736, -0.05115900933742523, 0.014198314398527145, 0.07881572097539902, -0.047547996044158936, 0.10479521751403809, -0.00680088996887207, 0.04155740514397621, 0.01916314847767353, 0.0914352610707283, -0.18164142966270447, -0.08819108456373215, 0.03197978064417839, -0.059810612350702286, -0.09681272506713867, -0.08292306959629059, -0.09369838237762451, 0.016986999660730362, 0.25148335099220276, -0.12210343778133392, -0.07456742972135544, -0.09397023171186447, 0.03094329684972763, 0.10634154081344604, -0.050200268626213074, 0.025882406160235405, -0.004317710641771555, 0.13493120670318604, -0.06616048514842987, -0.13453678786754608, 0.02075052820146084, -0.08998943120241165, -0.1644938588142395, -0.0672062337398529, 0.11845634877681732, 0.06205148622393608, 0.0363340862095356, -0.026910601183772087, 0.023663846775889397, 0.038161445409059525, -0.036898545920848846, 0.0018120252061635256, 0.0740346908569336, 0.09761884808540344, 0.02974461019039154, -0.11095826327800751, 0.020828306674957275, -0.06417084485292435, -0.06632748246192932, 0.07827150076627731, 0.26010194420814514, -0.05948035418987274, 0.127061128616333, 0.11179941147565842, -0.08089885860681534, -0.15378667414188385, 0.02842034213244915, 0.09340395778417587, -0.014865703880786896, 0.013629274442791939, -0.16084961593151093, 0.0885055735707283, 0.11326486617326736, -0.02377266064286232, 0.00799661036580801, -0.19397374987602234, -0.12939053773880005, 0.06774038821458817, 0.09576801210641861, 0.27437740564346313, -0.05987674742937088, -0.04519340768456459, 0.015256745740771294, -0.08940780162811279, 0.02170327492058277, 0.12213670462369919, 0.06360228359699249, -0.023950647562742233, -0.07362274825572968, 0.015307433903217316, -0.03840689733624458, 0.09520747512578964, 0.052052270621061325, 0.05417672172188759, -0.0031710003968328238, 0.015922820195555687, -0.02744457684457302, -0.044433873146772385, 0.06133118271827698, 0.02107812464237213, 0.047514982521533966, -0.08019541949033737, -0.028598738834261894, -0.0680491104722023, 0.027738334611058235, -0.023781152442097664, -0.07673671096563339, -0.05807981267571449, 0.07819220423698425, 0.048566244542598724, -0.024649638682603836, 0.01273919828236103, 0.030262112617492676, 0.11996761709451675, 0.16229121387004852, -0.00416603684425354, -0.047887153923511505, -0.06041577830910683, -0.037610720843076706, -0.016969533637166023, 0.07481390237808228, -0.048258695751428604, 0.024716248735785484, 0.0650695264339447, 0.021766647696495056, 0.09753701835870743, 0.05670274421572685, -0.11560162156820297, -0.017873862758278847, 0.032818522304296494, -0.16318227350711823, 0.004800685681402683, -0.00007697974069742486, 0.03828025609254837, -0.03674791380763054, 0.026221899315714836, 0.15098117291927338, -0.06626960635185242, -0.03738439455628395, -0.04116804525256157, 0.06875612586736679, 0.020930428057909012, 0.13774867355823517, 0.032495155930519104, 0.03779371827840805, -0.07947712391614914, 0.12309470772743225, 0.03922814130783081, -0.03776266798377037, 0.023254945874214172, -0.0291915126144886, -0.1066036969423294, 0.013338887132704258, 0.06089957058429718, 0.03623713180422783, -0.045487597584724426, -0.009445278905332088, -0.02199404127895832, -0.07651808112859726, 0.059140123426914215, 0.18403728306293488, 0.06524858623743057, 0.07633259892463684, -0.058190762996673584, -0.038273025304079056, -0.07641074806451797, 0.04211672767996788, 0.04664251580834389, 0.07296937704086304, -0.07662419229745865, 0.10839949548244476, 0.01002898532897234, 0.04554160684347153, -0.03078758902847767, -0.05375538766384125, -0.09959392994642258, -0.054685767740011215, -0.10623420774936676, 0.00922678504139185, -0.07365459203720093, -0.042556196451187134, 0.0006077661528252065, -0.00692465715110302, -0.0064676981419324875, 0.04700889810919762, -0.06327877938747406, -0.009584582410752773, -0.028296535834670067, 0.034962497651576996, -0.0655033141374588, -0.03768807277083397, 0.0319751501083374, -0.10344205796718597, 0.09079653769731522, 0.05317848175764084, 0.008189186453819275, 0.008952032774686813, 0.09482821077108383, -0.022851258516311646, 0.02396218664944172, 0.014813287183642387, -0.046036578714847565, -0.08565886318683624, 0.0021436531096696854, -0.00798796396702528, -0.01660393737256527, -0.010945319198071957, 0.08836086094379425, -0.08525760471820831, 0.031194062903523445, -0.009303142316639423, -0.00841493345797062, -0.07502920180559158, -0.01146155595779419, 0.10098662972450256, 0.09975485503673553, 0.04796047881245613, -0.09075288474559784, 0.01330006867647171, -0.1423443704843521, -0.03661845251917839, 0.004893070086836815, -0.008688579313457012, -0.12171640247106552, -0.00991791021078825, 0.019101543352007866, -0.0028129464481025934, 0.20270444452762604, -0.056861672550439835, -0.01745457388460636, 0.019042085856199265, -0.10053911060094833, 0.11011701822280884, -0.02210097759962082, 0.17731483280658722, -0.005486547946929932, -0.041044872254133224, -0.016651425510644913, 0.03492853790521622, 0.018233904615044594, -0.024890456348657608, 0.18570096790790558, 0.13560223579406738, 0.0341012179851532, 0.04200325906276703, -0.024932004511356354, 0.00233623874373734, -0.05794001743197441, -0.02716122195124626, 0.02929636649787426, 0.03813362494111061, 0.018959050998091698, 0.1597655862569809, 0.06876083463430405, -0.16876523196697235, 0.032894887030124664, -0.029650770127773285, -0.03786078467965126, -0.11756580322980881, -0.09793754667043686, -0.03409057855606079, -0.0717003121972084, 0.0077248080633580685, -0.12215612828731537, 0.008370798081159592, 0.1749250441789627, 0.05478290468454361, 0.025551805272698402, -0.00040138157783076167, -0.12136080116033554, -0.0345199815928936, 0.05351043492555618, 0.015319520607590675, 0.024049120023846626, 0.05821024253964424, 0.0010746159823611379, 0.05905766040086746, 0.04428122192621231, 0.015462878160178661, 0.004070769529789686, 0.08023598790168762, 0.016520323231816292, 0.0378001369535923, -0.060554686933755875, -0.0038959356024861336, -0.041307657957077026, 0.06980189681053162, 0.09588521718978882, 0.05083823204040527, -0.05209202691912651, -0.006591874174773693, 0.1617926061153412, -0.043628398329019547, -0.0035363573115319014, -0.1271437257528305, 0.33544057607650757, 0.01109287142753601, 0.014177665114402771, 0.04670790955424309, -0.07578986138105392, -0.05305581912398338, 0.19841155409812927, 0.08612440526485443, -0.016971057280898094, -0.021581457927823067, 0.0006161644705571234, -0.030968397855758667, -0.024621928110718727, 0.15125232934951782, 0.03509651869535446, 0.13407419621944427, -0.05624186992645264, -0.045815955847501755, -0.028502488508820534, -0.009654691442847252, -0.12601108849048615, 0.13890956342220306, -0.03218812122941017, -0.02159278653562069, -0.07248588651418686, 0.026399260386824608, 0.0725429579615593, -0.3170880675315857, 0.00045211741235107183, -0.03164053335785866, -0.10888367891311646, -0.001121422043070197, -0.018486954271793365, -0.025048676878213882, 0.04889228940010071, -0.048553913831710815, 0.0697101503610611, 0.04467915743589401, 0.03487811237573624, -0.02324698679149151, -0.09287329018115997, 0.16654625535011292, 0.0467853918671608, 0.0954287126660347, 0.026355784386396408, 0.07320304960012436, 0.05399788171052933, 0.03687232360243797, -0.0956178680062294, 0.04228701442480087, 0.013060430996119976, -0.08578596264123917, -0.05150403454899788, 0.12316546589136124, -0.0034796264953911304, 0.040954601019620895, 0.04599735140800476, -0.10736607760190964, 0.009657722897827625, 0.06649129837751389, -0.06645331531763077, -0.09927161037921906, -0.005455535836517811, -0.09128531068563461, 0.15532951056957245, 0.14227816462516785, -0.018764974549412727, 0.02075084298849106, -0.0667279064655304, -0.006759637501090765, 0.05256596580147743, 0.012992179952561855, -0.015309998765587807, -0.18787959218025208, 0.03168976679444313, -0.08049905300140381, -0.004732516594231129, -0.22804194688796997, -0.10441843420267105, -0.00955233070999384, -0.05002189427614212, -0.025767570361495018, 0.06100296229124069, 0.029046855866909027, 0.06581176072359085, -0.018225878477096558, -0.039718907326459885, -0.028411174193024635, 0.08885882049798965, -0.10589584708213806, -0.06321252882480621 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_20k"]}
null
google/multiberts-seed_2-step_20k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_20k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 20k (max: 2000k, i.e., 2M steps)." ]
[ -0.07565965503454208, 0.10373463481664658, -0.002562273060902953, 0.03523759916424751, 0.07616200298070908, -0.01728234812617302, 0.08617334812879562, 0.10300114005804062, -0.01729215309023857, 0.03233017772436142, 0.08028404414653778, 0.00463893124833703, 0.016956588253378868, 0.10438623279333115, 0.02310211770236492, -0.22782675921916962, 0.02150878496468067, -0.03172188624739647, -0.08419008553028107, 0.07710106670856476, 0.10048982501029968, -0.08151381462812424, 0.04337511211633682, 0.029760463163256645, -0.11852925270795822, 0.04762686789035797, 0.0035277048591524363, -0.019254174083471298, 0.13308411836624146, -0.0020400111097842455, 0.05142901465296745, 0.05420374497771263, 0.042745016515254974, -0.13277150690555573, 0.00621422566473484, 0.05979613959789276, 0.055814750492572784, 0.04681747406721115, 0.026014136150479317, 0.07433487474918365, 0.015413305722177029, 0.017874808982014656, 0.04528475180268288, 0.022409817203879356, -0.07339337468147278, -0.07000043988227844, -0.10224251449108124, 0.04111296311020851, 0.026966385543346405, 0.0048772734589874744, 0.009910857304930687, 0.1278948038816452, -0.034197431057691574, 0.04569537192583084, 0.1867077499628067, -0.341585248708725, -0.014767533168196678, 0.0696888193488121, 0.044091951102018356, 0.1269134134054184, -0.0030135365668684244, -0.019096380099654198, 0.07503034919500351, 0.023302745074033737, 0.0862715095281601, -0.04086164012551308, 0.0330386608839035, -0.053373612463474274, -0.1574499011039734, -0.04869356378912926, 0.09728486835956573, -0.003861368400976062, -0.1354333758354187, -0.03931456804275513, -0.04756169766187668, 0.04226762428879738, 0.01005117129534483, -0.0372791588306427, 0.03580548241734505, 0.01609102450311184, -0.02144334279000759, -0.009814206510782242, -0.10464514791965485, -0.05311133712530136, 0.031691208481788635, 0.08112603425979614, 0.10230440646409988, 0.06539130210876465, -0.0037339820992201567, 0.1085512638092041, -0.19623999297618866, -0.05081750825047493, -0.026403089985251427, -0.050330884754657745, -0.047795794904232025, -0.010418218560516834, -0.1111634224653244, -0.053027208894491196, 0.009726340882480145, 0.13350775837898254, -0.0018065250478684902, 0.027356160804629326, -0.0393148772418499, 0.01014320831745863, 0.05809752270579338, 0.0449196919798851, -0.005968373268842697, 0.023107409477233887, 0.021813541650772095, -0.019135909155011177, -0.016087813302874565, 0.013473300263285637, 0.000759222952183336, 0.029063265770673752, 0.12070322781801224, 0.022078964859247208, -0.10103710740804672, 0.06661058217287064, -0.017088791355490685, -0.04491715505719185, 0.0071911895647645, -0.09068772941827774, -0.054521411657333374, -0.03782693296670914, 0.0015964831691235304, 0.01244360487908125, -0.005645894445478916, -0.00579097680747509, -0.0215475894510746, -0.038718026131391525, -0.08575700968503952, -0.04609109088778496, -0.05171557143330574, -0.1274392157793045, 0.01003868319094181, -0.17808489501476288, -0.0365230031311512, -0.10957356542348862, -0.18689629435539246, -0.02193802408874035, 0.06243490055203438, -0.011214776895940304, -0.057783931493759155, 0.07762797921895981, 0.042121656239032745, -0.027888460084795952, -0.0006422584410756826, 0.0743185430765152, -0.0009743271511979401, 0.04452833905816078, -0.02867801859974861, 0.06825491786003113, 0.004752046428620815, 0.03353167697787285, -0.053359098732471466, 0.06493974477052689, -0.17317843437194824, 0.044161438941955566, -0.07317008078098297, -0.0338154211640358, -0.08644098043441772, -0.0339416041970253, -0.005828372668474913, 0.006156248040497303, 0.021565305069088936, 0.0708400309085846, -0.1872914731502533, -0.0344872809946537, 0.13576988875865936, -0.162973091006279, -0.01652660220861435, 0.07062005251646042, -0.047896891832351685, 0.10491649061441422, 0.06952027976512909, 0.16059720516204834, -0.014031202532351017, -0.07674024254083633, 0.05631312355399132, -0.011939985677599907, 0.013255560770630836, -0.009019877761602402, 0.07225412875413895, -0.018847079947590828, -0.14828306436538696, 0.034389678388834, -0.13101764023303986, -0.0062038106843829155, -0.07745157182216644, 0.018587816506624222, -0.013235596939921379, -0.06201300397515297, -0.06814014911651611, -0.02543519251048565, 0.06757514923810959, -0.07644473016262054, -0.017672641202807426, 0.04375261813402176, 0.0739431157708168, -0.07239463180303574, 0.06462923437356949, -0.014445166103541851, 0.012938612140715122, -0.08289661258459091, -0.037456005811691284, -0.19011127948760986, 0.04931877180933952, 0.10136241465806961, 0.0066970945335924625, -0.01807357929646969, 0.15065164864063263, 0.008209616877138615, 0.0678490474820137, -0.04651106148958206, 0.014151637442409992, -0.011355862952768803, -0.005734242033213377, -0.09114358574151993, -0.10237551480531693, -0.07237856835126877, -0.06961733847856522, 0.09265094250440598, -0.13118572533130646, 0.02131318859755993, -0.05028664693236351, 0.047976840287446976, 0.020719313994050026, -0.08373825252056122, -0.016769547015428543, 0.010118012316524982, -0.05961045250296593, -0.05820942670106888, 0.03906434029340744, 0.07057935744524002, -0.01280855294317007, 0.09129395335912704, -0.05344101041555405, -0.08485406637191772, 0.03228660672903061, 0.10201467573642731, -0.1034095510840416, 0.01063993014395237, -0.0602584034204483, -0.042173344641923904, -0.061508335173130035, -0.014099420048296452, 0.07870087027549744, -0.006160942371934652, 0.13832326233386993, -0.07525572925806046, -0.005220446735620499, 0.01503078918904066, -0.02310553938150406, -0.023258162662386894, 0.03891923651099205, 0.06070651859045029, -0.08410296589136124, 0.017312398180365562, 0.04009341821074486, 0.01173108909279108, 0.07160558551549911, -0.05619899928569794, -0.09117742627859116, 0.00993047934025526, 0.04049012064933777, 0.030331511050462723, 0.06581781059503555, -0.02389354817569256, -0.016074301674962044, 0.035858072340488434, 0.014466413296759129, 0.005900735501199961, -0.11942959576845169, 0.06168002262711525, 0.056688226759433746, 0.004138750024139881, 0.05962067469954491, -0.01574435457587242, -0.04003790766000748, 0.08028174191713333, 0.03700162097811699, 0.0009492678800597787, -0.013526060618460178, -0.015990637242794037, -0.11764390766620636, 0.18939588963985443, -0.06326606869697571, -0.1643371731042862, -0.07611098885536194, -0.10297150164842606, 0.000996066490188241, 0.026076607406139374, 0.04000146687030792, -0.019170226529240608, -0.045207779854536057, -0.12133287638425827, 0.057446498423814774, -0.04373547434806824, 0.06719265878200531, 0.10926003754138947, -0.04056764021515846, 0.05600081384181976, -0.1261695772409439, -0.00736759789288044, -0.08186769485473633, -0.07500516623258591, 0.061632007360458374, -0.048567112535238266, 0.022924700751900673, 0.09612128883600235, 0.02686367556452751, -0.015606257133185863, -0.024178791791200638, 0.19716107845306396, 0.03949211910367012, 0.03597879409790039, 0.1297009438276291, -0.06386955082416534, 0.055995043367147446, 0.08004581183195114, 0.007832205854356289, -0.043699026107788086, 0.04997914284467697, 0.04508044198155403, -0.0671132281422615, -0.19794560968875885, -0.024451078847050667, -0.006564413197338581, -0.04491386562585831, 0.07740563154220581, 0.037427935749292374, 0.009110599756240845, 0.06696023046970367, 0.010963205248117447, 0.06637993454933167, -0.0027404665015637875, 0.10046660900115967, 0.015338700264692307, -0.0364266112446785, 0.08849570900201797, -0.019748913124203682, -0.008615120314061642, 0.08494146168231964, -0.02463725581765175, 0.29091936349868774, -0.025595391169190407, 0.018305666744709015, 0.1209818422794342, 0.03981461375951767, 0.06295625120401382, 0.12408926337957382, -0.061351172626018524, 0.02136555127799511, -0.07507120072841644, -0.060954198241233826, -0.003836636431515217, 0.051705874502658844, -0.058386702090501785, 0.009421117603778839, -0.07110676914453506, 0.01859886571764946, -0.019681215286254883, 0.31089383363723755, 0.1083718091249466, -0.10520016402006149, -0.05790627375245094, 0.006579477805644274, -0.10334222763776779, -0.07369499653577805, 0.041883088648319244, 0.0750117152929306, -0.13585005700588226, 0.008925147354602814, -0.027619536966085434, 0.07391264289617538, -0.01697535067796707, 0.017966443672776222, 0.02207302860915661, 0.03847325220704079, -0.03462330251932144, 0.011808183044195175, -0.1857319325208664, 0.19668425619602203, 0.008256549015641212, 0.01589028351008892, -0.05503016337752342, 0.034093745052814484, 0.005853163078427315, -0.03237522393465042, 0.06413013488054276, 0.02233222872018814, -0.03967521712183952, -0.0393652617931366, -0.052283987402915955, 0.014575330540537834, 0.08223547041416168, -0.04590176045894623, 0.1052078828215599, -0.006247739307582378, 0.0418887622654438, 0.021413009613752365, 0.09077655524015427, -0.17751984298229218, -0.0882124975323677, 0.03482716158032417, -0.057041436433792114, -0.10227373242378235, -0.08402934670448303, -0.09350714087486267, 0.0033333913888782263, 0.25908777117729187, -0.12096075713634491, -0.07279665023088455, -0.09645380079746246, 0.03643721714615822, 0.10398586839437485, -0.05059812217950821, 0.026636263355612755, -0.006202341057360172, 0.13658462464809418, -0.06772324442863464, -0.13413342833518982, 0.023839691653847694, -0.0905386209487915, -0.16518497467041016, -0.06624852865934372, 0.11881613731384277, 0.05923961102962494, 0.03631756082177162, -0.029125886037945747, 0.02569049596786499, 0.033689986914396286, -0.03513124957680702, 0.0007791774696670473, 0.07745078951120377, 0.09733058512210846, 0.02756386250257492, -0.1060587540268898, 0.02506968192756176, -0.06124754995107651, -0.06530710309743881, 0.08093822747468948, 0.26249098777770996, -0.05743962898850441, 0.1283682882785797, 0.10757327824831009, -0.07802063226699829, -0.15037140250205994, 0.029718520119786263, 0.09422524273395538, -0.015515037812292576, 0.012634471990168095, -0.16189256310462952, 0.08800673484802246, 0.11308149248361588, -0.0233988668769598, 0.004127754829823971, -0.18929456174373627, -0.12701475620269775, 0.06990084797143936, 0.0969875305891037, 0.27191779017448425, -0.060878921300172806, -0.046928904950618744, 0.018173225224018097, -0.08088404685258865, 0.02261979505419731, 0.11095529794692993, 0.06317206472158432, -0.022543691098690033, -0.07407047599554062, 0.014857715927064419, -0.040566377341747284, 0.09218057990074158, 0.052089180797338486, 0.056254006922245026, -0.002513346029445529, 0.018148336559534073, -0.016490796580910683, -0.043566104024648666, 0.06137906014919281, 0.02027144841849804, 0.04778067767620087, -0.07998117804527283, -0.02754228003323078, -0.06846551597118378, 0.02834967151284218, -0.024523740634322166, -0.07544445246458054, -0.05780094116926193, 0.07461950182914734, 0.04754561558365822, -0.02371181920170784, 0.024430327117443085, 0.030878815799951553, 0.11756432056427002, 0.1659363955259323, -0.005284237675368786, -0.04501577839255333, -0.05914885178208351, -0.041363105177879333, -0.015155326575040817, 0.07364103198051453, -0.052981406450271606, 0.02227986976504326, 0.06276322156190872, 0.025667954236268997, 0.10023009777069092, 0.05470169335603714, -0.11855325102806091, -0.019212668761610985, 0.03125658631324768, -0.16767676174640656, 0.005781815852969885, -0.001030500279739499, 0.03704705834388733, -0.03282145783305168, 0.02887772209942341, 0.15168166160583496, -0.06323690712451935, -0.036696288734674454, -0.041177064180374146, 0.06687372177839279, 0.022369343787431717, 0.13541057705879211, 0.030699897557497025, 0.037779800593853, -0.0834440067410469, 0.11970286816358566, 0.042132310569286346, -0.039477042853832245, 0.025062989443540573, -0.02541179396212101, -0.10663417726755142, 0.014633233658969402, 0.062408845871686935, 0.043946199119091034, -0.04514317214488983, -0.013198764994740486, -0.026636498048901558, -0.07241165637969971, 0.060265105217695236, 0.18905441462993622, 0.06554853171110153, 0.07497235387563705, -0.05732439085841179, -0.0369943343102932, -0.07742739468812943, 0.0427294597029686, 0.03847556188702583, 0.07516035437583923, -0.0761728435754776, 0.1131032332777977, 0.011244041845202446, 0.042886264622211456, -0.030946657061576843, -0.054731257259845734, -0.09953731298446655, -0.05574242025613785, -0.09966153651475906, 0.008111360482871532, -0.07546001672744751, -0.042253974825143814, 0.001519126002676785, -0.004859276115894318, -0.0063456022180616856, 0.047249965369701385, -0.06316778063774109, -0.009326404891908169, -0.02648770622909069, 0.03770475089550018, -0.0689382404088974, -0.03611419349908829, 0.02955322340130806, -0.10255575180053711, 0.09200326353311539, 0.05652030557394028, 0.009525380097329617, 0.009542904794216156, 0.09049294888973236, -0.02254771627485752, 0.025152387097477913, 0.013500921428203583, -0.043354395776987076, -0.08383157849311829, 0.00039115294930525124, -0.007842853665351868, -0.01855497434735298, -0.010674036107957363, 0.08187273889780045, -0.08491241186857224, 0.031042303889989853, -0.007699157577008009, -0.012407476082444191, -0.0754299908876419, -0.011476087383925915, 0.09414386004209518, 0.09719035774469376, 0.04349461942911148, -0.08904960751533508, 0.013316520489752293, -0.141042098402977, -0.03732653707265854, 0.004661542363464832, -0.01075100526213646, -0.12095605581998825, -0.010550430044531822, 0.018394090235233307, -0.0052007343620061874, 0.2111819088459015, -0.0548231266438961, -0.01971401646733284, 0.01845625974237919, -0.09780710190534592, 0.11255083233118057, -0.025242669507861137, 0.18015407025814056, -0.004323917906731367, -0.03834708034992218, -0.01541069895029068, 0.03713579848408699, 0.020385514944791794, -0.029861658811569214, 0.1807319074869156, 0.13675542175769806, 0.028800273314118385, 0.04038258641958237, -0.022858044132590294, -0.0016664095455780625, -0.05883721634745598, -0.017675600945949554, 0.031108831986784935, 0.0411226712167263, 0.018817134201526642, 0.1591247320175171, 0.07238028943538666, -0.1701735109090805, 0.033343520015478134, -0.02580464817583561, -0.03671428561210632, -0.11627230048179626, -0.09954919666051865, -0.0359768383204937, -0.07408959418535233, 0.007927415892481804, -0.12388533353805542, 0.010834510438144207, 0.16863827407360077, 0.05590558424592018, 0.02601703628897667, 0.0013604635605588555, -0.11939020454883575, -0.035651735961437225, 0.05131113901734352, 0.015412705950438976, 0.022552112117409706, 0.05143881216645241, 0.0005785332177765667, 0.060671139508485794, 0.04083874821662903, 0.015000037848949432, 0.0008625267655588686, 0.08682582527399063, 0.01712266355752945, 0.03767368942499161, -0.06141233816742897, -0.00233383197337389, -0.04126247763633728, 0.06916540861129761, 0.08926992118358612, 0.04796716198325157, -0.052464913576841354, -0.008340957574546337, 0.15640543401241302, -0.042820099741220474, 0.0007476790924556553, -0.1255904883146286, 0.34033942222595215, 0.008972043171525002, 0.012756705284118652, 0.046664752066135406, -0.07541687786579132, -0.050736021250486374, 0.19883060455322266, 0.08516383916139603, -0.012434156611561775, -0.019654441624879837, 0.0015317352954298258, -0.031278230249881744, -0.026509135961532593, 0.14467597007751465, 0.035180024802684784, 0.13240677118301392, -0.05407410115003586, -0.049310214817523956, -0.028546109795570374, -0.009988187812268734, -0.12589848041534424, 0.13594898581504822, -0.025633681565523148, -0.025581520050764084, -0.0684681385755539, 0.024859147146344185, 0.0753195583820343, -0.3167078197002411, -0.0009237253107130527, -0.03279809653759003, -0.10936334729194641, -0.002558324486017227, -0.01661684550344944, -0.022726578637957573, 0.04750543832778931, -0.04664177820086479, 0.06718980520963669, 0.03972053900361061, 0.03482222184538841, -0.02521343156695366, -0.0900111123919487, 0.167863130569458, 0.04130980372428894, 0.09278445690870285, 0.0247830580919981, 0.07649994641542435, 0.05604766309261322, 0.03504588454961777, -0.09140484780073166, 0.04144071042537689, 0.014376698061823845, -0.088516004383564, -0.05506058782339096, 0.12668132781982422, -0.0024249448906630278, 0.04281236603856087, 0.04673068970441818, -0.10909899324178696, 0.011869409121572971, 0.06953489035367966, -0.06921856105327606, -0.099420927464962, -0.006306483875960112, -0.0911938026547432, 0.15541845560073853, 0.1439313441514969, -0.01740408129990101, 0.021328764036297798, -0.06918630748987198, -0.005280046723783016, 0.05341002345085144, 0.013521984219551086, -0.015549722127616405, -0.1885889321565628, 0.03397727012634277, -0.07664740830659866, -0.003237237222492695, -0.22769217193126678, -0.10280939191579819, -0.010473069734871387, -0.05009927973151207, -0.026760347187519073, 0.05570624768733978, 0.030561091378331184, 0.06377848982810974, -0.01854560896754265, -0.039845481514930725, -0.028383426368236542, 0.08801518380641937, -0.10651972144842148, -0.061674848198890686 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_300k"]}
null
google/multiberts-seed_2-step_300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07510000467300415, 0.08995752781629562, -0.0023659642320126295, 0.04232608899474144, 0.0796990618109703, -0.0146208880469203, 0.08042684942483902, 0.10061945766210556, -0.017187735065817833, 0.024379363283514977, 0.08159415423870087, 0.005028651095926762, 0.017975501716136932, 0.09357398748397827, 0.02466580830514431, -0.22435227036476135, 0.02260228432714939, -0.03263015300035477, -0.08590583503246307, 0.0794474333524704, 0.1009855791926384, -0.07817089557647705, 0.045872028917074203, 0.025829264894127846, -0.10982398688793182, 0.04989111050963402, 0.0014613786479458213, -0.016530048102140427, 0.1311371773481369, -0.003685920499265194, 0.05087662488222122, 0.052416447550058365, 0.05035973712801933, -0.13520966470241547, 0.005668978672474623, 0.056048061698675156, 0.06013131141662598, 0.04381684586405754, 0.020288364961743355, 0.07490603625774384, 0.005220938473939896, 0.025352923199534416, 0.046296969056129456, 0.02531501278281212, -0.07661925256252289, -0.05454552173614502, -0.10550204664468765, 0.0367964468896389, 0.030432969331741333, 0.007336636073887348, 0.010752593167126179, 0.1303008645772934, -0.03759268671274185, 0.042616549879312515, 0.19162151217460632, -0.33869272470474243, -0.012959078885614872, 0.07839986681938171, 0.044845592230558395, 0.12537629902362823, -0.0035518212243914604, -0.01985194906592369, 0.07411344349384308, 0.026121394708752632, 0.09214738011360168, -0.04039204120635986, 0.03311050310730934, -0.05539088323712349, -0.15820442140102386, -0.04724631831049919, 0.09262081235647202, -0.0011365717509761453, -0.1385190337896347, -0.042724981904029846, -0.04555059224367142, 0.03399420902132988, 0.013834130950272083, -0.03843681514263153, 0.03347467631101608, 0.015899652615189552, -0.022708190605044365, -0.013336396776139736, -0.10400373488664627, -0.057111840695142746, 0.029909726232290268, 0.0892217829823494, 0.09939025342464447, 0.0687526986002922, 0.0030791163444519043, 0.11441469192504883, -0.1776839643716812, -0.05276027321815491, -0.029380571097135544, -0.05389818176627159, -0.04697154089808464, -0.01070154458284378, -0.10714899748563766, -0.048695992678403854, 0.008306127041578293, 0.13233180344104767, 0.0021187143865972757, 0.025308266282081604, -0.02840225026011467, 0.009066108614206314, 0.059479862451553345, 0.048331886529922485, -0.007802215404808521, 0.015598910860717297, 0.02151339314877987, -0.009048935025930405, -0.016086021438241005, 0.014462053775787354, 0.0016398936277255416, 0.026989705860614777, 0.1181824654340744, 0.02616404928267002, -0.10147660970687866, 0.065106101334095, -0.023452410474419594, -0.04632227122783661, 0.015907760709524155, -0.09101470559835434, -0.05682031437754631, -0.042692333459854126, 0.0021668775007128716, 0.016853591427206993, -0.004812625236809254, -0.005079654511064291, -0.023655932396650314, -0.036610402166843414, -0.08132486045360565, -0.046734802424907684, -0.05399937555193901, -0.1257418394088745, 0.0048147994093596935, -0.17262370884418488, -0.038079701364040375, -0.11476953327655792, -0.18669095635414124, -0.020818812772631645, 0.06424634158611298, -0.012003310024738312, -0.053926363587379456, 0.0781099796295166, 0.04442664608359337, -0.028224319219589233, -0.0024022406432777643, 0.07101018726825714, -0.001463505206629634, 0.045383352786302567, -0.026092275977134705, 0.06854869425296783, 0.002841224893927574, 0.03195799142122269, -0.05638054758310318, 0.0635242909193039, -0.16632258892059326, 0.044578444212675095, -0.06928882002830505, -0.03211728110909462, -0.08554486930370331, -0.037414271384477615, -0.011537348851561546, 0.006688026245683432, 0.02428157441318035, 0.07607753574848175, -0.1808534413576126, -0.0274039376527071, 0.12315782904624939, -0.16099674999713898, -0.02123243734240532, 0.07280256599187851, -0.047734860330820084, 0.10310143232345581, 0.06946726888418198, 0.14832279086112976, -0.016094058752059937, -0.08151784539222717, 0.05816374719142914, -0.012409104034304619, 0.012724940665066242, -0.011334653943777084, 0.07298632711172104, -0.020996427163481712, -0.14946353435516357, 0.03290721774101257, -0.132189080119133, -0.00471922243013978, -0.07850567251443863, 0.01646425575017929, -0.010522215627133846, -0.06836406886577606, -0.06736540049314499, -0.02786226198077202, 0.06484866887331009, -0.07570167630910873, -0.01703071966767311, 0.039533112198114395, 0.0744999349117279, -0.0723654180765152, 0.06829316914081573, -0.011184734292328358, 0.01156291551887989, -0.0861835852265358, -0.04055384546518326, -0.18939639627933502, 0.04770513251423836, 0.10066600143909454, 0.011067983694374561, -0.018202364444732666, 0.14253512024879456, 0.007424868177622557, 0.06803929805755615, -0.05197376012802124, 0.011966274119913578, -0.017423046752810478, -0.005434621591120958, -0.08799207955598831, -0.09253469109535217, -0.08011836558580399, -0.06840254366397858, 0.08032450824975967, -0.11643391102552414, 0.019817903637886047, -0.055794067680835724, 0.043556779623031616, 0.02303205616772175, -0.08545847237110138, -0.01760508306324482, 0.013861051760613918, -0.0605296790599823, -0.05883660167455673, 0.03871123865246773, 0.07091064751148224, -0.0130867725238204, 0.08703584969043732, -0.04930635169148445, -0.08137927204370499, 0.03212704509496689, 0.10187220573425293, -0.10711149126291275, 0.009382817894220352, -0.056979335844516754, -0.03980053588747978, -0.06993485987186432, -0.02121618762612343, 0.07760447263717651, -0.004204882308840752, 0.1368180513381958, -0.07582204788923264, -0.0051727318204939365, 0.00981154479086399, -0.02433493360877037, -0.02352561429142952, 0.03280724957585335, 0.06321374326944351, -0.08354213088750839, 0.016690539196133614, 0.04076778143644333, 0.011554219760000706, 0.07243343442678452, -0.05149166285991669, -0.08887216448783875, 0.009938938543200493, 0.035369932651519775, 0.03069148026406765, 0.0683421865105629, -0.011582124046981335, -0.012245080433785915, 0.03194449469447136, 0.019379600882530212, 0.004873231984674931, -0.11505597829818726, 0.06062702834606171, 0.05809702351689339, 0.002221890026703477, 0.06952984631061554, -0.017284339293837547, -0.041779182851314545, 0.08097139000892639, 0.038439009338617325, 0.003034817287698388, -0.015399020165205002, -0.017527835443615913, -0.11761131882667542, 0.1896182745695114, -0.05812634900212288, -0.16232478618621826, -0.07954847067594528, -0.10134555399417877, -0.0010406359797343612, 0.026948461309075356, 0.03619660437107086, -0.01868618093430996, -0.04396938532590866, -0.1252266764640808, 0.06421350687742233, -0.03672070801258087, 0.0670877993106842, 0.11167966574430466, -0.03924861550331116, 0.05468432605266571, -0.12709389626979828, -0.010690138675272465, -0.08381664752960205, -0.07854791730642319, 0.057503439486026764, -0.050780486315488815, 0.028170257806777954, 0.09398011863231659, 0.027480894699692726, -0.015887737274169922, -0.025187937542796135, 0.20177002251148224, 0.04222511500120163, 0.03779798746109009, 0.13262884318828583, -0.06192977726459503, 0.05456643924117088, 0.07948031276464462, 0.01130734570324421, -0.04807940125465393, 0.05514800176024437, 0.04279704391956329, -0.07155168056488037, -0.191135436296463, -0.025329215452075005, -0.00875815562903881, -0.04943668842315674, 0.0773065984249115, 0.035779546946287155, -0.0010693703079596162, 0.06899089366197586, 0.011166275478899479, 0.056282997131347656, -0.0023276261053979397, 0.10007155686616898, 0.005478117614984512, -0.031178880482912064, 0.0898347795009613, -0.020967593416571617, -0.013156411238014698, 0.08467776328325272, -0.014699716120958328, 0.287192165851593, -0.029830945655703545, 0.008955639787018299, 0.12006143480539322, 0.041068900376558304, 0.061462968587875366, 0.1289639174938202, -0.06271480768918991, 0.021622231230139732, -0.0737980306148529, -0.059718962758779526, -0.007690174970775843, 0.046071913093328476, -0.05217059701681137, 0.018298430368304253, -0.07309509813785553, 0.019173797219991684, -0.017878422513604164, 0.3193903863430023, 0.11242663115262985, -0.1056150421500206, -0.056141387671232224, 0.008259966038167477, -0.1009814664721489, -0.06923945993185043, 0.043898601084947586, 0.06804940104484558, -0.13854920864105225, 0.009960699826478958, -0.025174785405397415, 0.07402318716049194, -0.02089998684823513, 0.016650814563035965, 0.03170892968773842, 0.03416146710515022, -0.03600266948342323, 0.006334154866635799, -0.18391203880310059, 0.19950436055660248, 0.006628861650824547, 0.01914282888174057, -0.05299292132258415, 0.034006621688604355, 0.007598012685775757, -0.03929857537150383, 0.0656629353761673, 0.022208720445632935, -0.021987738087773323, -0.04712942987680435, -0.05241294950246811, 0.012175032868981361, 0.07942447811365128, -0.047082383185625076, 0.10731480270624161, -0.008353129960596561, 0.04269368201494217, 0.018761862069368362, 0.09493985027074814, -0.18106761574745178, -0.09064800292253494, 0.028467146679759026, -0.060501810163259506, -0.1052059605717659, -0.08149494975805283, -0.09241805970668793, 0.009711961261928082, 0.25520196557044983, -0.11826061457395554, -0.07548082619905472, -0.09580506384372711, 0.029165415093302727, 0.10360846668481827, -0.048270586878061295, 0.02380179800093174, -0.004878194537013769, 0.12974536418914795, -0.06684567779302597, -0.1336013227701187, 0.02180016040802002, -0.09205671399831772, -0.16527797281742096, -0.0657142847776413, 0.11791879683732986, 0.06216065585613251, 0.036381304264068604, -0.025988033041357994, 0.02364487200975418, 0.03934303671121597, -0.0390799343585968, -0.0030290449503809214, 0.07024186849594116, 0.09512945264577866, 0.040422238409519196, -0.10899238288402557, 0.016759850084781647, -0.06315705925226212, -0.0669122189283371, 0.08032900840044022, 0.26429441571235657, -0.055658869445323944, 0.1262010633945465, 0.11530443280935287, -0.0776544064283371, -0.153150275349617, 0.024290040135383606, 0.09224185347557068, -0.013335864059627056, 0.02073148638010025, -0.15456749498844147, 0.08659300953149796, 0.1125786229968071, -0.024431593716144562, -0.007102521602064371, -0.19606423377990723, -0.12980414927005768, 0.06807093322277069, 0.10155355930328369, 0.2727709114551544, -0.06173178553581238, -0.042188551276922226, 0.012536952272057533, -0.09456315636634827, 0.020712075755000114, 0.12672960758209229, 0.06639784574508667, -0.025950346142053604, -0.07782738655805588, 0.014227072708308697, -0.04088917747139931, 0.09580186009407043, 0.05023578926920891, 0.05682077631354332, -0.004858086816966534, 0.018676819279789925, -0.017799220979213715, -0.043959569185972214, 0.06500040739774704, 0.018349390476942062, 0.0482514426112175, -0.07841913402080536, -0.03134756535291672, -0.06738400459289551, 0.02431926131248474, -0.023714296519756317, -0.07944762706756592, -0.06110304966568947, 0.07848292589187622, 0.050236254930496216, -0.025976253673434258, 0.01719435676932335, 0.02844577096402645, 0.11743253469467163, 0.16193029284477234, 0.0015465500764548779, -0.04628428444266319, -0.06157044693827629, -0.04016033932566643, -0.017899561673402786, 0.07311605662107468, -0.03836140036582947, 0.023199178278446198, 0.06343619525432587, 0.02128012664616108, 0.09760807454586029, 0.057257264852523804, -0.11395833641290665, -0.016636814922094345, 0.033790986984968185, -0.15973302721977234, 0.016874706372618675, 0.0004563804541248828, 0.03360040858387947, -0.038176279515028, 0.02604449726641178, 0.15156081318855286, -0.061962027102708817, -0.036733340471982956, -0.04054684564471245, 0.06851606070995331, 0.016719099134206772, 0.13848353922367096, 0.030932774767279625, 0.03757014125585556, -0.08000701665878296, 0.1233140379190445, 0.036924492567777634, -0.02793518453836441, 0.02130964770913124, -0.023294692859053612, -0.1049547791481018, 0.014822411350905895, 0.059039995074272156, 0.035320691764354706, -0.05500369518995285, -0.005659608170390129, -0.02793431095778942, -0.07560064643621445, 0.05863998830318451, 0.17844036221504211, 0.07075472176074982, 0.07386035472154617, -0.05892902612686157, -0.03716288506984711, -0.07528036087751389, 0.038113679736852646, 0.04317055642604828, 0.07325083017349243, -0.07635551691055298, 0.09632150828838348, 0.010872790589928627, 0.04075932502746582, -0.032135799527168274, -0.053450074046850204, -0.10157489031553268, -0.05096273496747017, -0.09922375530004501, 0.00515926955267787, -0.07553276419639587, -0.03993397578597069, -0.0004570754827000201, -0.0060770330019295216, -0.008280550129711628, 0.04848509654402733, -0.059670086950063705, -0.010796798393130302, -0.02692657895386219, 0.033081814646720886, -0.06537193059921265, -0.03738299757242203, 0.03190857917070389, -0.10432172566652298, 0.09090039879083633, 0.04736374691128731, 0.006473713554441929, 0.007160624023526907, 0.09025850147008896, -0.024186091497540474, 0.025024013593792915, 0.01643863506615162, -0.04968230053782463, -0.08213843405246735, 0.0016054613515734673, -0.004906708840280771, -0.0143961813300848, -0.008245427161455154, 0.0915495902299881, -0.08606059104204178, 0.031992267817258835, -0.011268938891589642, -0.008078251034021378, -0.0742640271782875, -0.01081643346697092, 0.1057206317782402, 0.09974928200244904, 0.04846755042672157, -0.09041895717382431, 0.013011319562792778, -0.14377738535404205, -0.03580331429839134, 0.00669321371242404, -0.008965502493083477, -0.1317782998085022, -0.009666413068771362, 0.020026030018925667, 0.00013237583334557712, 0.21320706605911255, -0.05698039382696152, -0.020769771188497543, 0.021363835781812668, -0.09053359925746918, 0.11863061785697937, -0.024504799395799637, 0.17804647982120514, -0.007663050666451454, -0.04164404794573784, -0.0144392354413867, 0.03548045828938484, 0.01945965737104416, -0.027162283658981323, 0.18858949840068817, 0.13761363923549652, 0.03316505253314972, 0.042791012674570084, -0.02498297207057476, 0.003967140335589647, -0.049739714711904526, -0.03728945553302765, 0.033995047211647034, 0.033093471080064774, 0.02132677473127842, 0.14907345175743103, 0.06959063559770584, -0.1692279726266861, 0.03403456136584282, -0.026275087147951126, -0.0368395559489727, -0.11743627488613129, -0.09536635875701904, -0.03268756717443466, -0.06900547444820404, 0.009023717604577541, -0.12459692358970642, 0.006267613265663385, 0.17667338252067566, 0.05590115860104561, 0.027541901916265488, 0.005076395347714424, -0.12479019165039062, -0.03410283476114273, 0.05145644396543503, 0.012989655137062073, 0.025627171620726585, 0.05886152759194374, -0.000577311497181654, 0.058107923716306686, 0.042376719415187836, 0.01672895811498165, 0.0029159365221858025, 0.0732010006904602, 0.014939391985535622, 0.03966539725661278, -0.062130335718393326, -0.0044125947169959545, -0.0434754341840744, 0.0708429142832756, 0.10752661526203156, 0.04952787980437279, -0.049794524908065796, -0.007404025178402662, 0.157446026802063, -0.04366330802440643, -0.006946813780814409, -0.12804196774959564, 0.3338235914707184, 0.014240262098610401, 0.014518296346068382, 0.04587463289499283, -0.07438957691192627, -0.05406296253204346, 0.19845381379127502, 0.09336388856172562, -0.023284615948796272, -0.020354608073830605, 0.00038816939922980964, -0.029801104217767715, -0.023109011352062225, 0.15080976486206055, 0.03328078240156174, 0.13364802300930023, -0.055235058069229126, -0.04599776491522789, -0.02771192044019699, -0.01239196490496397, -0.12117352336645126, 0.13452042639255524, -0.027086874470114708, -0.021623630076646805, -0.07404016703367233, 0.026742249727249146, 0.07413611561059952, -0.3080992102622986, 0.0006545035867020488, -0.037040404975414276, -0.10952938348054886, -0.0023402422666549683, -0.023901455104351044, -0.02395189367234707, 0.049224961549043655, -0.04474952071905136, 0.07154754549264908, 0.037680745124816895, 0.034762926399707794, -0.025897298008203506, -0.09351092576980591, 0.1686139553785324, 0.0509403832256794, 0.09616714715957642, 0.027781985700130463, 0.07518602162599564, 0.05542682111263275, 0.03322329744696617, -0.09375566989183426, 0.04695881903171539, 0.012517360039055347, -0.08415597677230835, -0.05141571909189224, 0.1220250353217125, -0.003134830156341195, 0.043370574712753296, 0.04028988629579544, -0.11033371090888977, 0.012940587475895882, 0.07282747328281403, -0.06707713752985, -0.09988023340702057, -0.006723677273839712, -0.09018605202436447, 0.15874126553535461, 0.13993553817272186, -0.017042089253664017, 0.020722990855574608, -0.06459005922079086, -0.0035433415323495865, 0.053798187524080276, 0.010935361497104168, -0.017428958788514137, -0.191581130027771, 0.030090082436800003, -0.08813566714525223, -0.008161652833223343, -0.22908546030521393, -0.10808013379573822, -0.009658570401370525, -0.05065684765577316, -0.029673371464014053, 0.059859804809093475, 0.027080891653895378, 0.06686483323574066, -0.015569052658975124, -0.0379338264465332, -0.028865771368145943, 0.0873289704322815, -0.11084245890378952, -0.06483254581689835 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_400k"]}
null
google/multiberts-seed_2-step_400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 400k (max: 2000k, i.e., 2M steps)." ]
[ -0.07724679261445999, 0.0924520343542099, -0.0024587453808635473, 0.043655894696712494, 0.0779455304145813, -0.012695372104644775, 0.07625333964824677, 0.10256408154964447, -0.01803731918334961, 0.025755124166607857, 0.07566354423761368, 0.006525035016238689, 0.02034183219075203, 0.09691697359085083, 0.0232851542532444, -0.22600074112415314, 0.0184877160936594, -0.03221771866083145, -0.09154979139566422, 0.07671331614255905, 0.09998325258493423, -0.07806840538978577, 0.047592829912900925, 0.027247976511716843, -0.11124479025602341, 0.0474480539560318, 0.004199517425149679, -0.01883305422961712, 0.1349140703678131, -0.0017524503637105227, 0.051461707800626755, 0.05298587679862976, 0.04996667802333832, -0.13098104298114777, 0.0065980940125882626, 0.05644235387444496, 0.05935374274849892, 0.04760272800922394, 0.023764068260788918, 0.07824353873729706, 0.0023365437518805265, 0.024961506947875023, 0.04351578280329704, 0.024267546832561493, -0.07553163170814514, -0.06533072888851166, -0.10547971725463867, 0.036461587995290756, 0.02860931307077408, 0.003007624763995409, 0.010971381328999996, 0.12201379239559174, -0.034168269485235214, 0.04254155606031418, 0.1779072880744934, -0.3480921685695648, -0.013330264948308468, 0.0731189101934433, 0.0407615527510643, 0.12981051206588745, -0.005927594378590584, -0.01775033213198185, 0.07671859860420227, 0.02681957557797432, 0.08755436539649963, -0.0409759022295475, 0.034621693193912506, -0.054299723356962204, -0.15450984239578247, -0.04428853467106819, 0.0971565768122673, -0.0023416844196617603, -0.13865084946155548, -0.036149702966213226, -0.04454910010099411, 0.036514587700366974, 0.01232382282614708, -0.03610370680689812, 0.03360069543123245, 0.016763124614953995, -0.022349946200847626, -0.009315411560237408, -0.10438443720340729, -0.054264865815639496, 0.029995756223797798, 0.08097685873508453, 0.10103915631771088, 0.06943827867507935, 0.002775602973997593, 0.11399313062429428, -0.1845671385526657, -0.05054382234811783, -0.028325295075774193, -0.054551173001527786, -0.0468917042016983, -0.009710452519357204, -0.10673360526561737, -0.04064087197184563, 0.007840581238269806, 0.13060855865478516, 0.0035287386272102594, 0.02745824307203293, -0.030133690685033798, 0.009012212045490742, 0.055248845368623734, 0.04656472057104111, -0.005528835114091635, 0.014090452343225479, 0.02485578879714012, -0.01356289628893137, -0.01852022483944893, 0.01613946072757244, 0.0010616012150421739, 0.024067126214504242, 0.11725975573062897, 0.025368137285113335, -0.10252951085567474, 0.06728723645210266, -0.019162336364388466, -0.04408537968993187, 0.015095110982656479, -0.08979588001966476, -0.05572771653532982, -0.040083158761262894, 0.00019857774896081537, 0.013341790065169334, -0.005093609448522329, -0.005424796137958765, -0.020802665501832962, -0.04005478695034981, -0.08210664987564087, -0.04683837667107582, -0.05223618820309639, -0.12738506495952606, 0.005081116687506437, -0.16929440200328827, -0.03820566460490227, -0.11655115336179733, -0.18372583389282227, -0.02252981998026371, 0.06284969300031662, -0.011231871321797371, -0.055787503719329834, 0.08154744654893875, 0.04464230686426163, -0.029683705419301987, -0.0011916098883375525, 0.07395706325769424, -0.001864852849394083, 0.0461944155395031, -0.029168153181672096, 0.07075869292020798, 0.0038980513345450163, 0.03251183405518532, -0.0542670339345932, 0.062282294034957886, -0.17806385457515717, 0.04432734474539757, -0.06962887197732925, -0.03142219036817551, -0.08510881662368774, -0.038393285125494, -0.01091703213751316, 0.0032778915483504534, 0.021292250603437424, 0.07487726956605911, -0.1871754229068756, -0.027737196534872055, 0.11860421299934387, -0.16250759363174438, -0.019344761967658997, 0.07388296723365784, -0.046307262033224106, 0.10820690542459488, 0.07118674367666245, 0.1570204496383667, -0.011585810221731663, -0.07987874746322632, 0.05795503035187721, -0.011284782551229, 0.009813027456402779, -0.006676306948065758, 0.0694633275270462, -0.0209182295948267, -0.15809372067451477, 0.03547089546918869, -0.12408452481031418, -0.005801226478070021, -0.07773364335298538, 0.016983559355139732, -0.011135171167552471, -0.06710406392812729, -0.06544113159179688, -0.028704874217510223, 0.06787732243537903, -0.07604958862066269, -0.016387570649385452, 0.02937895990908146, 0.0742143765091896, -0.06993154436349869, 0.06642396003007889, -0.012208249419927597, 0.013320453464984894, -0.08574125170707703, -0.03894427418708801, -0.187397301197052, 0.04922766610980034, 0.10087156295776367, 0.005865938495844603, -0.019770797342061996, 0.14518705010414124, 0.009555434808135033, 0.06973981857299805, -0.05226241052150726, 0.012239825911819935, -0.009963300079107285, -0.005525581538677216, -0.09408280998468399, -0.0944065973162651, -0.07946038246154785, -0.06540733575820923, 0.08810321986675262, -0.12403008341789246, 0.021051662042737007, -0.05784750357270241, 0.04426881670951843, 0.022190598770976067, -0.08302115648984909, -0.019293740391731262, 0.01381763443350792, -0.05772848799824715, -0.05724693089723587, 0.039418190717697144, 0.0692509189248085, -0.012442238628864288, 0.08575540035963058, -0.047517433762550354, -0.07976043969392776, 0.03140673413872719, 0.10066889971494675, -0.10759443044662476, 0.012827059254050255, -0.056609608232975006, -0.04228087514638901, -0.06366080045700073, -0.019836267456412315, 0.08392272889614105, -0.008436803705990314, 0.1364845186471939, -0.0724407359957695, -0.002103912178426981, 0.011789786629378796, -0.021015740931034088, -0.018713803961873055, 0.03528355434536934, 0.054825615137815475, -0.07397715747356415, 0.011947854422032833, 0.04123331233859062, 0.014739644713699818, 0.0661059021949768, -0.052706580609083176, -0.08678844571113586, 0.011069434694945812, 0.03432406112551689, 0.029490124434232712, 0.06957469880580902, -0.012394284829497337, -0.011539136059582233, 0.034397535026073456, 0.01793702132999897, 0.004039715975522995, -0.11857855319976807, 0.06129812076687813, 0.055254511535167694, 0.0029878471978008747, 0.057809848338365555, -0.017871852964162827, -0.03839430958032608, 0.08156886696815491, 0.03829391300678253, 0.0023996662348508835, -0.014109594747424126, -0.01655333675444126, -0.11655696481466293, 0.18753091990947723, -0.06247270479798317, -0.16146817803382874, -0.07945055514574051, -0.09591308981180191, 0.004524182062596083, 0.027000445872545242, 0.03909211978316307, -0.021740412339568138, -0.04442388191819191, -0.12152334302663803, 0.06567007303237915, -0.03682271018624306, 0.0677168071269989, 0.10925248265266418, -0.04122418537735939, 0.056965965777635574, -0.12601527571678162, -0.0077676912769675255, -0.08292435854673386, -0.07773979008197784, 0.0612434558570385, -0.049594465643167496, 0.025986235588788986, 0.09630638360977173, 0.02568262629210949, -0.01864359900355339, -0.02477734535932541, 0.2032964676618576, 0.03943593055009842, 0.044159844517707825, 0.12962158024311066, -0.061841726303100586, 0.055449478328228, 0.08403818309307098, 0.011814113706350327, -0.044673651456832886, 0.05216057598590851, 0.04170328006148338, -0.06765653192996979, -0.1941739320755005, -0.022985266521573067, -0.006232567597180605, -0.0446895994246006, 0.0743195116519928, 0.036513254046440125, -0.0008005257113836706, 0.07034700363874435, 0.01394637580960989, 0.06273065507411957, 0.001108334749005735, 0.09777828305959702, 0.012028251774609089, -0.03368339315056801, 0.08884430676698685, -0.020982936024665833, -0.01134692132472992, 0.08527862280607224, -0.017992869019508362, 0.28766781091690063, -0.030356144532561302, 0.010515674948692322, 0.11619112640619278, 0.050131503492593765, 0.06387674808502197, 0.12851382791996002, -0.06252489238977432, 0.023752545937895775, -0.07242564857006073, -0.05931234732270241, -0.004961295053362846, 0.048182420432567596, -0.055258095264434814, 0.014324042946100235, -0.07453317940235138, 0.016414308920502663, -0.02033332735300064, 0.31285038590431213, 0.11214938014745712, -0.10359158366918564, -0.05957407131791115, 0.008043800480663776, -0.09982205182313919, -0.07268613576889038, 0.045326124876737595, 0.07201647758483887, -0.13947702944278717, 0.006074741017073393, -0.026049872860312462, 0.074182890355587, -0.02146337181329727, 0.01785239763557911, 0.030927907675504684, 0.0357724204659462, -0.03731397166848183, 0.008067436516284943, -0.1786726415157318, 0.19033703207969666, 0.008030049502849579, 0.02051936648786068, -0.051522836089134216, 0.03310483321547508, 0.009788230061531067, -0.031277142465114594, 0.06151971593499184, 0.022372297942638397, -0.032548557966947556, -0.05382496863603592, -0.052872128784656525, 0.0160160344094038, 0.07986891269683838, -0.04693097993731499, 0.10613358020782471, -0.006547565571963787, 0.0414203479886055, 0.01756414771080017, 0.08699598163366318, -0.18285620212554932, -0.0868678092956543, 0.030448047444224358, -0.05959305167198181, -0.09019569307565689, -0.08211316168308258, -0.09331728518009186, 0.0021939179860055447, 0.25269368290901184, -0.11661463230848312, -0.0766262635588646, -0.09474001079797745, 0.02208605781197548, 0.10646199434995651, -0.0479496493935585, 0.02437591925263405, -0.003202807391062379, 0.12797491252422333, -0.06363104283809662, -0.1355670690536499, 0.022504335269331932, -0.08863341808319092, -0.16511328518390656, -0.06629505008459091, 0.11905107647180557, 0.05818772315979004, 0.03688248246908188, -0.02570127695798874, 0.023275677114725113, 0.03428085520863533, -0.036709096282720566, 0.0001983303955057636, 0.06640592217445374, 0.09762556105852127, 0.03694425895810127, -0.11438658088445663, 0.021195100620388985, -0.06425252556800842, -0.06417436897754669, 0.07545549422502518, 0.261832058429718, -0.05791173502802849, 0.1260780245065689, 0.10979104042053223, -0.07870396226644516, -0.15224041044712067, 0.027570568025112152, 0.09132247418165207, -0.014742952771484852, 0.01564883254468441, -0.1589432656764984, 0.08902759104967117, 0.1135922446846962, -0.023416776210069656, 0.013002926483750343, -0.18664440512657166, -0.1296604573726654, 0.06487181037664413, 0.09512922167778015, 0.27376291155815125, -0.06135646998882294, -0.043792322278022766, 0.017349017783999443, -0.09648490697145462, 0.009467411786317825, 0.12048409879207611, 0.06545579433441162, -0.025477595627307892, -0.07021311670541763, 0.014809343963861465, -0.03839636966586113, 0.09744121879339218, 0.05385405197739601, 0.05730847269296646, -0.0031148705165833235, 0.01711437478661537, -0.026694923639297485, -0.04395800456404686, 0.06062035635113716, 0.024206511676311493, 0.04834999144077301, -0.08275186270475388, -0.027431126683950424, -0.06833328306674957, 0.02601071260869503, -0.024255840107798576, -0.0764862522482872, -0.05988375470042229, 0.07607676088809967, 0.04615412652492523, -0.02587493136525154, 0.020598648115992546, 0.03120003454387188, 0.12104784697294235, 0.16213779151439667, -0.005180503241717815, -0.044483840465545654, -0.06202111393213272, -0.03710527345538139, -0.019300395622849464, 0.07434069365262985, -0.04387937858700752, 0.025849873200058937, 0.06675922125577927, 0.02012190781533718, 0.09870857000350952, 0.057618457823991776, -0.1121467798948288, -0.015393894165754318, 0.033026549965143204, -0.16095852851867676, 0.01548891793936491, 0.0009094398701563478, 0.02193479984998703, -0.0346161350607872, 0.027641940861940384, 0.15200157463550568, -0.06304791569709778, -0.037578705698251724, -0.04139215126633644, 0.06887784600257874, 0.018649665638804436, 0.13966487348079681, 0.03223233297467232, 0.036661192774772644, -0.08199909329414368, 0.1237446516752243, 0.03888338431715965, -0.032897576689720154, 0.01843348704278469, -0.026772433891892433, -0.1084991991519928, 0.01363429706543684, 0.059654440730810165, 0.04108072817325592, -0.04752388969063759, -0.007996868342161179, -0.026716608554124832, -0.07906298339366913, 0.05634528025984764, 0.17730380594730377, 0.06643068045377731, 0.0731930360198021, -0.05600669980049133, -0.036068495362997055, -0.07689318060874939, 0.04169173538684845, 0.04355023428797722, 0.07326187193393707, -0.0759754404425621, 0.10770923644304276, 0.009774843230843544, 0.04493614658713341, -0.03174098581075668, -0.0540490448474884, -0.09932827204465866, -0.055113598704338074, -0.10810257494449615, 0.0076922583393752575, -0.07332164794206619, -0.038665272295475006, -0.0000037731103930127574, -0.005950828082859516, -0.00695711188018322, 0.046984534710645676, -0.06269541382789612, -0.010625782422721386, -0.02580568753182888, 0.03502431511878967, -0.06258383393287659, -0.03900090977549553, 0.030268220230937004, -0.1026596948504448, 0.09218306094408035, 0.0533917173743248, 0.008856954984366894, 0.008317964151501656, 0.09987477958202362, -0.02097724936902523, 0.023097284138202667, 0.015603977255523205, -0.047127366065979004, -0.0835132747888565, -0.00021577290317509323, -0.01071819756180048, -0.017450127750635147, -0.009328571148216724, 0.09175878763198853, -0.08700007200241089, 0.03328263387084007, -0.010198704898357391, -0.005703756585717201, -0.07440229505300522, -0.013106330297887325, 0.09757522493600845, 0.0972839891910553, 0.04544183239340782, -0.091567762196064, 0.013364020735025406, -0.1437474638223648, -0.037679724395275116, 0.005583758931607008, -0.01074138842523098, -0.12318316847085953, -0.011890018358826637, 0.02139243856072426, -0.0014786545652896166, 0.20810946822166443, -0.05643697455525398, -0.021062426269054413, 0.01860286295413971, -0.09459821879863739, 0.11048557609319687, -0.02510964311659336, 0.17902107536792755, -0.006664969492703676, -0.041464608162641525, -0.014796579256653786, 0.03875603899359703, 0.018639031797647476, -0.025375880300998688, 0.18047215044498444, 0.13474635779857635, 0.035035766661167145, 0.040674950927495956, -0.02781897597014904, -0.0018392896745353937, -0.05277705937623978, -0.030909324064850807, 0.032289668917655945, 0.03707246482372284, 0.01832650974392891, 0.14971156418323517, 0.06511442363262177, -0.16801989078521729, 0.03266596794128418, -0.029958443716168404, -0.03773781657218933, -0.11560464650392532, -0.08867572993040085, -0.03300274908542633, -0.07051718980073929, 0.008018993772566319, -0.12292900681495667, 0.007896577939391136, 0.17958779633045197, 0.05438776686787605, 0.027147745713591576, 0.004266148898750544, -0.12875857949256897, -0.034197915345430374, 0.05226568132638931, 0.014994732104241848, 0.02531786635518074, 0.06098451092839241, -0.0017085650470107794, 0.05880669876933098, 0.03743913024663925, 0.013762542977929115, 0.0018664236413314939, 0.07636579871177673, 0.0150098642334342, 0.04113676771521568, -0.06215649098157883, -0.005484602879732847, -0.03908902034163475, 0.07178260385990143, 0.10206243395805359, 0.04942845180630684, -0.04914729297161102, -0.008499628864228725, 0.16256722807884216, -0.043820224702358246, 0.0010560920927673578, -0.12710395455360413, 0.33816587924957275, 0.009199625812470913, 0.012015211395919323, 0.04727904498577118, -0.07656317949295044, -0.05066831037402153, 0.20612139999866486, 0.09208326786756516, -0.020263247191905975, -0.022914409637451172, 0.0002732501015998423, -0.031047435477375984, -0.021357513964176178, 0.15054532885551453, 0.03520386293530464, 0.126645028591156, -0.05651041492819786, -0.04343897104263306, -0.028068723157048225, -0.009759357199072838, -0.12860094010829926, 0.13804882764816284, -0.033392488956451416, -0.022922880947589874, -0.0725683644413948, 0.026001522317528725, 0.07586807012557983, -0.3222588300704956, 0.005576088558882475, -0.03319048136472702, -0.10921385884284973, -0.0019904945511370897, -0.017855944111943245, -0.023382974788546562, 0.048743922263383865, -0.04747861251235008, 0.07077957689762115, 0.04974942281842232, 0.033245593309402466, -0.02134752832353115, -0.09504714608192444, 0.1675243228673935, 0.04167429730296135, 0.09188536554574966, 0.027214698493480682, 0.07836317270994186, 0.05397728085517883, 0.03583485633134842, -0.09454359114170074, 0.04440906643867493, 0.012118825688958168, -0.09235117584466934, -0.0532502681016922, 0.1231791153550148, -0.0022593990433961153, 0.04425743222236633, 0.04255300015211105, -0.10614611953496933, 0.010873634368181229, 0.07469398528337479, -0.069589763879776, -0.09692852199077606, -0.010019325651228428, -0.08909568190574646, 0.1563432216644287, 0.1428842395544052, -0.01633172482252121, 0.02303161472082138, -0.06570040434598923, -0.008644483052194118, 0.05662108585238457, 0.006321798078715801, -0.01912856474518776, -0.1897793710231781, 0.031075427308678627, -0.08443460613489151, -0.006539022084325552, -0.22775371372699738, -0.1051306277513504, -0.012924359180033207, -0.05111808702349663, -0.027023306116461754, 0.06071273982524872, 0.028966810554265976, 0.06588378548622131, -0.015052341856062412, -0.03744170069694519, -0.028338493779301643, 0.08901333063840866, -0.1084098294377327, -0.06557656824588776 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_40k"]}
null
google/multiberts-seed_2-step_40k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_40k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 40k (max: 2000k, i.e., 2M steps)." ]
[ -0.07821808755397797, 0.0985182523727417, -0.002567077288404107, 0.03884022682905197, 0.0751105546951294, -0.013372745364904404, 0.08080071210861206, 0.10385073721408844, -0.013878648169338703, 0.02939104288816452, 0.07623126357793808, 0.00541834207251668, 0.01914425939321518, 0.09499827772378922, 0.023312758654356003, -0.22795726358890533, 0.018758639693260193, -0.03020583838224411, -0.08710911870002747, 0.07684560865163803, 0.10020092874765396, -0.08010772615671158, 0.04550552740693092, 0.02905915677547455, -0.11142101138830185, 0.04499227553606033, 0.0031277434900403023, -0.0169061329215765, 0.134614497423172, -0.002089699497446418, 0.05122422054409981, 0.05422589182853699, 0.04677612707018852, -0.13371694087982178, 0.00659819133579731, 0.05799547955393791, 0.056331560015678406, 0.0480264276266098, 0.025191636756062508, 0.07913309335708618, 0.007679727394133806, 0.021531520411372185, 0.04228408262133598, 0.02350417897105217, -0.07440363615751266, -0.06792159378528595, -0.10409601032733917, 0.035851459950208664, 0.026849085465073586, 0.0025566108524799347, 0.010157978162169456, 0.13076628744602203, -0.03412455692887306, 0.04464743658900261, 0.18016941845417023, -0.3494710624217987, -0.010995886288583279, 0.07611220329999924, 0.0457807257771492, 0.12731307744979858, -0.006220695096999407, -0.018402647227048874, 0.0766528993844986, 0.02529824525117874, 0.08555901050567627, -0.0412738136947155, 0.044665317982435226, -0.05332120135426521, -0.1565578132867813, -0.0454271025955677, 0.08974017202854156, -0.0032258525025099516, -0.1367071270942688, -0.03868255019187927, -0.04820292070508003, 0.039409905672073364, 0.010345155373215675, -0.03486133739352226, 0.035143863409757614, 0.017581211403012276, -0.018540339544415474, -0.008798835799098015, -0.10398786514997482, -0.05361646041274071, 0.03153344616293907, 0.07746566832065582, 0.10320518165826797, 0.06716962903738022, 0.0005169282667338848, 0.11149369925260544, -0.19608959555625916, -0.0518941730260849, -0.028129620477557182, -0.051024217158555984, -0.04545897990465164, -0.009898453019559383, -0.10987889021635056, -0.04289105907082558, 0.010737812146544456, 0.13179630041122437, -0.003802071325480938, 0.026831770315766335, -0.033768873661756516, 0.010652011260390282, 0.057759977877140045, 0.04657880961894989, -0.005134891718626022, 0.013443201780319214, 0.02266901545226574, -0.01587318815290928, -0.018017824739217758, 0.01573879085481167, 0.000010286281394655816, 0.022517139092087746, 0.1191939041018486, 0.022954218089580536, -0.10181134194135666, 0.06829635053873062, -0.018157286569476128, -0.044463299214839935, 0.016287174075841904, -0.08869673311710358, -0.05546487495303154, -0.037745144218206406, -0.00003529257082846016, 0.015329821035265923, -0.006012788042426109, -0.004167108330875635, -0.023123115301132202, -0.04372841492295265, -0.08238223940134048, -0.04614034667611122, -0.05209946632385254, -0.12808862328529358, 0.007263916544616222, -0.17718806862831116, -0.03686292842030525, -0.11352178454399109, -0.1872374713420868, -0.023556027561426163, 0.059908803552389145, -0.01181733701378107, -0.05635210871696472, 0.0800119936466217, 0.046286292374134064, -0.028672968968749046, -0.00025634156190790236, 0.06952264904975891, -0.002230128739029169, 0.045372191816568375, -0.027090877294540405, 0.0707826018333435, 0.004913220182061195, 0.032545316964387894, -0.054070889949798584, 0.06292077898979187, -0.17645204067230225, 0.044743552803993225, -0.06894159317016602, -0.03222831338644028, -0.08748812973499298, -0.0375044159591198, -0.005245822947472334, 0.005031944718211889, 0.01914266124367714, 0.07373200356960297, -0.18551971018314362, -0.030450474470853806, 0.1267014741897583, -0.161306232213974, -0.01822724938392639, 0.0746217891573906, -0.047019533812999725, 0.10385406017303467, 0.07081060111522675, 0.1587124466896057, -0.010899030603468418, -0.08084380626678467, 0.058504361659288406, -0.009977886453270912, 0.013285431079566479, -0.008513248525559902, 0.07215723395347595, -0.021163366734981537, -0.15509521961212158, 0.03282647579908371, -0.1322150081396103, -0.005749572534114122, -0.07743998616933823, 0.018563760444521904, -0.011115080676972866, -0.06539930403232574, -0.06378351897001266, -0.026823850348591805, 0.06912986189126968, -0.07447472959756851, -0.018008332699537277, 0.03296084702014923, 0.07551649212837219, -0.07159791886806488, 0.06614156067371368, -0.014688072726130486, 0.014771387912333012, -0.08629211783409119, -0.03921327367424965, -0.18998748064041138, 0.05054599791765213, 0.10165286809206009, 0.006089736241847277, -0.020749248564243317, 0.15131452679634094, 0.010767667554318905, 0.07002027332782745, -0.04949759319424629, 0.011733516119420528, -0.009792187251150608, -0.007009361404925585, -0.0934988483786583, -0.0985473170876503, -0.07589003443717957, -0.06825562566518784, 0.08480946719646454, -0.12918704748153687, 0.021277375519275665, -0.05569317936897278, 0.04629078134894371, 0.021498216316103935, -0.08150085806846619, -0.017989329993724823, 0.012199437245726585, -0.0601133331656456, -0.05629466101527214, 0.041107177734375, 0.07019655406475067, -0.014083432033658028, 0.09156078845262527, -0.05072501301765442, -0.08306468278169632, 0.030638741329312325, 0.09734833240509033, -0.10408680140972137, 0.009358956478536129, -0.05780617892742157, -0.04262516275048256, -0.06094842031598091, -0.016647160053253174, 0.08249380439519882, -0.008016455918550491, 0.14014948904514313, -0.073330819606781, -0.005421988200396299, 0.012953792698681355, -0.02273823320865631, -0.01849500834941864, 0.03664827346801758, 0.05493863299489021, -0.07275813072919846, 0.014349742792546749, 0.04131190478801727, 0.012423037551343441, 0.06977005302906036, -0.055639758706092834, -0.08926194906234741, 0.009901568293571472, 0.0368620939552784, 0.028968939557671547, 0.06702689081430435, -0.01895490661263466, -0.013918212614953518, 0.03555164486169815, 0.01582261174917221, 0.004601373802870512, -0.11843277513980865, 0.062261417508125305, 0.055773910135030746, 0.003695082850754261, 0.05615827813744545, -0.017231523990631104, -0.039489783346652985, 0.080973319709301, 0.03760876506567001, 0.001148315379396081, -0.016074785962700844, -0.017056021839380264, -0.11661870777606964, 0.18946726620197296, -0.0600423626601696, -0.15921519696712494, -0.07825019210577011, -0.10285831242799759, 0.004390241112560034, 0.027057087048888206, 0.0379612073302269, -0.022040510550141335, -0.043611444532871246, -0.11971390247344971, 0.06612440198659897, -0.03892884403467178, 0.06911791115999222, 0.10913309454917908, -0.0410858616232872, 0.057439934462308884, -0.12478465586900711, -0.0071317777037620544, -0.08228354156017303, -0.07567140460014343, 0.06251155585050583, -0.04944032058119774, 0.024229474365711212, 0.096999391913414, 0.027001187205314636, -0.01894889771938324, -0.02409854717552662, 0.20224091410636902, 0.03825230896472931, 0.04228789731860161, 0.13065312802791595, -0.06408209353685379, 0.05708610266447067, 0.08115024864673615, 0.009777402505278587, -0.0435032956302166, 0.049346037209033966, 0.042286887764930725, -0.06519700586795807, -0.19584491848945618, -0.02338488958775997, -0.005772648379206657, -0.04397938400506973, 0.07631304860115051, 0.03551063686609268, 0.008497258648276329, 0.06915158778429031, 0.012381446547806263, 0.06853621453046799, -0.0028949729166924953, 0.09864553064107895, 0.012592497281730175, -0.03396650403738022, 0.08759798109531403, -0.021300356835126877, -0.010784133337438107, 0.08558496832847595, -0.016335343942046165, 0.2864769697189331, -0.028557447716593742, 0.021450867876410484, 0.11776009202003479, 0.04631815105676651, 0.0646134689450264, 0.12438260763883591, -0.06521483510732651, 0.022378332912921906, -0.07345961034297943, -0.06039408594369888, -0.0028351335786283016, 0.04944762587547302, -0.053876813501119614, 0.009712355211377144, -0.07229521870613098, 0.016273096203804016, -0.0201711542904377, 0.31307870149612427, 0.11287522315979004, -0.10712532699108124, -0.06027684360742569, 0.006830048747360706, -0.09919793903827667, -0.0726475715637207, 0.04425172880291939, 0.07140768319368362, -0.1355714648962021, 0.008820364251732826, -0.026881661266088486, 0.07478047162294388, -0.02196984365582466, 0.018915066495537758, 0.027867387980222702, 0.03560230880975723, -0.03554839268326759, 0.009128698147833347, -0.18253688514232635, 0.19173085689544678, 0.008803017437458038, 0.016865484416484833, -0.05198941379785538, 0.033500127494335175, 0.008463840931653976, -0.026265263557434082, 0.06353890150785446, 0.022618010640144348, -0.032887816429138184, -0.047436077147722244, -0.05271274596452713, 0.013792216777801514, 0.07950960844755173, -0.04728357493877411, 0.10877272486686707, -0.007902614772319794, 0.04122716188430786, 0.019248737022280693, 0.08001242578029633, -0.1783953458070755, -0.0841803103685379, 0.03170463815331459, -0.05827438831329346, -0.09947407990694046, -0.08120466768741608, -0.09288709610700607, -0.0007473031873814762, 0.2518230676651001, -0.12302663922309875, -0.07438492029905319, -0.09511297196149826, 0.027727345004677773, 0.10359689593315125, -0.05046973004937172, 0.024140214547514915, -0.005172061733901501, 0.13382777571678162, -0.06435759365558624, -0.13405084609985352, 0.024302974343299866, -0.0907173827290535, -0.16648323833942413, -0.06610620021820068, 0.1200944259762764, 0.05895642191171646, 0.03718193992972374, -0.02658831886947155, 0.02377128228545189, 0.03086209110915661, -0.034263819456100464, 0.0018691502045840025, 0.06972788274288177, 0.10221990942955017, 0.03166971728205681, -0.11003429442644119, 0.02321724407374859, -0.061698682606220245, -0.06359215825796127, 0.07846184074878693, 0.26310229301452637, -0.05752486363053322, 0.12637102603912354, 0.11195331066846848, -0.07854346930980682, -0.15242747962474823, 0.02767082303762436, 0.0922214463353157, -0.014425587840378284, 0.015399501658976078, -0.16144303977489471, 0.08579735457897186, 0.11022338271141052, -0.023373747244477272, 0.00869529414921999, -0.18863947689533234, -0.12790079414844513, 0.06739921122789383, 0.09344466030597687, 0.2740706205368042, -0.06325697898864746, -0.047115832567214966, 0.017934409901499748, -0.09181006997823715, 0.011861340142786503, 0.11390569061040878, 0.0625884085893631, -0.02432377263903618, -0.06990750133991241, 0.01575266569852829, -0.04013672471046448, 0.09662866592407227, 0.05458882823586464, 0.05554291978478432, -0.003282382618635893, 0.01843889057636261, -0.022206589579582214, -0.04481028392910957, 0.059377484023571014, 0.020905382931232452, 0.047807227820158005, -0.08654239028692245, -0.027964897453784943, -0.06850186735391617, 0.02680058963596821, -0.02405443601310253, -0.07608713209629059, -0.05872173607349396, 0.0752522274851799, 0.04772971197962761, -0.024873556569218636, 0.02533416636288166, 0.03159784898161888, 0.1182229071855545, 0.16488510370254517, -0.00490267900750041, -0.036407142877578735, -0.0648246631026268, -0.03886786475777626, -0.016601987183094025, 0.07497627288103104, -0.052747488021850586, 0.024702193215489388, 0.0650494322180748, 0.022364607080817223, 0.09878791123628616, 0.054944075644016266, -0.11397036164999008, -0.016808513551950455, 0.03130178898572922, -0.1623997837305069, 0.008886540308594704, 0.0011927583254873753, 0.025347093120217323, -0.03147614374756813, 0.030227666720747948, 0.15294788777828217, -0.06306260079145432, -0.035824913531541824, -0.0410994254052639, 0.0681006908416748, 0.021128248423337936, 0.1376885622739792, 0.03342601656913757, 0.038307175040245056, -0.08249950408935547, 0.12226613610982895, 0.03943996876478195, -0.03472236543893814, 0.02022034488618374, -0.02771359123289585, -0.10844705253839493, 0.012173273600637913, 0.061715710908174515, 0.04585247114300728, -0.04946388304233551, -0.01172949280589819, -0.02935262769460678, -0.07265853881835938, 0.05890754610300064, 0.18069176375865936, 0.06763023883104324, 0.07310358434915543, -0.05601628124713898, -0.03688277304172516, -0.07814741879701614, 0.04167674109339714, 0.03932146355509758, 0.07350275665521622, -0.07649774849414825, 0.11141358315944672, 0.010102864354848862, 0.046065062284469604, -0.03162756934762001, -0.053357403725385666, -0.09835229814052582, -0.05564822256565094, -0.10681270807981491, 0.010759943164885044, -0.07446324825286865, -0.039472293108701706, -0.00115594535600394, -0.005636897869408131, -0.005949121899902821, 0.04790826141834259, -0.06267429143190384, -0.009206890128552914, -0.026097053661942482, 0.036132365465164185, -0.06432738900184631, -0.03682739660143852, 0.029445398598909378, -0.10198891907930374, 0.09442798793315887, 0.051692698150873184, 0.008970691822469234, 0.009300981648266315, 0.10009604692459106, -0.01983284205198288, 0.02523595280945301, 0.01382908783853054, -0.04738447070121765, -0.08167430758476257, 0.00005960795533610508, -0.011458571068942547, -0.017850762233138084, -0.010691425763070583, 0.09023994207382202, -0.08579767495393753, 0.03530993312597275, -0.008712991140782833, -0.00728102819994092, -0.07554993778467178, -0.012766541913151741, 0.09282544255256653, 0.09892473369836807, 0.044926825910806656, -0.08967247605323792, 0.014694496057927608, -0.14208611845970154, -0.03737148642539978, 0.006472320295870304, -0.009942028671503067, -0.12278810143470764, -0.01223145890980959, 0.019998902454972267, -0.0038388227112591267, 0.210782989859581, -0.05753029137849808, -0.01804775930941105, 0.018039381131529808, -0.09439513087272644, 0.11030624806880951, -0.026133324950933456, 0.18179790675640106, -0.0065238322131335735, -0.040286365896463394, -0.01633390784263611, 0.03946699574589729, 0.019838055595755577, -0.02784378081560135, 0.17744678258895874, 0.13658204674720764, 0.0365368016064167, 0.04122958704829216, -0.02621268853545189, -0.0020874531473964453, -0.05972801893949509, -0.02192176878452301, 0.030647091567516327, 0.03911080211400986, 0.019539589062333107, 0.16073109209537506, 0.0694565400481224, -0.16846759617328644, 0.0329594686627388, -0.028961025178432465, -0.036590639501810074, -0.11607823520898819, -0.09267866611480713, -0.03431437909603119, -0.07326769083738327, 0.006762576289474964, -0.12217549979686737, 0.00836557149887085, 0.17615467309951782, 0.05568554252386093, 0.025554394349455833, 0.0030121628660708666, -0.12667690217494965, -0.03551388904452324, 0.05255024880170822, 0.01599576696753502, 0.024952227249741554, 0.059000421315431595, -0.0003766851732507348, 0.0621558241546154, 0.03755118325352669, 0.014021394774317741, 0.00007378606824204326, 0.08167590945959091, 0.018253732472658157, 0.03945507854223251, -0.06412540376186371, -0.004275603219866753, -0.03859835863113403, 0.06974776089191437, 0.09583763778209686, 0.04882604628801346, -0.04888034611940384, -0.009381826035678387, 0.15836253762245178, -0.04250157251954079, 0.003212563693523407, -0.12747956812381744, 0.3331756889820099, 0.009618728421628475, 0.01257761288434267, 0.04721032828092575, -0.07773738354444504, -0.049654413014650345, 0.20235005021095276, 0.08862350136041641, -0.01930926740169525, -0.02186805196106434, 0.0027221161872148514, -0.03046439401805401, -0.020952967926859856, 0.14755189418792725, 0.03511438146233559, 0.12716838717460632, -0.05488650128245354, -0.051084745675325394, -0.02825997583568096, -0.010773778893053532, -0.12575697898864746, 0.13735659420490265, -0.03016863577067852, -0.024480363354086876, -0.07170232385396957, 0.026724552735686302, 0.07728191465139389, -0.32319262623786926, 0.0038652571383863688, -0.03353751078248024, -0.10914457589387894, -0.0026808264665305614, -0.014832945540547371, -0.021666064858436584, 0.047173872590065, -0.046705201268196106, 0.0683031901717186, 0.049605898559093475, 0.03346315398812294, -0.024601560086011887, -0.0895724669098854, 0.16625253856182098, 0.0461389385163784, 0.09184350073337555, 0.0264681838452816, 0.078652024269104, 0.05511397868394852, 0.03406423702836037, -0.09338140487670898, 0.04311423748731613, 0.013788734562695026, -0.09130880236625671, -0.054791294038295746, 0.12442705780267715, -0.002062018495053053, 0.03959701955318451, 0.04548392444849014, -0.10883548110723495, 0.011536001227796078, 0.07316930592060089, -0.07269086688756943, -0.09875205159187317, -0.008260734379291534, -0.08913586288690567, 0.15531791746616364, 0.14285482466220856, -0.016354773193597794, 0.02216959372162819, -0.06674196571111679, -0.006387913133949041, 0.05620362237095833, 0.009054960682988167, -0.01904759556055069, -0.18677745759487152, 0.03309662640094757, -0.08170076459646225, -0.002438174095004797, -0.22798635065555573, -0.10299888998270035, -0.011085104197263718, -0.04943940415978432, -0.0293586403131485, 0.05914226919412613, 0.02727196179330349, 0.06537268310785294, -0.01571635715663433, -0.039935026317834854, -0.027949342504143715, 0.0877404734492302, -0.10795789957046509, -0.06688039749860764 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_500k"]}
null
google/multiberts-seed_2-step_500k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_500k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 500k (max: 2000k, i.e., 2M steps)." ]
[ -0.07789350301027298, 0.10018110275268555, -0.002514337655156851, 0.043711960315704346, 0.08058828115463257, -0.014072788879275322, 0.08010949939489365, 0.10208848863840103, -0.016004513949155807, 0.028884435072541237, 0.07787494361400604, 0.0016836069989949465, 0.023212457075715065, 0.10352827608585358, 0.023426594212651253, -0.2218877077102661, 0.02005171589553356, -0.031223798170685768, -0.08890422433614731, 0.07662927359342575, 0.09827441722154617, -0.08120369911193848, 0.04565401002764702, 0.025284186005592346, -0.11241107434034348, 0.04989556968212128, 0.002930391812697053, -0.015883997082710266, 0.1292361617088318, -0.0038119920063763857, 0.05040258169174194, 0.05242996662855148, 0.051756374537944794, -0.13864846527576447, 0.00592183880507946, 0.05878695473074913, 0.059962641447782516, 0.046193696558475494, 0.022599993273615837, 0.07740598917007446, -0.0014237627619877458, 0.02401377633213997, 0.042418356984853745, 0.024858368560671806, -0.07395519316196442, -0.05712480470538139, -0.10167503356933594, 0.04037461429834366, 0.03235248848795891, 0.003190311836078763, 0.01038273610174656, 0.11899112910032272, -0.033333055675029755, 0.04071114584803581, 0.18492160737514496, -0.34067603945732117, -0.012365264818072319, 0.07042428851127625, 0.03623617812991142, 0.1274791657924652, -0.005701266694813967, -0.018284283578395844, 0.07894311845302582, 0.023352304473519325, 0.0908486619591713, -0.03951558843255043, 0.027409058064222336, -0.05679207667708397, -0.15560023486614227, -0.0478045754134655, 0.09249453991651535, -0.0016775871627032757, -0.1367419809103012, -0.03466998413205147, -0.04550366476178169, 0.029970845207571983, 0.013328968547284603, -0.03824087977409363, 0.03424511104822159, 0.01564188301563263, -0.016521260142326355, -0.01084254402667284, -0.10419197380542755, -0.057947512716054916, 0.030606435611844063, 0.07999427616596222, 0.10038670152425766, 0.07009809464216232, -0.0003524673811625689, 0.11446080356836319, -0.1872023344039917, -0.04971219599246979, -0.030973702669143677, -0.04912053793668747, -0.05028504505753517, -0.009208012372255325, -0.10336200147867203, -0.043401699513196945, 0.007223755586892366, 0.13309894502162933, 0.006363265216350555, 0.02355373091995716, -0.029701504856348038, 0.008689600974321365, 0.05758906528353691, 0.0450129434466362, -0.007355717942118645, 0.01954413764178753, 0.023454103618860245, -0.009475518018007278, -0.021541137248277664, 0.016073081642389297, 0.0014705510111525655, 0.024881407618522644, 0.11880660057067871, 0.02669241465628147, -0.10032327473163605, 0.06255181133747101, -0.02319394052028656, -0.04333900287747383, 0.0014795723836869001, -0.08979978412389755, -0.053964678198099136, -0.03723762184381485, 0.00045100244460627437, 0.013333114795386791, -0.007475207094103098, -0.005962826777249575, -0.02483365684747696, -0.033304471522569656, -0.0813952162861824, -0.04498714208602905, -0.0567060224711895, -0.1295415759086609, 0.005461592227220535, -0.18365375697612762, -0.03893540799617767, -0.11494813859462738, -0.18433542549610138, -0.023133534938097, 0.06120217218995094, -0.011392993852496147, -0.05767054483294487, 0.07255541533231735, 0.04371146857738495, -0.030369365587830544, -0.0017243019538000226, 0.0780276507139206, -0.0002085402957163751, 0.04532286524772644, -0.02722487971186638, 0.07299669086933136, 0.005634274333715439, 0.032939642667770386, -0.05681759864091873, 0.06159226596355438, -0.15668494999408722, 0.045219920575618744, -0.07184071093797684, -0.033247921615839005, -0.08753300458192825, -0.03485092893242836, -0.01568477973341942, 0.0015541897155344486, 0.0262707881629467, 0.07907000184059143, -0.18814244866371155, -0.02884148620069027, 0.12120918929576874, -0.1626298427581787, -0.019546961411833763, 0.07223827391862869, -0.04396843910217285, 0.10575557500123978, 0.07026581466197968, 0.15032804012298584, -0.006188575178384781, -0.07703233510255814, 0.05385804548859596, -0.009663003496825695, 0.014107768423855305, -0.014548186212778091, 0.0692950114607811, -0.020667219534516335, -0.1558813899755478, 0.03536176308989525, -0.13058514893054962, -0.006193490698933601, -0.08067451417446136, 0.01593266986310482, -0.012112481519579887, -0.06933411210775375, -0.06563038378953934, -0.02825232408940792, 0.06855229288339615, -0.07185554504394531, -0.013422412797808647, 0.03055274486541748, 0.07014734297990799, -0.0683971419930458, 0.06584371626377106, -0.010875449515879154, 0.016124041751027107, -0.08848534524440765, -0.03800930827856064, -0.1868625432252884, 0.053135521709918976, 0.10284680873155594, 0.0034413430839776993, -0.021484527736902237, 0.1437586396932602, 0.009147955104708672, 0.06627453863620758, -0.048512112349271774, 0.012297098524868488, -0.0163870956748724, -0.006519096903502941, -0.0928906500339508, -0.09134607017040253, -0.07847724854946136, -0.06669099628925323, 0.07960854470729828, -0.11663790047168732, 0.02216472662985325, -0.054415520280599594, 0.04390335828065872, 0.023768333718180656, -0.085014708340168, -0.01728036440908909, 0.015031266026198864, -0.05800766497850418, -0.057131148874759674, 0.038518086075782776, 0.06676698476076126, -0.01267297938466072, 0.08390035480260849, -0.04452970623970032, -0.0808335542678833, 0.028783125802874565, 0.10587503015995026, -0.10426919907331467, 0.01333022303879261, -0.057401593774557114, -0.03912607580423355, -0.07247918844223022, -0.01734834723174572, 0.07964763790369034, -0.005935348104685545, 0.13433575630187988, -0.07306772470474243, -0.002089167246595025, 0.01397666148841381, -0.019612161442637444, -0.020687492564320564, 0.03739185631275177, 0.07462140172719955, -0.06726643443107605, 0.01601729355752468, 0.03737688809633255, 0.012950323522090912, 0.06755858659744263, -0.052570879459381104, -0.09046278148889542, 0.012272202409803867, 0.037004776298999786, 0.030041024088859558, 0.06993358582258224, -0.015996050089597702, -0.011251597665250301, 0.032640162855386734, 0.01657736487686634, 0.0037571366410702467, -0.1218186765909195, 0.06237256899476051, 0.05741047114133835, 0.0008748894324526191, 0.05560171976685524, -0.020630154758691788, -0.03902478888630867, 0.0815163254737854, 0.03564878925681114, 0.005728374235332012, -0.01746251806616783, -0.015690183266997337, -0.11834215372800827, 0.18880563974380493, -0.057880207896232605, -0.16161079704761505, -0.07794163376092911, -0.08591460436582565, 0.006449981592595577, 0.025775568559765816, 0.03784850239753723, -0.020016081631183624, -0.04450533166527748, -0.12416556477546692, 0.06650806218385696, -0.03683771938085556, 0.07219751179218292, 0.11319136619567871, -0.03998199850320816, 0.05360127240419388, -0.12499601393938065, -0.006105830892920494, -0.08377943187952042, -0.07941728830337524, 0.05872863531112671, -0.044825803488492966, 0.02809751406311989, 0.09401483833789825, 0.02361014112830162, -0.015929507091641426, -0.026299184188246727, 0.20292901992797852, 0.042211417108774185, 0.03945992514491081, 0.1235925480723381, -0.05938157066702843, 0.0542776994407177, 0.0864526554942131, 0.01035481970757246, -0.04704467952251434, 0.05304889380931854, 0.04593405872583389, -0.06725474447011948, -0.19068603217601776, -0.020426906645298004, -0.008935997262597084, -0.04375321790575981, 0.07882335036993027, 0.03563664108514786, -0.009440824389457703, 0.0707281157374382, 0.012305185198783875, 0.06133643537759781, -0.0055354684591293335, 0.09488888084888458, 0.0025994277093559504, -0.03265872225165367, 0.08760420233011246, -0.019488604739308357, -0.011007800698280334, 0.08417779207229614, -0.0201935563236475, 0.2934209108352661, -0.030368587002158165, 0.010148211382329464, 0.11622315645217896, 0.04838570952415466, 0.06273534893989563, 0.1324019730091095, -0.06353391706943512, 0.023741722106933594, -0.07035272568464279, -0.0574738010764122, -0.005315352696925402, 0.0468859001994133, -0.051608745008707047, 0.017985781654715538, -0.07731916755437851, 0.019613511860370636, -0.021142011508345604, 0.31779688596725464, 0.1150534525513649, -0.0991000160574913, -0.05457688495516777, 0.00768124358728528, -0.09932296723127365, -0.0712139755487442, 0.04361795261502266, 0.07630972564220428, -0.137495756149292, 0.004249283578246832, -0.0264289528131485, 0.07601427286863327, -0.020860714837908745, 0.015811357647180557, 0.02651253528892994, 0.03550545126199722, -0.037540335208177567, 0.007650051265954971, -0.19037654995918274, 0.19436971843242645, 0.00740632601082325, 0.023472817614674568, -0.052481282502412796, 0.03256974369287491, 0.003622459014877677, -0.03709425777196884, 0.06349067389965057, 0.023850098252296448, -0.036150794476270676, -0.05418810620903969, -0.05444585904479027, 0.016103466972708702, 0.0817161351442337, -0.05185446888208389, 0.10627803951501846, -0.006255427375435829, 0.04227976128458977, 0.018045838922262192, 0.0847613662481308, -0.18491417169570923, -0.08913201093673706, 0.03167709335684776, -0.057432953268289566, -0.094990573823452, -0.08075716346502304, -0.09312260895967484, 0.011573194526135921, 0.243570014834404, -0.13662131130695343, -0.07375726103782654, -0.09426554292440414, 0.03355522081255913, 0.10244187712669373, -0.04932020232081413, 0.026539303362369537, -0.0037421961314976215, 0.1270315945148468, -0.06630605459213257, -0.13436473906040192, 0.020625349134206772, -0.08968492597341537, -0.16554509103298187, -0.06461873650550842, 0.11683915555477142, 0.05805526673793793, 0.03655456379055977, -0.027734817937016487, 0.022763052955269814, 0.0394652783870697, -0.038058020174503326, 0.0027668445836752653, 0.07469876855611801, 0.08574549853801727, 0.03963124379515648, -0.11414214968681335, 0.013008550740778446, -0.06394406408071518, -0.06499044597148895, 0.0766371414065361, 0.26407700777053833, -0.05807967111468315, 0.12529973685741425, 0.10999231785535812, -0.08133552968502045, -0.15559601783752441, 0.029843507334589958, 0.09292855113744736, -0.010129082947969437, 0.013743671588599682, -0.1587674915790558, 0.08603791147470474, 0.10892179608345032, -0.02333812788128853, 0.012022880837321281, -0.20014537870883942, -0.13073740899562836, 0.06287713348865509, 0.09843325614929199, 0.2809341251850128, -0.05851456895470619, -0.04371152073144913, 0.019358431920409203, -0.09316164255142212, 0.02068689838051796, 0.12950661778450012, 0.06581434607505798, -0.02689816989004612, -0.07664389163255692, 0.016424722969532013, -0.03992795571684837, 0.09255804121494293, 0.05172330513596535, 0.05744383856654167, -0.0007506262045353651, 0.01834188960492611, -0.023177383467555046, -0.04212119057774544, 0.06273601204156876, 0.018121005967259407, 0.04789575934410095, -0.08100593090057373, -0.029222941026091576, -0.06544652581214905, 0.02819262258708477, -0.023830914869904518, -0.07626079767942429, -0.05800400674343109, 0.07374589145183563, 0.04917147010564804, -0.025039440020918846, 0.011845591478049755, 0.03308134153485298, 0.11683501303195953, 0.163528174161911, -0.0026468709111213684, -0.04661723971366882, -0.059302013367414474, -0.03851493075489998, -0.016829539090394974, 0.0774647518992424, -0.041439324617385864, 0.0249381884932518, 0.06875642389059067, 0.02537454664707184, 0.09816243499517441, 0.05757557973265648, -0.11162302643060684, -0.015504519455134869, 0.033463004976511, -0.16085372865200043, 0.00006396124081220478, 0.0012442379957064986, 0.023690879344940186, -0.04014097526669502, 0.02694101817905903, 0.14913901686668396, -0.06785503029823303, -0.03697727993130684, -0.04274921864271164, 0.07050112634897232, 0.020088516175746918, 0.1449364572763443, 0.030077042058110237, 0.03745980188250542, -0.08005087822675705, 0.1267441064119339, 0.03734923526644707, -0.031922001391649246, 0.021130621433258057, -0.027976687997579575, -0.10507330298423767, 0.015189554542303085, 0.06773814558982849, 0.04025060683488846, -0.04284140467643738, -0.005615177098661661, -0.028460035100579262, -0.07648537307977676, 0.05908787623047829, 0.17940695583820343, 0.06476275622844696, 0.07366091758012772, -0.05662931874394417, -0.03676697984337807, -0.0774671733379364, 0.04324480518698692, 0.04649922251701355, 0.07332844287157059, -0.07446049898862839, 0.10921720415353775, 0.009882810525596142, 0.041843898594379425, -0.03108765184879303, -0.05089283734560013, -0.099906787276268, -0.053524259477853775, -0.0924244076013565, 0.006968987639993429, -0.0689440444111824, -0.03998865932226181, 0.0018842980498448014, -0.007933728396892548, -0.00951668992638588, 0.04918791726231575, -0.06182674318552017, -0.011337758041918278, -0.028972260653972626, 0.03291912376880646, -0.06616874039173126, -0.03781789541244507, 0.03306526318192482, -0.1011778861284256, 0.09076639264822006, 0.04909195005893707, 0.006989072542637587, 0.009084566496312618, 0.08296907693147659, -0.020954284816980362, 0.02411513216793537, 0.016062701120972633, -0.04848851263523102, -0.08159433305263519, 0.004130272194743156, -0.006848025135695934, -0.013385131023824215, -0.009823490865528584, 0.08857344835996628, -0.0883159413933754, 0.028533203527331352, -0.010445721447467804, -0.004166009835898876, -0.07246946543455124, -0.010620982386171818, 0.09731224924325943, 0.0970577523112297, 0.04990199953317642, -0.08990415930747986, 0.013937795534729958, -0.1416129320859909, -0.035304948687553406, 0.006124904844909906, -0.008652052842080593, -0.13094371557235718, -0.011158620938658714, 0.022036418318748474, -0.0015726909041404724, 0.20386576652526855, -0.053288184106349945, -0.020611610263586044, 0.01922755315899849, -0.0943264439702034, 0.11112102121114731, -0.022746654227375984, 0.18211495876312256, -0.005086049437522888, -0.04349728673696518, -0.01904483512043953, 0.0370112769305706, 0.019216876477003098, -0.022908765822649002, 0.18827591836452484, 0.13472439348697662, 0.026917582377791405, 0.04231518879532814, -0.026165323331952095, -0.00023777988099027425, -0.0498526357114315, -0.02341446466743946, 0.026852423325181007, 0.03958115726709366, 0.01702023111283779, 0.1563720405101776, 0.06509006023406982, -0.16564206779003143, 0.03341381251811981, -0.023158160969614983, -0.03654015436768532, -0.11932478100061417, -0.09774629771709442, -0.03477643057703972, -0.07186797261238098, 0.010598891414701939, -0.12247458100318909, 0.009290401823818684, 0.17640487849712372, 0.0540161058306694, 0.027235999703407288, 0.0024155499413609505, -0.1196819469332695, -0.031459879130125046, 0.05696437507867813, 0.01275632157921791, 0.023627595975995064, 0.05571553483605385, -0.003559547709301114, 0.06111639365553856, 0.037391550838947296, 0.01698535680770874, 0.001609002472832799, 0.07174843549728394, 0.014505268074572086, 0.04094264656305313, -0.06131284311413765, -0.0051197875291109085, -0.04496388137340546, 0.06770838797092438, 0.10300365835428238, 0.05077822133898735, -0.048619501292705536, -0.008247572928667068, 0.1628870666027069, -0.04420951381325722, -0.000512491911649704, -0.12859207391738892, 0.3271844983100891, 0.0144409304484725, 0.016555065289139748, 0.04839925840497017, -0.07755860686302185, -0.0528581477701664, 0.1993890404701233, 0.08426590263843536, -0.017282331362366676, -0.022419923916459084, -0.002349255606532097, -0.030225548893213272, -0.0207997877150774, 0.15070460736751556, 0.032697465270757675, 0.12541720271110535, -0.05579059571027756, -0.04103602096438408, -0.025729188695549965, -0.012347222305834293, -0.12288489937782288, 0.13560952246189117, -0.031092621386051178, -0.021430909633636475, -0.07637392729520798, 0.024325985461473465, 0.07486048340797424, -0.3116046190261841, 0.002315895864740014, -0.03419172391295433, -0.10873602330684662, -0.004006767645478249, -0.01794048398733139, -0.02174355648458004, 0.04739288240671158, -0.04698044806718826, 0.07329802960157394, 0.04685552045702934, 0.03347085043787956, -0.026026351377367973, -0.10054177045822144, 0.1623111367225647, 0.03955084830522537, 0.09402322769165039, 0.02888435870409012, 0.07227518409490585, 0.053074754774570465, 0.034724172204732895, -0.09572067856788635, 0.04224524274468422, 0.010823952034115791, -0.08492589741945267, -0.05212685838341713, 0.12650306522846222, -0.003384034149348736, 0.045597437769174576, 0.04016682133078575, -0.10551111400127411, 0.011416949331760406, 0.06955674290657043, -0.06769581884145737, -0.10033784806728363, -0.006237993948161602, -0.08721369504928589, 0.15429413318634033, 0.14138726890087128, -0.01722857728600502, 0.023543581366539, -0.06678761541843414, -0.006682291626930237, 0.05040933936834335, 0.015773357823491096, -0.016212590038776398, -0.18926790356636047, 0.030272459611296654, -0.08088529855012894, -0.005311559420078993, -0.22523753345012665, -0.10292674601078033, -0.015951180830597878, -0.05054772272706032, -0.028083069249987602, 0.061098385602235794, 0.03485264629125595, 0.067301444709301, -0.017227888107299805, -0.058437153697013855, -0.026309745386242867, 0.08966127038002014, -0.10637735575437546, -0.06416955590248108 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_600k"]}
null
google/multiberts-seed_2-step_600k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_600k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 600k (max: 2000k, i.e., 2M steps)." ]
[ -0.07873710244894028, 0.09457064419984818, -0.002420674078166485, 0.045620039105415344, 0.08227384835481644, -0.015008102171123028, 0.07534211128950119, 0.10364022850990295, -0.007637742441147566, 0.02673155628144741, 0.07699079811573029, 0.005100315436720848, 0.019092252478003502, 0.09243977814912796, 0.02252034656703472, -0.22226329147815704, 0.01951874978840351, -0.03403685986995697, -0.09088344871997833, 0.07704858481884003, 0.0973222628235817, -0.07863857597112656, 0.04834504798054695, 0.024723608046770096, -0.1148839220404625, 0.051699455827474594, 0.00436252448707819, -0.016754252836108208, 0.13225188851356506, -0.0051242089830338955, 0.05180765315890312, 0.05646493658423424, 0.04984070733189583, -0.12851029634475708, 0.006805401295423508, 0.05754657834768295, 0.06076769158244133, 0.04469938948750496, 0.02326906844973564, 0.07801202684640884, 0.0016023748321458697, 0.02808760292828083, 0.043449826538562775, 0.02440331131219864, -0.07464256882667542, -0.05154441297054291, -0.10373316705226898, 0.028546204790472984, 0.03099948912858963, 0.008165337145328522, 0.010136277414858341, 0.12131254374980927, -0.038394805043935776, 0.04040856659412384, 0.1770704686641693, -0.33220574259757996, -0.012346798554062843, 0.0749402791261673, 0.035515666007995605, 0.12606684863567352, -0.00638735294342041, -0.02090524137020111, 0.07632762938737869, 0.024292875081300735, 0.08244995772838593, -0.03868930786848068, 0.02717776782810688, -0.05595612898468971, -0.15412108600139618, -0.04506278038024902, 0.08986712992191315, -0.0025727939791977406, -0.13758380711078644, -0.02895556017756462, -0.047357577830553055, 0.04424877464771271, 0.013494709506630898, -0.03452398255467415, 0.034490421414375305, 0.01671574078500271, -0.02198813296854496, -0.0109876012429595, -0.10403242707252502, -0.05779445171356201, 0.02596999891102314, 0.07591570168733597, 0.10032925009727478, 0.0695950910449028, -0.0000033750643524399493, 0.11398672312498093, -0.18783798813819885, -0.050596848130226135, -0.03176002949476242, -0.05096421390771866, -0.05030284821987152, -0.0090421661734581, -0.1057245209813118, -0.03910628333687782, 0.006478643976151943, 0.12454862147569656, 0.0008427504799328744, 0.028499066829681396, -0.03071356751024723, 0.008162625133991241, 0.05276619642972946, 0.040049612522125244, -0.004121513105928898, 0.021917488425970078, 0.020201299339532852, -0.01241439301520586, -0.020160803571343422, 0.015487100929021835, 0.0014698812738060951, 0.025927521288394928, 0.11427197605371475, 0.021101277321577072, -0.10153290629386902, 0.06550648808479309, -0.021676737815141678, -0.043286994099617004, 0.01223396323621273, -0.09122692793607712, -0.05549940839409828, -0.04039747640490532, 0.00011109741171821952, 0.012997119687497616, -0.005721146706491709, -0.005407887976616621, -0.021645402535796165, -0.03497498482465744, -0.0842166617512703, -0.047548867762088776, -0.057174235582351685, -0.12489420920610428, 0.005924950819462538, -0.17527389526367188, -0.03899415209889412, -0.11059277504682541, -0.1903577744960785, -0.021714841946959496, 0.06428243964910507, -0.01375390775501728, -0.05691945180296898, 0.07664856314659119, 0.04028195142745972, -0.02835148759186268, 0.0006917383871041238, 0.0816032662987709, -0.0004304635804146528, 0.04584813117980957, -0.025737382471561432, 0.07249219715595245, 0.002419339260086417, 0.034641463309526443, -0.05634978413581848, 0.06317483633756638, -0.17236997187137604, 0.047053974121809006, -0.07290084660053253, -0.034450218081474304, -0.08638846129179001, -0.03595171868801117, -0.01461566798388958, 0.0024569802917540073, 0.02462429367005825, 0.07858265936374664, -0.18613198399543762, -0.027316661551594734, 0.11841221898794174, -0.1641964316368103, -0.017965830862522125, 0.06983670592308044, -0.047206953167915344, 0.1070452407002449, 0.06717171519994736, 0.15823888778686523, -0.011611994355916977, -0.07810180634260178, 0.05247043818235397, -0.010466871783137321, 0.013775909319519997, -0.010555402375757694, 0.06848648935556412, -0.020771535113453865, -0.1561250239610672, 0.034209396690130234, -0.1302202343940735, -0.007208638824522495, -0.07845864444971085, 0.018195033073425293, -0.012809996493160725, -0.06787768006324768, -0.06534457951784134, -0.024684950709342957, 0.06615057587623596, -0.07182608544826508, -0.013440468348562717, 0.03582092374563217, 0.0736997053027153, -0.06891638785600662, 0.06559158116579056, -0.011876019649207592, 0.01118784211575985, -0.08669905364513397, -0.03989224135875702, -0.19155055284500122, 0.046013034880161285, 0.10132382810115814, 0.004723547492176294, -0.02009015902876854, 0.13944070041179657, 0.008649184368550777, 0.0670255795121193, -0.05083091929554939, 0.012986629270017147, -0.01451848354190588, -0.006147687789052725, -0.09041109681129456, -0.09514260292053223, -0.07581347972154617, -0.06818674504756927, 0.08817724883556366, -0.12051565945148468, 0.02098490111529827, -0.05063571035861969, 0.04437313973903656, 0.021528035402297974, -0.08433125168085098, -0.018936175853013992, 0.010956722311675549, -0.059785984456539154, -0.05858946219086647, 0.038794007152318954, 0.06813487410545349, -0.010074436664581299, 0.08745715767145157, -0.043186988681554794, -0.08885623514652252, 0.030756648629903793, 0.10769155621528625, -0.10598094016313553, 0.015782324597239494, -0.05692816898226738, -0.042704977095127106, -0.06976228952407837, -0.018607724457979202, 0.08121302723884583, -0.006917903665453196, 0.13331328332424164, -0.07499369233846664, -0.000785087060648948, 0.014123747125267982, -0.018955064937472343, -0.020651046186685562, 0.03828471526503563, 0.07290880382061005, -0.07933221757411957, 0.016384510323405266, 0.04259992763400078, 0.012581591494381428, 0.07038018852472305, -0.05330052599310875, -0.08878453820943832, 0.014418349601328373, 0.03783484548330307, 0.02954707108438015, 0.07021237909793854, -0.01628899574279785, -0.008060797117650509, 0.03183368965983391, 0.01833353377878666, 0.003883789526298642, -0.12037047743797302, 0.06145315244793892, 0.054245270788669586, 0.002952195005491376, 0.054152995347976685, -0.018335074186325073, -0.03926200047135353, 0.08213849365711212, 0.03575552999973297, 0.002253555692732334, -0.01491576712578535, -0.0160211268812418, -0.11514414101839066, 0.19277901947498322, -0.05926094949245453, -0.1552034318447113, -0.07620243728160858, -0.09779413044452667, 0.004122332204133272, 0.026014970615506172, 0.03632302209734917, -0.025306474417448044, -0.04305735602974892, -0.12272068113088608, 0.061918213963508606, -0.03591761738061905, 0.06858265399932861, 0.11063757538795471, -0.041597556322813034, 0.054573334753513336, -0.12478121370077133, -0.00785176269710064, -0.08488277345895767, -0.08180020749568939, 0.060422491282224655, -0.050265487283468246, 0.02720777317881584, 0.09608196467161179, 0.02380364201962948, -0.018883056938648224, -0.024153852835297585, 0.20047542452812195, 0.03877090662717819, 0.042389675974845886, 0.12811827659606934, -0.060159794986248016, 0.0580773763358593, 0.0864485576748848, 0.010546678677201271, -0.046477969735860825, 0.05506439507007599, 0.046298570930957794, -0.06956811994314194, -0.19520549476146698, -0.022730298340320587, -0.009160898625850677, -0.046237193048000336, 0.07404161244630814, 0.0358736515045166, -0.010871082544326782, 0.06956655532121658, 0.014237310737371445, 0.05712977424263954, -0.006360539235174656, 0.09567906707525253, 0.008701721206307411, -0.032563332468271255, 0.08771848678588867, -0.020414480939507484, -0.009821537882089615, 0.0849677249789238, -0.016195688396692276, 0.29873332381248474, -0.03239328786730766, 0.008034825325012207, 0.1164960265159607, 0.04732085019350052, 0.061759594827890396, 0.1288502961397171, -0.06475063413381577, 0.022113341838121414, -0.07312101870775223, -0.057763487100601196, 0.0000022930257728148717, 0.04604054614901543, -0.05896937474608421, 0.013491044752299786, -0.07416070997714996, 0.0245355274528265, -0.02301863208413124, 0.31014466285705566, 0.11396198719739914, -0.10269882529973984, -0.05686904489994049, 0.006267834920436144, -0.09979814291000366, -0.07092875987291336, 0.042510002851486206, 0.07545435428619385, -0.136203333735466, 0.008887894451618195, -0.02674432285130024, 0.07383846491575241, -0.014916198328137398, 0.0167792160063982, 0.029783109202980995, 0.03566678240895271, -0.03775198385119438, 0.00888997595757246, -0.1819126158952713, 0.19866561889648438, 0.007075751665979624, 0.01984400302171707, -0.05185743793845177, 0.0324251726269722, 0.00945280771702528, -0.035723429173231125, 0.06540365517139435, 0.023941941559314728, -0.03655043989419937, -0.04274502769112587, -0.052640192210674286, 0.015780653804540634, 0.0814511701464653, -0.04616555944085121, 0.10660871863365173, -0.005781944375485182, 0.042711373418569565, 0.019389862194657326, 0.08776764571666718, -0.18183359503746033, -0.09077690541744232, 0.030187934637069702, -0.0614599883556366, -0.10530516505241394, -0.07918768376111984, -0.09268451482057571, 0.01608450897037983, 0.24967826902866364, -0.12450478971004486, -0.07594162970781326, -0.09579019993543625, 0.029689926654100418, 0.10399442166090012, -0.04941730946302414, 0.02518056146800518, -0.003644178854301572, 0.127730593085289, -0.06396690756082535, -0.13495397567749023, 0.02335180900990963, -0.08972836285829544, -0.16530723869800568, -0.06708450615406036, 0.11284050345420837, 0.057807523757219315, 0.03708376735448837, -0.02835068292915821, 0.024100687354803085, 0.03588756173849106, -0.0369124710559845, 0.0028615789487957954, 0.06771941483020782, 0.09420072287321091, 0.03829000145196915, -0.11157304793596268, 0.018765758723020554, -0.06301412731409073, -0.06609880179166794, 0.0735112875699997, 0.2631966471672058, -0.05573601275682449, 0.1272306889295578, 0.11249887198209763, -0.08005615323781967, -0.15900853276252747, 0.0340314581990242, 0.09551092237234116, -0.015250159427523613, 0.015751976519823074, -0.16242286562919617, 0.09129229933023453, 0.11137506365776062, -0.024780206382274628, 0.007036988157778978, -0.18771930038928986, -0.12912945449352264, 0.0587724931538105, 0.09877466410398483, 0.27987730503082275, -0.057680267840623856, -0.04332070052623749, 0.019208654761314392, -0.09504310041666031, 0.017082206904888153, 0.12388498336076736, 0.06469199806451797, -0.027169398963451385, -0.06535570323467255, 0.015127369202673435, -0.03983890265226364, 0.09382149577140808, 0.053240083158016205, 0.056803297251462936, -0.003657412016764283, 0.014910300262272358, -0.021080972626805305, -0.04281752556562424, 0.059946607798337936, 0.01878219097852707, 0.050642143934965134, -0.07654611021280289, -0.027992410585284233, -0.06966760009527206, 0.02600519359111786, -0.024889571592211723, -0.07655806094408035, -0.05860985070466995, 0.07669578492641449, 0.04763961583375931, -0.025298096239566803, 0.014921091496944427, 0.032490089535713196, 0.11564093828201294, 0.1656195968389511, 0.0006898185820318758, -0.04434705525636673, -0.05793149396777153, -0.03643089532852173, -0.01711033470928669, 0.07434883713722229, -0.051202837377786636, 0.023044975474476814, 0.0661061555147171, 0.02568541094660759, 0.0945390909910202, 0.059817057102918625, -0.11382295191287994, -0.01529850997030735, 0.033773865550756454, -0.16004666686058044, 0.0030590947717428207, 0.0024879404809325933, 0.03424692526459694, -0.03898133337497711, 0.025398116558790207, 0.14773838222026825, -0.06401503831148148, -0.03541009500622749, -0.040304914116859436, 0.07077543437480927, 0.022623669356107712, 0.14256182312965393, 0.02988339401781559, 0.036859121173620224, -0.08245713263750076, 0.12716425955295563, 0.03981101140379906, -0.042616114020347595, 0.0201918575912714, -0.025936949998140335, -0.10840494185686111, 0.01358348410576582, 0.061106301844120026, 0.04208013042807579, -0.05188097804784775, -0.004871326498687267, -0.026089603081345558, -0.07570695877075195, 0.060259465128183365, 0.17800229787826538, 0.06612437963485718, 0.07120640575885773, -0.0554606132209301, -0.03761496767401695, -0.07898682355880737, 0.041891030967235565, 0.04168704152107239, 0.07628612965345383, -0.07513303309679031, 0.09383934736251831, 0.00891150813549757, 0.04556834325194359, -0.031212227419018745, -0.05170944333076477, -0.0971543937921524, -0.05482899770140648, -0.09743770956993103, 0.008960285224020481, -0.06763385236263275, -0.041835300624370575, 0.0008917374652810395, -0.008371211588382721, -0.008674640208482742, 0.05052923411130905, -0.06427221745252609, -0.011368782259523869, -0.027037300169467926, 0.03385889157652855, -0.06368923932313919, -0.03775681555271149, 0.03548898920416832, -0.10128092765808105, 0.09161504358053207, 0.0524577721953392, 0.006912222132086754, 0.008610558696091175, 0.09436547011137009, -0.02512352541089058, 0.02308354713022709, 0.017307765781879425, -0.04562211036682129, -0.07933991402387619, 0.0008198346477001905, -0.009278612211346626, -0.01304890401661396, -0.011145103722810745, 0.09275582432746887, -0.08673205226659775, 0.03747963160276413, -0.010535800829529762, -0.008024504408240318, -0.07492323219776154, -0.009370681829750538, 0.09810233861207962, 0.10025656968355179, 0.04818950966000557, -0.08946534991264343, 0.011357402428984642, -0.14260233938694, -0.03688590228557587, 0.007039874326437712, -0.00949934497475624, -0.1244998648762703, -0.011291150003671646, 0.021503033116459846, -0.0019460394978523254, 0.20161396265029907, -0.0562545508146286, -0.021269792690873146, 0.019512347877025604, -0.09345754235982895, 0.11145362257957458, -0.026136158034205437, 0.18122166395187378, -0.007017665542662144, -0.041111476719379425, -0.012111073359847069, 0.03679373115301132, 0.017263157293200493, -0.016839660704135895, 0.18764635920524597, 0.13921862840652466, 0.0283413864672184, 0.040063828229904175, -0.02362896129488945, 0.0011714737629517913, -0.05561082437634468, -0.028318248689174652, 0.028022242709994316, 0.038099464029073715, 0.01790975034236908, 0.1510482132434845, 0.06667179614305496, -0.16641920804977417, 0.03465462103486061, -0.030674176290631294, -0.03787138685584068, -0.11776572465896606, -0.08991105854511261, -0.03336777538061142, -0.07175879180431366, 0.011011047288775444, -0.12329012155532837, 0.011653845198452473, 0.18116308748722076, 0.055146533995866776, 0.02862389199435711, 0.008707880042493343, -0.12259023636579514, -0.034313980489969254, 0.05243723466992378, 0.01290796510875225, 0.022570883855223656, 0.06137629598379135, -0.001501721446402371, 0.06117330119013786, 0.037829432636499405, 0.014041469432413578, 0.0035150230396538973, 0.0739879235625267, 0.013895118609070778, 0.042288750410079956, -0.05949566885828972, -0.005662018433213234, -0.04114808142185211, 0.0680607408285141, 0.10108993947505951, 0.04769623652100563, -0.046884529292583466, -0.008654100820422173, 0.16501161456108093, -0.04629647359251976, 0.0014741930644959211, -0.12380705028772354, 0.3424963653087616, 0.011472602374851704, 0.013779642060399055, 0.047598946839571, -0.0787227600812912, -0.05331806838512421, 0.20068657398223877, 0.08373910933732986, -0.020526234060525894, -0.02317541092634201, -0.001312857260927558, -0.030239392071962357, -0.020940251648426056, 0.15281768143177032, 0.034309424459934235, 0.12937211990356445, -0.0568607822060585, -0.047142915427684784, -0.02618449740111828, -0.010748679749667645, -0.12450414896011353, 0.14035829901695251, -0.030482111498713493, -0.024240776896476746, -0.07579305768013, 0.025235364213585854, 0.07625328749418259, -0.3200926184654236, 0.0022897033486515284, -0.03709932044148445, -0.11023467779159546, -0.004380876664072275, -0.01802709698677063, -0.02314801700413227, 0.049968916922807693, -0.04925200343132019, 0.07342858612537384, 0.0380011722445488, 0.03462538495659828, -0.02684735879302025, -0.09315416216850281, 0.16519728302955627, 0.03731568157672882, 0.09371098130941391, 0.02759637124836445, 0.07493569701910019, 0.054995737969875336, 0.03509553149342537, -0.09734733402729034, 0.043016720563173294, 0.013284703716635704, -0.08924812078475952, -0.05330617353320122, 0.1289994716644287, -0.005217601545155048, 0.038905300199985504, 0.04101947695016861, -0.11055337637662888, 0.010187356732785702, 0.07795685529708862, -0.06750599294900894, -0.10037749260663986, -0.006724187172949314, -0.08986658602952957, 0.15618176758289337, 0.1431935578584671, -0.015091192908585072, 0.02477455697953701, -0.06746121495962143, -0.007920403964817524, 0.05297253280878067, 0.010782038792967796, -0.018727833405137062, -0.19085118174552917, 0.030357833951711655, -0.08529991656541824, -0.005824108142405748, -0.23131109774112701, -0.10238395631313324, -0.01261536031961441, -0.050857774913311005, -0.027739880606532097, 0.062010571360588074, 0.03299779072403908, 0.06585577130317688, -0.015613234601914883, -0.04418747499585152, -0.0286524910479784, 0.09067653864622116, -0.1065545454621315, -0.06420864909887314 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_60k"]}
null
google/multiberts-seed_2-step_60k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_60k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 60k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 60k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_60k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 60k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 60k (max: 2000k, i.e., 2M steps)." ]
[ -0.07743852585554123, 0.09958657622337341, -0.002480052411556244, 0.039525583386421204, 0.07788282632827759, -0.016789913177490234, 0.08181874454021454, 0.10441478341817856, -0.013400556519627571, 0.02870878204703331, 0.07788717746734619, 0.0064393882639706135, 0.017096351832151413, 0.09974057972431183, 0.022270087152719498, -0.22664178907871246, 0.019267089664936066, -0.03220744803547859, -0.08884622901678085, 0.07753251492977142, 0.09946080297231674, -0.07974178344011307, 0.04568755626678467, 0.02743890881538391, -0.11202510446310043, 0.04880711808800697, 0.002176815876737237, -0.017143696546554565, 0.13360047340393066, -0.00538486335426569, 0.05189218372106552, 0.054644785821437836, 0.04562397301197052, -0.13437926769256592, 0.007370139472186565, 0.05821828916668892, 0.05851936340332031, 0.04577314481139183, 0.02296184003353119, 0.07584306597709656, 0.006089314818382263, 0.019585518166422844, 0.04241637513041496, 0.023152319714426994, -0.07477831095457077, -0.06250719726085663, -0.1030544862151146, 0.03267225995659828, 0.02698279358446598, 0.005705924704670906, 0.010035151615738869, 0.128944993019104, -0.036880601197481155, 0.04348516836762428, 0.1841408908367157, -0.3388514220714569, -0.011347739957273006, 0.07416248321533203, 0.040427032858133316, 0.12343108654022217, -0.0061801401898264885, -0.01919957436621189, 0.07531421631574631, 0.022701062262058258, 0.08667531609535217, -0.039837900549173355, 0.03591611608862877, -0.05343924090266228, -0.15592627227306366, -0.04654843360185623, 0.0906396433711052, -0.0012299485970288515, -0.1366390734910965, -0.03425741568207741, -0.04816875606775284, 0.04332200065255165, 0.011760856956243515, -0.03469572961330414, 0.03438887745141983, 0.015946604311466217, -0.02255725860595703, -0.010787885636091232, -0.10410120338201523, -0.055359069257974625, 0.029286827892065048, 0.07840894162654877, 0.1020306721329689, 0.06710808724164963, -0.0011318520409986377, 0.11182884871959686, -0.19375482201576233, -0.05242546647787094, -0.028956657275557518, -0.05084967613220215, -0.050879620015621185, -0.009635118767619133, -0.10852958261966705, -0.039603687822818756, 0.00886042695492506, 0.13693080842494965, -0.008005847223103046, 0.027748942375183105, -0.032712891697883606, 0.00869248528033495, 0.056795619428157806, 0.04128298535943031, -0.0041938722133636475, 0.020120013505220413, 0.019220614805817604, -0.01653849519789219, -0.01952955685555935, 0.015461630187928677, 0.000438244896940887, 0.02580009400844574, 0.11767503619194031, 0.021060917526483536, -0.10385337471961975, 0.06795263290405273, -0.01909838244318962, -0.04505264014005661, 0.011937523260712624, -0.09055396914482117, -0.05699228122830391, -0.03715595602989197, -0.000318312959279865, 0.012503164820373058, -0.00740433344617486, -0.004297065082937479, -0.022121476009488106, -0.03721972554922104, -0.08250845968723297, -0.04699953272938728, -0.05629744008183479, -0.12699636816978455, 0.00831158459186554, -0.1839490383863449, -0.037382327020168304, -0.11004633456468582, -0.19046315550804138, -0.02228393964469433, 0.06373181939125061, -0.012207243591547012, -0.05737833306193352, 0.07739698886871338, 0.04145374149084091, -0.02760341204702854, -0.0005902189295738935, 0.08065757155418396, -0.0022951087448745966, 0.04482124373316765, -0.024477211758494377, 0.07140098512172699, 0.0030288887210190296, 0.034145038574934006, -0.05529256537556648, 0.06334831565618515, -0.17244170606136322, 0.04571002721786499, -0.07276402413845062, -0.03561979904770851, -0.0890750139951706, -0.03353102132678032, -0.013245923444628716, 0.0035880631767213345, 0.023584971204400063, 0.07401257008314133, -0.18516628444194794, -0.02999214641749859, 0.12474258244037628, -0.16198976337909698, -0.018609602004289627, 0.07211262732744217, -0.049555979669094086, 0.1060619130730629, 0.0667378306388855, 0.15981563925743103, -0.01412051822990179, -0.0811811238527298, 0.054503679275512695, -0.0089610880240798, 0.01513003371655941, -0.008253923617303371, 0.07210204750299454, -0.020178813487291336, -0.1500481814146042, 0.03337283059954643, -0.1343451589345932, -0.005558209493756294, -0.07772869616746902, 0.018557200208306313, -0.011177575215697289, -0.06641609966754913, -0.06610623747110367, -0.025549687445163727, 0.06902702152729034, -0.07189693301916122, -0.01790427230298519, 0.03989611566066742, 0.0735374167561531, -0.07160504907369614, 0.06561009585857391, -0.014790002256631851, 0.01257961057126522, -0.08430704474449158, -0.03987859562039375, -0.19240377843379974, 0.047663167119026184, 0.10059917718172073, 0.007194602396339178, -0.01992836594581604, 0.14531764388084412, 0.009831331670284271, 0.06677775830030441, -0.04851865395903587, 0.014114144258201122, -0.014605579897761345, -0.006135573610663414, -0.08998735249042511, -0.09969717264175415, -0.07374677807092667, -0.06990890949964523, 0.09002320468425751, -0.12295878678560257, 0.021118134260177612, -0.052903249859809875, 0.04684525355696678, 0.021352654322981834, -0.08256767690181732, -0.01757531613111496, 0.010951485484838486, -0.06068960949778557, -0.0568268857896328, 0.04190194234251976, 0.0690210834145546, -0.010650073178112507, 0.09470299631357193, -0.050594404339790344, -0.09010300040245056, 0.030467990785837173, 0.09987260401248932, -0.10459388792514801, 0.010972411371767521, -0.058342766016721725, -0.04271642863750458, -0.06646889448165894, -0.015080454759299755, 0.07923337817192078, -0.00637475261464715, 0.13750989735126495, -0.07551411539316177, -0.0059921895153820515, 0.012931005097925663, -0.021083137020468712, -0.018954051658511162, 0.03982457146048546, 0.0688730850815773, -0.0781005322933197, 0.01760123297572136, 0.042510099709033966, 0.009737559594213963, 0.07449863106012344, -0.05681624263525009, -0.09184679388999939, 0.011401322670280933, 0.037769295275211334, 0.029002532362937927, 0.06936053186655045, -0.02055090107023716, -0.012235094793140888, 0.03462842106819153, 0.01627183146774769, 0.004202814307063818, -0.11933887749910355, 0.0620373860001564, 0.05451851338148117, 0.0028739727567881346, 0.05916514992713928, -0.01672312058508396, -0.039715591818094254, 0.080106221139431, 0.036788374185562134, 0.00046972863492555916, -0.015224547125399113, -0.01594281941652298, -0.11572527140378952, 0.19201265275478363, -0.05816344916820526, -0.15641607344150543, -0.07439947128295898, -0.10237928479909897, 0.0059817759320139885, 0.02487003803253174, 0.0373014360666275, -0.02095092460513115, -0.042844437062740326, -0.12201829999685287, 0.059481918811798096, -0.0394047275185585, 0.06818234920501709, 0.10984864830970764, -0.0409843735396862, 0.05539768934249878, -0.1247611716389656, -0.007846024818718433, -0.08411334455013275, -0.07630724459886551, 0.06266290694475174, -0.05043771490454674, 0.025121169164776802, 0.09552234411239624, 0.02406284399330616, -0.016801463440060616, -0.02500622346997261, 0.19984127581119537, 0.03781356289982796, 0.04055023193359375, 0.12897494435310364, -0.06435893476009369, 0.05728519707918167, 0.08202631026506424, 0.008926402777433395, -0.04457583650946617, 0.0530209019780159, 0.04919237270951271, -0.06817669421434402, -0.19675129652023315, -0.022277599200606346, -0.007955176755785942, -0.04422235116362572, 0.07514578104019165, 0.03587980940937996, -0.0003499383747112006, 0.06880705058574677, 0.01182913314551115, 0.06060926243662834, -0.006586005445569754, 0.09858851134777069, 0.013368692249059677, -0.03327617049217224, 0.08834924548864365, -0.020387958735227585, -0.011408273130655289, 0.08339244872331619, -0.015945373103022575, 0.29144996404647827, -0.029331374913454056, 0.0191611610352993, 0.11879059672355652, 0.043576180934906006, 0.0618814080953598, 0.12420365959405899, -0.06580768525600433, 0.02181486412882805, -0.07490656524896622, -0.06030704826116562, -0.0006297920481301844, 0.04743904247879982, -0.059732142835855484, 0.008229243569076061, -0.07032234966754913, 0.022011149674654007, -0.021140120923519135, 0.3104100227355957, 0.11415653675794601, -0.10448093712329865, -0.05823088064789772, 0.004652148578315973, -0.09935159981250763, -0.06973942369222641, 0.041265517473220825, 0.07202345132827759, -0.1350417584180832, 0.009253550320863724, -0.027782348915934563, 0.07549192756414413, -0.017531132325530052, 0.017662864178419113, 0.025083959102630615, 0.03566283732652664, -0.03743782639503479, 0.010208647698163986, -0.18572816252708435, 0.19700361788272858, 0.00750255910679698, 0.018735608085989952, -0.05221415311098099, 0.0321819968521595, 0.009273143485188484, -0.034609049558639526, 0.06321864575147629, 0.02325129322707653, -0.03917543217539787, -0.03938929736614227, -0.05326571315526962, 0.01493722666054964, 0.08178737759590149, -0.04579325392842293, 0.10917218774557114, -0.006685079541057348, 0.04212760925292969, 0.020550837740302086, 0.087987519800663, -0.18184199929237366, -0.08688173443078995, 0.03051787056028843, -0.059291765093803406, -0.10453788936138153, -0.07895687967538834, -0.09272709488868713, 0.0043716165237128735, 0.2517779469490051, -0.12297585606575012, -0.07310768961906433, -0.09544779360294342, 0.03224880248308182, 0.10196264088153839, -0.05012628063559532, 0.02396543323993683, -0.006159511394798756, 0.13147303462028503, -0.06706361472606659, -0.1339433789253235, 0.023581156507134438, -0.09056486934423447, -0.16550880670547485, -0.06625556200742722, 0.11476322263479233, 0.05970614403486252, 0.03696591034531593, -0.028853315860033035, 0.023874729871749878, 0.032633956521749496, -0.0354200080037117, 0.003653466235846281, 0.06818410754203796, 0.09815773367881775, 0.033226799219846725, -0.11093618720769882, 0.02008988708257675, -0.06270762532949448, -0.06526827067136765, 0.07858794927597046, 0.265118271112442, -0.05614590644836426, 0.12720955908298492, 0.11271972954273224, -0.07883526384830475, -0.1556880623102188, 0.031116195023059845, 0.09588397294282913, -0.01513452734798193, 0.015506756491959095, -0.16400913894176483, 0.08885589241981506, 0.10952649265527725, -0.024797484278678894, 0.0034936771262437105, -0.18595021963119507, -0.12858104705810547, 0.06558813899755478, 0.09599539637565613, 0.2771194577217102, -0.06043851003050804, -0.044301588088274, 0.019690196961164474, -0.09118667244911194, 0.023611003533005714, 0.11729727685451508, 0.06452600657939911, -0.024991260841488838, -0.06905808299779892, 0.014628292061388493, -0.04038233682513237, 0.09197550266981125, 0.053925126791000366, 0.056643303483724594, -0.003272595815360546, 0.017272520810365677, -0.015213672071695328, -0.04460608586668968, 0.06112448498606682, 0.018184082582592964, 0.0488734096288681, -0.08306730538606644, -0.02812885493040085, -0.06958859413862228, 0.029590357095003128, -0.024745266884565353, -0.0776607021689415, -0.05833319202065468, 0.07680036872625351, 0.047006722539663315, -0.023161059245467186, 0.02257000096142292, 0.031349584460258484, 0.11566396802663803, 0.1668713092803955, -0.0021487963385879993, -0.039173442870378494, -0.05889454483985901, -0.03810720518231392, -0.015985913574695587, 0.07495854049921036, -0.055103905498981476, 0.0227176733314991, 0.06426301598548889, 0.02607043832540512, 0.0972825437784195, 0.056451741605997086, -0.11739243566989899, -0.01756732538342476, 0.031081505119800568, -0.16341720521450043, 0.007183655630797148, 0.00219619064591825, 0.031052155420184135, -0.03466351330280304, 0.02836422249674797, 0.15086352825164795, -0.06295915693044662, -0.03513684123754501, -0.04033803939819336, 0.06783006340265274, 0.023962851613759995, 0.1393543928861618, 0.033021893352270126, 0.03785950690507889, -0.08143801242113113, 0.12398459017276764, 0.038445621728897095, -0.040680672973394394, 0.023294927552342415, -0.025532850995659828, -0.10881558805704117, 0.01311473734676838, 0.06285678595304489, 0.04535435885190964, -0.051916252821683884, -0.010791124776005745, -0.028339562937617302, -0.07029381394386292, 0.06265832483768463, 0.18510402739048004, 0.0674830824136734, 0.07216294854879379, -0.0549297034740448, -0.03708449378609657, -0.07782802730798721, 0.04454898461699486, 0.03856788948178291, 0.07533727586269379, -0.07365406304597855, 0.10321827232837677, 0.010548071004450321, 0.04607413336634636, -0.03175486624240875, -0.053274739533662796, -0.09836594760417938, -0.054743580520153046, -0.10089855641126633, 0.010041341185569763, -0.07075510174036026, -0.041438788175582886, 0.0004336375277489424, -0.006731794681400061, -0.007695187348872423, 0.05031866952776909, -0.06388309597969055, -0.009521289728581905, -0.026759715750813484, 0.034645672887563705, -0.06681239604949951, -0.03722696378827095, 0.03261981159448624, -0.10158203542232513, 0.09302721917629242, 0.05374925956130028, 0.007919756695628166, 0.00877387449145317, 0.08717171847820282, -0.022273516282439232, 0.023411931470036507, 0.01488243043422699, -0.04711958020925522, -0.0835803747177124, 0.0015318529913201928, -0.009969200007617474, -0.013185519725084305, -0.011777865700423717, 0.0903075560927391, -0.08647852391004562, 0.03665478527545929, -0.007869751192629337, -0.00911780260503292, -0.0750407949090004, -0.010370339266955853, 0.09186626225709915, 0.10011359304189682, 0.047160178422927856, -0.0872136801481247, 0.011168603785336018, -0.14139693975448608, -0.03702065348625183, 0.007231626659631729, -0.009578587487339973, -0.1247294694185257, -0.011671468615531921, 0.019839676097035408, -0.0036164540797472, 0.20782271027565002, -0.0558316595852375, -0.019513582810759544, 0.018432773649692535, -0.09822218120098114, 0.11094173043966293, -0.02658182568848133, 0.18435588479042053, -0.006857837550342083, -0.04004672169685364, -0.014332730323076248, 0.037920139729976654, 0.018661608919501305, -0.019941451027989388, 0.1835857778787613, 0.14018504321575165, 0.02816559374332428, 0.03948298841714859, -0.023087888956069946, -0.0005784078384749591, -0.058755502104759216, -0.018467869609594345, 0.029319491237401962, 0.038906678557395935, 0.018250441178679466, 0.1592756062746048, 0.07322931289672852, -0.16675139963626862, 0.034686725586652756, -0.02791053242981434, -0.03664948046207428, -0.11904220283031464, -0.09569703042507172, -0.034904055297374725, -0.07214090973138809, 0.010512619279325008, -0.12324059009552002, 0.009797254577279091, 0.18126508593559265, 0.056934136897325516, 0.02832075208425522, 0.004603183828294277, -0.12092753499746323, -0.03660798817873001, 0.05196446180343628, 0.013321521691977978, 0.023178085684776306, 0.05725676193833351, -0.00023739458993077278, 0.06261542439460754, 0.03691159561276436, 0.014793101698160172, 0.0011444485280662775, 0.08150055259466171, 0.015452760271728039, 0.04092618450522423, -0.060969799757003784, -0.004741770215332508, -0.03930368274450302, 0.06942688673734665, 0.09832802414894104, 0.04873451963067055, -0.04829028993844986, -0.008288874290883541, 0.16222791373729706, -0.04288789629936218, -0.002153166336938739, -0.1259874403476715, 0.3374132812023163, 0.011358157731592655, 0.013774850405752659, 0.046789877116680145, -0.07698499411344528, -0.04948049783706665, 0.19788263738155365, 0.08604969084262848, -0.01751656085252762, -0.021290093660354614, 0.0014963033609092236, -0.030048279091715813, -0.021763019263744354, 0.14719685912132263, 0.03502174839377403, 0.13074995577335358, -0.056493066251277924, -0.05137745290994644, -0.027003353461623192, -0.01068422943353653, -0.12500528991222382, 0.13588304817676544, -0.02722012810409069, -0.02585809864103794, -0.07300857454538345, 0.02478921413421631, 0.07434102892875671, -0.3227385878562927, 0.0019389671506360173, -0.03511932119727135, -0.10939259082078934, -0.00368961482308805, -0.017720350995659828, -0.02220340445637703, 0.0473773330450058, -0.04856782406568527, 0.07118895649909973, 0.03801602125167847, 0.034724365919828415, -0.02594652585685253, -0.08882303535938263, 0.16559700667858124, 0.04125230014324188, 0.0903882384300232, 0.02594095654785633, 0.07846803963184357, 0.05665779858827591, 0.033205438405275345, -0.09315996617078781, 0.04389641806483269, 0.013951468281447887, -0.0880388393998146, -0.05411121994256973, 0.1270829290151596, -0.003719659522175789, 0.04314674437046051, 0.044694893062114716, -0.10896780341863632, 0.012959699146449566, 0.07773876935243607, -0.07026530057191849, -0.10064448416233063, -0.005863819736987352, -0.09088907390832901, 0.1558302789926529, 0.14325647056102753, -0.015158197842538357, 0.023655587807297707, -0.07009223848581314, -0.006908041890710592, 0.054256927222013474, 0.006847652141004801, -0.019786369055509567, -0.18782350420951843, 0.03344146907329559, -0.07569453120231628, -0.004235988948494196, -0.2308984398841858, -0.10059773176908493, -0.01188158243894577, -0.04857519641518593, -0.026818137615919113, 0.05743285268545151, 0.031257264316082, 0.06698399037122726, -0.01724710315465927, -0.044671718031167984, -0.028227906674146652, 0.08813638985157013, -0.10890977829694748, -0.06428298354148865 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_700k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_700k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_700k"]}
null
google/multiberts-seed_2-step_700k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_700k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 700k (max: 2000k, i.e., 2M steps)." ]
[ -0.07860013842582703, 0.0878153070807457, -0.002430046210065484, 0.04299048334360123, 0.07514158636331558, -0.016574930399656296, 0.07265346497297287, 0.1033460795879364, -0.014950618147850037, 0.025346584618091583, 0.08135919272899628, 0.0019139787182211876, 0.018960127606987953, 0.10144298523664474, 0.024219129234552383, -0.22758488357067108, 0.02230107970535755, -0.031364887952804565, -0.08305660635232925, 0.07751089334487915, 0.10059225559234619, -0.08101744204759598, 0.04506969824433327, 0.027588900178670883, -0.10897984355688095, 0.04771437495946884, 0.0029030523728579283, -0.020829712972044945, 0.13223326206207275, -0.0016816076822578907, 0.046206820756196976, 0.05635230243206024, 0.04861476644873619, -0.1313762664794922, 0.006140945479273796, 0.05945798009634018, 0.05838087573647499, 0.045206762850284576, 0.023854926228523254, 0.08120948076248169, 0.0039804293774068356, 0.02926338091492653, 0.0446271151304245, 0.025696072727441788, -0.07801538705825806, -0.06850151717662811, -0.10197123140096664, 0.04260937497019768, 0.03195149078965187, 0.004687881097197533, 0.010189727880060673, 0.12491331249475479, -0.03583807125687599, 0.04453456029295921, 0.17377373576164246, -0.33468568325042725, -0.014353971928358078, 0.07921729981899261, 0.04150886833667755, 0.12987852096557617, -0.005945098120719194, -0.01719370298087597, 0.07684539258480072, 0.021136604249477386, 0.0900566503405571, -0.037605348974466324, 0.03562980145215988, -0.054251085966825485, -0.15595176815986633, -0.04858311265707016, 0.08816040307283401, 0.003065206576138735, -0.13769342005252838, -0.03659508377313614, -0.04719800129532814, 0.03348017856478691, 0.011896257288753986, -0.039984192699193954, 0.03156711906194687, 0.018603850156068802, -0.023795058950781822, -0.013406346552073956, -0.10315272957086563, -0.056591663509607315, 0.03262396529316902, 0.07254160195589066, 0.09837329387664795, 0.06985010206699371, 0.003514507319778204, 0.11344035714864731, -0.19685329496860504, -0.05125981196761131, -0.03178870305418968, -0.05530426651239395, -0.05175669118762016, -0.010705167427659035, -0.10466346144676208, -0.039449986070394516, 0.006385816261172295, 0.13240237534046173, 0.006718316115438938, 0.028440337628126144, -0.034706417471170425, 0.009282514452934265, 0.05476367473602295, 0.04691221937537193, -0.007660714443773031, 0.011531170457601547, 0.023402893915772438, -0.010253426618874073, -0.01873127371072769, 0.01363199669867754, 0.0033167165238410234, 0.021464534103870392, 0.12335419654846191, 0.02086433209478855, -0.09718285501003265, 0.06433156132698059, -0.018372993916273117, -0.04663722217082977, 0.021589873358607292, -0.08599397540092468, -0.05255299434065819, -0.04116356745362282, -0.0004595518112182617, 0.010893022641539574, -0.007859989069402218, -0.00299062323756516, -0.022067977115511894, -0.03804551437497139, -0.08351439237594604, -0.04866768419742584, -0.05508197098970413, -0.12509959936141968, 0.006257941480726004, -0.17262378334999084, -0.03893556073307991, -0.11236986517906189, -0.1938975751399994, -0.021898427978157997, 0.06205449253320694, -0.014098260551691055, -0.05660638585686684, 0.08070670068264008, 0.04482733830809593, -0.029316119849681854, -0.001944114570505917, 0.07422341406345367, -0.0002914000942837447, 0.04655337333679199, -0.025828639045357704, 0.07168535143136978, 0.002399999648332596, 0.031145893037319183, -0.05669315159320831, 0.06491336971521378, -0.17527799308300018, 0.04659460484981537, -0.07263485342264175, -0.030521512031555176, -0.08766429871320724, -0.0391136072576046, -0.0168597474694252, -0.00015494960825890303, 0.02608232945203781, 0.0733700767159462, -0.18392471969127655, -0.025786127895116806, 0.12090510874986649, -0.16406220197677612, -0.021985279396176338, 0.07878635078668594, -0.04564598202705383, 0.10296198725700378, 0.0684865191578865, 0.1579592525959015, -0.009292328730225563, -0.07694955915212631, 0.06016143411397934, -0.012123963795602322, 0.012106272391974926, -0.011335184797644615, 0.06907998770475388, -0.019645199179649353, -0.15809421241283417, 0.035163529217243195, -0.12295747548341751, -0.006014388985931873, -0.08076708018779755, 0.015038210898637772, -0.01335362158715725, -0.06695593148469925, -0.06853939592838287, -0.024458108469843864, 0.06697350740432739, -0.07395246624946594, -0.015234931372106075, 0.02864796482026577, 0.07270790636539459, -0.07013970613479614, 0.06727433949708939, -0.012136297300457954, 0.014052298851311207, -0.08347704261541367, -0.03840677812695503, -0.18530744314193726, 0.052144307643175125, 0.10194814950227737, 0.013059590011835098, -0.02312242053449154, 0.1382260024547577, 0.008914907462894917, 0.06828103959560394, -0.05356458202004433, 0.011555391363799572, -0.013857691548764706, -0.004717587027698755, -0.09212367981672287, -0.09312348812818527, -0.08036155253648758, -0.06602603197097778, 0.08575298637151718, -0.12871545553207397, 0.021663496270775795, -0.058177411556243896, 0.04558591544628143, 0.021444128826260567, -0.08588847517967224, -0.020339349284768105, 0.012250293046236038, -0.0588165782392025, -0.058009784668684006, 0.039303235709667206, 0.06733003258705139, -0.015036394819617271, 0.08339636772871017, -0.04749231040477753, -0.07642822712659836, 0.029275059700012207, 0.09775597602128983, -0.1054614931344986, 0.00630564708262682, -0.058122698217630386, -0.04442520812153816, -0.06742590665817261, -0.02339034341275692, 0.0704602599143982, -0.008987768553197384, 0.13625140488147736, -0.07673066109418869, 0.0005359433707781136, 0.01571374014019966, -0.020332958549261093, -0.021495379507541656, 0.033755358308553696, 0.06443220376968384, -0.08460365235805511, 0.013483538292348385, 0.04201148822903633, 0.013443982228636742, 0.07011934369802475, -0.05193600803613663, -0.08726628124713898, 0.01305188238620758, 0.03644708916544914, 0.03051675297319889, 0.06827719509601593, -0.02192496880888939, -0.007258365396410227, 0.03293953835964203, 0.020556969568133354, 0.004809974692761898, -0.11854034662246704, 0.06050930172204971, 0.056277915835380554, 0.0025519132614135742, 0.05915972590446472, -0.016128508374094963, -0.03999815136194229, 0.07956073433160782, 0.035070277750492096, -0.001344233169220388, -0.013354836031794548, -0.015121109783649445, -0.11640509963035583, 0.19134528934955597, -0.057527340948581696, -0.15897858142852783, -0.07880166918039322, -0.09703797847032547, 0.0015900193247944117, 0.026835111901164055, 0.038125649094581604, -0.016839411109685898, -0.043795548379421234, -0.12582331895828247, 0.06062678247690201, -0.041691675782203674, 0.0704488456249237, 0.11236368119716644, -0.04086023196578026, 0.058303650468587875, -0.12682759761810303, -0.007669312413781881, -0.082848459482193, -0.07852188497781754, 0.06018118932843208, -0.05159805715084076, 0.026105303317308426, 0.09571599215269089, 0.024151425808668137, -0.01674557290971279, -0.026185212656855583, 0.21034111082553864, 0.04003996029496193, 0.043333590030670166, 0.1284070461988449, -0.06045287847518921, 0.05688650906085968, 0.08322811871767044, 0.01056812983006239, -0.04867510870099068, 0.05398014932870865, 0.043000727891922, -0.07078543305397034, -0.18911176919937134, -0.024936001747846603, -0.008931463584303856, -0.037965718656778336, 0.07765223830938339, 0.0372089222073555, 0.009738697670400143, 0.06845338642597198, 0.011965685524046421, 0.05990634858608246, -0.0001683391019469127, 0.09887077659368515, 0.01590249128639698, -0.03269093483686447, 0.09062616527080536, -0.016569945961236954, -0.007815293967723846, 0.08294986933469772, -0.018847158178687096, 0.29251372814178467, -0.029436631128191948, 0.010322373360395432, 0.11532279849052429, 0.05071480572223663, 0.06373674422502518, 0.1277882307767868, -0.06709874421358109, 0.01949000172317028, -0.07282643765211105, -0.057974010705947876, -0.0025220357347279787, 0.04682895168662071, -0.053695984184741974, 0.013012869283556938, -0.07376028597354889, 0.018570542335510254, -0.02186531014740467, 0.3059384822845459, 0.1103467121720314, -0.10473904758691788, -0.05662547051906586, 0.005296187475323677, -0.10194890946149826, -0.07318742573261261, 0.04210023954510689, 0.07012231647968292, -0.1371992975473404, 0.007162376306951046, -0.023949040099978447, 0.07717234641313553, -0.014951308257877827, 0.01741650141775608, 0.02547277882695198, 0.03318362683057785, -0.03847736492753029, 0.00948772020637989, -0.1741926074028015, 0.19708286225795746, 0.006332527846097946, 0.020890142768621445, -0.05258249118924141, 0.03053303062915802, 0.003671694314107299, -0.02943030185997486, 0.06240715831518173, 0.023436633870005608, -0.02844201773405075, -0.05120834708213806, -0.05409253016114235, 0.011099213734269142, 0.07940400391817093, -0.041462138295173645, 0.1027432233095169, -0.005559443961828947, 0.0422728955745697, 0.01985306106507778, 0.09979970753192902, -0.1847659796476364, -0.08603744953870773, 0.029612984508275986, -0.057673752307891846, -0.09434189647436142, -0.08150975406169891, -0.09251929074525833, 0.005439646542072296, 0.25183501839637756, -0.11455333977937698, -0.07097144424915314, -0.09598080068826675, 0.03564347326755524, 0.10939516127109528, -0.04742012172937393, 0.028008664026856422, -0.0037973697762936354, 0.12327079474925995, -0.0632820874452591, -0.13034167885780334, 0.024792322888970375, -0.09119518846273422, -0.16915881633758545, -0.06685402989387512, 0.1165158674120903, 0.05695776268839836, 0.03560435771942139, -0.023687828332185745, 0.022501619532704353, 0.036784183233976364, -0.040004145354032516, 0.00039878912502899766, 0.06856733560562134, 0.08718032389879227, 0.030378254130482674, -0.10259026288986206, 0.024335583671927452, -0.06035975366830826, -0.06736433506011963, 0.07453055679798126, 0.26964980363845825, -0.05730697512626648, 0.12652269005775452, 0.11599468439817429, -0.07768358290195465, -0.15162430703639984, 0.02885725349187851, 0.09366770088672638, -0.015314583666622639, 0.013710986822843552, -0.15275254845619202, 0.09001165628433228, 0.11733020097017288, -0.02552991360425949, 0.0022775984834879637, -0.19169673323631287, -0.1325278878211975, 0.06448224186897278, 0.09537141025066376, 0.28095605969429016, -0.059470370411872864, -0.04242495074868202, 0.022056560963392258, -0.09359773993492126, 0.018654605373740196, 0.12592948973178864, 0.06462283432483673, -0.026842394843697548, -0.08522571623325348, 0.015581552870571613, -0.04091598093509674, 0.09745840728282928, 0.051789093762636185, 0.056150224059820175, -0.002329963957890868, 0.02519816718995571, -0.016286298632621765, -0.04164818674325943, 0.058587025851011276, 0.027848925441503525, 0.05038353055715561, -0.08541155606508255, -0.031188400462269783, -0.06867974996566772, 0.025340711697936058, -0.024804504588246346, -0.07885877788066864, -0.059382256120443344, 0.07741470634937286, 0.04948372393846512, -0.025966599583625793, 0.02230698987841606, 0.031224779784679413, 0.11914175003767014, 0.17708036303520203, -0.003987777046859264, -0.05402299389243126, -0.05482269823551178, -0.03665783256292343, -0.0188751183450222, 0.07515853643417358, -0.04137728735804558, 0.025982297956943512, 0.06507773697376251, 0.02343771420419216, 0.095729760825634, 0.057393334805965424, -0.11279308050870895, -0.015900276601314545, 0.03380448743700981, -0.16027812659740448, 0.003105367999523878, -0.0010101039661094546, 0.027960658073425293, -0.035608697682619095, 0.02745448239147663, 0.1469423472881317, -0.06582069396972656, -0.034489136189222336, -0.04002630338072777, 0.06717374175786972, 0.020733511075377464, 0.14424635469913483, 0.03101522848010063, 0.037924256175756454, -0.08074857294559479, 0.12237415462732315, 0.04268236830830574, -0.04127142205834389, 0.01768428273499012, -0.02352769672870636, -0.10869996249675751, 0.01563108153641224, 0.05286870524287224, 0.03321170434355736, -0.05253926292061806, -0.0069795590825378895, -0.022656835615634918, -0.07233278453350067, 0.06032051146030426, 0.1773519366979599, 0.06765821576118469, 0.07181231677532196, -0.05580753833055496, -0.03688006103038788, -0.07736706733703613, 0.041062477976083755, 0.04579833149909973, 0.07565908133983612, -0.07461314648389816, 0.09877560287714005, 0.01011673454195261, 0.04292883723974228, -0.032179154455661774, -0.057034946978092194, -0.09971578419208527, -0.05338427051901817, -0.09985550493001938, 0.005183866247534752, -0.07330697029829025, -0.03972151130437851, -0.0002449587336741388, -0.009190267883241177, -0.007215328514575958, 0.04775887355208397, -0.06086565926671028, -0.011370724067091942, -0.026133045554161072, 0.03225705027580261, -0.06380727142095566, -0.03681420907378197, 0.032050617039203644, -0.09896961599588394, 0.09389592707157135, 0.0487777478992939, 0.008301369845867157, 0.003849123837426305, 0.09393708407878876, -0.019180845469236374, 0.02401876263320446, 0.01580270379781723, -0.04626794159412384, -0.07952478528022766, 0.0021651452407240868, -0.006623529829084873, -0.018150722607970238, -0.009677025489509106, 0.08694203943014145, -0.09053508937358856, 0.029373034834861755, -0.011354882270097733, -0.012164290994405746, -0.0736084058880806, -0.011939935386180878, 0.09355591237545013, 0.09869630634784698, 0.044765982776880264, -0.08892785757780075, 0.01140669733285904, -0.14588914811611176, -0.036454297602176666, 0.0069810859858989716, -0.009201283566653728, -0.11808017641305923, -0.009201153181493282, 0.022135702893137932, 0.00015178488683886826, 0.20702742040157318, -0.058627016842365265, -0.017986731603741646, 0.01947944052517414, -0.10172797739505768, 0.11250166594982147, -0.02674754150211811, 0.19114424288272858, -0.005347456783056259, -0.04091045260429382, -0.011579973623156548, 0.03771582618355751, 0.020696617662906647, -0.012362537905573845, 0.17956481873989105, 0.13628965616226196, 0.026203617453575134, 0.038562823086977005, -0.028323635458946228, 0.0015729174483567476, -0.05784163251519203, -0.029057910665869713, 0.031159566715359688, 0.039278335869312286, 0.01574016362428665, 0.14380520582199097, 0.07180483639240265, -0.16794061660766602, 0.0323757641017437, -0.025676129385828972, -0.03976280242204666, -0.11734884232282639, -0.09855420887470245, -0.03413240611553192, -0.07893415540456772, 0.011593577452003956, -0.12541690468788147, 0.011445575393736362, 0.1686071753501892, 0.05821143835783005, 0.027220387011766434, 0.005357679910957813, -0.11800223588943481, -0.03178885951638222, 0.05180635303258896, 0.014307031407952309, 0.026269348338246346, 0.06015540659427643, -0.0031775750685483217, 0.0576837956905365, 0.036105383187532425, 0.013380811549723148, 0.0017169472994282842, 0.075642429292202, 0.014422360807657242, 0.042948536574840546, -0.06160784140229225, -0.00546296127140522, -0.04238762706518173, 0.07014581561088562, 0.1037849634885788, 0.04841465502977371, -0.047442782670259476, -0.009982410818338394, 0.1665496826171875, -0.04305369034409523, -0.004067740403115749, -0.12545724213123322, 0.3410423994064331, 0.015106006525456905, 0.013602448627352715, 0.04846761003136635, -0.07702268660068512, -0.051051750779151917, 0.202255517244339, 0.08738653361797333, -0.016416743397712708, -0.021230969578027725, 0.0012450519716367126, -0.03235650807619095, -0.02064543403685093, 0.15287356078624725, 0.03305767476558685, 0.1297779679298401, -0.054963741451501846, -0.04134974628686905, -0.02810685522854328, -0.012865900062024593, -0.12568184733390808, 0.13860809803009033, -0.026252493262290955, -0.023047158494591713, -0.07607588171958923, 0.028159918263554573, 0.07196906954050064, -0.30975469946861267, 0.0021015664096921682, -0.034096311777830124, -0.10783995687961578, -0.0040297554805874825, -0.01976947858929634, -0.02412191964685917, 0.04678108170628548, -0.04688480496406555, 0.07472220063209534, 0.03453904762864113, 0.03335811197757721, -0.022181009873747826, -0.09559065103530884, 0.16549164056777954, 0.05069447681307793, 0.09468475729227066, 0.026400139555335045, 0.07588759064674377, 0.056774500757455826, 0.03529311344027519, -0.0979287251830101, 0.04386468604207039, 0.013317401520907879, -0.08462855964899063, -0.05321425944566727, 0.1271381974220276, -0.00026165583403781056, 0.046447064727544785, 0.04035774990916252, -0.11347565054893494, 0.009305860847234726, 0.07222919166088104, -0.06328085064888, -0.09821818023920059, -0.007833615876734257, -0.0864989310503006, 0.15816940367221832, 0.13936001062393188, -0.019229214638471603, 0.021014846861362457, -0.06655329465866089, -0.0064065600745379925, 0.05288375914096832, 0.00931551679968834, -0.01883723959326744, -0.1935635656118393, 0.03125988319516182, -0.08067101240158081, -0.007971717976033688, -0.21980297565460205, -0.10593923181295395, -0.012508139945566654, -0.051143597811460495, -0.027287937700748444, 0.0638560876250267, 0.030451538041234016, 0.062128808349370956, -0.014878842979669571, -0.042270541191101074, -0.03035890683531761, 0.08877259492874146, -0.10897696018218994, -0.06440648436546326 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_800k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_800k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_800k"]}
null
google/multiberts-seed_2-step_800k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_800k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 800k (max: 2000k, i.e., 2M steps)." ]
[ -0.07795865088701248, 0.10017549246549606, -0.002459521871060133, 0.044920358806848526, 0.07979831099510193, -0.014886138960719109, 0.07873528450727463, 0.10272220522165298, -0.009130161255598068, 0.026748036965727806, 0.07706636190414429, -0.0023614380042999983, 0.018606780096888542, 0.09543779492378235, 0.025412479415535927, -0.22401325404644012, 0.019005373120307922, -0.030584247782826424, -0.07963760197162628, 0.07497711479663849, 0.09930697828531265, -0.07990116626024246, 0.04620455950498581, 0.027605518698692322, -0.11239229142665863, 0.04850064590573311, 0.0016614506021142006, -0.019424110651016235, 0.13371044397354126, -0.0015258552739396691, 0.05090019479393959, 0.05388348549604416, 0.04710803180932999, -0.13409684598445892, 0.00553638581186533, 0.05756421014666557, 0.05932437628507614, 0.044468414038419724, 0.024985671043395996, 0.07828373461961746, 0.008918030187487602, 0.031917914748191833, 0.045869819819927216, 0.023909855633974075, -0.07412910461425781, -0.059896960854530334, -0.10163693130016327, 0.03720293939113617, 0.03219130262732506, 0.006409154273569584, 0.011801844462752342, 0.12388776987791061, -0.03318396583199501, 0.04469762369990349, 0.17585009336471558, -0.334657222032547, -0.011073137633502483, 0.06745818257331848, 0.036696482449769974, 0.12972399592399597, -0.003485289169475436, -0.021605638787150383, 0.075822614133358, 0.02547849342226982, 0.08514715731143951, -0.03898893669247627, 0.023627351969480515, -0.055443234741687775, -0.15383082628250122, -0.04831305146217346, 0.08551919460296631, -0.0016790780937299132, -0.1366545855998993, -0.03470171242952347, -0.045851871371269226, 0.028798116371035576, 0.013524342328310013, -0.035373929888010025, 0.03428145498037338, 0.01710014045238495, -0.01899939775466919, -0.008876440115272999, -0.1042729914188385, -0.05323752760887146, 0.030183950439095497, 0.07200130075216293, 0.10050928592681885, 0.07004929333925247, 0.0033716815523803234, 0.11376836150884628, -0.19242604076862335, -0.0521455779671669, -0.028558526188135147, -0.050094544887542725, -0.04783295467495918, -0.007972914725542068, -0.10662991553544998, -0.03972777724266052, 0.008525540120899677, 0.13252496719360352, 0.00011136232205899432, 0.027660952880978584, -0.032971590757369995, 0.010764415375888348, 0.055076684802770615, 0.04670475050806999, -0.006076111923903227, 0.01661493070423603, 0.021572822704911232, -0.011108442209661007, -0.020139675587415695, 0.013341199606657028, 0.00045960984425619245, 0.026736384257674217, 0.12422212958335876, 0.02102317102253437, -0.09915325790643692, 0.06153026968240738, -0.01929778978228569, -0.045278314501047134, 0.014621232636272907, -0.0904083326458931, -0.0545741431415081, -0.04143975302577019, 0.0011106301099061966, 0.014056708663702011, -0.002459207084029913, -0.0012290301965549588, -0.02350897155702114, -0.03742160648107529, -0.08178972452878952, -0.04698490723967552, -0.0544559583067894, -0.12338615953922272, 0.0083128921687603, -0.17912061512470245, -0.03518923744559288, -0.11578859388828278, -0.184429332613945, -0.022642791271209717, 0.06380607932806015, -0.011477293446660042, -0.05655268579721451, 0.07885047048330307, 0.04527612775564194, -0.029912998899817467, -0.0018532893154770136, 0.07151433825492859, -0.0011255437275394797, 0.044908009469509125, -0.027628431096673012, 0.06915143877267838, 0.00022854212147649378, 0.03478794917464256, -0.05481364578008652, 0.06253755837678909, -0.17243634164333344, 0.04444563761353493, -0.06988947093486786, -0.028692713007330894, -0.08470693975687027, -0.03389269486069679, -0.0075932159088552, 0.004803329240530729, 0.024088766425848007, 0.07258135080337524, -0.17958518862724304, -0.027601853013038635, 0.11717697978019714, -0.16326594352722168, -0.02063952013850212, 0.07597315311431885, -0.04609496146440506, 0.09938044100999832, 0.06943118572235107, 0.15728478133678436, -0.00755218043923378, -0.07415279000997543, 0.057147108018398285, -0.01257978193461895, 0.01461963914334774, -0.01292907353490591, 0.07076425850391388, -0.020771939307451248, -0.15305370092391968, 0.03628844395279884, -0.12574395537376404, -0.0037134329322725534, -0.07781999558210373, 0.016833830624818802, -0.011879636906087399, -0.06766264885663986, -0.07376686483621597, -0.02539808861911297, 0.06595762073993683, -0.07344938814640045, -0.0167216956615448, 0.0315554179251194, 0.07306286692619324, -0.06915849447250366, 0.06674370169639587, -0.013604067265987396, 0.010682294145226479, -0.08391053229570389, -0.04134433716535568, -0.1883372962474823, 0.05231447145342827, 0.10061387717723846, 0.011241662316024303, -0.022255336865782738, 0.1438044309616089, 0.006713700480759144, 0.06806362420320511, -0.04874837026000023, 0.013007179833948612, -0.012748334556818008, -0.005345264915376902, -0.09385295957326889, -0.09261934459209442, -0.07631997764110565, -0.06725131720304489, 0.08685004711151123, -0.12570445239543915, 0.02071450464427471, -0.05493897199630737, 0.04429600387811661, 0.021315494552254677, -0.08462920784950256, -0.021335074678063393, 0.013722863979637623, -0.06093636527657509, -0.058138418942689896, 0.03884138911962509, 0.06985358893871307, -0.012972361408174038, 0.08667848259210587, -0.050351861864328384, -0.07944436371326447, 0.02944941259920597, 0.10157079249620438, -0.10387048870325089, 0.011030128225684166, -0.05740297958254814, -0.04515961557626724, -0.06380784511566162, -0.020294586196541786, 0.08413465321063995, -0.007388273719698191, 0.13813553750514984, -0.0733087807893753, 0.000349913549143821, 0.013553298078477383, -0.020770350471138954, -0.02098909020423889, 0.037536464631557465, 0.06428245455026627, -0.06961847096681595, 0.01264993380755186, 0.038862429559230804, 0.011537105776369572, 0.06978517770767212, -0.05278858542442322, -0.08939837664365768, 0.01417178101837635, 0.03543570637702942, 0.030383216217160225, 0.06619390845298767, -0.01940336264669895, -0.010776326060295105, 0.034796711057424545, 0.017843596637248993, 0.007693050894886255, -0.11997808516025543, 0.06250371783971786, 0.057794515043497086, 0.005795767065137625, 0.0599357895553112, -0.021374734118580818, -0.039478614926338196, 0.0809069573879242, 0.03386451303958893, -0.00214900029823184, -0.015420256182551384, -0.016476335003972054, -0.11871649324893951, 0.18947046995162964, -0.058644987642765045, -0.15863613784313202, -0.08308495581150055, -0.1005496084690094, 0.005328436382114887, 0.027210189029574394, 0.03867700323462486, -0.01646731048822403, -0.04388370364904404, -0.12637509405612946, 0.05755047872662544, -0.03868819773197174, 0.06871671229600906, 0.11369810253381729, -0.039343006908893585, 0.057380110025405884, -0.12524394690990448, -0.009529118426144123, -0.0807403028011322, -0.08023106306791306, 0.06284582614898682, -0.05097179114818573, 0.027172474190592766, 0.10005021840333939, 0.023367566987872124, -0.019296560436487198, -0.02347881719470024, 0.19675567746162415, 0.03948666900396347, 0.042061906307935715, 0.12842635810375214, -0.06717918813228607, 0.057010527700185776, 0.08260064572095871, 0.009427475742995739, -0.04437590762972832, 0.05326176807284355, 0.043067675083875656, -0.07039602100849152, -0.1935032457113266, -0.023233380168676376, -0.005568249151110649, -0.041504424065351486, 0.07892435044050217, 0.037781260907649994, 0.00027308150311000645, 0.06958410888910294, 0.01418516505509615, 0.061420030891895294, -0.005938893649727106, 0.09547930210828781, 0.005107999313622713, -0.03289637714624405, 0.08796341717243195, -0.02006630226969719, -0.009562408551573753, 0.08517372608184814, -0.01954544335603714, 0.2924562692642212, -0.030808109790086746, 0.008459394797682762, 0.11729109287261963, 0.044548362493515015, 0.06301642954349518, 0.12719844281673431, -0.06578308343887329, 0.022235549986362457, -0.07318804413080215, -0.057867515832185745, -0.0054624187760055065, 0.04956973344087601, -0.05757971480488777, 0.01422075368463993, -0.07559406012296677, 0.02383514493703842, -0.023243345320224762, 0.31177085638046265, 0.10940524190664291, -0.10595192015171051, -0.05475863441824913, 0.006423871964216232, -0.1020919606089592, -0.07317151874303818, 0.044487450271844864, 0.07342374324798584, -0.1363033652305603, 0.005696517415344715, -0.024192078039050102, 0.07621217519044876, -0.02228586934506893, 0.016946034505963326, 0.0298270583152771, 0.03248339146375656, -0.03634707257151604, 0.010083041153848171, -0.18348413705825806, 0.19257651269435883, 0.006802674382925034, 0.01906382106244564, -0.054310575127601624, 0.033838097006082535, 0.006553566548973322, -0.03304343298077583, 0.0617709681391716, 0.02382342331111431, -0.0370512492954731, -0.05020514503121376, -0.05458715930581093, 0.01530187577009201, 0.07599722594022751, -0.04526030644774437, 0.10636461526155472, -0.0049298591911792755, 0.04424746334552765, 0.01872854493558407, 0.08715430647134781, -0.17773833870887756, -0.09127039462327957, 0.031229430809617043, -0.055487170815467834, -0.10290651768445969, -0.08154351264238358, -0.09238763153553009, 0.00762104382738471, 0.2454972118139267, -0.12357068806886673, -0.07589682936668396, -0.09490934014320374, 0.029004015028476715, 0.10475485026836395, -0.05023130774497986, 0.02679774910211563, -0.0034809119533747435, 0.1275341659784317, -0.06639364361763, -0.13083462417125702, 0.0234429519623518, -0.09058564156293869, -0.16678790748119354, -0.065411776304245, 0.11562364548444748, 0.059095919132232666, 0.03553842008113861, -0.0283872839063406, 0.023578975349664688, 0.03396547585725784, -0.037553850561380386, -0.00005697897358913906, 0.07290121167898178, 0.0902927964925766, 0.03299722447991371, -0.11000636965036392, 0.02215469256043434, -0.06317085027694702, -0.06801694631576538, 0.07550939172506332, 0.26573264598846436, -0.05617472529411316, 0.12459015846252441, 0.11478910595178604, -0.08044492453336716, -0.15153659880161285, 0.028531435877084732, 0.09315171837806702, -0.014629945158958435, 0.019618866965174675, -0.15743878483772278, 0.08931469172239304, 0.11426621675491333, -0.023558344691991806, 0.012899091467261314, -0.18598483502864838, -0.12931117415428162, 0.0693679079413414, 0.09412888437509537, 0.2766970694065094, -0.06142229214310646, -0.04313862696290016, 0.017450634390115738, -0.09882202744483948, 0.011964193545281887, 0.12497851997613907, 0.06348271667957306, -0.02654503844678402, -0.07517655193805695, 0.016643650829792023, -0.04058860242366791, 0.09487121552228928, 0.05576604977250099, 0.05661403387784958, -0.004413480404764414, 0.01413052063435316, -0.02557467669248581, -0.04460638388991356, 0.06129235029220581, 0.020885387435555458, 0.04844823479652405, -0.09129175543785095, -0.02897987887263298, -0.06624474376440048, 0.02641688473522663, -0.02395624853670597, -0.07603929191827774, -0.057423219084739685, 0.0743885263800621, 0.048122942447662354, -0.024849828332662582, 0.019494134932756424, 0.031463779509067535, 0.11388813704252243, 0.17544133961200714, -0.009125945158302784, -0.05463562160730362, -0.054602865129709244, -0.040573712438344955, -0.017584921792149544, 0.07294107228517532, -0.04717937856912613, 0.026006074622273445, 0.06685762107372284, 0.022397339344024658, 0.09606866538524628, 0.05637132748961449, -0.11467959731817245, -0.01558410283178091, 0.03384312614798546, -0.1614021360874176, 0.012030087411403656, -0.0025912977289408445, 0.03625108674168587, -0.03500954061746597, 0.025249771773815155, 0.1505075842142105, -0.06611211597919464, -0.03503541275858879, -0.04084485024213791, 0.06897842884063721, 0.02234085649251938, 0.1404474377632141, 0.03329815715551376, 0.03736409917473793, -0.08132165670394897, 0.12782034277915955, 0.04085804894566536, -0.03840162605047226, 0.02079586870968342, -0.027278557419776917, -0.1071380153298378, 0.014677267521619797, 0.05785079300403595, 0.04156617075204849, -0.052407655864953995, -0.010770873166620731, -0.02822897769510746, -0.07299593091011047, 0.059163980185985565, 0.17247560620307922, 0.06738370656967163, 0.07241511344909668, -0.05531396344304085, -0.038311708718538284, -0.07878309488296509, 0.04224037006497383, 0.04297280311584473, 0.07579540461301804, -0.07425102591514587, 0.10375764220952988, 0.011368675157427788, 0.04536285251379013, -0.030182190239429474, -0.05410128831863403, -0.09698719531297684, -0.05373072251677513, -0.0988459512591362, 0.00809475313872099, -0.07042072713375092, -0.0401487797498703, 0.0015891859075054526, -0.007230447139590979, -0.008630597032606602, 0.04915884882211685, -0.06209687143564224, -0.010632326826453209, -0.028494108468294144, 0.03403955698013306, -0.061105772852897644, -0.039354123175144196, 0.03208254650235176, -0.10023403912782669, 0.09274349361658096, 0.04794251546263695, 0.006466289050877094, 0.005689030978828669, 0.09322507679462433, -0.021321596577763557, 0.022525735199451447, 0.015539605170488358, -0.04740108549594879, -0.07868454605340958, 0.0008317606407217681, -0.009256057441234589, -0.016104944050312042, -0.011928093619644642, 0.08753009885549545, -0.08908899128437042, 0.03034571185708046, -0.008045812137424946, -0.010648086667060852, -0.07460685819387436, -0.012335155159235, 0.09676594287157059, 0.09757831692695618, 0.04650966450572014, -0.08911214023828506, 0.013522215187549591, -0.1425430327653885, -0.036539603024721146, 0.007696434389799833, -0.005841141566634178, -0.11788859218358994, -0.010954122990369797, 0.01951928436756134, -0.0016973215388134122, 0.21036213636398315, -0.05790306627750397, -0.018869977444410324, 0.018907485529780388, -0.09683068096637726, 0.1105748862028122, -0.02531418949365616, 0.18367864191532135, -0.007954854518175125, -0.040429048240184784, -0.016572782769799232, 0.035528477281332016, 0.021159565076231956, -0.021352795884013176, 0.17954562604427338, 0.140731543302536, 0.031053662300109863, 0.040579501539468765, -0.02307013049721718, 0.0032295172568410635, -0.05405537039041519, -0.029246829450130463, 0.032191529870033264, 0.03945958614349365, 0.018624376505613327, 0.1529400646686554, 0.06971745193004608, -0.16619274020195007, 0.0326557382941246, -0.02709367498755455, -0.035821184515953064, -0.11532194167375565, -0.0880294069647789, -0.03444035351276398, -0.07315465807914734, 0.00881287269294262, -0.12202417105436325, 0.01032257080078125, 0.1841767579317093, 0.05521402880549431, 0.025242013856768608, 0.003160387510433793, -0.12496893107891083, -0.0324123278260231, 0.05459130182862282, 0.014398148283362389, 0.02667539194226265, 0.060132455080747604, -0.002211114391684532, 0.061084069311618805, 0.0418265275657177, 0.015304440632462502, 0.0013971728039905429, 0.07870461046695709, 0.015910334885120392, 0.041941553354263306, -0.06254716962575912, -0.005047778133302927, -0.04458343982696533, 0.06923208385705948, 0.09398084878921509, 0.047637972980737686, -0.04695539176464081, -0.008558633737266064, 0.1635345220565796, -0.04456378147006035, -0.0007444403017871082, -0.1245921403169632, 0.3307679295539856, 0.013626813888549805, 0.013549688272178173, 0.04558306559920311, -0.07848861068487167, -0.050072409212589264, 0.20052485167980194, 0.08292531967163086, -0.021343480795621872, -0.02271416038274765, -0.001458655227907002, -0.030300822108983994, -0.021443668752908707, 0.15100513398647308, 0.03304934501647949, 0.12643857300281525, -0.05319884046912193, -0.046902891248464584, -0.028194565325975418, -0.009582455269992352, -0.12540452182292938, 0.13894149661064148, -0.029696697369217873, -0.021829448640346527, -0.07454455643892288, 0.02393721230328083, 0.0768689513206482, -0.31461694836616516, 0.0008769417181611061, -0.03627864271402359, -0.11080305278301239, -0.0011711270781233907, -0.01324489712715149, -0.021798523142933846, 0.0479641817510128, -0.04766710475087166, 0.07326070964336395, 0.040944453328847885, 0.033775873482227325, -0.026239609345793724, -0.09149200469255447, 0.16162525117397308, 0.05015468969941139, 0.09587258845567703, 0.027625149115920067, 0.07521285861730576, 0.054899733513593674, 0.03666681423783302, -0.09605950117111206, 0.0444592610001564, 0.011151129379868507, -0.08655096590518951, -0.05136267840862274, 0.12304837256669998, -0.002212190767750144, 0.038458552211523056, 0.04456073045730591, -0.10808498412370682, 0.009474719874560833, 0.07117288559675217, -0.06772878766059875, -0.09942232072353363, -0.010887743905186653, -0.0882420614361763, 0.15709416568279266, 0.14013738930225372, -0.017645707353949547, 0.020491117611527443, -0.06448555737733841, -0.006973761133849621, 0.05137774348258972, 0.014226924628019333, -0.016879916191101074, -0.1901472955942154, 0.033127691596746445, -0.08098115772008896, -0.005468036979436874, -0.22930866479873657, -0.1017652302980423, -0.01338765025138855, -0.05368639901280403, -0.02795262448489666, 0.06282074004411697, 0.03235457465052605, 0.0656861960887909, -0.017102772369980812, -0.04239845648407936, -0.027652092278003693, 0.08986898511648178, -0.1086508184671402, -0.06549867242574692 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_80k"]}
null
google/multiberts-seed_2-step_80k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_80k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 80k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_80k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 80k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 80k (max: 2000k, i.e., 2M steps)." ]
[ -0.0785176083445549, 0.10662347823381424, -0.002510025631636381, 0.039840009063482285, 0.07629004865884781, -0.015839647501707077, 0.08196438103914261, 0.10342897474765778, -0.0070805917493999004, 0.029795372858643532, 0.07741548866033554, 0.005279508884996176, 0.01777324639260769, 0.10093031078577042, 0.020843543112277985, -0.2243741899728775, 0.020024113357067108, -0.028525853529572487, -0.0840054452419281, 0.07591921091079712, 0.09930308908224106, -0.08106160908937454, 0.044349733740091324, 0.027576956897974014, -0.112643301486969, 0.04794244095683098, 0.0024498109705746174, -0.02022613026201725, 0.13388286530971527, -0.00393119128420949, 0.05261637642979622, 0.05380617454648018, 0.04499572515487671, -0.13261917233467102, 0.006689772009849548, 0.05876142904162407, 0.05887378752231598, 0.046529341489076614, 0.02661396563053131, 0.07860946655273438, 0.01468916330486536, 0.026363924145698547, 0.04565035551786423, 0.02307276241481304, -0.07258259505033493, -0.06866560131311417, -0.10150548815727234, 0.04025101289153099, 0.030535178259015083, 0.003192251082509756, 0.010274517349898815, 0.12680159509181976, -0.031835656613111496, 0.04540156573057175, 0.18205475807189941, -0.34367090463638306, -0.009577421471476555, 0.06743203103542328, 0.04202296584844589, 0.1272677183151245, -0.0026684061158448458, -0.018895193934440613, 0.07591806352138519, 0.02293599583208561, 0.08815371990203857, -0.0400175079703331, 0.03106488473713398, -0.053329966962337494, -0.15527454018592834, -0.04857486113905907, 0.09115651994943619, 0.00007711029320489615, -0.13715475797653198, -0.03389601781964302, -0.04634890332818031, 0.0411316379904747, 0.011991365812718868, -0.037343092262744904, 0.03430087864398956, 0.017145831137895584, -0.018653450533747673, -0.008055957965552807, -0.10498468577861786, -0.05305015295743942, 0.03445279970765114, 0.07418737560510635, 0.10261054337024689, 0.06779714673757553, 0.001078556990250945, 0.1107853502035141, -0.19566753506660461, -0.05319911241531372, -0.025071168318390846, -0.0505560003221035, -0.049059633165597916, -0.007456951774656773, -0.10805761814117432, -0.04068286344408989, 0.00936979427933693, 0.13152088224887848, 0.0010421575279906392, 0.027465511113405228, -0.03683541342616081, 0.011426844634115696, 0.05654928460717201, 0.04549723118543625, -0.004768169019371271, 0.013342357240617275, 0.02082913927733898, -0.013414462096989155, -0.02118644490838051, 0.013964405283331871, -0.0017942595295608044, 0.02661064825952053, 0.12643733620643616, 0.02122962661087513, -0.10199783742427826, 0.06358964741230011, -0.01788889616727829, -0.04635566473007202, 0.011691021732985973, -0.08940430730581284, -0.05433971434831619, -0.038896381855010986, -0.00011602939775912091, 0.01547228917479515, -0.0032784370705485344, -0.00289376312866807, -0.023060966283082962, -0.037625208497047424, -0.08264505118131638, -0.04500848054885864, -0.05369153246283531, -0.1273241937160492, 0.008451255969703197, -0.18806850910186768, -0.036009155213832855, -0.11256144195795059, -0.18358905613422394, -0.023217488080263138, 0.06297487020492554, -0.009343631565570831, -0.05656566470861435, 0.07816535979509354, 0.04498165100812912, -0.02864825539290905, -0.0030360431410372257, 0.07052677869796753, -0.0027430467307567596, 0.04480039328336716, -0.0287186186760664, 0.0702064260840416, 0.004064807202666998, 0.035012178122997284, -0.052772197872400284, 0.06341645121574402, -0.17619812488555908, 0.041305698454380035, -0.07054277509450912, -0.0326930433511734, -0.08689176291227341, -0.03340577334165573, -0.004708341788500547, 0.00551834050565958, 0.023253414779901505, 0.07117567956447601, -0.1883993148803711, -0.030025366693735123, 0.12732256948947906, -0.1632806360721588, -0.023287596181035042, 0.07608582079410553, -0.04758249968290329, 0.10072038322687149, 0.06979615241289139, 0.15808451175689697, -0.01657547615468502, -0.07979682087898254, 0.056421056389808655, -0.011080707423388958, 0.01584741473197937, -0.01091891247779131, 0.07358932495117188, -0.021030902862548828, -0.152031809091568, 0.034153375774621964, -0.12939374148845673, -0.004286907613277435, -0.07716058939695358, 0.019260618835687637, -0.012828660197556019, -0.06526271253824234, -0.07501404732465744, -0.02499830722808838, 0.06675603985786438, -0.0745512992143631, -0.02077043615281582, 0.03982878848910332, 0.07446884363889694, -0.07324279844760895, 0.0651990994811058, -0.016321875154972076, 0.014281578361988068, -0.08724743872880936, -0.040392640978097916, -0.19000062346458435, 0.053490009158849716, 0.09994138032197952, 0.01179591566324234, -0.020488325506448746, 0.15125145018100739, 0.007431348320096731, 0.0675048977136612, -0.04676404967904091, 0.012335013598203659, -0.011649712920188904, -0.004789313301444054, -0.09504369646310806, -0.09972245991230011, -0.07439195364713669, -0.06777219474315643, 0.08638244867324829, -0.12821942567825317, 0.020507460460066795, -0.06033416837453842, 0.04675247147679329, 0.020424148067831993, -0.0835554301738739, -0.02074887417256832, 0.011449522338807583, -0.06319472193717957, -0.05761381983757019, 0.04085993766784668, 0.06927113980054855, -0.012565110810101032, 0.09093889594078064, -0.05465742573142052, -0.07920464128255844, 0.030119160190224648, 0.09807348251342773, -0.10253157466650009, 0.01038515754044056, -0.05687491595745087, -0.043997034430503845, -0.05924086645245552, -0.016614669933915138, 0.07946016639471054, -0.007180025335401297, 0.1395501047372818, -0.07514549791812897, -0.0031396630220115185, 0.012926199473440647, -0.021316153928637505, -0.020842598751187325, 0.03766767680644989, 0.06717153638601303, -0.07944049686193466, 0.013820194639265537, 0.04504258185625076, 0.009903335012495518, 0.06866425275802612, -0.054387785494327545, -0.09290513396263123, 0.01183418370783329, 0.03623023256659508, 0.028883425518870354, 0.0671890527009964, -0.028085166588425636, -0.014036273583769798, 0.036176275461912155, 0.016119861975312233, 0.006553380284458399, -0.11765894293785095, 0.062428779900074005, 0.056440841406583786, 0.005018793512135744, 0.06050712615251541, -0.02016076073050499, -0.039292383939027786, 0.08214738219976425, 0.03574542701244354, -0.006314531899988651, -0.017011405900120735, -0.015983061864972115, -0.1172683835029602, 0.1897064745426178, -0.05910596624016762, -0.1611383557319641, -0.07661743462085724, -0.09903022646903992, 0.0074284374713897705, 0.02802012860774994, 0.03977298364043236, -0.017435049638152122, -0.045307476073503494, -0.12411428987979889, 0.05629107356071472, -0.04018933326005936, 0.06912749260663986, 0.11004570126533508, -0.04060530662536621, 0.055737774819135666, -0.12622392177581787, -0.009892556816339493, -0.08286423236131668, -0.07213052362203598, 0.062348708510398865, -0.05147587135434151, 0.02516564354300499, 0.10156147927045822, 0.02306552417576313, -0.017311332747340202, -0.02253751829266548, 0.19405172765254974, 0.04073410853743553, 0.03962074592709541, 0.13076777756214142, -0.06996336579322815, 0.056217536330223083, 0.07765747606754303, 0.0071349916979670525, -0.044518738985061646, 0.05123680830001831, 0.04588557407259941, -0.06633491814136505, -0.19549356400966644, -0.021625012159347534, -0.004512693267315626, -0.040574125945568085, 0.07805027812719345, 0.03597210347652435, 0.0008489572210237384, 0.0702352374792099, 0.011908465065062046, 0.06028848513960838, -0.006437975447624922, 0.09794065356254578, 0.005478166043758392, -0.03520744666457176, 0.08982152491807938, -0.01902858354151249, -0.008564484305679798, 0.08491060137748718, -0.021325981244444847, 0.28897687792778015, -0.02726896107196808, 0.014442140236496925, 0.11945254355669022, 0.04241332411766052, 0.06226611137390137, 0.12613913416862488, -0.06622044742107391, 0.02176743932068348, -0.07587186992168427, -0.06010986864566803, -0.005284572951495647, 0.05107239633798599, -0.059059955179691315, 0.009132534265518188, -0.07481475174427032, 0.02282808907330036, -0.023400425910949707, 0.3079809546470642, 0.11018358916044235, -0.10748274624347687, -0.055810436606407166, 0.007377409376204014, -0.10065808892250061, -0.07553648948669434, 0.04246217757463455, 0.07458316534757614, -0.13363920152187347, 0.004323157481849194, -0.025641221553087234, 0.07730981707572937, -0.020144568756222725, 0.01729642041027546, 0.021858973428606987, 0.032347895205020905, -0.03644493594765663, 0.011039400473237038, -0.1834263950586319, 0.1911388635635376, 0.007210993207991123, 0.01939212530851364, -0.052958980202674866, 0.03369676321744919, 0.007110523991286755, -0.0315016470849514, 0.06167261675000191, 0.021554801613092422, -0.037615206092596054, -0.04590538889169693, -0.05265818163752556, 0.016262825578451157, 0.0783337950706482, -0.046855177730321884, 0.10910098999738693, -0.006247342098504305, 0.04321196675300598, 0.02241727150976658, 0.0844556912779808, -0.17944814264774323, -0.08755762875080109, 0.030599519610404968, -0.05774584040045738, -0.09977806359529495, -0.08068948984146118, -0.09417150914669037, -0.0028259053360670805, 0.25779321789741516, -0.11964575946331024, -0.07450064271688461, -0.09478037804365158, 0.029252750799059868, 0.10477837920188904, -0.050258953124284744, 0.024754652753472328, -0.004790357314050198, 0.1313881278038025, -0.066622793674469, -0.13064053654670715, 0.026386896148324013, -0.09134107828140259, -0.16502656042575836, -0.0663059800863266, 0.1164085790514946, 0.060561876744031906, 0.034942805767059326, -0.026232706382870674, 0.023022638633847237, 0.03200233727693558, -0.03500077873468399, 0.001634216052480042, 0.07234567403793335, 0.10193204879760742, 0.03064616583287716, -0.11082015931606293, 0.02281741425395012, -0.062211330980062485, -0.06494118273258209, 0.07660450786352158, 0.2675759196281433, -0.05596537888050079, 0.12389479577541351, 0.11188007146120071, -0.08034048229455948, -0.14738261699676514, 0.030161013826727867, 0.09273379296064377, -0.016449809074401855, 0.017293551936745644, -0.16059653460979462, 0.08977647125720978, 0.11211645603179932, -0.023984385654330254, 0.010419824160635471, -0.18355920910835266, -0.12781786918640137, 0.07530467212200165, 0.09642956405878067, 0.2778458297252655, -0.06334017217159271, -0.041830357164144516, 0.016611313447356224, -0.09221027791500092, 0.020673764869570732, 0.12099908292293549, 0.06250785291194916, -0.02551993913948536, -0.07670316845178604, 0.017572415992617607, -0.04072899743914604, 0.09419264644384384, 0.054423894733190536, 0.05780034139752388, -0.003199076745659113, 0.01759648509323597, -0.023663897067308426, -0.04578165337443352, 0.06397321820259094, 0.01576807163655758, 0.048032261431217194, -0.09137140959501266, -0.02968478947877884, -0.06567320227622986, 0.029957110062241554, -0.023811733350157738, -0.07729563117027283, -0.05620085820555687, 0.0726592168211937, 0.045258231461048126, -0.022456275299191475, 0.028607826679944992, 0.03046216256916523, 0.11635427176952362, 0.1638249009847641, -0.004958240315318108, -0.04834504798054695, -0.05907513573765755, -0.040630243718624115, -0.01659058965742588, 0.07478978484869003, -0.052051741629838943, 0.02559259906411171, 0.06513801962137222, 0.022557135671377182, 0.10015961527824402, 0.05542067065834999, -0.11655545979738235, -0.018203875049948692, 0.0311205442994833, -0.16475915908813477, 0.013228749856352806, 0.0000027539877009985503, 0.030604630708694458, -0.032485876232385635, 0.02772250771522522, 0.15127189457416534, -0.06318026036024094, -0.03601701185107231, -0.04196925461292267, 0.06847353279590607, 0.02498812973499298, 0.13807129859924316, 0.033908795565366745, 0.0371948704123497, -0.08108486980199814, 0.12409787625074387, 0.03915897011756897, -0.04350804537534714, 0.02543940208852291, -0.029496043920516968, -0.10761907696723938, 0.013873951509594917, 0.062415122985839844, 0.053076352924108505, -0.051640983670949936, -0.015036904253065586, -0.030029328539967537, -0.06944271177053452, 0.061951518058776855, 0.18183353543281555, 0.0687551274895668, 0.07311803847551346, -0.05483684688806534, -0.03807846084237099, -0.07802483439445496, 0.04585541784763336, 0.04288752004504204, 0.07525144517421722, -0.07598698139190674, 0.11025907844305038, 0.011827724985778332, 0.045893631875514984, -0.03113446570932865, -0.052959293127059937, -0.09794475138187408, -0.05625032261013985, -0.10973326861858368, 0.011017042212188244, -0.07121160626411438, -0.041159018874168396, 0.0018437736434862018, -0.006126889493316412, -0.004832095000892878, 0.048539310693740845, -0.06346943229436874, -0.008697418496012688, -0.02671242691576481, 0.03584699705243111, -0.06569143384695053, -0.03767705336213112, 0.02939169481396675, -0.10181470215320587, 0.09411313384771347, 0.05253107473254204, 0.008290308527648449, 0.007670121267437935, 0.09018800407648087, -0.018116241320967674, 0.0258717592805624, 0.014687332324683666, -0.047442082315683365, -0.08153291046619415, 0.002446927363052964, -0.009114520624279976, -0.015862973406910896, -0.013790685683488846, 0.08860716223716736, -0.08735901862382889, 0.03143066167831421, -0.005250126123428345, -0.012107077986001968, -0.07376617938280106, -0.01229031104594469, 0.09203480929136276, 0.10039554536342621, 0.04724862053990364, -0.08622328191995621, 0.01211491972208023, -0.14213384687900543, -0.036568909883499146, 0.007414585445076227, -0.006176882889121771, -0.1161443442106247, -0.010309633798897266, 0.018872031942009926, -0.004549366421997547, 0.2057047337293625, -0.05463851988315582, -0.0176620502024889, 0.01730540581047535, -0.10154737532138824, 0.11489934474229813, -0.027011172845959663, 0.18427212536334991, -0.007728375494480133, -0.038882240653038025, -0.016796167939901352, 0.037315499037504196, 0.022388923913240433, -0.025274386629462242, 0.18013644218444824, 0.14007502794265747, 0.024919891729950905, 0.04114069417119026, -0.024840379133820534, -0.0022609310690313578, -0.06431394815444946, -0.024034282192587852, 0.03300604596734047, 0.04001784324645996, 0.019423089921474457, 0.16569219529628754, 0.07367967069149017, -0.16556409001350403, 0.030350366607308388, -0.026507925242185593, -0.03560864180326462, -0.117760069668293, -0.09280126541852951, -0.036427754908800125, -0.0711807906627655, 0.009443629533052444, -0.12282825261354446, 0.01101071946322918, 0.1809980273246765, 0.05600446090102196, 0.024668216705322266, -0.0018819422693923116, -0.1215643510222435, -0.03547229617834091, 0.05160187557339668, 0.01609918288886547, 0.022129349410533905, 0.05815238133072853, -0.0005810003494843841, 0.06246910244226456, 0.0400058850646019, 0.01561895851045847, 0.0004927204572595656, 0.08278844505548477, 0.016398005187511444, 0.0407230481505394, -0.0625128373503685, -0.005950918421149254, -0.041927020996809006, 0.07144131511449814, 0.0960221067070961, 0.04944116994738579, -0.04849088564515114, -0.009004050865769386, 0.16181553900241852, -0.0439922995865345, 0.0003424961760174483, -0.12272458523511887, 0.3363077640533447, 0.011101054027676582, 0.013847573660314083, 0.04646369069814682, -0.0764256939291954, -0.04845154285430908, 0.19741584360599518, 0.07821188122034073, -0.016199102625250816, -0.02214623987674713, -0.0003265415725763887, -0.03097759746015072, -0.024811677634716034, 0.14885768294334412, 0.03613240271806717, 0.13185939192771912, -0.05342366173863411, -0.04884515330195427, -0.029384784400463104, -0.008460171520709991, -0.12678879499435425, 0.13428035378456116, -0.028485151007771492, -0.023385250940918922, -0.07000928372144699, 0.024335971102118492, 0.07763981074094772, -0.32134392857551575, -0.0016822637990117073, -0.029465069994330406, -0.10953466594219208, -0.001188278547488153, -0.011409947648644447, -0.02407068945467472, 0.046586427837610245, -0.04845552518963814, 0.06912105530500412, 0.04321811720728874, 0.03352527320384979, -0.02637585811316967, -0.0895102322101593, 0.16241396963596344, 0.041248977184295654, 0.09113168716430664, 0.026560019701719284, 0.07941260933876038, 0.05512814596295357, 0.0365070216357708, -0.09259756654500961, 0.04367459937930107, 0.01196160539984703, -0.08544783294200897, -0.05038594827055931, 0.1237730011343956, -0.0025306486058980227, 0.042241085320711136, 0.04709768667817116, -0.10686735063791275, 0.008330083452165127, 0.06704358756542206, -0.0726986899971962, -0.09999674558639526, -0.008692729286849499, -0.090293750166893, 0.15672002732753754, 0.1395953893661499, -0.017410235479474068, 0.020274171605706215, -0.06910963356494904, -0.004765116143971682, 0.05418146774172783, 0.01105424202978611, -0.017768222838640213, -0.1878431737422943, 0.03447723016142845, -0.07435595989227295, -0.00471538444980979, -0.22964343428611755, -0.09932029247283936, -0.013130088336765766, -0.0506645031273365, -0.02808554284274578, 0.056349802762269974, 0.030865482985973358, 0.06646085530519485, -0.01899772137403488, -0.04311387985944748, -0.027524586766958237, 0.08987496793270111, -0.11015897989273071, -0.06510747969150543 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2", "multiberts-seed_2-step_900k"]}
null
google/multiberts-seed_2-step_900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #multiberts-seed_2-step_900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2, captured at step 900k (max: 2000k, i.e., 2M steps)." ]
[ -0.07617061585187912, 0.09488324820995331, -0.0023885273840278387, 0.041205815970897675, 0.07586707174777985, -0.015131051652133465, 0.07499761134386063, 0.10243567824363708, -0.010919449850916862, 0.02780413068830967, 0.07935651391744614, 0.0036214410793036222, 0.019363390281796455, 0.09721346199512482, 0.024668777361512184, -0.22413328289985657, 0.02436479553580284, -0.02949659526348114, -0.08366991579532623, 0.07625768333673477, 0.10064077377319336, -0.08110134303569794, 0.044716283679008484, 0.028872666880488396, -0.1122996136546135, 0.04749833792448044, 0.00040676293428987265, -0.0193055160343647, 0.13115046918392181, -0.0025725835002958775, 0.0519581213593483, 0.05409220606088638, 0.04688495397567749, -0.13496990501880646, 0.0063852532766759396, 0.0579523928463459, 0.060195449739694595, 0.044066984206438065, 0.022065814584493637, 0.07681363075971603, 0.003988461568951607, 0.0297707486897707, 0.04777059704065323, 0.02233518660068512, -0.07273372262716293, -0.06086926534771919, -0.10301157087087631, 0.04847786948084831, 0.033669132739305496, 0.002021691994741559, 0.012710061855614185, 0.12304078787565231, -0.038067132234573364, 0.04238097369670868, 0.17774343490600586, -0.3322452902793884, -0.011282048188149929, 0.0698264092206955, 0.04196399450302124, 0.12045586109161377, -0.004315014462918043, -0.02110554277896881, 0.0746505931019783, 0.020464139059185982, 0.08953367173671722, -0.03925556316971779, 0.02352343127131462, -0.0603463277220726, -0.15553788840770721, -0.04747019708156586, 0.08442037552595139, 0.0009722213726490736, -0.135640487074852, -0.03576483577489853, -0.04537848383188248, 0.03802721947431564, 0.012310669757425785, -0.036869414150714874, 0.03367863595485687, 0.014952028170228004, -0.014897114597260952, -0.013075909577310085, -0.10412630438804626, -0.056323885917663574, 0.03183671087026596, 0.08689490705728531, 0.10249552875757217, 0.06813696026802063, 0.003309570485725999, 0.11540097743272781, -0.19288630783557892, -0.05295340344309807, -0.03079034760594368, -0.05365805700421333, -0.04779794439673424, -0.009195271879434586, -0.10577327758073807, -0.04038494825363159, 0.009624769911170006, 0.13138866424560547, 0.009080489166080952, 0.027524715289473534, -0.025363324210047722, 0.008671674877405167, 0.057322513312101364, 0.04680158197879791, -0.006274606101214886, 0.0180717334151268, 0.024829953908920288, -0.005939411465078592, -0.019355157390236855, 0.013128435239195824, 0.0006781212869100273, 0.02390294335782528, 0.12304139882326126, 0.023654988035559654, -0.09861493855714798, 0.06447387486696243, -0.017006125301122665, -0.04422600194811821, 0.01663237437605858, -0.09020201861858368, -0.05625329539179802, -0.040008943527936935, 0.00008928580791689456, 0.016230832785367966, -0.0032013747841119766, -0.005033265799283981, -0.022823622450232506, -0.03555701673030853, -0.08393774926662445, -0.04674766957759857, -0.055447984486818314, -0.12475580722093582, 0.008250361308455467, -0.18296077847480774, -0.035298336297273636, -0.11610579490661621, -0.187506765127182, -0.02512136660516262, 0.06253083050251007, -0.009088634513318539, -0.05566173046827316, 0.07892528176307678, 0.04248723387718201, -0.029218072071671486, -0.0038404951337724924, 0.07045982033014297, -0.0011579581769183278, 0.04501616954803467, -0.031174253672361374, 0.06992661952972412, -0.0002851419849321246, 0.034364957362413406, -0.055874474346637726, 0.06574708968400955, -0.17578163743019104, 0.04634032025933266, -0.07200334966182709, -0.029215799644589424, -0.08448035269975662, -0.03453928977251053, -0.010421822778880596, 0.0035463408567011356, 0.024345869198441505, 0.07346183806657791, -0.18753762543201447, -0.026028620079159737, 0.119672492146492, -0.16530728340148926, -0.024471497163176537, 0.0715155377984047, -0.04905599728226662, 0.10601314157247543, 0.07020391523838043, 0.1616877019405365, -0.00040508172241970897, -0.081842802464962, 0.05439358577132225, -0.010148713365197182, 0.010208197869360447, -0.0138441426679492, 0.06958392262458801, -0.022221412509679794, -0.15027521550655365, 0.034068427979946136, -0.13228362798690796, -0.002253855811432004, -0.07685492932796478, 0.01697430945932865, -0.011656703427433968, -0.0690995380282402, -0.07321462780237198, -0.027138756588101387, 0.06708501279354095, -0.0718689113855362, -0.013497792184352875, 0.045905306935310364, 0.07658150792121887, -0.07301871478557587, 0.06905776262283325, -0.011625616811215878, 0.019113631919026375, -0.08410351723432541, -0.03848353028297424, -0.18900339305400848, 0.051101166754961014, 0.10155120491981506, -0.003817153861746192, -0.021021677181124687, 0.13706135749816895, 0.005398132372647524, 0.06527246534824371, -0.04882998391985893, 0.011518866755068302, -0.014562731608748436, -0.0016060773050412536, -0.0931735411286354, -0.09653880447149277, -0.07886334508657455, -0.06718488782644272, 0.08211833983659744, -0.11744167655706406, 0.0214805006980896, -0.05886398255825043, 0.04791315272450447, 0.019033150747418404, -0.08430062979459763, -0.019309772178530693, 0.01255766674876213, -0.059200093150138855, -0.05809071660041809, 0.03932555392384529, 0.06890630722045898, -0.016292963176965714, 0.08612208068370819, -0.04782085120677948, -0.08408740907907486, 0.03105219081044197, 0.10227665305137634, -0.10632184892892838, 0.012565084733068943, -0.05612645670771599, -0.04350567236542702, -0.06363020092248917, -0.02079121582210064, 0.0803365409374237, -0.007618287578225136, 0.13565722107887268, -0.07756021618843079, -0.0031190686859190464, 0.011814513243734837, -0.02304043248295784, -0.023574717342853546, 0.03401410952210426, 0.06250324845314026, -0.07701624929904938, 0.012730100192129612, 0.04491393268108368, 0.010028219781816006, 0.07135529816150665, -0.053845811635255814, -0.0903175100684166, 0.010389754548668861, 0.03519153222441673, 0.026698822155594826, 0.0686604231595993, -0.021120499819517136, -0.01112513616681099, 0.032722871750593185, 0.017419952899217606, 0.0073769972659647465, -0.11921393871307373, 0.062471888959407806, 0.055039286613464355, 0.005869297310709953, 0.05825624242424965, -0.018519926816225052, -0.0400715135037899, 0.08024314045906067, 0.03921632468700409, 0.0011024518171325326, -0.016608571633696556, -0.01721108891069889, -0.11603861302137375, 0.19169831275939941, -0.058112554252147675, -0.16003859043121338, -0.07961038500070572, -0.09403324127197266, 0.003534829244017601, 0.02582724578678608, 0.03740730136632919, -0.0166950561106205, -0.04377945885062218, -0.12449395656585693, 0.05969635397195816, -0.035778507590293884, 0.06988077610731125, 0.11140885949134827, -0.0394270084798336, 0.05398378148674965, -0.12635670602321625, -0.008157387375831604, -0.08587206155061722, -0.06973962485790253, 0.055484771728515625, -0.047959763556718826, 0.02860471047461033, 0.10195798426866531, 0.0227009579539299, -0.01988409273326397, -0.024282947182655334, 0.20075522363185883, 0.039782144129276276, 0.041298337280750275, 0.13103356957435608, -0.0695812851190567, 0.0575832836329937, 0.08316326886415482, 0.009730427525937557, -0.04497971385717392, 0.05061396211385727, 0.042011212557554245, -0.06839083880186081, -0.1890491396188736, -0.02231767401099205, -0.0061664520762860775, -0.0492638498544693, 0.07688023149967194, 0.03408247232437134, -0.0004053436277899891, 0.07059543579816818, 0.014065589755773544, 0.05449109151959419, -0.003772367024794221, 0.09915922582149506, 0.011550470255315304, -0.03355748578906059, 0.08687248826026917, -0.0215308777987957, -0.00824436079710722, 0.08240388333797455, -0.01781819574534893, 0.2902068793773651, -0.033265743404626846, 0.00005322709330357611, 0.1211896687746048, 0.045203886926174164, 0.0630994588136673, 0.1273091584444046, -0.06764983385801315, 0.02279982902109623, -0.07223252952098846, -0.05810977518558502, -0.005422250833362341, 0.04774541035294533, -0.0534641407430172, 0.013562137261033058, -0.07634401321411133, 0.019735097885131836, -0.021624097600579262, 0.3095805048942566, 0.11287270486354828, -0.09909190237522125, -0.05805474892258644, 0.007646219339221716, -0.10293981432914734, -0.07374013960361481, 0.043164387345314026, 0.06929510086774826, -0.13605332374572754, 0.008804441429674625, -0.020036466419696808, 0.07474817335605621, -0.020227866247296333, 0.014365524984896183, 0.024762263521552086, 0.03414122760295868, -0.0368800088763237, 0.008546614088118076, -0.17736580967903137, 0.19414658844470978, 0.006681601982563734, 0.023295054212212563, -0.0517151802778244, 0.03420540690422058, 0.006668946240097284, -0.03462357074022293, 0.06311581283807755, 0.023820171132683754, -0.026680609211325645, -0.04757778346538544, -0.053613413125276566, 0.012207403779029846, 0.07833968102931976, -0.04410317540168762, 0.10648103803396225, -0.004197506699711084, 0.043262407183647156, 0.018934447318315506, 0.08321923017501831, -0.17914855480194092, -0.08774137496948242, 0.030950916931033134, -0.06217833235859871, -0.10102178156375885, -0.08349162340164185, -0.093622587621212, 0.004216811154037714, 0.24316982924938202, -0.120893195271492, -0.07649336010217667, -0.09242171794176102, 0.024249553680419922, 0.11054643988609314, -0.05052550137042999, 0.030058713629841805, -0.006686219945549965, 0.12616169452667236, -0.06621932238340378, -0.13346755504608154, 0.021662462502717972, -0.09096759557723999, -0.16661736369132996, -0.06538587808609009, 0.11918340623378754, 0.05719573795795441, 0.03501598536968231, -0.025455143302679062, 0.022263629361987114, 0.035321373492479324, -0.040354661643505096, -0.0028649361338466406, 0.07087863981723785, 0.08697178214788437, 0.03768685832619667, -0.10952629148960114, 0.011812127195298672, -0.06470654159784317, -0.0644691064953804, 0.07477802783250809, 0.2685641944408417, -0.057029519230127335, 0.12607766687870026, 0.12264077365398407, -0.08041995763778687, -0.15386059880256653, 0.02805330790579319, 0.09344720840454102, -0.01753995753824711, 0.009664127603173256, -0.1529213935136795, 0.08854830265045166, 0.11507248878479004, -0.024250902235507965, 0.002882444066926837, -0.1917252391576767, -0.13370507955551147, 0.0736691877245903, 0.09651888161897659, 0.2732540965080261, -0.05941179767251015, -0.04400245100259781, 0.016211286187171936, -0.09498666226863861, 0.02153419516980648, 0.12835337221622467, 0.06399177014827728, -0.02746288850903511, -0.08340917527675629, 0.01584361121058464, -0.04174673929810524, 0.09603818506002426, 0.05563809350132942, 0.0580558106303215, -0.004606334026902914, 0.015878349542617798, -0.01870182901620865, -0.04715247079730034, 0.06344757229089737, 0.028780849650502205, 0.04955144226551056, -0.08369994908571243, -0.028826121240854263, -0.06950680166482925, 0.028041357174515724, -0.024401994422078133, -0.07600137591362, -0.06187187135219574, 0.0765356793999672, 0.050238121300935745, -0.025147108361124992, 0.020987963303923607, 0.03105901926755905, 0.11457400768995285, 0.16601814329624176, -0.006454551126807928, -0.049100495874881744, -0.05853545665740967, -0.03614357113838196, -0.020069343969225883, 0.07446347922086716, -0.04747084155678749, 0.023490281775593758, 0.06569883972406387, 0.024863455444574356, 0.09570856392383575, 0.056657515466213226, -0.11491649597883224, -0.015730882063508034, 0.03339696303009987, -0.16056108474731445, 0.00990152545273304, 0.0023375360760837793, 0.022199975326657295, -0.037632185965776443, 0.02710956707596779, 0.1464344561100006, -0.06404832750558853, -0.0356554239988327, -0.04200846701860428, 0.06820708513259888, 0.02098986878991127, 0.14131170511245728, 0.036623794585466385, 0.0361083559691906, -0.08134862780570984, 0.12789946794509888, 0.03943257033824921, -0.04175113886594772, 0.021238865330815315, -0.030593104660511017, -0.10808829963207245, 0.015832897275686264, 0.054725777357816696, 0.04114857688546181, -0.0540144257247448, -0.010420108214020729, -0.026616975665092468, -0.07530167698860168, 0.059350501745939255, 0.1905767172574997, 0.07007686048746109, 0.07391053438186646, -0.05518849194049835, -0.03607688099145889, -0.07844492048025131, 0.0434228740632534, 0.0462578721344471, 0.0747876763343811, -0.07736597955226898, 0.10506411641836166, 0.01300005055963993, 0.045931216329336166, -0.03147685527801514, -0.053683530539274216, -0.10013303905725479, -0.05530175194144249, -0.10165998339653015, 0.007309694774448872, -0.07712013274431229, -0.036090608686208725, 0.0009468452772125602, -0.006873347330838442, -0.008272487670183182, 0.04862199351191521, -0.06134932115674019, -0.0100121283903718, -0.02666301280260086, 0.035290930420160294, -0.06355206668376923, -0.039375316351652145, 0.03219124674797058, -0.10156309604644775, 0.09424291551113129, 0.0505816750228405, 0.010782872326672077, 0.007017907686531544, 0.09492295980453491, -0.020964359864592552, 0.024791283532977104, 0.01787853054702282, -0.04847964271903038, -0.08205194771289825, 0.0016478917095810175, -0.009221107698976994, -0.015258642844855785, -0.010361868888139725, 0.08959833532571793, -0.08808262646198273, 0.030582265928387642, -0.007144186180084944, -0.00917352270334959, -0.0731910914182663, -0.010031849145889282, 0.10256710648536682, 0.09919968247413635, 0.048356086015701294, -0.08772184699773788, 0.014098045416176319, -0.1407795548439026, -0.03628230094909668, 0.005805686581879854, -0.007828367874026299, -0.11717478185892105, -0.009767650626599789, 0.01991601288318634, -0.0014426783891394734, 0.21252740919589996, -0.06126894801855087, -0.017689349129796028, 0.019840925931930542, -0.09302707761526108, 0.11210106313228607, -0.02215462736785412, 0.1859855353832245, -0.008186567574739456, -0.0420430451631546, -0.015162993222475052, 0.037388868629932404, 0.020402247086167336, -0.02616747096180916, 0.18092426657676697, 0.13962896168231964, 0.03191283345222473, 0.04391283914446831, -0.021030038595199585, 0.004461601842194796, -0.0500972643494606, -0.03122708387672901, 0.03148581460118294, 0.036791808903217316, 0.019141878932714462, 0.15136386454105377, 0.06504625827074051, -0.1663193553686142, 0.03220469504594803, -0.0241429191082716, -0.03843013197183609, -0.11497262865304947, -0.08903651684522629, -0.032664213329553604, -0.06922999769449234, 0.010226975195109844, -0.12270709127187729, 0.009083697572350502, 0.17360323667526245, 0.05427446588873863, 0.02530057355761528, 0.010172993876039982, -0.12656830251216888, -0.03413431718945503, 0.055318497121334076, 0.014550378546118736, 0.02380259521305561, 0.059868182986974716, -0.0009181583300232887, 0.06188049912452698, 0.03951556235551834, 0.011847558431327343, 0.001530107343569398, 0.07764499634504318, 0.014224126935005188, 0.042046234011650085, -0.061230696737766266, -0.003246411681175232, -0.04188830405473709, 0.07435605674982071, 0.10086622089147568, 0.049679599702358246, -0.04794013127684593, -0.009981011040508747, 0.16077816486358643, -0.04369209706783295, -0.0038678888231515884, -0.1242421567440033, 0.33008885383605957, 0.014407745562493801, 0.012240474112331867, 0.04764696583151817, -0.07887233048677444, -0.05280732735991478, 0.20239070057868958, 0.08217444270849228, -0.017926858738064766, -0.020735278725624084, 0.0005474562058225274, -0.030282720923423767, -0.02247120440006256, 0.15073755383491516, 0.03361069783568382, 0.1286139190196991, -0.05168882757425308, -0.04444171115756035, -0.027605421841144562, -0.01107027381658554, -0.12361320853233337, 0.1380314826965332, -0.028864698484539986, -0.025282641872763634, -0.07484783977270126, 0.02585495077073574, 0.07167622447013855, -0.3200589716434479, 0.0022069760598242283, -0.036624860018491745, -0.11058049649000168, -0.002638207282871008, -0.015708886086940765, -0.023331860080361366, 0.046434685587882996, -0.04547397792339325, 0.0720132365822792, 0.04200383275747299, 0.035110749304294586, -0.02566063404083252, -0.09883225709199905, 0.16520173847675323, 0.05005139112472534, 0.09643326699733734, 0.027604417875409126, 0.07753129303455353, 0.05530616641044617, 0.03590009734034538, -0.09850072860717773, 0.04504909738898277, 0.014237877912819386, -0.08752502501010895, -0.049982231110334396, 0.1237015426158905, -0.0006007055635564029, 0.04199037700891495, 0.043672312051057816, -0.11053480207920074, 0.010127576999366283, 0.06900284439325333, -0.07032621651887894, -0.10256397724151611, -0.008298489265143871, -0.08997902274131775, 0.15767516195774078, 0.13933676481246948, -0.018511366099119186, 0.01942037232220173, -0.06468280404806137, -0.00768711743876338, 0.05521078780293465, 0.012259408831596375, -0.01943719945847988, -0.1902254819869995, 0.03453446552157402, -0.08881683647632599, -0.005572306923568249, -0.22244681417942047, -0.1026354432106018, -0.01222447119653225, -0.05274706706404686, -0.026320111006498337, 0.06169186905026436, 0.02798498421907425, 0.06806989759206772, -0.016048500314354897, -0.04677692800760269, -0.029526688158512115, 0.08773895353078842, -0.11028928309679031, -0.0654076561331749 ]
null
null
transformers
# MultiBERTs - Seed 2 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2') model = TFBertModel.from_pretrained("google/multiberts-seed_2") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2') model = BertModel.from_pretrained("google/multiberts-seed_2") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_2"]}
null
google/multiberts-seed_2
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_2", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 2 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #2. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 2\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 2\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 189, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_2 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 2\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #2.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06850189715623856, 0.08987180143594742, -0.00410611042752862, 0.054556962102651596, 0.07442514598369598, 0.007299328222870827, 0.04570821672677994, 0.06915268301963806, -0.08947824686765671, 0.02111130952835083, -0.01119052805006504, -0.04301872476935387, 0.0767291784286499, -0.027193395420908928, 0.05559865012764931, -0.2358815222978592, 0.04022468999028206, -0.02599170431494713, -0.026470934972167015, 0.02872125245630741, 0.11793617904186249, -0.10557948797941208, 0.07429655641317368, 0.052415791898965836, 0.00676317885518074, 0.018521873280405998, -0.017335303127765656, 0.0013756589032709599, 0.08651617914438248, 0.02617003582417965, 0.07994026690721512, -0.0036272620782256126, 0.083221435546875, -0.13464659452438354, 0.009612281806766987, 0.05422470346093178, 0.06131010130047798, 0.04687017202377319, 0.11970341205596924, 0.015591825358569622, 0.09669341892004013, 0.004623012617230415, 0.04529104754328728, 0.05003996938467026, -0.06322631984949112, -0.17991115152835846, -0.09595592319965363, 0.029520992189645767, -0.002610790077596903, 0.007923118770122528, -0.007320871576666832, -0.023546127602458, -0.025427434593439102, 0.02528744749724865, 0.11723300814628601, -0.25472956895828247, -0.015321881510317326, 0.0030255448073148727, 0.049110881984233856, 0.06117752566933632, -0.0407138392329216, -0.046361662447452545, 0.0384102463722229, 0.061163436621427536, 0.06036820635199547, -0.022771745920181274, 0.03859885036945343, -0.011177649721503258, -0.15460516512393951, -0.01825723424553871, 0.0970945954322815, -0.04424658417701721, -0.11651585251092911, -0.06021933630108833, -0.03266746923327446, 0.11482907831668854, 0.011506619863212109, -0.03976432979106903, 0.046675488352775574, 0.027098581194877625, 0.059774648398160934, -0.07794798910617828, -0.11790069192647934, 0.03309760242700577, -0.07041285187005997, 0.1030348390340805, 0.09046591818332672, 0.05406007170677185, -0.011307916603982449, 0.053952980786561966, -0.07527784258127213, -0.0799100399017334, -0.04907609149813652, -0.0852121114730835, -0.026167647913098335, -0.03169466182589531, -0.07590100169181824, -0.15791894495487213, -0.008503030054271221, 0.08566194772720337, -0.06743553280830383, -0.006872687488794327, -0.08888255059719086, -0.023110490292310715, 0.08973930031061172, 0.16404929757118225, -0.11497148871421814, 0.048006873577833176, 0.005237463396042585, 0.007972895167768002, -0.024769818410277367, 0.0363641120493412, 0.010061248205602169, -0.011986945755779743, 0.04405701160430908, 0.030701767653226852, -0.016245156526565552, 0.03838459402322769, -0.016485286876559258, -0.043610330671072006, 0.05964697152376175, -0.14125223457813263, -0.00839146226644516, 0.007062537595629692, -0.012501935474574566, 0.05700106918811798, 0.05779404565691948, -0.033228468149900436, -0.09294148534536362, 0.018400564789772034, -0.08243437111377716, -0.044308070093393326, -0.06067689508199692, -0.15505346655845642, 0.032647982239723206, -0.0786224827170372, -0.05554257705807686, -0.09386046230792999, -0.1039191335439682, -0.016880260780453682, 0.05362427607178688, -0.013967981562018394, 0.03571035712957382, 0.030685940757393837, -0.011889839544892311, -0.04232410341501236, 0.04495464637875557, 0.012289315462112427, -0.014516375958919525, 0.011572021059691906, -0.040677785873413086, 0.052484381943941116, -0.012805000878870487, 0.04662241414189339, -0.06641010195016861, 0.019107703119516373, -0.1353468894958496, 0.06857658177614212, -0.09328094124794006, -0.09181535243988037, -0.05050705745816231, -0.05189189314842224, -0.06670712679624557, 0.023656511679291725, 0.007271625101566315, 0.0655883401632309, -0.1527591496706009, -0.050443168729543686, 0.13724349439144135, -0.12760144472122192, 0.033644720911979675, 0.09852021187543869, -0.05488431826233864, 0.04039091244339943, 0.12089706212282181, 0.042429883033037186, 0.07275595515966415, -0.0525335855782032, -0.02330528013408184, 0.0163834597915411, 0.03166196495294571, 0.12686346471309662, 0.07386210560798645, -0.06346365809440613, -0.06761637330055237, 0.03855181857943535, -0.0760597512125969, -0.03446957468986511, -0.05855612829327583, -0.007720449008047581, -0.012939601205289364, -0.06013108789920807, 0.003928367514163256, -0.02879634127020836, -0.01064309198409319, -0.009724730625748634, -0.0507529079914093, 0.05020409822463989, 0.06270989030599594, -0.07862095534801483, 0.05342589691281319, -0.05944119766354561, 0.022783948108553886, -0.08136135339736938, -0.005429801065474749, -0.17825406789779663, 0.015026872046291828, 0.10849395394325256, -0.09729702025651932, 0.05213812366127968, 0.1604287326335907, 0.023718081414699554, 0.06806952506303787, -0.053643740713596344, 0.06955868750810623, -0.0009284369880333543, -0.02974706143140793, -0.04185511916875839, -0.10574137419462204, -0.06246292218565941, -0.05850345268845558, 0.004267382901161909, -0.08112727105617523, -0.008027654141187668, -0.02557235024869442, 0.02196972630918026, 0.03070729598402977, -0.058344606310129166, 0.01949707232415676, 0.022882109507918358, -0.03480201214551926, -0.025515099987387657, -0.029762504622340202, 0.03962485492229462, 0.004016845021396875, 0.1214117631316185, -0.08686281740665436, -0.048077408224344254, 0.046771980822086334, 0.05791878700256348, -0.04070926085114479, 0.0931093692779541, -0.060449954122304916, -0.02899431250989437, -0.09634101390838623, -0.09597226232290268, 0.17250104248523712, -0.0036808019503951073, 0.10253239423036575, -0.10121331363916397, -0.03456907719373703, -0.00010971555457217619, 0.0029098642989993095, -0.00913770217448473, 0.0522349514067173, 0.007312342058867216, -0.10217876732349396, -0.0009908844949677587, 0.017388472333550453, 0.01734279654920101, 0.08811981976032257, -0.01832328736782074, -0.11570815742015839, 0.022060226649045944, 0.0011348979314789176, -0.007717817090451717, 0.06527508795261383, -0.028917936608195305, 0.004127384629100561, 0.05838283523917198, 0.05541272461414337, 0.057005807757377625, -0.06486361473798752, 0.09283144772052765, 0.0638311356306076, -0.04756327345967293, -0.044923797249794006, -0.07780109345912933, 0.02098711207509041, 0.12184005230665207, 0.029431084170937538, 0.060292329639196396, -0.04081100597977638, -0.02345937490463257, -0.09997766464948654, 0.15356920659542084, -0.09438002109527588, -0.16082817316055298, -0.15107661485671997, 0.00667179562151432, -0.06215064600110054, 0.05821850895881653, 0.012458725832402706, -0.054938558489084244, -0.09513873606920242, -0.0842575654387474, 0.1620907336473465, -0.04235230013728142, -0.012367182411253452, 0.016094794496893883, -0.026205915957689285, 0.033593982458114624, -0.1843191385269165, -0.0030506306793540716, -0.038159970194101334, -0.12097450345754623, -0.04123872518539429, 0.012665044516324997, 0.0641750618815422, 0.0718894824385643, -0.040885940194129944, -0.0725390836596489, 0.014734352007508278, 0.15731078386306763, 0.03688753768801689, 0.08081603050231934, 0.10243812948465347, -0.09103970974683762, 0.045615874230861664, 0.042916834354400635, 0.03227952867746353, -0.009762543253600597, 0.007935214787721634, 0.05450671911239624, -0.02654246985912323, -0.2927013337612152, -0.011559667997062206, -0.026571109890937805, -0.015258648432791233, 0.05861692130565643, 0.04380922392010689, -0.09717191010713577, 0.04635621979832649, -0.0537276491522789, 0.031985219568014145, 0.08364292234182358, 0.03654896467924118, 0.10005258768796921, -0.04035213962197304, 0.08904720842838287, -0.0558713935315609, -0.02383832447230816, 0.11882463842630386, -0.05819268152117729, 0.20071594417095184, -0.07154593616724014, 0.05797993391752243, 0.09596843272447586, -0.0051245610229671, 0.031244508922100067, 0.14618605375289917, -0.0531398244202137, 0.07296688854694366, -0.053266413509845734, -0.05093049257993698, -0.0348140187561512, 0.017950329929590225, 0.011283913627266884, 0.04737696424126625, -0.034067727625370026, -0.008617819286882877, -0.003989671356976032, 0.2510606050491333, 0.054408952593803406, -0.12089456617832184, -0.07281586527824402, 0.006830984726548195, -0.10920577496290207, -0.06617515534162521, 0.04852541163563728, 0.10259837657213211, -0.08211418241262436, 0.0415276475250721, 0.008901333436369896, 0.06792543828487396, -0.11696409434080124, 0.01720728725194931, 0.03178064525127411, 0.05096801370382309, -0.016049986705183983, 0.03530210629105568, -0.15040160715579987, 0.08454106003046036, 0.03345489874482155, 0.053192853927612305, -0.05992284417152405, 0.06593689322471619, 0.02564978040754795, -0.028062671422958374, 0.03030330315232277, 0.013468120247125626, -0.013545378111302853, -0.033550161868333817, -0.07166489213705063, 0.07798296213150024, 0.07525261491537094, -0.053586747497320175, 0.11527986079454422, -0.05089157819747925, 0.009982200339436531, -0.01034373790025711, 0.07831588387489319, -0.16659845411777496, -0.1295522302389145, 0.03880126029253006, -0.13636630773544312, -0.036612026393413544, -0.06788189709186554, -0.05908579006791115, -0.05546897277235985, 0.16858014464378357, -0.13231956958770752, -0.13446718454360962, -0.09231816977262497, -0.01047411561012268, 0.15690173208713531, -0.04283541440963745, 0.012063187547028065, -0.019826680421829224, 0.14093643426895142, -0.040677666664123535, -0.15630148351192474, -0.05106518417596817, -0.06955255568027496, -0.1502864807844162, -0.022775474935770035, 0.07440918684005737, 0.11367739737033844, 0.05373900756239891, 0.006544757634401321, 0.025109799578785896, -0.005420002620667219, -0.05403327941894531, -0.015532860532402992, 0.1873098909854889, 0.05977420508861542, 0.08502194285392761, -0.1551399827003479, -0.07464095950126648, -0.0405428409576416, 0.02354930341243744, -0.02513927035033703, 0.09534414857625961, -0.03380483761429787, 0.08161947131156921, 0.2307460606098175, -0.12409939616918564, -0.20676787197589874, 0.005215644370764494, 0.030278850346803665, 0.008482019416987896, 0.016675366088747978, -0.21934328973293304, 0.1218072772026062, 0.08238132297992706, -0.004533614031970501, 0.0070944675244390965, -0.17855754494667053, -0.08332792669534683, 0.0769231766462326, 0.010364183224737644, 0.14272509515285492, -0.08204761892557144, -0.03031844273209572, 0.0067665777169167995, -0.09015187621116638, 0.050950758159160614, 0.04591409116983414, 0.08321970701217651, -0.004811297170817852, -0.059814661741256714, 0.04970543831586838, -0.017202582210302353, 0.08330965042114258, 0.03533095866441727, 0.04452946409583092, -0.03800711780786514, 0.1125979870557785, 0.01181023195385933, -0.02088961936533451, 0.14472997188568115, 0.10297216475009918, 0.06223910674452782, -0.033779893070459366, -0.06542506068944931, -0.07777427136898041, 0.014791767112910748, -0.020288923755288124, -0.04144984856247902, -0.06720099598169327, 0.043835073709487915, 0.06722744554281235, -0.004461513366550207, -0.04102161526679993, -0.023228319361805916, 0.06206730008125305, 0.10104899108409882, 0.2004546821117401, -0.04201105982065201, -0.006709507200866938, -0.027385814115405083, -0.02626175247132778, 0.0640680342912674, -0.021114571020007133, 0.0692000538110733, 0.09308495372533798, 0.009620482102036476, 0.08246094733476639, 0.06009069085121155, -0.1257755607366562, -0.016666164621710777, 0.05684800073504448, -0.09148041158914566, -0.14731155335903168, -0.03202661871910095, -0.10105391591787338, -0.14402320981025696, -0.0021201912313699722, 0.16951081156730652, -0.03565492853522301, -0.04852012172341347, -0.018183013424277306, 0.08010163903236389, 0.016078731045126915, 0.12034600973129272, 0.03800952434539795, -0.012774328701198101, -0.060490019619464874, 0.1658376306295395, 0.08746197074651718, -0.09202508628368378, 0.009738792665302753, 0.02257789857685566, -0.05644189566373825, -0.009294003248214722, -0.05369250103831291, 0.06689178943634033, -0.03090149350464344, -0.033579763025045395, 0.0016100533539429307, -0.10537804663181305, 0.05836379528045654, 0.15055596828460693, 0.0029121460393071175, 0.15896961092948914, -0.04558926820755005, 0.06358437240123749, -0.06859921663999557, 0.08013494312763214, 0.04522450640797615, 0.06513287127017975, -0.020564420148730278, 0.061937812715768814, -0.04600062966346741, 0.013064367696642876, -0.016049006953835487, 0.0045138075947761536, -0.0763959214091301, -0.05651030316948891, -0.23446865379810333, 0.03229320049285889, -0.05405480042099953, -0.034622542560100555, 0.002301150234416127, -0.011622109450399876, -0.0014889177400618792, 0.0445508249104023, -0.029618319123983383, -0.031899452209472656, -0.02684369497001171, 0.0626167431473732, -0.12654176354408264, 0.025319145992398262, 0.060322172939777374, -0.07979154586791992, 0.08853799104690552, 0.0016520079225301743, -0.05754680931568146, 0.0030904999002814293, 0.019847098737955093, -0.046677377074956894, -0.03277178481221199, 0.008834835141897202, -0.04712286591529846, -0.1109108179807663, 0.032550446689128876, 0.018168438225984573, -0.031739741563797, -0.027546364814043045, 0.0707884132862091, -0.06839559972286224, 0.05007874593138695, 0.04056297615170479, 0.01110280305147171, -0.04978542774915695, -0.00968367513269186, 0.11293332278728485, 0.07212541252374649, 0.05194151774048805, -0.04726299270987511, -0.01666269823908806, -0.16219674050807953, -0.00273400847800076, -0.004990989807993174, -0.0022427947260439396, -0.04650924354791641, -0.035954173654317856, 0.03310924768447876, 0.009004463441669941, 0.180955708026886, 0.008195851929485798, -0.0039502340368926525, 0.0116877481341362, 0.0025838850997388363, 0.011445621028542519, 0.02952445112168789, 0.0740310475230217, -0.029236050322651863, -0.07937169820070267, -0.06776129454374313, 0.022639596834778786, -0.03498280420899391, -0.014728987589478493, 0.14496387541294098, 0.13264383375644684, 0.11812053620815277, 0.01646040752530098, 0.012811905704438686, -0.02507091872394085, -0.04010249301791191, -0.00203940412029624, 0.05123721435666084, 0.04831228777766228, -0.021085083484649658, 0.015720102936029434, 0.0690709725022316, -0.13390257954597473, 0.12749044597148895, -0.0328945554792881, -0.02078079804778099, -0.10694260150194168, -0.08549448847770691, -0.02233174256980419, -0.011335833929479122, -0.018034880980849266, -0.16443610191345215, 0.04436490684747696, 0.09537427127361298, 0.02445046976208687, -0.03808389604091644, 0.0357779935002327, -0.15171757340431213, -0.08905033022165298, 0.07517381012439728, 0.01463292632251978, 0.03850863501429558, 0.11492593586444855, -0.008953564800322056, 0.07731077820062637, 0.1326328068971634, 0.0671582967042923, 0.05518261715769768, 0.07145006954669952, 0.006061511114239693, -0.026515284553170204, -0.03754629194736481, 0.005791012663394213, -0.05574308708310127, 0.04103332757949829, 0.17626547813415527, 0.03035125322639942, -0.05229588598012924, 0.030315132811665535, 0.17772208154201508, -0.038413483649492264, -0.052940238267183304, -0.16670401394367218, 0.2059575468301773, 0.02972409315407276, 0.03556893393397331, 0.054565489292144775, -0.08681714534759521, -0.03926275670528412, 0.19288823008537292, 0.11776901036500931, 0.017453553155064583, -0.019097667187452316, 0.017494648694992065, -0.009933463297784328, 0.0030802995897829533, 0.08436702936887741, 0.015108549036085606, 0.24467375874519348, -0.042592454701662064, 0.02536025270819664, 0.02704004757106304, 0.037929289042949677, -0.06928473711013794, 0.14902308583259583, -0.053980503231287, 0.0029202692676335573, -0.054959848523139954, 0.015586920082569122, 0.012865223921835423, -0.30252793431282043, -0.11407678574323654, -0.002841297537088394, -0.06391113251447678, -0.017918502911925316, -0.03168788179755211, -0.000791683851275593, 0.0449213944375515, -0.0019018942257389426, 0.0332111157476902, 0.17958039045333862, -0.006415554787963629, -0.041007135063409805, -0.03187757357954979, 0.12781599164009094, 0.010918297804892063, 0.14145426452159882, 0.06072501093149185, -0.010248713195323944, 0.04701724648475647, 0.020345861092209816, -0.1155719980597496, -0.023783372715115547, -0.0256354957818985, -0.008834236301481724, -0.02389220893383026, 0.13923536241054535, 0.01720510981976986, 0.043358005583286285, 0.03737196698784828, -0.025787286460399628, 0.04745358228683472, 0.05075507238507271, -0.06748922914266586, -0.05588100478053093, 0.052512358874082565, -0.09618674218654633, 0.13858038187026978, 0.17864689230918884, 0.009741300716996193, 0.02396860346198082, -0.06073696166276932, -0.005640358664095402, -0.003123174887150526, 0.11476854979991913, -0.0046807327307760715, -0.15376248955726624, -0.0109352245926857, -0.0723501592874527, 0.046661071479320526, -0.23670843243598938, -0.0510704331099987, 0.09827303141355515, -0.016192713752388954, -0.014621695503592491, 0.04906180873513222, 0.00772169278934598, 0.05981229990720749, -0.009345338679850101, -0.05157323181629181, 0.0005402062670327723, 0.06206120550632477, -0.08768991380929947, -0.02231507934629917 ]
null
null
transformers
# MultiBERTs - Seed 20 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #20. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_20') model = TFBertModel.from_pretrained("google/multiberts-seed_20") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_20') model = BertModel.from_pretrained("google/multiberts-seed_20") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_20"]}
null
google/multiberts-seed_20
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_20", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_20 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 20 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #20. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 20\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #20.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_20 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 20\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #20.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_20 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 20\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #20.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06364692002534866, 0.09259244054555893, -0.004062165506184101, 0.0428658202290535, 0.07641918212175369, 0.01496626902371645, 0.056619513779878616, 0.07407344877719879, -0.08870813250541687, 0.02300339750945568, -0.01214215625077486, -0.04678803309798241, 0.0777503252029419, -0.042316608130931854, 0.059820737689733505, -0.23490118980407715, 0.049903351813554764, -0.029866985976696014, -0.025151800364255905, 0.027987787500023842, 0.11166522651910782, -0.0964563861489296, 0.07481928914785385, 0.055642854422330856, 0.0030409081373363733, 0.01714494824409485, -0.015519593842327595, 0.0046982248313724995, 0.08693458139896393, 0.03198732063174248, 0.08421587198972702, -0.00260259211063385, 0.08491100370883942, -0.14060038328170776, 0.006460747681558132, 0.05954613536596298, 0.06312095373868942, 0.04316146299242973, 0.11720912903547287, 0.007836953736841679, 0.0902784913778305, 0.01722881942987442, 0.05213720723986626, 0.04517460614442825, -0.07424852252006531, -0.17036859691143036, -0.09272080659866333, 0.01936877705156803, -0.0008117639226838946, 0.00702023645862937, -0.007569935638457537, -0.01940256543457508, -0.01918325200676918, 0.02049613557755947, 0.12164836376905441, -0.26668116450309753, -0.016542868688702583, 0.00957666989415884, 0.057659946382045746, 0.05800361558794975, -0.03851527348160744, -0.04120972007513046, 0.04334269464015961, 0.05216000974178314, 0.04052497819066048, -0.025195106863975525, 0.04076964780688286, -0.01583349145948887, -0.15359051525592804, -0.019213518127799034, 0.10789387673139572, -0.0487566702067852, -0.11719164252281189, -0.04896172881126404, -0.03305237740278244, 0.1230996698141098, 0.008432873524725437, -0.036697275936603546, 0.046865034848451614, 0.030587326735258102, 0.06375059485435486, -0.06201533228158951, -0.11611314117908478, 0.02611132711172104, -0.051487505435943604, 0.10713619738817215, 0.09375416487455368, 0.048269350081682205, -0.007859377190470695, 0.055831119418144226, -0.08643808215856552, -0.07751572132110596, -0.050946902483701706, -0.08932849019765854, -0.040061820298433304, -0.03875814750790596, -0.08495549112558365, -0.16707073152065277, -0.004229608457535505, 0.10960279405117035, -0.0625523030757904, 0.008905633352696896, -0.09010077267885208, -0.021459326148033142, 0.09453324228525162, 0.1608043760061264, -0.10957011580467224, 0.047060806304216385, -0.010951532982289791, 0.00956807378679514, -0.02297590859234333, 0.03188634291291237, 0.01217689923942089, -0.00993061251938343, 0.051096998155117035, 0.02363119274377823, -0.020165063440799713, 0.04265531897544861, -0.020163455978035927, -0.042046647518873215, 0.053399357944726944, -0.13374824821949005, -0.010275855660438538, 0.0017504302086308599, -0.00410481309518218, 0.06153581291437149, 0.0647052749991417, -0.027823233976960182, -0.089858777821064, 0.023190109059214592, -0.08236400038003922, -0.046934761106967926, -0.0606134794652462, -0.15657657384872437, 0.02778061293065548, -0.07620800286531448, -0.04864503815770149, -0.09255484491586685, -0.09825491160154343, -0.026939883828163147, 0.05998627096414566, -0.016883010044693947, 0.037858329713344574, 0.030087623745203018, -0.007911312393844128, -0.04186098650097847, 0.04677918180823326, 0.008134735748171806, -0.014857829548418522, 0.007497320417314768, -0.044946447014808655, 0.05423099175095558, -0.008872609585523605, 0.044418200850486755, -0.07035111635923386, 0.02128562331199646, -0.1432136744260788, 0.06089423596858978, -0.09695809334516525, -0.08345125615596771, -0.049919404089450836, -0.04226292669773102, -0.07310463488101959, 0.03111187182366848, 0.009744750335812569, 0.06162495166063309, -0.14990176260471344, -0.05062950775027275, 0.1397569626569748, -0.13656768202781677, 0.03572883829474449, 0.09457424283027649, -0.051412615925073624, 0.04509129002690315, 0.1169043481349945, 0.05830293893814087, 0.06947998702526093, -0.0470232293009758, -0.0154119236394763, 0.007963449694216251, 0.03500267490744591, 0.14422444999217987, 0.06527778506278992, -0.06858250498771667, -0.08159331977367401, 0.03583556041121483, -0.07354132831096649, -0.044263917952775955, -0.05922188237309456, -0.004938249010592699, -0.0103309266269207, -0.056144945323467255, -0.007296383380889893, -0.024651693180203438, -0.011895022355020046, -0.017582599073648453, -0.05151822790503502, 0.052031852304935455, 0.06265173107385635, -0.08807550370693207, 0.05634280666708946, -0.05503160506486893, 0.016557252034544945, -0.0787530466914177, -0.0007328984793275595, -0.1796397715806961, 0.00924273394048214, 0.11085347831249237, -0.10028418153524399, 0.05088278278708458, 0.16294696927070618, 0.022233599796891212, 0.06808015704154968, -0.051302503794431686, 0.07138438522815704, 0.0061867861077189445, -0.024831824004650116, -0.04621483385562897, -0.11812875419855118, -0.06452610343694687, -0.061206355690956116, 0.010668431408703327, -0.08570188283920288, -0.005329135339707136, -0.03779088705778122, 0.021460579708218575, 0.022615518420934677, -0.0637771338224411, 0.02068169042468071, 0.02423085644841194, -0.03842882812023163, -0.027693459764122963, -0.026324443519115448, 0.04447413980960846, 0.01575332321226597, 0.11455076187849045, -0.09475307166576385, -0.06798447668552399, 0.04673745483160019, 0.05341636389493942, -0.05266527831554413, 0.09191673249006271, -0.05456456542015076, -0.03388580307364464, -0.09916035085916519, -0.09805293381214142, 0.1723383367061615, -0.004923397675156593, 0.09877638518810272, -0.09630526602268219, -0.02590475045144558, -0.0001622200506972149, -0.0080983005464077, -0.003443280467763543, 0.0520206019282341, 0.013434162363409996, -0.09579860419034958, -0.0023605020251125097, 0.01574588380753994, 0.018161088228225708, 0.07681024819612503, -0.019574491307139397, -0.11451763659715652, 0.03038938343524933, -0.00196444452740252, -0.0064073242247104645, 0.06512458622455597, -0.0496128611266613, -0.005933421663939953, 0.05546911060810089, 0.05525512248277664, 0.055490996688604355, -0.06603948771953583, 0.09561672061681747, 0.06542836129665375, -0.04289088025689125, -0.04386000335216522, -0.08400198072195053, 0.010309229604899883, 0.11533239483833313, 0.025359924882650375, 0.05929039791226387, -0.04706365987658501, -0.02368258126080036, -0.10333255678415298, 0.1573219746351242, -0.08808603137731552, -0.16083388030529022, -0.15076084434986115, 0.007155311293900013, -0.05571535602211952, 0.062105245888233185, 0.01569533348083496, -0.050524208694696426, -0.09812954068183899, -0.07810879498720169, 0.15971913933753967, -0.039788972586393356, -0.006822081282734871, 0.018493354320526123, -0.028906095772981644, 0.03653626888990402, -0.18184302747249603, -0.0008972584619186819, -0.040475089102983475, -0.1259114295244217, -0.03833068162202835, 0.0005678045563399792, 0.06790943443775177, 0.07132939994335175, -0.037493981420993805, -0.0761256292462349, 0.018999626860022545, 0.1639091521501541, 0.03349939361214638, 0.07732000201940536, 0.09368841350078583, -0.09792514145374298, 0.042782362550497055, 0.04697323590517044, 0.030503664165735245, -0.013740799389779568, 0.008664113469421864, 0.0570286400616169, -0.02565658465027809, -0.2851100265979767, -0.008437443524599075, -0.01893157698214054, -0.017824064940214157, 0.06653545051813126, 0.04188171774148941, -0.08471713960170746, 0.04898621514439583, -0.057241614907979965, 0.03326890617609024, 0.08679694682359695, 0.04507024586200714, 0.09515456855297089, -0.039109207689762115, 0.09292016923427582, -0.053625427186489105, -0.01790626160800457, 0.1085079163312912, -0.05208858475089073, 0.20047810673713684, -0.055335067212581635, 0.05384967103600502, 0.09742531925439835, -0.013442744500935078, 0.038487717509269714, 0.139047309756279, -0.05161725729703903, 0.06961508840322495, -0.057999931275844574, -0.0455537848174572, -0.0385584682226181, 0.025418734177947044, -0.0015418053371831775, 0.0362788550555706, -0.03624169901013374, -0.016019830480217934, -0.0036989052314311266, 0.23940852284431458, 0.06747754663228989, -0.12308774888515472, -0.06812026351690292, 0.007469967473298311, -0.10857513546943665, -0.0710645392537117, 0.05064712464809418, 0.09084311127662659, -0.08344697207212448, 0.04695046320557594, 0.009780984371900558, 0.06790250539779663, -0.12760326266288757, 0.020594580098986626, 0.03793001174926758, 0.051120325922966, -0.025569729506969452, 0.033464182168245316, -0.15610574185848236, 0.08282367140054703, 0.035703226923942566, 0.052914202213287354, -0.0522836372256279, 0.0638669952750206, 0.020837318152189255, -0.013435034081339836, 0.0261759664863348, 0.010879427194595337, -0.022422047331929207, -0.02638513222336769, -0.06662249565124512, 0.08354856073856354, 0.07584269344806671, -0.0513809397816658, 0.11922004073858261, -0.04913752153515816, 0.012193914502859116, -0.009297575801610947, 0.07662776112556458, -0.17312943935394287, -0.13053001463413239, 0.0455978661775589, -0.14226073026657104, -0.02411910705268383, -0.0684070736169815, -0.054703909903764725, -0.06856171041727066, 0.16855251789093018, -0.12308941781520844, -0.13345852494239807, -0.08546220511198044, -0.010380007326602936, 0.15322227776050568, -0.03067542240023613, 0.008320304565131664, -0.01665862649679184, 0.13383762538433075, -0.03761696815490723, -0.15212617814540863, -0.04876616969704628, -0.0706176832318306, -0.15070019662380219, -0.03350459784269333, 0.07020449638366699, 0.11046948283910751, 0.05151021480560303, 0.005022990517318249, 0.026204437017440796, 0.002804798074066639, -0.05211363732814789, -0.016123339533805847, 0.18183769285678864, 0.053330983966588974, 0.06983553618192673, -0.15993982553482056, -0.056493986397981644, -0.049269046634435654, 0.0235364381223917, -0.04552425071597099, 0.09726083278656006, -0.029811661690473557, 0.07852300256490707, 0.24073505401611328, -0.12910813093185425, -0.20286798477172852, 0.008851260878145695, 0.029697395861148834, 0.004332507960498333, 0.007154445163905621, -0.22559812664985657, 0.1224534660577774, 0.0890137255191803, 0.0000985132937785238, -0.006385711953043938, -0.18570782244205475, -0.08128710091114044, 0.08153053373098373, 0.009129753336310387, 0.14664427936077118, -0.09228456765413284, -0.03206741437315941, 0.007748923264443874, -0.08443285524845123, 0.05328618362545967, 0.045672737061977386, 0.08319488912820816, -0.0005140184657648206, -0.07444708049297333, 0.050164829939603806, -0.014446787536144257, 0.08545804023742676, 0.046086881309747696, 0.046598415821790695, -0.03405662998557091, 0.13148337602615356, 0.0022382638417184353, -0.01673981361091137, 0.13780732452869415, 0.11413361877202988, 0.05612030252814293, -0.02387591451406479, -0.062250766903162, -0.07295195758342743, 0.012482810765504837, -0.021547770127654076, -0.03897015005350113, -0.06391376256942749, 0.03971172869205475, 0.0630098208785057, 0.0008534949156455696, -0.0424981415271759, -0.024907318875193596, 0.058129582554101944, 0.08996110409498215, 0.19312219321727753, -0.05484461784362793, -0.006959091871976852, -0.018471887335181236, -0.022234609350562096, 0.06943332403898239, -0.01925947703421116, 0.06403501331806183, 0.08954925835132599, 0.009814288467168808, 0.08234011381864548, 0.06249360367655754, -0.13146594166755676, -0.022907791659235954, 0.05429132282733917, -0.10163150727748871, -0.13690978288650513, -0.026958361268043518, -0.10544708371162415, -0.13414111733436584, -0.0005348101258277893, 0.17122302949428558, -0.03663695603609085, -0.04648478701710701, -0.015938775613904, 0.07968806475400925, 0.0195729099214077, 0.13139939308166504, 0.03368563577532768, -0.015600777231156826, -0.06261207163333893, 0.17126061022281647, 0.08897120505571365, -0.09398237615823746, 0.01062970981001854, 0.016240084543824196, -0.059945009648799896, -0.0045532542280852795, -0.0653672143816948, 0.07625505328178406, -0.02798999845981598, -0.039365287870168686, 0.0016043127980083227, -0.10066306591033936, 0.05001896619796753, 0.14970457553863525, 0.006795267108827829, 0.15812444686889648, -0.03809943422675133, 0.06302820146083832, -0.0745207890868187, 0.07261296361684799, 0.05375263839960098, 0.07730438560247421, -0.016921402886509895, 0.049324095249176025, -0.045537594705820084, -0.0015656069153919816, -0.014412198215723038, 0.0015890992945060134, -0.0904308557510376, -0.055853549391031265, -0.22233209013938904, 0.025964941829442978, -0.05765881389379501, -0.03636277839541435, 0.009987490251660347, -0.013958590105175972, 0.0035431724973022938, 0.03659485653042793, -0.02602437324821949, -0.03273683413863182, -0.026381518691778183, 0.0624312199652195, -0.12273206561803818, 0.026853542774915695, 0.06674200296401978, -0.08743780106306076, 0.07684727758169174, -0.0003483789914753288, -0.05204508453607559, -0.0006203483208082616, 0.013003421016037464, -0.04699496552348137, -0.030179709196090698, 0.008105694316327572, -0.05225512012839317, -0.11090229451656342, 0.02758224681019783, 0.011905724182724953, -0.027082962915301323, -0.029974404722452164, 0.07480982691049576, -0.06501772999763489, 0.05216959863901138, 0.03671460226178169, 0.005069464910775423, -0.04360982030630112, -0.015577426180243492, 0.11963095515966415, 0.07621313631534576, 0.056007981300354004, -0.05095505341887474, -0.019021235406398773, -0.15495871007442474, -0.0018837266834452748, -0.00212225248105824, -0.004027027636766434, -0.03925957903265953, -0.037588369101285934, 0.030996335670351982, 0.011256814934313297, 0.17835648357868195, 0.008295447565615177, 0.013920660130679607, 0.009354925714433193, 0.004469077568501234, 0.008538533933460712, 0.033992283046245575, 0.07149232178926468, -0.01404330413788557, -0.07822412252426147, -0.07880596071481705, 0.034402720630168915, -0.030665522441267967, -0.021470122039318085, 0.13419432938098907, 0.13399738073349, 0.10367096960544586, 0.022675110027194023, 0.0002490956394467503, -0.030303314328193665, -0.028642715886235237, 0.024292802438139915, 0.05596946179866791, 0.05128265544772148, -0.014265567995607853, 0.013634349219501019, 0.06719701737165451, -0.12511669099330902, 0.12046800553798676, -0.0351184606552124, -0.028744762763381004, -0.1061430349946022, -0.07857167720794678, -0.018567930907011032, -0.020216047763824463, -0.020257005468010902, -0.16510973870754242, 0.047756895422935486, 0.10460995137691498, 0.02223862148821354, -0.03180189058184624, 0.0369550921022892, -0.14894817769527435, -0.09017641097307205, 0.06525935977697372, 0.013564354740083218, 0.04301811009645462, 0.10821039229631424, -0.014380778186023235, 0.0795542374253273, 0.1421106606721878, 0.0615551583468914, 0.054971564561128616, 0.08340369164943695, 0.009679454378783703, -0.019754178822040558, -0.03916027769446373, 0.007689346093684435, -0.06194339692592621, 0.03808440640568733, 0.15999141335487366, 0.03206586837768555, -0.05094346031546593, 0.03504158556461334, 0.18045133352279663, -0.03601135313510895, -0.05155941843986511, -0.17755094170570374, 0.20818473398685455, 0.023517902940511703, 0.04284229502081871, 0.04976530745625496, -0.08935148268938065, -0.035370927304029465, 0.20699582993984222, 0.10722076147794724, 0.024224070832133293, -0.023224378004670143, 0.018104620277881622, -0.010816775262355804, 0.008263641968369484, 0.08243333548307419, 0.006439685821533203, 0.219077467918396, -0.03764545917510986, 0.019239189103245735, 0.031978704035282135, 0.03449343517422676, -0.07326870411634445, 0.1528589129447937, -0.04688839986920357, -0.0021647794637829065, -0.05567163601517677, 0.02174646407365799, 0.021187320351600647, -0.30669498443603516, -0.11152303963899612, 0.0017642491729930043, -0.06295528262853622, -0.017021849751472473, -0.02203277312219143, -0.004999091848731041, 0.05196624621748924, -0.003703059395775199, 0.030869118869304657, 0.1828373372554779, -0.005719221197068691, -0.03793366253376007, -0.04183109849691391, 0.1216888278722763, 0.018732624128460884, 0.13746944069862366, 0.05863610655069351, -0.015966802835464478, 0.04418352618813515, 0.023503145202994347, -0.11217709630727768, -0.033278096467256546, -0.02609003521502018, -0.009161765687167645, -0.023378578945994377, 0.13328641653060913, 0.020039772614836693, 0.047716181725263596, 0.03824080899357796, -0.04361364245414734, 0.05062627047300339, 0.04205432906746864, -0.06867695599794388, -0.052917007356882095, 0.044105540961027145, -0.09642913192510605, 0.14141149818897247, 0.1765006184577942, 0.012262295000255108, 0.025253387168049812, -0.056604016572237015, -0.008626255206763744, 0.0010729291243478656, 0.11539255827665329, -0.0033491102512925863, -0.15802814066410065, -0.013285092078149319, -0.08596622943878174, 0.039959829300642014, -0.22158053517341614, -0.04478836804628372, 0.10129636526107788, -0.011158754117786884, -0.009503751061856747, 0.04838268458843231, 0.005449125077575445, 0.05904094874858856, -0.01636233739554882, -0.04728858545422554, 0.009741374291479588, 0.0677415281534195, -0.08271060883998871, -0.031967565417289734 ]
null
null
transformers
# MultiBERTs - Seed 21 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #21. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_21') model = TFBertModel.from_pretrained("google/multiberts-seed_21") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_21') model = BertModel.from_pretrained("google/multiberts-seed_21") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_21"]}
null
google/multiberts-seed_21
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_21", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_21 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 21 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #21. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 21\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #21.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_21 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 21\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #21.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_21 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 21\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #21.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.0631493404507637, 0.09165288507938385, -0.004084483254700899, 0.04373139515519142, 0.0764448493719101, 0.015314306132495403, 0.05667892470955849, 0.07379963994026184, -0.08904622495174408, 0.023233968764543533, -0.011732155457139015, -0.04727178066968918, 0.07694830000400543, -0.04360950365662575, 0.06020203232765198, -0.2347823977470398, 0.04973912611603737, -0.030172448605298996, -0.026332955807447433, 0.02808009833097458, 0.11203546077013016, -0.09569237381219864, 0.07445427030324936, 0.05594538524746895, 0.003907150123268366, 0.016559269279241562, -0.01633712276816368, 0.004931779578328133, 0.08700639009475708, 0.03204529732465744, 0.08429332822561264, -0.0026894533075392246, 0.08542173355817795, -0.14119118452072144, 0.006351909134536982, 0.058940641582012177, 0.0630546510219574, 0.04320802167057991, 0.1173691600561142, 0.007285251747816801, 0.08742073178291321, 0.017083069309592247, 0.05186343938112259, 0.04565657302737236, -0.07498776912689209, -0.17075808346271515, -0.09299656748771667, 0.020439544692635536, -0.0018034785753116012, 0.006974882446229458, -0.007345383521169424, -0.019175231456756592, -0.019151031970977783, 0.020338669419288635, 0.12155739963054657, -0.2667970359325409, -0.016669536009430885, 0.008781928569078445, 0.05795133486390114, 0.057649459689855576, -0.038272224366664886, -0.04135192185640335, 0.043682634830474854, 0.052567258477211, 0.041413526982069016, -0.025072142481803894, 0.041226886212825775, -0.015915384516119957, -0.15336394309997559, -0.019293183460831642, 0.10696058720350266, -0.048675816506147385, -0.1172289326786995, -0.04841998964548111, -0.033019617199897766, 0.12248213589191437, 0.009080728515982628, -0.03729700297117233, 0.04665965959429741, 0.030512357130646706, 0.06436875462532043, -0.06261897832155228, -0.11614794284105301, 0.02583065629005432, -0.0517161563038826, 0.11036937683820724, 0.0938136950135231, 0.04847925156354904, -0.007651448715478182, 0.055710673332214355, -0.08447926491498947, -0.07831451296806335, -0.05088360607624054, -0.08850191533565521, -0.04038031026721001, -0.03865702450275421, -0.08461173623800278, -0.16538596153259277, -0.0042944904416799545, 0.11031941324472427, -0.0626244768500328, 0.008554656989872456, -0.08951234817504883, -0.021811505779623985, 0.09504686295986176, 0.16167567670345306, -0.1098526120185852, 0.049267515540122986, -0.010989169590175152, 0.009853625670075417, -0.023143479600548744, 0.032099056988954544, 0.012057734653353691, -0.009893659502267838, 0.05193512514233589, 0.02413003519177437, -0.020436778664588928, 0.042044300585985184, -0.020988143980503082, -0.04265318438410759, 0.05490141361951828, -0.1334715187549591, -0.010841930285096169, 0.0021544904448091984, -0.003994382917881012, 0.06154130771756172, 0.06407373398542404, -0.028111044317483902, -0.08979522436857224, 0.023841874673962593, -0.08245755732059479, -0.04641765356063843, -0.05997468903660774, -0.15563903748989105, 0.02764720469713211, -0.07563434541225433, -0.04886411502957344, -0.09313996136188507, -0.09773433208465576, -0.026603370904922485, 0.06048281863331795, -0.017410682514309883, 0.038157202303409576, 0.030475903302431107, -0.007696483284235001, -0.04177415743470192, 0.04631252959370613, 0.007445445284247398, -0.014712617732584476, 0.007904188707470894, -0.04414695128798485, 0.05386956036090851, -0.009359187446534634, 0.04452502727508545, -0.07087082415819168, 0.021506527438759804, -0.1416340470314026, 0.06099450960755348, -0.09704342484474182, -0.08366640657186508, -0.05037960782647133, -0.0422227568924427, -0.07275938242673874, 0.030661066994071007, 0.009583607316017151, 0.06122048571705818, -0.14805130660533905, -0.04961483180522919, 0.13908563554286957, -0.13671758770942688, 0.03491522744297981, 0.09533624351024628, -0.05111009627580643, 0.04411861672997475, 0.11627137660980225, 0.058399226516485214, 0.07029062509536743, -0.047242749482393265, -0.014503810554742813, 0.007795870304107666, 0.03451111540198326, 0.14491920173168182, 0.06652363389730453, -0.06801819056272507, -0.0819166898727417, 0.03565344586968422, -0.0740010067820549, -0.044585928320884705, -0.05953802913427353, -0.005099582951515913, -0.010369679890573025, -0.05628455430269241, -0.006806913297623396, -0.02460889331996441, -0.012129866518080235, -0.017627352848649025, -0.05159921571612358, 0.05051863566040993, 0.06254493445158005, -0.08787315338850021, 0.05623706430196762, -0.05505256727337837, 0.016702979803085327, -0.07948365807533264, -0.0015159761533141136, -0.17926840484142303, 0.008064505644142628, 0.11054707318544388, -0.09874916821718216, 0.051884256303310394, 0.16293908655643463, 0.021831128746271133, 0.06761431694030762, -0.05178619176149368, 0.07141270488500595, 0.006213202141225338, -0.02539996989071369, -0.04530925676226616, -0.11773681640625, -0.06484217941761017, -0.06124435365200043, 0.010166545398533344, -0.08432724326848984, -0.005793848540633917, -0.03796021640300751, 0.020614661276340485, 0.022108398377895355, -0.0633004829287529, 0.020969761535525322, 0.024323387071490288, -0.03792736306786537, -0.027593903243541718, -0.026219384744763374, 0.044837579131126404, 0.015769757330417633, 0.11583825945854187, -0.0945960283279419, -0.06662768125534058, 0.04587226361036301, 0.05291862413287163, -0.052475906908512115, 0.09206186980009079, -0.05451800301671028, -0.03374599292874336, -0.09943987429141998, -0.09809023141860962, 0.17437013983726501, -0.005219803657382727, 0.09903167188167572, -0.09652993083000183, -0.02571004442870617, -0.0003801264683715999, -0.00919258501380682, -0.004343191161751747, 0.05195676535367966, 0.012707574293017387, -0.09697017073631287, -0.002060734899714589, 0.014891240745782852, 0.01839962974190712, 0.07691863924264908, -0.01965423859655857, -0.11415012180805206, 0.02939070202410221, -0.001614519045688212, -0.006421556230634451, 0.06586331129074097, -0.047879382967948914, -0.005667292512953281, 0.05526119843125343, 0.056161295622587204, 0.05564325302839279, -0.06650110334157944, 0.09493734687566757, 0.06601274758577347, -0.04322851821780205, -0.043012235313653946, -0.08453017473220825, 0.0105226319283247, 0.11519429087638855, 0.025671696290373802, 0.05962203070521355, -0.046948786824941635, -0.023711564019322395, -0.10382430255413055, 0.15686386823654175, -0.08754751086235046, -0.1607213318347931, -0.15181028842926025, 0.007510061841458082, -0.05550912395119667, 0.0620909109711647, 0.015829280018806458, -0.05050288885831833, -0.0978439524769783, -0.07788544148206711, 0.16059574484825134, -0.04015098512172699, -0.00771426223218441, 0.01954520307481289, -0.029297325760126114, 0.03676055744290352, -0.18210311233997345, -0.0010100293438881636, -0.040149569511413574, -0.12568731606006622, -0.037650227546691895, 0.00014893007755745202, 0.06819979846477509, 0.07112859189510345, -0.037735067307949066, -0.0761573538184166, 0.01871071755886078, 0.16394610702991486, 0.033761270344257355, 0.07701241970062256, 0.09394586831331253, -0.09777913242578506, 0.042688999325037, 0.045992497354745865, 0.03083370439708233, -0.013850436545908451, 0.008855690248310566, 0.05709083750844002, -0.025901827961206436, -0.2854757606983185, -0.009383448399603367, -0.018301459029316902, -0.018587885424494743, 0.06654108315706253, 0.041863519698381424, -0.08404847234487534, 0.04928560554981232, -0.05772163346409798, 0.03221092373132706, 0.08582495898008347, 0.04514867812395096, 0.09500595182180405, -0.0386364720761776, 0.09275167435407639, -0.05348140746355057, -0.01801413483917713, 0.1087341457605362, -0.05072220787405968, 0.200204536318779, -0.05466243997216225, 0.055192701518535614, 0.09736176580190659, -0.013238166458904743, 0.038329433649778366, 0.13845373690128326, -0.051567792892456055, 0.06974674761295319, -0.05794315040111542, -0.04554802551865578, -0.03906974941492081, 0.024407727643847466, -0.0013365610502660275, 0.037353962659835815, -0.03576896712183952, -0.016359776258468628, -0.003469199873507023, 0.24010764062404633, 0.06799554079771042, -0.12342459708452225, -0.06818155199289322, 0.007493574172258377, -0.10843182355165482, -0.07033933699131012, 0.050560466945171356, 0.09074860066175461, -0.08277256786823273, 0.04643379524350166, 0.00962022040039301, 0.06831203401088715, -0.12743571400642395, 0.020634273067116737, 0.03922857716679573, 0.05052772909402847, -0.02508215792477131, 0.0339248850941658, -0.1553744673728943, 0.08439551293849945, 0.0360269770026207, 0.05267791450023651, -0.05250445008277893, 0.06364096701145172, 0.020601332187652588, -0.014125528745353222, 0.02572030760347843, 0.010999595746397972, -0.019118739292025566, -0.026697281748056412, -0.06712286174297333, 0.083746537566185, 0.07637327164411545, -0.05205458775162697, 0.11931446939706802, -0.04955120012164116, 0.012257286347448826, -0.009484462440013885, 0.07720451802015305, -0.17298874258995056, -0.13010317087173462, 0.045616716146469116, -0.1423560380935669, -0.023559533059597015, -0.06759718060493469, -0.054896652698516846, -0.06996962428092957, 0.16748696565628052, -0.12119568139314651, -0.13332386314868927, -0.08531465381383896, -0.011738560162484646, 0.15329979360103607, -0.0308071356266737, 0.007260343059897423, -0.016989219933748245, 0.13224811851978302, -0.03759714961051941, -0.15186332166194916, -0.04907921701669693, -0.07026435434818268, -0.15090809762477875, -0.03344620019197464, 0.07109824568033218, 0.11084645241498947, 0.05175771191716194, 0.005366805009543896, 0.026158371940255165, 0.002918561454862356, -0.052927982062101364, -0.015765147283673286, 0.17981281876564026, 0.05343009904026985, 0.06994447112083435, -0.1598273068666458, -0.055674973875284195, -0.050249870866537094, 0.02360408566892147, -0.045246660709381104, 0.09793486446142197, -0.030331522226333618, 0.07785037159919739, 0.24123400449752808, -0.12908896803855896, -0.20248962938785553, 0.007714735344052315, 0.0293815266340971, 0.004448893014341593, 0.006859451066702604, -0.22528837621212006, 0.12181627005338669, 0.0901595875620842, -0.0002368281566305086, -0.0064919875003397465, -0.18554088473320007, -0.08129186928272247, 0.08045824617147446, 0.009370566345751286, 0.14589203894138336, -0.09303180873394012, -0.03175520524382591, 0.008903349749743938, -0.08664517849683762, 0.0529373362660408, 0.048096224665641785, 0.08382408320903778, -0.0006293226615525782, -0.07471262663602829, 0.04972045123577118, -0.014137755148112774, 0.08648097515106201, 0.04562291130423546, 0.047130681574344635, -0.03389846533536911, 0.13101939857006073, 0.004238906782120466, -0.016768455505371094, 0.13843800127506256, 0.1137797087430954, 0.05680828168988228, -0.023946531116962433, -0.062477193772792816, -0.07318127155303955, 0.011262936517596245, -0.021622994914650917, -0.03925033658742905, -0.06428160518407822, 0.0396236851811409, 0.06315775960683823, 0.0004489259736146778, -0.041921816766262054, -0.02488529123365879, 0.057493630796670914, 0.08927987515926361, 0.1936807930469513, -0.05483014136552811, -0.0072540040127933025, -0.019010551273822784, -0.022522058337926865, 0.06946253776550293, -0.019193941727280617, 0.06492915004491806, 0.09018465131521225, 0.009912313893437386, 0.08245663344860077, 0.06238153576850891, -0.13070952892303467, -0.02256948873400688, 0.05372262001037598, -0.1009385734796524, -0.13858020305633545, -0.027475541457533836, -0.10554828494787216, -0.13408862054347992, -0.0004469385021366179, 0.1712038218975067, -0.03691595420241356, -0.047117915004491806, -0.015763310715556145, 0.0794214978814125, 0.018928758800029755, 0.13094592094421387, 0.03381291776895523, -0.014967313967645168, -0.062109608203172684, 0.17153231799602509, 0.08924006670713425, -0.09255657345056534, 0.01043445710092783, 0.016543766483664513, -0.05906563624739647, -0.005070369690656662, -0.06502950936555862, 0.07496082037687302, -0.0276951864361763, -0.039070695638656616, 0.00140956521499902, -0.10054153203964233, 0.04950433224439621, 0.1516069620847702, 0.0070965830236673355, 0.15834727883338928, -0.038136932998895645, 0.06325026601552963, -0.07539661973714828, 0.07248362898826599, 0.053679563105106354, 0.0773729607462883, -0.01790691167116165, 0.04889138415455818, -0.045871492475271225, -0.001104201772250235, -0.01493429858237505, 0.0005509946495294571, -0.09031154960393906, -0.05557236075401306, -0.22326502203941345, 0.02664383128285408, -0.057827968150377274, -0.03583931922912598, 0.009949023835361004, -0.014174005016684532, 0.003868661355227232, 0.03716452792286873, -0.02542950212955475, -0.03269229084253311, -0.025647563859820366, 0.061961740255355835, -0.1230413019657135, 0.02643550932407379, 0.06641272455453873, -0.08711287379264832, 0.07700349390506744, -0.0006517883157357574, -0.05240504816174507, -0.0009082919568754733, 0.012816964648663998, -0.04648289084434509, -0.0300348699092865, 0.008154262788593769, -0.053051359951496124, -0.11275950819253922, 0.027139870449900627, 0.011682671494781971, -0.02687125839293003, -0.029585544019937515, 0.07541552186012268, -0.06477668136358261, 0.05268663540482521, 0.0367375873029232, 0.0044114491902291775, -0.04344286397099495, -0.015884429216384888, 0.11986873298883438, 0.07536964118480682, 0.05588079243898392, -0.05036013945937157, -0.018506979569792747, -0.15560758113861084, -0.0016306120669469237, -0.0022551228757947683, -0.0034953278955072165, -0.04125089570879936, -0.03734448924660683, 0.030251605436205864, 0.011315541341900826, 0.1775733381509781, 0.0077596097253263, 0.012572946958243847, 0.009257893078029156, 0.005024112295359373, 0.008131383918225765, 0.03389713168144226, 0.07096271216869354, -0.014875120483338833, -0.0780792385339737, -0.07852514833211899, 0.033880773931741714, -0.03130887821316719, -0.02077220194041729, 0.1347712129354477, 0.1352071613073349, 0.10471593588590622, 0.02235107682645321, 0.00035212209331803024, -0.030379939824342728, -0.02989109791815281, 0.022328080609440804, 0.05648539587855339, 0.05011557415127754, -0.014085482805967331, 0.012016009539365768, 0.06678798049688339, -0.12438591569662094, 0.12039893120527267, -0.035529714077711105, -0.028531333431601524, -0.10560973733663559, -0.07856793701648712, -0.018490158021450043, -0.019737157970666885, -0.020094670355319977, -0.16525590419769287, 0.04730052873492241, 0.10739333182573318, 0.021900158375501633, -0.03179086744785309, 0.03671303391456604, -0.1490941047668457, -0.09016168862581253, 0.0649600625038147, 0.013504271395504475, 0.04397803172469139, 0.10795505344867706, -0.013329694978892803, 0.07931356132030487, 0.14229716360569, 0.06175750866532326, 0.05543557181954384, 0.08404988050460815, 0.008966139517724514, -0.020855752751231194, -0.040038689970970154, 0.00735959317535162, -0.061455003917217255, 0.03781959414482117, 0.16068238019943237, 0.03153124079108238, -0.050521038472652435, 0.035564616322517395, 0.1805947870016098, -0.03533110022544861, -0.051790084689855576, -0.1777864247560501, 0.20972652733325958, 0.02275613322854042, 0.04312438890337944, 0.050212159752845764, -0.08866336196660995, -0.0350370779633522, 0.20561833679676056, 0.10748247802257538, 0.023379888385534286, -0.023126859217882156, 0.017809012904763222, -0.010687844827771187, 0.008768979460000992, 0.0831787958741188, 0.005674188490957022, 0.21895454823970795, -0.03847771883010864, 0.01802860200405121, 0.03163456544280052, 0.03483942896127701, -0.0725775957107544, 0.15135671198368073, -0.04804173484444618, -0.0016238363459706306, -0.056607216596603394, 0.02109401673078537, 0.02025631070137024, -0.3033827543258667, -0.11065320670604706, 0.0007409829995594919, -0.06335429102182388, -0.016952762380242348, -0.022554587572813034, -0.006216428708285093, 0.05281966179609299, -0.0036062609869986773, 0.030874304473400116, 0.18344727158546448, -0.005756269674748182, -0.03788573667407036, -0.04080229997634888, 0.12178964167833328, 0.019169658422470093, 0.13844622671604156, 0.05890467390418053, -0.01542069111019373, 0.044205136597156525, 0.023507308214902878, -0.11290325969457626, -0.03386906906962395, -0.02634650468826294, -0.009525217115879059, -0.023382514715194702, 0.1324062943458557, 0.020562905818223953, 0.048751287162303925, 0.038761597126722336, -0.044811367988586426, 0.04991282895207405, 0.04288903623819351, -0.0680055320262909, -0.0525236651301384, 0.04349539428949356, -0.09682394564151764, 0.1412786990404129, 0.17648333311080933, 0.012430891394615173, 0.02491249330341816, -0.056237976998090744, -0.008735416457057, 0.0013525851536542177, 0.11668621748685837, -0.0037121945060789585, -0.158567875623703, -0.013637714087963104, -0.08618864417076111, 0.03942248597741127, -0.22286026179790497, -0.0456281453371048, 0.10174056142568588, -0.01121362205594778, -0.00843127816915512, 0.04829797148704529, 0.005421310197561979, 0.0596584677696228, -0.015972377732396126, -0.04824023321270943, 0.009562023915350437, 0.06749925762414932, -0.08275759220123291, -0.03174072876572609 ]
null
null
transformers
# MultiBERTs - Seed 22 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #22. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_22') model = TFBertModel.from_pretrained("google/multiberts-seed_22") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_22') model = BertModel.from_pretrained("google/multiberts-seed_22") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_22"]}
null
google/multiberts-seed_22
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_22", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_22 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 22 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #22. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 22\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #22.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_22 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 22\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #22.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_22 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 22\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #22.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06275270134210587, 0.09429151564836502, -0.004102804698050022, 0.04330987110733986, 0.07649558037519455, 0.015486767515540123, 0.05639365687966347, 0.07405543327331543, -0.08972401916980743, 0.023097679018974304, -0.012122534215450287, -0.04695696756243706, 0.07724855840206146, -0.04461030289530754, 0.060574259608983994, -0.23465214669704437, 0.04996849596500397, -0.0301988385617733, -0.026316506788134575, 0.027960514649748802, 0.11124738305807114, -0.09549485146999359, 0.07398878037929535, 0.05540253594517708, 0.0028937652241438627, 0.01693502627313137, -0.01530374027788639, 0.005120629444718361, 0.08703192323446274, 0.032825421541929245, 0.08397238701581955, -0.002389569068327546, 0.08523965626955032, -0.1415732502937317, 0.006234860513359308, 0.05936206504702568, 0.06312916427850723, 0.0430682897567749, 0.11786282807588577, 0.008642656728625298, 0.08933660387992859, 0.01837494783103466, 0.05193730443716049, 0.04510191082954407, -0.07451538741588593, -0.16932526230812073, -0.09280923753976822, 0.02024076320230961, -0.0017241458408534527, 0.0064828903414309025, -0.007413163315504789, -0.01902373880147934, -0.019435478374361992, 0.02016160450875759, 0.12101012468338013, -0.26682934165000916, -0.016493290662765503, 0.007918796502053738, 0.05795277655124664, 0.057646218687295914, -0.03798918426036835, -0.041283413767814636, 0.04327833652496338, 0.052590012550354004, 0.04079805314540863, -0.025149816647171974, 0.04078228026628494, -0.015765635296702385, -0.15309008955955505, -0.019670285284519196, 0.10580381006002426, -0.04886768385767937, -0.11691318452358246, -0.047509029507637024, -0.03316750004887581, 0.12492665648460388, 0.00914682261645794, -0.03646625205874443, 0.04659195989370346, 0.03092070296406746, 0.064669169485569, -0.062184762209653854, -0.11581055074930191, 0.02572496421635151, -0.05118044838309288, 0.10887061059474945, 0.09386909753084183, 0.04846811667084694, -0.007190799340605736, 0.05545107275247574, -0.08541363477706909, -0.07757371664047241, -0.05117953196167946, -0.08898580819368362, -0.04087972268462181, -0.037914030253887177, -0.08442579209804535, -0.1649320274591446, -0.00394095154479146, 0.10943806916475296, -0.061732206493616104, 0.00852552056312561, -0.09037195146083832, -0.021552151069045067, 0.09369265288114548, 0.16065002977848053, -0.10983966290950775, 0.04916681349277496, -0.010988542810082436, 0.010463370010256767, -0.023630760610103607, 0.03163430467247963, 0.012283533811569214, -0.010182974860072136, 0.05145680159330368, 0.023652557283639908, -0.019968388602137566, 0.04187022149562836, -0.02073132060468197, -0.04239613562822342, 0.053255531936883926, -0.13353240489959717, -0.010528751648962498, 0.0022326712496578693, -0.0035692264791578054, 0.060897912830114365, 0.0647038072347641, -0.027762306854128838, -0.09010474383831024, 0.02340077981352806, -0.08215448260307312, -0.04666571319103241, -0.05999823659658432, -0.15596891939640045, 0.02780211716890335, -0.0756637305021286, -0.048680584877729416, -0.09295427054166794, -0.09739913046360016, -0.02691890113055706, 0.0600198395550251, -0.017348414286971092, 0.03721849247813225, 0.031170032918453217, -0.007639132905751467, -0.04148207977414131, 0.04599352553486824, 0.006898046005517244, -0.014817459508776665, 0.008205779828131199, -0.045345962047576904, 0.05380665510892868, -0.009358282200992107, 0.04466714709997177, -0.07010294497013092, 0.021643726155161858, -0.14175115525722504, 0.060699205845594406, -0.09657324850559235, -0.08373065292835236, -0.05015231668949127, -0.04214058816432953, -0.07185381650924683, 0.03071054071187973, 0.009829881601035595, 0.06147604063153267, -0.1482759416103363, -0.049866653978824615, 0.13873769342899323, -0.13708321750164032, 0.0358344130218029, 0.09473680704832077, -0.0513337180018425, 0.0444476418197155, 0.1161520704627037, 0.058253929018974304, 0.07053829729557037, -0.046006496995687485, -0.013897022232413292, 0.0077519724145531654, 0.035071857273578644, 0.1449553221464157, 0.0666675940155983, -0.06830854713916779, -0.0839768797159195, 0.035559531301259995, -0.07408815622329712, -0.044176142662763596, -0.05958007648587227, -0.00484874052926898, -0.010407962836325169, -0.056278131902217865, -0.00590455811470747, -0.02413296140730381, -0.012420992366969585, -0.017277931794524193, -0.05124199762940407, 0.05365685746073723, 0.06254147738218307, -0.08805534988641739, 0.05614302307367325, -0.05498300865292549, 0.016262084245681763, -0.07900501042604446, -0.001352342194877565, -0.17930546402931213, 0.008781864307820797, 0.11051976680755615, -0.09787975251674652, 0.051131200045347214, 0.1630055457353592, 0.021527400240302086, 0.06826417148113251, -0.05170843377709389, 0.07116403430700302, 0.0056261359713971615, -0.025352641940116882, -0.045651502907276154, -0.11816447973251343, -0.06463485956192017, -0.06096392497420311, 0.010032502934336662, -0.08602842688560486, -0.005752737168222666, -0.038905419409275055, 0.020961634814739227, 0.022177567705512047, -0.06374800950288773, 0.020579634234309196, 0.02428325265645981, -0.038067519664764404, -0.027447979897260666, -0.025631971657276154, 0.04523981735110283, 0.015930775552988052, 0.11602908372879028, -0.09462437033653259, -0.06576839834451675, 0.045885078608989716, 0.05340541526675224, -0.05195207893848419, 0.09214850515127182, -0.054630424827337265, -0.034328773617744446, -0.09907400608062744, -0.0985860824584961, 0.1723993420600891, -0.005167451687157154, 0.0985131561756134, -0.09668533504009247, -0.02561979368329048, -0.00042715674499049783, -0.008707878179848194, -0.0034876400604844093, 0.05228789895772934, 0.013832295313477516, -0.09619469195604324, -0.002355105709284544, 0.014853417873382568, 0.018375063315033913, 0.07693276554346085, -0.0196274071931839, -0.11430775374174118, 0.030016105622053146, -0.0014676724094897509, -0.005913229659199715, 0.06546784937381744, -0.048710137605667114, -0.005114689003676176, 0.05519167333841324, 0.05561058223247528, 0.0555499866604805, -0.06681382656097412, 0.09459442645311356, 0.06588837504386902, -0.04304753243923187, -0.04401065781712532, -0.084794782102108, 0.010820250026881695, 0.11550070345401764, 0.025315461680293083, 0.059471432119607925, -0.04710555449128151, -0.023893345147371292, -0.1045442447066307, 0.15682066977024078, -0.08762367069721222, -0.1609339714050293, -0.15262271463871002, 0.007924295030534267, -0.05539306625723839, 0.062481388449668884, 0.01587897725403309, -0.05011395364999771, -0.097509004175663, -0.0781698226928711, 0.16074280440807343, -0.040008027106523514, -0.0067139724269509315, 0.019384080544114113, -0.028998970985412598, 0.037481728941202164, -0.18149974942207336, -0.00042399982339702547, -0.03981650620698929, -0.12568365037441254, -0.03821958601474762, -0.0002435794594930485, 0.06791528314352036, 0.07160871475934982, -0.03756444528698921, -0.07695647329092026, 0.018937991932034492, 0.16423404216766357, 0.03406999260187149, 0.0764174684882164, 0.09366492927074432, -0.0992116779088974, 0.042839810252189636, 0.04694695770740509, 0.030543025583028793, -0.013617944903671741, 0.009111464023590088, 0.057364288717508316, -0.026044990867376328, -0.2855544686317444, -0.008491519838571548, -0.018577512353658676, -0.018242713063955307, 0.06653672456741333, 0.04167736694216728, -0.08543361723423004, 0.04853199049830437, -0.057129357010126114, 0.033017754554748535, 0.08657342940568924, 0.04481364041566849, 0.09411314129829407, -0.03852061927318573, 0.0928448736667633, -0.05343450978398323, -0.01730263978242874, 0.10895239561796188, -0.05212629958987236, 0.19984441995620728, -0.05542440712451935, 0.05304320901632309, 0.09778176993131638, -0.012297682464122772, 0.03829890862107277, 0.13908231258392334, -0.05218812823295593, 0.0701780840754509, -0.057798679918050766, -0.04570671543478966, -0.03929326310753822, 0.025126047432422638, -0.0015059786383062601, 0.03637702018022537, -0.03639846295118332, -0.016389120370149612, -0.004250251688063145, 0.23990653455257416, 0.06864103674888611, -0.12263846397399902, -0.06806114315986633, 0.007680533453822136, -0.10918247699737549, -0.07056800276041031, 0.050560131669044495, 0.09227775037288666, -0.08288698643445969, 0.04625425860285759, 0.009941677562892437, 0.06834201514720917, -0.1269071102142334, 0.020424943417310715, 0.03873457759618759, 0.04996025934815407, -0.025048209354281425, 0.033767540007829666, -0.15454964339733124, 0.08355794847011566, 0.03594005107879639, 0.05217009037733078, -0.051850344985723495, 0.06393814831972122, 0.020664161071181297, -0.013454703614115715, 0.025296537205576897, 0.01113841962069273, -0.021044405177235603, -0.02722349390387535, -0.06637763231992722, 0.08368989080190659, 0.0757969468832016, -0.052141401916742325, 0.11965356767177582, -0.04956943169236183, 0.012887376360595226, -0.008791451342403889, 0.07678894698619843, -0.17278778553009033, -0.13016489148139954, 0.04570740461349487, -0.14328435063362122, -0.02361532673239708, -0.0683397427201271, -0.05504873767495155, -0.06849664449691772, 0.16776815056800842, -0.12310223281383514, -0.13293670117855072, -0.08501850813627243, -0.011659207753837109, 0.1532871425151825, -0.030504776164889336, 0.00788920372724533, -0.01625966653227806, 0.13256102800369263, -0.036839134991168976, -0.1521182656288147, -0.04892202839255333, -0.06982622295618057, -0.15145331621170044, -0.03339604660868645, 0.0709058865904808, 0.11042933166027069, 0.051768459379673004, 0.004955780692398548, 0.026154030114412308, 0.004175765439867973, -0.05275093764066696, -0.01596708409488201, 0.18155258893966675, 0.053878188133239746, 0.07015430182218552, -0.15988388657569885, -0.05501050129532814, -0.04952569678425789, 0.02338472567498684, -0.04572038725018501, 0.09851834177970886, -0.030169997364282608, 0.07861916720867157, 0.24048523604869843, -0.13009174168109894, -0.20292791724205017, 0.008100531995296478, 0.029653897508978844, 0.004286543000489473, 0.007447320967912674, -0.2252366542816162, 0.1217050850391388, 0.08983899652957916, 0.000022674494175589643, -0.007839522324502468, -0.18609140813350677, -0.08175656199455261, 0.07991579174995422, 0.009370953775942326, 0.14636288583278656, -0.09254135936498642, -0.03233663737773895, 0.00799075048416853, -0.08618947863578796, 0.05307875573635101, 0.04601066932082176, 0.08333093672990799, -0.000344384548952803, -0.07554971426725388, 0.0501636266708374, -0.014040566049516201, 0.08683552592992783, 0.045137692242860794, 0.04662003368139267, -0.03434232249855995, 0.1317095309495926, 0.0025101222563534975, -0.016767635941505432, 0.13743051886558533, 0.11301147192716599, 0.0566016286611557, -0.025524068623781204, -0.06258322298526764, -0.07317996025085449, 0.010854466818273067, -0.02168971300125122, -0.03845086321234703, -0.06346304714679718, 0.039264801889657974, 0.06361895054578781, 0.0006057072896510363, -0.04291819408535957, -0.0249308031052351, 0.05805974081158638, 0.09076172858476639, 0.1935870349407196, -0.05404338240623474, -0.007091467268764973, -0.01859322190284729, -0.022150494158267975, 0.06959491968154907, -0.019194062799215317, 0.06498537212610245, 0.08998775482177734, 0.009739437140524387, 0.08250361680984497, 0.0624682791531086, -0.13092665374279022, -0.022610822692513466, 0.054222073405981064, -0.10157212615013123, -0.13882184028625488, -0.026776045560836792, -0.10464324057102203, -0.13459153473377228, -0.001524673425592482, 0.1717829406261444, -0.03694482147693634, -0.04665593430399895, -0.015289685688912868, 0.07971733063459396, 0.018986279144883156, 0.13148631155490875, 0.03335361182689667, -0.014989514835178852, -0.06187940016388893, 0.1709916591644287, 0.08899687230587006, -0.0924852266907692, 0.01026139035820961, 0.01641910709440708, -0.05913509428501129, -0.004619232378900051, -0.06381676346063614, 0.07489483803510666, -0.027661236003041267, -0.03929920122027397, 0.0016538668423891068, -0.10027192533016205, 0.049612440168857574, 0.15114344656467438, 0.006732323672622442, 0.15840254724025726, -0.03801211342215538, 0.06304265558719635, -0.07443909347057343, 0.07244250178337097, 0.054043591022491455, 0.077092744410038, -0.0175318643450737, 0.04950478672981262, -0.04583550617098808, -0.0012103230692446232, -0.014867838472127914, 0.0013256454840302467, -0.09103305637836456, -0.0557715967297554, -0.22414062917232513, 0.027182674035429955, -0.057966072112321854, -0.035888493061065674, 0.01009699422866106, -0.014320812188088894, 0.0037725872825831175, 0.03666900098323822, -0.025698630139231682, -0.03292259946465492, -0.02644190937280655, 0.0622963048517704, -0.12273228168487549, 0.026467060670256615, 0.066986083984375, -0.087441585958004, 0.07719043642282486, -0.001150751020759344, -0.05221286788582802, -0.0003403985174372792, 0.015397720970213413, -0.0466935820877552, -0.03005298785865307, 0.008080702275037766, -0.05364987999200821, -0.11217565834522247, 0.027222726494073868, 0.011509912088513374, -0.02689041756093502, -0.029515253379940987, 0.07611500471830368, -0.0648728683590889, 0.05185738950967789, 0.036840587854385376, 0.004279878456145525, -0.04303182289004326, -0.01612282730638981, 0.11955458670854568, 0.07575421035289764, 0.05598945915699005, -0.05076849088072777, -0.018643727526068687, -0.15549246966838837, -0.0018151949625462294, -0.001929437625221908, -0.0034693563356995583, -0.039482321590185165, -0.03750675544142723, 0.030511964112520218, 0.011348607018589973, 0.17697468400001526, 0.00789629202336073, 0.013845506124198437, 0.009426387026906013, 0.004330449737608433, 0.00992260780185461, 0.034322213381528854, 0.07134363055229187, -0.014639340341091156, -0.07820835709571838, -0.07915910333395004, 0.03339691460132599, -0.03137211874127388, -0.021257106214761734, 0.13519278168678284, 0.13520926237106323, 0.10571003705263138, 0.022257044911384583, 0.0011781946523115039, -0.030045991763472557, -0.030371157452464104, 0.02252766489982605, 0.05617023631930351, 0.05100676044821739, -0.014713156037032604, 0.012861935421824455, 0.06663840264081955, -0.1248408704996109, 0.12015730887651443, -0.03556256368756294, -0.028748149052262306, -0.10618147999048233, -0.07774176448583603, -0.018662435933947563, -0.020540863275527954, -0.020293312147259712, -0.16489988565444946, 0.04744347184896469, 0.10693100094795227, 0.021313661709427834, -0.031753093004226685, 0.0354129783809185, -0.14833149313926697, -0.08996517956256866, 0.06471703201532364, 0.0133690619841218, 0.043859656900167465, 0.10841509699821472, -0.01395803689956665, 0.07986502349376678, 0.14283092319965363, 0.06163913384079933, 0.05539720505475998, 0.0839793011546135, 0.009405604563653469, -0.020273003727197647, -0.0394437313079834, 0.007767552509903908, -0.06154875084757805, 0.03810923546552658, 0.16017183661460876, 0.032013267278671265, -0.05038701370358467, 0.035466235131025314, 0.18042881786823273, -0.035907939076423645, -0.05174586549401283, -0.17826981842517853, 0.2094329297542572, 0.02218320406973362, 0.043819282203912735, 0.0503164604306221, -0.08890757709741592, -0.035476308315992355, 0.20634274184703827, 0.10608167201280594, 0.023099541664123535, -0.02324679121375084, 0.017861129716038704, -0.010738099925220013, 0.009054664522409439, 0.08399929851293564, 0.005963027942925692, 0.2186850756406784, -0.03782465681433678, 0.017044298350811005, 0.03180338442325592, 0.034762781113386154, -0.07200826704502106, 0.1519903838634491, -0.04796488583087921, -0.0020102791022509336, -0.05651938542723656, 0.021287716925144196, 0.020161496475338936, -0.305496484041214, -0.11074564605951309, 0.0019372953101992607, -0.06324479728937149, -0.016686799004673958, -0.021720683202147484, -0.007077415939420462, 0.05217040330171585, -0.004130640998482704, 0.03122517094016075, 0.18311353027820587, -0.005809779744595289, -0.038014594465494156, -0.041326384991407394, 0.12208130955696106, 0.02005378156900406, 0.1378607153892517, 0.05886240303516388, -0.01572526805102825, 0.04402337595820427, 0.023999538272619247, -0.11315696686506271, -0.03439118340611458, -0.025924811139702797, -0.01039064209908247, -0.023724766448140144, 0.13309790194034576, 0.019989006221294403, 0.04867016151547432, 0.038839198648929596, -0.0440860316157341, 0.049436409026384354, 0.04148469120264053, -0.06811963021755219, -0.052844636142253876, 0.0427774041891098, -0.0972164124250412, 0.14066742360591888, 0.1766129583120346, 0.012212634086608887, 0.025281328707933426, -0.05563770979642868, -0.009112556464970112, 0.0004402975318953395, 0.11698106676340103, -0.0031984022352844477, -0.15876758098602295, -0.013481962494552135, -0.08704331517219543, 0.03965440392494202, -0.22268734872341156, -0.04600243642926216, 0.1019095703959465, -0.01114104688167572, -0.009149998426437378, 0.04974525049328804, 0.00531550869345665, 0.05889158695936203, -0.016412056982517242, -0.05120743438601494, 0.009264680556952953, 0.06781871616840363, -0.08214201033115387, -0.03245023265480995 ]
null
null
transformers
# MultiBERTs - Seed 23 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #23. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_23') model = TFBertModel.from_pretrained("google/multiberts-seed_23") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_23') model = BertModel.from_pretrained("google/multiberts-seed_23") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_23"]}
null
google/multiberts-seed_23
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_23", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_23 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 23 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #23. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 23\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #23.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_23 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 23\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #23.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 190, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_23 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 23\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #23.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.06271129101514816, 0.093672975897789, -0.004096059128642082, 0.044015511870384216, 0.07682158052921295, 0.015517160296440125, 0.05724673345685005, 0.0743616446852684, -0.0899863913655281, 0.022718796506524086, -0.011886537075042725, -0.046587709337472916, 0.07740053534507751, -0.04542727395892143, 0.060267265886068344, -0.23367443680763245, 0.050440847873687744, -0.030657760798931122, -0.02436699904501438, 0.028531251475214958, 0.11148373037576675, -0.09539684653282166, 0.07423420250415802, 0.055013787001371384, 0.00413209293037653, 0.01760224811732769, -0.016126463189721107, 0.005125799681991339, 0.08682037889957428, 0.032102737575769424, 0.08448503166437149, -0.00240647466853261, 0.08556538820266724, -0.14218199253082275, 0.006108145695179701, 0.059230219572782516, 0.06282487511634827, 0.04291205853223801, 0.11750616878271103, 0.007983097806572914, 0.08712255209684372, 0.017004305496811867, 0.05284798890352249, 0.0452897809445858, -0.07485386729240417, -0.16784779727458954, -0.09339101612567902, 0.020551154389977455, -0.0009577449527569115, 0.0070136296562850475, -0.007302957121282816, -0.018117910251021385, -0.01957438886165619, 0.020951667800545692, 0.12262821942567825, -0.2660175561904907, -0.016913944855332375, 0.00888446718454361, 0.058363355696201324, 0.05853580683469772, -0.03773418813943863, -0.04143485799431801, 0.0430777408182621, 0.0525156669318676, 0.04086323082447052, -0.025097060948610306, 0.04113002121448517, -0.015141312032938004, -0.15351757407188416, -0.019677558913826942, 0.10628315061330795, -0.048846494406461716, -0.11666589230298996, -0.04851348325610161, -0.03281792998313904, 0.12210458517074585, 0.009222861379384995, -0.03655516728758812, 0.046675994992256165, 0.030382545664906502, 0.06396351754665375, -0.06223572418093681, -0.11556817591190338, 0.02570933848619461, -0.05065444856882095, 0.10854002088308334, 0.09402985125780106, 0.04817737266421318, -0.006845325697213411, 0.055846866220235825, -0.08367299288511276, -0.07753154635429382, -0.05121367797255516, -0.08884511142969131, -0.04098190739750862, -0.03830863535404205, -0.08470065146684647, -0.16515739262104034, -0.00371694378554821, 0.11120092123746872, -0.06209385022521019, 0.008690985850989819, -0.08961313962936401, -0.021592574194073677, 0.09419386088848114, 0.16178278625011444, -0.1098635345697403, 0.04840288683772087, -0.011134017258882523, 0.011052706278860569, -0.02344895899295807, 0.03181808814406395, 0.01219760999083519, -0.009948224760591984, 0.05166546627879143, 0.02440003678202629, -0.020131703466176987, 0.042205795645713806, -0.02129255048930645, -0.04286570101976395, 0.05418482422828674, -0.13387349247932434, -0.010868321172893047, 0.0024561737664043903, -0.003262751502916217, 0.061221539974212646, 0.064360611140728, -0.027974799275398254, -0.0903083086013794, 0.023154979571700096, -0.08195152133703232, -0.04687107354402542, -0.060124803334474564, -0.1562608927488327, 0.02727578394114971, -0.07561322301626205, -0.048925552517175674, -0.0925685316324234, -0.09848484396934509, -0.027069801464676857, 0.06023617461323738, -0.017396818846464157, 0.03716296702623367, 0.030314451083540916, -0.0076308222487568855, -0.04154149442911148, 0.04594535753130913, 0.00628973264247179, -0.014873500913381577, 0.007920623756945133, -0.04444335773587227, 0.05344498157501221, -0.009633788838982582, 0.044676508754491806, -0.07034099847078323, 0.021365635097026825, -0.1401444971561432, 0.061247482895851135, -0.09731371700763702, -0.08383993804454803, -0.050136957317590714, -0.042407453060150146, -0.07102512568235397, 0.030822401866316795, 0.010284936055541039, 0.06135963276028633, -0.1470383256673813, -0.04964170977473259, 0.1377391219139099, -0.13663147389888763, 0.03529500216245651, 0.09488752484321594, -0.05166346952319145, 0.04327143356204033, 0.11573466658592224, 0.05798891931772232, 0.07083849608898163, -0.04597621038556099, -0.013919489458203316, 0.00772097148001194, 0.03583782538771629, 0.14482471346855164, 0.06657512485980988, -0.06800901889801025, -0.08296684175729752, 0.03552420809864998, -0.07522996515035629, -0.04439551383256912, -0.059526342898607254, -0.005299222189933062, -0.010124714113771915, -0.056257955729961395, -0.006476975046098232, -0.02436366118490696, -0.012612365186214447, -0.017599012702703476, -0.05138179287314415, 0.053734757006168365, 0.06272026151418686, -0.08840660005807877, 0.05609646067023277, -0.05464284494519234, 0.016848212108016014, -0.07944848388433456, -0.001977315405383706, -0.1784757524728775, 0.007647245656698942, 0.11035364866256714, -0.09724365174770355, 0.05090803653001785, 0.1624612957239151, 0.02161041647195816, 0.06809798628091812, -0.05172904208302498, 0.07066363096237183, 0.0050780680030584335, -0.02507861517369747, -0.045270953327417374, -0.11800464987754822, -0.06510474532842636, -0.061287201941013336, 0.00827073585242033, -0.0841922014951706, -0.005536671727895737, -0.03890378400683403, 0.020316801965236664, 0.02203948237001896, -0.06404853612184525, 0.02078375406563282, 0.024796202778816223, -0.038504477590322495, -0.027844520285725594, -0.025679970160126686, 0.04455209895968437, 0.016282707452774048, 0.1150970309972763, -0.09459967166185379, -0.06557141989469528, 0.04599441587924957, 0.05283963680267334, -0.05242825672030449, 0.09223079681396484, -0.054832253605127335, -0.03394398093223572, -0.09905174374580383, -0.09848382323980331, 0.1733253449201584, -0.004753969609737396, 0.09878108650445938, -0.0968765914440155, -0.02620752342045307, -0.0007869984838180244, -0.008416024968028069, -0.0040158722549676895, 0.052255187183618546, 0.013940234668552876, -0.09552503377199173, -0.0016253815265372396, 0.014300876297056675, 0.018508505076169968, 0.07712993770837784, -0.019522560760378838, -0.11436212807893753, 0.030059706419706345, -0.0011243175249546766, -0.006104812026023865, 0.06564781814813614, -0.04965027794241905, -0.005780264735221863, 0.05480063334107399, 0.05536121502518654, 0.05561091750860214, -0.06658197939395905, 0.09455700218677521, 0.06609386205673218, -0.04356628283858299, -0.04270085692405701, -0.08529922366142273, 0.010784660466015339, 0.1149655431509018, 0.025665266439318657, 0.05864404886960983, -0.04684881120920181, -0.024075184017419815, -0.10414984822273254, 0.1565687209367752, -0.08705358952283859, -0.1612839698791504, -0.15286502242088318, 0.006927744019776583, -0.05623217672109604, 0.06189721077680588, 0.01589527167379856, -0.05038629099726677, -0.09763315320014954, -0.07849478721618652, 0.16058629751205444, -0.040412724018096924, -0.006948066875338554, 0.019840968772768974, -0.029536155983805656, 0.037224121391773224, -0.18187682330608368, -0.0006412694347091019, -0.03967868909239769, -0.12640032172203064, -0.03856775537133217, -0.0002090168127324432, 0.06797873973846436, 0.07080735266208649, -0.03766337037086487, -0.07638754695653915, 0.018562737852334976, 0.16447274386882782, 0.034116290509700775, 0.07600169628858566, 0.09254948794841766, -0.09909650683403015, 0.042376283556222916, 0.0466487817466259, 0.03095310367643833, -0.013936684466898441, 0.009063148871064186, 0.05781254917383194, -0.025693807750940323, -0.2855739891529083, -0.008550108410418034, -0.01884998381137848, -0.018011029809713364, 0.06625068932771683, 0.04164910316467285, -0.08604875206947327, 0.04908647760748863, -0.057249363511800766, 0.03270112723112106, 0.08618568629026413, 0.04551481455564499, 0.09450749307870865, -0.03853502869606018, 0.09304987639188766, -0.05304896458983421, -0.01764269545674324, 0.10898860543966293, -0.05105499178171158, 0.19820158183574677, -0.05534544959664345, 0.05386917665600777, 0.09788811951875687, -0.011654786765575409, 0.03781907260417938, 0.1387750208377838, -0.052012648433446884, 0.07027921825647354, -0.0577084943652153, -0.045655567198991776, -0.039119936525821686, 0.02440836653113365, -0.001819854136556387, 0.03741486743092537, -0.03667984530329704, -0.016824278980493546, -0.003809344256296754, 0.24152934551239014, 0.06806226074695587, -0.12361940741539001, -0.06783568114042282, 0.007508610840886831, -0.1092391312122345, -0.07018480449914932, 0.051022645086050034, 0.09074372798204422, -0.08254916965961456, 0.04633178189396858, 0.00976161751896143, 0.06809677183628082, -0.12801195681095123, 0.020549524575471878, 0.04004999250173569, 0.05015409365296364, -0.025177543982863426, 0.03347158432006836, -0.15498030185699463, 0.08381582796573639, 0.035798169672489166, 0.05221966281533241, -0.051638077944517136, 0.0641300305724144, 0.020434174686670303, -0.014310305938124657, 0.025820983573794365, 0.011040935292840004, -0.018399199470877647, -0.0274250116199255, -0.06719879806041718, 0.08394555747509003, 0.07584821432828903, -0.052301324903964996, 0.12002315372228622, -0.049882326275110245, 0.01269326638430357, -0.008956775069236755, 0.07773767411708832, -0.1725308895111084, -0.13080887496471405, 0.045746613293886185, -0.14273391664028168, -0.02532418817281723, -0.06790708750486374, -0.055163316428661346, -0.07034726440906525, 0.17024914920330048, -0.12285857647657394, -0.13348478078842163, -0.08516260236501694, -0.012219449505209923, 0.153498113155365, -0.030239904299378395, 0.007708379533141851, -0.016328515484929085, 0.13154666125774384, -0.036884505301713943, -0.15228486061096191, -0.048894003033638, -0.07023420929908752, -0.1514209359884262, -0.03346617519855499, 0.07046443969011307, 0.1103263720870018, 0.051593877375125885, 0.004718541167676449, 0.02623574808239937, 0.0038112218026071787, -0.052772048860788345, -0.016453122720122337, 0.1815738081932068, 0.052631866186857224, 0.07093022018671036, -0.1597723364830017, -0.05609063804149628, -0.04989361763000488, 0.02375844307243824, -0.04599388688802719, 0.09952600300312042, -0.029771838337183, 0.07904425263404846, 0.24020537734031677, -0.12998177111148834, -0.20196028053760529, 0.007759195752441883, 0.029028648510575294, 0.004621282685548067, 0.007947645150125027, -0.2248816043138504, 0.12120328098535538, 0.08966211974620819, 0.000014926239600754343, -0.009242377243936062, -0.18669387698173523, -0.08149431645870209, 0.08070871978998184, 0.010211537592113018, 0.14658309519290924, -0.09276880323886871, -0.03197333216667175, 0.008852868340909481, -0.08587276190519333, 0.053079526871442795, 0.04726918414235115, 0.08386595547199249, -0.0008654801058582962, -0.07533372193574905, 0.0499756745994091, -0.014438006095588207, 0.08653361350297928, 0.044401414692401886, 0.046873316168785095, -0.0341634601354599, 0.13159039616584778, 0.0033259361516684294, -0.016777703538537025, 0.13808265328407288, 0.11275716871023178, 0.05714448168873787, -0.024931909516453743, -0.06288642436265945, -0.07311544567346573, 0.010549532249569893, -0.02191818505525589, -0.039096325635910034, -0.06393691152334213, 0.039596788585186005, 0.063997782766819, 0.0007689015474170446, -0.04202698543667793, -0.024112185463309288, 0.058112312108278275, 0.09030845016241074, 0.19409555196762085, -0.05322514846920967, -0.006880374625325203, -0.019224274903535843, -0.0226154625415802, 0.06942445784807205, -0.017051897943019867, 0.06460505723953247, 0.09026345610618591, 0.009345903992652893, 0.0822792574763298, 0.06253056973218918, -0.13081267476081848, -0.022860577329993248, 0.054067086428403854, -0.10205097496509552, -0.13710926473140717, -0.027218030765652657, -0.10667562484741211, -0.13468186557292938, -0.001360872876830399, 0.1724282056093216, -0.03687261790037155, -0.046987954527139664, -0.015059546567499638, 0.07989834994077682, 0.019009165465831757, 0.13116790354251862, 0.03313252702355385, -0.015071848407387733, -0.0620262511074543, 0.17119263112545013, 0.0885949432849884, -0.09180866181850433, 0.010600279085338116, 0.017353862524032593, -0.05893661081790924, -0.004757630173116922, -0.06430082768201828, 0.07498981058597565, -0.028992364183068275, -0.038625024259090424, 0.0002704459766391665, -0.0998329445719719, 0.04982305318117142, 0.15126828849315643, 0.006989145651459694, 0.15832962095737457, -0.037792086601257324, 0.063392274081707, -0.07467902451753616, 0.07247491925954819, 0.053504910320043564, 0.07728353142738342, -0.017819847911596298, 0.04815729334950447, -0.046068113297224045, -0.0018543376354500651, -0.014818374067544937, 0.0012958644656464458, -0.09161635488271713, -0.05541913956403732, -0.22423748672008514, 0.026653839275240898, -0.057625479996204376, -0.03547784313559532, 0.010382700711488724, -0.013879669830203056, 0.003487678710371256, 0.03710838034749031, -0.025670243427157402, -0.03296635299921036, -0.02629578299820423, 0.06235181540250778, -0.12322439253330231, 0.026774073019623756, 0.0667833685874939, -0.08733253180980682, 0.07717470079660416, -0.0018866678001359105, -0.05269384756684303, -0.0008956632227636874, 0.012445353902876377, -0.04670802876353264, -0.030145741999149323, 0.00801943615078926, -0.053347039967775345, -0.11191842705011368, 0.027410447597503662, 0.012095518410205841, -0.026838848367333412, -0.029218286275863647, 0.07667147368192673, -0.06509369611740112, 0.05167541652917862, 0.037451013922691345, 0.004614544101059437, -0.04288458079099655, -0.015893589705228806, 0.1197613850235939, 0.07574561983346939, 0.05565854161977768, -0.0513296015560627, -0.018515268340706825, -0.15564274787902832, -0.0016697220271453261, -0.0018627417739480734, -0.0032400551717728376, -0.04080810025334358, -0.037291090935468674, 0.030596084892749786, 0.011430861428380013, 0.17948095500469208, 0.00790612306445837, 0.013618447817862034, 0.00946184154599905, 0.004304525442421436, 0.010792733170092106, 0.03421681374311447, 0.07176616787910461, -0.015138911083340645, -0.07854912430047989, -0.07881850749254227, 0.03327421098947525, -0.03138703852891922, -0.021859606727957726, 0.13489049673080444, 0.13575276732444763, 0.10495249927043915, 0.022449564188718796, 0.0014484705170616508, -0.029912620782852173, -0.028579970821738243, 0.021160565316677094, 0.05634157732129097, 0.051253270357847214, -0.014340389519929886, 0.012490687891840935, 0.06673847138881683, -0.12479402124881744, 0.12037908285856247, -0.03530363366007805, -0.02863001637160778, -0.10622493177652359, -0.07767382264137268, -0.018645500764250755, -0.020218219608068466, -0.02008996531367302, -0.16539131104946136, 0.04704669862985611, 0.10645918548107147, 0.021979624405503273, -0.031785715371370316, 0.03587654232978821, -0.1467399001121521, -0.08953509479761124, 0.06473837047815323, 0.013484855182468891, 0.043827690184116364, 0.10779543220996857, -0.014328524470329285, 0.07938005775213242, 0.14279605448246002, 0.06152307242155075, 0.05495435371994972, 0.08405140042304993, 0.009127994999289513, -0.019922297447919846, -0.039910584688186646, 0.007716426160186529, -0.06217805668711662, 0.03792114555835724, 0.16133370995521545, 0.031888894736766815, -0.05055062100291252, 0.035354360938072205, 0.17991304397583008, -0.035946786403656006, -0.05123161897063255, -0.17826023697853088, 0.2091449797153473, 0.022165771573781967, 0.04356767237186432, 0.049969565123319626, -0.08886376768350601, -0.03548486530780792, 0.20640580356121063, 0.107392318546772, 0.023082472383975983, -0.023028312250971794, 0.018191857263445854, -0.01054462417960167, 0.008773993700742722, 0.08339231461286545, 0.005437173414975405, 0.21801243722438812, -0.03770958259701729, 0.016968531534075737, 0.03220149874687195, 0.03487163037061691, -0.07137186825275421, 0.15035435557365417, -0.04702077805995941, -0.0017643211176618934, -0.05705133453011513, 0.02109122835099697, 0.019331736490130424, -0.3042847514152527, -0.11024000495672226, 0.001305260811932385, -0.06366575509309769, -0.0172317773103714, -0.021996866911649704, -0.006998282391577959, 0.05231047421693802, -0.0035396472085267305, 0.03137747943401337, 0.182850643992424, -0.005907811224460602, -0.03829488158226013, -0.041370149701833725, 0.1221063956618309, 0.019956160336732864, 0.1384550929069519, 0.05911695957183838, -0.015755074098706245, 0.04430520907044411, 0.02354309894144535, -0.11299659311771393, -0.03416259214282036, -0.025894900783896446, -0.010232413187623024, -0.023579685017466545, 0.1332675963640213, 0.020276185125112534, 0.04978669062256813, 0.038574133068323135, -0.0432438850402832, 0.04996249079704285, 0.04173160716891289, -0.0681685283780098, -0.05303453654050827, 0.04264380410313606, -0.09682169556617737, 0.1408480703830719, 0.17681343853473663, 0.012451089918613434, 0.025428809225559235, -0.055830392986536026, -0.008568944409489632, 0.00034282123669981956, 0.11632148176431656, -0.0033827282022684813, -0.15881843864917755, -0.013652036897838116, -0.08630086481571198, 0.03952808678150177, -0.2236066609621048, -0.04627051576972008, 0.10204309225082397, -0.010964660905301571, -0.009966581128537655, 0.04937633499503136, 0.00522206025198102, 0.059633929282426834, -0.01595555804669857, -0.04936946928501129, 0.009379236027598381, 0.0676533654332161, -0.08293717354536057, -0.03216211870312691 ]
null
null
transformers
# MultiBERTs - Seed 24 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #24. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_24') model = TFBertModel.from_pretrained("google/multiberts-seed_24") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_24') model = BertModel.from_pretrained("google/multiberts-seed_24") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_24"]}
null
google/multiberts-seed_24
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_24", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_24 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs - Seed 24 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #24. ## Model Description This model is a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs - Seed 24\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #24.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_24 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs - Seed 24\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #24.", "## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 69, 189, 247, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_24 #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs - Seed 24\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #24.## Model Description\n\nThis model is a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details." ]
[ -0.0695870965719223, 0.09143710136413574, -0.003924402873963118, 0.05471023917198181, 0.07511035352945328, 0.008211145177483559, 0.049394212663173676, 0.06978143751621246, -0.09142931550741196, 0.021875204518437386, -0.010191062465310097, -0.04308287799358368, 0.0759970098733902, -0.027709314599633217, 0.05593838542699814, -0.23398126661777496, 0.03955309838056564, -0.024076474830508232, -0.02499311789870262, 0.02992847003042698, 0.11631261557340622, -0.10570370405912399, 0.07332654297351837, 0.05085274204611778, 0.00403012428432703, 0.020258227363228798, -0.018338488414883614, 0.0010149353183805943, 0.08804566413164139, 0.026139715686440468, 0.07913579791784286, -0.004687362816184759, 0.08220159262418747, -0.1332637518644333, 0.009315828792750835, 0.05409013479948044, 0.06057602912187576, 0.046637438237667084, 0.11826667189598083, 0.015912862494587898, 0.09647238999605179, 0.0038820230402052402, 0.04486262798309326, 0.04967478662729263, -0.06427183002233505, -0.18107976019382477, -0.09499221295118332, 0.028908373787999153, -0.0056783840991556644, 0.010897350497543812, -0.008765325881540775, -0.020505936816334724, -0.025229286402463913, 0.02534281276166439, 0.1181831955909729, -0.25701072812080383, -0.015754031017422676, 0.0020034180488437414, 0.048257969319820404, 0.06300079077482224, -0.04274371266365051, -0.04709106683731079, 0.03922799229621887, 0.061478715389966965, 0.0595625564455986, -0.022789115086197853, 0.03882955014705658, -0.011212185956537724, -0.15393368899822235, -0.017170101404190063, 0.09775776416063309, -0.04401228204369545, -0.1140802875161171, -0.06241094693541527, -0.03275240957736969, 0.11196292191743851, 0.010698635131120682, -0.037207864224910736, 0.04729720950126648, 0.02545866370201111, 0.05888789892196655, -0.07470942288637161, -0.11717969179153442, 0.03350512310862541, -0.06984096020460129, 0.10502798110246658, 0.08998779952526093, 0.05240163952112198, -0.011501966044306755, 0.0525570847094059, -0.07172452658414841, -0.08013924956321716, -0.04800277575850487, -0.08350849896669388, -0.024914590641856194, -0.03004346787929535, -0.07610858231782913, -0.1530362069606781, -0.008518729358911514, 0.08781164139509201, -0.07081645727157593, -0.007654738612473011, -0.0873069018125534, -0.02357301488518715, 0.08782600611448288, 0.16231870651245117, -0.11612387001514435, 0.04817814379930496, 0.0038192979991436005, 0.0094765555113554, -0.025999300181865692, 0.036702390760183334, 0.011149299331009388, -0.011855279095470905, 0.0424823984503746, 0.030096495524048805, -0.017580488696694374, 0.03886500746011734, -0.016720686107873917, -0.04283170402050018, 0.059134285897016525, -0.1406008005142212, -0.008498920127749443, 0.006687475368380547, -0.011336361058056355, 0.05530785024166107, 0.05701068043708801, -0.03510654717683792, -0.09249245375394821, 0.019542938098311424, -0.08523666113615036, -0.046506427228450775, -0.06069578975439072, -0.15501442551612854, 0.03241945430636406, -0.08164480328559875, -0.054376304149627686, -0.09216142445802689, -0.10189121961593628, -0.01937430165708065, 0.05217783898115158, -0.013323173858225346, 0.0361853763461113, 0.03025842271745205, -0.012796057388186455, -0.041927359998226166, 0.045515429228544235, 0.012872172519564629, -0.014890724793076515, 0.01129708532243967, -0.03967129439115524, 0.05348842218518257, -0.013061690144240856, 0.047492582350969315, -0.0680324137210846, 0.017830269411206245, -0.12999926507472992, 0.06688312441110611, -0.0952516719698906, -0.0900825709104538, -0.04951916262507439, -0.05304738134145737, -0.06670680642127991, 0.025227030739188194, 0.007694779895246029, 0.06612418591976166, -0.1495738923549652, -0.052309222519397736, 0.14085200428962708, -0.1262948364019394, 0.03315954655408859, 0.09636864811182022, -0.054563168436288834, 0.038638968020677567, 0.12045895308256149, 0.04274803400039673, 0.07085398584604263, -0.049481313675642014, -0.025163553655147552, 0.015514981001615524, 0.0341348834335804, 0.12505844235420227, 0.07253704220056534, -0.06220308318734169, -0.06788205355405807, 0.038541439920663834, -0.07608063519001007, -0.03403095901012421, -0.05918978527188301, -0.007344583515077829, -0.013205978088080883, -0.06032295897603035, 0.002487078309059143, -0.026293126866221428, -0.011263814754784107, -0.010253881104290485, -0.051073815673589706, 0.050514571368694305, 0.06260339170694351, -0.0795290544629097, 0.051192156970500946, -0.05960056930780411, 0.022496843710541725, -0.0808483213186264, -0.0053652371279895306, -0.17876683175563812, 0.014658983796834946, 0.10688690096139908, -0.09312755614519119, 0.052272189408540726, 0.16200505197048187, 0.02355009689927101, 0.06747929006814957, -0.05283264070749283, 0.0686725303530693, -0.000927957589738071, -0.03035152703523636, -0.04125957936048508, -0.10726479440927505, -0.062212251126766205, -0.058610882610082626, 0.0053767673671245575, -0.08196131139993668, -0.00840698927640915, -0.025806160643696785, 0.021621309220790863, 0.0296307485550642, -0.05877188965678215, 0.020346039906144142, 0.024507485330104828, -0.033822618424892426, -0.02604690194129944, -0.0289540383964777, 0.039825186133384705, 0.0048926230520009995, 0.12161936610937119, -0.08844290673732758, -0.043334223330020905, 0.04829326644539833, 0.06074894219636917, -0.041517432779073715, 0.09470970183610916, -0.06185506284236908, -0.028958609327673912, -0.094477079808712, -0.0946570336818695, 0.17356684803962708, -0.004240242764353752, 0.10280487686395645, -0.10222934186458588, -0.03554520756006241, 0.0007135223131626844, 0.004138688091188669, -0.0078828614205122, 0.05566674470901489, 0.006781998090445995, -0.1017637848854065, 0.0008725138031877577, 0.014977501705288887, 0.01914687268435955, 0.09023983031511307, -0.018823379650712013, -0.11675722897052765, 0.023012744262814522, -0.00021889631170779467, -0.007890855893492699, 0.06656396389007568, -0.030400266870856285, 0.0014941657427698374, 0.05783529579639435, 0.05323027819395065, 0.056940458714962006, -0.06462588161230087, 0.09134956449270248, 0.06370409578084946, -0.0467023141682148, -0.0445588082075119, -0.07712315768003464, 0.020553577691316605, 0.12199150770902634, 0.02907741442322731, 0.05923888087272644, -0.04258839413523674, -0.023086534813046455, -0.0997503474354744, 0.15427066385746002, -0.09458280354738235, -0.16121506690979004, -0.151573047041893, 0.007293841801583767, -0.061427824199199677, 0.05668177083134651, 0.012563807889819145, -0.057658303529024124, -0.09467784315347672, -0.08231781423091888, 0.16227108240127563, -0.04187551885843277, -0.012715261429548264, 0.01717573218047619, -0.027316227555274963, 0.03332076594233513, -0.1852378100156784, -0.002885011723265052, -0.038534119725227356, -0.1203104555606842, -0.04174225032329559, 0.012048200704157352, 0.06459145247936249, 0.07044722884893417, -0.04180678725242615, -0.07243993133306503, 0.015001981519162655, 0.16028107702732086, 0.03576510772109032, 0.0781380832195282, 0.10078047960996628, -0.08960561454296112, 0.044186607003211975, 0.04189831018447876, 0.03436926379799843, -0.010992451570928097, 0.007789667695760727, 0.05651876702904701, -0.02513015642762184, -0.2938593327999115, -0.01132297795265913, -0.026637373492121696, -0.016986900940537453, 0.06052202731370926, 0.044161226600408554, -0.09583842009305954, 0.046008750796318054, -0.0547344870865345, 0.03361254557967186, 0.08019056171178818, 0.03623456880450249, 0.10098471492528915, -0.040194544941186905, 0.08946328610181808, -0.055967848747968674, -0.025557691231369972, 0.11891987919807434, -0.06078479439020157, 0.20237764716148376, -0.07039166986942291, 0.05999789386987686, 0.09639974683523178, -0.004012001678347588, 0.03159567341208458, 0.14721940457820892, -0.054432857781648636, 0.07215017825365067, -0.052486300468444824, -0.051341477781534195, -0.03515058010816574, 0.017252633348107338, 0.00831662304699421, 0.04738190770149231, -0.03322644531726837, -0.01119069941341877, -0.0057472893968224525, 0.2527799606323242, 0.05443775653839111, -0.12488348037004471, -0.07321425527334213, 0.004625267349183559, -0.10967967659235, -0.06751078367233276, 0.049161236733198166, 0.10233274102210999, -0.08063290268182755, 0.04091009870171547, 0.00875516701489687, 0.06845054030418396, -0.11841641366481781, 0.017887983471155167, 0.032877080142498016, 0.04915248602628708, -0.016663135960698128, 0.03486878424882889, -0.14771825075149536, 0.08847133815288544, 0.03355613723397255, 0.05220611393451691, -0.06036758795380592, 0.06459513306617737, 0.02654697187244892, -0.028752196580171585, 0.03071138635277748, 0.013601490296423435, -0.009400316514074802, -0.03312378004193306, -0.07103440910577774, 0.07820934802293777, 0.0750778540968895, -0.055246591567993164, 0.115534208714962, -0.0506284199655056, 0.009567325934767723, -0.009424244984984398, 0.07551051676273346, -0.1651095449924469, -0.13064388930797577, 0.038994599133729935, -0.1318032294511795, -0.03678170591592789, -0.06737690418958664, -0.0607585646212101, -0.05485798418521881, 0.16914774477481842, -0.1305406093597412, -0.13497628271579742, -0.09253352880477905, -0.008365066722035408, 0.15821309387683868, -0.0415971577167511, 0.012776755727827549, -0.019520148634910583, 0.14069083333015442, -0.040384650230407715, -0.1566006988286972, -0.05111219361424446, -0.06872555613517761, -0.14956137537956238, -0.022637447342276573, 0.07349657267332077, 0.1134977638721466, 0.05300387740135193, 0.005178349558264017, 0.026574313640594482, -0.007030009292066097, -0.0543314665555954, -0.015342259779572487, 0.18179036676883698, 0.05964859947562218, 0.0829518660902977, -0.15463370084762573, -0.07368937879800797, -0.0407227985560894, 0.023540223017334938, -0.02732738107442856, 0.09358397126197815, -0.033607251942157745, 0.07858065515756607, 0.23187477886676788, -0.1238548681139946, -0.2050333023071289, 0.005515565164387226, 0.02861502394080162, 0.010319882072508335, 0.015292877331376076, -0.2214822620153427, 0.12243190407752991, 0.08213328570127487, -0.003390663769096136, 0.008812226355075836, -0.1786285936832428, -0.08227556943893433, 0.07883071154356003, 0.010537419468164444, 0.14557240903377533, -0.08249253034591675, -0.03160414472222328, 0.00719765480607748, -0.0871368795633316, 0.04976323992013931, 0.04608622565865517, 0.0847242921590805, -0.006876516621559858, -0.05914592742919922, 0.0488203726708889, -0.01709398813545704, 0.08216682821512222, 0.03529803827404976, 0.04541425406932831, -0.03812091425061226, 0.11250444501638412, 0.012214981950819492, -0.018859384581446648, 0.14501415193080902, 0.10142454504966736, 0.06334496289491653, -0.035258080810308456, -0.06561530381441116, -0.07870493829250336, 0.014103654772043228, -0.02085818536579609, -0.04083077609539032, -0.06608390063047409, 0.044033925980329514, 0.06580687314271927, -0.005028270184993744, -0.04423455148935318, -0.023301931098103523, 0.06590579450130463, 0.09588714689016342, 0.19945096969604492, -0.043627385050058365, -0.008297409862279892, -0.02641562558710575, -0.025618162006139755, 0.0649065375328064, -0.02059047669172287, 0.06601744145154953, 0.09494613111019135, 0.011303148232400417, 0.08202529698610306, 0.06019243597984314, -0.12573090195655823, -0.01872776262462139, 0.057958535850048065, -0.09394027292728424, -0.14649111032485962, -0.03287871927022934, -0.1028662770986557, -0.1425723284482956, -0.0029114405624568462, 0.16978992521762848, -0.036861602216959, -0.04847491532564163, -0.017463479191064835, 0.07841978967189789, 0.01676884852349758, 0.11969351023435593, 0.038574714213609695, -0.012290963903069496, -0.06217453256249428, 0.16322806477546692, 0.08735906332731247, -0.09249260276556015, 0.01027517206966877, 0.024707753211259842, -0.056712474673986435, -0.009316354990005493, -0.05234608054161072, 0.06770388782024384, -0.031329263001680374, -0.034067075699567795, 0.0010642862180247903, -0.10520359128713608, 0.05980375036597252, 0.15178146958351135, 0.0020864782854914665, 0.15972620248794556, -0.045170076191425323, 0.06303789466619492, -0.06874433159828186, 0.07870995253324509, 0.041776858270168304, 0.06512424349784851, -0.01950467936694622, 0.060346998274326324, -0.04477784410119057, 0.010896082036197186, -0.015457162633538246, 0.006046422757208347, -0.07741910219192505, -0.05671859532594681, -0.23194944858551025, 0.030841512605547905, -0.054247964173555374, -0.034768618643283844, 0.001910771825350821, -0.010780341923236847, -0.0025022346526384354, 0.043622761964797974, -0.029752571135759354, -0.03200918436050415, -0.025105874985456467, 0.06327995657920837, -0.1279325932264328, 0.027018854394555092, 0.05923648923635483, -0.0795871838927269, 0.08787288516759872, 0.0013367229839786887, -0.05707515776157379, 0.0023820761125534773, 0.0227408055216074, -0.045098546892404556, -0.03245484456419945, 0.008460993878543377, -0.046152401715517044, -0.11030305922031403, 0.03363783285021782, 0.018447304144501686, -0.03140637278556824, -0.026796448975801468, 0.0685572624206543, -0.06926556676626205, 0.048913467675447464, 0.04148676246404648, 0.011950702406466007, -0.0495278462767601, -0.009965192526578903, 0.11458751559257507, 0.06944088637828827, 0.05053264647722244, -0.047725677490234375, -0.017714861780405045, -0.16375690698623657, -0.003494028700515628, -0.0051715681329369545, -0.004398426506668329, -0.04622349515557289, -0.03582436218857765, 0.03378066420555115, 0.0092008663341403, 0.1841239184141159, 0.009028846397995949, -0.003653257852420211, 0.011401284486055374, 0.0025695613585412502, 0.009519508108496666, 0.029700979590415955, 0.07454946637153625, -0.0280635803937912, -0.08014620095491409, -0.06709419935941696, 0.022659869864583015, -0.03756124526262283, -0.016039440408349037, 0.14237000048160553, 0.13302813470363617, 0.12265075743198395, 0.015805866569280624, 0.015795473009347916, -0.02630414068698883, -0.04028653725981712, -0.0019604964181780815, 0.051052026450634, 0.049587737768888474, -0.021164098754525185, 0.015550472773611546, 0.06903302669525146, -0.1317298710346222, 0.12859505414962769, -0.03388950973749161, -0.020227672532200813, -0.10570508241653442, -0.08127366006374359, -0.0216568224132061, -0.01203898061066866, -0.017755160108208656, -0.16596820950508118, 0.043423350900411606, 0.09596164524555206, 0.025105487555265427, -0.03895103558897972, 0.038753874599933624, -0.14844673871994019, -0.0897129699587822, 0.07755645364522934, 0.01554299145936966, 0.03818149492144585, 0.11006198078393936, -0.008938388898968697, 0.07897022366523743, 0.13243703544139862, 0.06648179888725281, 0.05423710495233536, 0.06987302005290985, 0.006424633786082268, -0.025220870971679688, -0.03692840412259102, 0.006095459684729576, -0.05596242472529411, 0.040810469537973404, 0.17651884257793427, 0.029407871887087822, -0.05171429365873337, 0.029453979805111885, 0.17600825428962708, -0.038060445338487625, -0.05236135050654411, -0.1661175638437271, 0.2031947821378708, 0.02869364619255066, 0.035440266132354736, 0.053324420005083084, -0.08601108193397522, -0.03873657435178757, 0.19506202638149261, 0.11848422884941101, 0.019068986177444458, -0.01911143958568573, 0.019768603146076202, -0.009849823080003262, 0.0024590305984020233, 0.08392950147390366, 0.01597539335489273, 0.2452893704175949, -0.04303685575723648, 0.021818118169903755, 0.02593107707798481, 0.038344889879226685, -0.06704497337341309, 0.14706115424633026, -0.05143940448760986, 0.0025345198810100555, -0.055017635226249695, 0.015163936652243137, 0.013404021970927715, -0.3035661280155182, -0.11167115718126297, -0.005630311090499163, -0.06524112075567245, -0.019371218979358673, -0.03254421427845955, -0.000963466998655349, 0.045101556926965714, -0.0005774212768301368, 0.03327162563800812, 0.1780177354812622, -0.006999078206717968, -0.04135936498641968, -0.03402034565806389, 0.12684614956378937, 0.00946762040257454, 0.14073581993579865, 0.05947066843509674, -0.011601140722632408, 0.04723627120256424, 0.020454207435250282, -0.11691517382860184, -0.024443550035357475, -0.025641687214374542, -0.009147530421614647, -0.025289984419941902, 0.1382950246334076, 0.01917077600955963, 0.04280940815806389, 0.0360368974506855, -0.026806659996509552, 0.048395030200481415, 0.05312225595116615, -0.06588850170373917, -0.05640696361660957, 0.052854254841804504, -0.09518900513648987, 0.1396723836660385, 0.18087726831436157, 0.00993430707603693, 0.022279832512140274, -0.05956050753593445, -0.006382157560437918, -0.0025172235909849405, 0.11284253001213074, -0.004002671223133802, -0.15512239933013916, -0.01029894594103098, -0.06980890035629272, 0.04642212763428688, -0.24187058210372925, -0.05071265250444412, 0.09945409744977951, -0.01631608046591282, -0.01477114763110876, 0.048423126339912415, 0.0074245319701731205, 0.06064992770552635, -0.009183105081319809, -0.05455339327454567, 0.0017467554425820708, 0.06188100948929787, -0.0877825990319252, -0.022316310554742813 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_0k"]}
null
google/multiberts-seed_3-step_0k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_0k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 0k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_0k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 0k (max: 2000k, i.e., 2M steps)." ]
[ -0.07606545090675354, 0.0888003408908844, -0.002168470062315464, 0.040527887642383575, 0.08237501233816147, -0.017043692991137505, 0.08180290460586548, 0.10158039629459381, -0.030358919873833656, 0.023424148559570312, 0.08443064242601395, 0.016325684264302254, 0.013291256502270699, 0.09508585929870605, 0.01964583620429039, -0.2180965691804886, 0.027249660342931747, -0.0305215772241354, -0.07297074794769287, 0.07756879925727844, 0.09618319571018219, -0.0821240171790123, 0.045463062822818756, 0.02220163494348526, -0.10540281236171722, 0.04827064275741577, -0.007454811129719019, -0.02048668824136257, 0.12889979779720306, -0.001704655820503831, 0.0464865118265152, 0.05375552922487259, 0.0344587005674839, -0.13843786716461182, 0.006829686462879181, 0.05757640302181244, 0.05833752825856209, 0.03837006539106369, 0.022948216646909714, 0.07315464317798615, -0.000155603964230977, 0.02426815778017044, 0.04817968234419823, 0.024503912776708603, -0.07487711310386658, -0.05698902904987335, -0.10035943984985352, 0.03678368777036667, 0.02492697164416313, 0.01647970639169216, 0.011932479217648506, 0.13749724626541138, -0.04116512089967728, 0.048907049000263214, 0.18910108506679535, -0.3313280940055847, -0.01594172604382038, 0.08475302159786224, 0.04651610925793648, 0.12482811510562897, -0.0050727082416415215, -0.015396286733448505, 0.07222891598939896, 0.03116859495639801, 0.09525290131568909, -0.041112907230854034, 0.031169410794973373, -0.053979866206645966, -0.158297598361969, -0.04100516438484192, 0.10032539814710617, -0.003354663262143731, -0.13705235719680786, -0.046705711632966995, -0.033552128821611404, 0.026658372953534126, 0.01004937756806612, -0.030073590576648712, 0.03063390403985977, 0.009071635082364082, -0.024908844381570816, -0.003681311383843422, -0.1012178435921669, -0.04922209680080414, 0.038264282047748566, 0.08323206752538681, 0.10236352682113647, 0.06242581456899643, 0.0016527572879567742, 0.1086462214589119, -0.1837790459394455, -0.04964255541563034, -0.032489728182554245, -0.05985686928033829, -0.04548183083534241, -0.0134170176461339, -0.10990964621305466, -0.04563981667160988, 0.016188576817512512, 0.13590572774410248, -0.0036961708683520555, 0.03463103622198105, -0.025791727006435394, 0.004860700573772192, 0.059228647500276566, 0.042183857411146164, -0.00653501134365797, 0.0233046505600214, 0.021199367940425873, -0.009230682626366615, -0.021953005343675613, 0.01443193294107914, 0.006065305322408676, 0.03928183391690254, 0.12187309563159943, 0.028716333210468292, -0.10205358266830444, 0.0800619050860405, -0.014131150208413601, -0.048506077378988266, 0.018622461706399918, -0.08828964829444885, -0.06323092430830002, -0.03862732648849487, 0.0037833601236343384, 0.023256339132785797, -0.01015932485461235, -0.009926393628120422, -0.025936052203178406, -0.03393392264842987, -0.08382576704025269, -0.04688858240842819, -0.05268184840679169, -0.1303066909313202, 0.004393941722810268, -0.17919974029064178, -0.03688428923487663, -0.11728174239397049, -0.1870516538619995, -0.02319968305528164, 0.06642080098390579, -0.013704929500818253, -0.050134431570768356, 0.07885347306728363, 0.036503519862890244, -0.029491957277059555, -0.002743589226156473, 0.07137783616781235, -0.007867696695029736, 0.03935042396187782, -0.021813655272126198, 0.06240640953183174, 0.0037121635396033525, 0.035019807517528534, -0.05728958547115326, 0.05911242961883545, -0.1768045872449875, 0.043945178389549255, -0.08189582824707031, -0.022401701658964157, -0.08802444487810135, -0.036915648728609085, -0.004204717464745045, 0.00577709311619401, 0.02259262651205063, 0.07668153196573257, -0.17635272443294525, -0.02713717892765999, 0.10901942104101181, -0.15643757581710815, -0.024564389139413834, 0.06871221214532852, -0.04306322708725929, 0.08645501732826233, 0.06826484203338623, 0.15494751930236816, -0.010444693267345428, -0.08469752222299576, 0.052536558359861374, -0.012371040880680084, 0.017824959009885788, -0.015167368575930595, 0.06718895584344864, -0.022952988743782043, -0.15479417145252228, 0.03881043940782547, -0.1323356181383133, -0.004341898951679468, -0.07700862735509872, 0.020487280562520027, -0.0076180994510650635, -0.06580229103565216, -0.07385522872209549, -0.02684079296886921, 0.06611158698797226, -0.07680312544107437, -0.01638888753950596, 0.03534518554806709, 0.06879347562789917, -0.07963439077138901, 0.06636933237314224, -0.009913853369653225, 0.02317446656525135, -0.08821878582239151, -0.040623366832733154, -0.18681924045085907, 0.03694045916199684, 0.10018068552017212, 0.017035558819770813, -0.021926263347268105, 0.13865716755390167, 0.005773603450506926, 0.06484129279851913, -0.051224615424871445, 0.012668168172240257, -0.005358968861401081, -0.0011119380360469222, -0.08397997170686722, -0.09971708804368973, -0.07386597990989685, -0.07009296119213104, 0.07555031776428223, -0.12333401292562485, 0.019225746393203735, -0.06013621389865875, 0.03411054238677025, 0.01731747016310692, -0.08381661027669907, -0.009751718491315842, 0.021110519766807556, -0.057967305183410645, -0.058745164424180984, 0.046051718294620514, 0.06964311748743057, -0.011420303955674171, 0.08902633935213089, -0.05713052675127983, -0.0842895656824112, 0.033692825585603714, 0.09455739706754684, -0.1108013466000557, 0.004391590133309364, -0.057825785130262375, -0.04197605699300766, -0.058632973581552505, -0.01406239066272974, 0.08614060282707214, -0.003685378236696124, 0.1354878842830658, -0.07383937388658524, -0.007439528591930866, 0.01339359674602747, -0.018432091921567917, -0.027256188914179802, 0.03675112873315811, 0.07159591466188431, -0.06979942321777344, 0.01552860252559185, 0.037853579968214035, 0.007706885226070881, 0.07606048882007599, -0.05441053584218025, -0.08414483815431595, 0.019046654924750328, 0.03692951053380966, 0.03002062626183033, 0.07055152207612991, -0.024592820554971695, -0.014071337878704071, 0.0325678214430809, 0.02250438556075096, 0.009923708625137806, -0.10698231309652328, 0.05806378275156021, 0.0538053996860981, 0.0058340937830507755, 0.07166580855846405, -0.010561815463006496, -0.04423731938004494, 0.07478883862495422, 0.03870459645986557, -0.006633700802922249, -0.010739470832049847, -0.013881750404834747, -0.11705704033374786, 0.19639816880226135, -0.06353800743818283, -0.16239529848098755, -0.06959119439125061, -0.11191099137067795, -0.013962173834443092, 0.019663462415337563, 0.04046299308538437, -0.022191157564520836, -0.04991944134235382, -0.13114356994628906, 0.05518898367881775, -0.04551852121949196, 0.06441630423069, 0.10810865461826324, -0.049272485077381134, 0.05510646104812622, -0.12703153491020203, -0.010679931379854679, -0.08037737011909485, -0.07680393755435944, 0.06401602923870087, -0.05340681970119476, 0.02687062695622444, 0.09457232803106308, 0.031577806919813156, -0.016132351011037827, -0.03045830689370632, 0.20595689117908478, 0.04581174626946449, 0.03417031094431877, 0.1259043961763382, -0.05408394709229469, 0.05110883340239525, 0.08301503211259842, 0.01185983419418335, -0.04984019324183464, 0.05484103411436081, 0.051125138998031616, -0.0686979591846466, -0.19108818471431732, -0.024013875052332878, -0.013362622819840908, -0.04226803034543991, 0.06985952705144882, 0.039379335939884186, 0.013695121742784977, 0.0699353814125061, 0.015995047986507416, 0.05341026932001114, -0.002286323346197605, 0.10651418566703796, 0.020468339323997498, -0.03026098944246769, 0.09252748638391495, -0.02013780176639557, -0.002531511476263404, 0.0803585946559906, -0.018451575189828873, 0.28911587595939636, -0.03102881647646427, 0.0054071214981377125, 0.131193608045578, 0.035802703350782394, 0.05983063951134682, 0.12538625299930573, -0.07006777822971344, 0.015434658154845238, -0.07133811712265015, -0.06274080276489258, 0.0006080709863454103, 0.0337633416056633, -0.05896526575088501, 0.009472825564444065, -0.07523484528064728, 0.010895764455199242, -0.015734834596514702, 0.3136380910873413, 0.10875236988067627, -0.11184859275817871, -0.0555485375225544, -0.0007053169538266957, -0.09734095633029938, -0.06294537335634232, 0.045355312526226044, 0.0582612119615078, -0.134114071726799, 0.014053796418011189, -0.027569575235247612, 0.07167195528745651, -0.01677190326154232, 0.01978285238146782, 0.04054446145892143, 0.04275378957390785, -0.04025120660662651, 0.005207202397286892, -0.19845892488956451, 0.19464488327503204, 0.0068766106851398945, 0.024737833067774773, -0.052180781960487366, 0.031534139066934586, 0.006287105847150087, -0.03224096819758415, 0.05858180671930313, 0.017962243407964706, -0.018417764455080032, -0.050113074481487274, -0.05152998864650726, 0.018341878429055214, 0.07766847312450409, -0.036806441843509674, 0.10795757919549942, -0.005186439957469702, 0.04379146173596382, 0.018978804349899292, 0.10452701896429062, -0.19125454127788544, -0.09413807839155197, 0.032007183879613876, -0.051492560654878616, -0.10612404346466064, -0.07487710565328598, -0.09494093060493469, -0.014621611684560776, 0.252705842256546, -0.10932248085737228, -0.07545963674783707, -0.09886398911476135, 0.017928041517734528, 0.10261621326208115, -0.044145334511995316, 0.026853321120142937, -0.012812044471502304, 0.1175774559378624, -0.062199000269174576, -0.13542385399341583, 0.02271995320916176, -0.09942106157541275, -0.16099676489830017, -0.06343639642000198, 0.11078617721796036, 0.06312216073274612, 0.03207320347428322, -0.03062685765326023, 0.020858729258179665, 0.0377814806997776, -0.04189425706863403, -0.005780951585620642, 0.07449492067098618, 0.10433623194694519, 0.033296193927526474, -0.11111310869455338, 0.015914587303996086, -0.06494161486625671, -0.06729014962911606, 0.07573159039020538, 0.25982704758644104, -0.04910166561603546, 0.12115391343832016, 0.11416070908308029, -0.07598484307527542, -0.14991183578968048, 0.031737685203552246, 0.08757618814706802, -0.021827345713973045, 0.010859859175980091, -0.15551811456680298, 0.08903034776449203, 0.1141558289527893, -0.019036630168557167, -0.001748480019159615, -0.18770290911197662, -0.12863485515117645, 0.06800583750009537, 0.10858241468667984, 0.2686137855052948, -0.06854131817817688, -0.03683071583509445, 0.020604252815246582, -0.0849345326423645, 0.023348210379481316, 0.1274111419916153, 0.0708324983716011, -0.028513982892036438, -0.08424977958202362, 0.009624185040593147, -0.044663168489933014, 0.08895749598741531, 0.05577868968248367, 0.060616884380578995, -0.004082181956619024, 0.026796316727995872, -0.02274234965443611, -0.04622131958603859, 0.06518527865409851, 0.011101636104285717, 0.04743051528930664, -0.08344904333353043, -0.028906559571623802, -0.07521790266036987, 0.026478411629796028, -0.02476068213582039, -0.07697091996669769, -0.05577763170003891, 0.08049214631319046, 0.048394590616226196, -0.026609355583786964, 0.02591370977461338, 0.01800760254263878, 0.1215972751379013, 0.1598372906446457, 0.0038225112948566675, -0.05141545087099075, -0.06754417717456818, -0.039224136620759964, -0.01946481317281723, 0.07220570743083954, -0.03742082044482231, 0.017794715240597725, 0.06456341594457626, 0.01842704601585865, 0.0967860221862793, 0.060337185859680176, -0.10998547822237015, -0.02093110978603363, 0.0323951281607151, -0.1653720885515213, 0.0303545743227005, 0.0035719512961804867, 0.026451008394360542, -0.03451215848326683, 0.03982545807957649, 0.14882777631282806, -0.06348899006843567, -0.032528091222047806, -0.03993692249059677, 0.0665646567940712, 0.021790537983179092, 0.14415040612220764, 0.029787516221404076, 0.03681762516498566, -0.08250029385089874, 0.12823228538036346, 0.031059959903359413, -0.03575026988983154, 0.027255674824118614, -0.022067459300160408, -0.1126159206032753, 0.007913156412541866, 0.06651052087545395, 0.0407499223947525, -0.04870941862463951, -0.008176998235285282, -0.027142589911818504, -0.07478047162294388, 0.06435900181531906, 0.18875716626644135, 0.06412911415100098, 0.0710134208202362, -0.05651196092367172, -0.041010793298482895, -0.08239971101284027, 0.040617235004901886, 0.03212660923600197, 0.0752742663025856, -0.0786324292421341, 0.08948656171560287, 0.013161893002688885, 0.03665796294808388, -0.030241405591368675, -0.053840283304452896, -0.10934542864561081, -0.0533294603228569, -0.09930669516324997, 0.003469775663688779, -0.0796685442328453, -0.03864874690771103, 0.000652080459985882, 0.004098184872418642, -0.007071251980960369, 0.0499265231192112, -0.06030900403857231, -0.008987795561552048, -0.017550883814692497, 0.039169054478406906, -0.06393536180257797, -0.034753430634737015, 0.01967308484017849, -0.10209553688764572, 0.0930396094918251, 0.04933512583374977, 0.0008709391695447266, 0.006221752148121595, 0.08314832299947739, -0.022292785346508026, 0.022268183529376984, 0.010661505162715912, -0.04843030124902725, -0.08246418088674545, -0.002612539567053318, -0.005014065187424421, -0.014834935776889324, -0.0035182409919798374, 0.08356120437383652, -0.08588545024394989, 0.0319991409778595, -0.0027800295501947403, -0.002959525678306818, -0.06951730698347092, -0.009798993356525898, 0.10281166434288025, 0.0926189199090004, 0.04768984019756317, -0.09511265903711319, 0.011556785553693771, -0.13328252732753754, -0.039026569575071335, 0.007793522905558348, -0.01408133190125227, -0.13103339076042175, -0.006310306489467621, 0.02336784638464451, -0.0050670974887907505, 0.21338964998722076, -0.05657484754920006, -0.016430405899882317, 0.019181394949555397, -0.09891723096370697, 0.12101517617702484, -0.023739388212561607, 0.18360759317874908, -0.011262550950050354, -0.041475966572761536, -0.006818048190325499, 0.043459292501211166, 0.017601575702428818, -0.021736301481723785, 0.18654726445674896, 0.1402200311422348, 0.023168323561549187, 0.03930462896823883, -0.027016788721084595, -0.00769690191373229, -0.04255381599068642, -0.031041588634252548, 0.03628738969564438, 0.05268172174692154, 0.014883976429700851, 0.14301353693008423, 0.06595176458358765, -0.16372865438461304, 0.033385198563337326, -0.03143845126032829, -0.03977757692337036, -0.11336317658424377, -0.10768365859985352, -0.02789439633488655, -0.07449308782815933, 0.011550131253898144, -0.12684109807014465, 0.001420778688043356, 0.18151764571666718, 0.06682556122541428, 0.02786460891366005, 0.009831838309764862, -0.11527128517627716, -0.03170407563447952, 0.05542244762182236, 0.009052827022969723, 0.018586520105600357, 0.05126012861728668, 0.006875152699649334, 0.053834181278944016, 0.032656531780958176, 0.01487658265978098, 0.0017199346330016851, 0.07690563052892685, 0.019671857357025146, 0.040666185319423676, -0.06432481855154037, -0.002238423563539982, -0.03932077810168266, 0.0710347443819046, 0.11715397983789444, 0.04687155783176422, -0.05576157569885254, -0.00651979073882103, 0.1551228016614914, -0.03997204825282097, -0.002065282315015793, -0.1258799433708191, 0.3401877284049988, 0.013320837169885635, 0.00998725462704897, 0.04055729880928993, -0.07139597088098526, -0.049876805394887924, 0.2097623199224472, 0.09707958996295929, -0.016423992812633514, -0.01854608580470085, 0.001651774044148624, -0.031171798706054688, -0.025207247585058212, 0.15301008522510529, 0.03695612773299217, 0.12328760325908661, -0.054516687989234924, -0.04591352120041847, -0.024545082822442055, -0.00888740736991167, -0.12271943688392639, 0.12372919172048569, -0.017290309071540833, -0.028354372829198837, -0.06970632821321487, 0.0245521180331707, 0.05962257832288742, -0.300854355096817, -0.0007400320027954876, -0.025608059018850327, -0.1075950562953949, -0.011657310649752617, -0.02419811487197876, -0.02431492693722248, 0.047902993857860565, -0.043944064527750015, 0.07154926657676697, 0.03732375055551529, 0.030201615765690804, -0.018024662509560585, -0.09791112691164017, 0.16848887503147125, 0.06361562758684158, 0.08907196670770645, 0.025463446974754333, 0.07364815473556519, 0.06137632951140404, 0.03299902006983757, -0.0960313081741333, 0.05234995111823082, 0.011941036209464073, -0.09082887321710587, -0.04901261255145073, 0.11492262035608292, 0.0004324949986767024, 0.05577782541513443, 0.03847174718976021, -0.10164620727300644, 0.01987381838262081, 0.07014603167772293, -0.06531821191310883, -0.09533080458641052, -0.0034339556004852057, -0.09090779721736908, 0.16022534668445587, 0.14640292525291443, -0.01656573824584484, 0.015202080830931664, -0.06820753216743469, -0.0025031643453985453, 0.04835231602191925, 0.0011623683385550976, -0.024500349536538124, -0.19503818452358246, 0.03887983039021492, -0.08361496031284332, -0.008562024682760239, -0.2328254133462906, -0.09898317605257034, -0.005099189933389425, -0.04766229912638664, -0.03310856968164444, 0.055323339998722076, 0.025379519909620285, 0.07011261582374573, -0.021599190309643745, -0.026828447356820107, -0.033517464995384216, 0.08900106698274612, -0.1127251386642456, -0.06383784115314484 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1000k"]}
null
google/multiberts-seed_3-step_1000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps)." ]
[ -0.07644109427928925, 0.08865808695554733, -0.0018809319008141756, 0.04182448983192444, 0.08600939065217972, -0.01685434766113758, 0.07797481119632721, 0.09861737489700317, -0.026397941634058952, 0.025276070460677147, 0.08435884863138199, 0.01599661074578762, 0.017033886164426804, 0.09955801069736481, 0.023936264216899872, -0.22285720705986023, 0.028517773374915123, -0.030738187953829765, -0.07221810519695282, 0.07747497409582138, 0.09718526899814606, -0.08521623909473419, 0.04800078272819519, 0.020778043195605278, -0.10465425997972488, 0.04814846068620682, -0.00987238623201847, -0.02416689321398735, 0.1303911954164505, -0.008127530105412006, 0.046661630272865295, 0.05101971700787544, 0.04263825714588165, -0.13452059030532837, 0.005961032118648291, 0.056970857083797455, 0.06138600781559944, 0.03800751268863678, 0.02149583026766777, 0.08016064018011093, -0.004430366680026054, 0.02179577760398388, 0.04972490295767784, 0.022799668833613396, -0.07554510235786438, -0.0543646477162838, -0.10614467412233353, 0.03948267549276352, 0.028516152873635292, 0.01251227967441082, 0.009953758679330349, 0.13349033892154694, -0.03940066695213318, 0.04672081768512726, 0.1871475726366043, -0.3259204924106598, -0.014132978394627571, 0.08617165684700012, 0.05331339314579964, 0.12561725080013275, -0.005023063626140356, -0.016748493537306786, 0.07486941665410995, 0.029949823394417763, 0.09148465842008591, -0.04245741292834282, 0.022879071533679962, -0.0540681853890419, -0.1623976230621338, -0.040712181478738785, 0.10027556121349335, -0.0021661766804754734, -0.13753239810466766, -0.046312686055898666, -0.03225754573941231, 0.02070043981075287, 0.011941948905587196, -0.035450562834739685, 0.03069605864584446, 0.005621280521154404, -0.022902313619852066, -0.0013877889141440392, -0.0993417352437973, -0.050979141145944595, 0.03578534722328186, 0.07794861495494843, 0.10339339077472687, 0.06243252754211426, 0.0037924605421721935, 0.11153950542211533, -0.18877704441547394, -0.04676821827888489, -0.029957957565784454, -0.061252888292074203, -0.047861866652965546, -0.01566496677696705, -0.10678128153085709, -0.04202014207839966, 0.012477351352572441, 0.13628531992435455, 0.007726890500634909, 0.03237621858716011, -0.017372336238622665, 0.00437537208199501, 0.060894668102264404, 0.04620876908302307, -0.01411637756973505, 0.010442834347486496, 0.022588428109884262, -0.006310924421995878, -0.023453902453184128, 0.015709049999713898, 0.0045742979273200035, 0.03506379947066307, 0.12105327099561691, 0.030375875532627106, -0.10472860187292099, 0.0832306370139122, -0.013043507002294064, -0.045071933418512344, 0.015232034958899021, -0.09052719920873642, -0.06377529352903366, -0.04417520388960838, 0.0001951927406480536, 0.019832853227853775, -0.012686953879892826, -0.008598499931395054, -0.02372009865939617, -0.03219666704535484, -0.0832572877407074, -0.05090129375457764, -0.05552806705236435, -0.13340795040130615, 0.004639745689928532, -0.19297544658184052, -0.03668089956045151, -0.1156146228313446, -0.19026155769824982, -0.028362099081277847, 0.059157054871320724, -0.008770833723247051, -0.051101621240377426, 0.07615227997303009, 0.037265464663505554, -0.031687308102846146, -0.0036491428036242723, 0.07701551169157028, -0.005273024085909128, 0.038543038070201874, -0.023921048268675804, 0.06780005991458893, 0.00574648380279541, 0.03383873030543327, -0.05612781643867493, 0.06238287314772606, -0.17183759808540344, 0.04257526248693466, -0.07982340455055237, -0.017698604613542557, -0.08588322252035141, -0.038014717400074005, -0.005597202107310295, 0.005553963594138622, 0.02477920986711979, 0.07406816631555557, -0.18474119901657104, -0.023204119876027107, 0.11010503768920898, -0.1542709320783615, -0.02808591164648533, 0.06914224475622177, -0.04462290182709694, 0.09691686928272247, 0.07432633638381958, 0.15040206909179688, -0.010065228678286076, -0.08079531043767929, 0.049585141241550446, -0.01532924734055996, 0.013940633274614811, -0.014894033782184124, 0.06625840812921524, -0.022522306069731712, -0.14893367886543274, 0.038546524941921234, -0.1306019276380539, -0.005293106194585562, -0.07619022578001022, 0.019704803824424744, -0.004696229938417673, -0.06861313432455063, -0.07510483264923096, -0.028776412829756737, 0.06257349252700806, -0.07769899070262909, -0.01060582883656025, 0.028790440410375595, 0.06902420520782471, -0.0764075443148613, 0.06489428877830505, -0.010229809209704399, 0.020875977352261543, -0.08532112091779709, -0.03877929598093033, -0.18582865595817566, 0.042470186948776245, 0.1027393564581871, 0.010363000445067883, -0.02040690928697586, 0.13217367231845856, 0.004991635680198669, 0.0653066337108612, -0.04859884828329086, 0.010781342163681984, -0.004651512484997511, -0.00030984822660684586, -0.08671044558286667, -0.09252925962209702, -0.07616294175386429, -0.07050765305757523, 0.06895814090967178, -0.11854124069213867, 0.020808864384889603, -0.05697200447320938, 0.031472042202949524, 0.016142379492521286, -0.08151344954967499, -0.00994904339313507, 0.021082580089569092, -0.05653552711009979, -0.06198754534125328, 0.042314860969781876, 0.06631866842508316, -0.011144502088427544, 0.08712926506996155, -0.05479689687490463, -0.09326669573783875, 0.033035408705472946, 0.09967359900474548, -0.11411842703819275, 0.006938778329640627, -0.05691348761320114, -0.04225122183561325, -0.06039953604340553, -0.022592924535274506, 0.08606348186731339, -0.004780558403581381, 0.13090309500694275, -0.07556997984647751, -0.009135824628174305, 0.012701007537543774, -0.01592991128563881, -0.024901436641812325, 0.035112544894218445, 0.0740271657705307, -0.07142583280801773, 0.014423215761780739, 0.03811981528997421, 0.008797194808721542, 0.07268844544887543, -0.0541338250041008, -0.08354988694190979, 0.018978364765644073, 0.0347919799387455, 0.02881808951497078, 0.06812668591737747, -0.0257548950612545, -0.019488122314214706, 0.03032231144607067, 0.0201412346214056, 0.007976862601935863, -0.10802419483661652, 0.058610815554857254, 0.05371270701289177, 0.008694672025740147, 0.06539052724838257, -0.010628816671669483, -0.04239211603999138, 0.07625866681337357, 0.038446202874183655, -0.0034698734525591135, -0.013787630014121532, -0.01543706189841032, -0.11550119519233704, 0.19766627252101898, -0.06284501403570175, -0.15883584320545197, -0.06896539777517319, -0.11192204803228378, -0.006271506659686565, 0.022672319784760475, 0.036309871822595596, -0.02591695636510849, -0.05044577643275261, -0.12904509902000427, 0.06271687895059586, -0.03973110020160675, 0.06805901229381561, 0.10692096501588821, -0.04676760360598564, 0.04524996876716614, -0.1282774657011032, -0.009857434779405594, -0.08097424358129501, -0.07691404968500137, 0.060243215411901474, -0.05074765905737877, 0.03313565254211426, 0.09669411182403564, 0.03083830326795578, -0.016874946653842926, -0.03190796822309494, 0.20660287141799927, 0.0429513119161129, 0.0396556593477726, 0.12438338994979858, -0.05450323969125748, 0.052199143916368484, 0.08632517606019974, 0.010880100540816784, -0.05041520297527313, 0.056956641376018524, 0.04635855183005333, -0.06883085519075394, -0.1897912174463272, -0.021198442205786705, -0.010702092200517654, -0.04385535791516304, 0.07143446058034897, 0.03606238216161728, 0.005715401377528906, 0.0763574093580246, 0.013863880187273026, 0.058242592960596085, -0.00373829435557127, 0.10274633765220642, 0.01220592763274908, -0.03474033623933792, 0.08841287344694138, -0.01992853730916977, -0.010020908899605274, 0.07943077385425568, -0.015063483268022537, 0.2962491810321808, -0.029136355966329575, 0.008019516244530678, 0.12961789965629578, 0.035919997841119766, 0.05927525833249092, 0.13518233597278595, -0.06919466704130173, 0.016690054908394814, -0.07185253500938416, -0.05998064950108528, 0.005186000838875771, 0.03437930345535278, -0.059519026428461075, 0.012921710498631, -0.07387951016426086, 0.012828424572944641, -0.0165904201567173, 0.30729779601097107, 0.10630891472101212, -0.11420412361621857, -0.05016074702143669, 0.0006901232409290969, -0.09654971212148666, -0.0665770173072815, 0.043475400656461716, 0.06226591393351555, -0.1391143500804901, 0.012378356419503689, -0.026079293340444565, 0.07075779139995575, -0.020206129178404808, 0.015543229877948761, 0.04085583984851837, 0.044759344309568405, -0.04205404594540596, 0.006038024090230465, -0.18981139361858368, 0.19469165802001953, 0.005781928543001413, 0.02669335901737213, -0.05422140285372734, 0.031915389001369476, 0.007484739180654287, -0.03632832691073418, 0.06166306138038635, 0.017335809767246246, -0.024529943242669106, -0.061195485293865204, -0.04930703714489937, 0.014290332794189453, 0.08325952291488647, -0.03874286636710167, 0.11033941805362701, -0.0029297703877091408, 0.04588604345917702, 0.016774671152234077, 0.09995969384908676, -0.18807163834571838, -0.09445028007030487, 0.029780184850096703, -0.052485670894384384, -0.0993226170539856, -0.07498619705438614, -0.09426384419202805, -0.016317171975970268, 0.23974180221557617, -0.11767415702342987, -0.07640485465526581, -0.09551744163036346, 0.01693553477525711, 0.11080986261367798, -0.045616716146469116, 0.030400661751627922, -0.008584346622228622, 0.11570921540260315, -0.0663646012544632, -0.13016095757484436, 0.019584454596042633, -0.09725789725780487, -0.16256313025951385, -0.06460816413164139, 0.11314757168292999, 0.0625959262251854, 0.03170609474182129, -0.027653956785798073, 0.0230065006762743, 0.03732581064105034, -0.04398109018802643, -0.007835239171981812, 0.07293619960546494, 0.10276205092668533, 0.03677794709801674, -0.11451341956853867, 0.019169993698596954, -0.06961731612682343, -0.06724803894758224, 0.07902302592992783, 0.2582915425300598, -0.05048006400465965, 0.11569478362798691, 0.11809133738279343, -0.07827199995517731, -0.15373224020004272, 0.03448200970888138, 0.08839922398328781, -0.019858472049236298, 0.007669161539524794, -0.14972251653671265, 0.09296704083681107, 0.11282464861869812, -0.017202744260430336, 0.003539406694471836, -0.19054046273231506, -0.1310710459947586, 0.07014718651771545, 0.10811116546392441, 0.259458988904953, -0.06595735251903534, -0.03667650371789932, 0.016028575599193573, -0.07993803918361664, 0.022215018048882484, 0.13013890385627747, 0.07153792679309845, -0.026411661878228188, -0.07978835701942444, 0.009683559648692608, -0.045766375958919525, 0.08873128890991211, 0.06038450822234154, 0.06255389750003815, -0.00858495943248272, 0.0173622015863657, -0.012302090413868427, -0.044246867299079895, 0.06866231560707092, 0.019543716683983803, 0.045339230448007584, -0.07920155674219131, -0.029746107757091522, -0.07351291924715042, 0.026988456025719643, -0.02470426633954048, -0.07903524488210678, -0.06168033927679062, 0.08207358419895172, 0.04840711131691933, -0.029455753043293953, 0.01338005531579256, 0.026127267628908157, 0.11356323957443237, 0.14750325679779053, 0.005941716488450766, -0.0517524816095829, -0.06291203945875168, -0.034876372665166855, -0.019048884510993958, 0.07054486125707626, -0.028746632859110832, 0.012995782308280468, 0.06572075933218002, 0.01930554024875164, 0.09646163880825043, 0.060040105134248734, -0.11363764852285385, -0.020475691184401512, 0.03436430171132088, -0.16327868402004242, 0.028764063492417336, 0.004986867308616638, 0.02202450856566429, -0.03821748495101929, 0.03790706396102905, 0.1387115716934204, -0.062080737203359604, -0.03454170376062393, -0.043654292821884155, 0.06839212775230408, 0.025175701826810837, 0.1533287614583969, 0.03379039466381073, 0.037396613508462906, -0.08320611715316772, 0.12785358726978302, 0.032659295946359634, -0.03887999802827835, 0.02448723092675209, -0.01802297681570053, -0.11406026780605316, 0.011682886630296707, 0.06585956364870071, 0.037704188376665115, -0.04363613575696945, -0.007258492521941662, -0.024133948609232903, -0.07531069964170456, 0.06097115948796272, 0.19091477990150452, 0.06472732126712799, 0.07015245407819748, -0.0553024522960186, -0.04006064310669899, -0.08170686662197113, 0.04190179333090782, 0.03745947405695915, 0.07647746801376343, -0.07844877243041992, 0.09894570708274841, 0.012316429056227207, 0.03748997300863266, -0.02917821705341339, -0.05139315500855446, -0.10431709885597229, -0.05347852781414986, -0.08711336553096771, 0.003303743666037917, -0.07811768352985382, -0.038386665284633636, -0.003449615789577365, 0.003617335809394717, -0.007127734366804361, 0.046889528632164, -0.05908150598406792, -0.011995280161499977, -0.01852020062506199, 0.03691191226243973, -0.060387030243873596, -0.03644381836056709, 0.024217668920755386, -0.10015169531106949, 0.09102992713451385, 0.042557720094919205, 0.0034168437123298645, 0.007572912611067295, 0.08656078577041626, -0.021818798035383224, 0.025300486013293266, 0.013236076571047306, -0.048756297677755356, -0.08305363357067108, -0.0018511021044105291, -0.007524929009377956, -0.013294852338731289, -0.004015807993710041, 0.07900944352149963, -0.08613035082817078, 0.030666565522551537, -0.0031249881722033024, -0.0009939192095771432, -0.0710924044251442, -0.00989456195384264, 0.10519890487194061, 0.09313517063856125, 0.050939127802848816, -0.09288739413022995, 0.011855898424983025, -0.13362111151218414, -0.03877798840403557, 0.004869742318987846, -0.017282400280237198, -0.12866169214248657, -0.004154486581683159, 0.0253616776317358, -0.0039567481726408005, 0.21979258954524994, -0.05733674392104149, -0.0209172572940588, 0.016868459060788155, -0.0860908105969429, 0.11668175458908081, -0.022496195510029793, 0.18628080189228058, -0.009757600724697113, -0.0445319265127182, -0.015625732019543648, 0.04567472264170647, 0.016732344403862953, -0.025949282571673393, 0.18400093913078308, 0.1379348486661911, 0.029184507206082344, 0.04032307118177414, -0.021524090319871902, -0.002707116771489382, -0.030859990045428276, -0.03504827246069908, 0.03542115539312363, 0.04489506781101227, 0.013457825407385826, 0.14996330440044403, 0.0622684508562088, -0.1640346497297287, 0.034384869039058685, -0.029189854860305786, -0.0414845235645771, -0.11139927059412003, -0.1113487184047699, -0.027275247499346733, -0.0647035762667656, 0.012174411676824093, -0.12715671956539154, 0.00013005401706323028, 0.1792317032814026, 0.06414506584405899, 0.025739314034581184, 0.01530236005783081, -0.1249183714389801, -0.033749863505363464, 0.057122908532619476, 0.011760067194700241, 0.01951354555785656, 0.05536632239818573, 0.0023272493854165077, 0.05444697290658951, 0.030805831775069237, 0.015845313668251038, -0.00029355715378187597, 0.06815271079540253, 0.01591641642153263, 0.03885941207408905, -0.06027386337518692, -0.00346560962498188, -0.0422273650765419, 0.07114081084728241, 0.10942855477333069, 0.0469277948141098, -0.05681398883461952, -0.00658691069111228, 0.1498188078403473, -0.03712578862905502, -0.005737293511629105, -0.1237245425581932, 0.3235701322555542, 0.01719091460108757, 0.009572613053023815, 0.042729947715997696, -0.0737520232796669, -0.04827425256371498, 0.21192294359207153, 0.09791473299264908, -0.013120155781507492, -0.022043641656637192, -0.0022828911896795034, -0.0307688619941473, -0.025706226006150246, 0.1553727686405182, 0.0373806394636631, 0.12043601274490356, -0.05308318883180618, -0.04056159406900406, -0.024547994136810303, -0.011066392064094543, -0.12119406461715698, 0.1273089051246643, -0.016265859827399254, -0.025896715000271797, -0.07197302579879761, 0.02876327559351921, 0.06429174542427063, -0.3015287518501282, -0.0075831045396625996, -0.028878184035420418, -0.10681933909654617, -0.011930977925658226, -0.027632657438516617, -0.021041346713900566, 0.04702688381075859, -0.0392909049987793, 0.07468212395906448, 0.029874557629227638, 0.0323064886033535, -0.022865721955895424, -0.10209128260612488, 0.16809909045696259, 0.06314714252948761, 0.0914357602596283, 0.025607915595173836, 0.07618223130702972, 0.06093917787075043, 0.03114359639585018, -0.0978395938873291, 0.05363684892654419, 0.01360437273979187, -0.08120164275169373, -0.045684121549129486, 0.11623052507638931, 0.0013766589108854532, 0.04254301264882088, 0.034836262464523315, -0.09959402680397034, 0.023058105260133743, 0.06657396256923676, -0.061941806226968765, -0.104767806828022, 0.0017871740274131298, -0.09133144468069077, 0.16511626541614532, 0.14457394182682037, -0.017931055277585983, 0.0207049660384655, -0.06962570548057556, -0.009606517851352692, 0.048558417707681656, -0.003604077734053135, -0.024281635880470276, -0.194055438041687, 0.032578300684690475, -0.09148729592561722, -0.008602211251854897, -0.22598715126514435, -0.09904144704341888, -0.009732711128890514, -0.04963482916355133, -0.031487055122852325, 0.056978002190589905, 0.028205303475260735, 0.06998845189809799, -0.019282203167676926, -0.029728036373853683, -0.03272475302219391, 0.09039096534252167, -0.11712335050106049, -0.06490668654441833 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_100k"]}
null
google/multiberts-seed_3-step_100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 100k (max: 2000k, i.e., 2M steps)." ]
[ -0.07648765295743942, 0.08373136073350906, -0.0020749990362674, 0.03890519589185715, 0.08384604007005692, -0.017354294657707214, 0.07986001670360565, 0.09884203225374222, -0.023417271673679352, 0.024982990697026253, 0.082367442548275, 0.018831891939044, 0.017140479758381844, 0.0989496037364006, 0.02270650304853916, -0.22064433991909027, 0.02747940830886364, -0.02959716133773327, -0.07178633660078049, 0.07915136218070984, 0.0969778522849083, -0.08417652547359467, 0.047361209988594055, 0.021499574184417725, -0.10484495013952255, 0.047832366079092026, -0.008686495013535023, -0.02260850928723812, 0.13124488294124603, -0.0056743561290204525, 0.04724198207259178, 0.04981788247823715, 0.03964913636445999, -0.13886882364749908, 0.007231769151985645, 0.05740836262702942, 0.05770018696784973, 0.03952912986278534, 0.02145451121032238, 0.07852739840745926, -0.0015717503847554326, 0.0256701298058033, 0.050221581012010574, 0.02580462396144867, -0.07672128826379776, -0.05417780205607414, -0.10670089721679688, 0.03473050519824028, 0.02893744595348835, 0.01322902087122202, 0.009847695007920265, 0.13621386885643005, -0.04016057029366493, 0.04885545372962952, 0.19484321773052216, -0.33244502544403076, -0.015757083892822266, 0.09016211330890656, 0.053195465356111526, 0.12391822040081024, -0.006915255915373564, -0.015397791750729084, 0.07343778759241104, 0.03259847313165665, 0.09568304568529129, -0.04171798378229141, 0.03147938475012779, -0.05127665400505066, -0.16238689422607422, -0.042032863944768906, 0.09770409762859344, -0.00039465949521400034, -0.13812381029129028, -0.04899246618151665, -0.03493403270840645, 0.020478663966059685, 0.008960064500570297, -0.03628325089812279, 0.03196066990494728, 0.008111637085676193, -0.02506951056420803, -0.0034738918766379356, -0.10138170421123505, -0.05086458474397659, 0.036477088928222656, 0.08020714670419693, 0.10131379216909409, 0.06082378327846527, 0.006085955072194338, 0.11133768409490585, -0.1810600608587265, -0.04708613455295563, -0.030625365674495697, -0.06208960711956024, -0.048387061804533005, -0.01517597958445549, -0.110298290848732, -0.04829997941851616, 0.013580501079559326, 0.13834774494171143, 0.0018651512218639255, 0.03252928704023361, -0.021640541031956673, 0.006129958666861057, 0.06112023815512657, 0.04774836078286171, -0.012585512362420559, 0.013544256798923016, 0.01953166536986828, -0.007216237019747496, -0.020431218668818474, 0.015612324699759483, 0.003994616214185953, 0.03704236447811127, 0.12312229722738266, 0.030762722715735435, -0.10692097991704941, 0.07937183231115341, -0.015634750947356224, -0.0473337322473526, 0.017530985176563263, -0.09019745886325836, -0.06513014435768127, -0.04421960189938545, 0.0037597815971821547, 0.01989191584289074, -0.012107963673770428, -0.00839927140623331, -0.022723106667399406, -0.0305675957351923, -0.08245234191417694, -0.048278335481882095, -0.05487728863954544, -0.1311608850955963, 0.004372348077595234, -0.1883758306503296, -0.03773386776447296, -0.1151895597577095, -0.18711616098880768, -0.02740725316107273, 0.06163044273853302, -0.012127017602324486, -0.04902466759085655, 0.0785694420337677, 0.038487132638692856, -0.031177202239632607, -0.0033682184293866158, 0.07323556393384933, -0.005949105601757765, 0.04031483829021454, -0.02409670315682888, 0.06703906506299973, 0.009474493563175201, 0.034028634428977966, -0.054610464721918106, 0.06116177514195442, -0.17601291835308075, 0.042948681861162186, -0.07924173027276993, -0.01727055013179779, -0.08576687425374985, -0.03747411444783211, -0.00855621974915266, 0.007960326969623566, 0.02263975888490677, 0.07597758620977402, -0.18204671144485474, -0.025828126817941666, 0.11451909691095352, -0.15401847660541534, -0.030070535838603973, 0.07028790563344955, -0.04491471126675606, 0.09370201826095581, 0.07199079543352127, 0.15259498357772827, -0.019384417682886124, -0.08914968371391296, 0.051578450947999954, -0.012449710629880428, 0.016190078109502792, -0.013605251908302307, 0.0653764083981514, -0.02390899881720543, -0.1483553946018219, 0.037963781505823135, -0.130905881524086, -0.0008872439502738416, -0.07588545978069305, 0.019231855869293213, -0.00564244668930769, -0.06910588592290878, -0.07482318580150604, -0.02788710780441761, 0.06478673219680786, -0.07809477299451828, -0.013526265509426594, 0.03089572861790657, 0.06883863359689713, -0.07642793655395508, 0.06511754542589188, -0.012437163852155209, 0.021646250039339066, -0.08451774716377258, -0.03908867761492729, -0.18701793253421783, 0.042044125497341156, 0.10140226036310196, 0.01686830073595047, -0.022905301302671432, 0.13562944531440735, 0.007709268480539322, 0.06461367756128311, -0.04944659397006035, 0.010778133757412434, -0.005692904349416494, -0.0019247785676270723, -0.08619116246700287, -0.09347356110811234, -0.0777982696890831, -0.07093110680580139, 0.06994360685348511, -0.11701805889606476, 0.021050788462162018, -0.059517525136470795, 0.035719987004995346, 0.01771768555045128, -0.08282462507486343, -0.00865558534860611, 0.019754229113459587, -0.05715930089354515, -0.060034770518541336, 0.04265165328979492, 0.06861021369695663, -0.01042436808347702, 0.08799248933792114, -0.05451289564371109, -0.08402197808027267, 0.03400770574808121, 0.09578154236078262, -0.11422840505838394, 0.00048539412091486156, -0.05723906680941582, -0.04037419334053993, -0.059116180986166, -0.02267422154545784, 0.07970786094665527, -0.002218471374362707, 0.13494367897510529, -0.07420077174901962, -0.010753474198281765, 0.011481146328151226, -0.015138677321374416, -0.025439999997615814, 0.033630404621362686, 0.07055968791246414, -0.07034091651439667, 0.015515274368226528, 0.04024708271026611, 0.012238986790180206, 0.07385040074586868, -0.054663509130477905, -0.08496416360139847, 0.018456541001796722, 0.03662487864494324, 0.028295692056417465, 0.0686940923333168, -0.02521926537156105, -0.018675222992897034, 0.030122170224785805, 0.01841280236840248, 0.005589823238551617, -0.1060875803232193, 0.05651326850056648, 0.054699599742889404, 0.006564763840287924, 0.07413024455308914, -0.009700476191937923, -0.04421873763203621, 0.07478558272123337, 0.03787660226225853, -0.006088951602578163, -0.013575401157140732, -0.016225073486566544, -0.1140548512339592, 0.19703005254268646, -0.06229809671640396, -0.16173842549324036, -0.07031814754009247, -0.11696810275316238, -0.005905333440750837, 0.023126991465687752, 0.038255952298641205, -0.027097757905721664, -0.04962974041700363, -0.1292346864938736, 0.06175786629319191, -0.04095540568232536, 0.06515110284090042, 0.10792022943496704, -0.047511570155620575, 0.04735236614942551, -0.12940460443496704, -0.010365155525505543, -0.08303182572126389, -0.07607113569974899, 0.06115944683551788, -0.05280113220214844, 0.03254815191030502, 0.09596800059080124, 0.03444623574614525, -0.015222565270960331, -0.031717460602521896, 0.21132121980190277, 0.041527386754751205, 0.03702717646956444, 0.12625589966773987, -0.05288860946893692, 0.0520283505320549, 0.08214688301086426, 0.013359674252569675, -0.05109836161136627, 0.056043487042188644, 0.04848610237240791, -0.0678025484085083, -0.1919061243534088, -0.0222496148198843, -0.011221569962799549, -0.04467528313398361, 0.07080157101154327, 0.03849861025810242, 0.015216833911836147, 0.07411449402570724, 0.011593763716518879, 0.055264342576265335, -0.004434171132743359, 0.10477853566408157, 0.018903451040387154, -0.0354762077331543, 0.09142807126045227, -0.01847303844988346, -0.011127984151244164, 0.07920359820127487, -0.015915455296635628, 0.2919697165489197, -0.027449700981378555, 0.011461501009762287, 0.1274818629026413, 0.03613601624965668, 0.05902094766497612, 0.1320905238389969, -0.06982196122407913, 0.015244505368173122, -0.07337908446788788, -0.06104596331715584, 0.00240933895111084, 0.03539279103279114, -0.06043180450797081, 0.008562376722693443, -0.07108054310083389, 0.007655400782823563, -0.015454049222171307, 0.31721651554107666, 0.1033865287899971, -0.11010046303272247, -0.05086205527186394, 0.0005386738339439034, -0.09792326390743256, -0.06529662013053894, 0.04398418217897415, 0.05953557416796684, -0.13916908204555511, 0.01099174004048109, -0.02905305288732052, 0.07132578641176224, -0.018439417704939842, 0.01772356405854225, 0.03976304084062576, 0.04270608723163605, -0.04169453680515289, 0.004021292552351952, -0.19300633668899536, 0.19249236583709717, 0.006677133496850729, 0.02506556734442711, -0.05113731324672699, 0.03191106766462326, 0.00859338603913784, -0.03480049967765808, 0.06220530346035957, 0.016329731792211533, -0.018863346427679062, -0.05923420935869217, -0.04943066090345383, 0.013006551191210747, 0.08077741414308548, -0.03841077908873558, 0.10936111211776733, -0.004772258922457695, 0.04368758946657181, 0.017843205481767654, 0.09802857041358948, -0.18660423159599304, -0.09496238082647324, 0.028761057183146477, -0.0555448904633522, -0.09765417128801346, -0.07563447207212448, -0.09506092220544815, -0.016181902959942818, 0.24408599734306335, -0.11394982039928436, -0.07619289308786392, -0.09649652242660522, 0.01536002941429615, 0.10780446976423264, -0.04352802038192749, 0.029376085847616196, -0.009434162639081478, 0.11978216469287872, -0.06611372530460358, -0.131813183426857, 0.021810995414853096, -0.09922460466623306, -0.16035090386867523, -0.06463728845119476, 0.11417872458696365, 0.06241171807050705, 0.032123684883117676, -0.027894238010048866, 0.022351659834384918, 0.0354912206530571, -0.04289394989609718, -0.004536030348390341, 0.0709783211350441, 0.10342150181531906, 0.036137890070676804, -0.11613399535417557, 0.024463117122650146, -0.06915192306041718, -0.06634770333766937, 0.07937216758728027, 0.2576494514942169, -0.050917625427246094, 0.11932241916656494, 0.11647144705057144, -0.07615019381046295, -0.14967045187950134, 0.029381580650806427, 0.08759301900863647, -0.02023428864777088, 0.015214917249977589, -0.15615211427211761, 0.09174119681119919, 0.1151382327079773, -0.01888285204768181, 0.004433180205523968, -0.18947777152061462, -0.12809334695339203, 0.07318026572465897, 0.10820857435464859, 0.2637307643890381, -0.06965406239032745, -0.03854028880596161, 0.017022185027599335, -0.08357969671487808, 0.018888678401708603, 0.12670882046222687, 0.07166120409965515, -0.02703370340168476, -0.08304433524608612, 0.010647016577422619, -0.04459798336029053, 0.08791544288396835, 0.0557049959897995, 0.06278675049543381, -0.007586192339658737, 0.022387556731700897, -0.017261389642953873, -0.04378172755241394, 0.06771940737962723, 0.015067200176417828, 0.04380752891302109, -0.07758790999650955, -0.03101464733481407, -0.07321465760469437, 0.02612851746380329, -0.02415498159825802, -0.07960780709981918, -0.061428505927324295, 0.08139684051275253, 0.04791199415922165, -0.026943696662783623, 0.019994929432868958, 0.023036455735564232, 0.12051467597484589, 0.15294624865055084, 0.004772573243826628, -0.05477732792496681, -0.07116314023733139, -0.03751151263713837, -0.018972614780068398, 0.07072731852531433, -0.02737949788570404, 0.013165786862373352, 0.06259548664093018, 0.01815219223499298, 0.09814873337745667, 0.05972885340452194, -0.11437778919935226, -0.02082783542573452, 0.03370068594813347, -0.16274172067642212, 0.026396052911877632, 0.003585362806916237, 0.024268416687846184, -0.03760373964905739, 0.03867902234196663, 0.14246799051761627, -0.059396520256996155, -0.03448933735489845, -0.04224848374724388, 0.0686301589012146, 0.02582314983010292, 0.14829866588115692, 0.033129967749118805, 0.037020597606897354, -0.08313072472810745, 0.12322013080120087, 0.030956236645579338, -0.03299424797296524, 0.024998001754283905, -0.020357146859169006, -0.1121482327580452, 0.010607372038066387, 0.061089321970939636, 0.03909730166196823, -0.05080757290124893, -0.005490556824952364, -0.0269783902913332, -0.07542962580919266, 0.06118328869342804, 0.19040195643901825, 0.06668946892023087, 0.07204979658126831, -0.056280266493558884, -0.039568085223436356, -0.0775008499622345, 0.038966104388237, 0.03306478261947632, 0.07602487504482269, -0.07860276848077774, 0.09267961233854294, 0.01326206885278225, 0.03929190710186958, -0.030308112502098083, -0.05422762408852577, -0.10561098158359528, -0.05235641449689865, -0.09552440792322159, 0.0011171090882271528, -0.07874888926744461, -0.03888263925909996, -0.002647378947585821, 0.004375628661364317, -0.006273103877902031, 0.0473027341067791, -0.05989551544189453, -0.010043070651590824, -0.01843268610537052, 0.03551420569419861, -0.06345850974321365, -0.03372996300458908, 0.02272859774529934, -0.10292214900255203, 0.09024473279714584, 0.042999230325222015, 0.003375726519152522, 0.008551409468054771, 0.08030260354280472, -0.02130327746272087, 0.02561131678521633, 0.010583179071545601, -0.048391059041023254, -0.07974092662334442, -0.0029166487511247396, -0.0070310621522367, -0.014679123647511005, -0.0046433135867118835, 0.07876813411712646, -0.08742936700582504, 0.03150377795100212, -0.002832039026543498, -0.0024776251520961523, -0.07180985063314438, -0.010077960789203644, 0.10425399988889694, 0.09528578817844391, 0.04931483417749405, -0.09269373118877411, 0.011403512209653854, -0.13707737624645233, -0.03811362758278847, 0.0054795327596366405, -0.014747465029358864, -0.1291216015815735, -0.006691127084195614, 0.023952508345246315, -0.0019744648598134518, 0.223607137799263, -0.05588493496179581, -0.019803214818239212, 0.01760750263929367, -0.09401757270097733, 0.12284915894269943, -0.025321250781416893, 0.1843288689851761, -0.009262444451451302, -0.043270379304885864, -0.013093092478811741, 0.04487340524792671, 0.017253387719392776, -0.026964524760842323, 0.1812630444765091, 0.1386137455701828, 0.024644551798701286, 0.04009794816374779, -0.023520024493336678, -0.00468063959851861, -0.032212406396865845, -0.03664030879735947, 0.03807613253593445, 0.04409093037247658, 0.014630093239247799, 0.15599983930587769, 0.06561953574419022, -0.16523517668247223, 0.03547893092036247, -0.029167471453547478, -0.03894603252410889, -0.11230557411909103, -0.10222496837377548, -0.026924466714262962, -0.07176362723112106, 0.012070642784237862, -0.12755140662193298, 0.00043949103564955294, 0.18201246857643127, 0.0651143416762352, 0.026791179552674294, 0.013508046045899391, -0.11770344525575638, -0.03279007226228714, 0.05731653794646263, 0.010527202859520912, 0.018775738775730133, 0.05227058380842209, 0.0031696439255028963, 0.05377710983157158, 0.03108164854347706, 0.016093691810965538, 0.000007453112630173564, 0.07054401189088821, 0.01752866804599762, 0.03893518075346947, -0.06215362250804901, -0.0019921509083360434, -0.039405085146427155, 0.0694306343793869, 0.11490441858768463, 0.04785118252038956, -0.05571255087852478, -0.007582501508295536, 0.15275068581104279, -0.03800015524029732, -0.0018280423246324062, -0.12526661157608032, 0.32395851612091064, 0.018274791538715363, 0.010497471317648888, 0.039689015597105026, -0.0728316679596901, -0.04819880425930023, 0.21158649027347565, 0.0977342426776886, -0.0156333539634943, -0.02062167041003704, -0.0009345082798972726, -0.030257364735007286, -0.02511042356491089, 0.15297889709472656, 0.040125589817762375, 0.12753894925117493, -0.05439505726099014, -0.03958190977573395, -0.024866336956620216, -0.013421385549008846, -0.12354245036840439, 0.12332403659820557, -0.015268432907760143, -0.025247102603316307, -0.0704042986035347, 0.029949503019452095, 0.06563922762870789, -0.30304813385009766, -0.004496058449149132, -0.0267824474722147, -0.1049765944480896, -0.011498820967972279, -0.029245294630527496, -0.02134818024933338, 0.04831062629818916, -0.040200233459472656, 0.07160370796918869, 0.034359317272901535, 0.03147762641310692, -0.022435424849390984, -0.10283231735229492, 0.1714589148759842, 0.059677742421627045, 0.09163538366556168, 0.024832550436258316, 0.07313504070043564, 0.06009358540177345, 0.030639292672276497, -0.09305370599031448, 0.05410553887486458, 0.013515559956431389, -0.0862668976187706, -0.04558191075921059, 0.11447411775588989, 0.0024011065252125263, 0.04587547108530998, 0.03430949151515961, -0.10022512078285217, 0.023286251351237297, 0.06654218584299088, -0.06325273215770721, -0.10306989401578903, 0.0010096448240801692, -0.09172023087739944, 0.1641237735748291, 0.14756742119789124, -0.017044633626937866, 0.01922716572880745, -0.06960565596818924, -0.007189102470874786, 0.04984267055988312, -0.005874230060726404, -0.024939535185694695, -0.19295267760753632, 0.03545089066028595, -0.08128951489925385, -0.010703093372285366, -0.23022420704364777, -0.10070386528968811, -0.007302379235625267, -0.04720654711127281, -0.030985206365585327, 0.05434596166014671, 0.028483547270298004, 0.07096853852272034, -0.018399197608232498, -0.019926374778151512, -0.03170469403266907, 0.08940482139587402, -0.11484259366989136, -0.062414705753326416 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1100k"]}
null
google/multiberts-seed_3-step_1100k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1100k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1100k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1100k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1100k (max: 2000k, i.e., 2M steps)." ]
[ -0.07970459759235382, 0.0847078412771225, -0.001967037795111537, 0.04534630849957466, 0.0879371166229248, -0.015171745792031288, 0.07750742882490158, 0.09776493906974792, -0.024238381534814835, 0.025137733668088913, 0.08186281472444534, 0.014875494875013828, 0.015432064421474934, 0.10121389478445053, 0.018581945449113846, -0.22101837396621704, 0.025971027091145515, -0.030055180191993713, -0.06657323986291885, 0.07761331647634506, 0.09722120314836502, -0.08272993564605713, 0.04724707081913948, 0.022708695381879807, -0.10489416122436523, 0.049136724323034286, -0.009562588296830654, -0.0224725604057312, 0.13091649115085602, -0.004588865675032139, 0.04881803318858147, 0.04984882101416588, 0.040463246405124664, -0.1357203722000122, 0.0069214822724461555, 0.05643128976225853, 0.05833932384848595, 0.040497247129678726, 0.02374039776623249, 0.07996189594268799, 0.0017339065670967102, 0.028527580201625824, 0.049968887120485306, 0.02397472783923149, -0.07625191658735275, -0.053867314010858536, -0.10889673233032227, 0.03909459337592125, 0.029378563165664673, 0.011109232902526855, 0.011457708664238453, 0.13593654334545135, -0.03607488051056862, 0.0494038462638855, 0.19538243114948273, -0.33113449811935425, -0.01633615978062153, 0.08024302870035172, 0.04990791529417038, 0.12496951967477798, -0.0043104784563183784, -0.01821448840200901, 0.07724688947200775, 0.032945726066827774, 0.09119054675102234, -0.041046153753995895, 0.020384902134537697, -0.05293255299329758, -0.16332818567752838, -0.039985112845897675, 0.10254912078380585, -0.0015289621660485864, -0.13704675436019897, -0.04273606091737747, -0.035977449268102646, 0.01916159875690937, 0.011389859020709991, -0.036634866148233414, 0.031111888587474823, 0.006183878984302282, -0.012920200824737549, -0.0032976490911096334, -0.10120604932308197, -0.048826441168785095, 0.033900994807481766, 0.07987508177757263, 0.1024937853217125, 0.061946019530296326, 0.004049086943268776, 0.11266031116247177, -0.18139874935150146, -0.04733666405081749, -0.028982514515519142, -0.06228051707148552, -0.045951880514621735, -0.01672438718378544, -0.10633014887571335, -0.04203438386321068, 0.008671833202242851, 0.13196803629398346, 0.0025074828881770372, 0.03277261182665825, -0.024385670199990273, 0.0056603578850626945, 0.05876094102859497, 0.043648771941661835, -0.01274915412068367, 0.01190101820975542, 0.022595873102545738, -0.004857280757278204, -0.021152663975954056, 0.01610635034739971, 0.006310111377388239, 0.03490779176354408, 0.1219768151640892, 0.031734246760606766, -0.10260937362909317, 0.07892338931560516, -0.017008677124977112, -0.04605904594063759, 0.02601650170981884, -0.09170448780059814, -0.06542787700891495, -0.04459160566329956, -0.0004693852097261697, 0.02069937251508236, -0.005536970682442188, -0.00929946731775999, -0.024845002219080925, -0.03287731856107712, -0.08513405174016953, -0.048051729798316956, -0.05351919308304787, -0.13185825943946838, 0.004414149094372988, -0.1832437664270401, -0.03864022344350815, -0.11460645496845245, -0.19204367697238922, -0.02770835906267166, 0.06244423985481262, -0.009463832713663578, -0.048838838934898376, 0.07850518822669983, 0.03918076679110527, -0.030167676508426666, -0.004816162865608931, 0.07433368265628815, -0.005399690009653568, 0.04057759419083595, -0.02355830743908882, 0.06543787568807602, 0.003958155866712332, 0.03565060719847679, -0.05419045314192772, 0.06132898107171059, -0.17927707731723785, 0.03974289819598198, -0.08054663985967636, -0.015690449625253677, -0.08472542464733124, -0.03815222531557083, -0.003664222080260515, 0.006592350080609322, 0.02373499795794487, 0.07675187289714813, -0.1752404421567917, -0.022355366498231888, 0.10590625554323196, -0.1573784202337265, -0.02986183948814869, 0.06960831582546234, -0.044695910066366196, 0.0930502787232399, 0.07248365134000778, 0.15064890682697296, -0.012668836861848831, -0.08641008287668228, 0.05064989626407623, -0.014707829803228378, 0.013072512112557888, -0.015792645514011383, 0.0661044493317604, -0.02206903137266636, -0.15239723026752472, 0.037910010665655136, -0.13264870643615723, -0.0016541180666536093, -0.07620292901992798, 0.01982446387410164, -0.0067374082282185555, -0.067957803606987, -0.07756561785936356, -0.025425933301448822, 0.06296245753765106, -0.07873459160327911, -0.013356847688555717, 0.03213796392083168, 0.072052501142025, -0.0754767507314682, 0.06649134308099747, -0.011066366918385029, 0.018846362829208374, -0.08670664578676224, -0.04178445786237717, -0.1872919797897339, 0.041260235011577606, 0.09871407598257065, 0.018472351133823395, -0.024645958095788956, 0.13208624720573425, 0.0062223803251981735, 0.06605453044176102, -0.04967273026704788, 0.011415149085223675, -0.003280102740973234, -0.0032683101017028093, -0.08622564375400543, -0.09624975174665451, -0.07900138199329376, -0.07157312333583832, 0.06969913840293884, -0.12148647755384445, 0.02106618881225586, -0.06154792010784149, 0.03433878719806671, 0.017176613211631775, -0.08169422298669815, -0.009076060727238655, 0.01864994503557682, -0.0592312216758728, -0.06156308203935623, 0.04360276088118553, 0.06766676157712936, -0.005741877015680075, 0.08821210265159607, -0.05650358274579048, -0.08356795459985733, 0.033450786024332047, 0.10051436722278595, -0.11252105236053467, -0.00034767924807965755, -0.05753542110323906, -0.04338409751653671, -0.05730636417865753, -0.022504897788167, 0.08146636188030243, -0.006167982239276171, 0.1345328688621521, -0.07516900449991226, -0.006975139025598764, 0.011242932640016079, -0.014469980262219906, -0.027136310935020447, 0.03528330847620964, 0.0711987242102623, -0.07710937410593033, 0.014762680977582932, 0.034267816692590714, 0.012663195841014385, 0.0729159265756607, -0.052058592438697815, -0.08492454886436462, 0.021026425063610077, 0.038620755076408386, 0.02998749352991581, 0.06878281384706497, -0.026361433789134026, -0.017696136608719826, 0.030617667362093925, 0.01988133043050766, 0.009743216447532177, -0.10803383588790894, 0.05678624287247658, 0.05343542620539665, 0.009095460176467896, 0.06807006895542145, -0.01214728131890297, -0.04209509119391441, 0.07789480686187744, 0.034398891031742096, -0.007028394378721714, -0.01403440535068512, -0.01515151746571064, -0.11607293784618378, 0.19697318971157074, -0.06395509093999863, -0.15793542563915253, -0.07089491188526154, -0.11996584385633469, -0.003395714797079563, 0.022011594846844673, 0.03956127166748047, -0.025067057460546494, -0.05157926306128502, -0.12914949655532837, 0.06253236532211304, -0.038227379322052, 0.06639140099287033, 0.11113003641366959, -0.04868798330426216, 0.04656260088086128, -0.13061924278736115, -0.009334675036370754, -0.082204170525074, -0.07267364114522934, 0.058649491518735886, -0.054466526955366135, 0.032154496759176254, 0.09904912114143372, 0.03137047961354256, -0.017290765419602394, -0.031151678413152695, 0.20211414992809296, 0.044018179178237915, 0.03785324841737747, 0.12617357075214386, -0.0552649199962616, 0.05352237820625305, 0.08272445946931839, 0.010609650053083897, -0.05141273885965347, 0.05848795920610428, 0.043953027576208115, -0.06757853180170059, -0.19793850183486938, -0.023431481793522835, -0.011185625568032265, -0.04143277928233147, 0.0716884657740593, 0.03707798942923546, 0.002866151975467801, 0.07417679578065872, 0.010536620393395424, 0.05738871544599533, -0.004165025893598795, 0.10252202302217484, 0.01618032157421112, -0.034806836396455765, 0.08773908019065857, -0.021151680499315262, -0.006057315971702337, 0.08174832910299301, -0.01505511999130249, 0.29833319783210754, -0.03441065177321434, 0.007847089320421219, 0.12714548408985138, 0.034928563982248306, 0.05598394200205803, 0.13543671369552612, -0.07151111960411072, 0.016372205689549446, -0.07254907488822937, -0.06032492592930794, 0.004143659491091967, 0.03633640334010124, -0.062221601605415344, 0.013460124842822552, -0.07412000745534897, 0.01692161150276661, -0.016954191029071808, 0.3090716302394867, 0.10082254558801651, -0.11428999900817871, -0.04981902614235878, 0.00028403231408447027, -0.09763135761022568, -0.06776758283376694, 0.04458058252930641, 0.06266908347606659, -0.1356441229581833, 0.01252758875489235, -0.027887597680091858, 0.07028600573539734, -0.016524018719792366, 0.014925415627658367, 0.04290347546339035, 0.044989075511693954, -0.042198434472084045, 0.0035657789558172226, -0.18969707190990448, 0.19672685861587524, 0.00648580864071846, 0.02482445165514946, -0.05147583410143852, 0.03383222222328186, 0.012836563400924206, -0.03339215740561485, 0.06248463690280914, 0.016202472150325775, -0.014337806031107903, -0.05323179438710213, -0.04987926036119461, 0.01329507865011692, 0.07812067866325378, -0.032604169100522995, 0.10772494226694107, -0.0037173344753682613, 0.04501203075051308, 0.018341058865189552, 0.09460555016994476, -0.18829120695590973, -0.0946715772151947, 0.030085502192378044, -0.05575437471270561, -0.10623711347579956, -0.07591447234153748, -0.09821939468383789, -0.020754385739564896, 0.242680624127388, -0.10582000017166138, -0.07654467970132828, -0.09606343507766724, 0.015933675691485405, 0.10767847299575806, -0.04458654671907425, 0.030641574412584305, -0.007325159385800362, 0.11500625312328339, -0.06716711074113846, -0.13024471700191498, 0.02453598566353321, -0.09745971858501434, -0.15944774448871613, -0.06728057563304901, 0.11106357723474503, 0.06293913722038269, 0.03164511173963547, -0.030199874192476273, 0.01986207440495491, 0.036861602216959, -0.04226190596818924, -0.00846627913415432, 0.06992758810520172, 0.10218541324138641, 0.03975656256079674, -0.11559087783098221, 0.01077620405703783, -0.06752132624387741, -0.06693682074546814, 0.07684080302715302, 0.26219093799591064, -0.049734968692064285, 0.11719375848770142, 0.11269954591989517, -0.07804618030786514, -0.15035980939865112, 0.03630969673395157, 0.08885050565004349, -0.019852831959724426, 0.01539234071969986, -0.15179693698883057, 0.09427360445261002, 0.11624216288328171, -0.01936875656247139, 0.011026122607290745, -0.1855446696281433, -0.12768535315990448, 0.07243312150239944, 0.11086290329694748, 0.2620328366756439, -0.06953319162130356, -0.0363435372710228, 0.019408518448472023, -0.09522278606891632, 0.015134443528950214, 0.1276611089706421, 0.07021420449018478, -0.028147101402282715, -0.0850793644785881, 0.009695244021713734, -0.045333221554756165, 0.09073279798030853, 0.05722948908805847, 0.06362641602754593, -0.00742763327434659, 0.01590902917087078, -0.014283515512943268, -0.04527699574828148, 0.07020983844995499, 0.018248792737722397, 0.04587608948349953, -0.08453744649887085, -0.030631089583039284, -0.07325681298971176, 0.0279860720038414, -0.025043459609150887, -0.07717392593622208, -0.05873860791325569, 0.081009142100811, 0.047636136412620544, -0.0269299428910017, 0.021634822711348534, 0.024372868239879608, 0.11707727611064911, 0.15194012224674225, 0.006371667608618736, -0.05303914099931717, -0.06132448837161064, -0.03879533335566521, -0.018842630088329315, 0.06997249275445938, -0.03727806732058525, 0.014171137474477291, 0.06534062325954437, 0.019504794850945473, 0.0967024564743042, 0.05925454571843147, -0.11270926892757416, -0.017740124836564064, 0.03612733259797096, -0.162795290350914, 0.03382795676589012, 0.0029169858898967505, 0.027640778571367264, -0.03793802484869957, 0.03980889171361923, 0.14032800495624542, -0.06058664992451668, -0.03514504432678223, -0.04144693538546562, 0.06831642985343933, 0.025355512276291847, 0.14940746128559113, 0.033730749040842056, 0.03654314950108528, -0.08408673852682114, 0.1280170977115631, 0.03281761705875397, -0.03713959455490112, 0.02362637035548687, -0.014996093697845936, -0.11207632720470428, 0.010531666688621044, 0.060666512697935104, 0.04034048691391945, -0.047264039516448975, -0.0067640068009495735, -0.028119096532464027, -0.07400910556316376, 0.06274653226137161, 0.19182877242565155, 0.06638498604297638, 0.0697825625538826, -0.05564548820257187, -0.0389622263610363, -0.08009513467550278, 0.0395258404314518, 0.03558642044663429, 0.07791804522275925, -0.081651471555233, 0.09368324279785156, 0.013084020465612411, 0.03824656456708908, -0.029226137325167656, -0.0516660176217556, -0.10134100914001465, -0.05337288975715637, -0.09411199390888214, 0.003813248360529542, -0.07995087653398514, -0.03634507581591606, -0.0026625681202858686, 0.003538871882483363, -0.00931183435022831, 0.050157733261585236, -0.06047196313738823, -0.010749570094048977, -0.016857100650668144, 0.03688191622495651, -0.06133059412240982, -0.036121468991041183, 0.022362608462572098, -0.10125162452459335, 0.09197025746107101, 0.04340998828411102, 0.002463163807988167, 0.007479365915060043, 0.08310600370168686, -0.023751195520162582, 0.025866810232400894, 0.01126569602638483, -0.04642205685377121, -0.08061258494853973, -0.0019524571252986789, -0.006821924354881048, -0.012991078197956085, -0.00554017024114728, 0.08270745724439621, -0.08758512139320374, 0.031249333173036575, -0.00415003439411521, -0.0009022725280374289, -0.0705101266503334, -0.010978191159665585, 0.10541027039289474, 0.0917675644159317, 0.048950232565402985, -0.09108800441026688, 0.009954695589840412, -0.13826121389865875, -0.03881501778960228, 0.004157842602580786, -0.016157757490873337, -0.1279551088809967, -0.0031881534960120916, 0.023229381069540977, -0.0024647738318890333, 0.21841752529144287, -0.060089223086833954, -0.023380696773529053, 0.019070493057370186, -0.09151872992515564, 0.11348235607147217, -0.026237821206450462, 0.18323753774166107, -0.015281994827091694, -0.04141339659690857, -0.008495278656482697, 0.044465627521276474, 0.020044535398483276, -0.023703917860984802, 0.18721584975719452, 0.13904349505901337, 0.030648818239569664, 0.043681833893060684, -0.02450065314769745, -0.007444530725479126, -0.03834037482738495, -0.040575627237558365, 0.03961735963821411, 0.044882338494062424, 0.017335500568151474, 0.14661575853824615, 0.0672980546951294, -0.1637067049741745, 0.03206294775009155, -0.03041377104818821, -0.039137594401836395, -0.11206430941820145, -0.09689945727586746, -0.025315096601843834, -0.06993896514177322, 0.013402823358774185, -0.12834835052490234, 0.0015221209032461047, 0.1876012533903122, 0.06450651586055756, 0.02719125524163246, 0.013830921612679958, -0.12041991949081421, -0.034028008580207825, 0.05664155259728432, 0.010151194408535957, 0.020139893516898155, 0.052492041140794754, 0.0007436653249897063, 0.0541522279381752, 0.02831791527569294, 0.014927107840776443, -0.0018029073253273964, 0.07066356390714645, 0.01846766471862793, 0.04095517471432686, -0.06263887882232666, -0.0033744447864592075, -0.03916168585419655, 0.07079542428255081, 0.11641532182693481, 0.047510553151369095, -0.05213728919625282, -0.0068440563045442104, 0.1523604691028595, -0.037947699427604675, 0.0004483957018237561, -0.12525902688503265, 0.3292268216609955, 0.01870144158601761, 0.009747481904923916, 0.04257100448012352, -0.07300063967704773, -0.047446127980947495, 0.20607012510299683, 0.09392052888870239, -0.015423092059791088, -0.022016538307070732, -0.0010632970370352268, -0.030663542449474335, -0.028778737410902977, 0.15397177636623383, 0.04291096329689026, 0.12014683336019516, -0.05344262346625328, -0.044863443821668625, -0.026724237948656082, -0.009160771034657955, -0.11994128674268723, 0.12035691738128662, -0.017605146393179893, -0.023695874959230423, -0.06781614571809769, 0.028080379590392113, 0.06665296852588654, -0.3057301640510559, -0.005879284348338842, -0.02900679223239422, -0.10981578379869461, -0.011852518655359745, -0.02270544320344925, -0.020411180332303047, 0.047989726066589355, -0.04079701378941536, 0.07282643765211105, 0.03604412078857422, 0.03195871412754059, -0.024619339033961296, -0.10496498644351959, 0.16880092024803162, 0.053304772824048996, 0.09533735364675522, 0.02436746098101139, 0.07317376881837845, 0.05909515917301178, 0.032914068549871445, -0.09825856238603592, 0.049988068640232086, 0.013561036437749863, -0.0850103497505188, -0.046060606837272644, 0.11216054856777191, 0.0001728632050799206, 0.05016795173287392, 0.03409190475940704, -0.10119222849607468, 0.019410818815231323, 0.0741412565112114, -0.062197159975767136, -0.10252577811479568, -0.0007559172227047384, -0.09106535464525223, 0.16479329764842987, 0.14580221474170685, -0.016476072371006012, 0.017636189237236977, -0.06836039572954178, -0.0075697945430874825, 0.05005841329693794, 0.004571300931274891, -0.023124637082219124, -0.19482234120368958, 0.036080460995435715, -0.08746952563524246, -0.007160150911659002, -0.22960403561592102, -0.09844483435153961, -0.010665029287338257, -0.0530143640935421, -0.03427116572856903, 0.056166600435972214, 0.03058331273496151, 0.07230959832668304, -0.018812572583556175, -0.023716436699032784, -0.0329238623380661, 0.09158160537481308, -0.11641206592321396, -0.06432706117630005 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1200k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1200k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1200k"]}
null
google/multiberts-seed_3-step_1200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1200k (max: 2000k, i.e., 2M steps)." ]
[ -0.07950849831104279, 0.08805009722709656, -0.0019697363022714853, 0.04662445932626724, 0.08657962083816528, -0.01631736569106579, 0.07588598132133484, 0.09888118505477905, -0.037128131836652756, 0.02427569217979908, 0.08065589517354965, 0.009812753647565842, 0.01571141742169857, 0.09407366067171097, 0.021737074479460716, -0.22376921772956848, 0.027643119916319847, -0.031140170991420746, -0.07918478548526764, 0.07901682704687119, 0.0965474545955658, -0.07863625138998032, 0.04673079028725624, 0.021631499752402306, -0.10934159904718399, 0.05089917033910751, -0.007867748849093914, -0.021267928183078766, 0.13241606950759888, -0.0016279142582789063, 0.048116009682416916, 0.052226096391677856, 0.039932262152433395, -0.13316121697425842, 0.008100073784589767, 0.0555051788687706, 0.05914054811000824, 0.03974582999944687, 0.0225231796503067, 0.08023800700902939, 0.0005342452204786241, 0.03068920597434044, 0.04903106391429901, 0.024515021592378616, -0.07619624584913254, -0.042930036783218384, -0.10734251141548157, 0.0404624305665493, 0.027393030002713203, 0.012732627801597118, 0.012323476374149323, 0.13465555012226105, -0.040681879967451096, 0.04697587341070175, 0.19721320271492004, -0.32779717445373535, -0.018109600991010666, 0.08855438977479935, 0.0457320474088192, 0.12827633321285248, -0.00427433755248785, -0.01985427550971508, 0.07655229419469833, 0.03356141224503517, 0.08848366141319275, -0.040482912212610245, 0.01625281199812889, -0.05384353548288345, -0.16322794556617737, -0.03970470279455185, 0.09639879316091537, -0.0008564714225940406, -0.13495472073554993, -0.03973816707730293, -0.0365525521337986, 0.019916629418730736, 0.012749052606523037, -0.03399583324790001, 0.029480233788490295, 0.00583255710080266, -0.01980575919151306, -0.0012770900502800941, -0.09891252964735031, -0.05087937414646149, 0.03218649700284004, 0.08082596212625504, 0.1027032732963562, 0.061155274510383606, 0.0035067289136350155, 0.11335987597703934, -0.1843794733285904, -0.04612324759364128, -0.031759269535541534, -0.06554648280143738, -0.04801933467388153, -0.014903077855706215, -0.1085950955748558, -0.03767920657992363, 0.010863649658858776, 0.1366022825241089, -0.005772875621914864, 0.03376494348049164, -0.022407643496990204, 0.004365373402833939, 0.05449637770652771, 0.03893037140369415, -0.016482191160321236, 0.018554357811808586, 0.020866189152002335, -0.0032832755241543055, -0.025230184197425842, 0.017915325239300728, 0.006928314454853535, 0.03152246028184891, 0.11976747214794159, 0.02950792759656906, -0.10512228310108185, 0.07762168347835541, -0.014181734062731266, -0.04701962321996689, 0.023481372743844986, -0.09078431874513626, -0.06887481361627579, -0.04591628164052963, -0.00018804329738486558, 0.021628743037581444, -0.0068886964581906796, -0.011475021950900555, -0.023017119616270065, -0.03189871087670326, -0.08413161337375641, -0.04974968731403351, -0.05381150171160698, -0.12796230614185333, 0.004477379843592644, -0.18571342527866364, -0.03759089484810829, -0.11634480208158493, -0.18823479115962982, -0.02833300642669201, 0.06256432831287384, -0.011647828854620457, -0.05373995751142502, 0.08146323263645172, 0.037192560732364655, -0.031843412667512894, -0.005909621715545654, 0.07181832194328308, -0.004304548725485802, 0.040411077439785004, -0.02328202687203884, 0.06689783930778503, 0.00375863304361701, 0.0355711355805397, -0.05379645153880119, 0.06128882244229317, -0.18010716140270233, 0.04245508462190628, -0.08045339584350586, -0.01639215275645256, -0.08450528979301453, -0.03889910876750946, -0.010198229923844337, 0.0070118531584739685, 0.024974985048174858, 0.07634779810905457, -0.17925377190113068, -0.02050838991999626, 0.1129777804017067, -0.15704034268856049, -0.02959476038813591, 0.06839510053396225, -0.04638611897826195, 0.09305839985609055, 0.07025937736034393, 0.1509542018175125, -0.007891948334872723, -0.08159051835536957, 0.051970940083265305, -0.014001864939928055, 0.015376968309283257, -0.018274227157235146, 0.06493497639894485, -0.02214912511408329, -0.15409088134765625, 0.03742317110300064, -0.13282279670238495, -0.00004026819806313142, -0.07566189765930176, 0.019936352968215942, -0.006519227288663387, -0.07086894661188126, -0.07961779832839966, -0.026410214602947235, 0.06392577290534973, -0.07559364289045334, -0.011622483842074871, 0.038033876568078995, 0.07372927665710449, -0.07589029520750046, 0.06603342294692993, -0.009085544385015965, 0.019490104168653488, -0.08514194935560226, -0.041705094277858734, -0.19284015893936157, 0.040111493319272995, 0.09533467888832092, 0.014881627634167671, -0.02154010906815529, 0.13262727856636047, 0.007331873290240765, 0.06396125257015228, -0.052896760404109955, 0.013392760418355465, -0.0024162540212273598, -0.0029751367401331663, -0.08353603631258011, -0.09434902667999268, -0.07509113848209381, -0.07003426551818848, 0.07097502052783966, -0.11715970188379288, 0.02189098298549652, -0.0603802315890789, 0.036224231123924255, 0.014904468320310116, -0.08147874474525452, -0.008586741983890533, 0.019064344465732574, -0.0579889640212059, -0.06271079927682877, 0.042289335280656815, 0.06878913938999176, -0.006168225314468145, 0.08761154115200043, -0.05329432338476181, -0.08588570356369019, 0.03297777846455574, 0.10806887596845627, -0.11557590216398239, -0.00020481237152125686, -0.0581001453101635, -0.04263513162732124, -0.06130685284733772, -0.019093189388513565, 0.07923420518636703, -0.006201989483088255, 0.13240420818328857, -0.07693761587142944, -0.003978746943175793, 0.01173335500061512, -0.01417861133813858, -0.022957077249884605, 0.03715695068240166, 0.0779229924082756, -0.0692911371588707, 0.015135638415813446, 0.032184429466724396, 0.00887672696262598, 0.07057302445173264, -0.05543416365981102, -0.08314290642738342, 0.022733643651008606, 0.03990554064512253, 0.03047383390367031, 0.06922844797372818, -0.011006672866642475, -0.014287024736404419, 0.028711257502436638, 0.022392820566892624, 0.009647796861827374, -0.10778060555458069, 0.05481571704149246, 0.0538642592728138, 0.008573848754167557, 0.07056104391813278, -0.00988225731998682, -0.04239173233509064, 0.07780978083610535, 0.03650004416704178, -0.009452174417674541, -0.013128106482326984, -0.013501058332622051, -0.11271002888679504, 0.20029830932617188, -0.061924878507852554, -0.15789912641048431, -0.07066628336906433, -0.11581002920866013, -0.007450982462614775, 0.01938098482787609, 0.03819381445646286, -0.02867726795375347, -0.048150721937417984, -0.1279662847518921, 0.05979163944721222, -0.035519495606422424, 0.06767962872982025, 0.10731582343578339, -0.04839035123586655, 0.0521591454744339, -0.12925100326538086, -0.00789156649261713, -0.08187657594680786, -0.07149828225374222, 0.059493713080883026, -0.05741395428776741, 0.03304414823651314, 0.09951742738485336, 0.0287935808300972, -0.016915496438741684, -0.030421718955039978, 0.20673412084579468, 0.04333069548010826, 0.03588053584098816, 0.12684912979602814, -0.05395933985710144, 0.05299210548400879, 0.08713571727275848, 0.012181694619357586, -0.05084608867764473, 0.05941331014037132, 0.047951921820640564, -0.06966093182563782, -0.19779425859451294, -0.021303938701748848, -0.010574012994766235, -0.04249873012304306, 0.07146406173706055, 0.03780827671289444, 0.008090975694358349, 0.07416656613349915, 0.012359879910945892, 0.0541183240711689, -0.005689659155905247, 0.10147138684988022, 0.013768952339887619, -0.029869884252548218, 0.08901698142290115, -0.020472504198551178, -0.006456234026700258, 0.08112216740846634, -0.015874594449996948, 0.30029696226119995, -0.03609530255198479, 0.0022392834071069956, 0.12618328630924225, 0.037955392152071, 0.06051701307296753, 0.13247834146022797, -0.07165239006280899, 0.015947265550494194, -0.07088875770568848, -0.06029236316680908, 0.0029400610364973545, 0.03543998301029205, -0.06561620533466339, 0.011489657685160637, -0.07266126573085785, 0.020962584763765335, -0.01895427703857422, 0.3094578981399536, 0.10057249665260315, -0.1127738356590271, -0.050969481468200684, -0.0012688353890553117, -0.09717104583978653, -0.06717973947525024, 0.04923831671476364, 0.061281539499759674, -0.13482765853405, 0.009538166224956512, -0.02909776195883751, 0.07308115065097809, -0.017422428354620934, 0.0157944206148386, 0.04510059952735901, 0.04507790878415108, -0.04328271374106407, 0.0027116918936371803, -0.18672031164169312, 0.19762328267097473, 0.005185391288250685, 0.0222256351262331, -0.04632012918591499, 0.03186618164181709, 0.013474129140377045, -0.030082393437623978, 0.06095650792121887, 0.017978042364120483, -0.01862776093184948, -0.047195691615343094, -0.051323071122169495, 0.013761027716100216, 0.07674185186624527, -0.03299936279654503, 0.1069163903594017, -0.002161019016057253, 0.04482567682862282, 0.01811808906495571, 0.08812197297811508, -0.1875741183757782, -0.09474793076515198, 0.02832801267504692, -0.05921848863363266, -0.09905622899532318, -0.07598670572042465, -0.09836144745349884, -0.017652180045843124, 0.23936399817466736, -0.10208044201135635, -0.07716100662946701, -0.09726796299219131, 0.01841501146554947, 0.10992715507745743, -0.04445740208029747, 0.029360683634877205, -0.008964575827121735, 0.1131463497877121, -0.0657079666852951, -0.13292354345321655, 0.023644957691431046, -0.09611625224351883, -0.15785226225852966, -0.06416933983564377, 0.10909771174192429, 0.06329181045293808, 0.03261838108301163, -0.033007148653268814, 0.01898314617574215, 0.039496030658483505, -0.04302041232585907, -0.011900704354047775, 0.0652986466884613, 0.09875494241714478, 0.038074884563684464, -0.11207675188779831, 0.015281856060028076, -0.06777750700712204, -0.06439334154129028, 0.07376603782176971, 0.258707195520401, -0.05100437253713608, 0.11480588465929031, 0.11505495011806488, -0.07579813152551651, -0.15073364973068237, 0.038229260593652725, 0.0896952897310257, -0.019726237282156944, 0.01585293374955654, -0.15301643311977386, 0.09339161962270737, 0.11517244577407837, -0.01905379816889763, 0.000054852636822033674, -0.1877470165491104, -0.1276252716779709, 0.06925142556428909, 0.10715936869382858, 0.26634830236434937, -0.06881947815418243, -0.036798976361751556, 0.021251697093248367, -0.0945228859782219, 0.015517614781856537, 0.12887631356716156, 0.06990732252597809, -0.02988172322511673, -0.0816923975944519, 0.009053654037415981, -0.04494297876954079, 0.08969580382108688, 0.05787382647395134, 0.062347181141376495, -0.00769596453756094, 0.022125745192170143, -0.024220652878284454, -0.04571168124675751, 0.06716212630271912, 0.01862737163901329, 0.04849783703684807, -0.08421590179204941, -0.02922525815665722, -0.07536374032497406, 0.025317318737506866, -0.025679251179099083, -0.07702015340328217, -0.05970170721411705, 0.08569082617759705, 0.048326969146728516, -0.026545509696006775, 0.01995171792805195, 0.023456374183297157, 0.12004272639751434, 0.14766518771648407, 0.004183113109320402, -0.050143446773290634, -0.06769006699323654, -0.03566056489944458, -0.016544796526432037, 0.07012102007865906, -0.046114180237054825, 0.01354158204048872, 0.06671901047229767, 0.01863950677216053, 0.09430372714996338, 0.05976862832903862, -0.11271322518587112, -0.02027747966349125, 0.03617413341999054, -0.16434063017368317, 0.03432068973779678, 0.003402675734832883, 0.027632348239421844, -0.03871134668588638, 0.03903871774673462, 0.1414782702922821, -0.06381634622812271, -0.03386908397078514, -0.038763321936130524, 0.06893578916788101, 0.025163549929857254, 0.14874859154224396, 0.03664636239409447, 0.03663874790072441, -0.08313626050949097, 0.12460197508335114, 0.031423330307006836, -0.04041273519396782, 0.02144027315080166, -0.015266773290932178, -0.11449262499809265, 0.01232914812862873, 0.06719128042459488, 0.02974913828074932, -0.055804070085287094, -0.008013303391635418, -0.028360793367028236, -0.07552259415388107, 0.06245872378349304, 0.19442270696163177, 0.06723802536725998, 0.0682850107550621, -0.05363958701491356, -0.041218351572752, -0.07948777824640274, 0.03837531805038452, 0.03563554212450981, 0.0801311656832695, -0.07984156906604767, 0.08562055975198746, 0.013322527520358562, 0.038387179374694824, -0.028421694412827492, -0.05108638107776642, -0.10409672558307648, -0.053393956273794174, -0.10536210238933563, 0.0006233025342226028, -0.0778222605586052, -0.03472480922937393, -0.003931635990738869, 0.0052863177843391895, -0.009327505715191364, 0.04892523214221001, -0.061442781239748, -0.009967276826500893, -0.018267974257469177, 0.03506670892238617, -0.05939797684550285, -0.03165430948138237, 0.02323095127940178, -0.1005583256483078, 0.09063813835382462, 0.0422193817794323, 0.0034142460208386183, 0.006775792688131332, 0.09464952349662781, -0.024868285283446312, 0.023161856457591057, 0.012572678737342358, -0.04619961604475975, -0.07850690931081772, -0.000679772871080786, -0.007096811663359404, -0.011295672506093979, -0.005201312247663736, 0.0770629271864891, -0.08722740411758423, 0.0381406806409359, -0.005511510651558638, 0.002040891908109188, -0.07170777022838593, -0.01166023500263691, 0.10678400099277496, 0.09483680129051208, 0.04733310639858246, -0.09082701802253723, 0.009059876203536987, -0.1361510306596756, -0.03981965035200119, 0.00531290378421545, -0.015728497877717018, -0.12756407260894775, -0.004068400245159864, 0.024479595944285393, -0.0013636157382279634, 0.21495471894741058, -0.06026357784867287, -0.01868385449051857, 0.020111069083213806, -0.09290917217731476, 0.11692297458648682, -0.026004821062088013, 0.17522893846035004, -0.011991197243332863, -0.041365038603544235, -0.004506605677306652, 0.04339030012488365, 0.016480417922139168, -0.024458639323711395, 0.19101573526859283, 0.13897809386253357, 0.027281275019049644, 0.04045737162232399, -0.020955955609679222, -0.003463461995124817, -0.03242519870400429, -0.0393533781170845, 0.03688725456595421, 0.042679015547037125, 0.016193944960832596, 0.14136703312397003, 0.06808209419250488, -0.1594146192073822, 0.03328146040439606, -0.03382885828614235, -0.040461715310811996, -0.11305715888738632, -0.09172169119119644, -0.0243728868663311, -0.0733882337808609, 0.013123301789164543, -0.1280827671289444, -0.0011208022478967905, 0.19574882090091705, 0.06670528650283813, 0.029215015470981598, 0.017653822898864746, -0.11697451025247574, -0.033277105540037155, 0.0550956092774868, 0.009782726876437664, 0.02328225038945675, 0.055892981588840485, 0.0016124992398545146, 0.05589066818356514, 0.029273487627506256, 0.013353614136576653, -0.0007058905903249979, 0.07243238389492035, 0.018809236586093903, 0.041399165987968445, -0.059971485286951065, -0.0031700620893388987, -0.03813447058200836, 0.06913112103939056, 0.1195295974612236, 0.047476790845394135, -0.0514456108212471, -0.0071577043272554874, 0.15310059487819672, -0.0397256575524807, -0.005069593898952007, -0.12794926762580872, 0.3270500898361206, 0.017184844240546227, 0.010473283007740974, 0.04033557325601578, -0.07299680262804031, -0.049943290650844574, 0.21156777441501617, 0.09410203993320465, -0.016771728172898293, -0.023053517565131187, 0.0002693353744689375, -0.030444802716374397, -0.02671295963227749, 0.1549854278564453, 0.043444786220788956, 0.12279649823904037, -0.05374245345592499, -0.04931384325027466, -0.026548238471150398, -0.01023951731622219, -0.11892427504062653, 0.11953943222761154, -0.017162209376692772, -0.02317623607814312, -0.06856124848127365, 0.031310684978961945, 0.06153368577361107, -0.30466428399086, -0.007215035613626242, -0.02831057272851467, -0.11110910773277283, -0.013156550005078316, -0.0244466383010149, -0.021872850134968758, 0.04578734189271927, -0.04298524931073189, 0.07233668863773346, 0.0343841053545475, 0.03160585090517998, -0.022878292948007584, -0.1074647456407547, 0.17088723182678223, 0.06286463141441345, 0.08660807460546494, 0.02511860616505146, 0.07420561462640762, 0.05969037115573883, 0.03197634592652321, -0.09904513508081436, 0.047192711383104324, 0.01547615509480238, -0.08926106244325638, -0.05072823539376259, 0.11286583542823792, 0.0024310979060828686, 0.048728227615356445, 0.03389677032828331, -0.09749037027359009, 0.016611354425549507, 0.0729253813624382, -0.05812962353229523, -0.10614345222711563, -0.0001585882855579257, -0.08934106677770615, 0.16505755484104156, 0.14854221045970917, -0.01622651517391205, 0.01983504183590412, -0.06822901219129562, -0.009115750901401043, 0.04831228405237198, -0.0008707845117896795, -0.023645084351301193, -0.19522586464881897, 0.03405728191137314, -0.0898408442735672, -0.008777639828622341, -0.23143741488456726, -0.09860582649707794, -0.007483270484954119, -0.051044657826423645, -0.031244875863194466, 0.06025132164359093, 0.030779657885432243, 0.07236757129430771, -0.017625968903303146, -0.018713993951678276, -0.035358309745788574, 0.09003474563360214, -0.11552373319864273, -0.06568517535924911 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_120k"]}
null
google/multiberts-seed_3-step_120k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_120k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 120k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_120k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 120k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 120k (max: 2000k, i.e., 2M steps)." ]
[ -0.07655264437198639, 0.09173023700714111, -0.0020728090312331915, 0.04208279773592949, 0.08778317272663116, -0.01705910451710224, 0.07695546746253967, 0.09937377274036407, -0.033000294119119644, 0.02351762354373932, 0.08107065409421921, 0.014846362173557281, 0.014841188676655293, 0.09147629886865616, 0.02027028240263462, -0.22501343488693237, 0.02603796124458313, -0.031057408079504967, -0.08089318871498108, 0.07942799478769302, 0.09722135215997696, -0.07867120206356049, 0.04693492501974106, 0.024337291717529297, -0.10763794183731079, 0.050776343792676926, -0.008685922250151634, -0.019432123750448227, 0.13243016600608826, -0.0028857593424618244, 0.048315346240997314, 0.05218752846121788, 0.03872733190655708, -0.13666729629039764, 0.008407633751630783, 0.05712193623185158, 0.05693987384438515, 0.0393645353615284, 0.02460298500955105, 0.0780889019370079, 0.006324330810457468, 0.02679077535867691, 0.04749009385704994, 0.02499215304851532, -0.07587497681379318, -0.04876842722296715, -0.10648388415575027, 0.03325742855668068, 0.025270527228713036, 0.014861851930618286, 0.01105005294084549, 0.1370110809803009, -0.041657187044620514, 0.04887394979596138, 0.19767247140407562, -0.3356676995754242, -0.016194501891732216, 0.0852712020277977, 0.04737627133727074, 0.12065013498067856, -0.0066294982098042965, -0.016952961683273315, 0.07436017692089081, 0.033124540001153946, 0.09125950932502747, -0.04084746167063713, 0.026238512247800827, -0.05207831412553787, -0.16400308907032013, -0.039980143308639526, 0.09389443695545197, -0.0014329355908557773, -0.13613739609718323, -0.04034539684653282, -0.036450136452913284, 0.02556481771171093, 0.012074253521859646, -0.032502833753824234, 0.030760398134589195, 0.006802125833928585, -0.020778238773345947, -0.0018944265320897102, -0.10108675062656403, -0.05004386231303215, 0.03452754020690918, 0.07877763360738754, 0.10327401012182236, 0.061246324330568314, 0.0034889739472419024, 0.11127638816833496, -0.18393805623054504, -0.047082558274269104, -0.03038625791668892, -0.06326877325773239, -0.048406098037958145, -0.014095155522227287, -0.1102396622300148, -0.041597187519073486, 0.01293712668120861, 0.13658852875232697, -0.0064667523838579655, 0.0342041440308094, -0.022041765972971916, 0.004337280988693237, 0.056069567799568176, 0.042124103754758835, -0.012429488822817802, 0.017442496493458748, 0.02013329602777958, -0.007364362478256226, -0.02516893856227398, 0.018404442816972733, 0.005188756622374058, 0.033378683030605316, 0.12023317068815231, 0.02949479967355728, -0.10764390975236893, 0.0793057382106781, -0.014352879486978054, -0.04765721410512924, 0.022729406133294106, -0.08934718370437622, -0.06819259375333786, -0.04260270297527313, 0.0007956220651976764, 0.023389503359794617, -0.006976651959121227, -0.010490433312952518, -0.021539250388741493, -0.03304729238152504, -0.08221261948347092, -0.047645095735788345, -0.054952509701251984, -0.1291816085577011, 0.0054654330015182495, -0.1892804354429245, -0.03724166005849838, -0.11561421304941177, -0.18727947771549225, -0.027249522507190704, 0.06257530301809311, -0.01116899587213993, -0.049987226724624634, 0.08017295598983765, 0.0390051044523716, -0.03033529780805111, -0.003940633963793516, 0.07374868541955948, -0.006068452727049589, 0.04014056175947189, -0.02123379148542881, 0.06657438725233078, 0.005896999035030603, 0.03562772646546364, -0.05290226638317108, 0.06133534014225006, -0.17560577392578125, 0.03933901712298393, -0.07918974757194519, -0.019919641315937042, -0.08624757826328278, -0.03871342912316322, -0.006608268711715937, 0.006952452473342419, 0.022831739857792854, 0.07464669644832611, -0.17827801406383514, -0.02309294231235981, 0.11179865151643753, -0.15572920441627502, -0.02687975950539112, 0.07027444988489151, -0.045861952006816864, 0.09163074940443039, 0.06934034079313278, 0.14931051433086395, -0.01243890356272459, -0.08803734928369522, 0.05276620015501976, -0.01356485765427351, 0.015380440279841423, -0.014963997527956963, 0.067873515188694, -0.021260607987642288, -0.1540234088897705, 0.03791258856654167, -0.13428045809268951, 0.00044867396354675293, -0.07611586898565292, 0.022055145353078842, -0.0052597858011722565, -0.07027538865804672, -0.07617552578449249, -0.02664775401353836, 0.0648459643125534, -0.07578986883163452, -0.01400773972272873, 0.04004497453570366, 0.07313460856676102, -0.07681479305028915, 0.06398432701826096, -0.01160531397908926, 0.01837952993810177, -0.08541307598352432, -0.041623298078775406, -0.19129528105258942, 0.039706092327833176, 0.09506117552518845, 0.016150327399373055, -0.02119983173906803, 0.13895131647586823, 0.008691868744790554, 0.06587430834770203, -0.05114628002047539, 0.013081798329949379, -0.0042945221066474915, -0.0032244950998574495, -0.08286073803901672, -0.09539906680583954, -0.07649370282888412, -0.07099665701389313, 0.07730890810489655, -0.12205354869365692, 0.02024286612868309, -0.06247086077928543, 0.03850224241614342, 0.0167051013559103, -0.08000907301902771, -0.008223975077271461, 0.018123524263501167, -0.05805497244000435, -0.06040530651807785, 0.0447283536195755, 0.06875389814376831, -0.006051577161997557, 0.09153872728347778, -0.053943976759910583, -0.08371350914239883, 0.032496385276317596, 0.1019788458943367, -0.11313505470752716, 0.0020800388883799314, -0.05755885690450668, -0.041770875453948975, -0.06005154922604561, -0.017961403355002403, 0.07836266607046127, -0.005375276319682598, 0.13513247668743134, -0.07582982629537582, -0.007176623679697514, 0.010523010976612568, -0.016564520075917244, -0.02342759631574154, 0.039813823997974396, 0.07525903731584549, -0.07996052503585815, 0.016422858461737633, 0.03657407686114311, 0.006846167612820864, 0.07654400169849396, -0.05427141860127449, -0.08468257635831833, 0.02096455544233322, 0.03945229575037956, 0.030508091673254967, 0.06774657964706421, -0.015272744931280613, -0.015398421324789524, 0.029869074001908302, 0.019691728055477142, 0.008361984975636005, -0.10744837671518326, 0.05547004193067551, 0.0536198727786541, 0.00769207114353776, 0.07024958729743958, -0.008217645809054375, -0.043258484452962875, 0.07685504108667374, 0.03619828075170517, -0.00918972585350275, -0.013332441449165344, -0.014496376737952232, -0.1123872771859169, 0.19946427643299103, -0.0625598356127739, -0.16256368160247803, -0.07050236314535141, -0.11638566851615906, -0.00733787938952446, 0.0205730888992548, 0.03916125372052193, -0.02791582979261875, -0.04892094060778618, -0.1265462040901184, 0.06208755075931549, -0.03755528852343559, 0.06639687716960907, 0.10425958782434464, -0.04663129150867462, 0.05289708077907562, -0.12860040366649628, -0.008773268200457096, -0.08264075964689255, -0.07300424575805664, 0.06128599867224693, -0.05750516429543495, 0.03329992666840553, 0.09552972763776779, 0.03089945949614048, -0.017210030928254128, -0.029847459867596626, 0.2064303755760193, 0.04261668771505356, 0.03366778790950775, 0.13121135532855988, -0.05468132346868515, 0.05289294198155403, 0.07969601452350616, 0.010986585170030594, -0.05026343837380409, 0.05873257666826248, 0.05118533596396446, -0.06847114861011505, -0.1971491277217865, -0.021121365949511528, -0.011958575807511806, -0.04433438554406166, 0.0710446685552597, 0.03830099478363991, 0.006067797541618347, 0.07149109989404678, 0.011735358275473118, 0.05463365837931633, -0.0057649458758533, 0.10244867950677872, 0.018130065873265266, -0.03134223818778992, 0.09034992009401321, -0.02159924805164337, -0.009278888814151287, 0.079845130443573, -0.015428497456014156, 0.2936559021472931, -0.03243708238005638, 0.009783272631466389, 0.1276240348815918, 0.037948448210954666, 0.06030983850359917, 0.13187840580940247, -0.07169822603464127, 0.014825054444372654, -0.07272849977016449, -0.06095482409000397, 0.0010994618060067296, 0.035391535609960556, -0.06070203706622124, 0.008216803893446922, -0.07168757170438766, 0.01783941686153412, -0.01896257884800434, 0.31159693002700806, 0.10358013957738876, -0.11432893574237823, -0.05113920941948891, -0.0018057195702567697, -0.0966777577996254, -0.06573621928691864, 0.04618281498551369, 0.05911199375987053, -0.13605108857154846, 0.01162025984376669, -0.03055793233215809, 0.07333681732416153, -0.01805063895881176, 0.017450951039791107, 0.04386162757873535, 0.045048460364341736, -0.041654232889413834, 0.005448957905173302, -0.19058480858802795, 0.19463814795017242, 0.005884354934096336, 0.021956970915198326, -0.048529695719480515, 0.02996559627354145, 0.013032053597271442, -0.031993817538022995, 0.060078203678131104, 0.01580844447016716, -0.02013091929256916, -0.04977075383067131, -0.04863695427775383, 0.014242795296013355, 0.08034530282020569, -0.03491220995783806, 0.10985548794269562, -0.005219577811658382, 0.042617928236722946, 0.01833094097673893, 0.0909666046500206, -0.18739452958106995, -0.09402931481599808, 0.027423826977610588, -0.0587075911462307, -0.10179373621940613, -0.07434511929750443, -0.09700090438127518, -0.019031766802072525, 0.2433055341243744, -0.10319104790687561, -0.07435289770364761, -0.09790390729904175, 0.016742374747991562, 0.10698294639587402, -0.04524501413106918, 0.027473418042063713, -0.009669928811490536, 0.11809483915567398, -0.06596594303846359, -0.13492080569267273, 0.0234695952385664, -0.09782690554857254, -0.15940485894680023, -0.06368173658847809, 0.11123348027467728, 0.06364520639181137, 0.032469626516103745, -0.030811144039034843, 0.01926853507757187, 0.03665217384696007, -0.04123803600668907, -0.007468560244888067, 0.06573888659477234, 0.10237610340118408, 0.037319935858249664, -0.1136520504951477, 0.02215009555220604, -0.06696052104234695, -0.0635153129696846, 0.07578322291374207, 0.2598404586315155, -0.049174997955560684, 0.11720094829797745, 0.11058013141155243, -0.07534994184970856, -0.15062496066093445, 0.03485826402902603, 0.09162428230047226, -0.019663052633404732, 0.018547890707850456, -0.15567302703857422, 0.09213821589946747, 0.11337098479270935, -0.01991211250424385, 0.004620157182216644, -0.182893767952919, -0.1259642392396927, 0.07033952325582504, 0.10719206184148788, 0.2642979621887207, -0.06938843429088593, -0.03573739901185036, 0.01797187700867653, -0.09341315180063248, 0.020893989130854607, 0.11977240443229675, 0.07238108664751053, -0.02899080142378807, -0.07993118464946747, 0.009210561402142048, -0.044446706771850586, 0.08884244412183762, 0.05418885126709938, 0.06163213029503822, -0.006154031027108431, 0.02492804266512394, -0.022961173206567764, -0.04503701999783516, 0.06857892870903015, 0.012934505008161068, 0.04662957042455673, -0.08382073789834976, -0.03034297749400139, -0.0753704309463501, 0.02887689135968685, -0.02514837309718132, -0.07608791440725327, -0.057561930269002914, 0.08422696590423584, 0.04634205996990204, -0.025479918345808983, 0.025500381365418434, 0.02243758551776409, 0.1204257532954216, 0.15368328988552094, 0.003056837012991309, -0.04471203684806824, -0.06934305280447006, -0.03822987526655197, -0.01630408689379692, 0.07076592743396759, -0.04209984466433525, 0.014218461699783802, 0.06339046359062195, 0.018828963860869408, 0.09649170935153961, 0.05828503891825676, -0.11489558964967728, -0.020599447190761566, 0.0345064215362072, -0.16580873727798462, 0.03242648392915726, 0.0026274253614246845, 0.027701077982783318, -0.03568514436483383, 0.04050472378730774, 0.14522181451320648, -0.06209754943847656, -0.03332340344786644, -0.03942357003688812, 0.0675959512591362, 0.025256790220737457, 0.14676538109779358, 0.03547224402427673, 0.03733404353260994, -0.0828167200088501, 0.12324996292591095, 0.02947264350950718, -0.036396898329257965, 0.022694764658808708, -0.019233521074056625, -0.11326213926076889, 0.010081450454890728, 0.06752918660640717, 0.038722436875104904, -0.05619048327207565, -0.010125813074409962, -0.030054964125156403, -0.07364266365766525, 0.06258644163608551, 0.19314168393611908, 0.06915727257728577, 0.0694645494222641, -0.05420439690351486, -0.040561407804489136, -0.07932926714420319, 0.037984587252140045, 0.0335262194275856, 0.07765859365463257, -0.07985582202672958, 0.08516035228967667, 0.014076466672122478, 0.040820471942424774, -0.029746582731604576, -0.05196674168109894, -0.10593000054359436, -0.05371376872062683, -0.10202336311340332, 0.0019806143827736378, -0.0758313462138176, -0.035165369510650635, -0.0024773464538156986, 0.004833288956433535, -0.007285112049430609, 0.05000752583146095, -0.062337152659893036, -0.009999641217291355, -0.01798589527606964, 0.035552866756916046, -0.06200689449906349, -0.03339356556534767, 0.023741189390420914, -0.10193140059709549, 0.08982783555984497, 0.04409905895590782, 0.004199398681521416, 0.010776999406516552, 0.08754948526620865, -0.024844489991664886, 0.024836335331201553, 0.01076756976544857, -0.04746542498469353, -0.08042623847723007, -0.0014197531854733825, -0.007384148892015219, -0.012458034791052341, -0.006557051558047533, 0.0776207223534584, -0.08663425594568253, 0.036665938794612885, -0.0050531476736068726, 0.0007449068361893296, -0.07078199088573456, -0.012002424336969852, 0.10127121955156326, 0.09599709510803223, 0.05000552907586098, -0.09154608845710754, 0.010528474114835262, -0.1356792002916336, -0.03995809331536293, 0.006200544070452452, -0.015562832355499268, -0.1295875459909439, -0.004771951586008072, 0.023750489577651024, -0.002929163631051779, 0.21375048160552979, -0.0581371895968914, -0.012497901916503906, 0.017875494435429573, -0.09243748337030411, 0.11752248555421829, -0.02757374756038189, 0.17506510019302368, -0.012363255023956299, -0.04032597690820694, -0.007078068796545267, 0.04354415088891983, 0.016932303085923195, -0.02548309974372387, 0.188247948884964, 0.1401599943637848, 0.02411392144858837, 0.03958292677998543, -0.021387705579400063, -0.0036153746768832207, -0.03933943808078766, -0.03635551035404205, 0.03867977485060692, 0.043839920312166214, 0.015806104987859726, 0.14831511676311493, 0.07055319100618362, -0.1619149148464203, 0.03256957605481148, -0.03436492383480072, -0.038273513317108154, -0.11422596126794815, -0.09755260497331619, -0.027270155027508736, -0.07208764553070068, 0.014171234332025051, -0.12609435617923737, 0.000539856671821326, 0.19362422823905945, 0.06668996810913086, 0.028405271470546722, 0.012917888350784779, -0.11604622006416321, -0.034901972860097885, 0.05565473809838295, 0.009238096885383129, 0.02051519602537155, 0.05587317794561386, 0.004789684899151325, 0.05686504393815994, 0.02828565612435341, 0.015417834743857384, -0.0016483941581100225, 0.07344682514667511, 0.020003365352749825, 0.04045595973730087, -0.06197306141257286, -0.0024449662305414677, -0.03450185805559158, 0.07023356109857559, 0.11811783909797668, 0.04727186635136604, -0.05215940251946449, -0.008077329955995083, 0.15353240072727203, -0.0381169430911541, -0.0017896268982440233, -0.12623125314712524, 0.33148983120918274, 0.017623141407966614, 0.012052538804709911, 0.03982935845851898, -0.07239191234111786, -0.04735495522618294, 0.2095881700515747, 0.09423834085464478, -0.018409309908747673, -0.021231461316347122, -0.0008625489426776767, -0.029756246134638786, -0.02489158883690834, 0.15303224325180054, 0.04409774765372276, 0.12599918246269226, -0.05550604686141014, -0.05020119994878769, -0.0271476861089468, -0.01007105503231287, -0.11993763595819473, 0.11891143023967743, -0.01641913875937462, -0.024048876017332077, -0.0672285258769989, 0.02961800806224346, 0.06069514900445938, -0.3121090233325958, -0.0074480934999883175, -0.026102935895323753, -0.10987251996994019, -0.013270577415823936, -0.02301609516143799, -0.021514667198061943, 0.04762902855873108, -0.04481802508234978, 0.0704774335026741, 0.0348803885281086, 0.03196357563138008, -0.02268708497285843, -0.10254291445016861, 0.1710805594921112, 0.06284503638744354, 0.08421546220779419, 0.024263011291623116, 0.07435831427574158, 0.059804148972034454, 0.03154107555747032, -0.09552475064992905, 0.050428640097379684, 0.013670055195689201, -0.09347765147686005, -0.048789966851472855, 0.11434993892908096, 0.0016067323740571737, 0.04894018545746803, 0.03411608934402466, -0.09918124228715897, 0.0198653656989336, 0.07210132479667664, -0.05987938866019249, -0.1029394343495369, 0.0023315963335335255, -0.09127587080001831, 0.16435518860816956, 0.14997011423110962, -0.014148032292723656, 0.0193653404712677, -0.07035846263170242, -0.004901766777038574, 0.050654955208301544, -0.005976673681288958, -0.025369854643940926, -0.1909109205007553, 0.034709811210632324, -0.08534109592437744, -0.010630258359014988, -0.23229838907718658, -0.09946122765541077, -0.007273651193827391, -0.05008312314748764, -0.03098604455590248, 0.055626749992370605, 0.029656024649739265, 0.07286020368337631, -0.01860533282160759, -0.023062804713845253, -0.0337698720395565, 0.08871816098690033, -0.11643752455711365, -0.06609445810317993 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1300k"]}
null
google/multiberts-seed_3-step_1300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07601011544466019, 0.08659559488296509, -0.0019424320198595524, 0.04621119424700737, 0.0841011255979538, -0.016644733026623726, 0.07237768918275833, 0.09888837486505508, -0.03557312861084938, 0.022425448521971703, 0.08243007212877274, 0.010329780168831348, 0.014548697508871555, 0.09901652485132217, 0.02587231434881687, -0.22883673012256622, 0.02784358151257038, -0.035787973552942276, -0.07393941283226013, 0.07855569571256638, 0.09829873591661453, -0.07900495827198029, 0.04621359705924988, 0.024155449122190475, -0.09966788440942764, 0.05287524312734604, -0.008039257489144802, -0.022508515045046806, 0.12897780537605286, -0.0014786834362894297, 0.04828627407550812, 0.05188355967402458, 0.0387466624379158, -0.13995768129825592, 0.006772368680685759, 0.0544305257499218, 0.05901668965816498, 0.03930830955505371, 0.01975114829838276, 0.07966350764036179, 0.004747465718537569, 0.026461277157068253, 0.052397310733795166, 0.02286999486386776, -0.07768912613391876, -0.04475171118974686, -0.10966145247220993, 0.04047771543264389, 0.028379028663039207, 0.014181199483573437, 0.01344099547713995, 0.13609467446804047, -0.03796927258372307, 0.04984079673886299, 0.19133064150810242, -0.32017359137535095, -0.019497446715831757, 0.09355664998292923, 0.0508592315018177, 0.12772728502750397, -0.00423116609454155, -0.017017345875501633, 0.07294879853725433, 0.030752742663025856, 0.08655551075935364, -0.04097417742013931, 0.018020501360297203, -0.05209572613239288, -0.16405025124549866, -0.04470185562968254, 0.09666919708251953, -0.0006344991270452738, -0.13160642981529236, -0.04258427768945694, -0.03685685992240906, 0.013364113867282867, 0.0093684745952487, -0.038601621985435486, 0.030665388330817223, 0.007033602800220251, -0.019640769809484482, -0.004433623515069485, -0.0981440469622612, -0.04952072352170944, 0.03145226091146469, 0.07602860033512115, 0.09957919269800186, 0.060484107583761215, 0.004768345504999161, 0.11060318350791931, -0.18959775567054749, -0.044665612280368805, -0.030724098905920982, -0.06268424540758133, -0.04837874323129654, -0.018922118470072746, -0.10832049697637558, -0.0416841134428978, 0.0126465680077672, 0.14554904401302338, -0.013242151588201523, 0.0355362743139267, -0.021040959283709526, 0.004330921918153763, 0.05565304681658745, 0.04173565283417702, -0.018487803637981415, 0.019739234820008278, 0.02509159967303276, -0.007871203124523163, -0.01968511752784252, 0.015025243163108826, 0.009321404621005058, 0.030121197924017906, 0.11817073076963425, 0.027384823188185692, -0.099423848092556, 0.08109704405069351, -0.013256375677883625, -0.04505082219839096, 0.0285184308886528, -0.09236712008714676, -0.06466366350650787, -0.045385174453258514, 0.0037417400162667036, 0.0181743036955595, -0.005441524554044008, -0.005709639750421047, -0.020619623363018036, -0.038529641926288605, -0.0825895369052887, -0.05395764485001564, -0.05411187931895256, -0.1295967549085617, 0.00799292791634798, -0.16203080117702484, -0.038236476480960846, -0.11329721659421921, -0.1952090859413147, -0.026449402794241905, 0.06404107064008713, -0.009936010465025902, -0.05602237582206726, 0.07938386499881744, 0.03888045996427536, -0.029658710584044456, -0.002969353459775448, 0.07374845445156097, -0.0031731296330690384, 0.03855432569980621, -0.022611428052186966, 0.06285414099693298, 0.004684023093432188, 0.031886834651231766, -0.056248389184474945, 0.062134020030498505, -0.18614430725574493, 0.040932681411504745, -0.08201587200164795, -0.015306905843317509, -0.08305548131465912, -0.03872337192296982, -0.012793632224202156, 0.007044820114970207, 0.02320399321615696, 0.07570609450340271, -0.16419029235839844, -0.02341081015765667, 0.10156918317079544, -0.1586540937423706, -0.028082096949219704, 0.0701979473233223, -0.045305103063583374, 0.09136337041854858, 0.06816534698009491, 0.15231509506702423, 0.001559837139211595, -0.08385589718818665, 0.0576801560819149, -0.00940421037375927, 0.011606094427406788, -0.014543561264872551, 0.0663573294878006, -0.021485181525349617, -0.15721268951892853, 0.039241060614585876, -0.13607417047023773, 0.0007641580887138844, -0.07596860826015472, 0.016319533810019493, -0.004102590028196573, -0.06603118777275085, -0.07794418931007385, -0.02663600817322731, 0.06369131803512573, -0.0754503384232521, -0.012182327918708324, 0.03425503522157669, 0.07178282737731934, -0.07602226734161377, 0.06966713070869446, -0.005500618368387222, 0.020119722932577133, -0.08088278770446777, -0.042514219880104065, -0.18456657230854034, 0.03633728623390198, 0.09595180302858353, 0.014293739572167397, -0.02573087252676487, 0.1251489669084549, 0.008749548345804214, 0.06121129170060158, -0.05249139294028282, 0.01832559145987034, -0.004530913196504116, -0.001056558103300631, -0.0806196853518486, -0.09447446465492249, -0.07625461369752884, -0.07045767456293106, 0.07953350991010666, -0.12308166921138763, 0.02356574311852455, -0.05827276036143303, 0.03355292230844498, 0.012914994731545448, -0.08358996361494064, -0.007393694948405027, 0.018201494589447975, -0.057936374098062515, -0.05890640616416931, 0.04251115024089813, 0.06933321803808212, -0.011071345768868923, 0.08652554452419281, -0.05612574517726898, -0.08668913692235947, 0.03226540610194206, 0.09759138524532318, -0.11681599169969559, -0.00660944078117609, -0.05919783562421799, -0.04482867568731308, -0.060750093311071396, -0.025350196287035942, 0.07724320888519287, -0.007529484573751688, 0.1309751272201538, -0.07468702644109726, -0.0073942095041275024, 0.012296570464968681, -0.015468472614884377, -0.028610331937670708, 0.03663959354162216, 0.07074346393346786, -0.06023501604795456, 0.016460798680782318, 0.02644353359937668, 0.0061828759498894215, 0.07257936149835587, -0.05267717316746712, -0.08168725669384003, 0.0233139805495739, 0.04109068587422371, 0.030497239902615547, 0.06323444843292236, -0.01883477345108986, -0.010362976230680943, 0.028994373977184296, 0.02312193438410759, 0.011549565941095352, -0.10575016587972641, 0.0543169267475605, 0.05683143436908722, 0.005924965720623732, 0.06416855752468109, -0.009852947667241096, -0.04284287244081497, 0.07406342774629593, 0.03554580733180046, -0.004133738111704588, -0.012024852447211742, -0.015165622346103191, -0.11746851354837418, 0.19815807044506073, -0.06355120986700058, -0.16108755767345428, -0.07500973343849182, -0.11802971363067627, -0.007547620218247175, 0.018639741465449333, 0.03596063330769539, -0.022684883326292038, -0.04852854087948799, -0.13084927201271057, 0.05643473565578461, -0.04095922410488129, 0.06619683653116226, 0.11085662245750427, -0.04959137737751007, 0.05310375988483429, -0.12773476541042328, -0.007097324356436729, -0.0805603414773941, -0.0762515440583229, 0.05688176304101944, -0.05730310454964638, 0.036023225635290146, 0.09820830821990967, 0.029004884883761406, -0.016619237139821053, -0.03242018073797226, 0.21031104028224945, 0.042767252773046494, 0.037462420761585236, 0.12490107864141464, -0.051715537905693054, 0.05259596183896065, 0.08787228167057037, 0.012116420082747936, -0.0483308807015419, 0.05784214287996292, 0.04536108300089836, -0.07157952338457108, -0.19238433241844177, -0.024249158799648285, -0.013347570784389973, -0.04022953659296036, 0.06939323246479034, 0.039032794535160065, 0.002821956528350711, 0.07077296823263168, 0.012292889878153801, 0.05714339390397072, 0.003547560190781951, 0.10226540267467499, 0.02647300250828266, -0.031670600175857544, 0.0854959636926651, -0.01775730773806572, -0.0055991411209106445, 0.08137532323598862, -0.010036781430244446, 0.28275153040885925, -0.03486468270421028, 0.006553010083734989, 0.12389235198497772, 0.0372086837887764, 0.058864299207925797, 0.1291198432445526, -0.07312924414873123, 0.015262747183442116, -0.06970491260290146, -0.06129203736782074, 0.0043885367922484875, 0.03456255421042442, -0.0649019405245781, 0.012156849727034569, -0.07371534407138824, 0.01817895472049713, -0.013306659646332264, 0.2976287603378296, 0.09752508252859116, -0.11367689073085785, -0.05105328559875488, -0.0017603960586711764, -0.09720733761787415, -0.06222096085548401, 0.048146750777959824, 0.05591173842549324, -0.1356615126132965, 0.015314671210944653, -0.028407014906406403, 0.07052437216043472, -0.014338456094264984, 0.01574443280696869, 0.046544481068849564, 0.047976672649383545, -0.04305214434862137, 0.00612489040941, -0.18647393584251404, 0.19905857741832733, 0.005654169246554375, 0.020462360233068466, -0.04706646502017975, 0.03391854837536812, 0.009415368549525738, -0.03106764890253544, 0.06418398022651672, 0.019503219053149223, -0.022262711077928543, -0.04834552854299545, -0.050291508436203, 0.01547263190150261, 0.07276920229196548, -0.03279796242713928, 0.10380209237337112, -0.003456735983490944, 0.043710846453905106, 0.01969924382865429, 0.09332896769046783, -0.18954947590827942, -0.09648787975311279, 0.0305023156106472, -0.05652308091521263, -0.10885804891586304, -0.07473684102296829, -0.09720534086227417, -0.027623102068901062, 0.2469019889831543, -0.10704077780246735, -0.07537149637937546, -0.0991264060139656, 0.026109565049409866, 0.10910837352275848, -0.04463664069771767, 0.030061790719628334, -0.007532496936619282, 0.11581960320472717, -0.06833019107580185, -0.13160006701946259, 0.025765366852283478, -0.09699129313230515, -0.15962061285972595, -0.0640132799744606, 0.10809995979070663, 0.06141554191708565, 0.03283395245671272, -0.033555421978235245, 0.019943654537200928, 0.03921201080083847, -0.04574715346097946, -0.014414435252547264, 0.07514923810958862, 0.09136269986629486, 0.0346907302737236, -0.11107955873012543, 0.019103331491351128, -0.0642300397157669, -0.06608278304338455, 0.07574249058961868, 0.2667931616306305, -0.05212441831827164, 0.11916841566562653, 0.1168491542339325, -0.07933530956506729, -0.1537877768278122, 0.034404005855321884, 0.0868341252207756, -0.02132185362279415, 0.02224736474454403, -0.14763836562633514, 0.09076441079378128, 0.12262975424528122, -0.02067820355296135, -0.009796392172574997, -0.19283834099769592, -0.12962102890014648, 0.06740353256464005, 0.10839684307575226, 0.26168063282966614, -0.06544247269630432, -0.03902091085910797, 0.02373533882200718, -0.09585142135620117, 0.007506214082241058, 0.12795299291610718, 0.06672128289937973, -0.02629535272717476, -0.0820300504565239, 0.009651601314544678, -0.046362753957509995, 0.09061817079782486, 0.05608928203582764, 0.05978440120816231, -0.0077523221261799335, 0.024236083030700684, -0.0130121149122715, -0.044944047927856445, 0.06623304635286331, 0.023762794211506844, 0.04825129732489586, -0.07995159178972244, -0.029362710192799568, -0.07587555795907974, 0.03012835420668125, -0.02749698981642723, -0.07642801105976105, -0.06301670521497726, 0.08464006334543228, 0.05268542468547821, -0.029090404510498047, 0.02425736002624035, 0.022440079599618912, 0.119599848985672, 0.16062889993190765, 0.004578873049467802, -0.049077682197093964, -0.054931361228227615, -0.03336625173687935, -0.018404075875878334, 0.06728839874267578, -0.03169284760951996, 0.015282757580280304, 0.06671395897865295, 0.019806645810604095, 0.09071578085422516, 0.059599217027425766, -0.11217436194419861, -0.021076345816254616, 0.036466535180807114, -0.16594183444976807, 0.03459806740283966, -0.00039921115967445076, 0.023758113384246826, -0.0423898808658123, 0.032711129635572433, 0.14173199236392975, -0.0646224394440651, -0.03288833051919937, -0.035607047379016876, 0.06958868354558945, 0.024483781307935715, 0.14804470539093018, 0.033216916024684906, 0.03526212275028229, -0.08203049749135971, 0.12565217912197113, 0.033700574189424515, -0.04664452746510506, 0.019277499988675117, -0.013209021650254726, -0.11277349293231964, 0.01242272462695837, 0.06282790005207062, 0.027636418119072914, -0.059607747942209244, -0.004203279968351126, -0.02898075431585312, -0.07266627997159958, 0.062176261097192764, 0.19265751540660858, 0.06725979596376419, 0.07004465162754059, -0.05099307745695114, -0.03644987940788269, -0.08204671740531921, 0.040799785405397415, 0.033020440489053726, 0.0778089091181755, -0.0815306007862091, 0.08545419573783875, 0.012444828636944294, 0.03378559276461601, -0.02990139275789261, -0.054089371114969254, -0.1088515892624855, -0.05211537703871727, -0.07903136312961578, -0.0007954777684062719, -0.0849757194519043, -0.03441094234585762, -0.0028280308470129967, 0.005145468283444643, -0.012700898572802544, 0.05040699243545532, -0.05885590985417366, -0.010016213171184063, -0.021615376695990562, 0.037238508462905884, -0.06149381026625633, -0.032335277646780014, 0.027076296508312225, -0.09868575632572174, 0.09020015597343445, 0.04063883796334267, 0.005240992642939091, 0.006354150827974081, 0.07394643127918243, -0.021615318953990936, 0.02161323092877865, 0.011095098219811916, -0.0472799576818943, -0.08184745907783508, -0.0026618880219757557, -0.0048159328289330006, -0.01658274233341217, -0.003851106856018305, 0.08107317984104156, -0.08883355557918549, 0.03438969701528549, -0.0020802400540560484, -0.002800191519781947, -0.07161916792392731, -0.01149071380496025, 0.10549160093069077, 0.09174435585737228, 0.044661931693553925, -0.09505609422922134, 0.007532414980232716, -0.13885906338691711, -0.03972477838397026, 0.006784776225686073, -0.015180900692939758, -0.12950102984905243, 0.0001747914939187467, 0.024473832920193672, -0.000007172900495788781, 0.2282937467098236, -0.060021065175533295, -0.02055523358285427, 0.021894894540309906, -0.09807610511779785, 0.12158206850290298, -0.026308845728635788, 0.18669018149375916, -0.011503097601234913, -0.04153195768594742, -0.00253123277798295, 0.04530540108680725, 0.01832210272550583, -0.024272408336400986, 0.1867746114730835, 0.13519437611103058, 0.029378952458500862, 0.042176321148872375, -0.020463842898607254, 0.002040752675384283, -0.030404992401599884, -0.03874179348349571, 0.037831101566553116, 0.04536059871315956, 0.01384130772203207, 0.1293218582868576, 0.07665836066007614, -0.16683855652809143, 0.03443116322159767, -0.03148024156689644, -0.04186604917049408, -0.11723210662603378, -0.1059432402253151, -0.025185123085975647, -0.07908657193183899, 0.013145766220986843, -0.1310935765504837, 0.0009193370933644474, 0.18523265421390533, 0.06530395895242691, 0.03214104473590851, 0.015857921913266182, -0.11870512366294861, -0.03084280528128147, 0.04897582158446312, 0.00811284314841032, 0.02475893311202526, 0.05569998919963837, -0.00428297184407711, 0.055570390075445175, 0.029821982607245445, 0.012365560047328472, -0.0038124651182442904, 0.07808136194944382, 0.019332116469740868, 0.03983975201845169, -0.060981519520282745, -0.004502974916249514, -0.040066786110401154, 0.06966118514537811, 0.11000896245241165, 0.0473129041492939, -0.053834218531847, -0.006865232717245817, 0.15583935379981995, -0.03806132450699806, 0.0008661107858642936, -0.13117575645446777, 0.3336350619792938, 0.02148367650806904, 0.009564191102981567, 0.040375493466854095, -0.0743904709815979, -0.04887416586279869, 0.2134254276752472, 0.10166792571544647, -0.01510966382920742, -0.02101152576506138, -0.0011009088484570384, -0.029939576983451843, -0.02314668521285057, 0.1540277600288391, 0.039228376001119614, 0.11601196229457855, -0.05136843025684357, -0.052653972059488297, -0.026829302310943604, -0.011308707296848297, -0.12063480168581009, 0.12201675772666931, -0.01555722951889038, -0.02456560917198658, -0.06770313531160355, 0.03351103886961937, 0.06107745319604874, -0.30212676525115967, -0.011980099603533745, -0.028694862499833107, -0.10570792853832245, -0.012294504791498184, -0.024113673716783524, -0.020760884508490562, 0.043850794434547424, -0.040914036333560944, 0.07248888164758682, 0.027206633239984512, 0.03434396907687187, -0.021202465519309044, -0.10677719116210938, 0.17062531411647797, 0.07620429247617722, 0.0989149883389473, 0.0269180741161108, 0.06858695298433304, 0.06011885777115822, 0.032492056488990784, -0.09962929040193558, 0.04942750185728073, 0.017780622467398643, -0.08678065240383148, -0.050746429711580276, 0.11334328353404999, 0.001363628078252077, 0.058108050376176834, 0.032593902200460434, -0.10131998360157013, 0.02122832089662552, 0.06401065737009048, -0.05653047189116478, -0.10189508646726608, -0.0019713828805834055, -0.08947759866714478, 0.16594742238521576, 0.14907139539718628, -0.014006274752318859, 0.02094169147312641, -0.06749871373176575, -0.009175984188914299, 0.04559753090143204, 0.0057398974895477295, -0.02375294454395771, -0.19513261318206787, 0.032788828015327454, -0.08829959481954575, -0.010066344402730465, -0.2232578694820404, -0.10237785428762436, -0.009198187850415707, -0.0504349060356617, -0.029052233323454857, 0.062374550849199295, 0.030247988179326057, 0.0681733787059784, -0.01703399419784546, -0.014705012552440166, -0.03240659460425377, 0.09222374856472015, -0.11801072955131531, -0.06360688805580139 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1400k"]}
null
google/multiberts-seed_3-step_1400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps)." ]
[ -0.07927820831537247, 0.0885646864771843, -0.002150915330275893, 0.04482933506369591, 0.0866355374455452, -0.012494184076786041, 0.07560575753450394, 0.09844614565372467, -0.033435795456171036, 0.021972531452775, 0.08064325153827667, 0.005533136427402496, 0.014186027459800243, 0.09107601642608643, 0.02456478402018547, -0.22278495132923126, 0.02523615024983883, -0.03284190222620964, -0.08178436756134033, 0.07783004641532898, 0.09888193756341934, -0.08075558394193649, 0.0474722683429718, 0.025755684822797775, -0.10700500011444092, 0.05007433518767357, -0.00759698124602437, -0.021058116108179092, 0.13240031898021698, -0.0010361522436141968, 0.048570241779088974, 0.05090390145778656, 0.03879847005009651, -0.13426977396011353, 0.007587377447634935, 0.05681938678026199, 0.056510962545871735, 0.04056286811828613, 0.02315724454820156, 0.08041147887706757, 0.0013536629267036915, 0.027056610211730003, 0.04919786378741264, 0.025101356208324432, -0.07689042389392853, -0.06158222258090973, -0.10503235459327698, 0.040579233318567276, 0.025164809077978134, 0.013098475523293018, 0.012349276803433895, 0.1285698264837265, -0.038192685693502426, 0.047425851225852966, 0.18406422436237335, -0.3280528485774994, -0.016718005761504173, 0.08162614703178406, 0.045689214020967484, 0.1264619082212448, -0.006382390391081572, -0.016179727390408516, 0.07493036240339279, 0.03499685972929001, 0.0947427749633789, -0.04147137701511383, 0.029339684173464775, -0.05195359140634537, -0.161249577999115, -0.040499426424503326, 0.09787405282258987, -0.0024624650832265615, -0.1352023333311081, -0.04455915093421936, -0.03518229350447655, 0.02830922044813633, 0.008955643512308598, -0.035289593040943146, 0.03145993873476982, 0.007899073883891106, -0.015739088878035545, -0.004473502282053232, -0.10097406059503555, -0.04763495549559593, 0.034888409078121185, 0.08031114935874939, 0.10184182971715927, 0.06160274147987366, 0.0044463700614869595, 0.10834527015686035, -0.18380175530910492, -0.04834075644612312, -0.029088612645864487, -0.06332196295261383, -0.04859381541609764, -0.015779495239257812, -0.10910332202911377, -0.03720741719007492, 0.012732140719890594, 0.13566580414772034, -0.01358004193753004, 0.03451375290751457, -0.0161459781229496, 0.0032118523959070444, 0.057094261050224304, 0.037296444177627563, -0.016469204798340797, 0.014718363992869854, 0.022868318483233452, -0.008681533858180046, -0.023037118837237358, 0.0161071065813303, 0.006970548070967197, 0.03201242908835411, 0.11887403577566147, 0.027074657380580902, -0.10151243209838867, 0.07829359173774719, -0.011661707423627377, -0.0465087816119194, 0.023272588849067688, -0.0908450186252594, -0.06477648764848709, -0.04250660538673401, 0.0027191988192498684, 0.01952817477285862, -0.006838623899966478, -0.010064957663416862, -0.023084618151187897, -0.03289114311337471, -0.08505498617887497, -0.05093137547373772, -0.05127599090337753, -0.13051190972328186, 0.005139056593179703, -0.16935408115386963, -0.037767909467220306, -0.1173020526766777, -0.18992260098457336, -0.027191052213311195, 0.06303966790437698, -0.011084487661719322, -0.052250936627388, 0.08569639176130295, 0.04099339619278908, -0.02967933565378189, -0.0032988230232149363, 0.0688256099820137, -0.004928132519125938, 0.03972430154681206, -0.02003708854317665, 0.06533824652433395, 0.005836020223796368, 0.03471006825566292, -0.053278014063835144, 0.06182475388050079, -0.18439136445522308, 0.0423656702041626, -0.07912760227918625, -0.01355600357055664, -0.08375164866447449, -0.0426633283495903, -0.007442768197506666, 0.00845543947070837, 0.023253854364156723, 0.07711136341094971, -0.17115828394889832, -0.02556055597960949, 0.1018490418791771, -0.1594226211309433, -0.031228555366396904, 0.07126466929912567, -0.044142331928014755, 0.09250020980834961, 0.06931043416261673, 0.1545584499835968, 0.0005119906272739172, -0.08703792095184326, 0.05729376897215843, -0.011798636987805367, 0.011562608182430267, -0.01435618195682764, 0.06635294109582901, -0.021686658263206482, -0.15313908457756042, 0.03872249647974968, -0.13249285519123077, 0.001519670826382935, -0.07614557445049286, 0.0185468140989542, -0.005721181631088257, -0.06774324178695679, -0.07535523921251297, -0.026698224246501923, 0.06563904881477356, -0.07581387460231781, -0.010276520624756813, 0.04129200801253319, 0.07326307147741318, -0.07570329308509827, 0.06747117638587952, -0.008192243054509163, 0.022928548976778984, -0.08086003363132477, -0.0390680730342865, -0.1885715276002884, 0.03794747218489647, 0.09454067796468735, 0.00873752124607563, -0.02372998371720314, 0.13069424033164978, 0.00829875748604536, 0.06793250143527985, -0.054092325270175934, 0.014548848383128643, -0.002392763737589121, -0.0016400793101638556, -0.08268498629331589, -0.09996294230222702, -0.07744446396827698, -0.06678292155265808, 0.08121146261692047, -0.12397955358028412, 0.022649258375167847, -0.06201178580522537, 0.03605063259601593, 0.014277665875852108, -0.08006071299314499, -0.010472354479134083, 0.018272051587700844, -0.057652879506349564, -0.059147920459508896, 0.04428733512759209, 0.07074971497058868, -0.007752295583486557, 0.08974164724349976, -0.05149748548865318, -0.07722014933824539, 0.03315555304288864, 0.09272162616252899, -0.11478238552808762, -0.0004777433059643954, -0.057028789073228836, -0.043888159096241, -0.05727262422442436, -0.023630553856492043, 0.07780048996210098, -0.008309714496135712, 0.1366463452577591, -0.07424319535493851, -0.005687054246664047, 0.012504766695201397, -0.015419073402881622, -0.026240352541208267, 0.03463803231716156, 0.06441081315279007, -0.0645245760679245, 0.01490382943302393, 0.03458923473954201, 0.012106174603104591, 0.07336055487394333, -0.05345221608877182, -0.08243771642446518, 0.01922355405986309, 0.036261186003685, 0.02797195315361023, 0.06733270734548569, -0.020034195855259895, -0.013614916242659092, 0.03172191604971886, 0.022129042074084282, 0.01021480280905962, -0.10500612109899521, 0.05599980428814888, 0.056863006204366684, 0.008731672540307045, 0.0629972293972969, -0.011828679591417313, -0.04284924268722534, 0.07649943977594376, 0.03716765716671944, -0.0025061825290322304, -0.01222394872456789, -0.014866111800074577, -0.11627130955457687, 0.19760164618492126, -0.06554491817951202, -0.16372565925121307, -0.07801877707242966, -0.11934275180101395, -0.007894973270595074, 0.020742572844028473, 0.039499785751104355, -0.026442736387252808, -0.049053043127059937, -0.12517079710960388, 0.05956368148326874, -0.03963065892457962, 0.06614021956920624, 0.1085205227136612, -0.04771476611495018, 0.05695267766714096, -0.1277175098657608, -0.00722262728959322, -0.0811149924993515, -0.06363675743341446, 0.05974873527884483, -0.052608370780944824, 0.03430408611893654, 0.09745419025421143, 0.0314338393509388, -0.01869395188987255, -0.02914157509803772, 0.2155950516462326, 0.04146069660782814, 0.0380391962826252, 0.1311749964952469, -0.053349077701568604, 0.05323764681816101, 0.08309068530797958, 0.014763685874640942, -0.048809874802827835, 0.055493537336587906, 0.045077428221702576, -0.06745090335607529, -0.19274680316448212, -0.025452692061662674, -0.014317113906145096, -0.04635253921151161, 0.07019197195768356, 0.03709013760089874, 0.010378812439739704, 0.06848524510860443, 0.013221634551882744, 0.05899113789200783, -0.0019990610890090466, 0.10271059721708298, 0.03051149472594261, -0.03271125257015228, 0.0875777080655098, -0.01984577812254429, -0.005809287540614605, 0.08382245898246765, -0.020303066819906235, 0.29053106904029846, -0.03426496312022209, 0.00949958898127079, 0.12614662945270538, 0.04008593410253525, 0.060151357203722, 0.12826655805110931, -0.07228518277406693, 0.01600349321961403, -0.07047566771507263, -0.06192149966955185, 0.005495528690516949, 0.03541843593120575, -0.06550110876560211, 0.010415350086987019, -0.07553867250680923, 0.014929935336112976, -0.015831617638468742, 0.3096764385700226, 0.10112424194812775, -0.11262858659029007, -0.05711233988404274, -0.0011338692856952548, -0.0964420959353447, -0.06600669771432877, 0.04393286630511284, 0.06359931081533432, -0.13400886952877045, 0.013365139253437519, -0.025652730837464333, 0.07162485271692276, -0.012292910367250443, 0.018832609057426453, 0.0487314872443676, 0.04810904338955879, -0.04377692937850952, 0.004928219597786665, -0.1870020627975464, 0.19361448287963867, 0.007397958543151617, 0.021665183827280998, -0.04621961712837219, 0.03193606436252594, 0.01186981052160263, -0.02161029540002346, 0.05860448256134987, 0.021031629294157028, -0.01813824661076069, -0.04901823028922081, -0.045729316771030426, 0.012720296159386635, 0.0764107033610344, -0.03218866512179375, 0.10505924373865128, -0.004631137941032648, 0.04340708255767822, 0.019036753103137016, 0.0937647819519043, -0.18565310537815094, -0.09431798756122589, 0.030336227267980576, -0.05658456310629845, -0.10277153551578522, -0.07609858363866806, -0.09748540073633194, -0.02080940641462803, 0.24343186616897583, -0.10583359003067017, -0.07821641862392426, -0.10085808485746384, 0.01825420930981636, 0.10829216241836548, -0.04453686997294426, 0.030347418040037155, -0.007907316088676453, 0.1198272556066513, -0.06459291279315948, -0.13374558091163635, 0.02215402200818062, -0.09807975590229034, -0.15766797959804535, -0.06472649425268173, 0.11183912307024002, 0.06019134074449539, 0.032337483018636703, -0.031220052391290665, 0.018477486446499825, 0.034329675137996674, -0.04426102712750435, -0.008823570795357227, 0.062128808349370956, 0.10314901173114777, 0.03486432135105133, -0.11358387023210526, 0.015734074637293816, -0.06471911817789078, -0.06486109644174576, 0.07335653156042099, 0.26143768429756165, -0.05228874087333679, 0.1170317605137825, 0.12369624525308609, -0.0768895372748375, -0.1504870504140854, 0.03434903174638748, 0.08679409325122833, -0.02062397636473179, 0.015085174702107906, -0.15359516441822052, 0.09290174394845963, 0.1160566657781601, -0.0187546294182539, 0.0018912756349891424, -0.18405336141586304, -0.13079705834388733, 0.06743825972080231, 0.10591407120227814, 0.2635614275932312, -0.06895875930786133, -0.03865223750472069, 0.01934138312935829, -0.09626081585884094, 0.008808009326457977, 0.1237916350364685, 0.06780058890581131, -0.028619498014450073, -0.08350107818841934, 0.009150859899818897, -0.04430542513728142, 0.09364653378725052, 0.057623475790023804, 0.0621013343334198, -0.007440190762281418, 0.028973380103707314, -0.015718266367912292, -0.04439430683851242, 0.06498250365257263, 0.021530089899897575, 0.04767194762825966, -0.08696328103542328, -0.028726670891046524, -0.07581479102373123, 0.02691229060292244, -0.02686309441924095, -0.07668855786323547, -0.059835270047187805, 0.08404973149299622, 0.04838696867227554, -0.028583461418747902, 0.01830698549747467, 0.022665217518806458, 0.12028459459543228, 0.1568852812051773, 0.0002636278513818979, -0.054107416421175, -0.06801974028348923, -0.03501317650079727, -0.01784607395529747, 0.06923915445804596, -0.04183409363031387, 0.016782613471150398, 0.06617780774831772, 0.02008723095059395, 0.09605531394481659, 0.05893808975815773, -0.11108918488025665, -0.0219996627420187, 0.03770725801587105, -0.1672164499759674, 0.031205326318740845, 0.00010752464004326612, 0.016112785786390305, -0.0386807881295681, 0.03316313773393631, 0.14238528907299042, -0.062310781329870224, -0.03252318874001503, -0.03874190151691437, 0.06730476021766663, 0.02311651036143303, 0.14957325160503387, 0.036033544689416885, 0.03725285455584526, -0.08408474177122116, 0.12369028478860855, 0.032970327883958817, -0.038814011961221695, 0.01943071186542511, -0.014448992908000946, -0.11511926352977753, 0.009746793657541275, 0.05975478142499924, 0.03347472473978996, -0.05314081534743309, -0.010110425762832165, -0.02879035472869873, -0.07750024646520615, 0.06237170845270157, 0.18462222814559937, 0.06629177927970886, 0.06793166697025299, -0.05325433239340782, -0.04025532677769661, -0.08078304678201675, 0.04004304111003876, 0.03382931277155876, 0.07596118748188019, -0.08139519393444061, 0.0938575342297554, 0.013511238619685173, 0.04015949368476868, -0.03106038086116314, -0.053702834993600845, -0.10630159825086594, -0.054419636726379395, -0.10401476174592972, -0.00042034831130877137, -0.08009913563728333, -0.0344577357172966, -0.003941631875932217, 0.002105324761942029, -0.010737047530710697, 0.05042077600955963, -0.059094492346048355, -0.010165817104279995, -0.015519067645072937, 0.037095651030540466, -0.06165678799152374, -0.03378921374678612, 0.023307980969548225, -0.10125283896923065, 0.09337390214204788, 0.04605124518275261, 0.003965694922953844, 0.006382026243954897, 0.09700547158718109, -0.023815665394067764, 0.022415893152356148, 0.010703068226575851, -0.04516769200563431, -0.08421800285577774, -0.0022230225149542093, -0.006784854922443628, -0.018157754093408585, -0.003694656305015087, 0.07906460016965866, -0.08580956608057022, 0.03846216946840286, -0.004028939642012119, -0.0007747995550744236, -0.07151723653078079, -0.012692589312791824, 0.10725922882556915, 0.09206365793943405, 0.0498054102063179, -0.09304824471473694, 0.008693399839103222, -0.13995279371738434, -0.04083450138568878, 0.005193290766328573, -0.01535836048424244, -0.12452398240566254, -0.005023058503866196, 0.023110250011086464, -0.0013581571402028203, 0.2204236090183258, -0.06114256754517555, -0.016329189762473106, 0.02148878201842308, -0.09005085378885269, 0.11176122725009918, -0.025419602170586586, 0.17846858501434326, -0.014106636866927147, -0.04188627377152443, -0.005176341626793146, 0.04682119935750961, 0.019698981195688248, -0.018589498475193977, 0.1817123144865036, 0.13911037147045135, 0.030014608055353165, 0.03843000903725624, -0.021973544731736183, -0.0025391578674316406, -0.03886398300528526, -0.034535035490989685, 0.03689178079366684, 0.04586875066161156, 0.016098100692033768, 0.13740259408950806, 0.07111913710832596, -0.16526363790035248, 0.035799141973257065, -0.03538702055811882, -0.04044630751013756, -0.11056829988956451, -0.0896896943449974, -0.02324904315173626, -0.07619161158800125, 0.010037362575531006, -0.12876878678798676, 0.00032359245233237743, 0.18437503278255463, 0.0647130012512207, 0.027524810284376144, 0.013930872082710266, -0.11784214526414871, -0.03411809355020523, 0.05258830636739731, 0.009476943872869015, 0.02267969399690628, 0.05792723596096039, 0.0005914982757531106, 0.05499471351504326, 0.029791919514536858, 0.012249073944985867, -0.0019279709085822105, 0.07502882182598114, 0.019614893943071365, 0.03885239362716675, -0.06255573779344559, -0.0032647629268467426, -0.03736529499292374, 0.06875210255384445, 0.11109716445207596, 0.04500225931406021, -0.052810780704021454, -0.008194663561880589, 0.1580021232366562, -0.03673071041703224, -0.0015920534497126937, -0.12919002771377563, 0.33158257603645325, 0.018614860251545906, 0.00900441873818636, 0.04147160053253174, -0.07341022789478302, -0.048858363181352615, 0.21494527161121368, 0.09935204684734344, -0.019848784431815147, -0.021754059940576553, 0.0000025943602395273047, -0.030358921736478806, -0.02248053438961506, 0.1554276943206787, 0.041210345923900604, 0.12159156799316406, -0.04997324198484421, -0.04530788213014603, -0.029896888881921768, -0.009557243436574936, -0.12188894301652908, 0.13091178238391876, -0.01694302447140217, -0.02488841861486435, -0.06651780009269714, 0.030827101320028305, 0.06529698520898819, -0.31164681911468506, -0.005492104217410088, -0.027627713978290558, -0.10832188278436661, -0.013052105903625488, -0.02693665586411953, -0.021097585558891296, 0.04610246792435646, -0.04144112765789032, 0.07081303000450134, 0.037369634956121445, 0.031675469130277634, -0.02092999778687954, -0.10734014213085175, 0.17425699532032013, 0.0624823160469532, 0.0918102040886879, 0.02492346055805683, 0.07139232009649277, 0.05872272700071335, 0.03307962790131569, -0.09894450753927231, 0.04592422395944595, 0.013520949520170689, -0.0893852487206459, -0.04963883012533188, 0.11254335194826126, 0.002190779196098447, 0.043672915548086166, 0.034572090953588486, -0.10296063125133514, 0.017092430964112282, 0.06891486048698425, -0.062090445309877396, -0.09929003566503525, -0.0032612981740385294, -0.08831910789012909, 0.16265912353992462, 0.14756079018115997, -0.015894994139671326, 0.01922125369310379, -0.06766025722026825, -0.007238536141812801, 0.05137991905212402, 0.0026227589696645737, -0.023933902382850647, -0.19645756483078003, 0.0361492745578289, -0.09205364435911179, -0.0105936573818326, -0.23171274363994598, -0.10212479531764984, -0.006145728286355734, -0.0486142598092556, -0.028566546738147736, 0.06113741174340248, 0.030914796516299248, 0.07105346024036407, -0.01742616668343544, -0.018996143713593483, -0.03353605419397354, 0.09166982769966125, -0.11325589567422867, -0.06446344405412674 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_140k"]}
null
google/multiberts-seed_3-step_140k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_140k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 140k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_140k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 140k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 140k (max: 2000k, i.e., 2M steps)." ]
[ -0.07713726162910461, 0.0883481353521347, -0.002168227918446064, 0.042028769850730896, 0.08658899366855621, -0.013138983398675919, 0.07661335170269012, 0.09910330176353455, -0.0318232998251915, 0.022425012663006783, 0.08169207721948624, 0.011363580822944641, 0.014100632630288601, 0.09286096692085266, 0.023276541382074356, -0.22387850284576416, 0.025462893769145012, -0.031247351318597794, -0.07937243580818176, 0.07796868681907654, 0.09895268827676773, -0.08102571219205856, 0.046818800270557404, 0.026399750262498856, -0.1081627607345581, 0.04966605827212334, -0.007148853503167629, -0.02016042172908783, 0.1314496248960495, -0.00033372893813066185, 0.04864555969834328, 0.051040973514318466, 0.037066854536533356, -0.13679447770118713, 0.007900779135525227, 0.05748105049133301, 0.0564185306429863, 0.040918607264757156, 0.024102743715047836, 0.08015090972185135, 0.001693706144578755, 0.02650824375450611, 0.04807787761092186, 0.024831658229231834, -0.07608770579099655, -0.06535865366458893, -0.10405340790748596, 0.03566053509712219, 0.02510196901857853, 0.013046915642917156, 0.011551345698535442, 0.13078086078166962, -0.03913100063800812, 0.04781370982527733, 0.18657498061656952, -0.3341255486011505, -0.015951113775372505, 0.08247197419404984, 0.048393577337265015, 0.12141763418912888, -0.005750024225562811, -0.014807328581809998, 0.07392948120832443, 0.03396262973546982, 0.09745470434427261, -0.04087251052260399, 0.02958180010318756, -0.05169913172721863, -0.16263221204280853, -0.04036843404173851, 0.09913263469934464, -0.0027185464277863503, -0.1372312605381012, -0.045575886964797974, -0.03458380699157715, 0.03217824175953865, 0.008763766847550869, -0.03513652831315994, 0.030519884079694748, 0.009958285838365555, -0.018220767378807068, -0.004533444531261921, -0.10316292941570282, -0.04934587702155113, 0.03583899140357971, 0.0790606290102005, 0.10219204425811768, 0.06143362820148468, 0.00409189285710454, 0.10984445363283157, -0.18559078872203827, -0.04770427942276001, -0.028724761679768562, -0.06294502317905426, -0.04784693196415901, -0.01528863050043583, -0.11041028797626495, -0.04196850210428238, 0.01435719896107912, 0.13525371253490448, -0.009344293735921383, 0.03362983837723732, -0.01943213678896427, 0.003972564823925495, 0.058475200086832047, 0.04171342775225639, -0.014741374179720879, 0.018536105751991272, 0.02251230552792549, -0.010643277317285538, -0.02351963520050049, 0.01613660342991352, 0.005242728162556887, 0.033970996737480164, 0.1191142201423645, 0.02787403017282486, -0.10460822284221649, 0.0801929160952568, -0.013521303422749043, -0.04769099876284599, 0.024675633758306503, -0.08974093943834305, -0.06440773606300354, -0.0406436026096344, 0.003764025866985321, 0.022213377058506012, -0.007974010892212391, -0.009387517347931862, -0.021947994828224182, -0.03251112997531891, -0.08327244967222214, -0.049055807292461395, -0.0522986464202404, -0.13135646283626556, 0.004986141808331013, -0.17316032946109772, -0.036782778799533844, -0.11655185371637344, -0.1887224316596985, -0.025184383615851402, 0.0626111775636673, -0.011087294667959213, -0.05045713856816292, 0.08429441601037979, 0.0412052646279335, -0.029101576656103134, -0.0030151410028338432, 0.07283634692430496, -0.006396669894456863, 0.039596281945705414, -0.019500426948070526, 0.06526196002960205, 0.00649018632248044, 0.03468028083443642, -0.05289721116423607, 0.062015559524297714, -0.17652980983257294, 0.04158494994044304, -0.07964856177568436, -0.018162690103054047, -0.08493652939796448, -0.0408160500228405, -0.005293504800647497, 0.00892205722630024, 0.022098887711763382, 0.07492851465940475, -0.175192192196846, -0.025930698961019516, 0.10851271450519562, -0.15752092003822327, -0.02877682074904442, 0.0723089650273323, -0.04479367285966873, 0.09298700839281082, 0.06937691569328308, 0.1527378112077713, -0.0034468688536435366, -0.08979315310716629, 0.05767272412776947, -0.010872776620090008, 0.012930691242218018, -0.01100664958357811, 0.0672249048948288, -0.020701758563518524, -0.1545112580060959, 0.03947964683175087, -0.13435134291648865, 0.0011970280902460217, -0.07618135213851929, 0.01998268812894821, -0.006690944544970989, -0.06748747080564499, -0.07308276742696762, -0.027764195576310158, 0.06596784293651581, -0.07535291463136673, -0.012843231670558453, 0.04058719426393509, 0.07213438302278519, -0.07776948809623718, 0.06520815193653107, -0.010089751332998276, 0.02171744592487812, -0.0822690799832344, -0.039158523082733154, -0.18769069015979767, 0.03966546058654785, 0.09755656123161316, 0.011711876839399338, -0.024468662217259407, 0.13484366238117218, 0.007794148754328489, 0.06802023202180862, -0.05241270735859871, 0.013822016306221485, -0.0036507658660411835, -0.0019129604334011674, -0.08241274207830429, -0.09860879182815552, -0.07831171900033951, -0.06896466016769409, 0.07896353304386139, -0.12573859095573425, 0.0215110182762146, -0.06127113848924637, 0.03582919016480446, 0.01543884351849556, -0.07952100783586502, -0.009602620266377926, 0.018016142770648003, -0.05805784836411476, -0.05849459394812584, 0.04437389224767685, 0.07027022540569305, -0.008709337562322617, 0.09191551059484482, -0.053335145115852356, -0.07811401784420013, 0.032636143267154694, 0.09248743951320648, -0.11356529593467712, -0.0008528166217729449, -0.05725402012467384, -0.04311931133270264, -0.057182569056749344, -0.02296527475118637, 0.07858701795339584, -0.008102312684059143, 0.13706402480602264, -0.07407330721616745, -0.007611284963786602, 0.011274388059973717, -0.016260012984275818, -0.026496291160583496, 0.03413001820445061, 0.06667500734329224, -0.07000650465488434, 0.01579865999519825, 0.03843172267079353, 0.010117319412529469, 0.07664571702480316, -0.054055120795965195, -0.08402552455663681, 0.018791276961565018, 0.03733719885349274, 0.028418583795428276, 0.06755524128675461, -0.02199057675898075, -0.014155269600450993, 0.032041408121585846, 0.02026190608739853, 0.009547156281769276, -0.10641103982925415, 0.05614401027560234, 0.05654354393482208, 0.006622632499784231, 0.0689777284860611, -0.010705169290304184, -0.04379226267337799, 0.07598762214183807, 0.036769378930330276, -0.0026156411040574312, -0.012056006118655205, -0.014602436684072018, -0.11587048321962357, 0.19839352369308472, -0.06579738855361938, -0.16657717525959015, -0.0749376118183136, -0.11709754168987274, -0.005688208620995283, 0.02170816995203495, 0.040153857320547104, -0.026229234412312508, -0.04985018074512482, -0.1266980767250061, 0.06146388128399849, -0.041260551661252975, 0.06623923033475876, 0.10621798783540726, -0.0490611270070076, 0.055613692849874496, -0.12785963714122772, -0.00743773253634572, -0.08074836432933807, -0.06795243918895721, 0.0611591637134552, -0.052852656692266464, 0.03322504088282585, 0.09521995484828949, 0.032558903098106384, -0.018271835520863533, -0.029499705880880356, 0.21292810142040253, 0.04345083236694336, 0.03698160871863365, 0.1325213611125946, -0.054821450263261795, 0.05288565903902054, 0.07802481204271317, 0.013097728602588177, -0.04907397925853729, 0.055499982088804245, 0.04670247063040733, -0.06760522723197937, -0.19266821444034576, -0.024278076365590096, -0.01302691362798214, -0.04495973140001297, 0.06933120638132095, 0.03754166513681412, 0.01104368269443512, 0.07020223885774612, 0.01254641730338335, 0.05778121203184128, -0.0023991079069674015, 0.10297514498233795, 0.0298276636749506, -0.03374258801341057, 0.0899236872792244, -0.0196234080940485, -0.0071053942665457726, 0.08244671672582626, -0.018055174499750137, 0.2868649363517761, -0.03189023211598396, 0.00991662498563528, 0.12763962149620056, 0.03973427042365074, 0.0609472319483757, 0.12888270616531372, -0.07270559668540955, 0.015213334001600742, -0.07204826921224594, -0.06232685595750809, 0.004832635633647442, 0.0352913960814476, -0.06320524960756302, 0.008416705764830112, -0.07438509166240692, 0.012542116455733776, -0.016998043283820152, 0.3092864751815796, 0.10352832823991776, -0.11211534589529037, -0.05685402452945709, -0.0014925978612154722, -0.09510602056980133, -0.06625963747501373, 0.04284615069627762, 0.06303728371858597, -0.13563606142997742, 0.012080246582627296, -0.028058379888534546, 0.07187185436487198, -0.013395390473306179, 0.01897219382226467, 0.047811366617679596, 0.04771846905350685, -0.04225482419133186, 0.005941999610513449, -0.19190877676010132, 0.19007202982902527, 0.007678090129047632, 0.02226145938038826, -0.04832063987851143, 0.03267116844654083, 0.010349677875638008, -0.02615053579211235, 0.05731769651174545, 0.01809709519147873, -0.018359584733843803, -0.05166517198085785, -0.04652956500649452, 0.013835880905389786, 0.07805242389440536, -0.034378137439489365, 0.10640306770801544, -0.005383557174354792, 0.04323151335120201, 0.020033255219459534, 0.09720344841480255, -0.1881808340549469, -0.095131054520607, 0.030010629445314407, -0.05429687350988388, -0.10175582766532898, -0.07565654814243317, -0.09652465581893921, -0.019049353897571564, 0.24797123670578003, -0.10949614644050598, -0.07653723657131195, -0.09961037337779999, 0.018599171191453934, 0.1070721223950386, -0.043806854635477066, 0.029985995963215828, -0.010027528740465641, 0.12121587991714478, -0.06390947103500366, -0.13583794236183167, 0.022543519735336304, -0.09943447262048721, -0.1596471220254898, -0.06523475050926208, 0.11331009864807129, 0.06085307151079178, 0.03134281933307648, -0.028638742864131927, 0.018325647339224815, 0.03453577682375908, -0.04380534589290619, -0.006932032760232687, 0.06594209372997284, 0.10287169367074966, 0.03403578698635101, -0.11599694192409515, 0.018688635900616646, -0.0644029825925827, -0.0650724247097969, 0.07600171864032745, 0.2597506046295166, -0.05212642252445221, 0.11871200799942017, 0.11636610329151154, -0.07689543068408966, -0.1488354206085205, 0.031676966696977615, 0.08936037123203278, -0.020146965980529785, 0.016872433945536613, -0.15753281116485596, 0.09276171773672104, 0.11539481580257416, -0.01908102259039879, 0.005480033345520496, -0.18402263522148132, -0.1287841498851776, 0.06894981116056442, 0.10719245672225952, 0.2625119686126709, -0.07031157612800598, -0.03796405345201492, 0.01914057321846485, -0.09134958684444427, 0.018400901928544044, 0.12161677330732346, 0.0695515125989914, -0.028041072189807892, -0.08299540728330612, 0.009448268450796604, -0.04364166408777237, 0.09288883954286575, 0.05473462864756584, 0.06186601147055626, -0.006439534481614828, 0.03065209649503231, -0.01525777019560337, -0.04284683242440224, 0.06678121536970139, 0.015523230656981468, 0.04719410091638565, -0.0865432620048523, -0.030490737408399582, -0.07419797033071518, 0.02764614298939705, -0.02616533637046814, -0.07685784250497818, -0.05848031863570213, 0.08107879012823105, 0.04687441512942314, -0.02700960822403431, 0.01855660416185856, 0.02300483174622059, 0.12006635218858719, 0.15593205392360687, 0.0007324752514250576, -0.047717537730932236, -0.06794559210538864, -0.03802735358476639, -0.017876457422971725, 0.07150432467460632, -0.03909802436828613, 0.01713830605149269, 0.0636974647641182, 0.01842011697590351, 0.09681382030248642, 0.05810723826289177, -0.1135653480887413, -0.0211592148989439, 0.03528793156147003, -0.1684204488992691, 0.03157452866435051, 0.0011003101244568825, 0.02036261558532715, -0.036250751465559006, 0.03563268110156059, 0.1436571180820465, -0.060685548931360245, -0.03326410427689552, -0.03959382325410843, 0.06699124723672867, 0.02472309023141861, 0.14910434186458588, 0.03412797674536705, 0.036912139505147934, -0.08279062062501907, 0.12133532017469406, 0.031315241008996964, -0.035398971289396286, 0.022479185834527016, -0.01977488584816456, -0.11322691291570663, 0.008973844349384308, 0.061152245849370956, 0.03470228984951973, -0.051167361438274384, -0.011504276655614376, -0.027206014841794968, -0.0762704461812973, 0.06214659661054611, 0.1861499398946762, 0.06698822975158691, 0.07140844315290451, -0.054608121514320374, -0.04005265235900879, -0.07985560595989227, 0.0395856536924839, 0.03338915854692459, 0.07598794996738434, -0.08148431777954102, 0.09342536330223083, 0.013956155627965927, 0.03978852182626724, -0.03131970018148422, -0.05389537662267685, -0.10695412755012512, -0.055485889315605164, -0.10347456485033035, 0.0026059835217893124, -0.0780976414680481, -0.03608974069356918, -0.0024896615650504827, 0.003126459661871195, -0.007372010964900255, 0.05079176649451256, -0.05881757661700249, -0.010081414133310318, -0.017169183120131493, 0.03688804805278778, -0.06348352134227753, -0.0344264954328537, 0.022734418511390686, -0.10212114453315735, 0.0930006206035614, 0.046825312077999115, 0.0046225497499108315, 0.00828817579895258, 0.0857987031340599, -0.02233138494193554, 0.024486225098371506, 0.010306341573596, -0.04791833832859993, -0.08229200541973114, -0.001405200338922441, -0.006644764915108681, -0.017307206988334656, -0.005295611452311277, 0.08212049305438995, -0.08641906082630157, 0.03529835864901543, -0.003198034130036831, -0.000012095554666302633, -0.06979896873235703, -0.012657228857278824, 0.10414982587099075, 0.09408296644687653, 0.04901006445288658, -0.09394220262765884, 0.010029041208326817, -0.13879823684692383, -0.04032441973686218, 0.0044478182680904865, -0.014699959196150303, -0.1272348016500473, -0.005061691161245108, 0.02227964624762535, -0.0025864741764962673, 0.22168168425559998, -0.05822300165891647, -0.014411602169275284, 0.01857038587331772, -0.09341234713792801, 0.12066509574651718, -0.024847157299518585, 0.18074564635753632, -0.013641455210745335, -0.0409730039536953, -0.008336784318089485, 0.04622014984488487, 0.018623633310198784, -0.02229583077132702, 0.17887111008167267, 0.13835345208644867, 0.02141718752682209, 0.03819120302796364, -0.02328334003686905, -0.003898077644407749, -0.03820190206170082, -0.03598173335194588, 0.03675639629364014, 0.046036623418331146, 0.014847194775938988, 0.14516904950141907, 0.06847886741161346, -0.16518494486808777, 0.03367609530687332, -0.03322639316320419, -0.039791908115148544, -0.11159667372703552, -0.09787523001432419, -0.02595769241452217, -0.07416513562202454, 0.01041413750499487, -0.1283482015132904, 0.0002679869649000466, 0.18118560314178467, 0.06420747935771942, 0.026320813223719597, 0.012356700375676155, -0.11291661858558655, -0.034872714430093765, 0.05518649145960808, 0.00952065084129572, 0.01999249868094921, 0.05724950507283211, 0.0028426493518054485, 0.05634330213069916, 0.031124114990234375, 0.01314195804297924, -0.0019881906919181347, 0.07580315321683884, 0.019556356593966484, 0.038285817950963974, -0.06260644644498825, -0.0034077984746545553, -0.036995500326156616, 0.06953691691160202, 0.11010618507862091, 0.04587896540760994, -0.05410093441605568, -0.008034423924982548, 0.15593786537647247, -0.03517056256532669, 0.0019449860556051135, -0.12807737290859222, 0.3320687413215637, 0.016467956826090813, 0.010827641934156418, 0.04147300869226456, -0.07146111875772476, -0.047706786543130875, 0.21203060448169708, 0.09732510149478912, -0.019677922129631042, -0.020596977323293686, -0.0006632813601754606, -0.03041072003543377, -0.022637782618403435, 0.15574374794960022, 0.04192577302455902, 0.12333831191062927, -0.052120864391326904, -0.04700901359319687, -0.02910587191581726, -0.009924252517521381, -0.1228717491030693, 0.1257203221321106, -0.016296403482556343, -0.02566678635776043, -0.06621892750263214, 0.029292015358805656, 0.06556855142116547, -0.30869919061660767, -0.0074690403416752815, -0.025136036798357964, -0.10725993663072586, -0.012826715596020222, -0.02798105962574482, -0.021308351308107376, 0.04594472423195839, -0.043107327073812485, 0.07069814950227737, 0.03773447871208191, 0.03162574768066406, -0.02126200497150421, -0.1012992337346077, 0.1721487194299698, 0.05865908041596413, 0.09046947956085205, 0.0246431827545166, 0.07425039261579514, 0.058213334530591965, 0.032661836594343185, -0.09591877460479736, 0.04901932552456856, 0.013383891433477402, -0.09180659800767899, -0.048324499279260635, 0.11211897432804108, 0.0026959397364407778, 0.045449405908584595, 0.03472922369837761, -0.10196613520383835, 0.019534064456820488, 0.06724370270967484, -0.06361326575279236, -0.09833653271198273, -0.001972435973584652, -0.0908113494515419, 0.16231124103069305, 0.1482645571231842, -0.016940731555223465, 0.018040824681520462, -0.06902018934488297, -0.004423065576702356, 0.051252465695142746, 0.0003818826808128506, -0.0245817918330431, -0.1939942091703415, 0.036098893731832504, -0.08825168758630753, -0.010645128786563873, -0.23078285157680511, -0.10154151916503906, -0.0068547991104424, -0.04786694422364235, -0.02876967005431652, 0.05776995047926903, 0.02947348915040493, 0.07180330157279968, -0.01845831610262394, -0.02187231555581093, -0.033323984593153, 0.09049893170595169, -0.11420758813619614, -0.06441953778266907 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1500k"]}
null
google/multiberts-seed_3-step_1500k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1500k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1500k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps)." ]
[ -0.08033663779497147, 0.08630726486444473, -0.0023168029729276896, 0.04572635143995285, 0.09014689922332764, -0.014822917990386486, 0.0746791809797287, 0.09862644225358963, -0.03250828757882118, 0.02115781046450138, 0.08125424385070801, 0.008858979679644108, 0.016852684319019318, 0.09301988780498505, 0.0201772078871727, -0.21298947930335999, 0.0259284358471632, -0.03482234105467796, -0.09336310625076294, 0.07667505741119385, 0.0978248193860054, -0.08292543143033981, 0.04770876094698906, 0.024141987785696983, -0.11030537635087967, 0.05142867937684059, -0.007433589547872543, -0.019768720492720604, 0.1289771944284439, 0.003952031023800373, 0.046645332127809525, 0.052984680980443954, 0.03749166056513786, -0.13861681520938873, 0.008158157579600811, 0.055228814482688904, 0.05706208571791649, 0.04048635810613632, 0.026608644053339958, 0.08009632676839828, -0.010747377760708332, 0.029210364446043968, 0.04650154709815979, 0.027533238753676414, -0.07547079026699066, -0.04102451354265213, -0.10426885634660721, 0.04469069093465805, 0.025299247354269028, 0.008970601484179497, 0.014658740721642971, 0.12168637663125992, -0.04114960506558418, 0.04870232567191124, 0.18890133500099182, -0.3176395297050476, -0.018378080800175667, 0.09098674356937408, 0.042970284819602966, 0.12776875495910645, -0.0017079183598980308, -0.013565470464527607, 0.07545731961727142, 0.032474469393491745, 0.09419381618499756, -0.04189716652035713, 0.029467685148119926, -0.05128668621182442, -0.16093672811985016, -0.04248664528131485, 0.0962122306227684, -0.002762629883363843, -0.1351160854101181, -0.04192349687218666, -0.033323850482702255, 0.027705062180757523, 0.008781049400568008, -0.03810116648674011, 0.02979920245707035, 0.00699373846873641, -0.012397421523928642, -0.006679809186607599, -0.0973559021949768, -0.051922623068094254, 0.040528688579797745, 0.08244559913873672, 0.10204905271530151, 0.06351076811552048, 0.001929098623804748, 0.10456206649541855, -0.18936409056186676, -0.045996107161045074, -0.0312466099858284, -0.06227303668856621, -0.0489700548350811, -0.017727503553032875, -0.10835540294647217, -0.05268777534365654, 0.014178757555782795, 0.13824060559272766, -0.013925440609455109, 0.03353031352162361, -0.019588932394981384, 0.0025335366372019053, 0.05795910209417343, 0.035877253860235214, -0.02001773938536644, 0.018266940489411354, 0.024679267778992653, -0.004450767766684294, -0.02875111997127533, 0.015737177804112434, 0.006114277523010969, 0.03309709206223488, 0.11721380054950714, 0.03153611719608307, -0.10431189835071564, 0.07692274451255798, -0.012784802354872227, -0.04839446023106575, 0.025807052850723267, -0.08857125788927078, -0.06640395522117615, -0.04448332265019417, 0.0026913199108093977, 0.010149343870580196, -0.007509555667638779, -0.007932456210255623, -0.0252249576151371, -0.025991350412368774, -0.08328486979007721, -0.0492115318775177, -0.05280613899230957, -0.13327263295650482, 0.0036907989997416735, -0.1803201287984848, -0.03610750287771225, -0.11820365488529205, -0.19436074793338776, -0.025643520057201385, 0.06342729926109314, -0.013607717119157314, -0.055048368871212006, 0.08402498066425323, 0.03753240779042244, -0.030330700799822807, -0.001747057307511568, 0.07359994947910309, -0.0033573138061910868, 0.03761952370405197, -0.01980598270893097, 0.06579755991697311, 0.009727290831506252, 0.03701642155647278, -0.04973360523581505, 0.05949511379003525, -0.18042388558387756, 0.04774259775876999, -0.08301126211881638, -0.01340231578797102, -0.08400242775678635, -0.03772594779729843, -0.009624779224395752, 0.008278118446469307, 0.028128523379564285, 0.08027567714452744, -0.17775434255599976, -0.024905674159526825, 0.10324239730834961, -0.15856540203094482, -0.033009182661771774, 0.07025350630283356, -0.043909329921007156, 0.08978535979986191, 0.06708353757858276, 0.14975391328334808, 0.0007866449886932969, -0.08486039936542511, 0.060262419283390045, -0.01271069049835205, 0.010681681334972382, -0.01745663769543171, 0.06675312668085098, -0.02019042894244194, -0.16020289063453674, 0.03856061026453972, -0.13184049725532532, 0.0039133173413574696, -0.07913658767938614, 0.017630353569984436, -0.006367436610162258, -0.07412338256835938, -0.0772164911031723, -0.02932976745069027, 0.06571867316961288, -0.0750981792807579, -0.007217464968562126, 0.040874071419239044, 0.06862953305244446, -0.07135015726089478, 0.06443895399570465, -0.008093098178505898, 0.022627361118793488, -0.08783192187547684, -0.03774691000580788, -0.1906413584947586, 0.05094306915998459, 0.0963410884141922, 0.011767465621232986, -0.022503254935145378, 0.1315843015909195, 0.007869378663599491, 0.06519489735364914, -0.05339771509170532, 0.014971873722970486, -0.003255819668993354, -0.0034027458168566227, -0.0824417918920517, -0.09509585052728653, -0.07241330295801163, -0.06649444997310638, 0.05973878130316734, -0.11612794548273087, 0.02387128956615925, -0.06357884407043457, 0.03288869932293892, 0.016766181215643883, -0.08211370557546616, -0.007838704623281956, 0.020833536982536316, -0.05592819303274155, -0.05758597329258919, 0.04338723421096802, 0.06874014437198639, -0.0018439945997670293, 0.0873701199889183, -0.043030161410570145, -0.0748511403799057, 0.030125783756375313, 0.09896672517061234, -0.11469820886850357, 0.0035264496691524982, -0.05564882978796959, -0.040871232748031616, -0.06194315478205681, -0.021576983854174614, 0.07533133774995804, -0.004630387295037508, 0.1358652114868164, -0.07739821076393127, -0.00399123877286911, 0.015573878772556782, -0.013109966181218624, -0.02714385837316513, 0.035609543323516846, 0.07743872702121735, -0.06235082820057869, 0.015074524097144604, 0.02778446301817894, 0.013339848257601261, 0.07166042923927307, -0.050789982080459595, -0.0802873820066452, 0.019953621551394463, 0.038425397127866745, 0.030631357803940773, 0.06743314117193222, -0.025896625593304634, -0.01351503748446703, 0.029471201822161674, 0.021299419924616814, 0.011028487235307693, -0.1046387255191803, 0.054914578795433044, 0.059780873358249664, 0.007020810153335333, 0.06429892778396606, -0.010688850656151772, -0.04192906245589256, 0.07630960643291473, 0.035291701555252075, -0.0008616606937721372, -0.014055388048291206, -0.015744149684906006, -0.11598250269889832, 0.1959099918603897, -0.06570913642644882, -0.17689061164855957, -0.07720828056335449, -0.10856218636035919, -0.009930191561579704, 0.020512988790869713, 0.039288219064474106, -0.0282222218811512, -0.05172070115804672, -0.12462303042411804, 0.06684263050556183, -0.03992873802781105, 0.06678340584039688, 0.11507824808359146, -0.047423817217350006, 0.05542399734258652, -0.1289246529340744, -0.006549109239131212, -0.08030503243207932, -0.06566780805587769, 0.05842629447579384, -0.04702132195234299, 0.03743817284703255, 0.0932789146900177, 0.027396919205784798, -0.01690473034977913, -0.030005449429154396, 0.22273753583431244, 0.044809043407440186, 0.03510047122836113, 0.13004058599472046, -0.054030176252126694, 0.051902465522289276, 0.08899453282356262, 0.016070742160081863, -0.05102122575044632, 0.057104066014289856, 0.05011877045035362, -0.06731393933296204, -0.19230037927627563, -0.0226343534886837, -0.014821083284914494, -0.04469463974237442, 0.06780572980642319, 0.036282796412706375, 0.012236779555678368, 0.06949395686388016, 0.013277527876198292, 0.057810209691524506, -0.00239395210519433, 0.09882469475269318, 0.021367210894823074, -0.03302428126335144, 0.08975427597761154, -0.016546892002224922, -0.004247304052114487, 0.08246936649084091, -0.019678952172398567, 0.2883884608745575, -0.03296816721558571, 0.008208224549889565, 0.12769992649555206, 0.035605352371931076, 0.062393754720687866, 0.1346411556005478, -0.0759417861700058, 0.013745706528425217, -0.0687226951122284, -0.05865781381726265, 0.0012022193986922503, 0.0320257730782032, -0.06222647801041603, 0.013252665288746357, -0.07586026936769485, 0.025946633890271187, -0.015327565371990204, 0.3115127980709076, 0.09459321200847626, -0.10074532777070999, -0.05407083407044411, -0.003228524699807167, -0.09634082764387131, -0.06662759929895401, 0.04513596370816231, 0.07004593312740326, -0.1325618326663971, 0.009241359308362007, -0.02866978757083416, 0.0749482735991478, -0.007857096381485462, 0.018738040700554848, 0.04505808651447296, 0.049625176936388016, -0.04410911351442337, 0.003231210168451071, -0.20300960540771484, 0.1906610131263733, 0.008113072253763676, 0.022439997643232346, -0.04633015766739845, 0.03342503681778908, 0.009015083312988281, -0.026509489864110947, 0.06120409816503525, 0.021087387576699257, -0.013914262875914574, -0.05615004897117615, -0.047186415642499924, 0.011872668750584126, 0.07608011364936829, -0.03363615274429321, 0.10127907991409302, -0.0033257771283388138, 0.04324527829885483, 0.01849375292658806, 0.10241036862134933, -0.19555990397930145, -0.0965583547949791, 0.030929066240787506, -0.06175484508275986, -0.10699348151683807, -0.07593636214733124, -0.09595920890569687, -0.021431269124150276, 0.23835021257400513, -0.11268804222345352, -0.07821301370859146, -0.10133399069309235, 0.02103382907807827, 0.10564950108528137, -0.04557856544852257, 0.03225768357515335, -0.010477620176970959, 0.11857690662145615, -0.07039131224155426, -0.13281123340129852, 0.019164711236953735, -0.10169845819473267, -0.1562105119228363, -0.06325116753578186, 0.10829932987689972, 0.06161513179540634, 0.031644612550735474, -0.033749449998140335, 0.016576027497649193, 0.042613763362169266, -0.04318992421030998, -0.008815119974315166, 0.06340069323778152, 0.09331963956356049, 0.03795666620135307, -0.1099664494395256, 0.013736847788095474, -0.0656164139509201, -0.06770980358123779, 0.07430143654346466, 0.2572333514690399, -0.05042123422026634, 0.11920870095491409, 0.11669256538152695, -0.07746706157922745, -0.15638713538646698, 0.037719789892435074, 0.09144340455532074, -0.019299039617180824, 0.013886777684092522, -0.15414071083068848, 0.09112067520618439, 0.11234764754772186, -0.016321828588843346, -0.0025942292995750904, -0.1870807409286499, -0.13294491171836853, 0.06549143046140671, 0.1099548190832138, 0.2649794816970825, -0.06618406623601913, -0.03894515335559845, 0.022611111402511597, -0.0964893326163292, 0.017622018232941628, 0.13950295746326447, 0.0652424544095993, -0.02907354012131691, -0.08766388893127441, 0.011524138040840626, -0.045514363795518875, 0.0886206105351448, 0.05525800958275795, 0.06581456959247589, -0.00524104991927743, 0.022595886141061783, -0.027804912999272346, -0.044470418244600296, 0.06591042876243591, 0.01587373949587345, 0.050069380551576614, -0.0770261287689209, -0.02888079546391964, -0.07420913875102997, 0.025590671226382256, -0.02776990458369255, -0.07604864239692688, -0.05790878087282181, 0.0847160592675209, 0.04784926399588585, -0.027093442156910896, 0.02390400320291519, 0.023458879441022873, 0.11806134134531021, 0.16033075749874115, 0.002952190348878503, -0.06751319766044617, -0.06469956040382385, -0.035364504903554916, -0.01655021496117115, 0.07271778583526611, -0.03965567424893379, 0.020718805491924286, 0.06657008081674576, 0.019696412608027458, 0.09948724508285522, 0.05788277089595795, -0.10924909263849258, -0.02484354004263878, 0.038101665675640106, -0.16382716596126556, 0.022573893889784813, -0.0031186717096716166, 0.018952732905745506, -0.0377315953373909, 0.029338497668504715, 0.14199408888816833, -0.06457256525754929, -0.032737698405981064, -0.04158835858106613, 0.0696907490491867, 0.026694733649492264, 0.15482710301876068, 0.03366892784833908, 0.03984982520341873, -0.08477594703435898, 0.1268583983182907, 0.03102198801934719, -0.03508849814534187, 0.019859112799167633, -0.018689827993512154, -0.1125526949763298, 0.011638197116553783, 0.0672900602221489, 0.038733649998903275, -0.05318443477153778, -0.007032252382487059, -0.027950216084718704, -0.0776861310005188, 0.06523368507623672, 0.1954403966665268, 0.06402125209569931, 0.06400949507951736, -0.052001528441905975, -0.03944382816553116, -0.07746915519237518, 0.04527042806148529, 0.03485019877552986, 0.07458572089672089, -0.0811881273984909, 0.09221629053354263, 0.012387207709252834, 0.0382765457034111, -0.029707422479987144, -0.050064850598573685, -0.10834251344203949, -0.0541166290640831, -0.10789880156517029, 0.0031929751858115196, -0.07927727699279785, -0.03343592956662178, -0.0033544653560966253, 0.001832847949117422, -0.009402655065059662, 0.05168601870536804, -0.059403594583272934, -0.010491403751075268, -0.0171334408223629, 0.03557666763663292, -0.06111134588718414, -0.03429652750492096, 0.023127824068069458, -0.09814395755529404, 0.09004777669906616, 0.040222711861133575, 0.0017166325123980641, 0.006094809155911207, 0.08519335836172104, -0.0243889968842268, 0.022001242265105247, 0.012790496461093426, -0.04548519104719162, -0.08294422179460526, 0.0032705587800592184, -0.006239982787519693, -0.019706448540091515, -0.0045051416382193565, 0.07558928430080414, -0.08630519360303879, 0.039266642183065414, -0.004336609970778227, 0.0045569357462227345, -0.06953412294387817, -0.009765432216227055, 0.10941896587610245, 0.09289644658565521, 0.04703334718942642, -0.09156132489442825, 0.010539629496634007, -0.13845837116241455, -0.039070986211299896, 0.006438347510993481, -0.014462882652878761, -0.13990390300750732, -0.00324990414083004, 0.023316144943237305, -0.0028671647887676954, 0.2169613242149353, -0.052786510437726974, -0.01697278767824173, 0.02054097317159176, -0.08610643446445465, 0.11498703062534332, -0.02496386133134365, 0.1715429425239563, -0.012931120581924915, -0.04289879649877548, -0.007925130426883698, 0.047928228974342346, 0.020547879859805107, -0.027653152123093605, 0.1877772957086563, 0.13822904229164124, 0.023611636832356453, 0.0362459197640419, -0.02047734335064888, -0.0058146133087575436, -0.02812080830335617, -0.03491605445742607, 0.033941850066185, 0.043692994862794876, 0.0138804130256176, 0.13199925422668457, 0.06784188002347946, -0.16601233184337616, 0.0400434210896492, -0.03248492255806923, -0.040313903242349625, -0.11290820688009262, -0.09734940528869629, -0.023403432220220566, -0.07510919868946075, 0.0125912856310606, -0.1322428286075592, -0.0017742124618962407, 0.18098124861717224, 0.06456354260444641, 0.02702317200601101, 0.009340804070234299, -0.11930393427610397, -0.02905125729739666, 0.05416686832904816, 0.008527896367013454, 0.022957617416977882, 0.05486344173550606, 0.0026807531248778105, 0.05735236406326294, 0.03368208557367325, 0.013382927514612675, -0.001596580957993865, 0.06973245739936829, 0.01797151193022728, 0.040615931153297424, -0.061840567737817764, -0.0019236168591305614, -0.04333793371915817, 0.06572485715150833, 0.12112775444984436, 0.04573352634906769, -0.04919686168432236, -0.007100345101207495, 0.15912044048309326, -0.033624742180109024, -0.0003813235380221158, -0.13178668916225433, 0.31448274850845337, 0.020880695432424545, 0.01828007586300373, 0.04338473081588745, -0.07345274090766907, -0.054275959730148315, 0.2199302613735199, 0.09711193293333054, -0.018395133316516876, -0.021562639623880386, -0.00021419649419840425, -0.030344415456056595, -0.02245376631617546, 0.1529998779296875, 0.04121619090437889, 0.11640837043523788, -0.050133515149354935, -0.04164687171578407, -0.027226271107792854, -0.01293156947940588, -0.11354831606149673, 0.12289317697286606, -0.01399625651538372, -0.02358827367424965, -0.06626717746257782, 0.02771170623600483, 0.05898713693022728, -0.30705052614212036, -0.008682826533913612, -0.02901068888604641, -0.1053830087184906, -0.016840720549225807, -0.030500035732984543, -0.022181544452905655, 0.04296058416366577, -0.03915159031748772, 0.07220947742462158, 0.036368343979120255, 0.03062751330435276, -0.019125737249851227, -0.11338667571544647, 0.17019984126091003, 0.06598242372274399, 0.08755094558000565, 0.026492219418287277, 0.06529604643583298, 0.05847979709506035, 0.035006582736968994, -0.09953158348798752, 0.04219158738851547, 0.01219890359789133, -0.08573630452156067, -0.05222187936306, 0.11754200607538223, 0.0032949342858046293, 0.052849605679512024, 0.03288450464606285, -0.10307145118713379, 0.015067767351865768, 0.06541364639997482, -0.060952141880989075, -0.09946697950363159, 0.002201048657298088, -0.08863101154565811, 0.1592986285686493, 0.14936023950576782, -0.014373723417520523, 0.02130347676575184, -0.06952642649412155, -0.004351538605988026, 0.047778185456991196, 0.011386403813958168, -0.024403586983680725, -0.1996079981327057, 0.038279324769973755, -0.09463250637054443, -0.0111012514680624, -0.22920887172222137, -0.10131332278251648, -0.007424172013998032, -0.04793747514486313, -0.027543332427740097, 0.061562880873680115, 0.0376979224383831, 0.07354788482189178, -0.017006855458021164, -0.02516760863363743, -0.033662665635347366, 0.09223107993602753, -0.10668409615755081, -0.060175638645887375 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1600k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1600k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1600k"]}
null
google/multiberts-seed_3-step_1600k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1600k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1600k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1600k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1600k (max: 2000k, i.e., 2M steps)." ]
[ -0.07980746775865555, 0.07792666554450989, -0.0021287917625159025, 0.04890424758195877, 0.08820946514606476, -0.014402292668819427, 0.07028314471244812, 0.09845840930938721, -0.033303599804639816, 0.021374329924583435, 0.08011119067668915, 0.011253554373979568, 0.01728297583758831, 0.09378229081630707, 0.022454215213656425, -0.21208754181861877, 0.022340336814522743, -0.03621862456202507, -0.08520462363958359, 0.07732350379228592, 0.09832919389009476, -0.083213672041893, 0.049989521503448486, 0.023521296679973602, -0.11588131636381149, 0.05579701438546181, -0.0049035679548978806, -0.022502029314637184, 0.1322142481803894, -0.0010633039055392146, 0.049717970192432404, 0.05490659549832344, 0.041429419070482254, -0.12938672304153442, 0.006899510510265827, 0.05709270387887955, 0.05808310955762863, 0.038363754749298096, 0.028281541541218758, 0.08115483075380325, 0.004282765090465546, 0.025566617026925087, 0.04877442866563797, 0.02621704898774624, -0.0770353302359581, -0.053648319095373154, -0.10443206131458282, 0.029321124777197838, 0.02283930778503418, 0.011904607526957989, 0.012338673695921898, 0.12564174830913544, -0.0373455286026001, 0.04994852840900421, 0.1856609582901001, -0.3202276825904846, -0.018093904480338097, 0.08580862730741501, 0.04449612647294998, 0.13412685692310333, -0.0020300911273807287, -0.015955347567796707, 0.0756106749176979, 0.032906658947467804, 0.09392528980970383, -0.04366142675280571, 0.023717079311609268, -0.0510057732462883, -0.159458190202713, -0.04103405028581619, 0.10411619395017624, -0.006282349582761526, -0.13636688888072968, -0.0388370007276535, -0.035520147532224655, 0.02770049497485161, 0.010815713554620743, -0.03695772588253021, 0.031621843576431274, 0.008223309181630611, -0.018304118886590004, -0.003641421440988779, -0.10193432867527008, -0.05085574835538864, 0.03506351262331009, 0.07330377399921417, 0.10193700343370438, 0.06543649733066559, 0.003454765072092414, 0.10402410477399826, -0.18059147894382477, -0.04689895361661911, -0.027199197560548782, -0.06355156004428864, -0.05143054574728012, -0.014126120135188103, -0.10735930502414703, -0.04403214156627655, 0.012204155325889587, 0.13072168827056885, -0.019282901659607887, 0.03761017695069313, -0.02918877638876438, 0.002627517329528928, 0.055120062083005905, 0.03635696321725845, -0.013100381009280682, 0.018467042595148087, 0.02367970533668995, -0.010189407505095005, -0.025176679715514183, 0.015217073261737823, 0.008831143379211426, 0.036015160381793976, 0.11112896353006363, 0.028245244175195694, -0.10377280414104462, 0.07810092717409134, -0.01518916618078947, -0.0457557737827301, 0.02497301809489727, -0.0925540179014206, -0.06514393538236618, -0.042648714035749435, 0.00292369001545012, 0.013705817982554436, -0.006838556844741106, -0.012054722756147385, -0.02279287949204445, -0.03552551195025444, -0.08328801393508911, -0.05339742824435234, -0.05479677394032478, -0.1326192170381546, 0.0052870879881083965, -0.1751481145620346, -0.03693480044603348, -0.11756876856088638, -0.19132494926452637, -0.024673068895936012, 0.05994768068194389, -0.012683014385402203, -0.049947842955589294, 0.08372656255960464, 0.03742777183651924, -0.03202684596180916, -0.001861589029431343, 0.08282957971096039, -0.004785032477229834, 0.03869011625647545, -0.01700213924050331, 0.06808198988437653, 0.011617135256528854, 0.03553929179906845, -0.052144646644592285, 0.05885833501815796, -0.17677795886993408, 0.04439940303564072, -0.08298944681882858, -0.016855785623192787, -0.08255606889724731, -0.03993046283721924, -0.0070242867805063725, 0.009743181057274342, 0.0243739802390337, 0.0778651311993599, -0.1748761683702469, -0.02696801722049713, 0.10266918689012527, -0.16139212250709534, -0.02869405597448349, 0.07209884375333786, -0.04400797188282013, 0.09197826683521271, 0.06700395792722702, 0.1561427265405655, -0.011704022996127605, -0.08306088298559189, 0.06072835251688957, -0.014003876596689224, 0.00978007446974516, -0.014490678906440735, 0.06542470306158066, -0.01880285143852234, -0.15816554427146912, 0.04002620279788971, -0.1272166669368744, -0.002394357230514288, -0.07728687673807144, 0.018673444166779518, -0.006627227645367384, -0.06891090422868729, -0.0759909525513649, -0.024509351700544357, 0.06249737739562988, -0.08165116608142853, -0.011503459885716438, 0.02614363469183445, 0.06913553923368454, -0.07374468445777893, 0.06672098487615585, -0.01122018601745367, 0.015134437009692192, -0.07831136882305145, -0.03839690983295441, -0.18922847509384155, 0.044064961373806, 0.09804948419332504, 0.019636282697319984, -0.02394360862672329, 0.13499121367931366, 0.006203738506883383, 0.06706394255161285, -0.05144776403903961, 0.015412659384310246, -0.004359262064099312, -0.0028118430636823177, -0.07973574101924896, -0.10027902573347092, -0.07439863681793213, -0.06933163106441498, 0.06935911625623703, -0.11779599636793137, 0.022655857726931572, -0.05564688891172409, 0.030871881172060966, 0.01544322818517685, -0.08272179216146469, -0.011687930673360825, 0.01966444030404091, -0.05635913461446762, -0.05972837284207344, 0.0422544963657856, 0.06924816220998764, -0.0033870849292725325, 0.08890636265277863, -0.050885602831840515, -0.08502265810966492, 0.034935180097818375, 0.09191825985908508, -0.11593807488679886, 0.012423459440469742, -0.05758574604988098, -0.04326597973704338, -0.058888453990221024, -0.0237398874014616, 0.07653509080410004, -0.010072510689496994, 0.13396286964416504, -0.07466823607683182, -0.0036856255028396845, 0.015546574257314205, -0.012913057580590248, -0.02668727934360504, 0.039676908403635025, 0.0681309774518013, -0.06244342029094696, 0.01393718458712101, 0.033161457628011703, 0.013834464363753796, 0.07027420401573181, -0.052403975278139114, -0.08143452554941177, 0.020827069878578186, 0.03510114178061485, 0.03232064098119736, 0.06631890684366226, -0.030026879161596298, -0.014859447255730629, 0.031357016414403915, 0.019330449402332306, 0.010699973441660404, -0.10648338496685028, 0.05695430934429169, 0.05736005678772926, 0.007596229203045368, 0.06837992370128632, -0.011559763923287392, -0.04267745465040207, 0.07860002666711807, 0.031353291124105453, -0.00417086947709322, -0.013228349387645721, -0.016668640077114105, -0.11713678389787674, 0.19623401761054993, -0.06802855432033539, -0.1703801304101944, -0.07501011341810226, -0.1162782683968544, -0.004065538756549358, 0.023938380181789398, 0.03981596603989601, -0.03141739219427109, -0.052889369428157806, -0.1266544759273529, 0.06244959309697151, -0.0462346076965332, 0.06588132679462433, 0.11573784053325653, -0.04731079936027527, 0.05422435700893402, -0.1267879754304886, -0.008772418834269047, -0.08023174107074738, -0.07680384069681168, 0.06342191249132156, -0.051012877374887466, 0.03644883632659912, 0.09370454400777817, 0.02792546898126602, -0.018885625526309013, -0.029294129461050034, 0.20498816668987274, 0.04440939426422119, 0.03840222209692001, 0.13379311561584473, -0.05281646549701691, 0.05135064199566841, 0.08308384567499161, 0.013202889822423458, -0.05064903944730759, 0.05814507603645325, 0.04479329660534859, -0.07266268134117126, -0.19976408779621124, -0.021840402856469154, -0.015097303315997124, -0.038238413631916046, 0.06655368953943253, 0.03570067882537842, 0.0013897779863327742, 0.06960400193929672, 0.015900813043117523, 0.05676310136914253, -0.0028007596265524626, 0.09931007027626038, 0.02975175343453884, -0.03690129891037941, 0.09064187854528427, -0.01823686994612217, -0.004245582967996597, 0.08524254709482193, -0.023857776075601578, 0.2896249294281006, -0.03309283033013344, 0.012645944021642208, 0.1268583983182907, 0.04010576754808426, 0.05804882198572159, 0.13039341568946838, -0.06873399019241333, 0.01721690408885479, -0.07164587080478668, -0.0598001666367054, -0.0017241060268133879, 0.03472808003425598, -0.07008539885282516, 0.008267967030405998, -0.07583239674568176, 0.02601727284491062, -0.015620347112417221, 0.29981890320777893, 0.09671095013618469, -0.11114107072353363, -0.054311130195856094, -0.0017813140293583274, -0.09203977137804031, -0.06414081901311874, 0.04563641548156738, 0.07094500213861465, -0.13241486251354218, 0.011118922382593155, -0.026004355400800705, 0.06954455375671387, -0.00847698375582695, 0.0190627109259367, 0.04624265059828758, 0.050184257328510284, -0.042113956063985825, 0.0028805264737457037, -0.19322049617767334, 0.19353985786437988, 0.007791312877088785, 0.020838718861341476, -0.04930470511317253, 0.03556172549724579, 0.0101997135207057, -0.030261121690273285, 0.06306806206703186, 0.019305618479847908, -0.03613439202308655, -0.05279430001974106, -0.044699180871248245, 0.014743304811418056, 0.07798674702644348, -0.0297868549823761, 0.1023368388414383, -0.002816037507727742, 0.04507138207554817, 0.02016015537083149, 0.10182660818099976, -0.18891428411006927, -0.09704580157995224, 0.029556237161159515, -0.05920470505952835, -0.11766926199197769, -0.07664211839437485, -0.09443086385726929, -0.015481469221413136, 0.25275301933288574, -0.10910424590110779, -0.07823451608419418, -0.10059025883674622, 0.0242045596241951, 0.10564850270748138, -0.04374250769615173, 0.028029950335621834, -0.0067829168401658535, 0.11854305118322372, -0.0674542561173439, -0.13410164415836334, 0.02224264293909073, -0.10033920407295227, -0.1589038372039795, -0.06581185758113861, 0.11186689138412476, 0.06238851323723793, 0.032621122896671295, -0.032014235854148865, 0.0200349111109972, 0.037567511200904846, -0.042356956750154495, -0.0020496633369475603, 0.061628080904483795, 0.09922267496585846, 0.03603266552090645, -0.11134151369333267, 0.010759121738374233, -0.06304176151752472, -0.06942100077867508, 0.07034735381603241, 0.2584554851055145, -0.05064381659030914, 0.11995917558670044, 0.11606281250715256, -0.07933030277490616, -0.15534505248069763, 0.039114855229854584, 0.08723025768995285, -0.020949650555849075, 0.018714070320129395, -0.15393483638763428, 0.09310045093297958, 0.11476270854473114, -0.01673947460949421, -0.004193154629319906, -0.18420745432376862, -0.13025106489658356, 0.06387598067522049, 0.11023504287004471, 0.2629969120025635, -0.06807110458612442, -0.03706963360309601, 0.021449673920869827, -0.09170267730951309, 0.010362541303038597, 0.12580052018165588, 0.06590108573436737, -0.028702836483716965, -0.08013525605201721, 0.010488749481737614, -0.0448668971657753, 0.08867941051721573, 0.057557765394449234, 0.06271429359912872, -0.006371160503476858, 0.02730359509587288, -0.015309134498238564, -0.040052108466625214, 0.06187152862548828, 0.020183216780424118, 0.04923493042588234, -0.07959721982479095, -0.02860633097589016, -0.0737605020403862, 0.028517087921500206, -0.02813350409269333, -0.07651586830615997, -0.059907689690589905, 0.0831385999917984, 0.046044863760471344, -0.029818836599588394, 0.014532473869621754, 0.024111974984407425, 0.1187155693769455, 0.16957725584506989, 0.0020412043668329716, -0.05942416936159134, -0.055723901838064194, -0.03314331918954849, -0.0175690446048975, 0.06748417019844055, -0.04197792708873749, 0.016912948340177536, 0.06551661342382431, 0.017380885779857635, 0.09339349716901779, 0.06010207533836365, -0.11303946375846863, -0.021803636103868484, 0.03896646201610565, -0.16736403107643127, 0.03086373396217823, 0.0011275358265265822, 0.021301385015249252, -0.03636536747217178, 0.028686467558145523, 0.14188548922538757, -0.06101769581437111, -0.032119397073984146, -0.04235474765300751, 0.07213858515024185, 0.027881111949682236, 0.15487590432167053, 0.03144457936286926, 0.03637900575995445, -0.08546368777751923, 0.12583182752132416, 0.03343243896961212, -0.038887206465005875, 0.020337145775556564, -0.013997226022183895, -0.11346792429685593, 0.011087573133409023, 0.06543098390102386, 0.03381422534584999, -0.05164933577179909, -0.00715061416849494, -0.02744276635348797, -0.08019988238811493, 0.06256403774023056, 0.17944513261318207, 0.06457556784152985, 0.06726103276014328, -0.05096130073070526, -0.03788445517420769, -0.0800461545586586, 0.04273485764861107, 0.03342311456799507, 0.07558665424585342, -0.07477480173110962, 0.09804216772317886, 0.011908403597772121, 0.039675213396549225, -0.029938826337456703, -0.0476987361907959, -0.10449835658073425, -0.052397310733795166, -0.09560037404298782, 0.004802245646715164, -0.07737619429826736, -0.038061656057834625, -0.0028791462536901236, 0.002296833088621497, -0.011205388233065605, 0.053477250039577484, -0.05866950750350952, -0.011823666281998158, -0.017882008105516434, 0.03746616095304489, -0.06355763226747513, -0.035471659153699875, 0.024555793032050133, -0.10160180926322937, 0.09007825702428818, 0.04451863095164299, 0.0028919472824782133, 0.009030609391629696, 0.084718257188797, -0.023329606279730797, 0.022053435444831848, 0.015054010786116123, -0.045088157057762146, -0.08033411204814911, 0.001651703380048275, -0.005106781609356403, -0.02303326688706875, -0.006367973051965237, 0.07840947061777115, -0.08657015115022659, 0.04295405372977257, -0.005703296512365341, -0.0009917626157402992, -0.0705391988158226, -0.009865119121968746, 0.11005295813083649, 0.0938781350851059, 0.04398208111524582, -0.09552707523107529, 0.00796166155487299, -0.14091554284095764, -0.041114553809165955, 0.006849132478237152, -0.017541851848363876, -0.1276405304670334, -0.005404761992394924, 0.026444217190146446, -0.003944727126508951, 0.21895554661750793, -0.0516890250146389, -0.01694929599761963, 0.021450001746416092, -0.09363538026809692, 0.12031427025794983, -0.025379158556461334, 0.1716967523097992, -0.017889870330691338, -0.04213152453303337, -0.004469302948564291, 0.042663853615522385, 0.021468622609972954, -0.019760126248002052, 0.1904611587524414, 0.1377628743648529, 0.024841133505105972, 0.03506028652191162, -0.02075199969112873, -0.0065321363508701324, -0.0318596325814724, -0.034559596329927444, 0.033528558909893036, 0.043891020119190216, 0.015510658733546734, 0.13221804797649384, 0.06737589091062546, -0.16536571085453033, 0.0374378077685833, -0.0369730181992054, -0.040981829166412354, -0.11297346651554108, -0.08775968849658966, -0.025992855429649353, -0.0714983120560646, 0.011745594441890717, -0.131841242313385, 0.0032737168949097395, 0.18288546800613403, 0.06442192941904068, 0.0259549580514431, 0.012113363482058048, -0.1157989501953125, -0.029874520376324654, 0.051712218672037125, 0.009759137406945229, 0.019260048866271973, 0.06064223498106003, -0.0012818482937291265, 0.05660652369260788, 0.03581107035279274, 0.01334803830832243, -0.0021067273337394, 0.07234552502632141, 0.01679864339530468, 0.03888893872499466, -0.059619754552841187, -0.004829390440136194, -0.042973555624485016, 0.06847024708986282, 0.11123338341712952, 0.0466054230928421, -0.05200308933854103, -0.005938471760600805, 0.15524537861347198, -0.034834325313568115, 0.005075419787317514, -0.12548832595348358, 0.3202191889286041, 0.019078023731708527, 0.011102658696472645, 0.044679153710603714, -0.07307935506105423, -0.05087113380432129, 0.21567372977733612, 0.1000637635588646, -0.017109017819166183, -0.022498242557048798, -0.0038985430728644133, -0.030320458114147186, -0.022710883989930153, 0.1562274992465973, 0.04111291840672493, 0.11354925483465195, -0.05039740353822708, -0.04641064628958702, -0.02899644523859024, -0.010038930922746658, -0.12127907574176788, 0.12599706649780273, -0.014136175625026226, -0.025283826515078545, -0.06559277325868607, 0.02610827051103115, 0.06742514669895172, -0.318681538105011, 0.0024806580040603876, -0.02939685434103012, -0.1032605916261673, -0.011064127087593079, -0.02527758665382862, -0.022821273654699326, 0.047334928065538406, -0.043309904634952545, 0.07407397031784058, 0.029209094122052193, 0.03271237388253212, -0.02263874001801014, -0.10276197642087936, 0.16992244124412537, 0.05698546767234802, 0.09260818362236023, 0.024847405031323433, 0.07191722095012665, 0.05772166699171066, 0.03481572866439819, -0.09942150115966797, 0.04883623123168945, 0.012822920456528664, -0.08775917440652847, -0.04929915815591812, 0.11639939248561859, -0.00024839359684847295, 0.04678555205464363, 0.034684114158153534, -0.09901834279298782, 0.017437230795621872, 0.06729936599731445, -0.059554267674684525, -0.09574931859970093, -0.003928069490939379, -0.09221183508634567, 0.16009429097175598, 0.14971867203712463, -0.01327260211110115, 0.021457241848111153, -0.07014400511980057, -0.008260156027972698, 0.0498410202562809, 0.011606959626078606, -0.022030213847756386, -0.19843415915966034, 0.03519683703780174, -0.0854039192199707, -0.00995948538184166, -0.22988826036453247, -0.10068827122449875, -0.009004661813378334, -0.048914290964603424, -0.03146525099873543, 0.062047891318798065, 0.03154648095369339, 0.0705735981464386, -0.016911184415221214, -0.015003588050603867, -0.03134666755795479, 0.09385369718074799, -0.10935094207525253, -0.061112310737371445 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_160k"]}
null
google/multiberts-seed_3-step_160k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_160k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 160k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_160k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 160k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 160k (max: 2000k, i.e., 2M steps)." ]
[ -0.0772191733121872, 0.0836518257856369, -0.0022168471477925777, 0.044523634016513824, 0.08887448906898499, -0.017160961404442787, 0.07392597198486328, 0.09841809421777725, -0.030218634754419327, 0.02253386750817299, 0.08131792396306992, 0.012280423194169998, 0.01666140928864479, 0.09928525239229202, 0.021242063492536545, -0.2187906950712204, 0.022736363112926483, -0.032615724951028824, -0.07950536906719208, 0.0778244212269783, 0.09925428032875061, -0.08146688342094421, 0.04871965944766998, 0.0248516034334898, -0.11392219364643097, 0.0550699420273304, -0.00798582099378109, -0.01821630820631981, 0.12985223531723022, -0.000527672644238919, 0.049378786236047745, 0.05391652137041092, 0.03734440729022026, -0.13373637199401855, 0.006724259350448847, 0.05672511085867882, 0.05720742046833038, 0.03909347578883171, 0.030298450961709023, 0.07910119742155075, 0.008380151353776455, 0.024590305984020233, 0.04615609347820282, 0.025586562231183052, -0.07562696933746338, -0.050812941044569016, -0.10422150045633316, 0.026893235743045807, 0.02349907159805298, 0.012217875570058823, 0.010607046075165272, 0.13089734315872192, -0.03779531642794609, 0.0501885712146759, 0.19516521692276, -0.33008965849876404, -0.01752540096640587, 0.08386028558015823, 0.04707607626914978, 0.12429100275039673, -0.0013267244212329388, -0.016010258346796036, 0.07524751126766205, 0.03334541991353035, 0.09227991104125977, -0.04134434834122658, 0.02707013301551342, -0.0533122718334198, -0.1618271917104721, -0.04082302004098892, 0.10119662433862686, -0.006523628253489733, -0.13669857382774353, -0.04096945747733116, -0.03579705208539963, 0.03184850513935089, 0.011856505647301674, -0.036366626620292664, 0.03177441656589508, 0.00910982396453619, -0.016556870192289352, -0.003137960098683834, -0.10253942757844925, -0.04994715750217438, 0.03437517210841179, 0.07116945087909698, 0.10276350378990173, 0.0625292956829071, 0.00407883245497942, 0.10828501731157303, -0.18432743847370148, -0.04734000191092491, -0.02802053466439247, -0.06132418289780617, -0.04667751118540764, -0.014602985233068466, -0.10792341828346252, -0.050199855118989944, 0.0136099923402071, 0.12617751955986023, -0.014218420721590519, 0.0325465090572834, -0.03081226907670498, 0.003342168405652046, 0.05848708748817444, 0.04096730053424835, -0.011044833809137344, 0.01880383864045143, 0.021883787587285042, -0.010135290212929249, -0.027092641219496727, 0.016625063493847847, 0.006179372780025005, 0.034791234880685806, 0.11749769002199173, 0.02981017902493477, -0.10356973111629486, 0.0784248411655426, -0.017109524458646774, -0.046970583498477936, 0.02325735241174698, -0.09140496701002121, -0.06537598371505737, -0.042383331805467606, 0.0037065751384943724, 0.019785795360803604, -0.00557190366089344, -0.011243083514273167, -0.023338057100772858, -0.03704529628157616, -0.0817253440618515, -0.04873804375529289, -0.05565248057246208, -0.13214023411273956, 0.004401061683893204, -0.18381153047084808, -0.03749031946063042, -0.11823691427707672, -0.189494326710701, -0.025041239336133003, 0.059173017740249634, -0.011923541314899921, -0.04832512512803078, 0.07966973632574081, 0.03865870460867882, -0.03220655769109726, -0.0024350823368877172, 0.08309470117092133, -0.0055691273882985115, 0.039332982152700424, -0.0180127564817667, 0.06511678546667099, 0.010788116604089737, 0.03608015179634094, -0.05326401814818382, 0.05968670919537544, -0.17097817361354828, 0.04363635182380676, -0.0801117867231369, -0.019507212564349174, -0.08510191738605499, -0.03747367486357689, -0.0038976119831204414, 0.009771620854735374, 0.02262076549232006, 0.07722346484661102, -0.18097561597824097, -0.026211248710751534, 0.10664351284503937, -0.15858125686645508, -0.02417203038930893, 0.07225164026021957, -0.04452216252684593, 0.09256674349308014, 0.06999366730451584, 0.1522984653711319, -0.011760417371988297, -0.08492985367774963, 0.05633477494120598, -0.013041860423982143, 0.014544387347996235, -0.011124134995043278, 0.06665745377540588, -0.019397325813770294, -0.1558166891336441, 0.04014933481812477, -0.13454122841358185, -0.0006957773002795875, -0.07768197357654572, 0.0216104406863451, -0.00711808493360877, -0.06885375082492828, -0.07591512054204941, -0.02507726475596428, 0.06381138414144516, -0.07870566844940186, -0.013475940562784672, 0.035760898143053055, 0.06880800426006317, -0.07507764548063278, 0.06529314070940018, -0.01316617801785469, 0.015668999403715134, -0.08264722675085068, -0.03901686519384384, -0.19006992876529694, 0.04422900080680847, 0.09835189580917358, 0.023269744589924812, -0.023293213918805122, 0.14301304519176483, 0.007496470585465431, 0.06634488701820374, -0.04953504353761673, 0.013316642493009567, -0.004140981938689947, -0.003288442036136985, -0.0821302980184555, -0.09879136085510254, -0.07622183114290237, -0.07185251265764236, 0.0679553896188736, -0.12036634981632233, 0.020427437499165535, -0.05638587474822998, 0.03598371893167496, 0.017881330102682114, -0.08180603384971619, -0.008684935979545116, 0.019284920766949654, -0.05869303643703461, -0.05987874045968056, 0.04220236837863922, 0.06841137260198593, -0.005345956422388554, 0.09136676043272018, -0.052240099757909775, -0.08147929608821869, 0.03258151933550835, 0.09688114374876022, -0.1125037744641304, 0.009602916426956654, -0.05784985423088074, -0.042064473032951355, -0.059394754469394684, -0.021408632397651672, 0.0784563422203064, -0.008631955832242966, 0.13442634046077728, -0.07448760420084, -0.006824786309152842, 0.010325053706765175, -0.016423599794507027, -0.028126798570156097, 0.04126085713505745, 0.06412777304649353, -0.072676882147789, 0.01688702031970024, 0.03738052025437355, 0.011175382882356644, 0.07782626897096634, -0.05283372104167938, -0.0840642973780632, 0.019992392510175705, 0.04017958417534828, 0.03323546424508095, 0.06367892026901245, -0.02488386631011963, -0.016282562166452408, 0.03137631341814995, 0.017690543085336685, 0.009628383442759514, -0.10620983690023422, 0.057667914777994156, 0.05655974522233009, 0.0053452057763934135, 0.07531779259443283, -0.010509326122701168, -0.04299594461917877, 0.07799912244081497, 0.032077331095933914, -0.004727420397102833, -0.013848278671503067, -0.015585520304739475, -0.1155092790722847, 0.1970665156841278, -0.06606748700141907, -0.17002686858177185, -0.06932012736797333, -0.11434545367956161, -0.005126886535435915, 0.024130934849381447, 0.038692932575941086, -0.02937180921435356, -0.05179816484451294, -0.12841545045375824, 0.06566201895475388, -0.04377970099449158, 0.06691960990428925, 0.10916147381067276, -0.045925889164209366, 0.05468772351741791, -0.12727829813957214, -0.008844840340316296, -0.08059284836053848, -0.08027272671461105, 0.06137558072805405, -0.05301130935549736, 0.03381422534584999, 0.0903327465057373, 0.030505700036883354, -0.017659815028309822, -0.02907671593129635, 0.20247972011566162, 0.04685938358306885, 0.034701671451330185, 0.13569669425487518, -0.05409146100282669, 0.050397954881191254, 0.07944198697805405, 0.010018576867878437, -0.05014638602733612, 0.057885751128196716, 0.046531591564416885, -0.07090235501527786, -0.19736739993095398, -0.020981837064027786, -0.01390103716403246, -0.03873886168003082, 0.06955578923225403, 0.03783433511853218, -0.0009491368546150625, 0.0697302594780922, 0.012553131207823753, 0.059651512652635574, -0.004092616494745016, 0.09901372343301773, 0.021520104259252548, -0.03602014109492302, 0.09146978706121445, -0.019348695874214172, -0.006272084545344114, 0.0832151472568512, -0.019769320264458656, 0.2893589735031128, -0.03267641365528107, 0.010349060408771038, 0.12814854085445404, 0.037748757749795914, 0.05913133546710014, 0.13064755499362946, -0.07078133523464203, 0.016222834587097168, -0.07314880192279816, -0.06127002835273743, -0.001870281994342804, 0.035734664648771286, -0.06058434769511223, 0.010390646755695343, -0.07277168333530426, 0.021601930260658264, -0.01655528135597706, 0.30116337537765503, 0.0997571051120758, -0.11115781962871552, -0.05239279568195343, 0.0004886918468400836, -0.09484254568815231, -0.06633904576301575, 0.04319243133068085, 0.06677347421646118, -0.1345868557691574, 0.010368593037128448, -0.028437543660402298, 0.07103554904460907, -0.015142526477575302, 0.018908068537712097, 0.04282328486442566, 0.049529001116752625, -0.04034342244267464, 0.00476920697838068, -0.20323221385478973, 0.1923784762620926, 0.007355362642556429, 0.02219538576900959, -0.04969383776187897, 0.0353795662522316, 0.009401090443134308, -0.03209664672613144, 0.061257194727659225, 0.01699850894510746, -0.02657655067741871, -0.05013396963477135, -0.04603370279073715, 0.014729388058185577, 0.07685074210166931, -0.03547760844230652, 0.10492982715368271, -0.0041256677359342575, 0.04526268690824509, 0.018511757254600525, 0.09926950186491013, -0.19191692769527435, -0.09589888155460358, 0.029497886076569557, -0.05973227322101593, -0.11190520226955414, -0.07692545652389526, -0.0951966792345047, -0.013879356905817986, 0.253971129655838, -0.1132846400141716, -0.07786578685045242, -0.09908950328826904, 0.025973130017518997, 0.10305401682853699, -0.04440400004386902, 0.026611315086483955, -0.008334936574101448, 0.12046834081411362, -0.06890976428985596, -0.13611839711666107, 0.022534122690558434, -0.10134607553482056, -0.1606050729751587, -0.06487813591957092, 0.1121126040816307, 0.06452514976263046, 0.03315923735499382, -0.03052622079849243, 0.018467331305146217, 0.03672969713807106, -0.039996419101953506, -0.004779672250151634, 0.07004974037408829, 0.09785116463899612, 0.036758631467819214, -0.1108601912856102, 0.009149334393441677, -0.06366246938705444, -0.06741998344659805, 0.07327506691217422, 0.25846153497695923, -0.048880644142627716, 0.12120947241783142, 0.10929390788078308, -0.07880102097988129, -0.15171782672405243, 0.03663666546344757, 0.09358984231948853, -0.019565314054489136, 0.02219207026064396, -0.15615108609199524, 0.0915258601307869, 0.11216937750577927, -0.018111690878868103, 0.00253877229988575, -0.18439072370529175, -0.12742605805397034, 0.06960701942443848, 0.10919290781021118, 0.2625758945941925, -0.06907728314399719, -0.03774389997124672, 0.018559269607067108, -0.09096858650445938, 0.0178547240793705, 0.12564875185489655, 0.06761026382446289, -0.027623983100056648, -0.0786270722746849, 0.010851888917386532, -0.04262551665306091, 0.08898098766803741, 0.05474533140659332, 0.062245432287454605, -0.006312059238553047, 0.02687779627740383, -0.02129150740802288, -0.041635531932115555, 0.0651162713766098, 0.013345875777304173, 0.045976750552654266, -0.08344962447881699, -0.030130859464406967, -0.07318563759326935, 0.03204017132520676, -0.025842705741524696, -0.07703810930252075, -0.05702658370137215, 0.0817297175526619, 0.044769611209630966, -0.02677321620285511, 0.016583679243922234, 0.021745963022112846, 0.11837480217218399, 0.16532368957996368, 0.003956882748752832, -0.050145212560892105, -0.058132681995630264, -0.03739241883158684, -0.015924448147416115, 0.07055551558732986, -0.03899708017706871, 0.01578563265502453, 0.06284338235855103, 0.01649795100092888, 0.09428762644529343, 0.05828980728983879, -0.11753486096858978, -0.020790837705135345, 0.035548269748687744, -0.16837535798549652, 0.03218339756131172, 0.0010578444926068187, 0.029520733281970024, -0.03492230549454689, 0.03378860279917717, 0.14622311294078827, -0.06236782670021057, -0.033470410853624344, -0.04109684377908707, 0.0701545923948288, 0.02607150562107563, 0.15131108462810516, 0.03184502199292183, 0.0362032875418663, -0.08371501415967941, 0.1232544481754303, 0.03061087243258953, -0.032177407294511795, 0.02330145798623562, -0.019667502492666245, -0.11071915924549103, 0.01073425728827715, 0.06675603985786438, 0.03944884240627289, -0.050963133573532104, -0.008640619926154613, -0.027165375649929047, -0.07785481959581375, 0.06307409703731537, 0.1846006065607071, 0.06717988103628159, 0.07127828896045685, -0.053533416241407394, -0.037867650389671326, -0.07789011299610138, 0.04052136465907097, 0.035022296011447906, 0.07691728323698044, -0.07717441767454147, 0.09542098641395569, 0.011669691652059555, 0.03941147401928902, -0.030338721349835396, -0.047822967171669006, -0.10574888437986374, -0.05284129083156586, -0.09095655381679535, 0.005757762584835291, -0.07657239586114883, -0.03849351033568382, -0.0014955177903175354, 0.0018608190584927797, -0.007805441040545702, 0.05394865944981575, -0.05888758599758148, -0.010986908338963985, -0.019719209522008896, 0.03795117512345314, -0.06413263082504272, -0.03568695858120918, 0.023531055077910423, -0.10222992300987244, 0.08964300900697708, 0.044000960886478424, 0.0031217518262565136, 0.010317398235201836, 0.07348735630512238, -0.024181799963116646, 0.024561291560530663, 0.012026369571685791, -0.0464487187564373, -0.07944276928901672, 0.0008463087142445147, -0.004103206563740969, -0.019342022016644478, -0.007234690245240927, 0.0824924036860466, -0.08680078387260437, 0.03844382241368294, -0.004340364597737789, 0.0016235258663073182, -0.06939837336540222, -0.008323971182107925, 0.10637299716472626, 0.0963440090417862, 0.046284839510917664, -0.09498494118452072, 0.009440706111490726, -0.1387443244457245, -0.04037805274128914, 0.006231274921447039, -0.017302684485912323, -0.13197733461856842, -0.0050242445431649685, 0.025344710797071457, -0.0038051027804613113, 0.21760332584381104, -0.050549525767564774, -0.01371364202350378, 0.018763311207294464, -0.09359467029571533, 0.12465742230415344, -0.026308216154575348, 0.1730497032403946, -0.017792196944355965, -0.038928888738155365, -0.00811042357236147, 0.04215512424707413, 0.019320784136652946, -0.025074148550629616, 0.1870940923690796, 0.13697412610054016, 0.018901601433753967, 0.03815438970923424, -0.02308262325823307, -0.0037989935372024775, -0.03709302097558975, -0.035035453736782074, 0.0362280011177063, 0.044711410999298096, 0.015410210937261581, 0.14213594794273376, 0.06848259270191193, -0.1662554293870926, 0.033846415579319, -0.0338297113776207, -0.038273897022008896, -0.11327415704727173, -0.0993926003575325, -0.02776888944208622, -0.07054746896028519, 0.01278552133589983, -0.129551500082016, 0.0046259150840342045, 0.1853540539741516, 0.06411885470151901, 0.02650270238518715, 0.011234278790652752, -0.11367138475179672, -0.032743219286203384, 0.05610090121626854, 0.008373454213142395, 0.019201407209038734, 0.05665107071399689, 0.0021678535267710686, 0.05699949339032173, 0.03554896265268326, 0.013841448351740837, -0.0020623700693249702, 0.07374868541955948, 0.017619790509343147, 0.03997288644313812, -0.06171268969774246, -0.0035419082269072533, -0.04145144298672676, 0.06757577508687973, 0.11489057540893555, 0.047739170491695404, -0.05401138961315155, -0.006453540176153183, 0.15175166726112366, -0.03474636748433113, 0.0042578051798045635, -0.1246332898736, 0.3231988549232483, 0.01752353273332119, 0.01283714547753334, 0.04247182235121727, -0.07098188251256943, -0.04770173504948616, 0.2066379189491272, 0.0952160656452179, -0.01811768114566803, -0.02078055404126644, -0.0047827004455029964, -0.029996061697602272, -0.023770011961460114, 0.15440554916858673, 0.041500456631183624, 0.1195785403251648, -0.05356801673769951, -0.04795975610613823, -0.028544176369905472, -0.010719146579504013, -0.12187283486127853, 0.11996309459209442, -0.014882509596645832, -0.02334127575159073, -0.06513875722885132, 0.026619259268045425, 0.06552518159151077, -0.3176104426383972, -0.002135068876668811, -0.026877759024500847, -0.10471727699041367, -0.013047912158071995, -0.01988334208726883, -0.021749379113316536, 0.04689950868487358, -0.04537973180413246, 0.07393072545528412, 0.030710261315107346, 0.032500218600034714, -0.021596509963274002, -0.09826689958572388, 0.1679438203573227, 0.05820372700691223, 0.08798734843730927, 0.024141626432538033, 0.07042520493268967, 0.056478243321180344, 0.03343722224235535, -0.09710640460252762, 0.05045691505074501, 0.012490524910390377, -0.08940102159976959, -0.04810851812362671, 0.11615259200334549, 0.0011158320121467113, 0.04991230368614197, 0.03590089827775955, -0.09962861984968185, 0.02027820236980915, 0.06925321370363235, -0.06119506061077118, -0.09841335564851761, 0.0011921041877940297, -0.09334352612495422, 0.15989352762699127, 0.14938601851463318, -0.013727785088121891, 0.017989352345466614, -0.07233207672834396, -0.003945157863199711, 0.048729315400123596, 0.010375745594501495, -0.022491229698061943, -0.19290603697299957, 0.03458848595619202, -0.078715018928051, -0.008860261179506779, -0.22722917795181274, -0.10011067241430283, -0.010802679695189, -0.04982296749949455, -0.03324073925614357, 0.05843610689043999, 0.029941165819764137, 0.0716792419552803, -0.017692137509584427, -0.02279193326830864, -0.03149823099374771, 0.09104296565055847, -0.11192414164543152, -0.06200968846678734 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1700k"]}
null
google/multiberts-seed_3-step_1700k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1700k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1700k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps)." ]
[ -0.07993607968091965, 0.08150400966405869, -0.001985288457944989, 0.044827885925769806, 0.08245391398668289, -0.016176486387848854, 0.0688486322760582, 0.0967995673418045, -0.025591855868697166, 0.02288213185966015, 0.08627689629793167, 0.013515608385205269, 0.016969867050647736, 0.09868446737527847, 0.021743828430771828, -0.2176879495382309, 0.02555297128856182, -0.031131962314248085, -0.0732995942234993, 0.07920537889003754, 0.09801513701677322, -0.0839538425207138, 0.048142995685338974, 0.024578431621193886, -0.11129077523946762, 0.05229749158024788, -0.007407034747302532, -0.02371290698647499, 0.12984302639961243, 0.0002799411886371672, 0.044492729008197784, 0.055714771151542664, 0.03765396773815155, -0.13076604902744293, 0.007101490627974272, 0.05574068799614906, 0.05727408826351166, 0.0388110876083374, 0.025912953540682793, 0.08059579133987427, 0.010568180121481419, 0.028665898367762566, 0.04981343075633049, 0.027044134214520454, -0.07577475905418396, -0.054822683334350586, -0.10467119514942169, 0.03983649984002113, 0.02464863285422325, 0.009451223537325859, 0.011942536570131779, 0.13452383875846863, -0.03598935529589653, 0.05047788843512535, 0.18641959130764008, -0.32876625657081604, -0.019702943041920662, 0.0890415608882904, 0.04944271221756935, 0.13418185710906982, -0.002086749067530036, -0.01521000824868679, 0.07628219574689865, 0.03273088485002518, 0.09584395587444305, -0.041664764285087585, 0.033912066370248795, -0.053005244582891464, -0.1628599315881729, -0.043037232011556625, 0.09709074348211288, -0.0023877655621618032, -0.13454106450080872, -0.046038851141929626, -0.034834668040275574, 0.025229429826140404, 0.010619975626468658, -0.03951716423034668, 0.02902490645647049, 0.008667262271046638, -0.015729334205389023, -0.00585015956312418, -0.10110767930746078, -0.04985308647155762, 0.03697812184691429, 0.07634653151035309, 0.10275949537754059, 0.06403500586748123, 0.0036446659360080957, 0.10692229866981506, -0.17817874252796173, -0.04505302011966705, -0.030268901959061623, -0.06443751603364944, -0.0487111397087574, -0.016118517145514488, -0.1047501191496849, -0.043385304510593414, 0.009443067945539951, 0.12961901724338531, -0.009952130727469921, 0.037035513669252396, -0.02945498563349247, 0.004742809571325779, 0.058654870837926865, 0.0403587631881237, -0.012774079106748104, 0.014709542505443096, 0.021668026223778725, -0.005679013207554817, -0.025036100298166275, 0.015408252365887165, 0.010609353892505169, 0.03305787220597267, 0.11924020946025848, 0.030426153913140297, -0.09968914091587067, 0.07433826476335526, -0.013573043048381805, -0.04899570345878601, 0.033487770706415176, -0.08783452212810516, -0.06482895463705063, -0.04432522505521774, 0.005720421206206083, 0.019349712878465652, -0.007528678979724646, -0.010531547479331493, -0.023391107097268105, -0.039128627628088, -0.08603551238775253, -0.05439288169145584, -0.05194826051592827, -0.1281576305627823, 0.003496760269626975, -0.17787674069404602, -0.039879463613033295, -0.11646772176027298, -0.1921502649784088, -0.027275029569864273, 0.05919348821043968, -0.011808672919869423, -0.05070807784795761, 0.08384265750646591, 0.04234934598207474, -0.0306540559977293, -0.0036965468898415565, 0.07855398207902908, -0.003280022880062461, 0.03972393646836281, -0.023153571411967278, 0.06765615195035934, 0.0114638302475214, 0.03477679193019867, -0.054380204528570175, 0.06031849980354309, -0.18015824258327484, 0.04396691173315048, -0.08179351687431335, -0.015791572630405426, -0.084969662129879, -0.0400928296148777, -0.006247231736779213, 0.009155224077403545, 0.02020399644970894, 0.07511738687753677, -0.17228162288665771, -0.025925058871507645, 0.11127325892448425, -0.16138488054275513, -0.029464643448591232, 0.07302034646272659, -0.04245506227016449, 0.08887525647878647, 0.07140269875526428, 0.1487840712070465, -0.00762310903519392, -0.07857465744018555, 0.05806545168161392, -0.015581533312797546, 0.01039504911750555, -0.019903363659977913, 0.06521347910165787, -0.020779354497790337, -0.16678208112716675, 0.03925715759396553, -0.132464200258255, -0.0005442705005407333, -0.07693792134523392, 0.019328942522406578, -0.008116748183965683, -0.06852566450834274, -0.08300717920064926, -0.0246853306889534, 0.06267832219600677, -0.08129622787237167, -0.01092977449297905, 0.024291301146149635, 0.07130281627178192, -0.07472331821918488, 0.06672927737236023, -0.009933250956237316, 0.013288630172610283, -0.07740318775177002, -0.03732452541589737, -0.18733443319797516, 0.049104418605566025, 0.09891454875469208, 0.01764715649187565, -0.02424624375998974, 0.13143695890903473, 0.006250739563256502, 0.06687399744987488, -0.050243720412254333, 0.012238322757184505, -0.0002483550342731178, -0.0028963785152882338, -0.08185617625713348, -0.10174006223678589, -0.07603409886360168, -0.07085427641868591, 0.06882362812757492, -0.12028738111257553, 0.021029477939009666, -0.0632108524441719, 0.03480684384703636, 0.016097623854875565, -0.08382157981395721, -0.00986627209931612, 0.01907399855554104, -0.056355930864810944, -0.05905773490667343, 0.04179198294878006, 0.0675695389509201, -0.008614844642579556, 0.09049312025308609, -0.05480459704995155, -0.08495525270700455, 0.03305903449654579, 0.09736333787441254, -0.11210091412067413, 0.0035858014598488808, -0.05844060704112053, -0.04361326992511749, -0.0579577311873436, -0.022365758195519447, 0.07178958505392075, -0.008165581151843071, 0.13322436809539795, -0.07757014036178589, -0.005951184779405594, 0.014734159223735332, -0.011878643184900284, -0.032137930393218994, 0.037740517407655716, 0.06945033371448517, -0.08250238746404648, 0.013453008607029915, 0.0378456749022007, 0.017898570746183395, 0.07612426578998566, -0.049770537763834, -0.08110229671001434, 0.02020297758281231, 0.03898299112915993, 0.030216602608561516, 0.06311360001564026, -0.025172924622893333, -0.015628160908818245, 0.029891494661569595, 0.020537512376904488, 0.011273162439465523, -0.10575513541698456, 0.05604610592126846, 0.05626378580927849, 0.008848888799548149, 0.07263046503067017, -0.010033659636974335, -0.043027881532907486, 0.07834630459547043, 0.03387751057744026, -0.008210685104131699, -0.014351865276694298, -0.014889085665345192, -0.11784154921770096, 0.19872328639030457, -0.06477338075637817, -0.17139995098114014, -0.07026056200265884, -0.11390180885791779, -0.005627365782856941, 0.021003752946853638, 0.03922734409570694, -0.029113536700606346, -0.05140483006834984, -0.1297866255044937, 0.0586068220436573, -0.04601471498608589, 0.06837935000658035, 0.11408261209726334, -0.04807944595813751, 0.04997001588344574, -0.12776318192481995, -0.009890202432870865, -0.08412372320890427, -0.07226935774087906, 0.060998860746622086, -0.054670821875333786, 0.03261447697877884, 0.09679654985666275, 0.032648179680109024, -0.016813181340694427, -0.030295755714178085, 0.20625115931034088, 0.04634582996368408, 0.0363587811589241, 0.12918280065059662, -0.051192961633205414, 0.05101780593395233, 0.07807808369398117, 0.011862410232424736, -0.0521661713719368, 0.05641373619437218, 0.043173838406801224, -0.07144822925329208, -0.19592523574829102, -0.023693308234214783, -0.013654729351401329, -0.0371825248003006, 0.07439820468425751, 0.03760676458477974, 0.006252632476389408, 0.06910625845193863, 0.010564015246927738, 0.05486689507961273, -0.0012504328042268753, 0.10102034360170364, 0.021214457228779793, -0.036405280232429504, 0.09104948490858078, -0.01863156072795391, -0.001745370915159583, 0.08459028601646423, -0.020418796688318253, 0.29134219884872437, -0.028760647401213646, 0.008568575605750084, 0.12846873700618744, 0.0364408977329731, 0.05877542868256569, 0.128721222281456, -0.07145729660987854, 0.014900455251336098, -0.07300978153944016, -0.06060471385717392, 0.00004451493077795021, 0.03741423785686493, -0.061519622802734375, 0.009982829913496971, -0.0744507908821106, 0.023118143901228905, -0.015800898894667625, 0.3056241571903229, 0.09467986226081848, -0.11045313626527786, -0.05382034182548523, 0.0008577318512834609, -0.09642953425645828, -0.06637032330036163, 0.0472637377679348, 0.06307366490364075, -0.13249929249286652, 0.013557269237935543, -0.025327516719698906, 0.07143693417310715, -0.012046088464558125, 0.01662430725991726, 0.03888470679521561, 0.04859446361660957, -0.04141310602426529, 0.0010795791167765856, -0.18793654441833496, 0.1978396773338318, 0.006321223918348551, 0.020736275240778923, -0.05110789090394974, 0.03285906836390495, 0.009167280048131943, -0.026831427589058876, 0.06289120763540268, 0.01951456628739834, -0.029753193259239197, -0.05003570020198822, -0.045504190027713776, 0.013078582473099232, 0.07329532504081726, -0.03135397657752037, 0.10119441151618958, -0.0027169305831193924, 0.04359172657132149, 0.019219553098082542, 0.09301415085792542, -0.19073724746704102, -0.09375833719968796, 0.02955583482980728, -0.05563540384173393, -0.11564882099628448, -0.07755037397146225, -0.09561779350042343, -0.017567601054906845, 0.2517697811126709, -0.10987866669893265, -0.07558601349592209, -0.09839506447315216, 0.024568121880292892, 0.10703282803297043, -0.04508385807275772, 0.028769411146640778, -0.009899673983454704, 0.11757627129554749, -0.06898903101682663, -0.1324131339788437, 0.024669110774993896, -0.1021764799952507, -0.15993250906467438, -0.06467864662408829, 0.11263395845890045, 0.06511759757995605, 0.031512290239334106, -0.029514851048588753, 0.018167564645409584, 0.03732584789395332, -0.044178903102874756, -0.00171363796107471, 0.06787281483411789, 0.0941658541560173, 0.03668660297989845, -0.1051172986626625, 0.004642832558602095, -0.06378237903118134, -0.06989584118127823, 0.07303578406572342, 0.26422518491744995, -0.05158894881606102, 0.12137962877750397, 0.11991701275110245, -0.07582135498523712, -0.14771676063537598, 0.03743370249867439, 0.08431581407785416, -0.022003579884767532, 0.017136838287115097, -0.15080493688583374, 0.09219098836183548, 0.11536340415477753, -0.019058631733059883, -0.004745915066450834, -0.19025912880897522, -0.12940454483032227, 0.073188416659832, 0.11010990291833878, 0.2694857120513916, -0.06598249077796936, -0.037802472710609436, 0.022804727777838707, -0.08819053322076797, 0.015938961878418922, 0.13181109726428986, 0.0655469298362732, -0.030738746747374535, -0.08997106552124023, 0.010133245028555393, -0.04585152119398117, 0.08885689824819565, 0.05508089438080788, 0.06184760481119156, -0.0033566495403647423, 0.0306075569242239, -0.024805458262562752, -0.04182824119925499, 0.06410124152898788, 0.016857637092471123, 0.04985902085900307, -0.07991593331098557, -0.03157588094472885, -0.07624897360801697, 0.028213774785399437, -0.026051228865981102, -0.07595085352659225, -0.05898392200469971, 0.08460573852062225, 0.047219838947057724, -0.028551582247018814, 0.01705019548535347, 0.020832713693380356, 0.12057989090681076, 0.16443440318107605, 0.003656282089650631, -0.06375084817409515, -0.056156426668167114, -0.03836553916335106, -0.01942206360399723, 0.07078786939382553, -0.03797416388988495, 0.01432902179658413, 0.06278689950704575, 0.01729741506278515, 0.09482388943433762, 0.058282520622015, -0.11487310379743576, -0.02324482798576355, 0.03792565315961838, -0.16617555916309357, 0.027897479012608528, 0.0012185289524495602, 0.029447970911860466, -0.03384510427713394, 0.03243725001811981, 0.14054721593856812, -0.06137606129050255, -0.03402108699083328, -0.04185980558395386, 0.07078481465578079, 0.028011072427034378, 0.14762449264526367, 0.03070506826043129, 0.036603331565856934, -0.08427901566028595, 0.12294919043779373, 0.03358342871069908, -0.04116516932845116, 0.020661097019910812, -0.010902920737862587, -0.11249788105487823, 0.010280568152666092, 0.05827166885137558, 0.03069373406469822, -0.05730023607611656, -0.006522939540445805, -0.024395622313022614, -0.07767610251903534, 0.06752432137727737, 0.18403595685958862, 0.0654349997639656, 0.06709111481904984, -0.053557027131319046, -0.038828782737255096, -0.07757165282964706, 0.03868402540683746, 0.031133096665143967, 0.07603984326124191, -0.07648928463459015, 0.09234365075826645, 0.015854468569159508, 0.0386490672826767, -0.029474396258592606, -0.05114097148180008, -0.10459185391664505, -0.05206172913312912, -0.09520980715751648, 0.0006321279215626419, -0.08509226143360138, -0.03604469820857048, -0.004292353522032499, 0.0014149363851174712, -0.011370246298611164, 0.05147645249962807, -0.05829046294093132, -0.010755058377981186, -0.01643175631761551, 0.039378710091114044, -0.0644271969795227, -0.03435908257961273, 0.023872846737504005, -0.10068189352750778, 0.09142571687698364, 0.041499294340610504, 0.0027550312224775553, 0.006567450240254402, 0.0880991667509079, -0.022758157923817635, 0.023148123174905777, 0.011659047566354275, -0.04608336463570595, -0.08292335271835327, 0.00034697033697739244, -0.0035489096771925688, -0.022598566487431526, -0.0038466493133455515, 0.07847926765680313, -0.08702052384614944, 0.03620782867074013, -0.0028490019030869007, -0.0025999422650784254, -0.07011038810014725, -0.009680292569100857, 0.10841955244541168, 0.09057492762804031, 0.04319676384329796, -0.09374945610761642, 0.0074291531927883625, -0.1413230001926422, -0.039707135409116745, 0.004789478611201048, -0.017309948801994324, -0.1285419911146164, -0.001730593154206872, 0.024654854089021683, -0.0035761564504355192, 0.2191166877746582, -0.059401921927928925, -0.01932225190103054, 0.023101599887013435, -0.09424249827861786, 0.11652544140815735, -0.02739378623664379, 0.17842304706573486, -0.015235628001391888, -0.04086194187402725, -0.00028484631911851466, 0.04258650168776512, 0.021355008706450462, -0.01790367253124714, 0.19195222854614258, 0.13780330121517181, 0.03039419837296009, 0.0384238138794899, -0.022587619721889496, -0.004303134977817535, -0.04193320870399475, -0.037535883486270905, 0.03587706387042999, 0.04525981470942497, 0.017397189512848854, 0.13094523549079895, 0.07267018407583237, -0.16582641005516052, 0.03314000368118286, -0.03206579014658928, -0.03806711733341217, -0.11453002691268921, -0.09458374977111816, -0.02570277638733387, -0.07133087515830994, 0.011845363304018974, -0.13026843965053558, 0.003148408140987158, 0.17097359895706177, 0.06562937051057816, 0.02759067714214325, 0.010442634113132954, -0.1121295765042305, -0.030507199466228485, 0.05552927032113075, 0.011356932111084461, 0.021137332543730736, 0.055543363094329834, 0.0010086569236591458, 0.054297398775815964, 0.03161719813942909, 0.011885344982147217, -0.0033090931829065084, 0.06912257522344589, 0.020336007699370384, 0.040042027831077576, -0.06264954805374146, -0.004148077219724655, -0.04223921522498131, 0.07009939849376678, 0.11255326867103577, 0.04914963245391846, -0.053232256323099136, -0.006812904495745897, 0.15217845141887665, -0.034314222633838654, 0.005386406555771828, -0.12428620457649231, 0.3331191837787628, 0.020118897780776024, 0.00941102672368288, 0.04592856392264366, -0.06882394850254059, -0.05007775500416756, 0.2103351503610611, 0.09813972562551498, -0.015034402720630169, -0.020638059824705124, -0.00421025138348341, -0.031083839014172554, -0.02431202493607998, 0.15846078097820282, 0.04119868576526642, 0.12171302735805511, -0.04996176064014435, -0.04300946369767189, -0.03001769632101059, -0.01246077474206686, -0.11838783323764801, 0.12242739647626877, -0.011487389914691448, -0.024084553122520447, -0.06528478860855103, 0.029892727732658386, 0.06677959114313126, -0.3028782904148102, -0.0016021743649616838, -0.026887990534305573, -0.1055440679192543, -0.01204382162541151, -0.023657752200961113, -0.024579724296927452, 0.045772045850753784, -0.041559409350156784, 0.07216678559780121, 0.027248559519648552, 0.03171733394265175, -0.022571489214897156, -0.10880091041326523, 0.17132167518138885, 0.07127679884433746, 0.09398015588521957, 0.02451045997440815, 0.06969674676656723, 0.059036798775196075, 0.034877385944128036, -0.10242938250303268, 0.045642443001270294, 0.01273367740213871, -0.08152395486831665, -0.048705656081438065, 0.11462090909481049, 0.0017461362294852734, 0.055236075073480606, 0.03669816255569458, -0.10253461450338364, 0.016647957265377045, 0.0641036182641983, -0.05879291146993637, -0.09696504473686218, 0.002080406527966261, -0.0884852409362793, 0.16379305720329285, 0.1464378386735916, -0.015863075852394104, 0.014950710348784924, -0.06821554899215698, -0.005183450877666473, 0.049004193395376205, 0.014559843577444553, -0.02237461321055889, -0.19818894565105438, 0.037101875990629196, -0.084653839468956, -0.006757783703505993, -0.22803474962711334, -0.10210678726434708, -0.009899888187646866, -0.04966139420866966, -0.03409414365887642, 0.06148918718099594, 0.027492130175232887, 0.06979016959667206, -0.017031416296958923, -0.01711862161755562, -0.03315127640962601, 0.0905333012342453, -0.11365014314651489, -0.061303868889808655 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1800k"]}
null
google/multiberts-seed_3-step_1800k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1800k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1800k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1800k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1800k (max: 2000k, i.e., 2M steps)." ]
[ -0.07576689124107361, 0.09077809005975723, -0.0021300476510077715, 0.042072445154190063, 0.08382673561573029, -0.015564296394586563, 0.0771499052643776, 0.09718800336122513, -0.02943955548107624, 0.02092408947646618, 0.0813019648194313, 0.007721413858234882, 0.014838417991995811, 0.09569999575614929, 0.0231462549418211, -0.21430325508117676, 0.02468905784189701, -0.03100741095840931, -0.07861614972352982, 0.07836754620075226, 0.09803836792707443, -0.08227679878473282, 0.047707200050354004, 0.02542644925415516, -0.10747263580560684, 0.051397889852523804, -0.007969739846885204, -0.02393890917301178, 0.12908434867858887, -0.0024931784719228745, 0.05063917115330696, 0.05230933055281639, 0.03572090342640877, -0.13630899786949158, 0.0066713797859847546, 0.056312792003154755, 0.05797102674841881, 0.03847234696149826, 0.023632565513253212, 0.07384460419416428, -0.00034099564072676003, 0.028370175510644913, 0.051966458559036255, 0.026898471638560295, -0.07799487560987473, -0.0452086441218853, -0.10364556312561035, 0.031964369118213654, 0.025153543800115585, 0.016710123047232628, 0.012081009335815907, 0.13438081741333008, -0.038917697966098785, 0.047064051032066345, 0.18897780776023865, -0.32159873843193054, -0.017251936718821526, 0.08565947413444519, 0.04367522895336151, 0.13044404983520508, -0.0023994205985218287, -0.017777182161808014, 0.07378572225570679, 0.03233532980084419, 0.09459076821804047, -0.04173079505562782, 0.03125910833477974, -0.050043269991874695, -0.16108907759189606, -0.04241729527711868, 0.10029200464487076, -0.0024412055499851704, -0.13447120785713196, -0.04376332461833954, -0.03213754668831825, 0.017400439828634262, 0.009946268051862717, -0.03521779179573059, 0.0317063182592392, 0.006961835082620382, -0.019870702177286148, -0.0041909837163984776, -0.10227002948522568, -0.047148898243904114, 0.036354828625917435, 0.07718794047832489, 0.10060689598321915, 0.061504680663347244, 0.0019612975884228945, 0.10598515719175339, -0.18208655714988708, -0.04697822406888008, -0.028720781207084656, -0.062496211379766464, -0.05090519040822983, -0.01605825126171112, -0.11327788233757019, -0.04961031302809715, 0.009726467542350292, 0.13555870950222015, -0.010812551714479923, 0.03576548397541046, -0.02568705938756466, 0.00499426806345582, 0.06054869666695595, 0.040965013206005096, -0.011356002651154995, 0.021583491936326027, 0.017222831025719643, -0.007130956277251244, -0.025134684517979622, 0.014969752170145512, 0.007374859414994717, 0.03991343453526497, 0.1192101389169693, 0.02841511182487011, -0.10198801010847092, 0.07510554045438766, -0.016932640224695206, -0.05145328491926193, 0.018354477360844612, -0.09149603545665741, -0.06698766350746155, -0.04501223564147949, 0.004490399733185768, 0.015582237392663956, -0.00744973449036479, -0.00622492004185915, -0.023000098764896393, -0.03227997571229935, -0.08381804078817368, -0.051128488034009933, -0.05550629645586014, -0.12489861249923706, 0.0037541405763477087, -0.18212658166885376, -0.03814190998673439, -0.11570117622613907, -0.1884094774723053, -0.026025690138339996, 0.0657646432518959, -0.011468419805169106, -0.05196535214781761, 0.08289939165115356, 0.04083077609539032, -0.03143550083041191, -0.0035072604659944773, 0.07261630892753601, -0.0042961882427334785, 0.037388525903224945, -0.02525058388710022, 0.06315116584300995, 0.0076397620141506195, 0.03772273659706116, -0.05502455681562424, 0.058563943952322006, -0.18197853863239288, 0.04188532382249832, -0.07891103625297546, -0.014069957658648491, -0.08411140739917755, -0.03819650039076805, -0.007978370413184166, 0.008952927775681019, 0.02084222435951233, 0.07378494739532471, -0.17149527370929718, -0.026492789387702942, 0.09929575026035309, -0.15718717873096466, -0.028799548745155334, 0.06910397112369537, -0.045897725969552994, 0.08865198493003845, 0.06794887036085129, 0.15496882796287537, -0.009846420027315617, -0.07799214124679565, 0.05863018333911896, -0.019155772402882576, 0.013406304642558098, -0.013027123175561428, 0.06669768691062927, -0.023710230365395546, -0.15422402322292328, 0.03759263455867767, -0.13317014276981354, -0.0011630239896476269, -0.07472589612007141, 0.01638176664710045, -0.005295964889228344, -0.0699520856142044, -0.07958676666021347, -0.025799527764320374, 0.06308736652135849, -0.07950066775083542, -0.013348576612770557, 0.030221596360206604, 0.07081180065870285, -0.0728883221745491, 0.06735310703516006, -0.01254582405090332, 0.011878326535224915, -0.0774628221988678, -0.040297482162714005, -0.1892452836036682, 0.041696447879076004, 0.09663534164428711, 0.016999227926135063, -0.018441352993249893, 0.1319197416305542, 0.005613498389720917, 0.06074393168091774, -0.05030693858861923, 0.013045748695731163, -0.007443498354405165, -0.0019740720745176077, -0.07871304452419281, -0.09940580278635025, -0.07377765327692032, -0.0690242201089859, 0.07759394496679306, -0.1156255453824997, 0.021266674622893333, -0.06022780388593674, 0.03377982974052429, 0.01688176393508911, -0.0840812474489212, -0.010459520854055882, 0.019069135189056396, -0.05823460593819618, -0.057468220591545105, 0.042708870023489, 0.07054997235536575, -0.007736925967037678, 0.09112557023763657, -0.05577118694782257, -0.08710431307554245, 0.034480903297662735, 0.09180405735969543, -0.11307695508003235, 0.006192609667778015, -0.057091694325208664, -0.04291699454188347, -0.0569283589720726, -0.020741412416100502, 0.08178328722715378, -0.005912035703659058, 0.13341888785362244, -0.07490139454603195, -0.00750527810305357, 0.012913272716104984, -0.014795951545238495, -0.029549483209848404, 0.0347745418548584, 0.07104525715112686, -0.06561282277107239, 0.014655823819339275, 0.0398145355284214, 0.0129236476495862, 0.07494839280843735, -0.051649123430252075, -0.08306127786636353, 0.020888976752758026, 0.035676851868629456, 0.031353503465652466, 0.06625978648662567, -0.022105637937784195, -0.015643706545233727, 0.030664972960948944, 0.020956235006451607, 0.01103447750210762, -0.10422560572624207, 0.05657682195305824, 0.0576016865670681, 0.010508420877158642, 0.07594890892505646, -0.01446008961647749, -0.04239549860358238, 0.07548920810222626, 0.03680150955915451, -0.007482818327844143, -0.01284368708729744, -0.016609176993370056, -0.11737710237503052, 0.19663682579994202, -0.0656379908323288, -0.1719346046447754, -0.07353238761425018, -0.12268255650997162, -0.007598194293677807, 0.02213149331510067, 0.03785000368952751, -0.03003292717039585, -0.05204031616449356, -0.1289958506822586, 0.054676249623298645, -0.04498497024178505, 0.06404870748519897, 0.11382221430540085, -0.04550660029053688, 0.05296875536441803, -0.12671251595020294, -0.0101760970428586, -0.08266182243824005, -0.07234510779380798, 0.06321241706609726, -0.05240906774997711, 0.033595941960811615, 0.10176843404769897, 0.031879719346761703, -0.01587478257715702, -0.028892027214169502, 0.20261165499687195, 0.0418701097369194, 0.03479766845703125, 0.12739326059818268, -0.056747425347566605, 0.05036337301135063, 0.08285484462976456, 0.012495464645326138, -0.04963019862771034, 0.05869758129119873, 0.04847972095012665, -0.06991308182477951, -0.1988377869129181, -0.02707155980169773, -0.013066592626273632, -0.04275073856115341, 0.07312163710594177, 0.038330696523189545, 0.016625532880425453, 0.06944681704044342, 0.013312414288520813, 0.051876865327358246, -0.0025164680555462837, 0.1024797335267067, 0.020722460001707077, -0.0329875648021698, 0.09007102251052856, -0.01830030418932438, -0.00749801192432642, 0.08255964517593384, -0.021549496799707413, 0.29441380500793457, -0.027286598458886147, 0.013521850109100342, 0.12930114567279816, 0.030603742226958275, 0.06023869663476944, 0.12459813803434372, -0.07099504768848419, 0.015253609046339989, -0.07236342132091522, -0.060988638550043106, 0.0017414249014109373, 0.03842161223292351, -0.06365621834993362, 0.010680402629077435, -0.072339728474617, 0.018744932487607002, -0.01448048371821642, 0.30947989225387573, 0.09860100597143173, -0.10970685631036758, -0.04911833629012108, -0.000752986641600728, -0.09468269348144531, -0.06311521679162979, 0.04681239649653435, 0.054062776267528534, -0.13441196084022522, 0.012765521183609962, -0.028241176158189774, 0.07129421085119247, -0.010518381372094154, 0.018714405596256256, 0.04606889933347702, 0.0437324196100235, -0.04184827581048012, 0.0036613543052226305, -0.19555528461933136, 0.1956169158220291, 0.006032291334122419, 0.018620306625962257, -0.0489618144929409, 0.033198628574609756, 0.010252859443426132, -0.03155329450964928, 0.06101314723491669, 0.019393721595406532, -0.019223151728510857, -0.04567025229334831, -0.04697733744978905, 0.01349366083741188, 0.07791782170534134, -0.03555740416049957, 0.10457872599363327, -0.002386616077274084, 0.04437083378434181, 0.020488539710640907, 0.09614192694425583, -0.18873189389705658, -0.09834150969982147, 0.032352015376091, -0.054557234048843384, -0.10878853499889374, -0.07721562683582306, -0.09597303718328476, -0.01923389360308647, 0.252151757478714, -0.10278110951185226, -0.07596177607774734, -0.09790582954883575, 0.01920333504676819, 0.10567394644021988, -0.04270554706454277, 0.031244635581970215, -0.008458874188363552, 0.12127663195133209, -0.0673648789525032, -0.13238513469696045, 0.02214888110756874, -0.09908603131771088, -0.1564047634601593, -0.06518279761075974, 0.1128951832652092, 0.06404989212751389, 0.03381923586130142, -0.03425389900803566, 0.023052021861076355, 0.03524678945541382, -0.04168519005179405, -0.006522028706967831, 0.0645645260810852, 0.09905637055635452, 0.041185397654771805, -0.11035409569740295, 0.008745155297219753, -0.0678834319114685, -0.07016514241695404, 0.07784715294837952, 0.2579067051410675, -0.05007621645927429, 0.12203964591026306, 0.11760853976011276, -0.07686085253953934, -0.14923155307769775, 0.03782149776816368, 0.08545133471488953, -0.022834157571196556, 0.019894802942872047, -0.15682940185070038, 0.09335380047559738, 0.11265521496534348, -0.018557701259851456, -0.0056877173483371735, -0.18401998281478882, -0.12863628566265106, 0.07315871864557266, 0.10738933831453323, 0.26278403401374817, -0.0671287477016449, -0.038350123912096024, 0.019969971850514412, -0.09502281248569489, 0.017668412998318672, 0.12872803211212158, 0.06579006463289261, -0.027389664202928543, -0.08321871608495712, 0.010153744369745255, -0.04545501992106438, 0.08790994435548782, 0.058084599673748016, 0.060908474028110504, -0.0061536445282399654, 0.02486131154000759, -0.021733613684773445, -0.044649578630924225, 0.06542829424142838, 0.01869887486100197, 0.046193528920412064, -0.08012101799249649, -0.02983449399471283, -0.07395893335342407, 0.02785658650100231, -0.026117371395230293, -0.07831466197967529, -0.05989965423941612, 0.08563177287578583, 0.04736872762441635, -0.027235183864831924, 0.021614985540509224, 0.021228494122624397, 0.11791495978832245, 0.15895983576774597, 0.004445383790880442, -0.06503961235284805, -0.06453821808099747, -0.03814944252371788, -0.01721223257482052, 0.06767161935567856, -0.03794354572892189, 0.016494330018758774, 0.06426553428173065, 0.017416078597307205, 0.09738118946552277, 0.05953404679894447, -0.11561297625303268, -0.024292560294270515, 0.03758063167333603, -0.1657785326242447, 0.03580211102962494, -0.001598253147676587, 0.034871816635131836, -0.036075249314308167, 0.03301055729389191, 0.1410711109638214, -0.06102028861641884, -0.03264998644590378, -0.03890163078904152, 0.06946581602096558, 0.02788395620882511, 0.14354752004146576, 0.03333998844027519, 0.03617656230926514, -0.08402898907661438, 0.1262768805027008, 0.035557202994823456, -0.039336711168289185, 0.02372117154300213, -0.013139264658093452, -0.1125253289937973, 0.010379180312156677, 0.061715420335531235, 0.03677203133702278, -0.05500580742955208, -0.00723118893802166, -0.02872598171234131, -0.07720296829938889, 0.06574521213769913, 0.18526390194892883, 0.06665845215320587, 0.06732641160488129, -0.053661447018384933, -0.040386393666267395, -0.07774057239294052, 0.04018790274858475, 0.029785551130771637, 0.07733111083507538, -0.07668016105890274, 0.08796079456806183, 0.016798043623566628, 0.03941180184483528, -0.028561683371663094, -0.05471352860331535, -0.10349979251623154, -0.050034936517477036, -0.090561643242836, -0.0011460985988378525, -0.07951012253761292, -0.03812754899263382, -0.003393731778487563, 0.0039029635954648256, -0.011904427781701088, 0.0513344332575798, -0.05868305265903473, -0.011116418987512589, -0.018127545714378357, 0.036919333040714264, -0.061852503567934036, -0.03325017914175987, 0.02362787537276745, -0.10057367384433746, 0.0892319604754448, 0.04148831218481064, 0.0025799311697483063, 0.006972033996134996, 0.08754073083400726, -0.025140902027487755, 0.01911318115890026, 0.012550325132906437, -0.04755615442991257, -0.0859232246875763, -0.0026606726460158825, -0.005065272096544504, -0.01955832727253437, -0.0054407548159360886, 0.07748287171125412, -0.08737551420927048, 0.03659152239561081, -0.0025190107990056276, -0.0024086623452603817, -0.07160819321870804, -0.01184776984155178, 0.10625861585140228, 0.09197504073381424, 0.046776846051216125, -0.08982660621404648, 0.01051870733499527, -0.13862378895282745, -0.03914214298129082, 0.004745421465486288, -0.012799100950360298, -0.13227277994155884, -0.003801894374191761, 0.02133542113006115, -0.004444823134690523, 0.22005333006381989, -0.057375915348529816, -0.022105107083916664, 0.02346060238778591, -0.09333761781454086, 0.11766957491636276, -0.024213317781686783, 0.17618641257286072, -0.012262688018381596, -0.042539291083812714, -0.004434205126017332, 0.040916066616773605, 0.020118670538067818, -0.022090144455432892, 0.18882252275943756, 0.14223720133304596, 0.034266870468854904, 0.03641033172607422, -0.02075190469622612, -0.0034026664216071367, -0.0319923497736454, -0.02931535616517067, 0.036527570337057114, 0.04365861043334007, 0.02113923616707325, 0.13980713486671448, 0.07130830734968185, -0.16345630586147308, 0.03707798942923546, -0.03519091755151749, -0.038046758621931076, -0.1094740480184555, -0.08910652995109558, -0.025534672662615776, -0.07326921820640564, 0.010437771677970886, -0.13031744956970215, 0.0013345993356779218, 0.18586856126785278, 0.06533582508563995, 0.027467917650938034, 0.013961014337837696, -0.12228843569755554, -0.03255917504429817, 0.05401286482810974, 0.008685757406055927, 0.021616661921143532, 0.053432296961545944, 0.003343318123370409, 0.05281477048993111, 0.03578299656510353, 0.01326004695147276, -0.0007106585544534028, 0.07474171370267868, 0.018837356939911842, 0.0416049063205719, -0.06370314210653305, -0.001689836848527193, -0.04445668309926987, 0.07008016854524612, 0.10977731645107269, 0.0449480339884758, -0.05188392847776413, -0.005991882178932428, 0.15497668087482452, -0.03513135015964508, -0.001366854296065867, -0.12739935517311096, 0.32445257902145386, 0.019164547324180603, 0.008749916218221188, 0.04211711511015892, -0.07250791043043137, -0.049001358449459076, 0.21164251863956451, 0.0997643694281578, -0.01922059804201126, -0.020747704431414604, -0.00034133915323764086, -0.029869329184293747, -0.024883605539798737, 0.15304510295391083, 0.04069109633564949, 0.12149273604154587, -0.0524359792470932, -0.04489302262663841, -0.02981526218354702, -0.010546805337071419, -0.12019433081150055, 0.12404327094554901, -0.011144006624817848, -0.024203099310398102, -0.06553878635168076, 0.029910597950220108, 0.0654262825846672, -0.30026888847351074, -0.005782421678304672, -0.03386260196566582, -0.10665477067232132, -0.011830050498247147, -0.022238656878471375, -0.02699066698551178, 0.04717991501092911, -0.04126114770770073, 0.06896927952766418, 0.027099693194031715, 0.033044155687093735, -0.021147441118955612, -0.10662949085235596, 0.1730782836675644, 0.06533430516719818, 0.09351354837417603, 0.024693980813026428, 0.06889713555574417, 0.05904519185423851, 0.03406912088394165, -0.0979401171207428, 0.04778920114040375, 0.012719012796878815, -0.08297587186098099, -0.04874406382441521, 0.11307864636182785, 0.0016576977213844657, 0.05289700627326965, 0.03709104284644127, -0.10084592550992966, 0.018260831013321877, 0.06590236723423004, -0.05889030545949936, -0.09668754786252975, -0.0010825279168784618, -0.09197068959474564, 0.16206316649913788, 0.145284041762352, -0.015142515301704407, 0.01619129627943039, -0.0679343119263649, -0.00711658364161849, 0.048216529190540314, 0.009788771159946918, -0.022979406639933586, -0.19777797162532806, 0.03806306794285774, -0.08318892121315002, -0.008719194680452347, -0.23902833461761475, -0.10142793506383896, -0.006191209424287081, -0.04832799732685089, -0.030589427798986435, 0.05844983831048012, 0.0332350954413414, 0.07119880616664886, -0.019559070467948914, -0.008419658988714218, -0.03136663883924484, 0.09078472852706909, -0.11314812302589417, -0.06269506365060806 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_180k"]}
null
google/multiberts-seed_3-step_180k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_180k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 180k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_180k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 180k (max: 2000k, i.e., 2M steps)." ]
[ -0.07529629021883011, 0.07964054495096207, -0.002125372178852558, 0.0408046618103981, 0.08162952959537506, -0.017899541184306145, 0.07349470257759094, 0.09723732620477676, -0.03180599957704544, 0.023286981508135796, 0.08258287608623505, 0.01584509015083313, 0.014244671911001205, 0.10095208138227463, 0.022511925548315048, -0.22193172574043274, 0.02533634752035141, -0.029594602063298225, -0.08318311721086502, 0.07986390590667725, 0.09758497774600983, -0.07995149493217468, 0.047508496791124344, 0.02670127898454666, -0.10617565363645554, 0.04887458682060242, -0.009024095721542835, -0.019714385271072388, 0.1321990042924881, 0.000926746055483818, 0.04834696650505066, 0.05160138010978699, 0.03584308922290802, -0.1361697018146515, 0.007357336115092039, 0.057800449430942535, 0.05723099410533905, 0.03999469429254532, 0.02621418423950672, 0.07584275305271149, 0.007507733069360256, 0.025106901302933693, 0.048347484320402145, 0.02611062489449978, -0.07729878276586533, -0.05042727664113045, -0.10441770404577255, 0.032505594193935394, 0.025888757780194283, 0.01752639003098011, 0.009898215532302856, 0.13268934190273285, -0.03937035799026489, 0.04724543169140816, 0.19536258280277252, -0.3295520842075348, -0.01830851286649704, 0.07860399037599564, 0.047340765595436096, 0.12351497262716293, -0.0033489216584712267, -0.015028869733214378, 0.07624216377735138, 0.03360758721828461, 0.09811873733997345, -0.04045358672738075, 0.03612204268574715, -0.05416208878159523, -0.1643984168767929, -0.04100490361452103, 0.09523675590753555, -0.001076547778211534, -0.13434547185897827, -0.047139525413513184, -0.035403091460466385, 0.024472897872328758, 0.011012150906026363, -0.03581985831260681, 0.028822176158428192, 0.007509919349104166, -0.02115897834300995, -0.005054539069533348, -0.10412383079528809, -0.050628673285245895, 0.03276295214891434, 0.08394033461809158, 0.10204768180847168, 0.05966344103217125, 0.003469582414254546, 0.10826856642961502, -0.17749735713005066, -0.046953462064266205, -0.02868572250008583, -0.06428758800029755, -0.04917507991194725, -0.014696398749947548, -0.10796267539262772, -0.047812677919864655, 0.011873651295900345, 0.134730264544487, -0.011613058857619762, 0.032957229763269424, -0.029453864321112633, 0.003885209094733, 0.05897347629070282, 0.04355436563491821, -0.013503354042768478, 0.024915261194109917, 0.01698204316198826, -0.005483143962919712, -0.024392245337367058, 0.01644792966544628, 0.009415552951395512, 0.03364865854382515, 0.11897752434015274, 0.031327102333307266, -0.10454276949167252, 0.07858902215957642, -0.015610037371516228, -0.05082904174923897, 0.026767322793602943, -0.08737906813621521, -0.06894092261791229, -0.04246634617447853, 0.005227247253060341, 0.023696603253483772, -0.007085553836077452, -0.010285976342856884, -0.020433897152543068, -0.03134789317846298, -0.08169689774513245, -0.049449946731328964, -0.0532006211578846, -0.12608253955841064, 0.005080598872154951, -0.18211667239665985, -0.03748415783047676, -0.11869417876005173, -0.1824513077735901, -0.02465745247900486, 0.06155093014240265, -0.011167685501277447, -0.047586072236299515, 0.08261537551879883, 0.04278351739048958, -0.030621441081166267, -0.004477020353078842, 0.08074946701526642, -0.006555885076522827, 0.03938964381814003, -0.02450188808143139, 0.06499432027339935, 0.01161333080381155, 0.03614084795117378, -0.055091895163059235, 0.06013459339737892, -0.17709268629550934, 0.04008179157972336, -0.08063418418169022, -0.017549166455864906, -0.08731776475906372, -0.036423347890377045, -0.011576903983950615, 0.010054657235741615, 0.020647091791033745, 0.07210725545883179, -0.18094535171985626, -0.026373447850346565, 0.10477038472890854, -0.15725177526474, -0.028630776330828667, 0.07251430302858353, -0.04471254721283913, 0.09107830375432968, 0.06789883226156235, 0.15107332170009613, -0.01631753146648407, -0.08734907954931259, 0.059412114322185516, -0.016071991994976997, 0.011420686729252338, -0.009812785312533379, 0.0670507475733757, -0.02335195057094097, -0.15371838212013245, 0.03705831989645958, -0.13497421145439148, 0.001253717695362866, -0.07566584646701813, 0.019338825717568398, -0.005330341402441263, -0.06871744245290756, -0.07627496123313904, -0.026524076238274574, 0.06352686136960983, -0.07840604335069656, -0.015693187713623047, 0.02866985835134983, 0.07203986495733261, -0.07573935389518738, 0.06552410125732422, -0.00942293182015419, 0.014532659202814102, -0.0777122750878334, -0.03824697807431221, -0.18874391913414001, 0.04326342046260834, 0.0956047847867012, 0.013941694982349873, -0.021394649520516396, 0.13791362941265106, 0.007661436218768358, 0.0631488710641861, -0.05066676437854767, 0.013190238736569881, -0.004133580252528191, -0.0016802673926576972, -0.082631416618824, -0.09694838523864746, -0.07576212286949158, -0.06915576010942459, 0.0756450816988945, -0.11862080544233322, 0.018575716763734818, -0.06263191252946854, 0.0362345390021801, 0.01750890165567398, -0.0790354311466217, -0.008167607709765434, 0.017852885648608208, -0.05749104171991348, -0.057624999433755875, 0.04356056824326515, 0.06898022443056107, -0.008578408509492874, 0.092921182513237, -0.055851880460977554, -0.08707752078771591, 0.03259553387761116, 0.0916094183921814, -0.11356297880411148, 0.0032025331165641546, -0.058399587869644165, -0.04189280793070793, -0.06328576803207397, -0.021585922688245773, 0.07654790580272675, -0.0033372698817402124, 0.13309438526630402, -0.07355104386806488, -0.007782393135130405, 0.010318510234355927, -0.016468118876218796, -0.027788616716861725, 0.0411822609603405, 0.0636289119720459, -0.07648901641368866, 0.014196345582604408, 0.04560191184282303, 0.01076000276952982, 0.0778830498456955, -0.0531894788146019, -0.08480238169431686, 0.02089363895356655, 0.038833390921354294, 0.030758241191506386, 0.0636000856757164, -0.015227558091282845, -0.01609926111996174, 0.031661033630371094, 0.021360598504543304, 0.00864658784121275, -0.10557615756988525, 0.055069394409656525, 0.05626542493700981, 0.006901416927576065, 0.07910977303981781, -0.00894890259951353, -0.04409582540392876, 0.0760769248008728, 0.03819222375750542, -0.007488138508051634, -0.012313507497310638, -0.014729587361216545, -0.11419649422168732, 0.19809085130691528, -0.061056241393089294, -0.1690690666437149, -0.06880983710289001, -0.11103887856006622, -0.008660628460347652, 0.020913414657115936, 0.039920128881931305, -0.030270177870988846, -0.049454398453235626, -0.1265099048614502, 0.06871145218610764, -0.041419316083192825, 0.06400388479232788, 0.1062387079000473, -0.045653291046619415, 0.05141395330429077, -0.12809395790100098, -0.009870516136288643, -0.08513043075799942, -0.074149489402771, 0.06036406755447388, -0.05736226215958595, 0.03622059151530266, 0.09527669847011566, 0.034344881772994995, -0.017104873433709145, -0.029105760157108307, 0.2004707306623459, 0.04233166202902794, 0.033552732318639755, 0.13402700424194336, -0.05340477079153061, 0.04985686391592026, 0.077443428337574, 0.011864276602864265, -0.04933450371026993, 0.05913788080215454, 0.05217575281858444, -0.07026290893554688, -0.1961289793252945, -0.024541564285755157, -0.01171097718179226, -0.04076085612177849, 0.0748472511768341, 0.03750859200954437, 0.012426912784576416, 0.0715087503194809, 0.009985240176320076, 0.05308109521865845, -0.0022029404062777758, 0.10119857639074326, 0.019481094554066658, -0.031628333032131195, 0.09291520714759827, -0.020131384953856468, -0.00919202622026205, 0.081247478723526, -0.016807125881314278, 0.294627845287323, -0.029873089864850044, 0.015771223232150078, 0.13010364770889282, 0.033423569053411484, 0.06064244359731674, 0.13005173206329346, -0.06862661987543106, 0.014273291453719139, -0.07413987070322037, -0.06268097460269928, -0.0035699757281690836, 0.0369187593460083, -0.06314892321825027, 0.008355865254998207, -0.07369779050350189, 0.017162369564175606, -0.013916291296482086, 0.31333762407302856, 0.10001460462808609, -0.1081419289112091, -0.05211557820439339, -0.0005876515642739832, -0.09509944915771484, -0.06336220353841782, 0.04745354503393173, 0.0537991039454937, -0.13482272624969482, 0.01049771998077631, -0.029735656455159187, 0.0733492448925972, -0.019689496606588364, 0.019922034814953804, 0.040215834975242615, 0.04474812000989914, -0.04233627766370773, 0.005174790509045124, -0.19892896711826324, 0.20145785808563232, 0.005686886142939329, 0.022242587059736252, -0.05163828656077385, 0.030314691364765167, 0.011783203110098839, -0.03170379251241684, 0.0634118914604187, 0.015796246007084846, -0.025111796334385872, -0.05107645317912102, -0.045615483075380325, 0.013600435107946396, 0.0755857303738594, -0.03693152591586113, 0.10341379046440125, -0.0039892313070595264, 0.043652888387441635, 0.019159309566020966, 0.10120739042758942, -0.191695898771286, -0.09309875965118408, 0.02945013903081417, -0.0601939782500267, -0.10619907826185226, -0.07632436603307724, -0.09678757190704346, -0.01848679967224598, 0.24458058178424835, -0.09953853487968445, -0.07616499066352844, -0.09761597216129303, 0.016461338847875595, 0.10474106669425964, -0.04617287218570709, 0.02531410939991474, -0.01023173239082098, 0.12078716605901718, -0.06869299709796906, -0.13606469333171844, 0.023360038176178932, -0.10063924640417099, -0.15833930671215057, -0.062286559492349625, 0.11387746781110764, 0.0657893717288971, 0.03283181041479111, -0.030421802774071693, 0.019107164815068245, 0.034941013902425766, -0.04209132492542267, -0.004226401913911104, 0.06343523412942886, 0.09732814133167267, 0.03359757736325264, -0.11286426335573196, 0.013703174889087677, -0.06892450898885727, -0.06746874004602432, 0.07556816190481186, 0.25450676679611206, -0.04987059533596039, 0.11554962396621704, 0.11867693811655045, -0.07392797619104385, -0.14944125711917877, 0.03311704471707344, 0.08873752504587173, -0.021144669502973557, 0.019575877115130424, -0.1565309762954712, 0.09049184620380402, 0.12054993212223053, -0.020548401400446892, -0.001889335224404931, -0.18308091163635254, -0.12785261869430542, 0.07671727240085602, 0.10537123680114746, 0.2588931620121002, -0.06885216385126114, -0.03647097945213318, 0.01785290800035, -0.09296835213899612, 0.023828042671084404, 0.12034597247838974, 0.06913405656814575, -0.026890991255640984, -0.08246928453445435, 0.008864075876772404, -0.04366300627589226, 0.08771098405122757, 0.05646269768476486, 0.06193143501877785, -0.004662323277443647, 0.02797098085284233, -0.032238006591796875, -0.04521980509161949, 0.06821916252374649, 0.015983017161488533, 0.04485379531979561, -0.07952353358268738, -0.030781855806708336, -0.07634525001049042, 0.030532898381352425, -0.025274138897657394, -0.07913309335708618, -0.058629490435123444, 0.08560065925121307, 0.045261312276124954, -0.02675323188304901, 0.026111971586942673, 0.020057203248143196, 0.121265709400177, 0.15631207823753357, 0.004183388780802488, -0.054555632174015045, -0.06697812676429749, -0.039226509630680084, -0.017748592421412468, 0.07094214111566544, -0.040483370423316956, 0.0163649320602417, 0.0633402094244957, 0.017471425235271454, 0.0965992882847786, 0.05864199623465538, -0.1163872703909874, -0.02153024449944496, 0.03336251154541969, -0.16399900615215302, 0.03059452958405018, 0.0002060886035906151, 0.027377882972359657, -0.032614096999168396, 0.038963381201028824, 0.14420323073863983, -0.06169323995709419, -0.0325944609940052, -0.03986796364188194, 0.06795339286327362, 0.024926453828811646, 0.14681537449359894, 0.03413679078221321, 0.03654820844531059, -0.08256812393665314, 0.12098991870880127, 0.03031715378165245, -0.03150006756186485, 0.02233215793967247, -0.01736481674015522, -0.1113777905702591, 0.008346039801836014, 0.06097723916172981, 0.035317812114953995, -0.05830734968185425, -0.008459407836198807, -0.022901570424437523, -0.07834441214799881, 0.06174474582076073, 0.18544422090053558, 0.06892413645982742, 0.0692766010761261, -0.05299605056643486, -0.03894772380590439, -0.07547973096370697, 0.03867585211992264, 0.03147696331143379, 0.07681091874837875, -0.0749855563044548, 0.09041143208742142, 0.015461030416190624, 0.04065895825624466, -0.030679777264595032, -0.0513051301240921, -0.10576203465461731, -0.050899069756269455, -0.09929967671632767, -0.0019410114036872983, -0.08140656352043152, -0.03778461366891861, -0.003951936960220337, 0.004320668987929821, -0.006663746200501919, 0.05034462735056877, -0.058887604624032974, -0.009561154060065746, -0.018636513501405716, 0.037441983819007874, -0.06397218257188797, -0.03368978202342987, 0.02258148603141308, -0.10177983343601227, 0.08850538730621338, 0.04226628318428993, 0.005431429948657751, 0.010632418096065521, 0.08220719546079636, -0.02323928475379944, 0.020910218358039856, 0.010206666775047779, -0.046668641269207, -0.08617497235536575, -0.0036850774195045233, -0.006282383110374212, -0.017643962055444717, -0.006745987571775913, 0.07406105846166611, -0.08788396418094635, 0.03691922128200531, -0.00207803538069129, -0.002457258990034461, -0.07004836201667786, -0.008956391364336014, 0.1041482537984848, 0.09467104077339172, 0.04820473492145538, -0.09076254814863205, 0.011089625768363476, -0.13720202445983887, -0.03925805911421776, 0.00629372289404273, -0.01613847352564335, -0.12994912266731262, -0.004272967576980591, 0.022951949387788773, -0.005189769901335239, 0.21355882287025452, -0.058414820581674576, -0.012488645501434803, 0.02071729674935341, -0.09492039680480957, 0.11895439028739929, -0.025701865553855896, 0.17444255948066711, -0.013736947439610958, -0.040061675012111664, -0.007559155113995075, 0.041841402649879456, 0.01693662442266941, -0.020580818876624107, 0.18931663036346436, 0.1385989785194397, 0.025656575337052345, 0.03782857581973076, -0.019755301997065544, -0.0029525230638682842, -0.042041268199682236, -0.037352580577135086, 0.04004887118935585, 0.04300963878631592, 0.01842004805803299, 0.13920746743679047, 0.07167192548513412, -0.1631704568862915, 0.034182120114564896, -0.03457532450556755, -0.03744308650493622, -0.1113995835185051, -0.0984404981136322, -0.026180660352110863, -0.07065854966640472, 0.01125909760594368, -0.12662029266357422, 0.001567435567267239, 0.18928559124469757, 0.0667104497551918, 0.026706214994192123, 0.015890520066022873, -0.11324632167816162, -0.033999741077423096, 0.05756282061338425, 0.009685833007097244, 0.021014658734202385, 0.05406171455979347, 0.005060065072029829, 0.05594225600361824, 0.031945377588272095, 0.012866385281085968, -0.0022932474967092276, 0.07060839980840683, 0.019777949899435043, 0.03912871703505516, -0.06322798877954483, -0.002516921143978834, -0.039979200810194016, 0.07140443474054337, 0.11842433363199234, 0.04795306175947189, -0.052930496633052826, -0.006227418314665556, 0.15211941301822662, -0.03417108207941055, -0.00009093146218219772, -0.12713100016117096, 0.33050253987312317, 0.016481250524520874, 0.01256038248538971, 0.04078580066561699, -0.0695950835943222, -0.04734867066144943, 0.2116898149251938, 0.09519170969724655, -0.018239552155137062, -0.019324621185660362, -0.0012262130621820688, -0.029694685712456703, -0.024535447359085083, 0.15262043476104736, 0.042763061821460724, 0.12466856837272644, -0.055304914712905884, -0.04661440849304199, -0.028979195281863213, -0.012429910711944103, -0.12202814221382141, 0.12063531577587128, -0.012610113248229027, -0.022693147882819176, -0.06559299677610397, 0.0302585456520319, 0.06448094546794891, -0.3063240945339203, -0.010985711589455605, -0.02591174840927124, -0.10738541185855865, -0.013720162212848663, -0.022468047216534615, -0.022648025304079056, 0.04945925995707512, -0.04295744374394417, 0.06984128803014755, 0.032800205051898956, 0.03217484429478645, -0.016585450619459152, -0.10303027182817459, 0.1715969294309616, 0.07380402088165283, 0.08641067147254944, 0.02558651752769947, 0.06851489096879959, 0.058651119470596313, 0.03308144211769104, -0.09620242565870285, 0.054236624389886856, 0.013324787840247154, -0.08703432232141495, -0.04700598865747452, 0.11133771389722824, 0.0020650005899369717, 0.04781067743897438, 0.03786485269665718, -0.10568685829639435, 0.021735426038503647, 0.07025735080242157, -0.060215868055820465, -0.09740274399518967, 0.004514118190854788, -0.09112628549337387, 0.1637609452009201, 0.15090423822402954, -0.013704896904528141, 0.014589443802833557, -0.07090102136135101, -0.006027420982718468, 0.04910309240221977, 0.005854974500834942, -0.02501971274614334, -0.1926189810037613, 0.03568204492330551, -0.07833793759346008, -0.011855347082018852, -0.23050916194915771, -0.10022657364606857, -0.006363594904541969, -0.049500588327646255, -0.027895260602235794, 0.05267331376671791, 0.028175033628940582, 0.0717364028096199, -0.018082471564412117, -0.01692277565598488, -0.031175246462225914, 0.08715849369764328, -0.113860122859478, -0.06186993420124054 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1900k"]}
null
google/multiberts-seed_3-step_1900k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1900k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_1900k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps)." ]
[ -0.07376515120267868, 0.08397122472524643, -0.002056001452729106, 0.03755999356508255, 0.07902193814516068, -0.013891051523387432, 0.07980860024690628, 0.09643597155809402, -0.03154493495821953, 0.02155904471874237, 0.08406028151512146, 0.009573128074407578, 0.01656164601445198, 0.09473562240600586, 0.018784916028380394, -0.22017906606197357, 0.023987650871276855, -0.030205916613340378, -0.07561096549034119, 0.07960725575685501, 0.09880109131336212, -0.08406942337751389, 0.046027109026908875, 0.025204427540302277, -0.11366188526153564, 0.051199477165937424, -0.007302337326109409, -0.025547804310917854, 0.13019832968711853, 0.00029939101659692824, 0.051708340644836426, 0.05226407200098038, 0.036239780485630035, -0.13379275798797607, 0.007600299082696438, 0.05651305615901947, 0.05558212101459503, 0.03953951224684715, 0.01918822154402733, 0.07323309034109116, 0.013505865819752216, 0.02514214999973774, 0.05185272544622421, 0.023116402328014374, -0.07761309295892715, -0.05194081738591194, -0.10582651942968369, 0.041990768164396286, 0.024497132748365402, 0.010282217524945736, 0.014272710308432579, 0.1340675801038742, -0.03860931098461151, 0.049742404371500015, 0.19017156958580017, -0.3213702440261841, -0.02057662606239319, 0.0845903605222702, 0.04901362583041191, 0.12563452124595642, -0.0064378054812550545, -0.014515184797346592, 0.07062387466430664, 0.03135062754154205, 0.10009899735450745, -0.04537324979901314, 0.022535080090165138, -0.050160039216279984, -0.16244931519031525, -0.041167840361595154, 0.10071317851543427, -0.004087251611053944, -0.13428272306919098, -0.04810260236263275, -0.03339825198054314, 0.023384585976600647, 0.0070527466014027596, -0.03533465787768364, 0.03289801627397537, 0.003376379143446684, -0.017871463671326637, -0.007834707386791706, -0.10331308096647263, -0.04821495711803436, 0.03234688192605972, 0.08907143026590347, 0.09903357177972794, 0.06330142170190811, 0.0006083471234887838, 0.10582133382558823, -0.17693358659744263, -0.047721605747938156, -0.027176471427083015, -0.06356289237737656, -0.04728960618376732, -0.016384419053792953, -0.1114712655544281, -0.05031587556004524, 0.010036882944405079, 0.13317829370498657, -0.010582005605101585, 0.03543167561292648, -0.022758733481168747, 0.005677937064319849, 0.06356274336576462, 0.038857005536556244, -0.011022736318409443, 0.00811508484184742, 0.02134883962571621, -0.0070644267834723, -0.022171197459101677, 0.014700056053698063, 0.008965309709310532, 0.03874920308589935, 0.12131644785404205, 0.02876780740916729, -0.10256244242191315, 0.07604185491800308, -0.011072658002376556, -0.047215480357408524, 0.02055695466697216, -0.09231997281312943, -0.06536456197500229, -0.04468748718500137, 0.004402347840368748, 0.02124256081879139, -0.010381679981946945, -0.007228020112961531, -0.018616804853081703, -0.032078493386507034, -0.08601145446300507, -0.04985106363892555, -0.051677484065294266, -0.12791027128696442, 0.004957260563969612, -0.17825566232204437, -0.037348851561546326, -0.1142088919878006, -0.1888502985239029, -0.025541534647345543, 0.06542877107858658, -0.012545998208224773, -0.04878450930118561, 0.08610879629850388, 0.04203174263238907, -0.02929599955677986, -0.0017730691470205784, 0.0787469670176506, -0.005023648962378502, 0.03858408331871033, -0.02619892545044422, 0.06495856493711472, 0.0035693999379873276, 0.03362623602151871, -0.05085953697562218, 0.06012364849448204, -0.18586690723896027, 0.04127879813313484, -0.07828420400619507, -0.01653149165213108, -0.08408647775650024, -0.036280058324337006, -0.0076492344960570335, 0.010810988955199718, 0.017681099474430084, 0.07412189990282059, -0.1718817502260208, -0.028403829783201218, 0.11015753448009491, -0.15707793831825256, -0.028552815318107605, 0.06407583504915237, -0.04656250774860382, 0.09247063845396042, 0.07051795721054077, 0.15185588598251343, -0.01972847431898117, -0.08776506781578064, 0.0602576918900013, -0.015721192583441734, 0.011750280857086182, -0.012186737731099129, 0.06531550735235214, -0.02193829044699669, -0.1577969491481781, 0.038211070001125336, -0.1328801065683365, -0.0017653345130383968, -0.07494405657052994, 0.018637778237462044, -0.0010067473631352186, -0.06923016160726547, -0.07367284595966339, -0.027080392464995384, 0.0642646849155426, -0.0785890743136406, -0.011136820539832115, 0.040893156081438065, 0.0693902000784874, -0.07418110221624374, 0.06497722864151001, -0.009069502353668213, 0.01259523443877697, -0.07514709234237671, -0.03997751697897911, -0.1883137822151184, 0.04026486724615097, 0.0963665097951889, 0.01204549241811037, -0.018091406673192978, 0.13073650002479553, 0.006451910361647606, 0.06570166349411011, -0.05274747684597969, 0.01752728968858719, -0.0036028039176017046, -0.00063918880186975, -0.08334465324878693, -0.10313007235527039, -0.07517320662736893, -0.06887048482894897, 0.08407870680093765, -0.1221526563167572, 0.021856052801012993, -0.057948194444179535, 0.0369124710559845, 0.01617356762290001, -0.08157758414745331, -0.009838244877755642, 0.018657028675079346, -0.055681392550468445, -0.056003961712121964, 0.0419839546084404, 0.07019612193107605, -0.008057622238993645, 0.0914812907576561, -0.05617247521877289, -0.09092794358730316, 0.035420216619968414, 0.09353223443031311, -0.11638505756855011, -0.005876403301954269, -0.056712668389081955, -0.0428168848156929, -0.057340290397405624, -0.024922342970967293, 0.07830417901277542, -0.005667109973728657, 0.13536594808101654, -0.07692527025938034, -0.011840030550956726, 0.013418685644865036, -0.01532718725502491, -0.028200140222907066, 0.02890489250421524, 0.06792852282524109, -0.07944294810295105, 0.01628820039331913, 0.03574816882610321, 0.011550127528607845, 0.08267012238502502, -0.05200008302927017, -0.08204049617052078, 0.016839250922203064, 0.03268825262784958, 0.02757004275918007, 0.07238858193159103, -0.029564009979367256, -0.01943548396229744, 0.03081458806991577, 0.015131480991840363, 0.009895188733935356, -0.10476230829954147, 0.057770971208810806, 0.05494152754545212, 0.011566927656531334, 0.07578089088201523, -0.011857390403747559, -0.041977930814027786, 0.07757309079170227, 0.036314208060503006, -0.003607403952628374, -0.015279978513717651, -0.016104841604828835, -0.1184978112578392, 0.19649860262870789, -0.06571485102176666, -0.16888287663459778, -0.07108917832374573, -0.1221516951918602, -0.010282757692039013, 0.020016267895698547, 0.038245320320129395, -0.01968386583030224, -0.048618972301483154, -0.13063731789588928, 0.05498434230685234, -0.04047960415482521, 0.0655592754483223, 0.11015763878822327, -0.04779387637972832, 0.04822521284222603, -0.12883387506008148, -0.009529849514365196, -0.08446569740772247, -0.065731942653656, 0.0624760165810585, -0.05124552920460701, 0.03261474519968033, 0.10016771405935287, 0.03371565788984299, -0.016146443784236908, -0.03236616775393486, 0.20562873780727386, 0.03982749953866005, 0.04039599001407623, 0.12354514002799988, -0.05543474480509758, 0.05177931487560272, 0.07788045704364777, 0.013930046930909157, -0.04788370057940483, 0.05552036315202713, 0.04483664780855179, -0.0718248188495636, -0.19281353056430817, -0.02600179985165596, -0.01512904092669487, -0.05053076520562172, 0.07249177992343903, 0.03605254739522934, 0.023471493273973465, 0.06833932548761368, 0.013132805936038494, 0.06020783260464668, 0.002788733458146453, 0.10370469838380814, 0.01944280043244362, -0.033249519765377045, 0.0898301750421524, -0.019153395667672157, -0.0061645726673305035, 0.0823061466217041, -0.026475928723812103, 0.2897823452949524, -0.027951549738645554, 0.0017475745407864451, 0.131146639585495, 0.026826802641153336, 0.06266181170940399, 0.12959957122802734, -0.07208346575498581, 0.015711359679698944, -0.07233327627182007, -0.06391321122646332, 0.000025414174160687253, 0.0389837808907032, -0.060937680304050446, 0.0072100902907550335, -0.06868505477905273, 0.006972138304263353, -0.015484286472201347, 0.317645788192749, 0.09790795296430588, -0.10772691667079926, -0.05034741014242172, -0.000898002996109426, -0.09839058667421341, -0.06266780197620392, 0.041943710297346115, 0.05899900570511818, -0.13801105320453644, 0.01995670795440674, -0.02704443596303463, 0.06845583766698837, -0.009292824193835258, 0.015350726433098316, 0.04241073131561279, 0.0471380278468132, -0.04191992059350014, -0.00008946579328039661, -0.18338967859745026, 0.1987704187631607, 0.008737199008464813, 0.020130079239606857, -0.05324435979127884, 0.031987160444259644, 0.012453100644052029, -0.03269157186150551, 0.058571964502334595, 0.019796181470155716, -0.01480821892619133, -0.04499613866209984, -0.045628082007169724, 0.009667474776506424, 0.08055680990219116, -0.03496398776769638, 0.10742120444774628, -0.0021690004505217075, 0.04228493198752403, 0.019145917147397995, 0.09793072938919067, -0.18592022359371185, -0.09867054969072342, 0.030377138406038284, -0.05922586843371391, -0.11020814627408981, -0.07807234674692154, -0.09425143897533417, -0.013032715767621994, 0.23950740694999695, -0.10841698944568634, -0.07601499557495117, -0.09929735958576202, 0.018899284303188324, 0.10692072659730911, -0.0421784482896328, 0.03171186149120331, -0.010686981491744518, 0.12315402179956436, -0.06865410506725311, -0.13210168480873108, 0.020082075148820877, -0.09965284168720245, -0.16035421192646027, -0.06575997173786163, 0.11723671853542328, 0.06606230139732361, 0.031647395342588425, -0.02926655113697052, 0.023994501680135727, 0.0393822081387043, -0.044242966920137405, -0.005187894683331251, 0.0710044652223587, 0.10414741188287735, 0.039983853697776794, -0.11339367181062698, 0.011822134256362915, -0.0643957257270813, -0.0678286924958229, 0.07876414805650711, 0.2611890137195587, -0.051217012107372284, 0.12498757988214493, 0.12205027788877487, -0.07718785107135773, -0.1524691879749298, 0.03448350355029106, 0.08722582459449768, -0.022357042878866196, 0.0174724031239748, -0.1545378416776657, 0.09215142577886581, 0.1197781190276146, -0.01679895631968975, -0.005097220651805401, -0.1839226931333542, -0.12944889068603516, 0.06918592751026154, 0.10984672605991364, 0.2581489682197571, -0.07037702202796936, -0.039870262145996094, 0.019246982410550117, -0.08788608759641647, 0.020071212202310562, 0.11807102710008621, 0.06693517416715622, -0.027760792523622513, -0.08742374181747437, 0.009206201881170273, -0.04485968127846718, 0.0900738313794136, 0.051484789699316025, 0.062146853655576706, -0.006355814635753632, 0.01768658496439457, -0.008586075156927109, -0.045527372509241104, 0.06275802105665207, 0.015964055433869362, 0.04493427649140358, -0.07606730610132217, -0.0297095850110054, -0.07693696022033691, 0.03063918650150299, -0.027329551056027412, -0.07740724831819534, -0.061983875930309296, 0.08334861695766449, 0.04746149107813835, -0.029954925179481506, 0.0217964556068182, 0.019168632104992867, 0.12116552144289017, 0.16611820459365845, 0.005991767626255751, -0.061291325837373734, -0.06272806972265244, -0.0376247875392437, -0.018359851092100143, 0.0665164664387703, -0.035927895456552505, 0.015212852507829666, 0.061420246958732605, 0.021659163758158684, 0.10030588507652283, 0.057678937911987305, -0.11406970769166946, -0.023440536111593246, 0.03752026706933975, -0.16580042243003845, 0.03360770642757416, 0.0003421783330850303, 0.029748467728495598, -0.038203950971364975, 0.030946945771574974, 0.13995584845542908, -0.05902734026312828, -0.03371455520391464, -0.04158274829387665, 0.06740367412567139, 0.025381216779351234, 0.14356257021427155, 0.03180775046348572, 0.036692529916763306, -0.08477338403463364, 0.12042991816997528, 0.03291769325733185, -0.030594201758503914, 0.022216161713004112, -0.011334818787872791, -0.1107897013425827, 0.011355193331837654, 0.05682513862848282, 0.03666184842586517, -0.05525724217295647, -0.004917167592793703, -0.023537451401352882, -0.07964791357517242, 0.06108376383781433, 0.19656315445899963, 0.06349876523017883, 0.06840124726295471, -0.053175121545791626, -0.03775153309106827, -0.0779728889465332, 0.039533913135528564, 0.0276431106030941, 0.07577083259820938, -0.073366679251194, 0.09624835103750229, 0.017202340066432953, 0.03716393932700157, -0.030933529138565063, -0.05458688363432884, -0.10506335645914078, -0.05319995433092117, -0.09973886609077454, -0.0008203936740756035, -0.08717598766088486, -0.03857610002160072, -0.0026369693223387003, 0.0036066179163753986, -0.011693555861711502, 0.04684631898999214, -0.0590689480304718, -0.007931539788842201, -0.016866318881511688, 0.03718286380171776, -0.06174347922205925, -0.03458993509411812, 0.023447442799806595, -0.10415269434452057, 0.08806097507476807, 0.04556534066796303, 0.0072125936858356, 0.010038447566330433, 0.0947297066450119, -0.023266542702913284, 0.019963251426815987, 0.013156085275113583, -0.04651542752981186, -0.08346463739871979, -0.004215369001030922, -0.005610054824501276, -0.01665274053812027, -0.0021786957513540983, 0.07655653357505798, -0.08545854687690735, 0.03691964969038963, -0.0034355681855231524, -0.004526088945567608, -0.07161140441894531, -0.011228105053305626, 0.11212713271379471, 0.09067140519618988, 0.04664074257016182, -0.09024425595998764, 0.009421796537935734, -0.13768713176250458, -0.04020338132977486, 0.002679420169442892, -0.014795210212469101, -0.12477833777666092, -0.005943049676716328, 0.022020496428012848, -0.001989562064409256, 0.23146705329418182, -0.05492045730352402, -0.025866569951176643, 0.023079220205545425, -0.09568227082490921, 0.12196535617113113, -0.024913430213928223, 0.17773082852363586, -0.01013276632875204, -0.04255862534046173, -0.008623459376394749, 0.0440208837389946, 0.01917085237801075, -0.02578761614859104, 0.19492168724536896, 0.1403319239616394, 0.029856987297534943, 0.037686094641685486, -0.020704807713627815, -0.0053082359954714775, -0.02839730493724346, -0.037756238132715225, 0.03965171426534653, 0.04418051987886429, 0.016850799322128296, 0.14365971088409424, 0.07105879485607147, -0.17152301967144012, 0.037664443254470825, -0.03039795719087124, -0.03965303301811218, -0.11024618148803711, -0.0888047143816948, -0.024566063657402992, -0.06799568235874176, 0.00909489393234253, -0.12939804792404175, 0.0010918255429714918, 0.17274916172027588, 0.06489478051662445, 0.030122840777039528, 0.009598190896213055, -0.12134722620248795, -0.03477868437767029, 0.05787709355354309, 0.013757164590060711, 0.01961367204785347, 0.04948480799794197, 0.0022997495252639055, 0.05067360773682594, 0.031083397567272186, 0.012696348130702972, -0.0016601255629211664, 0.07289955765008926, 0.015778789296746254, 0.040929365903139114, -0.06322586536407471, 0.00031291035702452064, -0.04339364171028137, 0.07297654449939728, 0.10090730339288712, 0.04640146344900131, -0.053268302232027054, -0.006589971948415041, 0.15369677543640137, -0.03474931791424751, -0.0059429798275232315, -0.12568099796772003, 0.3235117197036743, 0.019344039261341095, 0.010350862517952919, 0.04106726869940758, -0.07239866256713867, -0.048418447375297546, 0.21460404992103577, 0.10376748442649841, -0.015636075288057327, -0.018555041402578354, -0.002523924922570586, -0.03016369603574276, -0.02304217219352722, 0.1535230427980423, 0.03945763409137726, 0.13270333409309387, -0.05068134143948555, -0.04023462161421776, -0.028723224997520447, -0.010958070866763592, -0.11859162151813507, 0.1310778558254242, -0.01145706046372652, -0.02976151742041111, -0.0654742494225502, 0.028300266712903976, 0.06610452383756638, -0.3131106197834015, 0.0006415362586267292, -0.03344991058111191, -0.10871676355600357, -0.010667439550161362, -0.029795989394187927, -0.02396632730960846, 0.047639667987823486, -0.03708456829190254, 0.06820202618837357, 0.0316939577460289, 0.03367452695965767, -0.02469714917242527, -0.1087055578827858, 0.17870299518108368, 0.060605861246585846, 0.09300459176301956, 0.021001417189836502, 0.07515378296375275, 0.058248307555913925, 0.03299529477953911, -0.09324697405099869, 0.04888898506760597, 0.014476864598691463, -0.08999285846948624, -0.048597708344459534, 0.11374334990978241, 0.0016126951668411493, 0.04832728952169418, 0.035823751240968704, -0.09970689564943314, 0.020953619852662086, 0.06952892988920212, -0.06585265696048737, -0.09740805625915527, -0.0032346490770578384, -0.09140503406524658, 0.16316279768943787, 0.14758022129535675, -0.016300607472658157, 0.019740071147680283, -0.06606164574623108, -0.007573837414383888, 0.053965214639902115, 0.00717091653496027, -0.023859668523073196, -0.20095790922641754, 0.036027807742357254, -0.08890692889690399, -0.008527150377631187, -0.22867779433727264, -0.10172038525342941, -0.006798524409532547, -0.047465261071920395, -0.027790658175945282, 0.057537391781806946, 0.03199540078639984, 0.07122897356748581, -0.018833016976714134, -0.015044924803078175, -0.0339016355574131, 0.09264149516820908, -0.11309453099966049, -0.06047242507338524 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_2000k"]}
null
google/multiberts-seed_3-step_2000k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_2000k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_2000k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps)." ]
[ -0.07200876623392105, 0.09652356803417206, -0.0020853758323937654, 0.039029862731695175, 0.08210990577936172, -0.016037287190556526, 0.08050043135881424, 0.09813366085290909, -0.03660482540726662, 0.02239454723894596, 0.08646566420793533, 0.009534423239529133, 0.01446748897433281, 0.0947868600487709, 0.02088412083685398, -0.22192837297916412, 0.027418572455644608, -0.032773442566394806, -0.07542382925748825, 0.07833551615476608, 0.09936603158712387, -0.08340329676866531, 0.04597191512584686, 0.02491886541247368, -0.11222143471240997, 0.05081703141331673, -0.010130107402801514, -0.020782088860869408, 0.12911848723888397, 0.00011523009743541479, 0.05170182138681412, 0.0535014346241951, 0.03596769645810127, -0.13654986023902893, 0.007589597254991531, 0.05597306415438652, 0.05779707059264183, 0.03978264704346657, 0.022341107949614525, 0.07555841654539108, 0.0014023574767634273, 0.023278938606381416, 0.05089113116264343, 0.021194711327552795, -0.07391542941331863, -0.050856102257966995, -0.10622473061084747, 0.038117535412311554, 0.0250269565731287, 0.013020842336118221, 0.01377280242741108, 0.13443981111049652, -0.03859700262546539, 0.049432460218667984, 0.19013755023479462, -0.3263591229915619, -0.019529694691300392, 0.08520890772342682, 0.04650010168552399, 0.1219249814748764, -0.005414807237684727, -0.01600421965122223, 0.07147979736328125, 0.029498040676116943, 0.09455988556146622, -0.042998481541872025, 0.021417774260044098, -0.049783460795879364, -0.16221684217453003, -0.04114781320095062, 0.10431275516748428, -0.003979919943958521, -0.13366052508354187, -0.04641561582684517, -0.032608918845653534, 0.02888336032629013, 0.009320283308625221, -0.033402569591999054, 0.03248980641365051, 0.005241919308900833, -0.024909362196922302, -0.005886220373213291, -0.10202876478433609, -0.048275917768478394, 0.033108100295066833, 0.08728723227977753, 0.10069335997104645, 0.05986916646361351, 0.0038173082284629345, 0.10745057463645935, -0.18261976540088654, -0.04681355506181717, -0.03184547275304794, -0.06067688763141632, -0.049678925424814224, -0.014275940135121346, -0.11441455036401749, -0.051396872848272324, 0.015528075397014618, 0.13826832175254822, -0.0006668220739811659, 0.03446633368730545, -0.024250725284218788, 0.004593051504343748, 0.06140883266925812, 0.046857308596372604, -0.013590337708592415, 0.017269916832447052, 0.02253105118870735, -0.011045843362808228, -0.021850235760211945, 0.015313662588596344, 0.005202293395996094, 0.04219983518123627, 0.11966744065284729, 0.02990163303911686, -0.10213939845561981, 0.08019471913576126, -0.010241059586405754, -0.04781464487314224, 0.017339374870061874, -0.09325489401817322, -0.06574563682079315, -0.044135622680187225, 0.004186502192169428, 0.01782768778502941, -0.010517725721001625, -0.004833607468754053, -0.018919872120022774, -0.030455149710178375, -0.08270275592803955, -0.04997226595878601, -0.05346313863992691, -0.12877099215984344, 0.005339380353689194, -0.17549891769886017, -0.035961076617240906, -0.11355346441268921, -0.18811681866645813, -0.026206914335489273, 0.06473299115896225, -0.010248880833387375, -0.051383621990680695, 0.08127790689468384, 0.03841409459710121, -0.029672617092728615, -0.0023993367794901133, 0.07995283603668213, -0.0031417140271514654, 0.03789301589131355, -0.024676332250237465, 0.0592171847820282, 0.0012581032933667302, 0.03546871244907379, -0.05206669121980667, 0.06007300317287445, -0.16742344200611115, 0.04182850196957588, -0.0802038386464119, -0.02042541652917862, -0.08426190167665482, -0.03593634441494942, -0.006955393124371767, 0.009091595187783241, 0.021445659920573235, 0.07013913989067078, -0.1773342490196228, -0.02633565478026867, 0.10557486116886139, -0.15485139191150665, -0.027808569371700287, 0.06270019710063934, -0.04804909974336624, 0.09143389016389847, 0.06788425147533417, 0.1494818776845932, -0.017945894971489906, -0.08100315928459167, 0.05736920237541199, -0.016221387311816216, 0.015139936469495296, -0.010089552029967308, 0.06864915788173676, -0.021319875493645668, -0.15189392864704132, 0.040426719933748245, -0.14029471576213837, -0.002347968053072691, -0.074156753718853, 0.01932181976735592, -0.00519123999401927, -0.06803114712238312, -0.07916093617677689, -0.02808655984699726, 0.06642016768455505, -0.07477658987045288, -0.012789466418325901, 0.04153621941804886, 0.0701577290892601, -0.07541311532258987, 0.0654279887676239, -0.008173453621566296, 0.01458021067082882, -0.08148615807294846, -0.04036252200603485, -0.19018645584583282, 0.03568203002214432, 0.09892597794532776, 0.014761070720851421, -0.019579309970140457, 0.1309739649295807, 0.00483780587092042, 0.061829824000597, -0.05120966210961342, 0.015271591953933239, -0.003831251757219434, -0.0006472488748840988, -0.08047816902399063, -0.09848683327436447, -0.07419787347316742, -0.07117462903261185, 0.08094435930252075, -0.11636121571063995, 0.019508376717567444, -0.0568728968501091, 0.038024429231882095, 0.01409351546317339, -0.0824630931019783, -0.007907585240900517, 0.018481288105249405, -0.05918261036276817, -0.059767648577690125, 0.04165166616439819, 0.07078858464956284, -0.010051371529698372, 0.08630092442035675, -0.05030803009867668, -0.08580265194177628, 0.03355519473552704, 0.104065902531147, -0.1122148334980011, 0.0008602039306424558, -0.05833664909005165, -0.04122017323970795, -0.05609450489282608, -0.018552325665950775, 0.08531231433153152, -0.005314787849783897, 0.13538269698619843, -0.07730165123939514, -0.010545223020017147, 0.009894401766359806, -0.014759468846023083, -0.028545930981636047, 0.032767631113529205, 0.06883637607097626, -0.07760146260261536, 0.01740841194987297, 0.03339950367808342, 0.009405055083334446, 0.07502162456512451, -0.05385001003742218, -0.08175184577703476, 0.01765485294163227, 0.03904688358306885, 0.0294816754758358, 0.06836633384227753, -0.02055654302239418, -0.017985224723815918, 0.03214170038700104, 0.016621895134449005, 0.010627697221934795, -0.10632947832345963, 0.057451486587524414, 0.054477859288454056, 0.009808871895074844, 0.07332677394151688, -0.01024626661092043, -0.04263049364089966, 0.07575960457324982, 0.0392502099275589, -0.0031255383510142565, -0.011611251160502434, -0.016817642375826836, -0.11513657867908478, 0.1975240260362625, -0.06721513718366623, -0.17128115892410278, -0.06965786963701248, -0.12178181856870651, -0.01417744904756546, 0.019243594259023666, 0.03880603611469269, -0.021841133013367653, -0.05120069906115532, -0.12799246609210968, 0.056001968681812286, -0.04407350346446037, 0.06556674093008041, 0.11015551537275314, -0.04773480445146561, 0.05000472441315651, -0.1284482181072235, -0.0074368808418512344, -0.08296050131320953, -0.07000459730625153, 0.059146638959646225, -0.050112806260585785, 0.03351183608174324, 0.09513434022665024, 0.0339927077293396, -0.01407907996326685, -0.029938768595457077, 0.2050653100013733, 0.0416112057864666, 0.03558337315917015, 0.1214279755949974, -0.05966242030262947, 0.05091472715139389, 0.08306898176670074, 0.012821176089346409, -0.047266021370887756, 0.055308371782302856, 0.04667263478040695, -0.06962613761425018, -0.1917925775051117, -0.025237273424863815, -0.014693014323711395, -0.05430856719613075, 0.06983308494091034, 0.04084887355566025, 0.0150346914306283, 0.06822667270898819, 0.012589428573846817, 0.05268826708197594, -0.00039191494579426944, 0.10508072376251221, 0.01782315969467163, -0.034058358520269394, 0.09047883749008179, -0.018872302025556564, -0.008014767430722713, 0.08140836656093597, -0.022656075656414032, 0.29032227396965027, -0.027840571478009224, 0.003004330676048994, 0.13129965960979462, 0.032744601368904114, 0.061571795493364334, 0.12876775860786438, -0.0736088752746582, 0.016466530039906502, -0.07248539477586746, -0.062387336045503616, 0.004500096198171377, 0.039050277322530746, -0.061804670840501785, 0.009416060522198677, -0.06789405643939972, 0.006996525451540947, -0.017160069197416306, 0.3160047233104706, 0.09762357920408249, -0.10851558297872543, -0.050089530646800995, 0.000049015667173080146, -0.09596787393093109, -0.0657883957028389, 0.041591763496398926, 0.05594576895236969, -0.13762205839157104, 0.01483901683241129, -0.02858024835586548, 0.0700581967830658, -0.014236104674637318, 0.016315922141075134, 0.044486381113529205, 0.047774504870176315, -0.03970172256231308, 0.005184395704418421, -0.19054870307445526, 0.19792082905769348, 0.007102737203240395, 0.018631253391504288, -0.05231654644012451, 0.03525217995047569, 0.008939123712480068, -0.033043526113033295, 0.059517111629247665, 0.018363671377301216, -0.02077259123325348, -0.04559929668903351, -0.045246463268995285, 0.014203439466655254, 0.0829257071018219, -0.035525739192962646, 0.10759919881820679, -0.0035580911207944155, 0.04305108264088631, 0.02168995328247547, 0.10135138034820557, -0.18718186020851135, -0.10285355150699615, 0.035165902227163315, -0.05414242297410965, -0.10540113598108292, -0.07857483625411987, -0.09535477310419083, -0.016521954908967018, 0.25423648953437805, -0.1150343120098114, -0.07585874199867249, -0.10086531937122345, 0.023090196773409843, 0.10845670849084854, -0.04315376654267311, 0.03104577027261257, -0.014594094827771187, 0.12377676367759705, -0.06632739305496216, -0.13449977338314056, 0.01924702897667885, -0.09809866547584534, -0.15897293388843536, -0.06493519991636276, 0.11331850290298462, 0.0590939037501812, 0.02981548011302948, -0.03096509538590908, 0.02538176439702511, 0.03658951073884964, -0.0423189178109169, -0.01068636029958725, 0.07479553669691086, 0.098198302090168, 0.03489945828914642, -0.11802755296230316, 0.020697832107543945, -0.06435924768447876, -0.06753918528556824, 0.08183485269546509, 0.25613105297088623, -0.051941804587841034, 0.12422318756580353, 0.11179357022047043, -0.07794893532991409, -0.151212677359581, 0.0305631086230278, 0.08965930342674255, -0.020166881382465363, 0.014039873145520687, -0.15750789642333984, 0.09063012152910233, 0.11534233391284943, -0.018818246200680733, -0.00966592039912939, -0.18112541735172272, -0.12698204815387726, 0.06911219656467438, 0.10679783672094345, 0.2557004690170288, -0.06960034370422363, -0.040428828448057175, 0.01898176781833172, -0.07854073494672775, 0.018965944647789, 0.127500981092453, 0.07006048411130905, -0.026755239814519882, -0.08548008650541306, 0.009021537378430367, -0.044871341437101364, 0.08892709761857986, 0.05262408033013344, 0.06122530624270439, -0.005460015032440424, 0.018196631222963333, -0.01764119230210781, -0.0450931042432785, 0.06424204260110855, 0.016634346917271614, 0.04962786287069321, -0.07610690593719482, -0.029355520382523537, -0.07422387599945068, 0.02821137011051178, -0.02540379762649536, -0.07630575448274612, -0.0605020597577095, 0.08350247889757156, 0.04927835986018181, -0.027427954599261284, 0.02611180767416954, 0.022258572280406952, 0.11495817452669144, 0.15788142383098602, 0.0011128183687105775, -0.05344989150762558, -0.06153780594468117, -0.040012720972299576, -0.017493098974227905, 0.0658818781375885, -0.036903511732816696, 0.015869000926613808, 0.06265413016080856, 0.02151670679450035, 0.09866391867399216, 0.05835516378283501, -0.1139800101518631, -0.024595387279987335, 0.03451034799218178, -0.16610810160636902, 0.032988596707582474, 0.0011805722024291754, 0.033018942922353745, -0.0371917299926281, 0.03212952986359596, 0.14320407807826996, -0.058724336326122284, -0.033281274139881134, -0.04003840312361717, 0.06704918295145035, 0.02793116681277752, 0.14283938705921173, 0.030356213450431824, 0.03503045439720154, -0.08454477041959763, 0.12308865040540695, 0.03511520475149155, -0.026538075879216194, 0.024093976244330406, -0.019753582775592804, -0.11166927963495255, 0.012037798762321472, 0.06311026215553284, 0.03819289430975914, -0.049882300198078156, -0.007363833021372557, -0.026731587946414948, -0.07718463987112045, 0.06106679514050484, 0.19047509133815765, 0.06518427282571793, 0.07073855400085449, -0.054571717977523804, -0.04150013253092766, -0.07713016122579575, 0.04124753177165985, 0.030316561460494995, 0.07727743685245514, -0.07626798748970032, 0.08683112263679504, 0.015409363433718681, 0.03520311415195465, -0.029867185279726982, -0.05460452288389206, -0.10518047958612442, -0.05466168746352196, -0.09251940995454788, 0.00009062438039109111, -0.07831314951181412, -0.038843784481287, -0.0007820604951120913, 0.001456456957384944, -0.010655620135366917, 0.050093717873096466, -0.05966729298233986, -0.010932493023574352, -0.020312093198299408, 0.03778170794248581, -0.06183644384145737, -0.03579874709248543, 0.02206495776772499, -0.10219777375459671, 0.08881763368844986, 0.04502926394343376, 0.0054087513126432896, 0.008645474910736084, 0.07978063821792603, -0.025656968355178833, 0.02203178033232689, 0.014499402604997158, -0.04668562859296799, -0.08468697965145111, -0.003441322362050414, -0.0028824934270232916, -0.017083361744880676, -0.00470114266499877, 0.0808710902929306, -0.08585664629936218, 0.030923964455723763, -0.005136936902999878, -0.0008289808174595237, -0.06886331737041473, -0.01189963985234499, 0.10704142600297928, 0.09527765214443207, 0.04671629145741463, -0.09056472778320312, 0.011392524465918541, -0.13433918356895447, -0.03827210143208504, 0.003222797065973282, -0.01660957746207714, -0.133985236287117, -0.007648211903870106, 0.021624255925416946, -0.002492486732080579, 0.23046603798866272, -0.057308584451675415, -0.020034966990351677, 0.020368998870253563, -0.08967208862304688, 0.12760984897613525, -0.024090131744742393, 0.17881107330322266, -0.008130152709782124, -0.04054689779877663, -0.007755234371870756, 0.043557826429605484, 0.015316500328481197, -0.028797760605812073, 0.18506653606891632, 0.14375010132789612, 0.0308651365339756, 0.03719043731689453, -0.01935785822570324, -0.005163050256669521, -0.022245416417717934, -0.031213928014039993, 0.03860216960310936, 0.045073751360177994, 0.014992371201515198, 0.14610141515731812, 0.06430758535861969, -0.16772927343845367, 0.03477171063423157, -0.028582869097590446, -0.03654637932777405, -0.10959070175886154, -0.09641332924365997, -0.029565995559096336, -0.06876673549413681, 0.01115387212485075, -0.12961551547050476, 0.00027527965721674263, 0.17584437131881714, 0.06457337737083435, 0.030858388170599937, 0.0077711897902190685, -0.11884672194719315, -0.03439787030220032, 0.05386628583073616, 0.010636486113071442, 0.020370014011859894, 0.05001705884933472, 0.0018890983192250133, 0.05474843457341194, 0.0336230993270874, 0.01447685994207859, 0.0003008791827596724, 0.07938974350690842, 0.016481507569551468, 0.03950146585702896, -0.06158895418047905, -0.000800992944277823, -0.042283836752176285, 0.07130526751279831, 0.10639925301074982, 0.04536820575594902, -0.054737627506256104, -0.00754416361451149, 0.15100312232971191, -0.03543038293719292, -0.0019262823043391109, -0.1264326274394989, 0.32542160153388977, 0.01499970443546772, 0.010570742189884186, 0.04124961793422699, -0.07225403189659119, -0.050923749804496765, 0.2160889059305191, 0.09840603917837143, -0.01599304750561714, -0.020185457542538643, 0.00012564640201162547, -0.029783017933368683, -0.024664489552378654, 0.1493675857782364, 0.04055703058838844, 0.12367074191570282, -0.04884074255824089, -0.04806920140981674, -0.02741171047091484, -0.01010845322161913, -0.1185343861579895, 0.1290021389722824, -0.012918847613036633, -0.029975825920701027, -0.06848877668380737, 0.026433615013957024, 0.06554269790649414, -0.30956047773361206, -0.0058309901505708694, -0.032418143004179, -0.1113818809390068, -0.010231186635792255, -0.023853307589888573, -0.02429736591875553, 0.046355657279491425, -0.04039912670850754, 0.07032588869333267, 0.03190626576542854, 0.034146104007959366, -0.022281767800450325, -0.102684386074543, 0.17497393488883972, 0.05671221762895584, 0.09043731540441513, 0.023684455081820488, 0.07561501860618591, 0.0598018616437912, 0.031856223940849304, -0.09545701742172241, 0.04914109408855438, 0.014516975730657578, -0.0922473818063736, -0.04734297841787338, 0.11708078533411026, 0.0008670426905155182, 0.051587436348199844, 0.035861462354660034, -0.0961282029747963, 0.02312142588198185, 0.06968600302934647, -0.0651790127158165, -0.10024520754814148, -0.0002836025960277766, -0.09310716390609741, 0.16340738534927368, 0.14914698898792267, -0.0154454680159688, 0.019932545721530914, -0.06816180795431137, -0.003464620793238282, 0.04857936128973961, 0.007485617883503437, -0.02245965227484703, -0.19705158472061157, 0.03756030648946762, -0.09137462079524994, -0.010626477189362049, -0.2316737025976181, -0.10226601362228394, -0.008931606076657772, -0.04853013530373573, -0.026149190962314606, 0.05736793577671051, 0.03136828914284706, 0.06891996413469315, -0.019534610211849213, -0.019915631040930748, -0.03216495364904404, 0.08648122847080231, -0.1106020137667656, -0.05993703380227089 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_200k"]}
null
google/multiberts-seed_3-step_200k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_200k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 200k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_200k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 200k (max: 2000k, i.e., 2M steps)." ]
[ -0.076405368745327, 0.09174814075231552, -0.0021325084380805492, 0.03946276754140854, 0.08516877144575119, -0.01611383631825447, 0.07880793511867523, 0.09881189465522766, -0.023848881945014, 0.024501698091626167, 0.08153806626796722, 0.0117496307939291, 0.01671537384390831, 0.10166340321302414, 0.02396753802895546, -0.2222602218389511, 0.026422033086419106, -0.03135710582137108, -0.08019206672906876, 0.07853318005800247, 0.09695600718259811, -0.08154626190662384, 0.04635526239871979, 0.02179057151079178, -0.11260641366243362, 0.049808572977781296, -0.007303511258214712, -0.020261256024241447, 0.13083653151988983, -0.0015695493202656507, 0.0467258095741272, 0.05156014487147331, 0.03944037854671478, -0.13552318513393402, 0.00680236890912056, 0.0564778633415699, 0.057849541306495667, 0.039256032556295395, 0.026109294965863228, 0.0790201872587204, 0.006414934992790222, 0.02742021530866623, 0.04735901579260826, 0.025736747309565544, -0.07386535406112671, -0.05270076543092728, -0.10401192307472229, 0.035289451479911804, 0.028257060796022415, 0.013824679888784885, 0.010087531059980392, 0.1311637908220291, -0.03743746504187584, 0.04585183039307594, 0.18735498189926147, -0.33472272753715515, -0.01790880411863327, 0.08468540757894516, 0.04801902547478676, 0.12392708659172058, -0.0030938636045902967, -0.01735735312104225, 0.07430762052536011, 0.034539010375738144, 0.09259412437677383, -0.04121602326631546, 0.030777690932154655, -0.05353758856654167, -0.16263647377490997, -0.04187864065170288, 0.10370021313428879, -0.002056920900940895, -0.1379012167453766, -0.04405219107866287, -0.03537820652127266, 0.030530696734786034, 0.011162619106471539, -0.03647587448358536, 0.03102724626660347, 0.010178353637456894, -0.02265270985662937, -0.003559316275641322, -0.10273431986570358, -0.049576397985219955, 0.0348675474524498, 0.08088448643684387, 0.10172205418348312, 0.061280544847249985, 0.0031334899831563234, 0.10994846373796463, -0.17764097452163696, -0.04618899151682854, -0.02878011204302311, -0.06333774328231812, -0.04664314538240433, -0.014604587107896805, -0.10854120552539825, -0.0515618696808815, 0.011993383057415485, 0.1300382912158966, 0.0025956283789128065, 0.03279917314648628, -0.024946920573711395, 0.005666954908519983, 0.05877664312720299, 0.04274015501141548, -0.013527601957321167, 0.02033803053200245, 0.01916329748928547, -0.007943219505250454, -0.023236069828271866, 0.01601368747651577, 0.004769948776811361, 0.03817053511738777, 0.1217278391122818, 0.029871324077248573, -0.10399187356233597, 0.07516314834356308, -0.01601460948586464, -0.048301562666893005, 0.012764319777488708, -0.0902566984295845, -0.06411989033222198, -0.04535355418920517, 0.0037773274816572666, 0.01937500573694706, -0.010289590805768967, -0.010605861432850361, -0.02212774008512497, -0.030972767621278763, -0.08402753621339798, -0.047861579805612564, -0.052971698343753815, -0.1281319260597229, 0.005276752170175314, -0.17784667015075684, -0.038594383746385574, -0.11717281490564346, -0.1821938008069992, -0.02491920068860054, 0.06261051446199417, -0.01290980540215969, -0.05039769038558006, 0.0807153657078743, 0.039496950805187225, -0.02991539239883423, -0.0035124861169606447, 0.07149545103311539, -0.0056250980123877525, 0.04041760042309761, -0.025205273181200027, 0.06570959091186523, 0.010904530063271523, 0.034551821649074554, -0.05338197574019432, 0.06143835932016373, -0.17272500693798065, 0.04112059623003006, -0.07855674624443054, -0.019636917859315872, -0.08556059747934341, -0.037813786417245865, -0.00770053593441844, 0.009611190296709538, 0.021853132173419, 0.07687452435493469, -0.18873900175094604, -0.026181351393461227, 0.1156168207526207, -0.15607386827468872, -0.026377340778708458, 0.06948434561491013, -0.04321238771080971, 0.09331917762756348, 0.07006547600030899, 0.15103067457675934, -0.01594359613955021, -0.08389262109994888, 0.05350999906659126, -0.014111384749412537, 0.014755883254110813, -0.014367288909852505, 0.06636373698711395, -0.022670848295092583, -0.1553211808204651, 0.0378720723092556, -0.1303897649049759, -0.0009972481057047844, -0.07606290280818939, 0.01927403174340725, -0.007181285880506039, -0.06698045879602432, -0.07411768287420273, -0.02755674347281456, 0.06259546428918839, -0.07866855710744858, -0.013042599894106388, 0.035099368542432785, 0.07076500356197357, -0.07479167729616165, 0.06349223107099533, -0.011766658164560795, 0.01655120775103569, -0.08345948904752731, -0.037046920508146286, -0.1875675618648529, 0.04128316417336464, 0.09886880964040756, 0.01485721580684185, -0.021874375641345978, 0.14006833732128143, 0.005549114663153887, 0.06623544543981552, -0.05058761686086655, 0.010993367061018944, -0.0043833572417497635, -0.0029488117434084415, -0.08467801660299301, -0.09484956413507462, -0.07725178450345993, -0.06898433715105057, 0.07319548726081848, -0.1216541975736618, 0.01982821896672249, -0.05696598440408707, 0.0376272015273571, 0.01777145080268383, -0.08158435672521591, -0.008204367011785507, 0.018798327073454857, -0.05686572939157486, -0.061239976435899734, 0.04160749912261963, 0.06969869881868362, -0.010852064937353134, 0.0878080278635025, -0.05276087671518326, -0.07889910042285919, 0.033639393746852875, 0.10338101536035538, -0.11161371320486069, 0.008151975460350513, -0.05852484330534935, -0.04101187735795975, -0.06155669689178467, -0.020598022267222404, 0.07546306401491165, -0.0033829149324446917, 0.13274738192558289, -0.07356476783752441, -0.0062213316559791565, 0.011211447417736053, -0.01732175424695015, -0.0286303348839283, 0.03537561744451523, 0.06903906166553497, -0.07638194411993027, 0.015489796176552773, 0.03979909047484398, 0.013701163232326508, 0.07431554794311523, -0.05229891464114189, -0.08332578837871552, 0.017785651609301567, 0.039766911417245865, 0.030811568722128868, 0.06800519675016403, -0.015198254026472569, -0.01585402339696884, 0.029852760955691338, 0.020091595128178596, 0.007160622160881758, -0.1075747087597847, 0.05502192676067352, 0.05535883083939552, 0.006766030099242926, 0.0746041089296341, -0.009401993826031685, -0.043956536799669266, 0.07798023521900177, 0.03748008608818054, -0.005430083256214857, -0.011714393272995949, -0.0155724436044693, -0.11594777554273605, 0.19750507175922394, -0.06568966060876846, -0.1706438809633255, -0.0715201273560524, -0.11012107133865356, -0.008127976208925247, 0.023375218734145164, 0.0384807325899601, -0.0300596896559, -0.050123561173677444, -0.12789694964885712, 0.05944426357746124, -0.04086099937558174, 0.0652279406785965, 0.10559296607971191, -0.04596330225467682, 0.05407362058758736, -0.12753085792064667, -0.010416537523269653, -0.08161911368370056, -0.07520889490842819, 0.06144650653004646, -0.05227399989962578, 0.03342343121767044, 0.0963197648525238, 0.03417712077498436, -0.016370486468076706, -0.02766118384897709, 0.20632697641849518, 0.04485199972987175, 0.03478959947824478, 0.12878216803073883, -0.053196020424366, 0.05184950679540634, 0.08331669867038727, 0.012666499242186546, -0.05187787488102913, 0.05840948596596718, 0.046799227595329285, -0.06860307604074478, -0.19520938396453857, -0.02536703646183014, -0.012234729714691639, -0.04365057125687599, 0.07342705130577087, 0.04007933661341667, 0.009594066068530083, 0.0700576901435852, 0.011674872599542141, 0.05637797713279724, -0.004448996856808662, 0.10295476019382477, 0.015350687317550182, -0.03369836509227753, 0.0914657935500145, -0.018824810162186623, -0.008243278600275517, 0.08213632553815842, -0.018763914704322815, 0.29602399468421936, -0.027155807241797447, 0.003818526864051819, 0.12828931212425232, 0.03639831393957138, 0.060849569737911224, 0.12947310507297516, -0.06659013777971268, 0.015971055254340172, -0.07289767265319824, -0.061433132737874985, 0.0004287186893634498, 0.039011936634778976, -0.059320997446775436, 0.011375080794095993, -0.07458926737308502, 0.016414688900113106, -0.01628989726305008, 0.31267815828323364, 0.1024249866604805, -0.10855352133512497, -0.052406977862119675, 0.0035167434252798557, -0.09792017191648483, -0.06761710345745087, 0.045127082616090775, 0.06688722223043442, -0.13758879899978638, 0.009192563593387604, -0.029275650158524513, 0.07091014832258224, -0.017206210643053055, 0.017791150137782097, 0.04193820059299469, 0.044587742537260056, -0.039960816502571106, 0.00465137604624033, -0.19207027554512024, 0.1965765804052353, 0.006647973321378231, 0.022884393110871315, -0.04938454553484917, 0.03263653814792633, 0.009988734498620033, -0.033267244696617126, 0.062385477125644684, 0.017985008656978607, -0.028560055419802666, -0.05316049978137016, -0.04719974845647812, 0.014885656535625458, 0.07866232097148895, -0.0381760336458683, 0.10475538671016693, -0.0045143188908696175, 0.04303588345646858, 0.018114915117621422, 0.09917090833187103, -0.18878602981567383, -0.09485018253326416, 0.03084123134613037, -0.05684299021959305, -0.09903912991285324, -0.07864948362112045, -0.09605412930250168, -0.0040650139562785625, 0.24944846332073212, -0.11195523291826248, -0.07646927982568741, -0.09735704958438873, 0.019849834963679314, 0.10691166669130325, -0.04467511177062988, 0.027206944301724434, -0.0071369558572769165, 0.12361232191324234, -0.06558157503604889, -0.1352989226579666, 0.021480416879057884, -0.09938763082027435, -0.15744329988956451, -0.06559640169143677, 0.11443443596363068, 0.06395810842514038, 0.032936982810497284, -0.02983941324055195, 0.020313162356615067, 0.03923380747437477, -0.04203493893146515, -0.0042598010040819645, 0.0712587982416153, 0.10191764682531357, 0.033105939626693726, -0.11415666341781616, 0.01962418481707573, -0.0675470158457756, -0.06742704659700394, 0.07710650563240051, 0.25485846400260925, -0.05180171877145767, 0.11868322640657425, 0.11221480369567871, -0.077095165848732, -0.1502419412136078, 0.03387508541345596, 0.08796369284391403, -0.019585993140935898, 0.014346390962600708, -0.15786388516426086, 0.09278745204210281, 0.11654089391231537, -0.0189333725720644, 0.003442820394411683, -0.19008556008338928, -0.12833772599697113, 0.07142001390457153, 0.10668554157018661, 0.26487186551094055, -0.0681287944316864, -0.038876648992300034, 0.016396068036556244, -0.08560390025377274, 0.019404789432883263, 0.12768107652664185, 0.06932801008224487, -0.02758067287504673, -0.08119463175535202, 0.01033166702836752, -0.042742013931274414, 0.08976714313030243, 0.055753957480192184, 0.06101429462432861, -0.0059623559936881065, 0.024327607825398445, -0.029821744188666344, -0.04360378906130791, 0.06657824665307999, 0.013769494369626045, 0.04480611905455589, -0.08008050173521042, -0.029546136036515236, -0.07297002524137497, 0.027283530682325363, -0.02438306249678135, -0.07784680277109146, -0.05703854560852051, 0.08353383839130402, 0.04722043126821518, -0.026980269700288773, 0.014985505491495132, 0.022535158321261406, 0.12224874645471573, 0.1514205038547516, 0.004202025942504406, -0.05801917240023613, -0.0697150006890297, -0.03731236234307289, -0.017307953909039497, 0.07135511189699173, -0.03554919362068176, 0.0140678146854043, 0.06437411904335022, 0.01709876023232937, 0.09736800938844681, 0.059479743242263794, -0.11317092180252075, -0.021802255883812904, 0.0354495495557785, -0.16526444256305695, 0.02252587489783764, 0.0008600107976235449, 0.03599737957119942, -0.0371231772005558, 0.035042427480220795, 0.1430337131023407, -0.06255845725536346, -0.034538812935352325, -0.040806856006383896, 0.0685323029756546, 0.024546606466174126, 0.14666058123111725, 0.03233163058757782, 0.03766939043998718, -0.08184651285409927, 0.12281038612127304, 0.03124310076236725, -0.03414345905184746, 0.02527746744453907, -0.01972261816263199, -0.11183960735797882, 0.010810543783009052, 0.06234481930732727, 0.03473235294222832, -0.04901464283466339, -0.006989376153796911, -0.02357310801744461, -0.07890390604734421, 0.06111884117126465, 0.18499881029129028, 0.06547696888446808, 0.07149841636419296, -0.057344574481248856, -0.0420059971511364, -0.07670009881258011, 0.037770166993141174, 0.03707491233944893, 0.07584783434867859, -0.07891294360160828, 0.09206986427307129, 0.013093424960970879, 0.0396697111427784, -0.029478611424565315, -0.05295928567647934, -0.10622640699148178, -0.0533318817615509, -0.10014519095420837, 0.00035016483161598444, -0.0788424015045166, -0.039363741874694824, -0.003008398925885558, 0.0034058885648846626, -0.007059337105602026, 0.04895555227994919, -0.06064211204648018, -0.010863573290407658, -0.018920157104730606, 0.03723636642098427, -0.06182459369301796, -0.03403887525200844, 0.023300033062696457, -0.10368673503398895, 0.08823669701814651, 0.045224130153656006, 0.004750736523419619, 0.00836441945284605, 0.08916322141885757, -0.025579238310456276, 0.02407134138047695, 0.011543194763362408, -0.045812882483005524, -0.0829881951212883, -0.0016340682050213218, -0.005013301502913237, -0.017328336834907532, -0.005807918030768633, 0.07766562700271606, -0.08599936962127686, 0.033881351351737976, -0.005795755423605442, -0.0014525102451443672, -0.07220976054668427, -0.009829442016780376, 0.10934340953826904, 0.09546885639429092, 0.049430981278419495, -0.09486886858940125, 0.010662505403161049, -0.13751859962940216, -0.03902624920010567, 0.004564951173961163, -0.015594806522130966, -0.12912526726722717, -0.005038927309215069, 0.022973446175456047, -0.003968071658164263, 0.2124210149049759, -0.05818707495927811, -0.01603497937321663, 0.01975325122475624, -0.09481371194124222, 0.11928661912679672, -0.024438533931970596, 0.17534726858139038, -0.010475710034370422, -0.041283078491687775, -0.009381773881614208, 0.04249625280499458, 0.016894333064556122, -0.025295767933130264, 0.18748268485069275, 0.13666804134845734, 0.02659056894481182, 0.039475224912166595, -0.02340700849890709, -0.004265947267413139, -0.04223065450787544, -0.0367625392973423, 0.03713994845747948, 0.0456509105861187, 0.016581030562520027, 0.14849209785461426, 0.06641978025436401, -0.16626036167144775, 0.033395275473594666, -0.03435004502534866, -0.03874882310628891, -0.1121232658624649, -0.09949348866939545, -0.027016473934054375, -0.07244022935628891, 0.011164205148816109, -0.12734341621398926, 0.0008737473981454968, 0.1808060258626938, 0.06382524222135544, 0.02638743817806244, 0.010271391831338406, -0.11554223299026489, -0.03246617317199707, 0.05637999251484871, 0.010598539374768734, 0.019067911431193352, 0.053835730999708176, 0.00485515221953392, 0.05200307071208954, 0.034028004854917526, 0.014887379482388496, 0.0005862268735654652, 0.0729355439543724, 0.018274160102009773, 0.038115907460451126, -0.06100025773048401, -0.0025029610842466354, -0.03983300179243088, 0.06909792125225067, 0.11177168041467667, 0.04843147099018097, -0.057179633527994156, -0.006280120927840471, 0.15337496995925903, -0.03799304738640785, -0.00063427904387936, -0.12557300925254822, 0.3332749307155609, 0.01603412814438343, 0.011437666602432728, 0.04106824845075607, -0.07173015177249908, -0.05099579691886902, 0.20685523748397827, 0.09557328373193741, -0.01567700318992138, -0.02140357345342636, -0.0024155620485544205, -0.03066919930279255, -0.02690131962299347, 0.1555117517709732, 0.04192359372973442, 0.1298312395811081, -0.05488114058971405, -0.04102734848856926, -0.027689030393958092, -0.011374672874808311, -0.12197329849004745, 0.12638919055461884, -0.016802294179797173, -0.023080164566636086, -0.06780794262886047, 0.029503539204597473, 0.06455373764038086, -0.3016173541545868, -0.006029404234141111, -0.026682820171117783, -0.1073378399014473, -0.009855941869318485, -0.026598000898957253, -0.024746011942625046, 0.0494036003947258, -0.044375430792570114, 0.07062266767024994, 0.03466804325580597, 0.03199648857116699, -0.02095196209847927, -0.10398279875516891, 0.17174258828163147, 0.06194028630852699, 0.09099840372800827, 0.024821633473038673, 0.0701293870806694, 0.05788354203104973, 0.03386501222848892, -0.0963471457362175, 0.04997674748301506, 0.013371564447879791, -0.08633039146661758, -0.046854473650455475, 0.11447638273239136, 0.0003592015418689698, 0.04949982836842537, 0.037333015352487564, -0.10091304779052734, 0.017519723623991013, 0.06331954896450043, -0.05910979211330414, -0.10082187503576279, 0.002695857547223568, -0.09219621866941452, 0.16292476654052734, 0.14855022728443146, -0.01766919530928135, 0.016537396237254143, -0.06859318912029266, -0.004508704412728548, 0.0494614876806736, 0.005142250098288059, -0.021567245945334435, -0.1928788423538208, 0.03499828279018402, -0.08640357851982117, -0.010337875224649906, -0.23144972324371338, -0.10370701551437378, -0.007347616367042065, -0.04873262718319893, -0.030500827357172966, 0.05787193030118942, 0.029632680118083954, 0.0701625719666481, -0.02020815573632717, -0.019841056317090988, -0.03248971328139305, 0.08940423280000687, -0.11140147596597672, -0.0621357262134552 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_20k"]}
null
google/multiberts-seed_3-step_20k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_20k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 20k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_20k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 20k (max: 2000k, i.e., 2M steps)." ]
[ -0.07520235329866409, 0.09170985966920853, -0.0021136102732270956, 0.0354466550052166, 0.08295781165361404, -0.018005723133683205, 0.08571884781122208, 0.09956216812133789, -0.02837272733449936, 0.028735799714922905, 0.08354321867227554, 0.013626286759972572, 0.01469556987285614, 0.10311029106378555, 0.021266696974635124, -0.2240246832370758, 0.02612125128507614, -0.03137488290667534, -0.0724327489733696, 0.07899067550897598, 0.09863291680812836, -0.08364428579807281, 0.04597913846373558, 0.02480209618806839, -0.1137254536151886, 0.05107060819864273, -0.007528681308031082, -0.022073617205023766, 0.13067691028118134, -0.001554893678985536, 0.047401003539562225, 0.05224974453449249, 0.035556286573410034, -0.1349843144416809, 0.006816511042416096, 0.05778639391064644, 0.05378268286585808, 0.04044345021247864, 0.028276687487959862, 0.07613807916641235, 0.012100725434720516, 0.017829693853855133, 0.049964748322963715, 0.023837734013795853, -0.07412690669298172, -0.058430932462215424, -0.10412312299013138, 0.037231963127851486, 0.02702968195080757, 0.014060402289032936, 0.009952843189239502, 0.13694368302822113, -0.040058135986328125, 0.051285143941640854, 0.19492091238498688, -0.3349466025829315, -0.01847074180841446, 0.08379754424095154, 0.04986322671175003, 0.12608321011066437, -0.0032361275516450405, -0.01669377088546753, 0.0740317776799202, 0.03142388164997101, 0.09084925800561905, -0.04233313351869583, 0.03553290292620659, -0.05166317895054817, -0.1636780947446823, -0.04292277991771698, 0.1078253984451294, -0.002899289596825838, -0.13447368144989014, -0.049560073763132095, -0.036679111421108246, 0.03173356503248215, 0.00833873637020588, -0.03559630736708641, 0.03328780084848404, 0.0077177113853394985, -0.022982271388173103, -0.0005965723539702594, -0.10145644843578339, -0.048627518117427826, 0.036843620240688324, 0.07939577102661133, 0.10280217975378036, 0.05866820365190506, -0.0007582567632198334, 0.10668466240167618, -0.18926306068897247, -0.04709624871611595, -0.02714032121002674, -0.05927014723420143, -0.046454764902591705, -0.01615913398563862, -0.11241362988948822, -0.05726727098226547, 0.013204381801187992, 0.13778232038021088, -0.0013541934313252568, 0.03515629842877388, -0.030587654560804367, 0.005717935971915722, 0.06106439605355263, 0.043843213468790054, -0.011565964668989182, 0.017479844391345978, 0.02000053972005844, -0.013152187690138817, -0.019009504467248917, 0.015260635875165462, 0.005676900502294302, 0.03974287584424019, 0.12186955660581589, 0.027850493788719177, -0.10375948250293732, 0.07835766673088074, -0.013275984674692154, -0.04787038639187813, 0.015244229696691036, -0.09132620692253113, -0.06403151899576187, -0.042512789368629456, 0.0035664404276758432, 0.0191878080368042, -0.010309233330190182, -0.009944154880940914, -0.021056216210126877, -0.033305831253528595, -0.08567285537719727, -0.049293432384729385, -0.05240799859166145, -0.1300681084394455, 0.0062039396725595, -0.17909108102321625, -0.03664149343967438, -0.11165228486061096, -0.189178928732872, -0.02638622745871544, 0.060986295342445374, -0.011161095462739468, -0.05141010880470276, 0.07939073443412781, 0.03998299315571785, -0.029525570571422577, -0.002405111212283373, 0.07429686188697815, -0.005182861816138029, 0.03918198496103287, -0.02252895012497902, 0.06398936361074448, 0.009026344865560532, 0.035222023725509644, -0.05155046656727791, 0.06275754421949387, -0.17771534621715546, 0.04154576361179352, -0.08113639056682587, -0.019958972930908203, -0.08473704755306244, -0.03780515864491463, -0.0007296125986613333, 0.009909315034747124, 0.021101323887705803, 0.07206998020410538, -0.18137706816196442, -0.030638940632343292, 0.11949167400598526, -0.15682008862495422, -0.023817792534828186, 0.0674513503909111, -0.044680383056402206, 0.09202632308006287, 0.06956128776073456, 0.15758731961250305, -0.0177958644926548, -0.0812651664018631, 0.05408637970685959, -0.014458095654845238, 0.016026806086301804, -0.013400526717305183, 0.06825941056013107, -0.02074609138071537, -0.14825843274593353, 0.038550764322280884, -0.1328849345445633, -0.0031146120745688677, -0.07559404522180557, 0.02073736861348152, -0.007958204485476017, -0.0638205036520958, -0.07930213958024979, -0.025983382016420364, 0.06515486538410187, -0.08092522621154785, -0.012950709089636803, 0.038256704807281494, 0.07173792272806168, -0.07622738927602768, 0.06197421997785568, -0.012524579651653767, 0.01757919415831566, -0.0814543291926384, -0.03780745714902878, -0.1884591281414032, 0.040382757782936096, 0.09943677484989166, 0.01589430309832096, -0.020182784646749496, 0.14190959930419922, 0.007059203460812569, 0.06642225384712219, -0.0473984032869339, 0.012379586696624756, -0.0020644410979002714, -0.0033537589479237795, -0.08488121628761292, -0.10155454277992249, -0.07390736788511276, -0.07145146280527115, 0.07820241898298264, -0.126196026802063, 0.020832302048802376, -0.053809646517038345, 0.040038444101810455, 0.015935594215989113, -0.0821748673915863, -0.007300571538507938, 0.016659758985042572, -0.05757918208837509, -0.0608680434525013, 0.04171363264322281, 0.06878765672445297, -0.010144147090613842, 0.08703317493200302, -0.058973848819732666, -0.08154098689556122, 0.03391444310545921, 0.09945188462734222, -0.11075323820114136, 0.002618555910885334, -0.06040383130311966, -0.04184938967227936, -0.05538325756788254, -0.01768115907907486, 0.07939688116312027, -0.004972895607352257, 0.1363530308008194, -0.0744108036160469, -0.009003973565995693, 0.012363847345113754, -0.01620946265757084, -0.02918793447315693, 0.03859124705195427, 0.06613105535507202, -0.08095679432153702, 0.01771780289709568, 0.03900022432208061, 0.01276090182363987, 0.07618845254182816, -0.05576058849692345, -0.0856102779507637, 0.01812228374183178, 0.04149056598544121, 0.02974782884120941, 0.06565491855144501, -0.024604544043540955, -0.020693793892860413, 0.03281327337026596, 0.01726529560983181, 0.009012133814394474, -0.10814110934734344, 0.05657988414168358, 0.05527610331773758, 0.008934687823057175, 0.06976193934679031, -0.009082375094294548, -0.04418114945292473, 0.07626334577798843, 0.03723660111427307, -0.007748532108962536, -0.01103957835584879, -0.016451885923743248, -0.11542201787233353, 0.19713903963565826, -0.06609955430030823, -0.16782350838184357, -0.07001525908708572, -0.11808782070875168, -0.011395810171961784, 0.021242696791887283, 0.04043295606970787, -0.027775963768363, -0.05241086706519127, -0.12584324181079865, 0.05708756297826767, -0.04594064876437187, 0.0642278864979744, 0.10777358710765839, -0.04790530353784561, 0.05199888348579407, -0.12885747849941254, -0.009472710080444813, -0.08169443905353546, -0.07353208214044571, 0.06285365670919418, -0.052793584764003754, 0.030250050127506256, 0.09298509359359741, 0.03539333865046501, -0.014039893634617329, -0.028850026428699493, 0.20471811294555664, 0.04194607585668564, 0.030986379832029343, 0.1291901022195816, -0.053598642349243164, 0.05129210650920868, 0.07886014133691788, 0.010950261726975441, -0.05039036646485329, 0.054864928126335144, 0.0480816476047039, -0.06701532006263733, -0.19728784263134003, -0.025229323655366898, -0.011931139975786209, -0.04433102160692215, 0.07322531938552856, 0.039650462567806244, 0.016717305406928062, 0.06825093179941177, 0.01100822165608406, 0.06101660057902336, -0.0036606471985578537, 0.10530968010425568, 0.022935405373573303, -0.03673291951417923, 0.09208077937364578, -0.01843106746673584, -0.006755610927939415, 0.08169648796319962, -0.022272462025284767, 0.2919844686985016, -0.024299001321196556, 0.015073271468281746, 0.12834247946739197, 0.03305993974208832, 0.05975767970085144, 0.128339946269989, -0.06625073403120041, 0.01420868281275034, -0.07439665496349335, -0.06262197345495224, 0.0019153645262122154, 0.041332539170980453, -0.06212164834141731, 0.007419432047754526, -0.0712834969162941, 0.013302767649292946, -0.015427161008119583, 0.3126450479030609, 0.09727545082569122, -0.11268910020589828, -0.05158321559429169, 0.0014654664555564523, -0.10033520311117172, -0.06692221760749817, 0.044885776937007904, 0.06150028854608536, -0.13684475421905518, 0.014453503303229809, -0.029089150950312614, 0.07125119864940643, -0.016517825424671173, 0.019060062244534492, 0.036364201456308365, 0.04818287864327431, -0.039504822343587875, 0.007009446155279875, -0.1973920613527298, 0.1955815702676773, 0.00834107119590044, 0.018835987895727158, -0.05306106060743332, 0.033265236765146255, 0.00835032295435667, -0.03102940507233143, 0.06234695017337799, 0.016342202201485634, -0.028477054089307785, -0.04663510620594025, -0.048483580350875854, 0.015222898684442043, 0.0821368619799614, -0.03678524121642113, 0.10519228130578995, -0.004056350793689489, 0.043306779116392136, 0.02039678953588009, 0.09819651395082474, -0.18450434505939484, -0.09477768838405609, 0.033716972917318344, -0.05413275957107544, -0.10434722155332565, -0.07983682304620743, -0.09578321129083633, -0.016995787620544434, 0.25709298253059387, -0.11122781783342361, -0.074673131108284, -0.09978432208299637, 0.02541990950703621, 0.10449374467134476, -0.0451989471912384, 0.027972234413027763, -0.008972786366939545, 0.12560375034809113, -0.06705377995967865, -0.13490667939186096, 0.024501265957951546, -0.09973476082086563, -0.15827475488185883, -0.06471046060323715, 0.11496023088693619, 0.06110451743006706, 0.03302972391247749, -0.03196345642209053, 0.022378521040081978, 0.03475499525666237, -0.04022198170423508, -0.00508371414616704, 0.07469838112592697, 0.10152583569288254, 0.030965324491262436, -0.10925135761499405, 0.023788943886756897, -0.06461356580257416, -0.0663127526640892, 0.07977750897407532, 0.2573833763599396, -0.04986131563782692, 0.12013532966375351, 0.10806407779455185, -0.07438555359840393, -0.14705350995063782, 0.03498118743300438, 0.08877421915531158, -0.02009231224656105, 0.013373048044741154, -0.15902119874954224, 0.09210868179798126, 0.11621745675802231, -0.018546409904956818, -0.0003031864180229604, -0.1854470819234848, -0.1259610652923584, 0.07356957346200943, 0.10763472318649292, 0.26253607869148254, -0.06898907572031021, -0.04082456976175308, 0.01928836479783058, -0.07706606388092041, 0.020277010276913643, 0.11643033474683762, 0.06879952549934387, -0.02615358866751194, -0.08150690048933029, 0.009987604804337025, -0.04474938288331032, 0.08687148243188858, 0.05568820983171463, 0.06290049850940704, -0.005268303211778402, 0.02618543803691864, -0.018741996958851814, -0.04275864362716675, 0.06643935292959213, 0.01314909290522337, 0.04513227567076683, -0.07995138317346573, -0.02848956175148487, -0.07338926196098328, 0.027907371520996094, -0.025141209363937378, -0.07656069099903107, -0.05676191672682762, 0.07993216812610626, 0.046204425394535065, -0.025950772687792778, 0.02657633274793625, 0.02314806915819645, 0.11983773112297058, 0.15543539822101593, 0.00293789803981781, -0.054861269891262054, -0.06824979931116104, -0.041074253618717194, -0.015525389462709427, 0.07022222876548767, -0.040476348251104355, 0.011882517486810684, 0.062213048338890076, 0.021074611693620682, 0.10004540532827377, 0.057504355907440186, -0.11605355888605118, -0.023087019100785255, 0.03387707844376564, -0.16962489485740662, 0.023005174472928047, -0.00013138013309799135, 0.03474418818950653, -0.0332743301987648, 0.03749696537852287, 0.14388799667358398, -0.05970696359872818, -0.033908575773239136, -0.04078781604766846, 0.06666000187397003, 0.025834491476416588, 0.14417363703250885, 0.030660346150398254, 0.03765391558408737, -0.08574826270341873, 0.11951670795679092, 0.034173790365457535, -0.0359373576939106, 0.027014870196580887, -0.016160961240530014, -0.11169002205133438, 0.01203455962240696, 0.06378673762083054, 0.04233403876423836, -0.04858655855059624, -0.01079506054520607, -0.028244707733392715, -0.07485215365886688, 0.062239740043878555, 0.1898544728755951, 0.06569476425647736, 0.07021352648735046, -0.05650443583726883, -0.040447015315294266, -0.07770030200481415, 0.03842724859714508, 0.02904096618294716, 0.07794992625713348, -0.07844410091638565, 0.09716837108135223, 0.014155218377709389, 0.03714687377214432, -0.029665494337677956, -0.05401475355029106, -0.10607084631919861, -0.05441390722990036, -0.09372798353433609, -0.0005120630958117545, -0.08050364255905151, -0.03920020908117294, -0.0019997358322143555, 0.005293971858918667, -0.006978343706578016, 0.049159932881593704, -0.06059816852211952, -0.010546829551458359, -0.01728382147848606, 0.039948251098394394, -0.0653626024723053, -0.03250550106167793, 0.02108023688197136, -0.10279226303100586, 0.08949187397956848, 0.04873505234718323, 0.006153825204819441, 0.008995519950985909, 0.08496397733688354, -0.02520708367228508, 0.02529839798808098, 0.01021020021289587, -0.043166112154722214, -0.08107511699199677, -0.003296507755294442, -0.005022221710532904, -0.019373895600438118, -0.005657390225678682, 0.07146589457988739, -0.08550508320331573, 0.03365553542971611, -0.004259447567164898, -0.0055211554281413555, -0.07268838584423065, -0.009809273295104504, 0.10228244215250015, 0.09292542934417725, 0.04493040218949318, -0.09305810928344727, 0.010714370757341385, -0.13632449507713318, -0.03963199630379677, 0.004346746020019054, -0.017484180629253387, -0.1281929761171341, -0.005814074072986841, 0.022168094292283058, -0.006271342281252146, 0.2206656038761139, -0.056234732270240784, -0.018321922048926353, 0.019169477745890617, -0.09213733673095703, 0.12153921276330948, -0.027340633794665337, 0.17820076644420624, -0.009151662699878216, -0.03868386149406433, -0.008229784667491913, 0.04449950158596039, 0.019027477130293846, -0.030226189643144608, 0.1824195235967636, 0.1378237009048462, 0.021690744906663895, 0.038039110600948334, -0.02135942317545414, -0.008014018647372723, -0.043540772050619125, -0.02706829458475113, 0.03887270763516426, 0.048464324325323105, 0.01641085185110569, 0.14810171723365784, 0.07007904350757599, -0.16771967709064484, 0.033886078745126724, -0.030549053102731705, -0.037615757435560226, -0.11085283011198044, -0.10110853612422943, -0.028961019590497017, -0.07473021745681763, 0.011202991008758545, -0.12896938621997833, 0.0034295099321752787, 0.17441406846046448, 0.06472744792699814, 0.02674560248851776, 0.011835974641144276, -0.11378853023052216, -0.03360169380903244, 0.054178912192583084, 0.010734324343502522, 0.01769513636827469, 0.047115929424762726, 0.00427795248106122, 0.05372852087020874, 0.03084516152739525, 0.0144309401512146, -0.002526611788198352, 0.0796441063284874, 0.018881401047110558, 0.037962738424539566, -0.06183791160583496, -0.0009350114269182086, -0.03975093364715576, 0.06835813820362091, 0.10483243316411972, 0.04556954279541969, -0.057550642639398575, -0.007915102876722813, 0.14831577241420746, -0.037352073937654495, 0.0035896378103643656, -0.12406278401613235, 0.33810463547706604, 0.013866028748452663, 0.010140892118215561, 0.04110442101955414, -0.07144387066364288, -0.048697330057621, 0.206965371966362, 0.09449703991413116, -0.011208671145141125, -0.019467882812023163, -0.0013520121574401855, -0.030920375138521194, -0.02865676023066044, 0.14880792796611786, 0.041747815907001495, 0.12830141186714172, -0.05278131738305092, -0.04452146217226982, -0.027582872658967972, -0.011737878434360027, -0.12191585451364517, 0.12373968958854675, -0.010595027357339859, -0.027005163952708244, -0.06396837532520294, 0.02781929448246956, 0.06721945852041245, -0.3015507161617279, -0.0071972329169511795, -0.02797755040228367, -0.1078522726893425, -0.011123670265078545, -0.024562038481235504, -0.022301815450191498, 0.048061665147542953, -0.04249219223856926, 0.06808151304721832, 0.03007982298731804, 0.032015372067689896, -0.022978851571679115, -0.10077579319477081, 0.17292030155658722, 0.05619649216532707, 0.08853878080844879, 0.023219943046569824, 0.07336704432964325, 0.05982229486107826, 0.032144274562597275, -0.09217627346515656, 0.04895823448896408, 0.014622725546360016, -0.08913197368383408, -0.05053536966443062, 0.118132583796978, 0.0014057847438380122, 0.05112404748797417, 0.03821947053074837, -0.10274038463830948, 0.019633699208498, 0.06651212275028229, -0.06207741051912308, -0.10085456818342209, 0.0017147804610431194, -0.09209568798542023, 0.16282328963279724, 0.15003500878810883, -0.016352619975805283, 0.017162077128887177, -0.07097871601581573, -0.00306599005125463, 0.05041826143860817, 0.005923215299844742, -0.021638300269842148, -0.19330446422100067, 0.037280239164829254, -0.08239442110061646, -0.008711788803339005, -0.2311343550682068, -0.10207533836364746, -0.008243560791015625, -0.04882488027215004, -0.03140026703476906, 0.052731048315763474, 0.031173905357718468, 0.06807316839694977, -0.020498104393482208, -0.02057822234928608, -0.03227856010198593, 0.08861885964870453, -0.11183366179466248, -0.060686446726322174 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_300k"]}
null
google/multiberts-seed_3-step_300k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_300k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 300k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_300k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 300k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 300k (max: 2000k, i.e., 2M steps)." ]
[ -0.07425687462091446, 0.07839763909578323, -0.0019248854368925095, 0.04232611507177353, 0.0863654688000679, -0.015332803130149841, 0.0799567848443985, 0.09728140383958817, -0.028597665950655937, 0.020740976557135582, 0.08460978418588638, 0.014231722801923752, 0.0157754085958004, 0.0919702798128128, 0.0228583887219429, -0.2206868976354599, 0.027115873992443085, -0.03241090476512909, -0.0739724189043045, 0.08116327226161957, 0.09919824451208115, -0.080091692507267, 0.04860652610659599, 0.02094557322561741, -0.10481750965118408, 0.05310209468007088, -0.009413101710379124, -0.019353356212377548, 0.12860780954360962, -0.00295460969209671, 0.04689235985279083, 0.05010418966412544, 0.04285337030887604, -0.1376257687807083, 0.006264109164476395, 0.054324883967638016, 0.05789446458220482, 0.03747877478599548, 0.022388625890016556, 0.07649333775043488, 0.0021184775978326797, 0.024976899847388268, 0.05103905498981476, 0.026711594313383102, -0.07751250267028809, -0.04296908155083656, -0.10728076845407486, 0.032952144742012024, 0.03019307367503643, 0.016645345836877823, 0.010825426317751408, 0.13930578529834747, -0.04329104349017143, 0.048255883157253265, 0.19959156215190887, -0.3314933776855469, -0.01679627224802971, 0.09223354607820511, 0.05052100867033005, 0.12464830279350281, -0.003712065750733018, -0.017382392659783363, 0.07293397188186646, 0.03420575335621834, 0.09677357971668243, -0.04185027629137039, 0.035405196249485016, -0.05354413017630577, -0.16439171135425568, -0.04141689091920853, 0.1033291444182396, -0.00030242803040891886, -0.13749563694000244, -0.05301058664917946, -0.03469384089112282, 0.023531587794423103, 0.012121427804231644, -0.03670892491936684, 0.03093455545604229, 0.007606035098433495, -0.024135392159223557, -0.00438584852963686, -0.10075029730796814, -0.05252043530344963, 0.03499847650527954, 0.0875006765127182, 0.09973635524511337, 0.06188761070370674, 0.005801096558570862, 0.11228626221418381, -0.17094989120960236, -0.04883820191025734, -0.030079398304224014, -0.06285834312438965, -0.04551161825656891, -0.016476118937134743, -0.10848569869995117, -0.05333195626735687, 0.011520732194185257, 0.13682925701141357, 0.0024817094672471285, 0.03317716345191002, -0.019759301096200943, 0.004725925158709288, 0.062480490654706955, 0.047274548560380936, -0.013390365056693554, 0.010275923646986485, 0.019632140174508095, -0.0034368722699582577, -0.018819686025381088, 0.016072362661361694, 0.006615560967475176, 0.037802666425704956, 0.11913453042507172, 0.031903237104415894, -0.10391957312822342, 0.07718627899885178, -0.01956922933459282, -0.049380119889974594, 0.02398158423602581, -0.0917004942893982, -0.06617657095193863, -0.04734184220433235, 0.004156508017331362, 0.02332582138478756, -0.009252794086933136, -0.009019549004733562, -0.02312156930565834, -0.030970869585871696, -0.08117027580738068, -0.04990734905004501, -0.05490752309560776, -0.12826640903949738, 0.0010843540076166391, -0.17331726849079132, -0.038222786039114, -0.11679099500179291, -0.18874970078468323, -0.02518366277217865, 0.06299546360969543, -0.011805756948888302, -0.0474715530872345, 0.07978527992963791, 0.042266398668289185, -0.029763873666524887, -0.004002789035439491, 0.07096017897129059, -0.005508284084498882, 0.03995737060904503, -0.02010471001267433, 0.06403154134750366, 0.006710287649184465, 0.03366753086447716, -0.054698724299669266, 0.06127025932073593, -0.17075252532958984, 0.04191669076681137, -0.07721947878599167, -0.018413931131362915, -0.08380601555109024, -0.041129883378744125, -0.00645237322896719, 0.01052845735102892, 0.02372616156935692, 0.07698672264814377, -0.17509745061397552, -0.02356601320207119, 0.10668960213661194, -0.1547902226448059, -0.028599359095096588, 0.06951745599508286, -0.04446728900074959, 0.09024912118911743, 0.06955666095018387, 0.14541056752204895, -0.019642377272248268, -0.08623102307319641, 0.05586790665984154, -0.014918162487447262, 0.015058132819831371, -0.015169464983046055, 0.06888649612665176, -0.02286527119576931, -0.14926142990589142, 0.036996617913246155, -0.13403286039829254, -0.0016262722201645374, -0.07627179473638535, 0.018458236008882523, -0.005246952176094055, -0.06998220086097717, -0.07841487973928452, -0.02818792313337326, 0.06217722222208977, -0.08004839718341827, -0.012430030852556229, 0.03427320346236229, 0.07209856063127518, -0.07589121907949448, 0.0656915083527565, -0.009402687661349773, 0.01616169698536396, -0.08414759486913681, -0.04089123755693436, -0.18758858740329742, 0.0385131761431694, 0.09856323897838593, 0.02011495642364025, -0.020009871572256088, 0.13361899554729462, 0.006232930347323418, 0.06638483703136444, -0.052829742431640625, 0.010437577031552792, -0.00824061594903469, -0.0028472330886870623, -0.0815572440624237, -0.0916692465543747, -0.08137613534927368, -0.07007250934839249, 0.06623225659132004, -0.11134368181228638, 0.019335655495524406, -0.059167567640542984, 0.035573236644268036, 0.018343081697821617, -0.083843894302845, -0.008100523613393307, 0.020387882366776466, -0.05846835672855377, -0.061415791511535645, 0.04141317307949066, 0.0692097544670105, -0.010360997170209885, 0.0828557088971138, -0.05517129227519035, -0.07842806726694107, 0.033807870000600815, 0.09881938993930817, -0.11457174271345139, 0.0012942698085680604, -0.057021889835596085, -0.03947180137038231, -0.06339161843061447, -0.02479173243045807, 0.07838641852140427, -0.0031299968250095844, 0.13463494181632996, -0.07493165880441666, -0.009034879505634308, 0.007033881731331348, -0.017553115263581276, -0.029546279460191727, 0.032220736145973206, 0.06867264956235886, -0.0803278386592865, 0.017115924507379532, 0.039587125182151794, 0.012646162882447243, 0.07718008011579514, -0.05085575953125954, -0.0830802246928215, 0.018069500103592873, 0.03619709983468056, 0.030357981100678444, 0.0679718405008316, -0.012622811831533909, -0.0167915690690279, 0.028968608006834984, 0.022254258394241333, 0.008107629604637623, -0.10355588048696518, 0.05554066598415375, 0.0567050501704216, 0.00722483778372407, 0.07967261970043182, -0.010556969791650772, -0.04596450924873352, 0.07671856880187988, 0.03874747082591057, -0.005294996779412031, -0.012734698131680489, -0.018076004460453987, -0.11545814573764801, 0.19704899191856384, -0.061369240283966064, -0.1658971756696701, -0.07352331280708313, -0.11686120927333832, -0.013488744385540485, 0.022175053134560585, 0.03669142723083496, -0.027041999623179436, -0.05098840966820717, -0.12957949936389923, 0.0637606605887413, -0.039374466985464096, 0.06378809362649918, 0.1096312552690506, -0.04642806202173233, 0.0506562665104866, -0.12971751391887665, -0.012780623510479927, -0.08340192586183548, -0.07710153609514236, 0.05874178931117058, -0.05514199286699295, 0.03548828512430191, 0.09085763990879059, 0.03599527105689049, -0.014405987225472927, -0.029820803552865982, 0.20929637551307678, 0.044509898871183395, 0.03300297632813454, 0.13197742402553558, -0.051798295229673386, 0.05007004737854004, 0.07808368653059006, 0.014440036378800869, -0.05469902604818344, 0.060061920434236526, 0.0458543486893177, -0.07141759991645813, -0.1903776079416275, -0.02627749927341938, -0.014192551374435425, -0.04888955131173134, 0.07288173586130142, 0.037935324013233185, 0.007138021755963564, 0.07027677446603775, 0.011186174117028713, 0.0509687103331089, -0.0031601805239915848, 0.10487107932567596, 0.013339817523956299, -0.031626101583242416, 0.09305242449045181, -0.019704105332493782, -0.011208846233785152, 0.08137667179107666, -0.012491622939705849, 0.28751328587532043, -0.02834545634686947, 0.005879709962755442, 0.12744060158729553, 0.03439756855368614, 0.058276381343603134, 0.13301916420459747, -0.06767885386943817, 0.014523624442517757, -0.07310427725315094, -0.06148930639028549, -0.002111127134412527, 0.03572104498744011, -0.055835213512182236, 0.016257332637906075, -0.07301430404186249, 0.0138899190351367, -0.013489015400409698, 0.320962518453598, 0.1009320393204689, -0.11292543262243271, -0.04973382130265236, 0.00303307780995965, -0.0975034236907959, -0.06239771470427513, 0.04670347645878792, 0.05436619743704796, -0.1396222561597824, 0.01562411803752184, -0.026679720729589462, 0.07126020640134811, -0.020303567871451378, 0.017822502180933952, 0.046180836856365204, 0.044054947793483734, -0.04088457301259041, 0.0017895183991640806, -0.19555243849754333, 0.19793593883514404, 0.006878880318254232, 0.022101037204265594, -0.05115635320544243, 0.03309822827577591, 0.010068874806165695, -0.037663690745830536, 0.06375438719987869, 0.016411716118454933, -0.010801552794873714, -0.054215461015701294, -0.048585180193185806, 0.012858370319008827, 0.07958855479955673, -0.03796951845288277, 0.10718942433595657, -0.006298205815255642, 0.04413716495037079, 0.01783619076013565, 0.10274946689605713, -0.18786342442035675, -0.0974353700876236, 0.027410881593823433, -0.05744452774524689, -0.10692019015550613, -0.07729070633649826, -0.09432593733072281, -0.0104972580447793, 0.25315558910369873, -0.10865120589733124, -0.07729076594114304, -0.09907419234514236, 0.01764315739274025, 0.10384969413280487, -0.04283633828163147, 0.02511146478354931, -0.00781735684722662, 0.11884144693613052, -0.06620410829782486, -0.1343579888343811, 0.022550705820322037, -0.10116805136203766, -0.1581421047449112, -0.06427260488271713, 0.11405139416456223, 0.06396044790744781, 0.033142562955617905, -0.028984008356928825, 0.020546576008200645, 0.04029400274157524, -0.044156935065984726, -0.00891233142465353, 0.06778350472450256, 0.09909876435995102, 0.043780598789453506, -0.11216656118631363, 0.015717480331659317, -0.06653560698032379, -0.06801397353410721, 0.07932466268539429, 0.25849154591560364, -0.0481521338224411, 0.11802375316619873, 0.11575822532176971, -0.07411479204893112, -0.14990413188934326, 0.029507767409086227, 0.08659539371728897, -0.018118586391210556, 0.021391108632087708, -0.15187577903270721, 0.09035196900367737, 0.11573381721973419, -0.019502269104123116, -0.011346857994794846, -0.1916942149400711, -0.128612220287323, 0.07144148647785187, 0.11198119819164276, 0.2623574137687683, -0.06974561512470245, -0.03619607537984848, 0.013638362288475037, -0.09049283713102341, 0.018777957186102867, 0.1318127065896988, 0.07194101810455322, -0.029407277703285217, -0.08512163162231445, 0.009450211189687252, -0.04503580182790756, 0.09031888842582703, 0.05358578637242317, 0.06353115290403366, -0.007829077541828156, 0.026439376175403595, -0.020060613751411438, -0.04314860329031944, 0.06995666772127151, 0.011321608908474445, 0.045614536851644516, -0.07834203541278839, -0.03209347650408745, -0.07223665714263916, 0.02381194569170475, -0.02445058338344097, -0.08062832802534103, -0.06015187129378319, 0.0838652029633522, 0.04889408126473427, -0.028192391619086266, 0.0195630956441164, 0.020521165803074837, 0.11955242604017258, 0.1517585813999176, 0.00991030503064394, -0.05610954016447067, -0.0707130953669548, -0.03981946036219597, -0.01825353130698204, 0.06980831176042557, -0.025610223412513733, 0.012804325670003891, 0.0626949742436409, 0.016781212761998177, 0.09748829156160355, 0.059904273599386215, -0.11170640587806702, -0.02048744447529316, 0.03635184466838837, -0.16167788207530975, 0.03394639119505882, 0.001218136865645647, 0.031658247113227844, -0.03860677778720856, 0.034431956708431244, 0.14345866441726685, -0.05840562656521797, -0.03383014351129532, -0.04011373221874237, 0.06822559237480164, 0.020152946934103966, 0.146580770611763, 0.030975734815001488, 0.03723528981208801, -0.0822242721915245, 0.12320474535226822, 0.029113061726093292, -0.024395553395152092, 0.02335207536816597, -0.014066644944250584, -0.10988226532936096, 0.012218724936246872, 0.060389935970306396, 0.03362341597676277, -0.05837688595056534, -0.0035054355394095182, -0.029109565541148186, -0.07794145494699478, 0.0604620985686779, 0.17924317717552185, 0.07065004855394363, 0.06919160485267639, -0.0580911822617054, -0.040604691952466965, -0.07543972879648209, 0.03375396504998207, 0.03294530138373375, 0.07595069706439972, -0.07837199419736862, 0.08050478249788284, 0.013893816620111465, 0.03479597344994545, -0.030744995921850204, -0.0527992807328701, -0.10806887596845627, -0.04957709088921547, -0.09305105358362198, -0.0037082417402416468, -0.08048002421855927, -0.0369231142103672, -0.003890133462846279, 0.004149266984313726, -0.008742211386561394, 0.050190769135951996, -0.05692692846059799, -0.012019096873700619, -0.017856186255812645, 0.03530626371502876, -0.061890751123428345, -0.03373158350586891, 0.023436374962329865, -0.10446124523878098, 0.0880383551120758, 0.03972184658050537, 0.0030975176487118006, 0.006635539699345827, 0.08450249582529068, -0.026798702776432037, 0.024773873388767242, 0.013129589147865772, -0.04940885305404663, -0.07941681146621704, -0.0022739607375115156, -0.002238994464278221, -0.015434334054589272, -0.003268048632889986, 0.08125973492860794, -0.08672032505273819, 0.03512648493051529, -0.00752503564581275, -0.0011559794656932354, -0.07161005586385727, -0.009167595766484737, 0.11348214745521545, 0.09520063549280167, 0.0497886948287487, -0.09434425830841064, 0.010436970740556717, -0.1388254165649414, -0.038151659071445465, 0.006420116871595383, -0.015476307831704617, -0.13866114616394043, -0.0048810336738824844, 0.02368907444179058, -0.0009679104550741613, 0.2227443903684616, -0.05805008113384247, -0.01983453519642353, 0.022087691351771355, -0.08514831960201263, 0.1273604929447174, -0.026718620210886, 0.17561937868595123, -0.012465442530810833, -0.041959669440984726, -0.007361381780356169, 0.04277009144425392, 0.017873067408800125, -0.027559872716665268, 0.19006821513175964, 0.13852038979530334, 0.026283517479896545, 0.0402076318860054, -0.023360174149274826, -0.00211129616945982, -0.034337952733039856, -0.046511340886354446, 0.04183654487133026, 0.0403343103826046, 0.018819794058799744, 0.13781361281871796, 0.06729309260845184, -0.16663478314876556, 0.034787364304065704, -0.031020142138004303, -0.0376705601811409, -0.11180444061756134, -0.09710313379764557, -0.025689950212836266, -0.06952279061079025, 0.012153965421020985, -0.12967056035995483, -0.0010170744499191642, 0.18204176425933838, 0.0645950436592102, 0.028258252888917923, 0.015584823675453663, -0.11937737464904785, -0.032106462866067886, 0.05417485162615776, 0.008321576751768589, 0.020683903247117996, 0.054290495812892914, 0.0033068314660340548, 0.051192231476306915, 0.03231554105877876, 0.016145138069987297, -0.0003506708890199661, 0.06624704599380493, 0.01672334037721157, 0.039912253618240356, -0.06256085634231567, -0.003071879968047142, -0.04200999438762665, 0.06999029219150543, 0.12270037084817886, 0.047157201915979385, -0.054791226983070374, -0.0069588664919137955, 0.14917121827602386, -0.03813658654689789, -0.004172551445662975, -0.12641547620296478, 0.33167460560798645, 0.018794851377606392, 0.01195901446044445, 0.04026487469673157, -0.07039179652929306, -0.051824480295181274, 0.20659367740154266, 0.10280168801546097, -0.02208898961544037, -0.02003769762814045, -0.002396540017798543, -0.029395900666713715, -0.025373337790369987, 0.1547694206237793, 0.03985637426376343, 0.12954753637313843, -0.05381369590759277, -0.04096560552716255, -0.02683626115322113, -0.013902201317250729, -0.11711785942316055, 0.12219073623418808, -0.01197565346956253, -0.023057570680975914, -0.06931564211845398, 0.029626937583088875, 0.0660145953297615, -0.29304954409599304, -0.005738674197345972, -0.03228744491934776, -0.10778897255659103, -0.010860530659556389, -0.03195333853363991, -0.02353864721953869, 0.04999536648392677, -0.040463026612997055, 0.0722421407699585, 0.02797793410718441, 0.03211416304111481, -0.023615693673491478, -0.10413597524166107, 0.17368079721927643, 0.06593893468379974, 0.09208757430315018, 0.02622849866747856, 0.07196858525276184, 0.05915011093020439, 0.03024287335574627, -0.094327911734581, 0.05465864762663841, 0.012818031944334507, -0.0846378430724144, -0.04706723615527153, 0.11323265731334686, 0.0007185591384768486, 0.051778394728899, 0.03193037956953049, -0.1036890372633934, 0.02098211459815502, 0.0697079673409462, -0.060048285871744156, -0.10118288546800613, 0.0013447090750560164, -0.09112204611301422, 0.16595809161663055, 0.14622075855731964, -0.01598387211561203, 0.016529090702533722, -0.06640476733446121, -0.0015032014343887568, 0.05082697793841362, 0.003275711555033922, -0.023665418848395348, -0.19584889709949493, 0.03332449868321419, -0.09350860863924026, -0.013570912182331085, -0.23239360749721527, -0.10718376934528351, -0.007245154120028019, -0.04921234771609306, -0.03395514935255051, 0.056582968682050705, 0.027602607384324074, 0.07114249467849731, -0.01758664660155773, -0.018200745806097984, -0.03273573890328407, 0.08793073147535324, -0.11587957292795181, -0.0636768490076065 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_400k"]}
null
google/multiberts-seed_3-step_400k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_400k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 400k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_400k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 400k (max: 2000k, i.e., 2M steps)." ]
[ -0.07659450173377991, 0.08044283092021942, -0.001999753061681986, 0.04373839870095253, 0.08484112471342087, -0.01340396422892809, 0.07579909265041351, 0.09901764988899231, -0.029488323256373405, 0.022002195939421654, 0.07898332178592682, 0.015697656199336052, 0.01801356114447117, 0.09543318301439285, 0.021479403600096703, -0.22216106951236725, 0.023166824132204056, -0.03190331533551216, -0.07944698631763458, 0.07859056442975998, 0.09808112680912018, -0.08013130724430084, 0.05032702535390854, 0.022296743467450142, -0.10635778307914734, 0.05088751018047333, -0.006894175428897142, -0.02173003926873207, 0.13232868909835815, -0.0011653982801362872, 0.047410998493433, 0.05076196789741516, 0.04255249351263046, -0.13336901366710663, 0.0072059668600559235, 0.054565779864788055, 0.05721233785152435, 0.04110110178589821, 0.025908349081873894, 0.0799185261130333, -0.0009678064379841089, 0.024730930104851723, 0.04835977777838707, 0.02569836936891079, -0.07631316035985947, -0.053498104214668274, -0.10738011449575424, 0.03252207860350609, 0.028493089601397514, 0.012473625130951405, 0.011075922288000584, 0.1312522441148758, -0.040095631033182144, 0.0482676699757576, 0.18640758097171783, -0.34096425771713257, -0.017150137573480606, 0.08739840239286423, 0.046587761491537094, 0.12904302775859833, -0.006001561880111694, -0.015291310846805573, 0.07566868513822556, 0.035093288868665695, 0.09239652007818222, -0.042464159429073334, 0.036953896284103394, -0.052537936717271805, -0.16086648404598236, -0.038402434438467026, 0.10803746432065964, -0.001386868767440319, -0.13768863677978516, -0.046584248542785645, -0.03350134938955307, 0.025688536465168, 0.010616930201649666, -0.034450408071279526, 0.031034113839268684, 0.00820824597030878, -0.023902935907244682, -0.0001406178780598566, -0.10112862288951874, -0.0496351532638073, 0.035200756043195724, 0.07939453423023224, 0.10148970782756805, 0.06255341321229935, 0.0056534125469625, 0.11191683262586594, -0.17752590775489807, -0.04670169577002525, -0.028986681252717972, -0.06367138773202896, -0.04547042027115822, -0.015582466498017311, -0.1080690547823906, -0.045416321605443954, 0.011179478839039803, 0.13500626385211945, 0.003826879896223545, 0.035476770251989365, -0.02132279984652996, 0.004526577889919281, 0.05830024182796478, 0.04546641558408737, -0.011199063621461391, 0.00859830155968666, 0.022970421239733696, -0.007712156977504492, -0.02136618085205555, 0.01784244179725647, 0.006129907444119453, 0.03502720966935158, 0.11844722181558609, 0.031168127432465553, -0.10524585098028183, 0.07944104820489883, -0.015172275714576244, -0.047200385481119156, 0.023228051140904427, -0.09050831943750381, -0.06532567739486694, -0.0448274090886116, 0.002317436970770359, 0.02023989148437977, -0.009711568243801594, -0.009586339816451073, -0.02032374031841755, -0.034356165677309036, -0.0819975882768631, -0.05006053298711777, -0.053046856075525284, -0.13002559542655945, 0.0012061261804774404, -0.17012672126293182, -0.03838261216878891, -0.11862921714782715, -0.18594567477703094, -0.02695050835609436, 0.06158297508955002, -0.011036185547709465, -0.04925166815519333, 0.08332838863134384, 0.04238688573241234, -0.0312713086605072, -0.0029088323935866356, 0.07395292818546295, -0.00605345144867897, 0.04071527346968651, -0.022964781150221825, 0.06630093604326248, 0.007972120307385921, 0.034209150820970535, -0.05247577279806137, 0.0600547231733799, -0.1825791895389557, 0.04158474877476692, -0.07768915593624115, -0.01741587370634079, -0.08334130048751831, -0.04226144775748253, -0.005705657415091991, 0.007179529871791601, 0.020821958780288696, 0.07590482383966446, -0.18112827837467194, -0.023860320448875427, 0.10192064195871353, -0.15625277161598206, -0.026832498610019684, 0.07055746018886566, -0.0430341474711895, 0.09509559720754623, 0.07127701491117477, 0.1539430320262909, -0.015296153724193573, -0.08460382372140884, 0.05570775642991066, -0.013852865435183048, 0.01238811295479536, -0.010984166525304317, 0.06532862037420273, -0.022762753069400787, -0.15789222717285156, 0.039701659232378006, -0.1260828822851181, -0.002565309638157487, -0.07563917338848114, 0.019157839938998222, -0.0057798102498054504, -0.06883430480957031, -0.07686156034469604, -0.02917293831706047, 0.06535379588603973, -0.08060590922832489, -0.011569794267416, 0.0240948349237442, 0.07176502794027328, -0.07374636828899384, 0.06380963325500488, -0.010239469818770885, 0.017973558977246284, -0.08397382497787476, -0.039300963282585144, -0.1856336146593094, 0.03995842486619949, 0.09881246834993362, 0.015141603536903858, -0.021833274513483047, 0.13628213107585907, 0.00831903051584959, 0.06814863532781601, -0.05315529927611351, 0.010614529252052307, -0.0005904950085096061, -0.00297134043648839, -0.0875169187784195, -0.09352520108222961, -0.08085830509662628, -0.06723909080028534, 0.07345090806484222, -0.11873941868543625, 0.020539380609989166, -0.06139210984110832, 0.03607623279094696, 0.017385458573698997, -0.08148854225873947, -0.009643033146858215, 0.02041010372340679, -0.05566220358014107, -0.059918757528066635, 0.04213157296180725, 0.06756304949522018, -0.009716800414025784, 0.08147168904542923, -0.05332694947719574, -0.07662195712327957, 0.03315339982509613, 0.09789375960826874, -0.11517446488142014, 0.004597967956215143, -0.05672644451260567, -0.041927166283130646, -0.057272542268037796, -0.02349645271897316, 0.084571972489357, -0.007237459532916546, 0.1344086229801178, -0.07156173139810562, -0.00611149612814188, 0.009043877013027668, -0.014107838273048401, -0.02480989880859852, 0.03473970293998718, 0.06053578481078148, -0.07089995592832565, 0.012380273081362247, 0.04010114446282387, 0.01576869562268257, 0.07092512398958206, -0.05219939351081848, -0.08095487952232361, 0.019406922161579132, 0.03523654490709305, 0.02900642529129982, 0.06931966543197632, -0.013243455439805984, -0.016212305054068565, 0.03130398318171501, 0.02095750719308853, 0.0072392551228404045, -0.10696464776992798, 0.05612504109740257, 0.053823720663785934, 0.008030129596590996, 0.06826148182153702, -0.011044175364077091, -0.04264219477772713, 0.07737142592668533, 0.03862213343381882, -0.006264289375394583, -0.011459309607744217, -0.017063744366168976, -0.11442221701145172, 0.19527828693389893, -0.06552110612392426, -0.16502676904201508, -0.07323844730854034, -0.11172415316104889, -0.008187638595700264, 0.022099750116467476, 0.039585813879966736, -0.030331958085298538, -0.05163729563355446, -0.12604984641075134, 0.06527465581893921, -0.039440590888261795, 0.06460285931825638, 0.10753577947616577, -0.048632897436618805, 0.05286122113466263, -0.1287430226802826, -0.009962408803403378, -0.08269146084785461, -0.07629136741161346, 0.06246525049209595, -0.05397776514291763, 0.033426180481910706, 0.09309175610542297, 0.034382414072752, -0.0170071329921484, -0.029456883668899536, 0.21094101667404175, 0.04194674268364906, 0.03912720829248428, 0.12901519238948822, -0.05143100023269653, 0.05073507875204086, 0.08259005099534988, 0.015030807815492153, -0.051493655890226364, 0.05720942094922066, 0.044813185930252075, -0.06762561947107315, -0.19336111843585968, -0.023881232365965843, -0.011721649207174778, -0.04421350359916687, 0.06998492032289505, 0.03870819881558418, 0.007163571193814278, 0.07166341692209244, 0.014094097539782524, 0.05725037679076195, 0.00016550545115023851, 0.1027572751045227, 0.019882807508111, -0.034087471663951874, 0.09225951135158539, -0.01968158222734928, -0.009357225149869919, 0.08191248029470444, -0.015706868842244148, 0.2884329855442047, -0.028919119387865067, 0.007231360767036676, 0.12376298755407333, 0.04311661422252655, 0.06056157127022743, 0.13283997774124146, -0.06752289086580276, 0.01638844795525074, -0.07173765450716019, -0.0610114149749279, 0.0008043713169172406, 0.03760651871562004, -0.05913575366139412, 0.01229455228894949, -0.07460426539182663, 0.011087334714829922, -0.015913309529423714, 0.3146325349807739, 0.10056371241807938, -0.11111225932836533, -0.053076792508363724, 0.002792257582768798, -0.09664374589920044, -0.06566278636455536, 0.04830565303564072, 0.058224473148584366, -0.14053630828857422, 0.011890261434018612, -0.027675142511725426, 0.07141034305095673, -0.020914409309625626, 0.019008547067642212, 0.0455843061208725, 0.04579703137278557, -0.04226986691355705, 0.003264212515205145, -0.190598264336586, 0.1890847086906433, 0.008224567398428917, 0.02347506582736969, -0.049632079899311066, 0.03220551833510399, 0.012224482372403145, -0.029803868383169174, 0.059646014124155045, 0.01639830507338047, -0.02111196517944336, -0.06102371960878372, -0.048875898122787476, 0.016695642843842506, 0.07984793186187744, -0.037568122148513794, 0.10605224967002869, -0.004390326328575611, 0.04291890189051628, 0.01656567119061947, 0.09494216740131378, -0.18991100788116455, -0.09368759393692017, 0.029281560331583023, -0.056530460715293884, -0.09235691279172897, -0.07783620804548264, -0.09544622898101807, -0.01844366081058979, 0.2507213354110718, -0.10669411718845367, -0.07846032828092575, -0.098109170794487, 0.010822725482285023, 0.10673213750123978, -0.04245232418179512, 0.025719359517097473, -0.006167242769151926, 0.11681758612394333, -0.06306224316358566, -0.13633958995342255, 0.023212403059005737, -0.0980100929737091, -0.15793633460998535, -0.06475897133350372, 0.11511892080307007, 0.060170888900756836, 0.03351407125592232, -0.028696250170469284, 0.01999487914144993, 0.03542933985590935, -0.04194316640496254, -0.0057990713976323605, 0.0638340562582016, 0.10171288251876831, 0.040339164435863495, -0.11758402734994888, 0.019925557076931, -0.06760010868310928, -0.06523976475000381, 0.07448728382587433, 0.25606948137283325, -0.05021752789616585, 0.11772928386926651, 0.11032163351774216, -0.07498625665903091, -0.14881011843681335, 0.032950907945632935, 0.08571748435497284, -0.019537486135959625, 0.0163434911519289, -0.1560172587633133, 0.09305240958929062, 0.11679436266422272, -0.018472006544470787, 0.008387956768274307, -0.18260103464126587, -0.12851916253566742, 0.06837888807058334, 0.10606642067432404, 0.2637310326099396, -0.06954777985811234, -0.037608176469802856, 0.018384233117103577, -0.09255851805210114, 0.00748917693272233, 0.12592178583145142, 0.07114114612340927, -0.029102973639965057, -0.077760249376297, 0.009845085442066193, -0.042729832231998444, 0.09184837341308594, 0.05745057016611099, 0.06413167715072632, -0.0060600172728300095, 0.02530243806540966, -0.02887909673154354, -0.04313717037439346, 0.06584764271974564, 0.016903109848499298, 0.045623086392879486, -0.08256737887859344, -0.02828195132315159, -0.07332415878772736, 0.025524551048874855, -0.024943357333540916, -0.07767782360315323, -0.0588579922914505, 0.08150476217269897, 0.04481188952922821, -0.02817605249583721, 0.022842220962047577, 0.023245815187692642, 0.12319888919591904, 0.15156085789203644, 0.0032938376534730196, -0.05457508936524391, -0.07130899280309677, -0.03682509437203407, -0.019659478217363358, 0.07090552896261215, -0.03102414496243, 0.0151640884578228, 0.06596465408802032, 0.015561144798994064, 0.0985133945941925, 0.060383155941963196, -0.109840989112854, -0.019321531057357788, 0.03568587452173233, -0.1629752814769745, 0.03299595043063164, 0.001763460342772305, 0.01988973654806614, -0.03509797528386116, 0.03637506812810898, 0.1439116895198822, -0.05936027318239212, -0.03468975052237511, -0.04101993143558502, 0.06860807538032532, 0.022127466276288033, 0.1482095718383789, 0.0321648009121418, 0.03640163689851761, -0.08427058905363083, 0.12355844676494598, 0.030831415206193924, -0.02920597605407238, 0.020500678569078445, -0.01728721894323826, -0.1136159598827362, 0.011036055162549019, 0.061100173741579056, 0.03931499645113945, -0.05107152462005615, -0.005610999651253223, -0.028123974800109863, -0.08143676072359085, 0.05827636271715164, 0.17817866802215576, 0.06651483476161957, 0.06838317960500717, -0.055237628519535065, -0.03968474641442299, -0.0770619586110115, 0.03722413256764412, 0.03352494165301323, 0.07608995586633682, -0.07817327231168747, 0.09139830619096756, 0.01287466287612915, 0.03890115022659302, -0.030384382233023643, -0.053314514458179474, -0.10593806952238083, -0.053672995418310165, -0.10181494057178497, -0.001333671505562961, -0.07848566025495529, -0.0356198213994503, -0.0035695359110832214, 0.004413787741214037, -0.007516307756304741, 0.04885578155517578, -0.0599684938788414, -0.01188165694475174, -0.016518693417310715, 0.037244684994220734, -0.05899014323949814, -0.03527383133769035, 0.021622484549880028, -0.10289791226387024, 0.08943406492471695, 0.045511435717344284, 0.0054204752668738365, 0.007832176983356476, 0.09404473006725311, -0.023730013519525528, 0.023127630352973938, 0.012250184081494808, -0.04693533480167389, -0.08075074851512909, -0.004082196392118931, -0.007780944462865591, -0.018320398405194283, -0.00423915171995759, 0.08117265999317169, -0.08764193952083588, 0.03621882572770119, -0.00652725575491786, 0.001310052233748138, -0.07167980819940567, -0.011464301496744156, 0.10583700239658356, 0.09284137934446335, 0.046907879412174225, -0.09560153633356094, 0.010732502676546574, -0.1388128250837326, -0.04005743935704231, 0.005291104316711426, -0.017477478832006454, -0.13057145476341248, -0.007025029975920916, 0.02514924667775631, -0.002566739683970809, 0.21778006851673126, -0.05771328881382942, -0.019893160089850426, 0.01939658261835575, -0.08896155655384064, 0.11959020793437958, -0.027376025915145874, 0.17679338157176971, -0.011620461009442806, -0.041783131659030914, -0.0075286682695150375, 0.046160049736499786, 0.017154891043901443, -0.02589932456612587, 0.1822461187839508, 0.13574226200580597, 0.027719872072339058, 0.03819788992404938, -0.026199350133538246, -0.0081281503662467, -0.037023480981588364, -0.04042889550328255, 0.04017454758286476, 0.044555094093084335, 0.015906795859336853, 0.1383030116558075, 0.06281870603561401, -0.1654311716556549, 0.03331127017736435, -0.03465327247977257, -0.03861796483397484, -0.11003198474645615, -0.09044202417135239, -0.02590865083038807, -0.07114293426275253, 0.011322024278342724, -0.12813131511211395, 0.0004203392018098384, 0.1851811558008194, 0.06332293897867203, 0.02792167104780674, 0.014984006062150002, -0.12300800532102585, -0.0321858674287796, 0.055050887167453766, 0.010224588215351105, 0.02025550976395607, 0.056466780602931976, 0.0021630723495036364, 0.05174655094742775, 0.02726765163242817, 0.013204829767346382, -0.0015028318157419562, 0.06909066438674927, 0.016826482489705086, 0.041377436369657516, -0.06255468726158142, -0.004076201468706131, -0.037668757140636444, 0.07101983577013016, 0.11777208000421524, 0.04704585671424866, -0.054351091384887695, -0.008060632273554802, 0.1540801078081131, -0.03821795433759689, 0.003848935943096876, -0.12547236680984497, 0.3359898328781128, 0.014071503654122353, 0.009378249756991863, 0.04156433045864105, -0.07245803624391556, -0.048532113432884216, 0.21432720124721527, 0.10163433849811554, -0.019056037068367004, -0.022602425888180733, -0.0026958822272717953, -0.030708132311701775, -0.023661132901906967, 0.15471646189689636, 0.0418563187122345, 0.12248536944389343, -0.05507670342922211, -0.038450662046670914, -0.02719283662736416, -0.011437516659498215, -0.1244124099612236, 0.12552905082702637, -0.01796715147793293, -0.024381812661886215, -0.06788430362939835, 0.029004648327827454, 0.06776806712150574, -0.30670005083084106, -0.00100828951690346, -0.028245167806744576, -0.10750129818916321, -0.010686646215617657, -0.026061005890369415, -0.022980842739343643, 0.04940304905176163, -0.04315123334527016, 0.07160910964012146, 0.03968304768204689, 0.030490731820464134, -0.019165992736816406, -0.10601434111595154, 0.17276139557361603, 0.05690557882189751, 0.08762185275554657, 0.025668425485491753, 0.07511096447706223, 0.05779377371072769, 0.03282898664474487, -0.0951782613992691, 0.05222993716597557, 0.012396237812936306, -0.09275949746370316, -0.04875573888421059, 0.11438292264938354, 0.0016490536509081721, 0.052804142236709595, 0.03391415625810623, -0.09963339567184448, 0.018920576199889183, 0.07142891734838486, -0.062348827719688416, -0.09836476296186447, -0.0018148624803870916, -0.09002306312322617, 0.16380427777767181, 0.14919418096542358, -0.015252412296831608, 0.01877572201192379, -0.06756915152072906, -0.006448091007769108, 0.053540393710136414, -0.0014672863762825727, -0.02537683956325054, -0.1944587379693985, 0.03437347710132599, -0.09022174030542374, -0.012149357236921787, -0.23112477362155914, -0.10433804988861084, -0.010559135116636753, -0.04972298815846443, -0.03155353665351868, 0.05746849998831749, 0.029524987563490868, 0.07025071233510971, -0.017107799649238586, -0.017346160486340523, -0.032324038445949554, 0.0895824134349823, -0.11372005194425583, -0.06446216255426407 ]
null
null
transformers
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["multiberts", "multiberts-seed_3", "multiberts-seed_3-step_40k"]}
null
google/multiberts-seed_3-step_40k
[ "transformers", "pytorch", "tf", "bert", "pretraining", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_40k", "en", "arxiv:2106.16163", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.16163", "1908.08962" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us
# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as the original BERT model but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through URL We describe them in our paper The MultiBERTs: BERT Reproductions for Robustness Analysis. This is model #3, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of BERT-base uncased, for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to BERT-base uncased. Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for Turc et al., 2019. This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our technical report for more details. ### How to use Using code from BERT-base uncased, here is an example based on Tensorflow: PyTorch version: info
[ "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n", "# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 40k (max: 2000k, i.e., 2M steps).", "## Model Description\n\nThis model was captured during a reproduction of\nBERT-base uncased, for English: it\nis a Transformers model pretrained on a large corpus of English data, using the\nMasked Language Modelling (MLM) and the Next Sentence Prediction (NSP)\nobjectives.\n\nThe intended uses, limitations, training data and training procedure for the fully trained model are similar\nto BERT-base uncased. Two major\ndifferences with the original model:\n\n* We pre-trained the MultiBERTs models for 2 million steps using sequence\n length 512 (instead of 1 million steps using sequence length 128 then 512).\n* We used an alternative version of Wikipedia and Books Corpus, initially\n collected for Turc et al., 2019.\n\nThis is a best-effort reproduction, and so it is probable that differences with\nthe original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original\nBERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).\nSee our technical report for more details.", "### How to use\n\nUsing code from\nBERT-base uncased, here is an example based on\nTensorflow:\n\n\n\nPyTorch version:\n\n\n\ninfo" ]
[ 82, 220, 259, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tf #bert #pretraining #multiberts #multiberts-seed_3 #multiberts-seed_3-step_40k #en #arxiv-2106.16163 #arxiv-1908.08962 #license-apache-2.0 #endpoints_compatible #region-us \n# MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k\n\nMultiBERTs is a collection of checkpoints and a statistical library to support\nrobust research on BERT. We provide 25 BERT-base models trained with\nsimilar hyper-parameters as\nthe original BERT model but\nwith different random seeds, which causes variations in the initial weights and order of\ntraining instances. The aim is to distinguish findings that apply to a specific\nartifact (i.e., a particular instance of the model) from those that apply to the\nmore general procedure.\n\nWe also provide 140 intermediate checkpoints captured\nduring the course of pre-training (we saved 28 checkpoints for the first 5 runs).\n\nThe models were originally released through\nURL We describe them in our\npaper\nThe MultiBERTs: BERT Reproductions for Robustness Analysis.\n\nThis is model #3, captured at step 40k (max: 2000k, i.e., 2M steps)." ]
[ -0.07758188247680664, 0.08659851551055908, -0.0021109452936798334, 0.03897210210561752, 0.08204630017280579, -0.014087783172726631, 0.08042816072702408, 0.10031697154045105, -0.025246134027838707, 0.025661982595920563, 0.07954229414463043, 0.014508700929582119, 0.016817431896924973, 0.09372053295373917, 0.021545281633734703, -0.22415791451931, 0.02347620204091072, -0.029895052313804626, -0.07514968514442444, 0.07870316505432129, 0.0982954129576683, -0.0821770429611206, 0.04819551855325699, 0.024081354960799217, -0.10668476670980453, 0.048547614365816116, -0.007945113815367222, -0.019803572446107864, 0.13211274147033691, -0.001514958799816668, 0.047171205282211304, 0.05208209902048111, 0.03944212943315506, -0.13614322245121002, 0.0072096227668225765, 0.05610516667366028, 0.054212670773267746, 0.041534893214702606, 0.02729102596640587, 0.08078532665967941, 0.004440550692379475, 0.02137089893221855, 0.04704277962446213, 0.024937376379966736, -0.07514616847038269, -0.05628172680735588, -0.10585752129554749, 0.03198695927858353, 0.02670334465801716, 0.011960596777498722, 0.010215290822088718, 0.13974761962890625, -0.03998717665672302, 0.050293609499931335, 0.1884077489376068, -0.3424582779407501, -0.01481618918478489, 0.09009809792041779, 0.051526110619306564, 0.12654584646224976, -0.0063752299174666405, -0.015987392514944077, 0.0755794569849968, 0.033539026975631714, 0.09034709632396698, -0.04279443621635437, 0.046786967664957047, -0.051584392786026, -0.16285116970539093, -0.03960517793893814, 0.1006142646074295, -0.0023037283681333065, -0.135810986161232, -0.04899745061993599, -0.03721575811505318, 0.028831763193011284, 0.008667165413498878, -0.03315367177128792, 0.03258812054991722, 0.009093740954995155, -0.020058825612068176, 0.00034045433858409524, -0.10080963373184204, -0.04905775934457779, 0.03665389120578766, 0.07586606591939926, 0.10364242643117905, 0.06038592755794525, 0.0034344508312642574, 0.10955481231212616, -0.18895235657691956, -0.04804954677820206, -0.028814930468797684, -0.06014631316065788, -0.044219885021448135, -0.015655457973480225, -0.11113785207271576, -0.04744219779968262, 0.014139988459646702, 0.13619861006736755, -0.0032805094961076975, 0.0347931943833828, -0.024987634271383286, 0.006146331317722797, 0.060819558799266815, 0.04543180763721466, -0.01080731675028801, 0.007964564487338066, 0.020839005708694458, -0.009968248195946217, -0.020919501781463623, 0.017417380586266518, 0.005040987394750118, 0.033502768725156784, 0.12029695510864258, 0.02872634120285511, -0.1044897735118866, 0.08030687272548676, -0.014174836687743664, -0.04749240353703499, 0.024176232516765594, -0.0894273966550827, -0.0650181770324707, -0.04247594252228737, 0.002100052312016487, 0.022070612758398056, -0.010684525594115257, -0.008385785855352879, -0.022626005113124847, -0.03806988149881363, -0.08235319703817368, -0.04939689859747887, -0.05287930741906166, -0.130788654088974, 0.0034207815770059824, -0.17798325419425964, -0.03703761100769043, -0.11564049124717712, -0.18938308954238892, -0.02800893411040306, 0.05860400199890137, -0.01164983306080103, -0.04982760548591614, 0.08177825808525085, 0.04401751607656479, -0.030300593003630638, -0.0020035149063915014, 0.06958945840597153, -0.006477238144725561, 0.03989400714635849, -0.020992370322346687, 0.0663396418094635, 0.008947361260652542, 0.03425923362374306, -0.05234942585229874, 0.06067374348640442, -0.18082988262176514, 0.04205721244215965, -0.07706927508115768, -0.01830351911485195, -0.08570487052202225, -0.04129919037222862, -0.00017934472998604178, 0.008931988850235939, 0.01867447979748249, 0.07482299208641052, -0.17967331409454346, -0.02665247954428196, 0.11020547896623611, -0.15518146753311157, -0.025608856230974197, 0.07135095447301865, -0.04374758526682854, 0.0909104123711586, 0.07088037580251694, 0.15568645298480988, -0.014638127759099007, -0.08533470332622528, 0.056261204183101654, -0.01255730353295803, 0.0158989317715168, -0.012776114977896214, 0.06800590455532074, -0.023004041984677315, -0.15494945645332336, 0.03708207607269287, -0.13408412039279938, -0.002573595615103841, -0.07540208101272583, 0.020758075639605522, -0.00578021677210927, -0.06708622723817825, -0.07515604048967361, -0.02731245569884777, 0.06659673899412155, -0.07897219061851501, -0.013187729753553867, 0.027778079733252525, 0.07309915870428085, -0.07546499371528625, 0.06351945549249649, -0.012731383554637432, 0.01939297467470169, -0.08452960103750229, -0.03948049992322922, -0.18828727304935455, 0.04129854962229729, 0.09966249763965607, 0.01531236618757248, -0.022739024832844734, 0.14240100979804993, 0.009485638700425625, 0.06848469376564026, -0.050372861325740814, 0.010094346478581429, -0.0004980513476766646, -0.004466281738132238, -0.08702331781387329, -0.0977129116654396, -0.07740123569965363, -0.07007630169391632, 0.07048597931861877, -0.12404067814350128, 0.020817922428250313, -0.05916724354028702, 0.03815016150474548, 0.016686301678419113, -0.07995614409446716, -0.008405466563999653, 0.018846040591597557, -0.058041978627443314, -0.0589534267783165, 0.04381456598639488, 0.06854460388422012, -0.011347870342433453, 0.08729703724384308, -0.056434568017721176, -0.07982481271028519, 0.032374829053878784, 0.09475259482860565, -0.11156556755304337, 0.0012602697825059295, -0.0579356849193573, -0.042307160794734955, -0.05466940999031067, -0.020339360460639, 0.08312275260686874, -0.006815773900598288, 0.13802151381969452, -0.07243002206087112, -0.009246132336556911, 0.010245535522699356, -0.01578148640692234, -0.024510947987437248, 0.036213360726833344, 0.06063266098499298, -0.06974098086357117, 0.014791552908718586, 0.040092382580041885, 0.013434807769954205, 0.07463715970516205, -0.05512890964746475, -0.083578921854496, 0.01821725443005562, 0.037763264030218124, 0.028456952422857285, 0.06686873733997345, -0.019848113879561424, -0.01861775480210781, 0.03247896954417229, 0.01871269755065441, 0.007787052541971207, -0.10692302137613297, 0.05713373050093651, 0.054344892501831055, 0.008651258423924446, 0.06642412394285202, -0.010471830144524574, -0.04366001486778259, 0.076870858669281, 0.03785492479801178, -0.007423051632940769, -0.013479538261890411, -0.017544077709317207, -0.11449985951185226, 0.19720065593719482, -0.063116654753685, -0.16285765171051025, -0.07213509827852249, -0.118245430290699, -0.008254391141235828, 0.02217714861035347, 0.03847711160778999, -0.030571628361940384, -0.050850674510002136, -0.12429159879684448, 0.06568857282400131, -0.04129815474152565, 0.06599996238946915, 0.10735593736171722, -0.048465944826602936, 0.05332709848880768, -0.1274852603673935, -0.009299169294536114, -0.0820656418800354, -0.07419336587190628, 0.06375144422054291, -0.05374031886458397, 0.03162829577922821, 0.09384584426879883, 0.03563080355525017, -0.017349720001220703, -0.028782857581973076, 0.20982709527015686, 0.040772199630737305, 0.037300895899534225, 0.13003848493099213, -0.053736474364995956, 0.05234538018703461, 0.07982298731803894, 0.012955734506249428, -0.0502970889210701, 0.0543656051158905, 0.04542883113026619, -0.06518350541591644, -0.19505667686462402, -0.024207809939980507, -0.011285766959190369, -0.04342310503125191, 0.07200807332992554, 0.03781241551041603, 0.016228891909122467, 0.07043241709470749, 0.012476470321416855, 0.06304950267076492, -0.003776791738346219, 0.10355155915021896, 0.020406438037753105, -0.03436441347002983, 0.0911058634519577, -0.02002711407840252, -0.008802785538136959, 0.08226054906845093, -0.014165005646646023, 0.2873658239841461, -0.027189143002033234, 0.017980234697461128, 0.125314399600029, 0.03933872655034065, 0.061372045427560806, 0.12867526710033417, -0.07014264911413193, 0.015117025002837181, -0.0727570429444313, -0.06209554150700569, 0.002884211950004101, 0.038964398205280304, -0.057732321321964264, 0.0077237319201231, -0.07242462038993835, 0.010917781852185726, -0.015793176367878914, 0.31485602259635925, 0.10149367898702621, -0.11454199254512787, -0.05386807397007942, 0.0016095454338937998, -0.096111960709095, -0.06581152975559235, 0.047211047261953354, 0.05785167217254639, -0.1366698294878006, 0.014480238780379295, -0.02844913676381111, 0.07198011875152588, -0.021381007507443428, 0.020061073824763298, 0.0424821563065052, 0.04554509371519089, -0.04052792116999626, 0.004342805128544569, -0.19430947303771973, 0.19056570529937744, 0.008963899686932564, 0.01980837620794773, -0.050101857632398605, 0.0326826348900795, 0.010962841100990772, -0.02492832951247692, 0.061674416065216064, 0.016646940261125565, -0.021742690354585648, -0.05457000434398651, -0.048693154007196426, 0.014515253715217113, 0.07953004539012909, -0.03803212195634842, 0.10867787152528763, -0.005723066162317991, 0.04271084442734718, 0.01822284795343876, 0.08790986239910126, -0.18548749387264252, -0.09106626361608505, 0.030611051246523857, -0.05520829185843468, -0.10143591463565826, -0.07699514925479889, -0.09506995975971222, -0.020992524921894073, 0.24994167685508728, -0.11324068158864975, -0.07626890391111374, -0.09853220731019974, 0.01655760407447815, 0.10398540645837784, -0.044991787523031235, 0.025584453716874123, -0.008078436367213726, 0.12275426834821701, -0.06376184523105621, -0.1349143385887146, 0.024915356189012527, -0.09998437762260437, -0.15933389961719513, -0.06462293118238449, 0.11618771404027939, 0.06091431900858879, 0.03380933031439781, -0.02954522892832756, 0.020463764667510986, 0.03206127882003784, -0.039527375251054764, -0.00411643460392952, 0.06714191287755966, 0.1062374860048294, 0.035123057663440704, -0.11336644738912582, 0.02185446210205555, -0.06505067646503448, -0.06465458124876022, 0.07737985998392105, 0.2574886679649353, -0.04986979439854622, 0.1180574968457222, 0.11248133331537247, -0.07492811232805252, -0.1491202563047409, 0.03297289460897446, 0.08664977550506592, -0.019107352942228317, 0.016003726050257683, -0.15859843790531158, 0.08992169052362442, 0.11350014805793762, -0.018400888890028, 0.004223324824124575, -0.18459820747375488, -0.12683948874473572, 0.07098060101270676, 0.1042490303516388, 0.26418739557266235, -0.07139113545417786, -0.04096844792366028, 0.01897866651415825, -0.08777446299791336, 0.009860523045063019, 0.11938948929309845, 0.06827440857887268, -0.027943940833210945, -0.07751405984163284, 0.010811123996973038, -0.04437443986535072, 0.0910988375544548, 0.05819542706012726, 0.06234006956219673, -0.006155918352305889, 0.026535458862781525, -0.024318760260939598, -0.04396917670965195, 0.06456360220909119, 0.013717364519834518, 0.045096252113580704, -0.08629930019378662, -0.02886854112148285, -0.07349999248981476, 0.02633696235716343, -0.02471315860748291, -0.07726415246725082, -0.057652778923511505, 0.08067912608385086, 0.0462893582880497, -0.02716747857630253, 0.02742953412234783, 0.023614434525370598, 0.12050138413906097, 0.15442147850990295, 0.0034531806595623493, -0.04656551778316498, -0.073953777551651, -0.03857455402612686, -0.01698332466185093, 0.0715390220284462, -0.039953626692295074, 0.014171578921377659, 0.06441064178943634, 0.01784057542681694, 0.09860347956418991, 0.05779176577925682, -0.11160304397344589, -0.020753536373376846, 0.033999472856521606, -0.16448688507080078, 0.026289286091923714, 0.0020473506301641464, 0.023169420659542084, -0.03198658302426338, 0.03888510540127754, 0.14496563374996185, -0.05945473536849022, -0.033005159348249435, -0.04070110246539116, 0.06783578544855118, 0.02457248605787754, 0.14632219076156616, 0.03331046923995018, 0.038075003772974014, -0.08481435477733612, 0.12211454659700394, 0.031383808702230453, -0.031165456399321556, 0.022267555817961693, -0.018310951068997383, -0.11355023831129074, 0.009581654332578182, 0.06307777017354965, 0.04399016499519348, -0.05287223309278488, -0.009348256513476372, -0.03075583092868328, -0.075189508497715, 0.0608237199485302, 0.18165287375450134, 0.06763006001710892, 0.06845611333847046, -0.05529586970806122, -0.040424689650535583, -0.07831420004367828, 0.03728038817644119, 0.029565194621682167, 0.07631862163543701, -0.0787249282002449, 0.09531008452177048, 0.013123746030032635, 0.040116045624017715, -0.030307695269584656, -0.052722107619047165, -0.10501333326101303, -0.054262809455394745, -0.10068299621343613, 0.0018376598600298166, -0.0795530155301094, -0.036480508744716644, -0.004623936954885721, 0.004673457704484463, -0.006529027130454779, 0.04980611428618431, -0.060025352984666824, -0.010455883108079433, -0.016808584332466125, 0.038439732044935226, -0.06081360578536987, -0.033160626888275146, 0.02085859142243862, -0.10226479172706604, 0.0917338877916336, 0.04397711902856827, 0.005554248113185167, 0.00879358034580946, 0.09435911476612091, -0.022598009556531906, 0.02527082897722721, 0.010494149290025234, -0.04714486002922058, -0.07892382144927979, -0.0037345855962485075, -0.008543088100850582, -0.018804257735610008, -0.005610945168882608, 0.07971974462270737, -0.0864020362496376, 0.038084059953689575, -0.0050440398044884205, -0.00036487498437054455, -0.07281866669654846, -0.011122793890535831, 0.10111429542303085, 0.09448608011007309, 0.046361811459064484, -0.09373418241739273, 0.011983935721218586, -0.13725458085536957, -0.0397227518260479, 0.0061324904672801495, -0.016712093725800514, -0.12999922037124634, -0.007494205143302679, 0.023749245330691338, -0.004858499858528376, 0.22039547562599182, -0.058867197483778, -0.01678336411714554, 0.018819546326994896, -0.08885587751865387, 0.11939117312431335, -0.028225528076291084, 0.17964082956314087, -0.011433074250817299, -0.04063301160931587, -0.009118850342929363, 0.04685564711689949, 0.018333883956074715, -0.028149234130978584, 0.17921532690525055, 0.13752765953540802, 0.029406417161226273, 0.038813747465610504, -0.024566616863012314, -0.008348419331014156, -0.0440664179623127, -0.03140776604413986, 0.03851427137851715, 0.04659144580364227, 0.017024455592036247, 0.149322509765625, 0.06711976230144501, -0.1659148782491684, 0.03357233107089996, -0.03368307277560234, -0.03751690313220024, -0.11052251607179642, -0.09441409260034561, -0.02717200666666031, -0.07384413480758667, 0.010036389343440533, -0.12735773622989655, 0.0009158689063042402, 0.181818425655365, 0.0645579919219017, 0.02633473463356495, 0.01365068182349205, -0.12101945281028748, -0.03354165703058243, 0.055429670959711075, 0.011215985752642155, 0.019912289455533028, 0.054517604410648346, 0.0034305613953620195, 0.055098939687013626, 0.027486948296427727, 0.0134132644161582, -0.0032501835376024246, 0.07452725619077682, 0.02005208656191826, 0.039660170674324036, -0.06446290761232376, -0.0028775345999747515, -0.03716915845870972, 0.06894182413816452, 0.11148326843976974, 0.04642903059720993, -0.05416405573487282, -0.00887391623109579, 0.15016275644302368, -0.036969028413295746, 0.005963190458714962, -0.12594544887542725, 0.33115822076797485, 0.01446481328457594, 0.009953428991138935, 0.04152856022119522, -0.07364816963672638, -0.04754478484392166, 0.21047180891036987, 0.09816335886716843, -0.01805163361132145, -0.021599270403385162, -0.00021336022473406047, -0.030127091333270073, -0.023272117599844933, 0.1517685353755951, 0.04169446602463722, 0.12313468754291534, -0.053488120436668396, -0.04611022397875786, -0.02732485719025135, -0.012463312596082687, -0.12164201587438583, 0.125062957406044, -0.014917897060513496, -0.02591886930167675, -0.0670957937836647, 0.029672594740986824, 0.0690860003232956, -0.30790215730667114, -0.0025790019426494837, -0.028586335480213165, -0.10749475657939911, -0.01133950985968113, -0.023020198568701744, -0.021278051659464836, 0.047821950167417526, -0.042469948530197144, 0.0692053809762001, 0.03971361741423607, 0.0307097677141428, -0.02233877405524254, -0.10055367648601532, 0.1714707762002945, 0.06106758117675781, 0.08762793242931366, 0.024851670488715172, 0.07534699141979218, 0.058888331055641174, 0.031164150685071945, -0.09407056123018265, 0.050821494311094284, 0.013979802839457989, -0.09183233976364136, -0.05028543621301651, 0.11569389700889587, 0.001839524251408875, 0.04819469898939133, 0.0368526317179203, -0.10233915597200394, 0.01951884664595127, 0.069966159760952, -0.06549710780382156, -0.10013269633054733, -0.00010648096940713003, -0.09011274576187134, 0.16279681026935577, 0.14914976060390472, -0.015295577235519886, 0.01793299987912178, -0.06861083954572678, -0.004255073145031929, 0.05312377214431763, 0.001338776433840394, -0.025212030857801437, -0.1914367377758026, 0.03643340617418289, -0.08751317858695984, -0.008051950484514236, -0.23144087195396423, -0.10227304697036743, -0.00874785054475069, -0.04805769771337509, -0.03382565453648567, 0.05599056929349899, 0.02795455977320671, 0.0697590783238411, -0.01776663027703762, -0.020322492346167564, -0.03187869116663933, 0.08837617933750153, -0.11322617530822754, -0.06581871956586838 ]