repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
ExaScience/smurff
data/movielens/preprocess_movielens.py
1
3946
#!/usr/bin/python from pprint import pprint from numpy.core.fromnumeric import nonzero import pandas as pd import numpy as np import scipy.sparse as sp from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer import smurff movies = pd.read_csv("merged.csv") movies["movieIdx"] = movies.index # used in sparse matrix ratings = pd.read_csv("ratings.csv") ratings["userIdx"] = ratings["userId"] - 1 ratings = pd.merge(ratings, movies, on = "movieId", how = "inner") ratings_matrix = sp.coo_matrix((ratings['rating'].values, (ratings['movieIdx'].values, ratings['userIdx'].values))).tocsr() movies["genres_x"] = movies["genres_x"].str.replace("|", ",", regex=False) movies["timestamp"] = pd.to_datetime(movies["date"]).fillna(pd.Timestamp(0.)).astype('int64') // 10**9 lang_ids = { l : i for i,l in enumerate(movies["language"].unique()) } movies["language_id"] = movies["language"].map(lang_ids) numerical_columns = [ "timestamp", "runtime", "revenue", "budget", "popularity", "average_vote", "num_votes", "language_id", ] category_columns = [ "genres_x", "genres_y", #"keywords", #"director", #"cast", #"production_companies", "production_countries", ] movies[numerical_columns] = SimpleImputer(missing_values=np.nan, strategy='mean').fit_transform(movies[numerical_columns]) movies[numerical_columns] = StandardScaler().fit_transform(movies[numerical_columns]) movies.to_csv("movies_normalized.csv") ### --- category movies[category_columns] = movies[category_columns].fillna("") for col in category_columns: movies[col] = movies[col].str.split(", ?") features_vectorizer = DictVectorizer() categories_dict = movies[category_columns].to_dict(orient = 'records') categories_matrix = features_vectorizer.fit_transform(categories_dict) for col,name in enumerate(features_vectorizer.get_feature_names()): data = categories_matrix[:,col].data num_nan = np.isnan(data).sum() if num_nan > 0: print(f"{name}: {num_nan} / {len(data)} - {data}") features_matrix = sp.hstack((categories_matrix, sp.csc_matrix(movies[numerical_columns]))) import pickle pickle.dump(features_vectorizer, open("movies_features_vectorizer.pickle", "wb")) pickle.dump(features_matrix, open("movie_features_matrix.pickle", "wb")) pickle.dump(ratings_matrix, open("ratings_matrix.pickle", "wb")) smurff.matrix_io.write_matrix("ratings.sdm", ratings_matrix) smurff.matrix_io.write_matrix("features.sdm", features_matrix) #--- only save 1000 most popular movies and 1000 users ratings_matrix = ratings_matrix.tocsr() features_matrix = features_matrix.tocsr() nnz_per_movie = [ ratings_matrix[r,:].nnz for r in range(ratings_matrix.shape[0]) ] popular_movies = np.argsort(nnz_per_movie) ratings_matrix_1k = ratings_matrix[popular_movies[-1000:], :] features_matrix_1k = features_matrix[popular_movies[-1000:], :] ratings_matrix_1k = ratings_matrix_1k.tocsc() nnz_per_user = [ ratings_matrix_1k[:,r].nnz for r in range(ratings_matrix_1k.shape[1]) ] popular_users = np.argsort(nnz_per_user) ratings_matrix_1k = ratings_matrix_1k[:, popular_users[-1000:]] smurff.matrix_io.write_matrix("ratings_1k_popular.sdm", ratings_matrix_1k) smurff.matrix_io.write_matrix("features_1k_popular.sdm", features_matrix_1k) #--- save 1000 random movies and 1000 random users random_movies = np.random.permutation(ratings_matrix.shape[0]) ratings_matrix_1k = ratings_matrix[random_movies[-1000:], :] features_matrix_1k = features_matrix[random_movies[-1000:], :] ratings_matrix_1k = ratings_matrix_1k.tocsc() random_users = np.random.permutation(ratings_matrix.shape[1]) ratings_matrix_1k = ratings_matrix_1k[:, random_users[-1000:]] smurff.matrix_io.write_matrix("ratings_1k_random.sdm", ratings_matrix_1k) smurff.matrix_io.write_matrix("features_1k_random.sdm", features_matrix_1k)
mit
Og192/Python
sklearnLearning/statisticalAndSupervisedLearning/decisiontree.py
2
1526
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show()
gpl-2.0
simon-r/dr14_t.meter
dr14tmeter/dr_histogram.py
1
3462
# dr14_t.meter: compute the DR14 value of the given audiofiles # Copyright (C) 2011 Simone Riva # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import numpy import math from dr14tmeter.audio_math import * try: import matplotlib.pyplot as pyplot import matplotlib.mlab as mlab except: pass def compute_hist(Y, Fs, duration=None, bins=100, block_duration=0.2, plot=True, title=None): s = Y.shape if len(Y.shape) > 1: ch = s[1] else: ch = 1 saples_per_block = int(Fs * block_duration) seg_cnt = int(math.floor(float(s[0]) / saples_per_block)) + 1 if seg_cnt < 3: return False curr_sam = 0 rms = numpy.zeros((seg_cnt, ch)) #peaks = numpy.zeros((seg_cnt,ch)) for i in range(seg_cnt - 1): #r = numpy.arange( curr_sam , curr_sam + saples_per_block ) rms[i, :] = u_rms(Y[curr_sam: curr_sam + saples_per_block, :]) curr_sam = curr_sam + saples_per_block i = seg_cnt - 1 r = numpy.arange(curr_sam, s[0]) if r.shape[0] > 0: rms[i, :] = dr_rms(Y[r, :]) rms = numpy.sum(rms, 1) / float(ch) rms[rms == 0.0] = audio_min16() rms = decibel_u(rms, 1.0) rms_mean = numpy.mean(rms) rms_std = numpy.std(rms) rms_max = numpy.max(rms) abs_peak = decibel_u(numpy.max(numpy.abs(Y)), 1.0) if plot == True: (hist, bin_edges, patches) = pyplot.hist(rms, 100, normed=True) mean_x = numpy.array([rms_mean, rms_mean]) mean_y = numpy.array([0.0, numpy.max(hist) * 1.01]) std_x = numpy.array([rms_mean - rms_std, rms_mean + rms_std]) std_y = numpy.array([numpy.max(hist) * 0.7, numpy.max(hist) * 0.7]) pyplot.plot(mean_x, mean_y, linewidth=2, color='g') pyplot.plot(std_x, std_y, linewidth=2, ls='--', color='c') #print( hist ) pyplot.axis([-92, 0, 0, numpy.max(hist) * 1.05]) text_rel_pos = 0.9 pyplot.text(-85, numpy.max(hist) * text_rel_pos, "mean: %.3f dB" % rms_mean, fontsize=15,) pyplot.text(-85, numpy.max(hist) * (text_rel_pos - 0.05), "std dev: %.3f dB" % rms_std, fontsize=15,) pyplot.text(-85, numpy.max(hist) * (text_rel_pos - 0.10), "peak: %.3f dB" % abs_peak, fontsize=15,) pyplot.text(-85, numpy.max(hist) * (text_rel_pos - 0.15), "max rms: %.3f dB" % rms_max, fontsize=15,) pyplot.xlabel('RMS dB') pyplot.ylabel('Relative frequency') if title != None: hist_title = title else: hist_title = "Hystogram of dynamic" pyplot.title(r'%s' % hist_title) pyplot.plot(mean_x, mean_y) pyplot.grid(True) pyplot.show() else: (hist, bin_edges) = numpy.histogram(rms, bins=bins, normed=True) return (hist, bin_edges)
gpl-3.0
pgroth/independence-indicators
Temporal-Coauthor-Networks/vincent/vincent/data.py
3
16914
# -*- coding: utf-8 -*- """ Data: Vincent Data Class for data importing and Vega Data type """ from __future__ import (print_function, division) import time import json from .core import ( _assert_is_type, ValidationError, grammar, GrammarClass, LoadError ) from ._compat import str_types try: import pandas as pd except ImportError: pd = None try: import numpy as np except ImportError: np = None class Data(GrammarClass): """Data container for visualization The Vega document may contain the data itself or a reference to a URL containing the data and formatting instructions. Additionally, new data can be created from old data via the transform fields. """ _default_index_key = 'idx' def __init__(self, name=None, **kwargs): """Initialize a Data object Parameters ---------- name : string, default None Name of the data set. If None (default), then the name will be set to ``'table'``. **kwargs : dict Attributes to set on initialization. """ super(self.__class__, self).__init__(**kwargs) self.name = name if name else 'table' @grammar(str_types) def name(value): """string : Name of the data This is used by other components (``Mark``, etc.) for reference. """ @grammar(str_types) def url(value): """string : URL from which to load the data This can be used as an alternative to defining the data in the ``values`` attribute. """ @grammar(list) def values(value): """list : Data contents Data is represented in tabular form, where each element of ``values`` corresponds to a row of data. Each row of data is represented by a dict or a raw number. The keys of the dict are columns and the values are individual data points. The keys of the dicts must be strings for the data to correctly serialize to JSON. The data will often have an "index" column representing the independent variable, with the remaining columns representing the dependent variables, though this is not required. The ``Data`` class itself, however, is agnostic to which columns are dependent and independent. For example, the values attribute ``[{'x': 0, 'y': 3.2}, {'x': 1, 'y': 1.3}]`` could represent two rows of two variables - possibly an independent variable ``'x'`` and a dependent variable ``'y'``. For simple data sets, an alternative values attribute could be a simple list of numbers such as ``[2, 12, 3, 5]``. It may be more convenient to load data from pandas or NumPy objects. See the methods :func:`Data.from_pandas` and :func:`Data.from_numpy`. """ for row in value: _assert_is_type('values row', row, (float, int, dict)) @grammar(str_types) def source(value): """string : ``name`` field of another data set This is typically used with data transforms to create new data values. """ @grammar(list) def transform(value): """list : transforms to apply to the data Note: Transform-relational classes are not yet implemented. """ @grammar(dict) def format(value): """dict : information about the data format This is only used when loading data from the ``url`` attribute. Format-relational classes are not yet implemented. """ def validate(self, *args): """Validate contents of class """ super(self.__class__, self).validate(*args) if not self.name: raise ValidationError('name is required for Data') @staticmethod def serialize(obj): """Convert an object into a JSON-serializable value This is used by the ``from_pandas`` and ``from_numpy`` functions to convert data to JSON-serializable types when loading. """ if isinstance(obj, str_types): return obj elif hasattr(obj, 'timetuple'): return int(time.mktime(obj.timetuple())) * 1000 elif hasattr(obj, 'item'): return obj.item() elif hasattr(obj, '__float__'): if isinstance(obj, int): return int(obj) else: return float(obj) elif hasattr(obj, '__int__'): return int(obj) else: raise LoadError('cannot serialize index of type ' + type(obj).__name__) @classmethod def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs): """Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor. """ # Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: #The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iterkv(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iterkv()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data @classmethod def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs): """Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`. """ if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data @classmethod def from_mult_iters(cls, name=None, idx=None, **kwargs): """Load values from multiple iters Parameters ---------- name : string, default None Name of the data set. If None (default), the name will be set to ``'table'``. idx: string, default None Iterable to use for the data index **kwargs : dict of iterables The ``values`` field will contain dictionaries with keys for each of the iterables provided. For example, d = Data.from_iters(idx='x', x=[0, 1, 5], y=(10, 20, 30)) would result in ``d`` having a ``values`` field with [{'idx': 0, 'col': 'y', 'val': 10}, {'idx': 1, 'col': 'y', 'val': 20} If the iterables are not the same length, then ValueError is raised. """ if not name: name = 'table' lengths = [len(v) for v in kwargs.values()] if len(set(lengths)) != 1: raise ValueError('Iterables must all be same length') if not idx: raise ValueError('Must provide iter name index reference') index = kwargs.pop(idx) vega_vals = [] for k, v in sorted(kwargs.items()): for idx, val in zip(index, v): value = {} value['idx'] = idx value['col'] = k value['val'] = val vega_vals.append(value) return cls(name, values=vega_vals) @classmethod def from_iter(cls, data, name=None): """Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``. """ if not name: name = 'table' if isinstance(data, (list, tuple)): data = {x: y for x, y in enumerate(data)} values = [{'idx': k, 'col': 'data', 'val': v} for k, v in sorted(data.items())] return cls(name, values=values) @classmethod def keypairs(cls, data, columns=None, use_index=False, name=None): """This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values """ if not name: name = 'table' cls.raw_data = data #Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] #Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] #Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] #Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] #NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values) @staticmethod def _numpy_to_values(data): '''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values def to_json(self, validate=False, pretty_print=True, data_path=None): """Convert data to JSON Parameters ---------- data_path : string If not None, then data is written to a separate file at the specified path. Note that the ``url`` attribute if the data must be set independently for the data to load correctly. Returns ------- string Valid Vega JSON. """ #TODO: support writing to separate file return super(self.__class__, self).to_json(validate=validate, pretty_print=pretty_print)
gpl-2.0
BiaDarkia/scikit-learn
sklearn/utils/tests/test_murmurhash.py
79
2849
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float64) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/axes_grid/demo_axes_rgb.py
7
1836
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.axes_rgb import make_rgb_axes, RGBAxes def get_demo_image(): from matplotlib.cbook import get_sample_data f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False) z = np.load(f) # z is a numpy array of 15x15 return z, (-3,4,-4,3) def get_rgb(): Z, extent = get_demo_image() Z[Z<0] = 0. Z = Z/Z.max() R = Z[:13,:13] G = Z[2:,2:] B = Z[:13,2:] return R, G, B def make_cube(r, g, b): ny, nx = r.shape R = np.zeros([ny, nx, 3], dtype="d") R[:,:,0] = r G = np.zeros_like(R) G[:,:,1] = g B = np.zeros_like(R) B[:,:,2] = b RGB = R + G + B return R, G, B, RGB def demo_rgb(): fig, ax = plt.subplots() ax_r, ax_g, ax_b = make_rgb_axes(ax, pad=0.02) #fig.add_axes(ax_r) #fig.add_axes(ax_g) #fig.add_axes(ax_b) r, g, b = get_rgb() im_r, im_g, im_b, im_rgb = make_cube(r, g, b) kwargs = dict(origin="lower", interpolation="nearest") ax.imshow(im_rgb, **kwargs) ax_r.imshow(im_r, **kwargs) ax_g.imshow(im_g, **kwargs) ax_b.imshow(im_b, **kwargs) def demo_rgb2(): fig = plt.figure(2) ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8], pad=0.0) #fig.add_axes(ax) #ax.add_RGB_to_figure() r, g, b = get_rgb() kwargs = dict(origin="lower", interpolation="nearest") ax.imshow_rgb(r, g, b, **kwargs) ax.RGB.set_xlim(0., 9.5) ax.RGB.set_ylim(0.9, 10.6) for ax1 in [ax.RGB, ax.R, ax.G, ax.B]: for sp1 in ax1.spines.values(): sp1.set_color("w") for tick in ax1.xaxis.get_major_ticks() + ax1.yaxis.get_major_ticks(): tick.tick1line.set_mec("w") tick.tick2line.set_mec("w") return ax demo_rgb() ax = demo_rgb2() plt.show()
apache-2.0
kleskjr/scipy
scipy/interpolate/_cubic.py
8
29300
"""Interpolation algorithms using piecewise cubic polynomials.""" from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.six import string_types from . import BPoly, PPoly from .polyint import _isscalar from scipy._lib._util import _asarray_validated from scipy.linalg import solve_banded, solve __all__ = ["PchipInterpolator", "pchip_interpolate", "pchip", "Akima1DInterpolator", "CubicSpline"] class PchipInterpolator(BPoly): r"""PCHIP 1-d monotonic cubic interpolation. `x` and `y` are arrays of values used to approximate some function f, with ``y = f(x)``. The interpolant uses monotonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating Polynomial). Parameters ---------- x : ndarray A 1-D array of monotonically increasing real values. `x` cannot include duplicate values (otherwise f is overspecified) y : ndarray A 1-D array of real values. `y`'s length along the interpolation axis must be equal to the length of `x`. If N-D array, use `axis` parameter to select correct axis. axis : int, optional Axis in the y array corresponding to the x-coordinate values. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Methods ------- __call__ derivative antiderivative roots See Also -------- Akima1DInterpolator CubicSpline BPoly Notes ----- The interpolator preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth. The first derivatives are guaranteed to be continuous, but the second derivatives may jump at :math:`x_k`. Determines the derivatives at the points :math:`x_k`, :math:`f'_k`, by using PCHIP algorithm [1]_. Let :math:`h_k = x_{k+1} - x_k`, and :math:`d_k = (y_{k+1} - y_k) / h_k` are the slopes at internal points :math:`x_k`. If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the weighted harmonic mean .. math:: \frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k} where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`. The end slopes are set using a one-sided scheme [2]_. References ---------- .. [1] F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM J. Numer. Anal., 17(2), 238 (1980). DOI:10.1137/0717021 .. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004. DOI: http://dx.doi.org/10.1137/1.9780898717952 """ def __init__(self, x, y, axis=0, extrapolate=None): x = _asarray_validated(x, check_finite=False, as_inexact=True) y = _asarray_validated(y, check_finite=False, as_inexact=True) axis = axis % y.ndim xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1)) yp = np.rollaxis(y, axis) dk = self._find_derivatives(xp, yp) data = np.hstack((yp[:, None, ...], dk[:, None, ...])) _b = BPoly.from_derivatives(x, data, orders=None) super(PchipInterpolator, self).__init__(_b.c, _b.x, extrapolate=extrapolate) self.axis = axis def roots(self): """ Return the roots of the interpolated function. """ return (PPoly.from_bernstein_basis(self._bpoly)).roots() @staticmethod def _edge_case(h0, h1, m0, m1): # one-sided three-point estimate for the derivative d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1) # try to preserve shape mask = np.sign(d) != np.sign(m0) mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0)) mmm = (~mask) & mask2 d[mask] = 0. d[mmm] = 3.*m0[mmm] return d @staticmethod def _find_derivatives(x, y): # Determine the derivatives at the points y_k, d_k, by using # PCHIP algorithm is: # We choose the derivatives at the point x_k by # Let m_k be the slope of the kth segment (between k and k+1) # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 # else use weighted harmonic mean: # w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} # 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1}) # where h_k is the spacing between x_k and x_{k+1} y_shape = y.shape if y.ndim == 1: # So that _edge_case doesn't end up assigning to scalars x = x[:, None] y = y[:, None] hk = x[1:] - x[:-1] mk = (y[1:] - y[:-1]) / hk if y.shape[0] == 2: # edge case: only have two points, use linear interpolation dk = np.zeros_like(y) dk[0] = mk dk[1] = mk return dk.reshape(y_shape) smk = np.sign(mk) condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0) w1 = 2*hk[1:] + hk[:-1] w2 = hk[1:] + 2*hk[:-1] # values where division by zero occurs will be excluded # by 'condition' afterwards with np.errstate(divide='ignore'): whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2) dk = np.zeros_like(y) dk[1:-1][condition] = 0.0 dk[1:-1][~condition] = 1.0 / whmean[~condition] # special case endpoints, as suggested in # Cleve Moler, Numerical Computing with MATLAB, Chap 3.4 dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1]) dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2]) return dk.reshape(y_shape) def pchip_interpolate(xi, yi, x, der=0, axis=0): """ Convenience function for pchip interpolation. xi and yi are arrays of values used to approximate some function f, with ``yi = f(xi)``. The interpolant uses monotonic cubic splines to find the value of new points x and the derivatives there. See `PchipInterpolator` for details. Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : array_like A 1-D array of real values. `yi`'s length along the interpolation axis must be equal to the length of `xi`. If N-D array, use axis parameter to select correct axis. x : scalar or array_like Of length M. der : int or list, optional Derivatives to extract. The 0-th derivative can be included to return the function value. axis : int, optional Axis in the yi array corresponding to the x-coordinate values. See Also -------- PchipInterpolator Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ P = PchipInterpolator(xi, yi, axis=axis) if der == 0: return P(x) elif _isscalar(der): return P.derivative(der)(x) else: return [P.derivative(nu)(x) for nu in der] # Backwards compatibility pchip = PchipInterpolator class Akima1DInterpolator(PPoly): """ Akima interpolator Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given data points and will appear smooth and natural. Parameters ---------- x : ndarray, shape (m, ) 1-D array of monotonically increasing real values. y : ndarray, shape (m, ...) N-D array of real values. The length of `y` along the first axis must be equal to the length of `x`. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the first axis of `y`. Methods ------- __call__ derivative antiderivative roots See Also -------- PchipInterpolator CubicSpline PPoly Notes ----- .. versionadded:: 0.14 Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for plotting a pleasingly smooth curve through a few given points for purposes of plotting. References ---------- [1] A new method of interpolation and smooth curve fitting based on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602. """ def __init__(self, x, y, axis=0): # Original implementation in MATLAB by N. Shamsundar (BSD licensed), see # http://www.mathworks.de/matlabcentral/fileexchange/1814-akima-interpolation x, y = map(np.asarray, (x, y)) axis = axis % y.ndim if np.any(np.diff(x) < 0.): raise ValueError("x must be strictly ascending") if x.ndim != 1: raise ValueError("x must be 1-dimensional") if x.size < 2: raise ValueError("at least 2 breakpoints are needed") if x.size != y.shape[axis]: raise ValueError("x.shape must equal y.shape[%s]" % axis) # move interpolation axis to front y = np.rollaxis(y, axis) # determine slopes between breakpoints m = np.empty((x.size + 3, ) + y.shape[1:]) dx = np.diff(x) dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)] m[2:-2] = np.diff(y, axis=0) / dx # add two additional points on the left ... m[1] = 2. * m[2] - m[3] m[0] = 2. * m[1] - m[2] # ... and on the right m[-2] = 2. * m[-3] - m[-4] m[-1] = 2. * m[-2] - m[-3] # if m1 == m2 != m3 == m4, the slope at the breakpoint is not defined. # This is the fill value: t = .5 * (m[3:] + m[:-3]) # get the denominator of the slope t dm = np.abs(np.diff(m, axis=0)) f1 = dm[2:] f2 = dm[:-2] f12 = f1 + f2 # These are the mask of where the the slope at breakpoint is defined: ind = np.nonzero(f12 > 1e-9 * np.max(f12)) x_ind, y_ind = ind[0], ind[1:] # Set the slope at breakpoint t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] + f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind] # calculate the higher order coefficients c = (3. * m[2:-2] - 2. * t[:-1] - t[1:]) / dx d = (t[:-1] + t[1:] - 2. * m[2:-2]) / dx ** 2 coeff = np.zeros((4, x.size - 1) + y.shape[1:]) coeff[3] = y[:-1] coeff[2] = t[:-1] coeff[1] = c coeff[0] = d super(Akima1DInterpolator, self).__init__(coeff, x, extrapolate=False) self.axis = axis def extend(self, c, x, right=True): raise NotImplementedError("Extending a 1D Akima interpolator is not " "yet implemented") # These are inherited from PPoly, but they do not produce an Akima # interpolator. Hence stub them out. @classmethod def from_spline(cls, tck, extrapolate=None): raise NotImplementedError("This method does not make sense for " "an Akima interpolator.") @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): raise NotImplementedError("This method does not make sense for " "an Akima interpolator.") class CubicSpline(PPoly): """Cubic spline data interpolator. Interpolate data with a piecewise cubic polynomial which is twice continuously differentiable [1]_. The result is represented as a `PPoly` instance with breakpoints matching the given data. Parameters ---------- x : array_like, shape (n,) 1-d array containing values of the independent variable. Values must be real, finite and in strictly increasing order. y : array_like Array containing values of the dependent variable. It can have arbitrary number of dimensions, but the length along `axis` (see below) must match the length of `x`. Values must be finite. axis : int, optional Axis along which `y` is assumed to be varying. Meaning that for ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``. Default is 0. bc_type : string or 2-tuple, optional Boundary condition type. Two additional equations, given by the boundary conditions, are required to determine all coefficients of polynomials on each segment [2]_. If `bc_type` is a string, then the specified condition will be applied at both ends of a spline. Available conditions are: * 'not-a-knot' (default): The first and second segment at a curve end are the same polynomial. It is a good default when there is no information on boundary conditions. * 'periodic': The interpolated functions is assumed to be periodic of period ``x[-1] - x[0]``. The first and last value of `y` must be identical: ``y[0] == y[-1]``. This boundary condition will result in ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``. * 'clamped': The first derivative at curves ends are zero. Assuming a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition. * 'natural': The second derivative at curve ends are zero. Assuming a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition. If `bc_type` is a 2-tuple, the first and the second value will be applied at the curve start and end respectively. The tuple values can be one of the previously mentioned strings (except 'periodic') or a tuple `(order, deriv_values)` allowing to specify arbitrary derivatives at curve ends: * `order`: the derivative order, 1 or 2. * `deriv_value`: array_like containing derivative values, shape must be the same as `y`, excluding `axis` dimension. For example, if `y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D and have the shape (n0, n1). extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), `extrapolate` is set to 'periodic' for ``bc_type='periodic'`` and to True otherwise. Attributes ---------- x : ndarray, shape (n,) Breakpoints. The same `x` which was passed to the constructor. c : ndarray, shape (4, n-1, ...) Coefficients of the polynomials on each segment. The trailing dimensions match the dimensions of `y`, excluding `axis`. For example, if `y` is 1-d, then ``c[k, i]`` is a coefficient for ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``. axis : int Interpolation axis. The same `axis` which was passed to the constructor. Methods ------- __call__ derivative antiderivative integrate roots See Also -------- Akima1DInterpolator PchipInterpolator PPoly Notes ----- Parameters `bc_type` and `interpolate` work independently, i.e. the former controls only construction of a spline, and the latter only evaluation. When a boundary condition is 'not-a-knot' and n = 2, it is replaced by a condition that the first derivative is equal to the linear interpolant slope. When both boundary conditions are 'not-a-knot' and n = 3, the solution is sought as a parabola passing through given points. When 'not-a-knot' boundary conditions is applied to both ends, the resulting spline will be the same as returned by `splrep` (with ``s=0``) and `InterpolatedUnivariateSpline`, but these two methods use a representation in B-spline basis. .. versionadded:: 0.18.0 Examples -------- In this example the cubic spline is used to interpolate a sampled sinusoid. You can see that the spline continuity property holds for the first and second derivatives and violates only for the third derivative. >>> from scipy.interpolate import CubicSpline >>> import matplotlib.pyplot as plt >>> x = np.arange(10) >>> y = np.sin(x) >>> cs = CubicSpline(x, y) >>> xs = np.arange(-0.5, 9.6, 0.1) >>> plt.figure(figsize=(6.5, 4)) >>> plt.plot(x, y, 'o', label='data') >>> plt.plot(xs, np.sin(xs), label='true') >>> plt.plot(xs, cs(xs), label="S") >>> plt.plot(xs, cs(xs, 1), label="S'") >>> plt.plot(xs, cs(xs, 2), label="S''") >>> plt.plot(xs, cs(xs, 3), label="S'''") >>> plt.xlim(-0.5, 9.5) >>> plt.legend(loc='lower left', ncol=2) >>> plt.show() In the second example, the unit circle is interpolated with a spline. A periodic boundary condition is used. You can see that the first derivative values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly computed. Note that a circle cannot be exactly represented by a cubic spline. To increase precision, more breakpoints would be required. >>> theta = 2 * np.pi * np.linspace(0, 1, 5) >>> y = np.c_[np.cos(theta), np.sin(theta)] >>> cs = CubicSpline(theta, y, bc_type='periodic') >>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1])) ds/dx=0.0 ds/dy=1.0 >>> xs = 2 * np.pi * np.linspace(0, 1, 100) >>> plt.figure(figsize=(6.5, 4)) >>> plt.plot(y[:, 0], y[:, 1], 'o', label='data') >>> plt.plot(np.cos(xs), np.sin(xs), label='true') >>> plt.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline') >>> plt.axes().set_aspect('equal') >>> plt.legend(loc='center') >>> plt.show() The third example is the interpolation of a polynomial y = x**3 on the interval 0 <= x<= 1. A cubic spline can represent this function exactly. To achieve that we need to specify values and first derivatives at endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and y'(1) = 3. >>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3))) >>> x = np.linspace(0, 1) >>> np.allclose(x**3, cs(x)) True References ---------- .. [1] `Cubic Spline Interpolation <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_ on Wikiversity. .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978. """ def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None): x, y = map(np.asarray, (x, y)) if np.issubdtype(x.dtype, np.complexfloating): raise ValueError("`x` must contain real values.") if np.issubdtype(y.dtype, np.complexfloating): dtype = complex else: dtype = float y = y.astype(dtype, copy=False) axis = axis % y.ndim if x.ndim != 1: raise ValueError("`x` must be 1-dimensional.") if x.shape[0] < 2: raise ValueError("`x` must contain at least 2 elements.") if x.shape[0] != y.shape[axis]: raise ValueError("The length of `y` along `axis`={0} doesn't " "match the length of `x`".format(axis)) if not np.all(np.isfinite(x)): raise ValueError("`x` must contain only finite values.") if not np.all(np.isfinite(y)): raise ValueError("`y` must contain only finite values.") dx = np.diff(x) if np.any(dx <= 0): raise ValueError("`x` must be strictly increasing sequence.") n = x.shape[0] y = np.rollaxis(y, axis) bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis) if extrapolate is None: if bc[0] == 'periodic': extrapolate = 'periodic' else: extrapolate = True dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1)) slope = np.diff(y, axis=0) / dxr # If bc is 'not-a-knot' this change is just a convention. # If bc is 'periodic' then we already checked that y[0] == y[-1], # and the spline is just a constant, we handle this case in the same # way by setting the first derivatives to slope, which is 0. if n == 2: if bc[0] in ['not-a-knot', 'periodic']: bc[0] = (1, slope[0]) if bc[1] in ['not-a-knot', 'periodic']: bc[1] = (1, slope[0]) # This is a very special case, when both conditions are 'not-a-knot' # and n == 3. In this case 'not-a-knot' can't be handled regularly # as the both conditions are identical. We handle this case by # constructing a parabola passing through given points. if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot': A = np.zeros((3, 3)) # This is a standard matrix. b = np.empty((3,) + y.shape[1:], dtype=y.dtype) A[0, 0] = 1 A[0, 1] = 1 A[1, 0] = dx[1] A[1, 1] = 2 * (dx[0] + dx[1]) A[1, 2] = dx[0] A[2, 1] = 1 A[2, 2] = 1 b[0] = 2 * slope[0] b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0]) b[2] = 2 * slope[1] s = solve(A, b, overwrite_a=True, overwrite_b=True, check_finite=False) else: # Find derivative values at each x[i] by solving a tridiagonal # system. A = np.zeros((3, n)) # This is a banded matrix representation. b = np.empty((n,) + y.shape[1:], dtype=y.dtype) # Filling the system for i=1..n-2 # (x[i-1] - x[i]) * s[i-1] +\ # 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i] +\ # (x[i] - x[i-1]) * s[i+1] =\ # 3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\ # (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i])) A[1, 1:-1] = 2 * (dx[:-1] + dx[1:]) # The diagonal A[0, 2:] = dx[:-1] # The upper diagonal A[-1, :-2] = dx[1:] # The lower diagonal b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:]) bc_start, bc_end = bc if bc_start == 'periodic': # Due to the periodicity, and because y[-1] = y[0], the linear # system has (n-1) unknowns/equations instead of n: A = A[:, 0:-1] A[1, 0] = 2 * (dx[-1] + dx[0]) A[0, 1] = dx[-1] b = b[:-1] # Also, due to the periodicity, the system is not tri-diagonal. # We need to compute a "condensed" matrix of shape (n-2, n-2). # See http://www.cfm.brown.edu/people/gk/chap6/node14.html for # more explanations. # The condensed matrix is obtained by removing the last column # and last row of the (n-1, n-1) system matrix. The removed # values are saved in scalar variables with the (n-1, n-1) # system matrix indices forming their names: a_m1_0 = dx[-2] # lower left corner value: A[-1, 0] a_m1_m2 = dx[-1] a_m1_m1 = 2 * (dx[-1] + dx[-2]) a_m2_m1 = dx[-2] a_0_m1 = dx[0] b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0]) b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1]) Ac = A[:, :-1] b1 = b[:-1] b2 = np.zeros_like(b1) b2[0] = -a_0_m1 b2[-1] = -a_m2_m1 # s1 and s2 are the solutions of (n-2, n-2) system s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False, overwrite_b=False, check_finite=False) s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False, overwrite_b=False, check_finite=False) # computing the s[n-2] solution: s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) / (a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1])) # s is the solution of the (n, n) system: s = np.empty((n,) + y.shape[1:], dtype=y.dtype) s[:-2] = s1 + s_m1 * s2 s[-2] = s_m1 s[-1] = s[0] else: if bc_start == 'not-a-knot': A[1, 0] = dx[1] A[0, 1] = x[2] - x[0] d = x[2] - x[0] b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] + dxr[0]**2 * slope[1]) / d elif bc_start[0] == 1: A[1, 0] = 1 A[0, 1] = 0 b[0] = bc_start[1] elif bc_start[0] == 2: A[1, 0] = 2 * dx[0] A[0, 1] = dx[0] b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0]) if bc_end == 'not-a-knot': A[1, -1] = dx[-2] A[-1, -2] = x[-1] - x[-3] d = x[-1] - x[-3] b[-1] = ((dxr[-1]**2*slope[-2] + (2*d + dxr[-1])*dxr[-2]*slope[-1]) / d) elif bc_end[0] == 1: A[1, -1] = 1 A[-1, -2] = 0 b[-1] = bc_end[1] elif bc_end[0] == 2: A[1, -1] = 2 * dx[-1] A[-1, -2] = dx[-1] b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2]) s = solve_banded((1, 1), A, b, overwrite_ab=True, overwrite_b=True, check_finite=False) # Compute coefficients in PPoly form. t = (s[:-1] + s[1:] - 2 * slope) / dxr c = np.empty((4, n - 1) + y.shape[1:], dtype=t.dtype) c[0] = t / dxr c[1] = (slope - s[:-1]) / dxr - t c[2] = s[:-1] c[3] = y[:-1] super(CubicSpline, self).__init__(c, x, extrapolate=extrapolate) self.axis = axis @staticmethod def _validate_bc(bc_type, y, expected_deriv_shape, axis): """Validate and prepare boundary conditions. Returns ------- validated_bc : 2-tuple Boundary conditions for a curve start and end. y : ndarray y casted to complex dtype if one of the boundary conditions has complex dtype. """ if isinstance(bc_type, string_types): if bc_type == 'periodic': if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15): raise ValueError( "The first and last `y` point along axis {} must " "be identical (within machine precision) when " "bc_type='periodic'.".format(axis)) bc_type = (bc_type, bc_type) else: if len(bc_type) != 2: raise ValueError("`bc_type` must contain 2 elements to " "specify start and end conditions.") if 'periodic' in bc_type: raise ValueError("'periodic' `bc_type` is defined for both " "curve ends and cannot be used with other " "boundary conditions.") validated_bc = [] for bc in bc_type: if isinstance(bc, string_types): if bc == 'clamped': validated_bc.append((1, np.zeros(expected_deriv_shape))) elif bc == 'natural': validated_bc.append((2, np.zeros(expected_deriv_shape))) elif bc in ['not-a-knot', 'periodic']: validated_bc.append(bc) else: raise ValueError("bc_type={} is not allowed.".format(bc)) else: try: deriv_order, deriv_value = bc except Exception: raise ValueError("A specified derivative value must be " "given in the form (order, value).") if deriv_order not in [1, 2]: raise ValueError("The specified derivative order must " "be 1 or 2.") deriv_value = np.asarray(deriv_value) if deriv_value.shape != expected_deriv_shape: raise ValueError( "`deriv_value` shape {} is not the expected one {}." .format(deriv_value.shape, expected_deriv_shape)) if np.issubdtype(deriv_value.dtype, np.complexfloating): y = y.astype(complex, copy=False) validated_bc.append((deriv_order, deriv_value)) return validated_bc, y
bsd-3-clause
wildux/CDI
01_P_entropia.py
1
1692
# -*- coding: utf-8 -*- """ Joan Rodas Cusidó """ import math import numpy as np import matplotlib.pyplot as plt ''' Dada una lista p, decidir si es una distribución de probabilidad (ddp) 0<=p[i]<=1, sum(p[i])=1. ''' def es_ddp(p,tolerancia=10**(-5)): suma = 0 for element in p: if element < 0: return false suma += element if (suma >= 1 - tolerancia) and (suma <= 1 + tolerancia): return True return False ''' Dado un código C y una ddp p, hallar la longitud media del código. ''' def LongitudMedia(C,p): l = 0 i = 0 for element in C: l += ( len(element)*p[i] ) i += 1 return l ''' Dada una ddp p, hallar su entropía. ''' def H1(p): e = 0 for element in p: if element > 10**(-5): e += element * math.log(element, 2) return -e ''' Dada una lista de frecuencias n, hallar su entropía. ''' def H2(n): suma = 0 e = 0 for element in n: suma += element for element in n: if element > 10**(-5): element = element/suma e += element * math.log(element, 2) return -e ''' Ejemplos ''' C=['001','101','11','0001','000000001','0001','0000000000'] p=[0.5,0.1,0.1,0.1,0.1,0.1,0] n=[5,2,1,1,1] print('És ddp? ',es_ddp(p)) print('H1: ',H1(p)) print('H2: ',H2(n)) print('Long: ',LongitudMedia(C,p)) ''' Dibujar H(p,1-p) ''' def draw(): x = [] y = [] for p in np.arange(0, 1.01, 0.01): x.append(p) y.append(H1([p,1-p])) plt.plot(x, y) plt.show() ''' Hallar aproximadamente el máximo de H(p,q,1-p-q) ''' def find_max(): maxim = 0 for p in np.arange(0, 1.01, 0.01): for q in np.arange(0, 1.01, 0.01): if p + q <= 1 and H1([p,q,1-p-q]) > maxim: maxim = H1([p,q,1-p-q]) return maxim draw() print('Màxim: ',find_max())
gpl-3.0
ricardog/raster-project
attic/show.py
1
3273
#!/usr/bin/env python from copy import copy import rasterio import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma import pandas as pd from rasterio.plot import show import re import pdb import projections.pd_utils as pd_utils from projections.lu.luh2 import LU shape = (567, 1440) bounds = (-180, -58, 180, 83.75) palette = copy(plt.cm.viridis) #palette.set_over('g', 1.0) palette.set_under('r', 1.0) palette.set_bad('k', 1.0) palette2 = copy(plt.cm.viridis) palette2.set_over('b', 1.0) palette2.set_under('r', 1.0) palette2.set_bad('k', 1.0) def rcs(height, res, left, bottom, right, top): er = 6378137.0 lats = np.linspace(top, bottom + res[1], height) vec = ((np.sin(np.radians(lats + res[1] / 2.0)) - np.sin(np.radians(lats - res[1] / 2.0))) * (res[0] * np.pi/180) * er ** 2 / 1e6) return vec.reshape((vec.shape[0], 1)) def check_hpd(df): scale = rcs(shape[0], (0.25, 0.25), *bounds) hpd = ma.masked_invalid(df['hpd'].values.reshape(shape)) total = (hpd * scale).sum() #pdb.set_trace() print("hpd: %10.2e" % total) def check(lu, df): if lu == 'timber': return if lu + '_minimal' in df.columns: minimal = ma.masked_invalid(df[lu + '_minimal'].values.reshape(shape)) else: minimal = 0 #if lu + '_light' in df.columns: light = ma.masked_invalid(df[lu + '_light'].values.reshape(shape)) #else: # light = 0 #if lu + '_intense' in df.columns: intense = ma.masked_invalid(df[lu + '_intense'].values.reshape(shape)) #else: # intense = 0 data = ma.masked_invalid(df[lu].values.reshape(shape)) total = (minimal + light + intense) print('checking: %s [%6.4f | %8.3f]' % (lu, total.max(), (data - total).sum())) assert np.all(data - total > -0.01) if (data - total).sum() > 2: #pdb.set_trace() pass #assert total.max() > 0.9 assert np.isclose(total.min(), 0) pass def check_sum(lus, df): total = ma.masked_invalid(df[lus[0]].values.reshape(shape)) for lu in lus[1:]: total += ma.masked_invalid(df[lu].values.reshape(shape)) print("%6.4f" % total.max()) print(map(lambda x: "%s, %6.4f" % (x, df[x].values.reshape(shape)[444, 1208]), LU.keys())) pdb.set_trace() #assert np.allclose(total, 1, equal_nan=True) pass def area(lu, df): pass def doit(): df1950 = pd_utils.load_pandas('/Volumes/Vagrant 155/playground/1950.pyd') df2009 = pd_utils.load_pandas('/Volumes/Vagrant 155/playground/2009.pyd') assert np.all(df1950.columns == df2009.columns) check_hpd(df1950) check_hpd(df2009) check_sum(LU.keys(), df1950) check_sum(LU.keys(), df2009) for lu in LU.keys(): check(lu, df1950) check(lu, df2009) for col in df1950.columns: t1 = ma.masked_invalid(df1950[col].values.reshape(shape)) t2 = ma.masked_invalid(df2009[col].values.reshape(shape)) if re.search(r'_ref$', col): assert np.allclose(t1, t2, equal_nan=True) else: r = t2 / t1 r.mask = np.logical_or(r.mask, np.logical_and(np.where(t1 == 0, True, False), np.where(t2 == 0, True, False))) mm = min(r.max(), 15) show(r, title=str(col), vmin=0.99, vmax=1.01, cmap=palette) doit()
apache-2.0
mhue/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
vinodkc/spark
python/pyspark/sql/pandas/serializers.py
23
12308
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Serializers for PyArrow and pandas conversions. See `pyspark.serializers` for more details. """ from pyspark.serializers import Serializer, read_int, write_int, UTF8Deserializer class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 START_ARROW_STREAM = -6 class ArrowCollectSerializer(Serializer): """ Deserialize a stream of batches followed by batch order information. Used in PandasConversionMixin._collect_as_arrow() after invoking Dataset.collectAsArrowToPython() in the JVM. """ def __init__(self): self.serializer = ArrowStreamSerializer() def dump_stream(self, iterator, stream): return self.serializer.dump_stream(iterator, stream) def load_stream(self, stream): """ Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order. """ # load the batches for batch in self.serializer.load_stream(stream): yield batch # load the batch order indices or propagate any error that occurred in the JVM num = read_int(stream) if num == -1: error_msg = UTF8Deserializer().loads(stream) raise RuntimeError("An error occurred while calling " "ArrowCollectSerializer.load_stream: {}".format(error_msg)) batch_order = [] for i in range(num): index = read_int(stream) batch_order.append(index) yield batch_order def __repr__(self): return "ArrowCollectSerializer(%s)" % self.serializer class ArrowStreamSerializer(Serializer): """ Serializes Arrow record batches as a stream. """ def dump_stream(self, iterator, stream): import pyarrow as pa writer = None try: for batch in iterator: if writer is None: writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def load_stream(self, stream): import pyarrow as pa reader = pa.ipc.open_stream(stream) for batch in reader: yield batch def __repr__(self): return "ArrowStreamSerializer" class ArrowStreamPandasSerializer(ArrowStreamSerializer): """ Serializes Pandas.Series as Arrow data with Arrow streaming format. Parameters ---------- timezone : str A timezone to respect when handling timestamp values safecheck : bool If True, conversion from Arrow to Pandas checks for overflow/truncation assign_cols_by_name : bool If True, then Pandas DataFrames will get columns by name """ def __init__(self, timezone, safecheck, assign_cols_by_name): super(ArrowStreamPandasSerializer, self).__init__() self._timezone = timezone self._safecheck = safecheck self._assign_cols_by_name = assign_cols_by_name def arrow_to_pandas(self, arrow_column): from pyspark.sql.pandas.types import _check_series_localize_timestamps, \ _convert_map_items_to_dict import pyarrow # If the given column is a date type column, creates a series of datetime.date directly # instead of creating datetime64[ns] as intermediate data to avoid overflow caused by # datetime64[ns] type handling. s = arrow_column.to_pandas(date_as_object=True) if pyarrow.types.is_timestamp(arrow_column.type): return _check_series_localize_timestamps(s, self._timezone) elif pyarrow.types.is_map(arrow_column.type): return _convert_map_items_to_dict(s) else: return s def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. Parameters ---------- series : pandas.Series or list A single series, list of series, or list of (series, arrow_type) Returns ------- pyarrow.RecordBatch Arrow RecordBatch """ import pandas as pd import pyarrow as pa from pyspark.sql.pandas.types import _check_series_convert_timestamps_internal, \ _convert_dict_to_map_items from pandas.api.types import is_categorical_dtype # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) def create_array(s, t): mask = s.isnull() # Ensure timestamp series are in expected form for Spark internal representation if t is not None and pa.types.is_timestamp(t): s = _check_series_convert_timestamps_internal(s, self._timezone) elif t is not None and pa.types.is_map(t): s = _convert_dict_to_map_items(s) elif is_categorical_dtype(s.dtype): # Note: This can be removed once minimum pyarrow version is >= 0.16.1 s = s.astype(s.dtypes.categories.dtype) try: array = pa.Array.from_pandas(s, mask=mask, type=t, safe=self._safecheck) except ValueError as e: if self._safecheck: error_msg = "Exception thrown when converting pandas.Series (%s) to " + \ "Arrow Array (%s). It can be caused by overflows or other " + \ "unsafe conversions warned by Arrow. Arrow safe type check " + \ "can be disabled by using SQL config " + \ "`spark.sql.execution.pandas.convertToArrowArraySafely`." raise ValueError(error_msg % (s.dtype, t)) from e else: raise e return array arrs = [] for s, t in series: if t is not None and pa.types.is_struct(t): if not isinstance(s, pd.DataFrame): raise ValueError("A field of type StructType expects a pandas.DataFrame, " "but got: %s" % str(type(s))) # Input partition and result pandas.DataFrame empty, make empty Arrays with struct if len(s) == 0 and len(s.columns) == 0: arrs_names = [(pa.array([], type=field.type), field.name) for field in t] # Assign result columns by schema name if user labeled with strings elif self._assign_cols_by_name and any(isinstance(name, str) for name in s.columns): arrs_names = [(create_array(s[field.name], field.type), field.name) for field in t] # Assign result columns by position else: arrs_names = [(create_array(s[s.columns[i]], field.type), field.name) for i, field in enumerate(t)] struct_arrs, struct_names = zip(*arrs_names) arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names)) else: arrs.append(create_array(s, t)) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))]) def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ batches = (self._create_batch(series) for series in iterator) super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream) def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) import pyarrow as pa for batch in batches: yield [self.arrow_to_pandas(c) for c in pa.Table.from_batches([batch]).itercolumns()] def __repr__(self): return "ArrowStreamPandasSerializer" class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): """ Serializer used by Python worker to evaluate Pandas UDFs """ def __init__(self, timezone, safecheck, assign_cols_by_name, df_for_struct=False): super(ArrowStreamPandasUDFSerializer, self) \ .__init__(timezone, safecheck, assign_cols_by_name) self._df_for_struct = df_for_struct def arrow_to_pandas(self, arrow_column): import pyarrow.types as types if self._df_for_struct and types.is_struct(arrow_column.type): import pandas as pd series = [super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas(column) .rename(field.name) for column, field in zip(arrow_column.flatten(), arrow_column.type)] s = pd.concat(series, axis=1) else: s = super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas(arrow_column) return s def dump_stream(self, iterator, stream): """ Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ def init_stream_yield_batches(): should_write_start_length = True for series in iterator: batch = self._create_batch(series) if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream) def __repr__(self): return "ArrowStreamPandasUDFSerializer" class CogroupUDFSerializer(ArrowStreamPandasUDFSerializer): def load_stream(self, stream): """ Deserialize Cogrouped ArrowRecordBatches to a tuple of Arrow tables and yield as two lists of pandas.Series. """ import pyarrow as pa dataframes_in_group = None while dataframes_in_group is None or dataframes_in_group > 0: dataframes_in_group = read_int(stream) if dataframes_in_group == 2: batch1 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] batch2 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] yield ( [self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch1).itercolumns()], [self.arrow_to_pandas(c) for c in pa.Table.from_batches(batch2).itercolumns()] ) elif dataframes_in_group != 0: raise ValueError( 'Invalid number of pandas.DataFrames in group {0}'.format(dataframes_in_group))
apache-2.0
nrhine1/scikit-learn
sklearn/utils/tests/test_sparsefuncs.py
157
13799
import numpy as np import scipy.sparse as sp from scipy import linalg from numpy.testing import assert_array_almost_equal, assert_array_equal from sklearn.datasets import make_classification from sklearn.utils.sparsefuncs import (mean_variance_axis, inplace_column_scale, inplace_row_scale, inplace_swap_row, inplace_swap_column, min_max_axis, count_nonzero, csc_median_axis_0) from sklearn.utils.sparsefuncs_fast import assign_rows_csr from sklearn.utils.testing import assert_raises def test_mean_variance_axis0(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) def test_mean_variance_illegal_axis(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_csr = sp.csr_matrix(X) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-3) assert_raises(ValueError, mean_variance_axis, X_csr, axis=2) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-1) def test_mean_variance_axis1(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) def test_densify_rows(): X = sp.csr_matrix([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_rows = np.array([0, 2, 3], dtype=np.intp) out = np.ones((6, X.shape[1]), dtype=np.float64) out_rows = np.array([1, 3, 4], dtype=np.intp) expect = np.ones_like(out) expect[out_rows] = X[X_rows, :].toarray() assign_rows_csr(X, X_rows, out_rows, out) assert_array_equal(out, expect) def test_inplace_column_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(200) XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_row_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(100) XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_swap_row(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) def test_inplace_swap_column(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) def test_min_max_axis0(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) def test_min_max_axis1(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) def test_min_max_axis_errors(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) assert_raises(TypeError, min_max_axis, X_csr.tolil(), axis=0) assert_raises(ValueError, min_max_axis, X_csr, axis=2) assert_raises(ValueError, min_max_axis, X_csc, axis=-3) def test_count_nonzero(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) X_nonzero = X != 0 sample_weight = [.5, .2, .3, .1, .1] X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None] for axis in [0, 1, -1, -2, None]: assert_array_almost_equal(count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)) assert_array_almost_equal(count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), X_nonzero_weighted.sum(axis=axis)) assert_raises(TypeError, count_nonzero, X_csc) assert_raises(ValueError, count_nonzero, X_csr, axis=2) def test_csc_row_median(): # Test csc_row_median actually calculates the median. # Test that it gives the same output when X is dense. rng = np.random.RandomState(0) X = rng.rand(100, 50) dense_median = np.median(X, axis=0) csc = sp.csc_matrix(X) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test that it gives the same output when X is sparse X = rng.rand(51, 100) X[X < 0.7] = 0.0 ind = rng.randint(0, 50, 10) X[ind] = -X[ind] csc = sp.csc_matrix(X) dense_median = np.median(X, axis=0) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test for toy data. X = [[0, -2], [-1, -1], [1, 0], [2, 1]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5])) X = [[0, -2], [-1, -5], [1, -3]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0., -3])) # Test that it raises an Error for non-csc matrices. assert_raises(TypeError, csc_median_axis_0, sp.csr_matrix(X))
bsd-3-clause
ndevenish/simplehistogram
simplehist/hists.py
1
6669
# coding: utf-8 """ hists.py Copyright (c) 2014 Nicholas Devenish <[email protected]> An easy, quick, lightweight histogram class based on ndarray Initialise with bin indices: >>> a = Hist([0, 1, 2, 3]) >>> len(a) 3 >>> a.bins array([0, 1, 2, 3]) Optionally include data: >>> Hist([0, 1, 2, 3], data=[1, 0.2, 3]) Hist([0, 1, 2, 3], data=[ 1. , 0.2, 3. ]) Or just specify the blank data type: >>> a = Hist([0, 1, 2, 3], dtype=int) >>> a Hist([0, 1, 2, 3], data=[0, 0, 0]) You can do any normal numpy arithmetic operations: >>> a = Hist([0, 1, 2, 3], data=[1, 0.2, 3]) >>> b = a + a >>> b -= a >>> all(a == b) True And you can fill bins from values: >>> a = Hist([0,1,2,3]) >>> a.fill(1.4, 3) >>> a Hist([0, 1, 2, 3], data=[ 0., 3., 0.]) Or from arrays: >>> a = Hist([0,1,2,3]) >>> a.fill([1.4, 2.4], weights=[1, 2]) >>> a Hist([0, 1, 2, 3], data=[ 0., 1., 2.]) If you use pyROOT, you can convert from 1D histograms: >>> type(source) <class 'ROOT.TH1D'> >>> convert = ashist(source) >>> type(convert) <class 'simplehist.hists.Hist'> Or conversion from custom types - see simplehist.converter for implementation details. You can also draw histograms, using any of the options that can be passed to matplotlib.pyplot.plot: >>> hist_object.draw_hist(lw=2) """ import sys import numpy # A numpy array with bins, and constraints on those bins class Hist(numpy.ndarray): def __new__(cls, bins, data=None, **kwargs): # If bins contains items that are list-like then it is probably multidim if isinstance(bins[0], (tuple, list)): # It must be multi-dimension... bins = tuple(numpy.asarray(x) for x in bins) ndims = len(bins) shape = tuple(len(x)-1 for x in bins) else: # Just a single dimension bins = numpy.asarray(bins) assert bins.ndim == 1 ndims = 1 shape = (len(bins)-1,) # Create or validate the data shape if data is None: # data = numpy.zeros(tuple(x-1 for x in bins.shape), **kwargs) data = numpy.zeros(shape, **kwargs) else: data = numpy.asarray(data, **kwargs) # Same dimensions and shape-1 assert ndims == data.ndim if ndims == 1: assert all(x == len(y)-1 for x, y in zip(data.shape, [bins])) else: assert all(x == len(y)-1 for x, y in zip(data.shape, bins)) # Cast from our data array obj = data.view(cls) obj._bins = bins return obj def __array_finalize__(self, obj): # Since always creating as an alternate, this should never happen assert obj is not None # Other should always have a _bins object self._bins = getattr(obj,"_bins",None) def __array_wrap__(self,obj,context=None): # if obj.ndim == 0 and obj.size == 1: # return obj.item() # Don't wrap as a hist if the shape changed - we have no idea how it did so if not obj.shape == self.shape: return obj return super(Hist,self).__array_wrap__(obj,context) @property def bins(self): return self._bins @bins.setter def bins(self, value): value = numpy.asarray(value) assert value.ndim == self.ndim assert all(x == y-1 for x, y in zip(self.shape, value.shape)) self._bins = value def __getitem__(self, index): """Return a value, or a subhist from a slice. Getting singular indices just returns the values, whilst slices return subhists, with applicable bins.""" return super(Hist, self).__getitem__(index) if isinstance(index, tuple) and self.ndim == 1: binSel = [] # Build a new tuple for each of the entries for selection in index: if selection is Ellipsis: binSel.append(Ellipsis) elif isinstance(selection, slice): # Stepping really doesn't make much sense with bins assert selection.step is None or selection.step == 1 if selection.stop is not None: binSel.append(slice(selection.start, min(sys.maxint,selection.stop+1))) else: binSel.append(slice(selection.start, None)) elif isinstance(selection, int): binSel.append(slice(selection, selection+1)) else: # Throw away the hist information as we don't understand the request return super(Hist, self).__getitem__(index).view(numpy.ndarray) #assert False # Build a new histogram with these bins ret = super(Hist,self).__getitem__(index).view(Hist) # If this gave us a hist.. if hasattr(ret, "_bins"): ret._bins = self._bins.__getitem__(tuple(binSel)) return ret else: return super(Hist, self).__getitem__(index) def __getslice__(self, i, j): return self.__getitem__((slice(i,j),)) def __repr__(self): # if numpy.all(self == 0): # # Bin-only output # return "{}(bins={})".format(type(self).__name__, numpy.array_repr(self._bins)) # else: if self.ndim == 1: return "{}({}, data={})".format(type(self).__name__, numpy.array_repr(self._bins)[len("array("):-1], numpy.array_repr(self)[len(type(self).__name__)+1:-1]) else: return "{}(({}), data={})".format(type(self).__name__, ",".join([numpy.array_repr(x)[6:-1] for x in self._bins]), numpy.array_repr(self)[len(type(self).__name__)+1:-1]) def fill(self, values, weights=None): values = numpy.asarray(values) if weights is not None: weights = numpy.asarray(weights) else: weights = numpy.ones(values.shape) assert values.shape == weights.shape # Promote scalars, if required if values.ndim == 0: values = values[numpy.newaxis] weights = weights[numpy.newaxis] bins = numpy.digitize(values, self._bins) newValues = numpy.zeros(self.shape) # Now fill all the bins for _bin, weight in zip(bins, weights): if _bin < 1 or _bin > len(newValues): continue newValues[_bin-1] += weight # add to the current instance self += newValues def draw_hist(self, **kwargs): assert self.ndim == 1 import matplotlib.pyplot as plt x = numpy.zeros(len(self)*2) x[0::2] = self.bins[:-1] x[1::2] = self.bins[1:] y = numpy.array(numpy.repeat(self,2)) # import pdb # pdb.set_trace() return plt.plot(x,y,**kwargs) def pcolor(self, *args, **kwargs): assert self.ndim == 2 import matplotlib.pyplot as plt plt.pcolor(self.bins[0], self.bins[1], self.T, *args, **kwargs) def pcolormesh(self, *args, **kwargs): assert self.ndim == 2 import matplotlib.pyplot as plt plt.pcolor(self.bins[0], self.bins[1], self.T, *args, **kwargs)
mit
ch3ll0v3k/scikit-learn
sklearn/datasets/base.py
196
18554
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import csv import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): dict.__init__(self, kwargs) def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __getstate__(self): return self.__dict__ def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error: {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import pylab as pl #doctest: +SKIP >>> pl.gray() #doctest: +SKIP >>> pl.matshow(digits.images[0]) #doctest: +SKIP >>> pl.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float) target[i] = np.asarray(d[-1], dtype=np.float) return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index]
bsd-3-clause
RapidApplicationDevelopment/tensorflow
tensorflow/contrib/factorization/python/ops/kmeans.py
3
10875
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of k-means clustering on top of learn (aka skflow) API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.factorization.python.ops import clustering_ops from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators._sklearn import TransformerMixin from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.monitors import BaseMonitor from tensorflow.python.ops import array_ops from tensorflow.python.ops.control_flow_ops import with_dependencies SQUARED_EUCLIDEAN_DISTANCE = clustering_ops.SQUARED_EUCLIDEAN_DISTANCE COSINE_DISTANCE = clustering_ops.COSINE_DISTANCE RANDOM_INIT = clustering_ops.RANDOM_INIT KMEANS_PLUS_PLUS_INIT = clustering_ops.KMEANS_PLUS_PLUS_INIT # TODO(agarwal,ands): support sharded input. # TODO(agarwal,ands): enable stopping criteria based on improvements to cost. # TODO(agarwal,ands): support random restarts. class KMeansClustering(estimator.Estimator, TransformerMixin): """K-Means clustering.""" SCORES = 'scores' CLUSTER_IDX = 'cluster_idx' CLUSTERS = 'clusters' ALL_SCORES = 'all_scores' def __init__(self, num_clusters, model_dir=None, initial_clusters=clustering_ops.RANDOM_INIT, distance_metric=clustering_ops.SQUARED_EUCLIDEAN_DISTANCE, random_seed=0, use_mini_batch=True, kmeans_plus_plus_num_retries=2, config=None): """Creates a model for running KMeans training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. initial_clusters: specifies how to initialize the clusters for training. See clustering_ops.kmeans for the possible values. distance_metric: the distance metric used for clustering. See clustering_ops.kmeans for the possible values. random_seed: Python integer. Seed for PRNG used to initialize centers. use_mini_batch: If true, use the mini-batch k-means algorithm. Else assume full batch. kmeans_plus_plus_num_retries: For each point that is sampled during kmeans++ initialization, this parameter specifies the number of additional points to draw from the current distribution before selecting the best. If a negative value is specified, a heuristic is used to sample O(log(num_to_sample)) additional points. config: See Estimator """ super(KMeansClustering, self).__init__( model_dir=model_dir, config=config) self.kmeans_plus_plus_num_retries = kmeans_plus_plus_num_retries self._num_clusters = num_clusters self._training_initial_clusters = initial_clusters self._training_graph = None self._distance_metric = distance_metric self._use_mini_batch = use_mini_batch self._random_seed = random_seed self._initialized = False # pylint: disable=protected-access class _StopWhenConverged(BaseMonitor): """Stops when the change in loss goes below a tolerance.""" def __init__(self, tolerance): """Initializes a '_StopWhenConverged' monitor. Args: tolerance: A relative tolerance of change between iterations. """ super(KMeansClustering._StopWhenConverged, self).__init__() self._tolerance = tolerance def begin(self, max_steps): super(KMeansClustering._StopWhenConverged, self).begin(max_steps) self._prev_loss = None def step_begin(self, step): super(KMeansClustering._StopWhenConverged, self).step_begin(step) return [self._estimator._loss] def step_end(self, step, output): super(KMeansClustering._StopWhenConverged, self).step_end(step, output) loss = output[self._estimator._loss] if self._prev_loss is None: self._prev_loss = loss return False relative_change = (abs(loss - self._prev_loss) / (1 + abs(self._prev_loss))) self._prev_loss = loss return relative_change < self._tolerance # pylint: enable=protected-access def fit(self, x, y=None, monitors=None, logdir=None, steps=None, batch_size=128, relative_tolerance=None): """Trains a k-means clustering on x. Note: See Estimator for logic for continuous training and graph construction across multiple calls to fit. Args: x: training input matrix of shape [n_samples, n_features]. y: labels. Should be None. monitors: Monitor object to print training progress and invoke early stopping logdir: the directory to save the log file that can be used for optional visualization. steps: number of training steps. If not None, overrides the value passed in constructor. batch_size: mini-batch size to use. Requires `use_mini_batch=True`. relative_tolerance: A relative tolerance of change in the loss between iterations. Stops learning if the loss changes less than this amount. Note that this may not work correctly if use_mini_batch=True. Returns: Returns self. """ assert y is None if logdir is not None: self._model_dir = logdir self._data_feeder = data_feeder.setup_train_data_feeder( x, None, self._num_clusters, batch_size if self._use_mini_batch else None) if relative_tolerance is not None: if monitors is not None: monitors += [self._StopWhenConverged(relative_tolerance)] else: monitors = [self._StopWhenConverged(relative_tolerance)] # Make sure that we will eventually terminate. assert ((monitors is not None and len(monitors)) or (steps is not None) or (self.steps is not None)) self._train_model(input_fn=self._data_feeder.input_builder, feed_fn=self._data_feeder.get_feed_dict_fn(), steps=steps, monitors=monitors, init_feed_fn=self._data_feeder.get_feed_dict_fn()) return self def predict(self, x, batch_size=None): """Predict cluster id for each element in x. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Array with same number of rows as x, containing cluster ids. """ return np.array([ prediction[KMeansClustering.CLUSTER_IDX] for prediction in super(KMeansClustering, self).predict( x=x, batch_size=batch_size, as_iterable=True)]) def score(self, x, batch_size=None): """Predict total sum of distances to nearest clusters. Note that this function is different from the corresponding one in sklearn which returns the negative of the sum of distances. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Total sum of distances to nearest clusters. """ return np.sum( self.evaluate(x=x, batch_size=batch_size)[KMeansClustering.SCORES]) def transform(self, x, batch_size=None): """Transforms each element in x to distances to cluster centers. Note that this function is different from the corresponding one in sklearn. For SQUARED_EUCLIDEAN distance metric, sklearn transform returns the EUCLIDEAN distance, while this function returns the SQUARED_EUCLIDEAN distance. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Array with same number of rows as x, and num_clusters columns, containing distances to the cluster centers. """ return np.array([ prediction[KMeansClustering.ALL_SCORES] for prediction in super(KMeansClustering, self).predict( x=x, batch_size=batch_size, as_iterable=True)]) def clusters(self): """Returns cluster centers.""" return tf.contrib.framework.load_variable(self.model_dir, self.CLUSTERS) def _parse_tensor_or_dict(self, features): if isinstance(features, dict): return array_ops.concat(1, [features[k] for k in sorted(features.keys())]) return features def _get_train_ops(self, features, _): (_, _, losses, training_op) = clustering_ops.KMeans( self._parse_tensor_or_dict(features), self._num_clusters, self._training_initial_clusters, self._distance_metric, self._use_mini_batch, random_seed=self._random_seed, kmeans_plus_plus_num_retries=self.kmeans_plus_plus_num_retries ).training_graph() incr_step = tf.assign_add(tf.contrib.framework.get_global_step(), 1) self._loss = tf.reduce_sum(losses) tf.contrib.deprecated.scalar_summary('loss/raw', self._loss) training_op = with_dependencies([training_op, incr_step], self._loss) return training_op, self._loss def _get_predict_ops(self, features): (all_scores, model_predictions, _, _) = clustering_ops.KMeans( self._parse_tensor_or_dict(features), self._num_clusters, self._training_initial_clusters, self._distance_metric, self._use_mini_batch, random_seed=self._random_seed, kmeans_plus_plus_num_retries=self.kmeans_plus_plus_num_retries ).training_graph() return { KMeansClustering.ALL_SCORES: all_scores[0], KMeansClustering.CLUSTER_IDX: model_predictions[0] } def _get_eval_ops(self, features, _, unused_metrics): (_, _, losses, _) = clustering_ops.KMeans( self._parse_tensor_or_dict(features), self._num_clusters, self._training_initial_clusters, self._distance_metric, self._use_mini_batch, random_seed=self._random_seed, kmeans_plus_plus_num_retries=self.kmeans_plus_plus_num_retries ).training_graph() return { KMeansClustering.SCORES: tf.reduce_sum(losses), }
apache-2.0
drscotthawley/SHAART
source/pwrspecwidget.py
1
5123
# Python Qt5 bindings for GUI objects from PyQt5 import QtGui, QtWidgets # import the Qt5Agg FigureCanvas object, that binds Figure to # Qt5Agg backend. It also inherits from QWidget from matplotlib.backends.backend_qt5agg \ import FigureCanvasQTAgg as FigureCanvas # Matplotlib Figure object from matplotlib.figure import Figure #from matplotlib.backends.backend_qt5agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar import numpy as np import scipy.signal as signal import scipy from os import path import re def my_resample(x,y,newnum): num = len(x) stride = int(num / newnum) x2 = np.zeros(newnum) y2 = np.zeros(newnum) i = 0 for i2 in range(0,newnum): x2[i2] = x[i] y2[i2] = y[i] i = i+stride return x2, y2 class PwrSpecCanvas(FigureCanvas): """Class to represent the FigureCanvas widget""" def __init__(self): # setup Matplotlib Figure and Axis self.fig = Figure() # initialization of the canvas FigureCanvas.__init__(self, self.fig) self.ax = self.fig.clear() self.ax = self.fig.add_subplot(111) self.fig.subplots_adjust(left=0.09,right=0.98,bottom=0.13, top=.97) # we define the widget as expandable FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) # notify the system of updated policy FigureCanvas.updateGeometry(self) class PwrSpecWidget(QtWidgets.QWidget): """Widget defined in Qt Designer""" def __init__(self, parent = None): # initialization of Qt MainWindow widget QtWidgets.QWidget.__init__(self, parent) # set the canvas to the Matplotlib widget self.canvas = PwrSpecCanvas() # create a vertical box layout self.vbl = QtWidgets.QVBoxLayout() # add pwrspec widget to vertical box self.vbl.addWidget(self.canvas) # add interactive navigation self.navi_toolbar = NavigationToolbar(self.canvas, self) self.vbl.addWidget(self.navi_toolbar) # set the layout to th vertical box self.setLayout(self.vbl) def legend_string(self,instr): instr = "%s" % instr # just to make sure it's of the right 'type' outstr = path.basename(instr) match = re.match(r"(.*)\.wav",outstr) # take out the .wav if possible if (match is not None): outstr = match.group(1) return outstr def draw_graph(self,amp,samplerate,color="red"): """Updates the graph with new data/annotations""" print("pwrspec: Computing dB, amplength = ",len(amp)) #fftlength = 16384 #dB = 20.0*np.log10(np.abs(np.fft.rfft(amp,n=fftlength))) # dB = 20 * scipy.log10(scipy.absolute(scipy.fft(amp))) dB = 20.0*np.log10(np.abs(np.fft.rfft(amp))) # this works the best print("pwrspec: finished Computing dB") graphsamples = len(dB) print("pwrspec computing f, graphsamples = ",graphsamples) f = np.linspace(0, samplerate/2.0, graphsamples) print("pwrspec finished computing f") if (graphsamples > 100000): graphsamples = 4096 elif (graphsamples > 50000): graphsamples = 2048 else: graphsamples = 1024 graphsamples = len(dB) #todo remove this # ds_dB,ds_f = signal.resample(dB,graphsamples,f) ds_f,ds_dB = my_resample(f,dB,graphsamples) maxval = np.max(ds_dB) ds_dB = [ x - maxval for x in ds_dB] minval = np.min(ds_dB) # Set up the plot p = self.canvas.ax.plot(ds_f, ds_dB,color=color,lw=1) self.canvas.ax.grid(True) self.canvas.ax.axis([10,ds_f[-1],minval,0]) self.canvas.ax.set_xscale("log", nonposx='clip') # Annotation self.canvas.ax.set_xlabel('Frequency (Hz)') self.canvas.ax.set_ylabel('Power (dB) ') print("leaving draw_graph") return p def update_graph(self,amp,samplerate,filenameA,ampB,samplerateB,filenameB): print("starting update_graph") self.canvas.ax.clear() p1, = self.draw_graph(amp,samplerate,"blue") leg_fA = self.legend_string(filenameA) if (ampB is not None) & (len(ampB) > 1): p2, = self.draw_graph(ampB,samplerateB,"purple") leg_fB = self.legend_string(filenameB) l1 = self.canvas.ax.legend([p1,p2], [leg_fA,leg_fB], loc=3) else: l1 = self.canvas.ax.legend([p1], [leg_fA], loc=3) l1.draw_frame(False) # no box around the legend # Actually draw everything self.canvas.draw() print("leaving update_graph")
gpl-2.0
plissonf/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
kaushik94/tardis
tardis/io/util.py
1
11543
# Utility functions for the IO part of TARDIS import os import re import logging import pandas as pd import numpy as np import collections from collections import OrderedDict import requests import yaml from tqdm.auto import tqdm from tardis import constants from astropy import units as u from tardis import __path__ as TARDIS_PATH logger = logging.getLogger(__name__) def get_internal_data_path(fname): """ Get internal data path of TARDIS Returns ------- data_path: str internal data path of TARDIS """ return os.path.join(TARDIS_PATH[0], "data", fname) def quantity_from_str(text): """ Convert a string to `astropy.units.Quantity` Parameters ---------- text: The string to convert to `astropy.units.Quantity` Returns ------- `astropy.units.Quantity` """ value_str, unit_str = text.split(None, 1) value = float(value_str) if unit_str.strip() == "log_lsun": value = 10 ** (value + np.log10(constants.L_sun.cgs.value)) unit_str = "erg/s" unit = u.Unit(unit_str) if unit == u.L_sun: return value * constants.L_sun return u.Quantity(value, unit_str) class MockRegexPattern(object): """ A mock class to be used in place of a compiled regular expression when a type check is needed instead of a regex match. Note: This is usually a lot slower than regex matching. """ def __init__(self, target_type): self.type = target_type def match(self, text): """ Parameters ---------- text: A string to be passed to `target_type` for conversion. Returns ------- `True` if `text` can be converted to `target_type`. """ try: self.type(text) except ValueError: return False return True class YAMLLoader(yaml.Loader): """ A custom YAML loader containing all the constructors required to properly parse the tardis configuration. """ def construct_quantity(self, node): """ A constructor for converting quantity-like YAML nodes to `astropy.units.Quantity` objects. Parameters ---------- node: The YAML node to be constructed Returns ------- `astropy.units.Quantity` """ data = self.construct_scalar(node) return quantity_from_str(data) def mapping_constructor(self, node): return OrderedDict(self.construct_pairs(node)) YAMLLoader.add_constructor("!quantity", YAMLLoader.construct_quantity) YAMLLoader.add_implicit_resolver( "!quantity", MockRegexPattern(quantity_from_str), None ) YAMLLoader.add_implicit_resolver( "tag:yaml.org,2002:float", MockRegexPattern(float), None ) YAMLLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, YAMLLoader.mapping_constructor, ) def yaml_load_file(filename, loader=yaml.Loader): with open(filename) as stream: return yaml.load(stream, Loader=loader) def yaml_load_config_file(filename): return yaml_load_file(filename, YAMLLoader) def traverse_configs(base, other, func, *args): """ Recursively traverse a base dict or list along with another one calling `func` for leafs of both objects. Parameters ---------- base: The object on which the traversing is done other: The object which is traversed along with `base` func: A function called for each leaf of `base` and the correspnding leaf of `other` Signature: `func(item1, item2, *args)` args: Arguments passed into `func` """ if isinstance(base, collections.Mapping): for k in base: traverse_configs(base[k], other[k], func, *args) elif ( isinstance(base, collections.Iterable) and not isinstance(base, basestring) and not hasattr(base, "shape") ): for val1, val2 in zip(base, other): traverse_configs(val1, val2, func, *args) else: func(base, other, *args) def assert_equality(item1, item2): assert type(item1) is type(item2) try: if hasattr(item1, "unit"): assert item1.unit == item2.unit assert np.allclose(item1, item2, atol=0.0) except (ValueError, TypeError): assert item1 == item2 def check_equality(item1, item2): try: traverse_configs(item1, item2, assert_equality) except AssertionError: return False else: return True class HDFWriterMixin(object): def __new__(cls, *args, **kwargs): instance = super(HDFWriterMixin, cls).__new__(cls) instance.optional_hdf_properties = [] instance.__init__(*args, **kwargs) return instance @staticmethod def to_hdf_util(path_or_buf, path, elements, complevel=9, complib="blosc"): """ A function to uniformly store TARDIS data to an HDF file. Scalars will be stored in a Series under path/scalars 1D arrays will be stored under path/property_name as distinct Series 2D arrays will be stored under path/property_name as distinct DataFrames Units will be stored as their CGS value Parameters ---------- path_or_buf: Path or buffer to the HDF store path: str Path inside the HDF store to store the `elements` elements: dict A dict of property names and their values to be stored. Returns ------- """ we_opened = False try: buf = pd.HDFStore(path_or_buf, complevel=complevel, complib=complib) except TypeError as e: # Already a HDFStore if e.message == "Expected bytes, got HDFStore": buf = path_or_buf else: raise e else: # path_or_buf was a string and we opened the HDFStore we_opened = True if not buf.is_open: buf.open() we_opened = True scalars = {} for key, value in elements.items(): if value is None: value = "none" if hasattr(value, "cgs"): value = value.cgs.value if np.isscalar(value): scalars[key] = value elif hasattr(value, "shape"): if value.ndim == 1: # This try,except block is only for model.plasma.levels try: pd.Series(value).to_hdf(buf, os.path.join(path, key)) except NotImplementedError: pd.DataFrame(value).to_hdf(buf, os.path.join(path, key)) else: pd.DataFrame(value).to_hdf(buf, os.path.join(path, key)) else: try: value.to_hdf(buf, path, name=key) except AttributeError: data = pd.DataFrame([value]) data.to_hdf(buf, os.path.join(path, key)) if scalars: scalars_series = pd.Series(scalars) # Unfortunately, with to_hdf we cannot append, so merge beforehand scalars_path = os.path.join(path, "scalars") try: scalars_series = buf[scalars_path].append(scalars_series) except KeyError: # no scalars in HDFStore pass scalars_series.to_hdf(buf, os.path.join(path, "scalars")) if we_opened: buf.close() def get_properties(self): data = {name: getattr(self, name) for name in self.full_hdf_properties} return data @property def full_hdf_properties(self): # If tardis was compiled --with-vpacket-logging, add vpacket properties if hasattr(self, "virt_logging") and self.virt_logging == 1: self.hdf_properties.extend(self.vpacket_hdf_properties) return self.optional_hdf_properties + self.hdf_properties @staticmethod def convert_to_snake_case(s): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", s) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def to_hdf(self, file_path, path="", name=None): """ Parameters ---------- file_path: str Path or buffer to the HDF store path: str Path inside the HDF store to store the `elements` name: str Group inside the HDF store to which the `elements` need to be saved Returns ------- """ if name is None: try: name = self.hdf_name except AttributeError: name = self.convert_to_snake_case(self.__class__.__name__) data = self.get_properties() buff_path = os.path.join(path, name) self.to_hdf_util(file_path, buff_path, data) class PlasmaWriterMixin(HDFWriterMixin): def get_properties(self): data = {} if self.collection: properties = [ name for name in self.plasma_properties if isinstance(name, tuple(self.collection)) ] else: properties = self.plasma_properties for prop in properties: for output in prop.outputs: data[output] = getattr(prop, output) data["atom_data_uuid"] = self.atomic_data.uuid1 if "atomic_data" in data: data.pop("atomic_data") if "nlte_data" in data: logger.warning("nlte_data can't be saved") data.pop("nlte_data") return data def to_hdf(self, file_path, path="", name=None, collection=None): """ Parameters ---------- file_path: str Path or buffer to the HDF store path: str Path inside the HDF store to store the `elements` name: str Group inside the HDF store to which the `elements` need to be saved collection: `None` or a `PlasmaPropertyCollection` of which members are the property types which will be stored. If `None` then all types of properties will be stored. This acts like a filter, for example if a value of `property_collections.basic_inputs` is given, only those input parameters will be stored to the HDF store. Returns ------- """ self.collection = collection super(PlasmaWriterMixin, self).to_hdf(file_path, path, name) def download_from_url(url, dst): """ kindly used from https://gist.github.com/wy193777/0e2a4932e81afc6aa4c8f7a2984f34e2 @param: url to download file @param: dst place to put the file """ file_size = int(requests.head(url).headers["Content-Length"]) if os.path.exists(dst): first_byte = os.path.getsize(dst) else: first_byte = 0 if first_byte >= file_size: return file_size header = {"Range": "bytes=%s-%s" % (first_byte, file_size)} pbar = tqdm( total=file_size, initial=first_byte, unit="B", unit_scale=True, desc=url.split("/")[-1], ) req = requests.get(url, headers=header, stream=True) with open(dst, "ab") as f: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) pbar.update(1024) pbar.close() return file_size
bsd-3-clause
tomlof/scikit-learn
sklearn/utils/tests/test_extmath.py
19
24513
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import skip_if_32bit from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import np_version from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _incremental_mean_and_var from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.extmath import softmax from sklearn.utils.extmath import stable_cumsum from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_array_equal(mode, mode2) assert_array_equal(score, score2) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'LU', 'QR']: # 'none' would not be stable # compute the singular values of X using the fast approximate method Ua, sa, Va = \ randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the # real rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = \ randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) for dtype in (np.float32, np.float64): if dtype is np.float32: precision = 4 else: precision = 5 X = X.astype(dtype) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), precision) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision) Xcsr = sparse.csr_matrix(X, dtype=dtype) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), precision) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr), precision) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.1, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate # method without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.01) # compute the singular values of X using the fast approximate # method with iterated power method _, sap, _ = randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method # with iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5, power_iteration_normalizer=normalizer) # the iterated power method is still managing to get most of the # structure at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limited impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_randomized_svd_power_iteration_normalizer(): # randomized_svd with power_iteration_normalized='none' diverges for # large number of power iterations on this dataset rng = np.random.RandomState(42) X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng) X += 3 * rng.randint(0, 2, size=X.shape) n_components = 50 # Check that it diverges with many (non-normalized) power iterations U, s, V = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer='none') A = X - U.dot(np.diag(s).dot(V)) error_2 = linalg.norm(A, ord='fro') U, s, V = randomized_svd(X, n_components, n_iter=20, power_iteration_normalizer='none') A = X - U.dot(np.diag(s).dot(V)) error_20 = linalg.norm(A, ord='fro') assert_greater(np.abs(error_2 - error_20), 100) for normalizer in ['LU', 'QR', 'auto']: U, s, V = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(V)) error_2 = linalg.norm(A, ord='fro') for i in [5, 10, 50]: U, s, V = randomized_svd(X, n_components, n_iter=i, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(V)) error = linalg.norm(A, ord='fro') assert_greater(15, np.abs(error_2 - error)) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_randomized_svd_sign_flip_with_transpose(): # Check if the randomized_svd sign flipping is always done based on u # irrespective of transpose. # See https://github.com/scikit-learn/scikit-learn/issues/5608 # for more details. def max_loading_is_positive(u, v): """ returns bool tuple indicating if the values maximising np.abs are positive across all rows for u and across all columns for v. """ u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all() v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all() return u_based, v_based mat = np.arange(10 * 8).reshape(10, -1) # Without transpose u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True) u_based, v_based = max_loading_is_positive(u_flipped, v_flipped) assert_true(u_based) assert_false(v_based) # With transpose u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd( mat, 3, flip_sign=True, transpose=True) u_based, v_based = max_loading_is_positive( u_flipped_with_transpose, v_flipped_with_transpose) assert_true(u_based) assert_false(v_based) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation def naive_log_logistic(x): return np.log(1 / (1 + np.exp(-x))) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. # ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) # ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) # ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) # min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = \ _incremental_mean_and_var(X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) @skip_if_32bit def test_incremental_variance_numerical_stability(): # Test Youngs and Cramer incremental variance formulas. def np_var(A): return A.var(axis=0) # Naive one pass variance computation - not numerically stable # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance def one_pass_var(X): n = X.shape[0] exp_x2 = (X ** 2).sum(axis=0) / n expx_2 = (X.sum(axis=0) / n) ** 2 return exp_x2 - expx_2 # Two-pass algorithm, stable. # We use it as a benchmark. It is not an online algorithm # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm def two_pass_var(X): mean = X.mean(axis=0) Y = X.copy() return np.mean((Y - mean)**2, axis=0) # Naive online implementation # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm # This works only for chunks for size 1 def naive_mean_variance_update(x, last_mean, last_variance, last_sample_count): updated_sample_count = (last_sample_count + 1) samples_ratio = last_sample_count / float(updated_sample_count) updated_mean = x / updated_sample_count + last_mean * samples_ratio updated_variance = last_variance * samples_ratio + \ (x - last_mean) * (x - updated_mean) / updated_sample_count return updated_mean, updated_variance, updated_sample_count # We want to show a case when one_pass_var has error > 1e-3 while # _batch_mean_variance_update has less. tol = 200 n_features = 2 n_samples = 10000 x1 = np.array(1e8, dtype=np.float64) x2 = np.log(1e-5, dtype=np.float64) A0 = x1 * np.ones((n_samples // 2, n_features), dtype=np.float64) A1 = x2 * np.ones((n_samples // 2, n_features), dtype=np.float64) A = np.vstack((A0, A1)) # Older versions of numpy have different precision # In some old version, np.var is not stable if np.abs(np_var(A) - two_pass_var(A)).max() < 1e-6: stable_var = np_var else: stable_var = two_pass_var # Naive one pass var: >tol (=1063) assert_greater(np.abs(stable_var(A) - one_pass_var(A)).max(), tol) # Starting point for online algorithms: after A0 # Naive implementation: >tol (436) mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 for i in range(A1.shape[0]): mean, var, n = \ naive_mean_variance_update(A1[i, :], mean, var, n) assert_equal(n, A.shape[0]) # the mean is also slightly unstable assert_greater(np.abs(A.mean(axis=0) - mean).max(), 1e-6) assert_greater(np.abs(stable_var(A) - var).max(), tol) # Robust implementation: <tol (177) mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 for i in range(A1.shape[0]): mean, var, n = \ _incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])), mean, var, n) assert_equal(n, A.shape[0]) assert_array_almost_equal(A.mean(axis=0), mean) assert_greater(tol, np.abs(stable_var(A) - var).max()) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _incremental_mean_and_var( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) def test_softmax(): rng = np.random.RandomState(0) X = rng.randn(3, 5) exp_X = np.exp(X) sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) assert_array_almost_equal(softmax(X), exp_X / sum_exp_X) def test_stable_cumsum(): if np_version < (1, 9): raise SkipTest("Sum is as unstable as cumsum for numpy < 1.9") assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3])) r = np.random.RandomState(0).rand(100000) assert_warns(RuntimeWarning, stable_cumsum, r, rtol=0, atol=0) # test axis parameter A = np.random.RandomState(36).randint(1000, size=(5, 5, 5)) assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0)) assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1)) assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2))
bsd-3-clause
zak-k/cartopy
lib/cartopy/tests/mpl/test_set_extent.py
3
6485
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import tempfile from matplotlib.testing.decorators import cleanup import matplotlib.pyplot as plt import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import cartopy.crs as ccrs @cleanup def test_extents(): # tests that one can set the extents of a map in a variety of coordinate # systems, for a variety of projection uk = [-12.5, 4, 49, 60] uk_crs = ccrs.Geodetic() ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent(uk, crs=uk_crs) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-12.5, 49.], [4., 60.]])) ax = plt.axes(projection=ccrs.NorthPolarStereo()) ax.set_extent(uk, crs=uk_crs) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-1034046.22566261, -4765889.76601514], [333263.47741164, -3345219.0594531]]) ) # given that we know the PolarStereo coordinates of the UK, try using # those in a PlateCarree plot ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([-1034046, 333263, -4765889, -3345219], crs=ccrs.NorthPolarStereo()) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-17.17698577, 48.21879707], [5.68924381, 60.54218893]]) ) @cleanup def test_domain_extents(): # Setting the extent to global or the domain limits. ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent((-180, 180, -90, 90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax.set_extent((-180, 180, -90, 90), ccrs.PlateCarree()) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax = plt.axes(projection=ccrs.PlateCarree(90)) ax.set_extent((-180, 180, -90, 90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax.set_extent((-180, 180, -90, 90), ccrs.PlateCarree(90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax = plt.axes(projection=ccrs.OSGB()) ax.set_extent((0, 7e5, 0, 13e5), ccrs.OSGB()) assert_array_equal(ax.viewLim.get_points(), [[0, 0], [7e5, 13e5]]) def test_update_lim(): # check that the standard data lim setting works ax = plt.axes(projection=ccrs.PlateCarree()) ax.update_datalim([(-10, -10), (-5, -5)]) assert_array_almost_equal(ax.dataLim.get_points(), np.array([[-10., -10.], [-5., -5.]])) plt.close() def test_limits_contour(): xs, ys = np.meshgrid(np.linspace(250, 350, 15), np.linspace(-45, 45, 20)) data = np.sin((xs * ys) * 1.e7) resulting_extent = np.array([[250 - 180, -45.], [-10. + 180, 45.]]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.contourf(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.contour(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() def test_limits_pcolor(): xs, ys = np.meshgrid(np.linspace(250, 350, 15), np.linspace(-45, 45, 20)) data = (np.sin((xs * ys) * 1.e7))[:-1, :-1] resulting_extent = np.array([[250 - 180, -45.], [-10. + 180, 45.]]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.pcolor(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.pcolormesh(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() def test_view_lim_autoscaling(): x = np.linspace(0.12910209, 0.42141822) y = np.linspace(0.03739792, 0.33029076) x, y = np.meshgrid(x, y) ax = plt.axes(projection=ccrs.RotatedPole(37.5, 357.5)) plt.scatter(x, y, x * y, transform=ccrs.PlateCarree()) expected = np.array([[86.12433701, 52.51570463], [86.69696603, 52.86372057]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected, decimal=2) plt.draw() assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected, decimal=2) ax.autoscale_view(tight=False) expected_non_tight = np.array([[86, 52.45], [86.8, 52.9]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected_non_tight, decimal=1) plt.close() def test_view_lim_default_global(): ax = plt.axes(projection=ccrs.PlateCarree()) # The view lim should be the default unit bbox until it is drawn. assert_array_almost_equal(ax.viewLim.frozen().get_points(), [[0, 0], [1, 1]]) with tempfile.TemporaryFile() as tmp: plt.savefig(tmp) expected = np.array([[-180, -90], [180, 90]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected) plt.close() if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
lgpl-3.0
Clyde-fare/scikit-learn
sklearn/feature_selection/tests/test_chi2.py
221
2398
""" Tests for chi2, currently the only feature selection function designed specifically to work with sparse matrices. """ import numpy as np from scipy.sparse import coo_matrix, csr_matrix import scipy.stats from sklearn.feature_selection import SelectKBest, chi2 from sklearn.feature_selection.univariate_selection import _chisquare from nose.tools import assert_raises from numpy.testing import assert_equal, assert_array_almost_equal # Feature 0 is highly informative for class 1; # feature 1 is the same everywhere; # feature 2 is a bit informative for class 2. X = [[2, 1, 2], [9, 1, 1], [6, 1, 2], [0, 1, 2]] y = [0, 1, 2, 2] def mkchi2(k): """Make k-best chi2 selector""" return SelectKBest(chi2, k=k) def test_chi2(): # Test Chi2 feature extraction chi2 = mkchi2(k=1).fit(X, y) chi2 = mkchi2(k=1).fit(X, y) assert_equal(chi2.get_support(indices=True), [0]) assert_equal(chi2.transform(X), np.array(X)[:, [0]]) chi2 = mkchi2(k=2).fit(X, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xsp = csr_matrix(X, dtype=np.float) chi2 = mkchi2(k=2).fit(Xsp, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xtrans = chi2.transform(Xsp) assert_equal(Xtrans.shape, [Xsp.shape[0], 2]) # == doesn't work on scipy.sparse matrices Xtrans = Xtrans.toarray() Xtrans2 = mkchi2(k=2).fit_transform(Xsp, y).toarray() assert_equal(Xtrans, Xtrans2) def test_chi2_coo(): # Check that chi2 works with a COO matrix # (as returned by CountVectorizer, DictVectorizer) Xcoo = coo_matrix(X) mkchi2(k=2).fit_transform(Xcoo, y) # if we got here without an exception, we're safe def test_chi2_negative(): # Check for proper error on negative numbers in the input X. X, y = [[0, 1], [-1e-20, 1]], [0, 1] for X in (X, np.array(X), csr_matrix(X)): assert_raises(ValueError, chi2, X, y) def test_chisquare(): # Test replacement for scipy.stats.chisquare against the original. obs = np.array([[2., 2.], [1., 1.]]) exp = np.array([[1.5, 1.5], [1.5, 1.5]]) # call SciPy first because our version overwrites obs chi_scp, p_scp = scipy.stats.chisquare(obs, exp) chi_our, p_our = _chisquare(obs, exp) assert_array_almost_equal(chi_scp, chi_our) assert_array_almost_equal(p_scp, p_our)
bsd-3-clause
ual/urbansim
urbansim/tests/test_accounts.py
5
2349
import pandas as pd import pytest from pandas.util import testing as pdt from .. import accounts @pytest.fixture(scope='module') def acc_name(): return 'test' @pytest.fixture(scope='module') def acc_bal(): return 1000 @pytest.fixture def acc(acc_name, acc_bal): return accounts.Account(acc_name, acc_bal) def test_init(acc, acc_name): assert acc.name == acc_name assert acc.balance == 1000 assert acc.transactions == [] def test_add_transaction(acc, acc_bal): amount = -50 subaccount = ('a', 'b', 'c') metadata = {'for': 'light speed engine'} acc.add_transaction(amount, subaccount, metadata) assert len(acc.transactions) == 1 assert acc.balance == acc_bal + amount t = acc.transactions[-1] assert isinstance(t, accounts.Transaction) assert t.amount == amount assert t.subaccount == subaccount assert t.metadata == metadata def test_add_transactions(acc, acc_bal): t1 = accounts.Transaction(200, ('a', 'b', 'c'), None) t2 = (-50, None, {'to': 'Acme Corp.'}) t3 = (-100, ('a', 'b', 'c'), 'Acme Corp.') t4 = (42, None, None) acc.add_transactions((t1, t2, t3, t4)) assert len(acc.transactions) == 4 assert acc.balance == acc_bal + t1[0] + t2[0] + t3[0] + t4[0] assert acc.total_transactions() == t1[0] + t2[0] + t3[0] + t4[0] assert acc.total_transactions_by_subacct(('a', 'b', 'c')) == t1[0] + t3[0] assert acc.total_transactions_by_subacct(None) == t2[0] + t4[0] assert list(acc.all_subaccounts()) == [('a', 'b', 'c'), None] assert list(acc.iter_subaccounts()) == [ (('a', 'b', 'c'), t1[0] + t3[0]), (None, t2[0] + t4[0])] def test_column_names_from_metadata(): cnfm = accounts._column_names_from_metadata assert cnfm([]) == [] assert cnfm([{'a': 1, 'b': 2}]) == ['a', 'b'] assert cnfm([{'a': 1}, {'b': 2}]) == ['a', 'b'] assert cnfm([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}]) == ['a', 'b'] def test_to_frame(acc, acc_bal): t1 = accounts.Transaction(200, ('a', 'b', 'c'), None) t2 = (-50, None, {'to': 'Acme Corp.'}) acc.add_transactions((t1, t2)) expected = pd.DataFrame( [[200, ('a', 'b', 'c'), None], [-50, None, 'Acme Corp.']], columns=['amount', 'subaccount', 'to']) df = acc.to_frame() pdt.assert_frame_equal(df, expected)
bsd-3-clause
MatthieuBizien/scikit-learn
examples/mixture/plot_gmm_covariances.py
11
4723
""" =============== GMM covariances =============== Demonstration of several covariances types for Gaussian mixture models. See :ref:`gmm` for more information on the estimator. Although GMM are often used for clustering, we can compare the obtained clusters with the actual classes from the dataset. We initialize the means of the Gaussians with the means of the classes from the training set to make this comparison valid. We plot predicted labels on both training and held out test data using a variety of GMM covariance types on the iris dataset. We compare GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ # Author: Ron Weiss <[email protected]>, Gael Varoquaux # Modified by Thierry Guillemot <[email protected]> # License: BSD 3 clause import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.mixture import GaussianMixture from sklearn.model_selection import StratifiedKFold print(__doc__) colors = ['navy', 'turquoise', 'darkorange'] def make_ellipses(gmm, ax): for n, color in enumerate(colors): if gmm.covariance_type == 'full': covariances = gmm.covariances_[n][:2, :2] elif gmm.covariance_type == 'tied': covariances = gmm.covariances_[:2, :2] elif gmm.covariance_type == 'diag': covariances = np.diag(gmm.covariances_[n][:2]) elif gmm.covariance_type == 'spherical': covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n] v, w = np.linalg.eigh(covariances) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2. * np.sqrt(2.) * np.sqrt(v) ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf.split(iris.data, iris.target))) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. estimators = dict((cov_type, GaussianMixture(n_components=n_classes, covariance_type=cov_type, max_iter=20, random_state=0)) for cov_type in ['spherical', 'diag', 'tied', 'full']) n_estimators = len(estimators) plt.figure(figsize=(3 * n_estimators // 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, estimator) in enumerate(estimators.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. estimator.means_init = np.array([X_train[y_train == i].mean(axis=0) for i in range(n_classes)]) # Train the other parameters using the EM algorithm. estimator.fit(X_train) h = plt.subplot(2, n_estimators // 2, index + 1) make_ellipses(estimator, h) for n, color in enumerate(colors): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], s=0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate(colors): data = X_test[y_test == n] plt.scatter(data[:, 0], data[:, 1], marker='x', color=color) y_train_pred = estimator.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = estimator.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(scatterpoints=1, loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
vigilv/scikit-learn
sklearn/neighbors/tests/test_neighbors.py
76
45197
from itertools import product import pickle import numpy as np from scipy.sparse import (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) from sklearn import metrics from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn import neighbors, datasets rng = np.random.RandomState(0) # load and shuffle iris dataset iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # load and shuffle digits digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,) ALGORITHMS = ('ball_tree', 'brute', 'kd_tree', 'auto') P = (1, 2, 3, 4, np.inf) # Filter deprecation warnings. neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph) neighbors.radius_neighbors_graph = ignore_warnings( neighbors.radius_neighbors_graph) def _weight_func(dist): """ Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid. """ # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide='ignore'): retval = 1. / dist return retval ** 2 def test_unsupervised_kneighbors(n_samples=20, n_features=5, n_query_pts=2, n_neighbors=5): # Test unsupervised neighbors methods X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results_nodist = [] results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, p=p) neigh.fit(X) results_nodist.append(neigh.kneighbors(test, return_distance=False)) results.append(neigh.kneighbors(test, return_distance=True)) for i in range(len(results) - 1): assert_array_almost_equal(results_nodist[i], results[i][1]) assert_array_almost_equal(results[i][0], results[i + 1][0]) assert_array_almost_equal(results[i][1], results[i + 1][1]) def test_unsupervised_inputs(): # test the types of valid input into NearestNeighbors X = rng.random_sample((10, 3)) nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1) nbrs_fid.fit(X) dist1, ind1 = nbrs_fid.kneighbors(X) nbrs = neighbors.NearestNeighbors(n_neighbors=1) for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)): nbrs.fit(input) dist2, ind2 = nbrs.kneighbors(X) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2) def test_precomputed(random_state=42): """Tests unsupervised NearestNeighbors with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric='euclidean') DYX = metrics.pairwise_distances(Y, X, metric='euclidean') for method in ['kneighbors']: # TODO: also test radius_neighbors, but requires different assertion # As a feature matrix (n_samples by n_features) nbrs_X = neighbors.NearestNeighbors(n_neighbors=3) nbrs_X.fit(X) dist_X, ind_X = getattr(nbrs_X, method)(Y) # As a dense distance matrix (n_samples by n_samples) nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check auto works too nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check X=None in prediction dist_X, ind_X = getattr(nbrs_X, method)(None) dist_D, ind_D = getattr(nbrs_D, method)(None) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Must raise a ValueError if the matrix is not of correct shape assert_raises(ValueError, getattr(nbrs_D, method), X) target = np.arange(X.shape[0]) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): print(Est) est = Est(metric='euclidean') est.radius = est.n_neighbors = 1 pred_X = est.fit(X, target).predict(Y) est.metric = 'precomputed' pred_D = est.fit(DXX, target).predict(DYX) assert_array_almost_equal(pred_X, pred_D) def test_precomputed_cross_validation(): # Ensure array is split correctly rng = np.random.RandomState(0) X = rng.rand(20, 2) D = pairwise_distances(X, metric='euclidean') y = rng.randint(3, size=20) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): metric_score = cross_val_score(Est(), X, y) precomp_score = cross_val_score(Est(metric='precomputed'), D, y) assert_array_equal(metric_score, precomp_score) def test_unsupervised_radius_neighbors(n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0): # Test unsupervised radius-based query rng = np.random.RandomState(random_state) X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p) neigh.fit(X) ind1 = neigh.radius_neighbors(test, return_distance=False) # sort the results: this is not done automatically for # radius searches dist, ind = neigh.radius_neighbors(test, return_distance=True) for (d, i, i1) in zip(dist, ind, ind1): j = d.argsort() d[:] = d[j] i[:] = i[j] i1[:] = i1[j] results.append((dist, ind)) assert_array_almost_equal(np.concatenate(list(ind)), np.concatenate(list(ind1))) for i in range(len(results) - 1): assert_array_almost_equal(np.concatenate(list(results[i][0])), np.concatenate(list(results[i + 1][0]))), assert_array_almost_equal(np.concatenate(list(results[i][1])), np.concatenate(list(results[i + 1][1]))) def test_kneighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) # Test prediction with y_str knn.fit(X, y_str) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_kneighbors_classifier_float_labels(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors) knn.fit(X, y.astype(np.float)) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) def test_kneighbors_classifier_predict_proba(): # Test KNeighborsClassifier.predict_proba() method X = np.array([[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]) y = np.array([4, 4, 5, 5, 1, 1]) cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist cls.fit(X, y) y_prob = cls.predict_proba(X) real_prob = np.array([[0, 2. / 3, 1. / 3], [1. / 3, 2. / 3, 0], [1. / 3, 0, 2. / 3], [0, 1. / 3, 2. / 3], [2. / 3, 1. / 3, 0], [2. / 3, 1. / 3, 0]]) assert_array_equal(real_prob, y_prob) # Check that it also works with non integer labels cls.fit(X, y.astype(str)) y_prob = cls.predict_proba(X) assert_array_equal(real_prob, y_prob) # Check that it works with weights='distance' cls = neighbors.KNeighborsClassifier( n_neighbors=2, p=1, weights='distance') cls.fit(X, y) y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]])) real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]]) assert_array_almost_equal(real_prob, y_prob) def test_radius_neighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) neigh.fit(X, y_str) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_radius_neighbors_classifier_when_no_neighbors(): # Test radius-based classifier when no neighbors found. # In this case it should rise an informative exception X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier weight_func = _weight_func for outlier_label in [0, -1, None]: for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: rnc = neighbors.RadiusNeighborsClassifier clf = rnc(radius=radius, weights=weights, algorithm=algorithm, outlier_label=outlier_label) clf.fit(X, y) assert_array_equal(np.array([1, 2]), clf.predict(z1)) if outlier_label is None: assert_raises(ValueError, clf.predict, z2) elif False: assert_array_equal(np.array([1, outlier_label]), clf.predict(z2)) def test_radius_neighbors_classifier_outlier_labeling(): # Test radius-based classifier when no neighbors found and outliers # are labeled. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier correct_labels1 = np.array([1, 2]) correct_labels2 = np.array([1, -1]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) assert_array_equal(correct_labels2, clf.predict(z2)) def test_radius_neighbors_classifier_zero_distance(): # Test radius-based classifier, when distance to a sample is zero. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.0, 2.0]]) correct_labels1 = np.array([1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) def test_neighbors_regressors_zero_distance(): # Test radius-based regressor, when distance to a sample is zero. X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]]) y = np.array([1.0, 1.5, 2.0, 0.0]) radius = 0.2 z = np.array([[1.1, 1.1], [2.0, 2.0]]) rnn_correct_labels = np.array([1.25, 2.0]) knn_correct_unif = np.array([1.25, 1.0]) knn_correct_dist = np.array([1.25, 2.0]) for algorithm in ALGORITHMS: # we don't test for weights=_weight_func since user will be expected # to handle zero distances themselves in the function. for weights in ['uniform', 'distance']: rnn = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) rnn.fit(X, y) assert_array_almost_equal(rnn_correct_labels, rnn.predict(z)) for weights, corr_labels in zip(['uniform', 'distance'], [knn_correct_unif, knn_correct_dist]): knn = neighbors.KNeighborsRegressor(n_neighbors=2, weights=weights, algorithm=algorithm) knn.fit(X, y) assert_array_almost_equal(corr_labels, knn.predict(z)) def test_radius_neighbors_boundary_handling(): """Test whether points lying on boundary are handled consistently Also ensures that even with only one query point, an object array is returned rather than a 2d array. """ X = np.array([[1.5], [3.0], [3.01]]) radius = 3.0 for algorithm in ALGORITHMS: nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X) results = nbrs.radius_neighbors([[0.0]], return_distance=False) assert_equal(results.shape, (1,)) assert_equal(results.dtype, object) assert_array_equal(results[0], [0, 1]) def test_RadiusNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 2 n_samples = 40 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] for o in range(n_output): rnn = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train[:, o]) y_pred_so.append(rnn.predict(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) # Multioutput prediction rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn_mo.fit(X_train, y_train) y_pred_mo = rnn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) def test_kneighbors_classifier_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-NN classifier on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 X *= X > .2 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) for sparsev in SPARSE_TYPES + (np.asarray,): X_eps = sparsev(X[:n_test_pts] + epsilon) y_pred = knn.predict(X_eps) assert_array_equal(y_pred, y[:n_test_pts]) def test_KNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 5 n_samples = 50 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] y_pred_proba_so = [] for o in range(n_output): knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train[:, o]) y_pred_so.append(knn.predict(X_test)) y_pred_proba_so.append(knn.predict_proba(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) assert_equal(len(y_pred_proba_so), n_output) # Multioutput prediction knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn_mo.fit(X_train, y_train) y_pred_mo = knn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) # Check proba y_pred_proba_mo = knn_mo.predict_proba(X_test) assert_equal(len(y_pred_proba_mo), n_output) for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so): assert_array_almost_equal(proba_mo, proba_so) def test_kneighbors_regressor(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < 0.3)) def test_KNeighborsRegressor_multioutput_uniform_weight(): # Test k-neighbors in multi-output regression with uniform weight rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train) neigh_idx = knn.kneighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred = knn.predict(X_test) assert_equal(y_pred.shape, y_test.shape) assert_equal(y_pred_idx.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_kneighbors_regressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_radius_neighbors_regressor(n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < radius / 2)) def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight(): # Test radius neighbors in multi-output regression (uniform weight) rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): rnn = neighbors. RadiusNeighborsRegressor(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train) neigh_idx = rnn.radius_neighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred_idx = np.array(y_pred_idx) y_pred = rnn.predict(X_test) assert_equal(y_pred_idx.shape, y_test.shape) assert_equal(y_pred.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_RadiusNeighborsRegressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression with various weight rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): rnn = neighbors.RadiusNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) rnn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = rnn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_kneighbors_regressor_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test radius-based regression on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .25).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) for sparsev in SPARSE_OR_DENSE: X2 = sparsev(X) assert_true(np.mean(knn.predict(X2).round() == y) > 0.95) def test_neighbors_iris(): # Sanity checks on the iris dataset # Puts three points of each label in the plane and performs a # nearest neighbor query on points near the decision boundary. for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_array_equal(clf.predict(iris.data), iris.target) clf.set_params(n_neighbors=9, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_true(np.mean(clf.predict(iris.data) == iris.target) > 0.95) rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm) rgs.fit(iris.data, iris.target) assert_true(np.mean(rgs.predict(iris.data).round() == iris.target) > 0.95) def test_neighbors_digits(): # Sanity check on the digits dataset # the 'brute' algorithm has been observed to fail if the input # dtype is uint8 due to overflow in distance calculations. X = digits.data.astype('uint8') Y = digits.target (n_samples, n_features) = X.shape train_test_boundary = int(n_samples * 0.8) train = np.arange(0, train_test_boundary) test = np.arange(train_test_boundary, n_samples) (X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test] clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm='brute') score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test) score_float = clf.fit(X_train.astype(float), Y_train).score( X_test.astype(float), Y_test) assert_equal(score_uint8, score_float) def test_kneighbors_graph(): # Test kneighbors_graph to build the k-Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) # n_neighbors = 1 A = neighbors.kneighbors_graph(X, 1, mode='connectivity') assert_array_equal(A.toarray(), np.eye(A.shape[0])) A = neighbors.kneighbors_graph(X, 1, mode='distance') assert_array_almost_equal( A.toarray(), [[0.00, 1.01, 0.], [1.01, 0., 0.], [0.00, 1.40716026, 0.]]) # n_neighbors = 2 A = neighbors.kneighbors_graph(X, 2, mode='connectivity') assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 0.], [0., 1., 1.]]) A = neighbors.kneighbors_graph(X, 2, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 2.23606798], [1.01, 0., 1.40716026], [2.23606798, 1.40716026, 0.]]) # n_neighbors = 3 A = neighbors.kneighbors_graph(X, 3, mode='connectivity') assert_array_almost_equal( A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) def test_kneighbors_graph_sparse(seed=36): # Test kneighbors_graph to build the k-Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_radius_neighbors_graph(): # Test radius_neighbors_graph to build the Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='connectivity') assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 1.], [0., 1., 1.]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 0.], [1.01, 0., 1.40716026], [0., 1.40716026, 0.]]) def test_radius_neighbors_graph_sparse(seed=36): # Test radius_neighbors_graph to build the Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_neighbors_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, neighbors.NearestNeighbors, algorithm='blah') X = rng.random_sample((10, 2)) Xsparse = csr_matrix(X) y = np.ones(10) for cls in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): assert_raises(ValueError, cls, weights='blah') assert_raises(ValueError, cls, p=-1) assert_raises(ValueError, cls, algorithm='blah') nbrs = cls(algorithm='ball_tree', metric='haversine') assert_raises(ValueError, nbrs.predict, X) assert_raises(ValueError, ignore_warnings(nbrs.fit), Xsparse, y) nbrs = cls() assert_raises(ValueError, nbrs.fit, np.ones((0, 2)), np.ones(0)) assert_raises(ValueError, nbrs.fit, X[:, :, None], y) nbrs.fit(X, y) assert_raises(ValueError, nbrs.predict, [[]]) if (isinstance(cls, neighbors.KNeighborsClassifier) or isinstance(cls, neighbors.KNeighborsRegressor)): nbrs = cls(n_neighbors=-1) assert_raises(ValueError, nbrs.fit, X, y) nbrs = neighbors.NearestNeighbors().fit(X) assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah') assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') def test_neighbors_metrics(n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5): # Test computing the neighbors for various metrics # create a symmetric matrix V = rng.rand(n_features, n_features) VI = np.dot(V, V.T) metrics = [('euclidean', {}), ('manhattan', {}), ('minkowski', dict(p=1)), ('minkowski', dict(p=2)), ('minkowski', dict(p=3)), ('minkowski', dict(p=np.inf)), ('chebyshev', {}), ('seuclidean', dict(V=rng.rand(n_features))), ('wminkowski', dict(p=3, w=rng.rand(n_features))), ('mahalanobis', dict(VI=VI))] algorithms = ['brute', 'ball_tree', 'kd_tree'] X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for metric, metric_params in metrics: results = [] p = metric_params.pop('p', 2) for algorithm in algorithms: # KD tree doesn't support all metrics if (algorithm == 'kd_tree' and metric not in neighbors.KDTree.valid_metrics): assert_raises(ValueError, neighbors.NearestNeighbors, algorithm=algorithm, metric=metric, metric_params=metric_params) continue neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric, p=p, metric_params=metric_params) neigh.fit(X) results.append(neigh.kneighbors(test, return_distance=True)) assert_array_almost_equal(results[0][0], results[1][0]) assert_array_almost_equal(results[0][1], results[1][1]) def test_callable_metric(): metric = lambda x1, x2: np.sqrt(np.sum(x1 ** 2 + x2 ** 2)) X = np.random.RandomState(42).rand(20, 2) nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto', metric=metric) nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute', metric=metric) nbrs1.fit(X) nbrs2.fit(X) dist1, ind1 = nbrs1.kneighbors(X) dist2, ind2 = nbrs2.kneighbors(X) assert_array_almost_equal(dist1, dist2) def test_metric_params_interface(): assert_warns(DeprecationWarning, neighbors.KNeighborsClassifier, metric='wminkowski', w=np.ones(10)) assert_warns(SyntaxWarning, neighbors.KNeighborsClassifier, metric_params={'p': 3}) def test_predict_sparse_ball_kd_tree(): rng = np.random.RandomState(0) X = rng.rand(5, 5) y = rng.randint(0, 2, 5) nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree') nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree') for model in [nbrs1, nbrs2]: model.fit(X, y) assert_raises(ValueError, model.predict, csr_matrix(X)) def test_non_euclidean_kneighbors(): rng = np.random.RandomState(0) X = rng.rand(5, 5) # Find a reasonable radius. dist_array = pairwise_distances(X).flatten() np.sort(dist_array) radius = dist_array[15] # Test kneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.kneighbors_graph( X, 3, metric=metric).toarray() nbrs1 = neighbors.NearestNeighbors(3, metric=metric).fit(X) assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray()) # Test radiusneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.radius_neighbors_graph( X, radius, metric=metric).toarray() nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X) assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).A) # Raise error when wrong parameters are supplied, X_nbrs = neighbors.NearestNeighbors(3, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.kneighbors_graph, X_nbrs, 3, metric='euclidean') X_nbrs = neighbors.NearestNeighbors(radius=radius, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.radius_neighbors_graph, X_nbrs, radius, metric='euclidean') def check_object_arrays(nparray, list_check): for ind, ele in enumerate(nparray): assert_array_equal(ele, list_check[ind]) def test_k_and_radius_neighbors_train_is_not_query(): # Test kneighbors et.al when query is not training data for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) test_data = [[2], [1]] # Test neighbors. dist, ind = nn.kneighbors(test_data) assert_array_equal(dist, [[1], [0]]) assert_array_equal(ind, [[1], [1]]) dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5) check_object_arrays(dist, [[1], [1, 0]]) check_object_arrays(ind, [[1], [0, 1]]) # Test the graph variants. assert_array_equal( nn.kneighbors_graph(test_data).A, [[0., 1.], [0., 1.]]) assert_array_equal( nn.kneighbors_graph([[2], [1]], mode='distance').A, np.array([[0., 1.], [0., 0.]])) rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5) assert_array_equal(rng.A, [[0, 1], [1, 1]]) def test_k_and_radius_neighbors_X_None(): # Test kneighbors et.al when query is None for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, [[1], [1]]) assert_array_equal(ind, [[1], [0]]) dist, ind = nn.radius_neighbors(None, radius=1.5) check_object_arrays(dist, [[1], [1]]) check_object_arrays(ind, [[1], [0]]) # Test the graph variants. rng = nn.radius_neighbors_graph(None, radius=1.5) kng = nn.kneighbors_graph(None) for graph in [rng, kng]: assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.data, [1, 1]) assert_array_equal(rng.indices, [1, 0]) X = [[0, 1], [0, 1], [1, 1]] nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm) nn.fit(X) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 1.], [1., 0., 1.], [1., 1., 0]])) def test_k_and_radius_neighbors_duplicates(): # Test behavior of kneighbors when duplicates are present in query for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) nn.fit([[0], [1]]) # Do not do anything special to duplicates. kng = nn.kneighbors_graph([[0], [1]], mode='distance') assert_array_equal( kng.A, np.array([[0., 0.], [0., 0.]])) assert_array_equal(kng.data, [0., 0.]) assert_array_equal(kng.indices, [0, 1]) dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5) check_object_arrays(dist, [[0, 1], [1, 0]]) check_object_arrays(ind, [[0, 1], [0, 1]]) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5) assert_array_equal(rng.A, np.ones((2, 2))) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode='distance') assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.indices, [0, 1, 0, 1]) assert_array_equal(rng.data, [0, 1, 1, 0]) # Mask the first duplicates when n_duplicates > n_neighbors. X = np.ones((3, 1)) nn = neighbors.NearestNeighbors(n_neighbors=1) nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, np.zeros((3, 1))) assert_array_equal(ind, [[1], [0], [1]]) # Test that zeros are explicitly marked in kneighbors_graph. kng = nn.kneighbors_graph(mode='distance') assert_array_equal( kng.A, np.zeros((3, 3))) assert_array_equal(kng.data, np.zeros(3)) assert_array_equal(kng.indices, [1., 0., 1.]) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]])) def test_include_self_neighbors_graph(): # Test include_self parameter in neighbors_graph X = [[2, 3], [4, 5]] kng = neighbors.kneighbors_graph(X, 1, include_self=True).A kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A assert_array_equal(kng, [[1., 0.], [0., 1.]]) assert_array_equal(kng_not_self, [[0., 1.], [1., 0.]]) rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A rng_not_self = neighbors.radius_neighbors_graph( X, 5.0, include_self=False).A assert_array_equal(rng, [[1., 1.], [1., 1.]]) assert_array_equal(rng_not_self, [[0., 1.], [1., 0.]]) def test_kneighbors_parallel(): X, y = datasets.make_classification(n_samples=10, n_features=2, n_redundant=0, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y) for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=3, algorithm=algorithm) clf.fit(X_train, y_train) y_1 = clf.predict(X_test) dist_1, ind_1 = clf.kneighbors(X_test) A_1 = clf.kneighbors_graph(X_test, mode='distance').toarray() for n_jobs in [-1, 2, 5]: clf.set_params(n_jobs=n_jobs) y = clf.predict(X_test) dist, ind = clf.kneighbors(X_test) A = clf.kneighbors_graph(X_test, mode='distance').toarray() assert_array_equal(y_1, y) assert_array_almost_equal(dist_1, dist) assert_array_equal(ind_1, ind) assert_array_almost_equal(A_1, A) def test_dtype_convert(): classifier = neighbors.KNeighborsClassifier(n_neighbors=1) CLASSES = 15 X = np.eye(CLASSES) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:CLASSES]] result = classifier.fit(X, y).predict(X) assert_array_equal(result, y)
bsd-3-clause
phobson/statsmodels
statsmodels/tsa/arima_process.py
4
30886
'''ARMA process and estimation with scipy.signal.lfilter 2009-09-06: copied from try_signal.py reparameterized same as signal.lfilter (positive coefficients) Notes ----- * pretty fast * checked with Monte Carlo and cross comparison with statsmodels yule_walker for AR numbers are close but not identical to yule_walker not compared to other statistics packages, no degrees of freedom correction * ARMA(2,2) estimation (in Monte Carlo) requires longer time series to estimate parameters without large variance. There might be different ARMA parameters with similar impulse response function that cannot be well distinguished with small samples (e.g. 100 observations) * good for one time calculations for entire time series, not for recursive prediction * class structure not very clean yet * many one-liners with scipy.signal, but takes time to figure out usage * missing result statistics, e.g. t-values, but standard errors in examples * no criteria for choice of number of lags * no constant term in ARMA process * no integration, differencing for ARIMA * written without textbook, works but not sure about everything briefly checked and it looks to be standard least squares, see below * theoretical autocorrelation function of general ARMA Done, relatively easy to guess solution, time consuming to get theoretical test cases, example file contains explicit formulas for acovf of MA(1), MA(2) and ARMA(1,1) * two names for lag polynomials ar = rhoy, ma = rhoe ? Properties: Judge, ... (1985): The Theory and Practise of Econometrics BigJudge p. 237ff: If the time series process is a stationary ARMA(p,q), then minimizing the sum of squares is asymptoticaly (as T-> inf) equivalent to the exact Maximum Likelihood Estimator Because Least Squares conditional on the initial information does not use all information, in small samples exact MLE can be better. Without the normality assumption, the least squares estimator is still consistent under suitable conditions, however not efficient Author: josefpktd License: BSD ''' from __future__ import print_function from statsmodels.compat.python import range import numpy as np from scipy import signal, optimize, linalg def arma_generate_sample(ar, ma, nsample, sigma=1, distrvs=np.random.randn, burnin=0): """ Generate a random sample of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nsample : int length of simulated time series sigma : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped Returns ------- sample : array sample of ARMA process given by ar, ma of length nsample Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -arparams] # add zero-lag and negate >>> ma = np.r_[1, maparams] # add zero-lag >>> y = sm.tsa.arma_generate_sample(ar, ma, 250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ #TODO: unify with ArmaProcess method eta = sigma * distrvs(nsample+burnin) return signal.lfilter(ma, ar, eta)[burnin:] def arma_acovf(ar, ma, nobs=10): '''theoretical autocovariance function of ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acovf Returns ------- acovf : array autocovariance of ARMA process given by ar, ma See Also -------- arma_acf acovf Notes ----- Tries to do some crude numerical speed improvements for cases with high persistance. However, this algorithm is slow if the process is highly persistent and only a few autocovariances are desired. ''' #increase length of impulse response for AR closer to 1 #maybe cheap/fast enough to always keep nobs for ir large if np.abs(np.sum(ar)-1) > 0.9: nobs_ir = max(1000, 2 * nobs) # no idea right now how large is needed else: nobs_ir = max(100, 2 * nobs) # no idea right now ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #better save than sorry (?), I have no idea about the required precision #only checked for AR(1) while ir[-1] > 5*1e-5: nobs_ir *= 10 ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #again no idea where the speed break points are: if nobs_ir > 50000 and nobs < 1001: acovf = np.array([np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(nobs)]) else: acovf = np.correlate(ir, ir, 'full')[len(ir)-1:] return acovf[:nobs] def arma_acf(ar, ma, nobs=10): '''theoretical autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acf Returns ------- acf : array autocorrelation of ARMA process given by ar, ma See Also -------- arma_acovf acf acovf ''' acovf = arma_acovf(ar, ma, nobs) return acovf/acovf[0] def arma_pacf(ar, ma, nobs=10): '''partial autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned pacf Returns ------- pacf : array partial autocorrelation of ARMA process given by ar, ma Notes ----- solves yule-walker equation for each lag order up to nobs lags not tested/checked yet ''' apacf = np.zeros(nobs) acov = arma_acf(ar, ma, nobs=nobs+1) apacf[0] = 1. for k in range(2, nobs+1): r = acov[:k] apacf[k-1] = linalg.solve(linalg.toeplitz(r[:-1]), r[1:])[-1] return apacf def arma_periodogram(ar, ma, worN=None, whole=0): '''periodogram for ARMA process given by lag-polynomials ar and ma Parameters ---------- ar : array_like autoregressive lag-polynomial with leading 1 and lhs sign ma : array_like moving average lag-polynomial with leading 1 worN : {None, int}, optional option for scipy.signal.freqz (read "w or N") If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN whole : {0,1}, optional options for scipy.signal.freqz Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi. Returns ------- w : array frequencies sd : array periodogram, spectral density Notes ----- Normalization ? This uses signal.freqz, which does not use fft. There is a fft version somewhere. ''' w, h = signal.freqz(ma, ar, worN=worN, whole=whole) sd = np.abs(h)**2/np.sqrt(2*np.pi) if np.sum(np.isnan(h)) > 0: # this happens with unit root or seasonal unit root' print('Warning: nan in frequency response h, maybe a unit root') return w, sd def arma_impulse_response(ar, ma, nobs=100): '''get the impulse response function (MA representation) for ARMA process Parameters ---------- ma : array_like, 1d moving average lag polynomial ar : array_like, 1d auto regressive lag polynomial nobs : int number of observations to calculate Returns ------- ir : array, 1d impulse response function with nobs elements Notes ----- This is the same as finding the MA representation of an ARMA(p,q). By reversing the role of ar and ma in the function arguments, the returned result is the AR representation of an ARMA(p,q), i.e ma_representation = arma_impulse_response(ar, ma, nobs=100) ar_representation = arma_impulse_response(ma, ar, nobs=100) fully tested against matlab Examples -------- AR(1) >>> arma_impulse_response([1.0, -0.8], [1.], nobs=10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) this is the same as >>> 0.8**np.arange(10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) MA(2) >>> arma_impulse_response([1.0], [1., 0.5, 0.2], nobs=10) array([ 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) ARMA(1,2) >>> arma_impulse_response([1.0, -0.8], [1., 0.5, 0.2], nobs=10) array([ 1. , 1.3 , 1.24 , 0.992 , 0.7936 , 0.63488 , 0.507904 , 0.4063232 , 0.32505856, 0.26004685]) ''' impulse = np.zeros(nobs) impulse[0] = 1. return signal.lfilter(ma, ar, impulse) #alias, easier to remember arma2ma = arma_impulse_response #alias, easier to remember def arma2ar(ar, ma, nobs=100): '''get the AR representation of an ARMA process Parameters ---------- ar : array_like, 1d auto regressive lag polynomial ma : array_like, 1d moving average lag polynomial nobs : int number of observations to calculate Returns ------- ar : array, 1d coefficients of AR lag polynomial with nobs elements Notes ----- This is just an alias for ``ar_representation = arma_impulse_response(ma, ar, nobs=100)`` which has been fully tested against MATLAB. Examples -------- ''' return arma_impulse_response(ma, ar, nobs=nobs) #moved from sandbox.tsa.try_fi def ar2arma(ar_des, p, q, n=20, mse='ar', start=None): '''find arma approximation to ar process This finds the ARMA(p,q) coefficients that minimize the integrated squared difference between the impulse_response functions (MA representation) of the AR and the ARMA process. This does currently not check whether the MA lagpolynomial of the ARMA process is invertible, neither does it check the roots of the AR lagpolynomial. Parameters ---------- ar_des : array_like coefficients of original AR lag polynomial, including lag zero p, q : int length of desired ARMA lag polynomials n : int number of terms of the impuls_response function to include in the objective function for the approximation mse : string, 'ar' not used yet, Returns ------- ar_app, ma_app : arrays coefficients of the AR and MA lag polynomials of the approximation res : tuple result of optimize.leastsq Notes ----- Extension is possible if we want to match autocovariance instead of impulse response function. TODO: convert MA lag polynomial, ma_app, to be invertible, by mirroring roots outside the unit intervall to ones that are inside. How do we do this? ''' #p,q = pq def msear_err(arma, ar_des): ar, ma = np.r_[1, arma[:p-1]], np.r_[1, arma[p-1:]] ar_approx = arma_impulse_response(ma, ar, n) ## print(ar,ma) ## print(ar_des.shape, ar_approx.shape) ## print(ar_des) ## print(ar_approx) return (ar_des - ar_approx) # ((ar - ar_approx)**2).sum() if start is None: arma0 = np.r_[-0.9 * np.ones(p-1), np.zeros(q-1)] else: arma0 = start res = optimize.leastsq(msear_err, arma0, ar_des, maxfev=5000) #print(res) arma_app = np.atleast_1d(res[0]) ar_app = np.r_[1, arma_app[:p-1]], ma_app = np.r_[1, arma_app[p-1:]] return ar_app, ma_app, res def lpol2index(ar): '''remove zeros from lagpolynomial, squeezed representation with index Parameters ---------- ar : array_like coefficients of lag polynomial Returns ------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ''' ar = np.asarray(ar) index = np.nonzero(ar)[0] coeffs = ar[index] return coeffs, index def index2lpol(coeffs, index): '''expand coefficients to lag poly Parameters ---------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ar : array_like coefficients of lag polynomial Returns ------- ar : array_like coefficients of lag polynomial ''' n = max(index) ar = np.zeros(n) ar[index] = coeffs return ar #moved from sandbox.tsa.try_fi def lpol_fima(d, n=20): '''MA representation of fractional integration .. math:: (1-L)^{-d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ma : array coefficients of lag polynomial ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) return np.exp(gammaln(d+j) - gammaln(j+1) - gammaln(d)) #moved from sandbox.tsa.try_fi def lpol_fiar(d, n=20): '''AR representation of fractional integration .. math:: (1-L)^{d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ar : array coefficients of lag polynomial Notes: first coefficient is 1, negative signs except for first term, ar(L)*x_t ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) ar = - np.exp(gammaln(-d+j) - gammaln(j+1) - gammaln(-d)) ar[0] = 1 return ar #moved from sandbox.tsa.try_fi def lpol_sdiff(s): '''return coefficients for seasonal difference (1-L^s) just a trivial convenience function Parameters ---------- s : int number of periods in season Returns ------- sdiff : list, length s+1 ''' return [1] + [0]*(s-1) + [-1] def deconvolve(num, den, n=None): """Deconvolves divisor out of signal, division of polynomials for n terms calculates den^{-1} * num Parameters ---------- num : array_like signal or lag polynomial denom : array_like coefficients of lag polynomial (linear filter) n : None or int number of terms of quotient Returns ------- quot : array quotient or filtered series rem : array remainder Notes ----- If num is a time series, then this applies the linear filter den^{-1}. If both num and den are both lagpolynomials, then this calculates the quotient polynomial for n terms and also returns the remainder. This is copied from scipy.signal.signaltools and added n as optional parameter. """ num = np.atleast_1d(num) den = np.atleast_1d(den) N = len(num) D = len(den) if D > N and n is None: quot = [] rem = num else: if n is None: n = N-D+1 input = np.zeros(n, float) input[0] = 1 quot = signal.lfilter(num, den, input) num_approx = signal.convolve(den, quot, mode='full') if len(num) < len(num_approx): # 1d only ? num = np.concatenate((num, np.zeros(len(num_approx)-len(num)))) rem = num - num_approx return quot, rem class ArmaProcess(object): """ Represent an ARMA process for given lag-polynomials This is a class to bring together properties of the process. It does not do any estimation or statistical analysis. Parameters ---------- ar : array_like, 1d Coefficient for autoregressive lag polynomial, including zero lag. See the notes for some information about the sign. ma : array_like, 1d Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. See example. Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -ar] # add zero-lag and negate >>> ma = np.r_[1, ma] # add zero-lag >>> arma_process = sm.tsa.ArmaProcess(ar, ma) >>> arma_process.isstationary True >>> arma_process.isinvertible True >>> y = arma_process.generate_sample(250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ # maybe needs special handling for unit roots def __init__(self, ar, ma, nobs=100): self.ar = np.asarray(ar) self.ma = np.asarray(ma) self.arcoefs = -self.ar[1:] self.macoefs = self.ma[1:] self.arpoly = np.polynomial.Polynomial(self.ar) self.mapoly = np.polynomial.Polynomial(self.ma) self.nobs = nobs @classmethod def from_coeffs(cls, arcoefs, macoefs, nobs=100): """ Create ArmaProcess instance from coefficients of the lag-polynomials Parameters ---------- arcoefs : array-like Coefficient for autoregressive lag polynomial, not including zero lag. The sign is inverted to conform to the usual time series representation of an ARMA process in statistics. See the class docstring for more information. macoefs : array-like Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. """ return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) @classmethod def from_estimation(cls, model_results, nobs=None): """ Create ArmaProcess instance from ARMA estimation results Parameters ---------- model_results : ARMAResults instance A fitted model nobs : int, optional If None, nobs is taken from the results """ arcoefs = model_results.arparams macoefs = model_results.maparams nobs = nobs or model_results.nobs return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) def __mul__(self, oth): if isinstance(oth, self.__class__): ar = (self.arpoly * oth.arpoly).coef ma = (self.mapoly * oth.mapoly).coef else: try: aroth, maoth = oth arpolyoth = np.polynomial.Polynomial(aroth) mapolyoth = np.polynomial.Polynomial(maoth) ar = (self.arpoly * arpolyoth).coef ma = (self.mapoly * mapolyoth).coef except: print('other is not a valid type') raise return self.__class__(ar, ma, nobs=self.nobs) def __repr__(self): return 'ArmaProcess(%r, %r, nobs=%d)' % (self.ar.tolist(), self.ma.tolist(), self.nobs) def __str__(self): return 'ArmaProcess\nAR: %r\nMA: %r' % (self.ar.tolist(), self.ma.tolist()) def acovf(self, nobs=None): nobs = nobs or self.nobs return arma_acovf(self.ar, self.ma, nobs=nobs) acovf.__doc__ = arma_acovf.__doc__ def acf(self, nobs=None): nobs = nobs or self.nobs return arma_acf(self.ar, self.ma, nobs=nobs) acf.__doc__ = arma_acf.__doc__ def pacf(self, nobs=None): nobs = nobs or self.nobs return arma_pacf(self.ar, self.ma, nobs=nobs) pacf.__doc__ = arma_pacf.__doc__ def periodogram(self, nobs=None): nobs = nobs or self.nobs return arma_periodogram(self.ar, self.ma, worN=nobs) periodogram.__doc__ = arma_periodogram.__doc__ def impulse_response(self, nobs=None): nobs = nobs or self.nobs return arma_impulse_response(self.ar, self.ma, worN=nobs) impulse_response.__doc__ = arma_impulse_response.__doc__ def arma2ma(self, nobs=None): nobs = nobs or self.nobs return arma2ma(self.ar, self.ma, nobs=nobs) arma2ma.__doc__ = arma2ma.__doc__ def arma2ar(self, nobs=None): nobs = nobs or self.nobs return arma2ar(self.ar, self.ma, nobs=nobs) arma2ar.__doc__ = arma2ar.__doc__ @property def arroots(self): """ Roots of autoregressive lag-polynomial """ return self.arpoly.roots() @property def maroots(self): """ Roots of moving average lag-polynomial """ return self.mapoly.roots() @property def isstationary(self): '''Arma process is stationary if AR roots are outside unit circle Returns ------- isstationary : boolean True if autoregressive roots are outside unit circle ''' if np.all(np.abs(self.arroots) > 1): return True else: return False @property def isinvertible(self): '''Arma process is invertible if MA roots are outside unit circle Returns ------- isinvertible : boolean True if moving average roots are outside unit circle ''' if np.all(np.abs(self.maroots) > 1): return True else: return False def invertroots(self, retnew=False): '''make MA polynomial invertible by inverting roots inside unit circle Parameters ---------- retnew : boolean If False (default), then return the lag-polynomial as array. If True, then return a new instance with invertible MA-polynomial Returns ------- manew : array new invertible MA lag-polynomial, returned if retnew is false. wasinvertible : boolean True if the MA lag-polynomial was already invertible, returned if retnew is false. armaprocess : new instance of class If retnew is true, then return a new instance with invertible MA-polynomial ''' #TODO: variable returns like this? pr = self.ma_roots() insideroots = np.abs(pr) < 1 if insideroots.any(): pr[np.abs(pr) < 1] = 1./pr[np.abs(pr) < 1] pnew = np.polynomial.Polynomial.fromroots(pr) mainv = pnew.coef/pnew.coef[0] wasinvertible = False else: mainv = self.ma wasinvertible = True if retnew: return self.__class__(self.ar, mainv, nobs=self.nobs) else: return mainv, wasinvertible def generate_sample(self, nsample=100, scale=1., distrvs=None, axis=0, burnin=0): '''generate ARMA samples Parameters ---------- nsample : int or tuple of ints If nsample is an integer, then this creates a 1d timeseries of length size. If nsample is a tuple, then the timeseries is along axis. All other axis have independent arma samples. scale : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped axis : int See nsample. Returns ------- rvs : ndarray random sample(s) of arma process Notes ----- Should work for n-dimensional with time series along axis, but not tested yet. Processes are sampled independently. ''' if distrvs is None: distrvs = np.random.normal if np.ndim(nsample) == 0: nsample = [nsample] if burnin: #handle burin time for nd arrays #maybe there is a better trick in scipy.fft code newsize = list(nsample) newsize[axis] += burnin newsize = tuple(newsize) fslice = [slice(None)]*len(newsize) fslice[axis] = slice(burnin, None, None) fslice = tuple(fslice) else: newsize = tuple(nsample) fslice = tuple([slice(None)]*np.ndim(newsize)) eta = scale * distrvs(size=newsize) return signal.lfilter(self.ma, self.ar, eta, axis=axis)[fslice] __all__ = ['arma_acf', 'arma_acovf', 'arma_generate_sample', 'arma_impulse_response', 'arma2ar', 'arma2ma', 'deconvolve', 'lpol2index', 'index2lpol'] if __name__ == '__main__': # Simulate AR(1) #-------------- # ar * y = ma * eta ar = [1, -0.8] ma = [1.0] # generate AR data eta = 0.1 * np.random.randn(1000) yar1 = signal.lfilter(ar, ma, eta) print("\nExample 0") arest = ARIMAProcess(yar1) rhohat, cov_x, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat) print(cov_x) print("\nExample 1") ar = [1.0, -0.8] ma = [1.0, 0.5] y1 = arest.generate_sample(ar,ma,1000,0.1) arest = ARIMAProcess(y1) rhohat1, cov_x1, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat1) print(cov_x1) err1 = arest.errfn(x=y1) print(np.var(err1)) import statsmodels.api as sm print(sm.regression.yule_walker(y1, order=2, inv=True)) print("\nExample 2") nsample = 1000 ar = [1.0, -0.6, -0.1] ma = [1.0, 0.3, 0.2] y2 = ARIMA.generate_sample(ar,ma,nsample,0.1) arest2 = ARIMAProcess(y2) rhohat2, cov_x2, infodict, mesg, ier = arest2.fit((1,0,2)) print(rhohat2) print(cov_x2) err2 = arest.errfn(x=y2) print(np.var(err2)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,0,2)) print(rhohat2a) print(cov_x2a) err2a = arest.errfn(x=y2) print(np.var(err2a)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y2, order=2, inv=True)) print("\nExample 20") nsample = 1000 ar = [1.0]#, -0.8, -0.4] ma = [1.0, 0.5, 0.2] y3 = ARIMA.generate_sample(ar,ma,nsample,0.01) arest20 = ARIMAProcess(y3) rhohat3, cov_x3, infodict, mesg, ier = arest20.fit((2,0,0)) print(rhohat3) print(cov_x3) err3 = arest20.errfn(x=y3) print(np.var(err3)) print(np.sqrt(np.dot(err3,err3)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) rhohat3a, cov_x3a, infodict, mesg, ier = arest20.fit((0,0,2)) print(rhohat3a) print(cov_x3a) err3a = arest20.errfn(x=y3) print(np.var(err3a)) print(np.sqrt(np.dot(err3a,err3a)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y3, order=2, inv=True)) print("\nExample 02") nsample = 1000 ar = [1.0, -0.8, 0.4] #-0.8, -0.4] ma = [1.0]#, 0.8, 0.4] y4 = ARIMA.generate_sample(ar,ma,nsample) arest02 = ARIMAProcess(y4) rhohat4, cov_x4, infodict, mesg, ier = arest02.fit((2,0,0)) print(rhohat4) print(cov_x4) err4 = arest02.errfn(x=y4) print(np.var(err4)) sige = np.sqrt(np.dot(err4,err4)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4))) print(np.sqrt(np.diag(cov_x4))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) rhohat4a, cov_x4a, infodict, mesg, ier = arest02.fit((0,0,2)) print(rhohat4a) print(cov_x4a) err4a = arest02.errfn(x=y4) print(np.var(err4a)) sige = np.sqrt(np.dot(err4a,err4a)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4a))) print(np.sqrt(np.diag(cov_x4a))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) import statsmodels.api as sm print(sm.regression.yule_walker(y4, order=2, method='mle', inv=True)) import matplotlib.pyplot as plt plt.plot(arest2.forecast()[-100:]) #plt.show() ar1, ar2 = ([1, -0.4], [1, 0.5]) ar2 = [1, -1] lagpolyproduct = np.convolve(ar1, ar2) print(deconvolve(lagpolyproduct, ar2, n=None)) print(signal.deconvolve(lagpolyproduct, ar2)) print(deconvolve(lagpolyproduct, ar2, n=10))
bsd-3-clause
rs2/pandas
pandas/tests/series/methods/test_argsort.py
3
2248
import numpy as np import pytest from pandas import Series, Timestamp, isna import pandas._testing as tm class TestSeriesArgsort: def _check_accum_op(self, name, ser, check_dtype=True): func = getattr(np, name) tm.assert_numpy_array_equal( func(ser).values, func(np.array(ser)), check_dtype=check_dtype ) # with missing values ts = ser.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) def test_argsort(self, datetime_series): self._check_accum_op("argsort", datetime_series, check_dtype=False) argsorted = datetime_series.argsort() assert issubclass(argsorted.dtype.type, np.integer) # GH#2967 (introduced bug in 0.11-dev I think) s = Series([Timestamp(f"201301{i:02d}") for i in range(1, 6)]) assert s.dtype == "datetime64[ns]" shifted = s.shift(-1) assert shifted.dtype == "datetime64[ns]" assert isna(shifted[4]) result = s.argsort() expected = Series(range(5), dtype="int64") tm.assert_series_equal(result, expected) result = shifted.argsort() expected = Series(list(range(4)) + [-1], dtype="int64") tm.assert_series_equal(result, expected) def test_argsort_stable(self): s = Series(np.random.randint(0, 100, size=10000)) mindexer = s.argsort(kind="mergesort") qindexer = s.argsort() mexpected = np.argsort(s.values, kind="mergesort") qexpected = np.argsort(s.values, kind="quicksort") tm.assert_series_equal(mindexer.astype(np.intp), Series(mexpected)) tm.assert_series_equal(qindexer.astype(np.intp), Series(qexpected)) msg = ( r"ndarray Expected type <class 'numpy\.ndarray'>, " r"found <class 'pandas\.core\.series\.Series'> instead" ) with pytest.raises(AssertionError, match=msg): tm.assert_numpy_array_equal(qindexer, mindexer) def test_argsort_preserve_name(self, datetime_series): result = datetime_series.argsort() assert result.name == datetime_series.name
bsd-3-clause
tlmohren/Msc_thesis
Python/data_analysis_10_04_quarterbridge.py
1
17173
# -*- coding: utf-8 -*- """ Created on Mon Oct 05 08:30:32 2015 @author: Thomas Analysis of quarterbridge experiments """ import sys,os import numpy as np import pandas as pd import matplotlib.pyplot as plt from thesis_functions import * code_dir = os.getcwd() data_dir = code_dir[:-6] + "data\\flapping_data_10_04\\" matplotlib.rc('xtick', labelsize=30) matplotlib.rc('ytick', labelsize=30) matplotlib.rc('font', **font) #%% -------------------------------------------------------------------------------------------- file_dict = {} data_dir = "D:/Mijn_documenten/Dropbox/ThomasMohren/data/flapping_data_10_04/" file_dict[0] = "fd_flapping_halfbridge" file_dict[1] = "fd_flapping_hb_xrot3_flap10" file_dict[2] = "fd_flapping_hb_xrot5_flap10" file_dict[3] = "fd_flapping_hb_yrot3_flap10" file_dict[4] = "fd_flapping_quarterbridge" file_dict[5] = "fd_flapping_qb_xrot3_flap10" file_dict[6] = "fd_flapping_qb_xrot5_flap10" file_dict[7] = "fd_flapping_qb_yrot3_flap10" file_dict[8] = "fd_flapping_hb_xrot3p_flap10" file_dict[9] = "fd_flapping_hb_yrot3p_flap10" file_dict[10] = "fd_flapping_qb_xrot3p_flap10" file_dict[11] = "fd_flapping_qb_yrot3p_flap10" lincols = ['r','b','g'] add_f = [0,0.09,0.18] #%% ----------------------------------X_const_qb_ratio find # recurring parameters tnew = np.arange(1,69,0.001) fft_range = [40000,45000] titleplot = "" # refreshed parameters uplim = round(NV_2_strain(500+511,"quarter"),4) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([3,10,2]) i = 0 k_range = [4,5,6] for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = datafile_analyze("A0",SD_data,tnew) y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] line = add_plot(1,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) # for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(1,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 ratio1 = np.mean(peak_mat[1,[peak_mat[1,:,0].argsort()[5:]],0])/np.mean(peak_mat[0,[peak_mat[0,:,0].argsort()[5:]],0]) ratio2 = np.mean(peak_mat[2,[peak_mat[2,:,0].argsort()[5:]],0])/np.mean(peak_mat[1,[peak_mat[1,:,0].argsort()[5:]],0]) plt.figure(1) plt.subplot(212) for i in range(3): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------X_const_compensated------------------------------------------------------------------------------ # refreshed parameters uplim = round(NV_2_strain(50+511,"quarter"),5) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([3,10,2]) i = 0 for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = (datafile_analyze("A0",SD_data,tnew) - datafile_analyze("A1",SD_data,tnew)) if (i ==1): y = y/ratio1 elif ( i ==2): y = y/ratio2 y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [490,500,-uplim,uplim] line = add_plot(2,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(2,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 plt.figure(2) plt.subplot(212) for i in range(3): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------------------Y_const_qb_ratio find uplim = round(NV_2_strain(500+511,"quarter"),4) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([2,10,2]) i = 0 k_range = [4,7] for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = datafile_analyze("A0",SD_data,tnew) y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [210,220,-uplim,uplim] line = add_plot(4,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(4,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 ratio = np.mean(peak_mat[1,[peak_mat[1,:,0].argsort()[5:]],0])/np.mean(peak_mat[0,[peak_mat[0,:,0].argsort()[5:]],0]) plt.figure(4) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------Y_const_compensated------------------------------------------------------------------------------ # refreshed parameters uplim = round(NV_2_strain(50+511,"quarter"),5) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([2,10,2]) i = 0 for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = (datafile_analyze("A0",SD_data,tnew) - datafile_analyze("A1",SD_data,tnew)) if (i ==1): y = y/ratio y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [490,500,-uplim,uplim] line = add_plot(5,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(5,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 plt.figure(5) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------------------X_periodic_qb_ratio find # refreshed parameters uplim = round(NV_2_strain(500+511,"quarter"),4) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([2,10,2]) i = 0 k_range = [4,10] for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = datafile_analyze("A0",SD_data,tnew) y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [550,560,-uplim,uplim] line = add_plot(7,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(7,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 ratio = np.mean(peak_mat[1,[peak_mat[1,:,0].argsort()[5:]],0])/np.mean(peak_mat[0,[peak_mat[0,:,0].argsort()[5:]],0]) plt.figure(7) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------X_const_compensated------------------------------------------------------------------------------ # refreshed parameters uplim = round(NV_2_strain(50+511,"quarter"),5) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([2,10,2]) offpeak_mat = np.zeros([4,10]) i = 0 for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = (datafile_analyze("A0",SD_data,tnew) - datafile_analyze("A1",SD_data,tnew)) if (i ==1): y = y/ratio y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [490,500,-uplim,uplim] line = add_plot(8,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] if(i==1): offpeak_mat[:,l] = find_offpeaks(tnew,y,fft_range) offpeak_mat[:2,l] = offpeak_mat[:2,l]/flap_freq peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(8,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 plt.figure(8) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) p_mat = offpeak_mat p_top = p_mat[:,p_mat[2,:].argsort()][:,5:] peak_mean = np.mean(p_top,1) peak_std = np.std(p_top,1) print peak_mean plt.figure(8) plt.subplot(212) plt.errorbar(peak_mean[0:2]+add_f[1],peak_mean[2:4],peak_std[2:4], fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------------------Y_per_qb_ratio find # refreshed parameters uplim = round(NV_2_strain(500+511,"quarter"),4) freq_axis = [0,2.5,0,uplim] peak_mat = np.zeros([2,10,2]) i = 0 offpeak_mat = np.zeros([4,10]) k_range = [4,11] for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = datafile_analyze("A0",SD_data,tnew) y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] line = add_plot(11,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(11,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 ratio = np.mean(peak_mat[1,[peak_mat[1,:,0].argsort()[5:]],0])/np.mean(peak_mat[0,[peak_mat[0,:,0].argsort()[5:]],0]) plt.figure(11) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3) #%% ----------------------Y_per_compensated------------------------------------------------------------------------------ # refreshed parameters uplim = round(NV_2_strain(50+511,"quarter"),5) freq_axis = [0,2.5,0,uplim] offpeak_mat = np.zeros([4,10]) i = 0 for k in k_range: file_name = file_dict[k] SD_data = pd.read_csv(data_dir + file_name + ".CSV") y = (datafile_analyze("A0",SD_data,tnew) - datafile_analyze("A1",SD_data,tnew)) if (i ==1): y = y/ratio y = NV_2_strain(y+511,"quarter") freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) t_nondim = tnew*flap_freq f_nondim = freq/flap_freq y_axis = [t_nondim[fft_range[0]],t_nondim[fft_range[1]],-uplim,uplim] y_axis = [700,710,-uplim,uplim] line = add_plot(12,211,t_nondim,y,titleplot,y_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=3,tickstyle='sci',figsize = [9,9]) plt.setp(line,color = lincols[i]) find_double_offpeaks(tnew,y,fft_range) for l in np.arange(0,10,1): fft_range = [17999+5000*l,22999+5000*l] freq,FFT = do_fft(tnew,y,fft_range) flap_freq = find_f(tnew,y,fft_range) f_nondim = freq/flap_freq + add_f[i] if(i==1): offpeak_mat[:,l] = find_double_offpeaks(tnew,y,fft_range) offpeak_mat[:2,l] = offpeak_mat[:2,l]/flap_freq peak_mat[i,l,:] = find_peaks(tnew,y,fft_range)[0] line = add_plot(12,212,f_nondim,abs(FFT),titleplot,freq_axis,xlab = '$\\frac{f}{f_{flap}}$ [-]',ylab = '$\Delta \epsilon$',n_ytics=2,tickstyle='sci',figsize = [10,10]) plt.setp(line,color = lincols[i]) i = i +1 plt.figure(12) plt.subplot(212) for i in range(2): p_mat = peak_mat[i,:,:] p_top = p_mat[p_mat[:,0].argsort()][5:] peak_mean = np.mean(p_top,0) peak_std = np.std(p_top,0) plt.errorbar([1+add_f[i],2+add_f[i]],peak_mean,peak_std, fmt='o',linewidth=2,color='k', capsize=10,capthick=2, zorder=3)
mit
Salman-H/mars-search-robot
code/drive_rover.py
1
8957
""" Main module for Mars Search Robot. Gets rover telemetry data and supervises core tasks of autonomous navigation and mapping """ __author__ = 'Salman Hashmi, Ryan Keenan, Curt Welch' __license__ = 'BSD License' # Standard library imports import os import time import json import base64 import shutil import pickle import argparse from datetime import datetime from io import BytesIO, StringIO # Related third party imports import cv2 import socketio import eventlet import eventlet.wsgi import numpy as np import matplotlib.image as mpimg from PIL import Image from flask import Flask # Local application/library specific imports from perception import perception_step import decision_new from supporting_functions import update_rover, create_output_images # Initialize socketio server and Flask application # (learn more at: https://python-socketio.readthedocs.io/en/latest/) sio = socketio.Server() app = Flask(__name__) # Read in ground truth map and create 3-channel green version for overplotting # NOTE: images are read in by default with the origin (0, 0) in the upper left # and y-axis increasing downward. ground_truth = mpimg.imread('../calibration_images/map_bw.png') # This next line creates arrays of zeros in the red and blue channels # and puts the map into the green channel. This is why the underlying # map output looks green in the display image ground_truth_3d = np.dstack( (ground_truth*0, ground_truth*255, ground_truth*0) ).astype(np.float) class RoverTelemetry(): """ Create a class to be a container for rover state telemetry values. This allows for tracking telemetry values and results from perception analysis """ def __init__(self): """ Initialize a RoverTelemetry instance to retain parameters. NOTE: distances in meters and angles in degrees """ self.start_time = None # To record the start time of navigation self.total_time = None # To record total duration of navigation self.img = None # Current camera image self.pos = None # Current position (x, y) self.yaw = None # Current yaw angle self.pitch = None # Current pitch angle self.roll = None # Current roll angle self.vel = None # Current velocity (m/s) self.steer = 0 # Current steering angle self.throttle = 0 # Current throttle value self.brake = 0 # Current brake value self.nav_dists = None # Distances to navigable terrain pixels self.nav_angles = None # Angles of navigable terrain pixels self.nav_angles_left = None # Nav terrain angles left of rover heading self.obs_dists = None # Distances to obstacle terrain pixels self.obs_angles = None # Angles of obstacle terrain pixels self.rock_dists = None # Distances to rock terrain pixels self.rock_angles = None # Angles of rock terrain pixels self.samples_pos = None # To store the actual sample positions self.samples_to_find = 0 # To store the initial count of samples self.samples_collected = 0 # To count the number of samples collected self.near_sample = 0 # To be set to TLM value data["near_sample"] self.picking_up = 0 # To be set to TLM value data["picking_up"] self.send_pickup = False # Set to True to trigger rock pickup self.home_distance = None # Current distance to starting location self.home_heading = None # Current heading to starting location self.going_home = False # Default rover configuration self.timer_on = False # Timer to determine duration of stuck self.stuck_heading = 0.0 # Heading at the time of getting stuck # Rover vision image to be updated with displays of # intermediate analysis steps on screen in autonomous mode self.vision_image = np.zeros((160, 320, 3), dtype=np.float) # Worldmap image to be updated with the positions of # ROIs navigable terrain, obstacles and rock samples self.worldmap = np.zeros((200, 200, 3), dtype=np.float) self.ground_truth = ground_truth_3d # Ground truth worldmap # To update % of ground truth map successfully found self.perc_mapped = 0 # Initialize our rover Rover = RoverTelemetry() # Initialize decision supervisor Decider = decision_new.DecisionSupervisor() # Variables to track frames per second (FPS) # Initialize frame counter frame_counter = 0 # Initialize second counter second_counter = time.time() fps = None # Define telemetry function for what to do with incoming data @sio.on('telemetry') def telemetry(sid, data): """ Handle incoming telemetry data. Run every time the simulator sends a new batch of data (nominally 25 times per second) """ global frame_counter, second_counter, fps frame_counter += 1 # Do a rough calculation of frames per second (FPS) if (time.time() - second_counter) > 1: fps = frame_counter frame_counter = 0 second_counter = time.time() print("Current FPS: {}".format(fps)) if data: global Rover # Initialize / update Rover with current telemetry Rover, image = update_rover(Rover, data) if np.isfinite(Rover.vel): # Execute perception and decision steps to update Rover's telemetry Rover = perception_step(Rover) Rover = Decider.execute(Rover) # Create output images to send to server out_image_strings = create_output_images(Rover, Decider) out_image_string1, out_image_string2 = out_image_strings # The action step! Send commands to the rover! # Don't send both of these, they both trigger the simulator # to send back new telemetry so we must only send one # back in response to the current telemetry data. # If in a state where want to pickup a rock send pickup command if Rover.send_pickup and not Rover.picking_up: send_pickup() Rover.send_pickup = False # Reset Rover flags else: # Send commands to the rover! commands = (Rover.throttle, Rover.brake, Rover.steer) send_control(commands, out_image_string1, out_image_string2) # In case of invalid telemetry, send null commands else: # Send zeros for throttle, brake and steer and empty images send_control((0, 0, 0), '', '') # To save camera images from autonomous driving, specify a path # Example: $ python drive_rover.py image_folder_path # Conditional to save image frame if folder was specified if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: sio.emit('manual', data={}, skip_sid=True) @sio.on('connect') def connect(sid, environ): """Invoke the connect event handler.""" print("connect ", sid) send_control((0, 0, 0), '', '') sample_data = {} sio.emit( "get_samples", sample_data, skip_sid=True) def send_control(commands, image_string1, image_string2): """Send control commands to the rover.""" data = { 'throttle': commands[0].__str__(), 'brake': commands[1].__str__(), 'steering_angle': commands[2].__str__(), 'inset_image1': image_string1, 'inset_image2': image_string2, } # Send commands via socketIO server sio.emit( "data", data, skip_sid=True) eventlet.sleep(0) def send_pickup(): """Send command to pickup rock sample.""" print("Picking up") pickup = {} sio.emit( "pickup", pickup, skip_sid=True) eventlet.sleep(0) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument( 'image_folder', type=str, nargs='?', default='', help='Path to image folder.' + ' This is where the images from the run will be saved.' ) args = parser.parse_args() #os.system('rm -rf IMG_stream/*') if args.image_folder != '': print("Creating image folder at {}".format(args.image_folder)) if not os.path.exists(args.image_folder): os.makedirs(args.image_folder) else: shutil.rmtree(args.image_folder) os.makedirs(args.image_folder) print("Recording this run ...") else: print("NOT recording this run ...") # wrap Flask application with socketio's middleware app = socketio.Middleware(sio, app) # deploy as an eventlet WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
bsd-2-clause
Vimos/scikit-learn
examples/manifold/plot_mds.py
88
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # License: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
amitgroup/amitgroup
amitgroup/util/displacement_field_wavelet.py
1
10838
from __future__ import absolute_import from __future__ import division import amitgroup as ag import numpy as np from copy import deepcopy from .displacement_field import DisplacementField from .interp2d import interp2d from amitgroup.util import wavelet class DisplacementFieldWavelet(DisplacementField): """ Displacement field using wavelets. This class requires the package `PyWavelets <http://www.pybytes.com/pywavelets/>`_. Refer to :class:`DisplacementField` for interface documentation. Parameters ---------- shape : tuple Size of the displacement field. wavelet : string Specify wavelet type, ``'db1'`` (D2) to ``'db20'`` (D40). penalty : float Coefficient signifying the size of the prior. Higher means less deformation. This is only needed if the derivative is needed. rho : float A high value penalizes the prior for higher coarse-to-fine coefficients more. This is only needed if the derivative is needed. """ def __init__(self, shape, wavelet='db2', rho=2.0, penalty=1.0, means=None, variances=None, level_capacity=None): #super(DisplacementFieldWavelet, self).__init__(shape) assert means is None or means.ndim == 3 assert variances is None or variances.ndim == 3 self.wavelet = wavelet self.mode = 'per' self.shape = shape self.prepare_shape() self.rho = rho self.penalty = penalty #biggest = self.scriptNs[-1] self.u = None self.full_size_means = means self.full_size_variances = variances self.reset(level_capacity) def reset(self, level_capacity): if level_capacity is None: self.level_capacity = self.levels else: self.level_capacity = level_capacity N = 1 << self.level_capacity self.ushape = (2, N, N) # We divide the penalty, since the raw penalty is the ratio # of the variance between the coefficients and the loglikelihood. # It is more natural to want the variance between how much the # the coefficients can create a deformation in space instead, which # implies an adjustment of 2**self.levels for the s.d. We take # the square of this since we're dealing with the variance. # Notice: Penalty is only applicable if means and variances are not set manually if self.penalty: # Removed for now, since the penalty is pretty arbitrary anyway self.penalty_adjusted = self.penalty# / 4**self.levels if self.full_size_means is not None: self.mu = self.full_size_means[:,:N,:N] else: self.mu = np.zeros(self.ushape) if self.full_size_variances is not None: self.lmbks = 1/self.full_size_variances[:,:N,:N] else: self._init_default_lmbks() self._init_u() @classmethod def shape_for_size(cls, size, level_capacity=np.inf): # TODO: Is this function used? It won't play nice if level_capacity has its default value. N = 1 << level_capacity return (2, N, N) def _init_u(self): new_u = np.copy(self.mu) if self.u is not None: # Resizes the coefficients, and fills with self.mu A, B = min(new_u.shape[1], self.u.shape[1]), min(new_u.shape[2], self.u.shape[2]) new_u[:,:A,:B] = self.u[:,:A,:B] self.u = new_u @classmethod def make_lambdas(cls, shape, levels=None, eta=1.0, rho=1.0): if levels is None: levels = int(np.log2(max(shape))) N = 1 << levels lambdas = np.zeros((N, N)) for level in range(levels, -1, -1): S = 1 << level lambdas[:S,:S] = eta * 2.0**(rho * level) return lambdas def _init_default_lmbks(self): self.lmbks = np.zeros(self.ushape) for level in range(self.levels, -1, -1): N = 2**level self.lmbks[:,:N,:N] = self.penalty_adjusted * 2.0**(self.rho * level) #print self.lmbks def set_flat_u(self, flat_u, level): """ Sets `u` from a flattened array of a subset of `u`. The size of the subset is determined by level. The rest of `u` is filled with zeros. """ assert level <= self.level_capacity, "Please increase coefficient capacity for this level" # First reset # TODO: This might not be needed either self.u.fill(0.0) #shape = self.coef_shape(level) N = 1 << level # TODO: Should not need 2*N*N self.u.shape, flat_u.shape, N self.u[:,:N,:N] = flat_u[:2*N*N].reshape((2, N, N)) def prepare_shape(self): side = max(self.shape) self.levels = int(np.log2(side)) self.levelshape = tuple(map(int, map(np.log2, self.shape))) #self.scriptNs = map(len, pywt.wavedec(np.zeros(side), self.wavelet, level=self.levels, mode=self.mode)) def deform_x(self, x0, x1, last_level=np.inf): last_level = min(last_level, self.level_capacity) Ux0, Ux1 = self.invtransform(x0, x1, last_level) return x0+Ux0, x1+Ux1 def deform_map(self, x, y, last_level=np.inf): last_level = min(last_level, self.level_capacity) return self.invtransform(x, y, last_level) def transform(self, f, level): """ Forward transform of the wavelet. """ new = np.empty(self.ushape) S = 1 << level # TODO: Slicing should not be necessary new[0,:S,:S] = ag.util.wavelet.wavedec2(f[0], self.wavelet, level, shape=self.shape) new[1,:S,:S] = ag.util.wavelet.wavedec2(f[1], self.wavelet, level, shape=self.shape) return new # TODO: last_level not used def invtransform(self, x, y, last_level=np.inf): """See :func:`DisplacementField.deform_map`""" Ux = ag.util.wavelet.waverec2(self.u[0], self.wavelet, shape=self.shape) Uy = ag.util.wavelet.waverec2(self.u[1], self.wavelet, shape=self.shape) return Ux, Uy def deform(self, F, levels=np.inf): """See :func:`DisplacementField.deform`""" im = np.zeros(F.shape) x0, x1 = self.meshgrid() z0, z1 = self.deform_x(x0, x1, levels) im = interp2d(z0, z1, F) return im def abridged_u(self, levels=None): #return self.u[:,:self.flat_limit(last_level)] S = 1 << levels return self.u[:,:S,:S].copy() def coef_shape(self, last_level=None): return (self.ushape[0], self.flat_limit(last_level)) def logprior(self, last_level=None): N = None if last_level is None else 1 << last_level return -(self.lmbks * (self.u - self.mu)**2)[:,:N,:N].sum() / 2 def logprior_derivative(self, last_level=None): N = None if last_level is None else 1 << last_level ret = (-self.lmbks * (self.u - self.mu))[:,:N,:N] return ret def sum_of_coefficients(self, last_level=None): # Return only lmbks[0], because otherwise we'll double-count every # value (since they are the same) return self.lmbks[0,:self.flat_limit(last_level)].sum() def number_of_coefficients(self, levels=None): return self.ushape[1] def copy(self): return deepcopy(self) def flat_limit(self, last_level=None): # TODO: Come up with better name, and maybe place return None if last_level is None else _flat_start(last_level+1, 0, self.levelshape) def randomize(self, sigma=0.01, rho=2.5, start_level=1, levels=3): """ Randomly sets the coefficients up to a certain level by sampling a Gaussian. Parameters ---------- sigma : float Standard deviation of the Gaussian. The `sigma` is adjusted to a normalized image scale and not the scale of coefficient values (nor pixels). This means that setting `sigma` to 1, the standard deviation is the same size as the image, which is a lot. A more appropriate value is thus 0.01. rho : float A value higher than 1, will cause more dampening for higher coefficients, which will result in a smoother deformation. levels: int Number of levels that should be randomized. The levels above will be set to zero. For a funny-mirror-type deformation, this should be limited to about 3. Examples -------- >>> import amitgroup as ag >>> import matplotlib.pylab as plt Generate 9 randomly altered faces. >>> face = ag.io.load_example('faces')[0] >>> imdef = ag.util.DisplacementFieldWavelet(face.shape, 'db8') >>> ag.plot.images([imdef.randomize(0.1).deform(face) for i in range(9)]) >>> plt.show() """ # Reset all values first self.u.fill(0.0) end_level = min(self.levels+1, start_level+levels) for q in range(2): for level in range(end_level, start_level-1, -1): N = 1 << level # First of all, a coefficient of 1, will be shift the image 1/2**self.levels, # so first we have to adjust for that. # Secondly, higher coefficient should be adjusted by roughly 2**-s, to account # for the different amplitudes of a wavelet basis (energy-conserving reasons). # Finally, we might want to dampen higher coefficients even further, to create # a smoother image. This is done by rho. adjust = 2.0**(self.levels - rho * max(level-1, 0)) self.u[:,:N,:N] = np.random.normal(0.0, sigma, (2, N, N)) * adjust return self def ilevels(self): for level in range(self.levels+1): alphas = 1 if level == 0 else 3 yield level, (alphas,)+_levels2shape(self.levelshape, level) def print_lmbks(self, last_level=np.inf): for level, (alphas, N, M) in self.ilevels(): if level == last_level: break def print_u(self, last_level=np.inf): for level, (alphas, N, M) in self.ilevels(): if level == last_level: break # TODO: The name 'u' for the coefficients is congruent with the book, # but a bit confusing for other people. Change. def ulevel(self, level): alphas = 1 if level == 0 else 3 size = _levels2shape(self.levelshape, level) #TODO: return self.u[:,level,:alphas,:size[0],:size[1]] def lmbk_level(self, level): alphas = 1 if level == 0 else 3 size = _levels2shape(self.levelshape, level) return self.lmbks[:,level,:alphas,:size[0],:size[1]]
bsd-3-clause
olafhauk/mne-python
mne/channels/tests/test_montage.py
3
54368
# Author: Teon Brooks <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) from itertools import chain import os import os.path as op import pytest import numpy as np from functools import partial from string import ascii_lowercase from numpy.testing import (assert_array_equal, assert_allclose, assert_equal) import matplotlib.pyplot as plt from mne import __file__ as _mne_file, create_info, read_evokeds, pick_types from mne.fixes import nullcontext from mne.utils._testing import assert_object_equal from mne.channels import (get_builtin_montages, DigMontage, read_dig_dat, read_dig_egi, read_dig_captrak, read_dig_fif, make_standard_montage, read_custom_montage, compute_dev_head_t, make_dig_montage, read_dig_polhemus_isotrak, compute_native_head_t, read_polhemus_fastscan, read_dig_hpts) from mne.channels.montage import transform_to_head, _check_get_coord_frame from mne.utils import run_tests_if_main, assert_dig_allclose from mne.bem import _fit_sphere from mne.io.constants import FIFF from mne.io._digitization import (_format_dig_points, _get_fid_coords, _get_dig_eeg, _count_points_by_type) from mne.transforms import _ensure_trans from mne.viz._3d import _fiducial_coords from mne.io.kit import read_mrk from mne.io import (read_raw_brainvision, read_raw_egi, read_raw_fif, read_fiducials, __file__ as _MNE_IO_FILE) from mne.io import RawArray from mne.datasets import testing from mne.io.brainvision import __file__ as _BRAINVISON_FILE data_path = testing.data_path(download=False) fif_dig_montage_fname = op.join(data_path, 'montage', 'eeganes07.fif') egi_dig_montage_fname = op.join(data_path, 'montage', 'coordinates.xml') egi_raw_fname = op.join(data_path, 'montage', 'egi_dig_test.raw') egi_fif_fname = op.join(data_path, 'montage', 'egi_dig_raw.fif') bvct_dig_montage_fname = op.join(data_path, 'montage', 'captrak_coords.bvct') bv_raw_fname = op.join(data_path, 'montage', 'bv_dig_test.vhdr') bv_fif_fname = op.join(data_path, 'montage', 'bv_dig_raw.fif') locs_montage_fname = op.join(data_path, 'EEGLAB', 'test_chans.locs') evoked_fname = op.join(data_path, 'montage', 'level2_raw-ave.fif') eeglab_fname = op.join(data_path, 'EEGLAB', 'test_raw.set') bdf_fname1 = op.join(data_path, 'BDF', 'test_generator_2.bdf') bdf_fname2 = op.join(data_path, 'BDF', 'test_bdf_stim_channel.bdf') egi_fname1 = op.join(data_path, 'EGI', 'test_egi.mff') cnt_fname = op.join(data_path, 'CNT', 'scan41_short.cnt') io_dir = op.dirname(_MNE_IO_FILE) kit_dir = op.join(io_dir, 'kit', 'tests', 'data') elp = op.join(kit_dir, 'test_elp.txt') hsp = op.join(kit_dir, 'test_hsp.txt') hpi = op.join(kit_dir, 'test_mrk.sqd') bv_fname = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr') fif_fname = op.join(io_dir, 'tests', 'data', 'test_raw.fif') edf_path = op.join(io_dir, 'edf', 'tests', 'data', 'test.edf') bdf_path = op.join(io_dir, 'edf', 'tests', 'data', 'test_bdf_eeglab.mat') egi_fname2 = op.join(io_dir, 'egi', 'tests', 'data', 'test_egi.raw') vhdr_path = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr') ctf_fif_fname = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif') nicolet_fname = op.join(io_dir, 'nicolet', 'tests', 'data', 'test_nicolet_raw.data') def _make_toy_raw(n_channels): return RawArray( data=np.empty([n_channels, 1]), info=create_info( ch_names=list(ascii_lowercase[:n_channels]), sfreq=1, ch_types='eeg' ) ) def _make_toy_dig_montage(n_channels, **kwargs): return make_dig_montage( ch_pos=dict(zip( list(ascii_lowercase[:n_channels]), np.arange(n_channels * 3).reshape(n_channels, 3), )), **kwargs ) def _get_dig_montage_pos(montage): return np.array([d['r'] for d in _get_dig_eeg(montage.dig)]) def test_dig_montage_trans(tmpdir): """Test getting a trans from montage.""" nasion, lpa, rpa, *ch_pos = np.random.RandomState(0).randn(10, 3) ch_pos = {f'EEG{ii:3d}': pos for ii, pos in enumerate(ch_pos, 1)} montage = make_dig_montage(ch_pos, nasion=nasion, lpa=lpa, rpa=rpa, coord_frame='mri') trans = compute_native_head_t(montage) _ensure_trans(trans) # ensure that we can save and load it, too fname = tmpdir.join('temp-mon.fif') _check_roundtrip(montage, fname, 'mri') def test_fiducials(): """Test handling of fiducials.""" # Eventually the code used here should be unified with montage.py, but for # now it uses code in odd places for fname in (fif_fname, ctf_fif_fname): fids, coord_frame = read_fiducials(fname) points = _fiducial_coords(fids, coord_frame) assert points.shape == (3, 3) # Fids assert_allclose(points[:, 2], 0., atol=1e-6) assert_allclose(points[::2, 1], 0., atol=1e-6) assert points[2, 0] > 0 # RPA assert points[0, 0] < 0 # LPA # Nasion assert_allclose(points[1, 0], 0., atol=1e-6) assert points[1, 1] > 0 def test_documented(): """Test that standard montages are documented.""" docs = make_standard_montage.__doc__ lines = [line[4:] for line in docs.splitlines()] start = stop = None for li, line in enumerate(lines): if line.startswith('====') and li < len(lines) - 2 and \ lines[li + 1].startswith('Kind') and\ lines[li + 2].startswith('===='): start = li + 3 elif start is not None and li > start and line.startswith('===='): stop = li break assert (start is not None) assert (stop is not None) kinds = [line.split(' ')[0] for line in lines[start:stop]] kinds = [kind for kind in kinds if kind != ''] montages = os.listdir(op.join(op.dirname(_mne_file), 'channels', 'data', 'montages')) montages = sorted(op.splitext(m)[0] for m in montages) assert_equal(len(set(montages)), len(montages)) assert_equal(len(set(kinds)), len(kinds), err_msg=str(sorted(kinds))) assert_equal(set(montages), set(kinds)) @pytest.mark.parametrize('reader, file_content, expected_dig, ext, warning', [ pytest.param( partial(read_custom_montage, head_size=None), ('FidNz 0 9.071585155 -2.359754454\n' 'FidT9 -6.711765 0.040402876 -3.251600355\n' 'very_very_very_long_name -5.831241498 -4.494821698 4.955347697\n' 'Cz 0 0 1\n' 'Cz 0 0 8.899186843'), make_dig_montage( ch_pos={ 'very_very_very_long_name': [-5.8312416, -4.4948215, 4.9553475], # noqa 'Cz': [0., 0., 8.899187], }, nasion=[0., 9.071585, -2.3597546], lpa=[-6.711765, 0.04040287, -3.2516003], rpa=None, ), 'sfp', (RuntimeWarning, r'Duplicate.*last will be used for Cz \(2\)'), id='sfp_duplicate'), pytest.param( partial(read_custom_montage, head_size=None), ('FidNz 0 9.071585155 -2.359754454\n' 'FidT9 -6.711765 0.040402876 -3.251600355\n' 'headshape 1 2 3\n' 'headshape 4 5 6\n' 'Cz 0 0 8.899186843'), make_dig_montage( hsp=[ [1, 2, 3], [4, 5, 6], ], ch_pos={ 'Cz': [0., 0., 8.899187], }, nasion=[0., 9.071585, -2.3597546], lpa=[-6.711765, 0.04040287, -3.2516003], rpa=None, ), 'sfp', None, id='sfp_headshape'), pytest.param( partial(read_custom_montage, head_size=1), ('1 0 0.50669 FPz\n' '2 23 0.71 EOG1\n' '3 -39.947 0.34459 F3\n' '4 0 0.25338 Fz\n'), make_dig_montage( ch_pos={ 'EOG1': [0.30873816, 0.72734152, -0.61290705], 'F3': [-0.56705965, 0.67706631, 0.46906776], 'FPz': [0., 0.99977915, -0.02101571], 'Fz': [0., 0.71457525, 0.69955859], }, nasion=None, lpa=None, rpa=None, coord_frame='head', ), 'loc', None, id='EEGLAB'), pytest.param( partial(read_custom_montage, head_size=None, coord_frame='mri'), ('// MatLab Sphere coordinates [degrees] Cartesian coordinates\n' # noqa: E501 '// Label Theta Phi Radius X Y Z off sphere surface\n' # noqa: E501 'E1 37.700 -14.000 1.000 0.7677 0.5934 -0.2419 -0.00000000000000011\n' # noqa: E501 'E3 51.700 11.000 1.000 0.6084 0.7704 0.1908 0.00000000000000000\n' # noqa: E501 'E31 90.000 -11.000 1.000 0.0000 0.9816 -0.1908 0.00000000000000000\n' # noqa: E501 'E61 158.000 -17.200 1.000 -0.8857 0.3579 -0.2957 -0.00000000000000022'), # noqa: E501 make_dig_montage( ch_pos={ 'E1': [0.7677, 0.5934, -0.2419], 'E3': [0.6084, 0.7704, 0.1908], 'E31': [0., 0.9816, -0.1908], 'E61': [-0.8857, 0.3579, -0.2957], }, nasion=None, lpa=None, rpa=None, coord_frame='mri', ), 'csd', None, id='matlab'), pytest.param( partial(read_custom_montage, head_size=None), ('# ASA electrode file\nReferenceLabel avg\nUnitPosition mm\n' 'NumberPositions= 68\n' 'Positions\n' '-86.0761 -19.9897 -47.9860\n' '85.7939 -20.0093 -48.0310\n' '0.0083 86.8110 -39.9830\n' '-86.0761 -24.9897 -67.9860\n' 'Labels\nLPA\nRPA\nNz\nDummy\n'), make_dig_montage( ch_pos={ 'Dummy': [-0.0860761, -0.0249897, -0.067986], }, nasion=[8.3000e-06, 8.6811e-02, -3.9983e-02], lpa=[-0.0860761, -0.0199897, -0.047986], rpa=[0.0857939, -0.0200093, -0.048031], ), 'elc', None, id='ASA electrode'), pytest.param( partial(read_custom_montage, head_size=1), ('Site Theta Phi\n' 'Fp1 -92 -72\n' 'Fp2 92 72\n' 'very_very_very_long_name -92 72\n' 'O2 92 -90\n'), make_dig_montage( ch_pos={ 'Fp1': [-0.30882875, 0.95047716, -0.0348995], 'Fp2': [0.30882875, 0.95047716, -0.0348995], 'very_very_very_long_name': [-0.30882875, -0.95047716, -0.0348995], # noqa 'O2': [6.11950389e-17, -9.99390827e-01, -3.48994967e-02] }, nasion=None, lpa=None, rpa=None, ), 'txt', None, id='generic theta-phi (txt)'), pytest.param( partial(read_custom_montage, head_size=None), ('346\n' # XXX: this should actually race an error 346 != 4 'FID\t LPA\t -120.03\t 0\t 85\n' 'FID\t RPA\t 120.03\t 0\t 85\n' 'FID\t Nz\t 114.03\t 90\t 85\n' 'EEG\t F3\t -62.027\t -50.053\t 85\n' 'EEG\t Fz\t 45.608\t 90\t 85\n' 'EEG\t F4\t 62.01\t 50.103\t 85\n' 'EEG\t FCz\t 68.01\t 58.103\t 85\n'), make_dig_montage( ch_pos={ 'F3': [-0.48200427, 0.57551063, 0.39869712], 'Fz': [3.71915931e-17, 6.07384809e-01, 5.94629038e-01], 'F4': [0.48142596, 0.57584026, 0.39891983], 'FCz': [0.41645989, 0.66914889, 0.31827805], }, nasion=[4.75366562e-17, 7.76332511e-01, -3.46132681e-01], lpa=[-7.35898963e-01, 9.01216309e-17, -4.25385374e-01], rpa=[0.73589896, 0., -0.42538537], ), 'elp', None, id='BESA spherical model'), pytest.param( partial(read_dig_hpts, unit='m'), ('eeg Fp1 -95.0 -3. -3.\n' 'eeg AF7 -1 -1 -3\n' 'eeg A3 -2 -2 2\n' 'eeg A 0 0 0'), make_dig_montage( ch_pos={ 'A': [0., 0., 0.], 'A3': [-2., -2., 2.], 'AF7': [-1., -1., -3.], 'Fp1': [-95., -3., -3.], }, nasion=None, lpa=None, rpa=None, ), 'hpts', None, id='legacy mne-c'), pytest.param( partial(read_custom_montage, head_size=None), ('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n' '<!-- Generated by EasyCap Configurator 19.05.2014 -->\n' '<Electrodes defaults="false">\n' ' <Electrode>\n' ' <Name>Fp1</Name>\n' ' <Theta>-90</Theta>\n' ' <Phi>-72</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>1</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>Fz</Name>\n' ' <Theta>45</Theta>\n' ' <Phi>90</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>2</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>F3</Name>\n' ' <Theta>-60</Theta>\n' ' <Phi>-51</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>3</Number>\n' ' </Electrode>\n' ' <Electrode>\n' ' <Name>F7</Name>\n' ' <Theta>-90</Theta>\n' ' <Phi>-36</Phi>\n' ' <Radius>1</Radius>\n' ' <Number>4</Number>\n' ' </Electrode>\n' '</Electrodes>'), make_dig_montage( ch_pos={ 'Fp1': [-3.09016994e-01, 9.51056516e-01, 6.12323400e-17], 'Fz': [4.32978028e-17, 7.07106781e-01, 7.07106781e-01], 'F3': [-0.54500745, 0.67302815, 0.5], 'F7': [-8.09016994e-01, 5.87785252e-01, 6.12323400e-17], }, nasion=None, lpa=None, rpa=None, ), 'bvef', None, id='brainvision'), ]) def test_montage_readers( reader, file_content, expected_dig, ext, warning, tmpdir ): """Test that we have an equivalent of read_montage for all file formats.""" fname = op.join(str(tmpdir), 'test.{ext}'.format(ext=ext)) with open(fname, 'w') as fid: fid.write(file_content) if warning is None: ctx = nullcontext() else: ctx = pytest.warns(warning[0], match=warning[1]) with ctx: dig_montage = reader(fname) assert isinstance(dig_montage, DigMontage) actual_ch_pos = dig_montage._get_ch_pos() expected_ch_pos = expected_dig._get_ch_pos() for kk in actual_ch_pos: assert_allclose(actual_ch_pos[kk], expected_ch_pos[kk], atol=1e-5) assert len(dig_montage.dig) == len(expected_dig.dig) for d1, d2 in zip(dig_montage.dig, expected_dig.dig): assert d1['coord_frame'] == d2['coord_frame'] for key in ('coord_frame', 'ident', 'kind'): assert isinstance(d1[key], int) assert isinstance(d2[key], int) with pytest.warns(None) as w: xform = compute_native_head_t(dig_montage) assert xform['to'] == FIFF.FIFFV_COORD_HEAD assert xform['from'] == FIFF.FIFFV_COORD_UNKNOWN n = int(np.allclose(xform['trans'], np.eye(4))) assert len(w) == n @testing.requires_testing_data def test_read_locs(): """Test reading EEGLAB locs.""" data = read_custom_montage(locs_montage_fname)._get_ch_pos() assert_allclose( actual=np.stack( [data[kk] for kk in ('FPz', 'EOG1', 'F3', 'Fz')] # 4 random chs ), desired=[[0., 0.094979, -0.001996], [0.02933, 0.069097, -0.058226], [-0.053871, 0.064321, 0.044561], [0., 0.067885, 0.066458]], atol=1e-6 ) def test_read_dig_dat(tmpdir): """Test reading *.dat electrode locations.""" rows = [ ['Nasion', 78, 0.00, 1.00, 0.00], ['Left', 76, -1.00, 0.00, 0.00], ['Right', 82, 1.00, -0.00, 0.00], ['O2', 69, -0.50, -0.90, 0.05], ['O2', 68, 0.00, 0.01, 0.02], ['Centroid', 67, 0.00, 0.00, 0.00], ] # write mock test.dat file temp_dir = str(tmpdir) fname_temp = op.join(temp_dir, 'test.dat') with open(fname_temp, 'w') as fid: for row in rows: name = row[0].rjust(10) data = '\t'.join(map(str, row[1:])) fid.write("%s\t%s\n" % (name, data)) # construct expected value idents = { 78: FIFF.FIFFV_POINT_NASION, 76: FIFF.FIFFV_POINT_LPA, 82: FIFF.FIFFV_POINT_RPA, 68: 1, 69: 1, } kinds = { 78: FIFF.FIFFV_POINT_CARDINAL, 76: FIFF.FIFFV_POINT_CARDINAL, 82: FIFF.FIFFV_POINT_CARDINAL, 69: FIFF.FIFFV_POINT_EEG, 68: FIFF.FIFFV_POINT_EEG, } target = {row[0]: {'r': row[2:], 'ident': idents[row[1]], 'kind': kinds[row[1]], 'coord_frame': 0} for row in rows[:-1]} assert_allclose(target['O2']['r'], [0, 0.01, 0.02]) # read it with pytest.warns(RuntimeWarning, match=r'Duplic.*for O2 \(2\)'): dig = read_dig_dat(fname_temp) assert set(dig.ch_names) == {'O2'} keys = chain(['Left', 'Nasion', 'Right'], dig.ch_names) target = [target[k] for k in keys] assert dig.dig == target def test_read_dig_montage_using_polhemus_fastscan(): """Test FastScan.""" N_EEG_CH = 10 my_electrode_positions = read_polhemus_fastscan( op.join(kit_dir, 'test_elp.txt') ) montage = make_dig_montage( # EEG_CH ch_pos=dict(zip(ascii_lowercase[:N_EEG_CH], np.random.RandomState(0).rand(N_EEG_CH, 3))), # NO NAMED points nasion=my_electrode_positions[0], lpa=my_electrode_positions[1], rpa=my_electrode_positions[2], hpi=my_electrode_positions[3:], hsp=read_polhemus_fastscan(op.join(kit_dir, 'test_hsp.txt')), # Other defaults coord_frame='unknown' ) assert repr(montage) == ( '<DigMontage | ' '500 extras (headshape), 5 HPIs, 3 fiducials, 10 channels>' ) # XXX: is this wrong? extra is not in headspace, is it? assert set([d['coord_frame'] for d in montage.dig]) == { FIFF.FIFFV_COORD_UNKNOWN } # XXX: so far we build everything in 'unknown' EXPECTED_FID_IN_POLHEMUS = { 'nasion': [0.001393, 0.0131613, -0.0046967], 'lpa': [-0.0624997, -0.0737271, 0.07996], 'rpa': [-0.0748957, 0.0873785, 0.0811943], } fiducials, fid_coordframe = _get_fid_coords(montage.dig) assert fid_coordframe == FIFF.FIFFV_COORD_UNKNOWN for kk, val in fiducials.items(): assert_allclose(val, EXPECTED_FID_IN_POLHEMUS[kk]) def test_read_dig_montage_using_polhemus_fastscan_error_handling(tmpdir): """Test reading Polhemus FastSCAN errors.""" with open(op.join(kit_dir, 'test_elp.txt')) as fid: content = fid.read().replace('FastSCAN', 'XxxxXXXX') fname = str(tmpdir.join('faulty_FastSCAN.txt')) with open(fname, 'w') as fid: fid.write(content) with pytest.raises(ValueError, match='not contain.*Polhemus FastSCAN'): _ = read_polhemus_fastscan(fname) EXPECTED_ERR_MSG = "allowed value is '.txt', but got '.bar' instead" with pytest.raises(ValueError, match=EXPECTED_ERR_MSG): _ = read_polhemus_fastscan(fname=tmpdir.join('foo.bar')) def test_read_dig_polhemus_isotrak_hsp(): """Test reading Polhemus IsoTrak HSP file.""" EXPECTED_FID_IN_POLHEMUS = { 'nasion': np.array([1.1056e-01, -5.4210e-19, 0]), 'lpa': np.array([-2.1075e-04, 8.0793e-02, -7.5894e-19]), 'rpa': np.array([2.1075e-04, -8.0793e-02, -2.8731e-18]), } montage = read_dig_polhemus_isotrak(fname=op.join(kit_dir, 'test.hsp'), ch_names=None) assert repr(montage) == ( '<DigMontage | ' '500 extras (headshape), 0 HPIs, 3 fiducials, 0 channels>' ) fiducials, fid_coordframe = _get_fid_coords(montage.dig) assert fid_coordframe == FIFF.FIFFV_COORD_UNKNOWN for kk, val in fiducials.items(): assert_array_equal(val, EXPECTED_FID_IN_POLHEMUS[kk]) def test_read_dig_polhemus_isotrak_elp(): """Test reading Polhemus IsoTrak ELP file.""" EXPECTED_FID_IN_POLHEMUS = { 'nasion': np.array([1.1056e-01, -5.4210e-19, 0]), 'lpa': np.array([-2.1075e-04, 8.0793e-02, -7.5894e-19]), 'rpa': np.array([2.1075e-04, -8.0793e-02, -2.8731e-18]), } montage = read_dig_polhemus_isotrak(fname=op.join(kit_dir, 'test.elp'), ch_names=None) assert repr(montage) == ( '<DigMontage | ' '0 extras (headshape), 5 HPIs, 3 fiducials, 0 channels>' ) fiducials, fid_coordframe = _get_fid_coords(montage.dig) assert fid_coordframe == FIFF.FIFFV_COORD_UNKNOWN for kk, val in fiducials.items(): assert_array_equal(val, EXPECTED_FID_IN_POLHEMUS[kk]) @pytest.fixture(scope='module') def isotrak_eeg(tmpdir_factory): """Mock isotrak file with EEG positions.""" _SEED = 42 N_ROWS, N_COLS = 5, 3 content = np.random.RandomState(_SEED).randn(N_ROWS, N_COLS) fname = tmpdir_factory.mktemp('data').join('test.eeg') with open(str(fname), 'w') as fid: fid.write(( '3 200\n' '//Shape file\n' '//Minor revision number\n' '2\n' '//Subject Name\n' '%N Name \n' '////Shape code, number of digitized points\n' )) fid.write('0 {rows:d}\n'.format(rows=N_ROWS)) fid.write(( '//Position of fiducials X+, Y+, Y- on the subject\n' '%F 0.11056 -5.421e-19 0 \n' '%F -0.00021075 0.080793 -7.5894e-19 \n' '%F 0.00021075 -0.080793 -2.8731e-18 \n' '//No of rows, no of columns; position of digitized points\n' )) fid.write('{rows:d} {cols:d}\n'.format(rows=N_ROWS, cols=N_COLS)) for row in content: fid.write('\t'.join('%0.18e' % cell for cell in row) + '\n') return str(fname) def test_read_dig_polhemus_isotrak_eeg(isotrak_eeg): """Test reading Polhemus IsoTrak EEG positions.""" N_CHANNELS = 5 _SEED = 42 EXPECTED_FID_IN_POLHEMUS = { 'nasion': np.array([1.1056e-01, -5.4210e-19, 0]), 'lpa': np.array([-2.1075e-04, 8.0793e-02, -7.5894e-19]), 'rpa': np.array([2.1075e-04, -8.0793e-02, -2.8731e-18]), } ch_names = ['eeg {:01d}'.format(ii) for ii in range(N_CHANNELS)] EXPECTED_CH_POS = dict(zip( ch_names, np.random.RandomState(_SEED).randn(N_CHANNELS, 3))) montage = read_dig_polhemus_isotrak(fname=isotrak_eeg, ch_names=ch_names) assert repr(montage) == ( '<DigMontage | ' '0 extras (headshape), 0 HPIs, 3 fiducials, 5 channels>' ) fiducials, fid_coordframe = _get_fid_coords(montage.dig) assert fid_coordframe == FIFF.FIFFV_COORD_UNKNOWN for kk, val in fiducials.items(): assert_array_equal(val, EXPECTED_FID_IN_POLHEMUS[kk]) for kk, dig_point in zip(montage.ch_names, _get_dig_eeg(montage.dig)): assert_array_equal(dig_point['r'], EXPECTED_CH_POS[kk]) assert dig_point['coord_frame'] == FIFF.FIFFV_COORD_UNKNOWN def test_read_dig_polhemus_isotrak_error_handling(isotrak_eeg, tmpdir): """Test errors in reading Polhemus IsoTrak files. 1 - matching ch_names and number of points in isotrak file. 2 - error for unsupported file extensions. """ # Check ch_names N_CHANNELS = 5 EXPECTED_ERR_MSG = "not match the number of points.*Expected.*5, given 47" with pytest.raises(ValueError, match=EXPECTED_ERR_MSG): _ = read_dig_polhemus_isotrak( fname=isotrak_eeg, ch_names=['eeg {:01d}'.format(ii) for ii in range(N_CHANNELS + 42)] ) # Check fname extensions fname = op.join(tmpdir, 'foo.bar') with pytest.raises( ValueError, match="Allowed val.*'.hsp', '.elp', and '.eeg', but got '.bar' instead" ): _ = read_dig_polhemus_isotrak(fname=fname, ch_names=None) def test_combining_digmontage_objects(): """Test combining different DigMontage objects.""" rng = np.random.RandomState(0) fiducials = dict(zip(('nasion', 'lpa', 'rpa'), rng.rand(3, 3))) # hsp positions are [1X, 1X, 1X] hsp1 = make_dig_montage(**fiducials, hsp=np.full((2, 3), 11.)) hsp2 = make_dig_montage(**fiducials, hsp=np.full((2, 3), 12.)) hsp3 = make_dig_montage(**fiducials, hsp=np.full((2, 3), 13.)) # hpi positions are [2X, 2X, 2X] hpi1 = make_dig_montage(**fiducials, hpi=np.full((2, 3), 21.)) hpi2 = make_dig_montage(**fiducials, hpi=np.full((2, 3), 22.)) hpi3 = make_dig_montage(**fiducials, hpi=np.full((2, 3), 23.)) # channels have positions at 40s, 50s, and 60s. ch_pos1 = make_dig_montage( **fiducials, ch_pos={'h': [41, 41, 41], 'b': [42, 42, 42], 'g': [43, 43, 43]} ) ch_pos2 = make_dig_montage( **fiducials, ch_pos={'n': [51, 51, 51], 'y': [52, 52, 52], 'p': [53, 53, 53]} ) ch_pos3 = make_dig_montage( **fiducials, ch_pos={'v': [61, 61, 61], 'a': [62, 62, 62], 'l': [63, 63, 63]} ) montage = ( DigMontage() + hsp1 + hsp2 + hsp3 + hpi1 + hpi2 + hpi3 + ch_pos1 + ch_pos2 + ch_pos3 ) assert repr(montage) == ( '<DigMontage | ' '6 extras (headshape), 6 HPIs, 3 fiducials, 9 channels>' ) EXPECTED_MONTAGE = make_dig_montage( **fiducials, hsp=np.concatenate([np.full((2, 3), 11.), np.full((2, 3), 12.), np.full((2, 3), 13.)]), hpi=np.concatenate([np.full((2, 3), 21.), np.full((2, 3), 22.), np.full((2, 3), 23.)]), ch_pos={ 'h': [41, 41, 41], 'b': [42, 42, 42], 'g': [43, 43, 43], 'n': [51, 51, 51], 'y': [52, 52, 52], 'p': [53, 53, 53], 'v': [61, 61, 61], 'a': [62, 62, 62], 'l': [63, 63, 63], } ) # Do some checks to ensure they are the same DigMontage assert len(montage.ch_names) == len(EXPECTED_MONTAGE.ch_names) assert all([c in montage.ch_names for c in EXPECTED_MONTAGE.ch_names]) actual_occurrences = _count_points_by_type(montage.dig) expected_occurrences = _count_points_by_type(EXPECTED_MONTAGE.dig) assert actual_occurrences == expected_occurrences def test_combining_digmontage_forbiden_behaviors(): """Test combining different DigMontage objects with repeated names.""" rng = np.random.RandomState(0) fiducials = dict(zip(('nasion', 'lpa', 'rpa'), rng.rand(3, 3))) dig1 = make_dig_montage( **fiducials, ch_pos=dict(zip(list('abc'), rng.rand(3, 3))), ) dig2 = make_dig_montage( **fiducials, ch_pos=dict(zip(list('bcd'), rng.rand(3, 3))), ) dig2_wrong_fid = make_dig_montage( nasion=rng.rand(3), lpa=rng.rand(3), rpa=rng.rand(3), ch_pos=dict(zip(list('ghi'), rng.rand(3, 3))), ) dig2_wrong_coordframe = make_dig_montage( **fiducials, ch_pos=dict(zip(list('ghi'), rng.rand(3, 3))), coord_frame='meg' ) EXPECTED_ERR_MSG = "Cannot.*duplicated channel.*found: \'b\', \'c\'." with pytest.raises(RuntimeError, match=EXPECTED_ERR_MSG): _ = dig1 + dig2 with pytest.raises(RuntimeError, match='fiducial locations do not match'): _ = dig1 + dig2_wrong_fid with pytest.raises(RuntimeError, match='not in the same coordinate '): _ = dig1 + dig2_wrong_coordframe def test_set_dig_montage(): """Test setting DigMontage with toy understandable points.""" N_CHANNELS, N_HSP, N_HPI = 3, 2, 1 ch_names = list(ascii_lowercase[:N_CHANNELS]) ch_pos = dict(zip( ch_names, np.arange(N_CHANNELS * 3).reshape(N_CHANNELS, 3), )) montage_ch_only = make_dig_montage(ch_pos=ch_pos, coord_frame='head') assert repr(montage_ch_only) == ( '<DigMontage | 0 extras (headshape), 0 HPIs, 0 fiducials, 3 channels>' ) info = create_info(ch_names, sfreq=1, ch_types='eeg') info.set_montage(montage_ch_only) assert len(info['dig']) == len(montage_ch_only.dig) assert_allclose(actual=np.array([ch['loc'][:6] for ch in info['chs']]), desired=[[0., 1., 2., 0., 0., 0.], [3., 4., 5., 0., 0., 0.], [6., 7., 8., 0., 0., 0.]]) montage_full = make_dig_montage( ch_pos=dict(**ch_pos, EEG000=np.full(3, 42)), # 4 = 3 egg + 1 eeg_ref nasion=[1, 1, 1], lpa=[2, 2, 2], rpa=[3, 3, 3], hsp=np.full((N_HSP, 3), 4), hpi=np.full((N_HPI, 3), 4), coord_frame='head' ) assert repr(montage_full) == ( '<DigMontage | 2 extras (headshape), 1 HPIs, 3 fiducials, 4 channels>' ) info = create_info(ch_names, sfreq=1, ch_types='eeg') info.set_montage(montage_full) EXPECTED_LEN = sum({'hsp': 2, 'hpi': 1, 'fid': 3, 'eeg': 4}.values()) assert len(info['dig']) == EXPECTED_LEN assert_allclose(actual=np.array([ch['loc'][:6] for ch in info['chs']]), desired=[[0., 1., 2., 42., 42., 42.], [3., 4., 5., 42., 42., 42.], [6., 7., 8., 42., 42., 42.]]) @testing.requires_testing_data def test_fif_dig_montage(tmpdir): """Test FIF dig montage support.""" dig_montage = read_dig_fif(fif_dig_montage_fname) # test round-trip IO temp_dir = str(tmpdir) fname_temp = op.join(temp_dir, 'test.fif') _check_roundtrip(dig_montage, fname_temp) # Make a BrainVision file like the one the user would have had raw_bv = read_raw_brainvision(bv_fname, preload=True) raw_bv_2 = raw_bv.copy() mapping = dict() for ii, ch_name in enumerate(raw_bv.ch_names): mapping[ch_name] = 'EEG%03d' % (ii + 1,) raw_bv.rename_channels(mapping) for ii, ch_name in enumerate(raw_bv_2.ch_names): mapping[ch_name] = 'EEG%03d' % (ii + 33,) raw_bv_2.rename_channels(mapping) raw_bv.add_channels([raw_bv_2]) for ch in raw_bv.info['chs']: ch['kind'] = FIFF.FIFFV_EEG_CH # Set the montage raw_bv.set_montage(dig_montage) # Check the result evoked = read_evokeds(evoked_fname)[0] # check info[chs] matches assert_equal(len(raw_bv.ch_names), len(evoked.ch_names) - 1) for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs'][:-1]): assert_equal(ch_py['ch_name'], ch_c['ch_name'].replace('EEG ', 'EEG')) # C actually says it's unknown, but it's not (?): # assert_equal(ch_py['coord_frame'], ch_c['coord_frame']) assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD) c_loc = ch_c['loc'].copy() c_loc[c_loc == 0] = np.nan assert_allclose(ch_py['loc'], c_loc, atol=1e-7) # check info[dig] assert_dig_allclose(raw_bv.info, evoked.info) # Roundtrip of non-FIF start montage = make_dig_montage(hsp=read_polhemus_fastscan(hsp), hpi=read_mrk(hpi)) elp_points = read_polhemus_fastscan(elp) ch_pos = {"EEG%03d" % (k + 1): pos for k, pos in enumerate(elp_points[8:])} montage += make_dig_montage(nasion=elp_points[0], lpa=elp_points[1], rpa=elp_points[2], ch_pos=ch_pos) _check_roundtrip(montage, fname_temp, 'unknown') montage = transform_to_head(montage) _check_roundtrip(montage, fname_temp) montage.dig[0]['coord_frame'] = FIFF.FIFFV_COORD_UNKNOWN with pytest.raises(RuntimeError, match='Only a single coordinate'): montage.save(fname_temp) @testing.requires_testing_data def test_egi_dig_montage(tmpdir): """Test EGI MFF XML dig montage support.""" dig_montage = read_dig_egi(egi_dig_montage_fname) fid, coord = _get_fid_coords(dig_montage.dig) assert coord == FIFF.FIFFV_COORD_UNKNOWN assert_allclose( actual=np.array([fid[key] for key in ['nasion', 'lpa', 'rpa']]), desired=[[ 0. , 10.564, -2.051], # noqa [-8.592, 0.498, -4.128], # noqa [ 8.592, 0.498, -4.128]], # noqa ) # Test accuracy and embedding within raw object raw_egi = read_raw_egi(egi_raw_fname, channel_naming='EEG %03d') raw_egi.set_montage(dig_montage) test_raw_egi = read_raw_fif(egi_fif_fname) assert_equal(len(raw_egi.ch_names), len(test_raw_egi.ch_names)) for ch_raw, ch_test_raw in zip(raw_egi.info['chs'], test_raw_egi.info['chs']): assert_equal(ch_raw['ch_name'], ch_test_raw['ch_name']) assert_equal(ch_raw['coord_frame'], FIFF.FIFFV_COORD_HEAD) assert_allclose(ch_raw['loc'], ch_test_raw['loc'], atol=1e-7) assert_dig_allclose(raw_egi.info, test_raw_egi.info) dig_montage_in_head = transform_to_head(dig_montage.copy()) fid, coord = _get_fid_coords(dig_montage_in_head.dig) assert coord == FIFF.FIFFV_COORD_HEAD assert_allclose( actual=np.array([fid[key] for key in ['nasion', 'lpa', 'rpa']]), desired=[[0., 10.278, 0.], [-8.592, 0., 0.], [8.592, 0., 0.]], atol=1e-4, ) # test round-trip IO fname_temp = tmpdir.join('egi_test.fif') _check_roundtrip(dig_montage, fname_temp, 'unknown') _check_roundtrip(dig_montage_in_head, fname_temp) def _pop_montage(dig_montage, ch_name): # remove reference that was not used in old API name_idx = dig_montage.ch_names.index(ch_name) dig_idx = dig_montage._get_dig_names().index(ch_name) del dig_montage.dig[dig_idx] del dig_montage.ch_names[name_idx] for k in range(dig_idx, len(dig_montage.dig)): dig_montage.dig[k]['ident'] -= 1 @testing.requires_testing_data def test_read_dig_captrak(tmpdir): """Test reading a captrak montage file.""" EXPECTED_CH_NAMES_OLD = [ 'AF3', 'AF4', 'AF7', 'AF8', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'CP1', 'CP2', 'CP3', 'CP4', 'CP5', 'CP6', 'CPz', 'Cz', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'FC1', 'FC2', 'FC3', 'FC4', 'FC5', 'FC6', 'FT10', 'FT7', 'FT8', 'FT9', 'Fp1', 'Fp2', 'Fz', 'GND', 'O1', 'O2', 'Oz', 'P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'PO10', 'PO3', 'PO4', 'PO7', 'PO8', 'PO9', 'POz', 'Pz', 'REF', 'T7', 'T8', 'TP10', 'TP7', 'TP8', 'TP9' ] EXPECTED_CH_NAMES = [ 'T7', 'FC5', 'F7', 'C5', 'FT7', 'FT9', 'TP7', 'TP9', 'P7', 'CP5', 'PO7', 'C3', 'CP3', 'P5', 'P3', 'PO3', 'PO9', 'O1', 'Oz', 'POz', 'O2', 'PO4', 'P1', 'Pz', 'P2', 'CP2', 'CP1', 'CPz', 'Cz', 'C1', 'FC1', 'FC3', 'REF', 'F3', 'F1', 'Fz', 'F5', 'AF7', 'AF3', 'Fp1', 'GND', 'F2', 'AF4', 'Fp2', 'F4', 'F8', 'F6', 'AF8', 'FC2', 'FC6', 'FC4', 'C2', 'C4', 'P4', 'CP4', 'PO8', 'P8', 'P6', 'CP6', 'PO10', 'TP10', 'TP8', 'FT10', 'T8', 'C6', 'FT8' ] assert set(EXPECTED_CH_NAMES) == set(EXPECTED_CH_NAMES_OLD) montage = read_dig_captrak( fname=op.join(data_path, 'montage', 'captrak_coords.bvct') ) assert montage.ch_names == EXPECTED_CH_NAMES assert repr(montage) == ( '<DigMontage | ' '0 extras (headshape), 0 HPIs, 3 fiducials, 66 channels>' ) montage = transform_to_head(montage) # transform_to_head has to be tested _check_roundtrip(montage=montage, fname=str(tmpdir.join('bvct_test.fif'))) fid, _ = _get_fid_coords(montage.dig) assert_allclose( actual=np.array([fid.nasion, fid.lpa, fid.rpa]), desired=[[0, 0.11309, 0], [-0.09189, 0, 0], [0.09240, 0, 0]], atol=1e-5, ) raw_bv = read_raw_brainvision(bv_raw_fname) raw_bv.set_channel_types({"HEOG": 'eog', "VEOG": 'eog', "ECG": 'ecg'}) raw_bv.set_montage(montage) test_raw_bv = read_raw_fif(bv_fif_fname) # compare after set_montage using chs loc. for actual, expected in zip(raw_bv.info['chs'], test_raw_bv.info['chs']): assert_allclose(actual['loc'][:3], expected['loc'][:3]) if actual['kind'] == FIFF.FIFFV_EEG_CH: assert_allclose(actual['loc'][3:6], [-0.005103, 0.05395, 0.144622], rtol=1e-04) # https://gist.github.com/larsoner/2264fb5895070d29a8c9aa7c0dc0e8a6 _MGH60 = [ 'Fz', 'F2', 'AF4', 'Fpz', 'Fp1', 'AF8', 'FT9', 'F7', 'FC5', 'FC6', 'FT7', 'F1', 'AF7', 'FT8', 'F6', 'F5', 'FC1', 'FC2', 'FT10', 'T9', 'Cz', 'F4', 'T7', 'C2', 'C4', 'C1', 'C3', 'F8', 'F3', 'C5', 'Fp2', 'AF3', 'CP2', 'P2', 'O2', 'Iz', 'Oz', 'PO4', 'O1', 'P8', 'PO8', 'P6', 'PO7', 'PO3', 'C6', 'TP9', 'TP8', 'CP4', 'P4', # noqa 'CP3', 'CP1', 'TP7', 'P3', 'Pz', 'P1', 'P7', 'P5', 'TP10', 'T8', 'T10', ] @pytest.mark.parametrize('rename', ('raw', 'montage', 'custom')) def test_set_montage_mgh(rename): """Test setting 'mgh60' montage to old fif.""" raw = read_raw_fif(fif_fname) eeg_picks = pick_types(raw.info, meg=False, eeg=True, exclude=()) assert list(eeg_picks) == [ii for ii, name in enumerate(raw.ch_names) if name.startswith('EEG')] orig_pos = np.array([raw.info['chs'][pick]['loc'][:3] for pick in eeg_picks]) atol = 1e-6 if rename == 'raw': raw.rename_channels(lambda x: x.replace('EEG ', 'EEG')) raw.set_montage('mgh60') # test loading with string argument elif rename == 'montage': mon = make_standard_montage('mgh60') mon.rename_channels(lambda x: x.replace('EEG', 'EEG ')) assert [raw.ch_names[pick] for pick in eeg_picks] == mon.ch_names raw.set_montage(mon) else: atol = 3e-3 # XXX old defs here apparently (maybe not realistic)? assert rename == 'custom' assert len(_MGH60) == 60 mon = make_standard_montage('standard_1020') def renamer(x): try: return 'EEG %03d' % (_MGH60.index(x) + 1,) except ValueError: return x mon.rename_channels(renamer) raw.set_montage(mon) new_pos = np.array([ch['loc'][:3] for ch in raw.info['chs'] if ch['ch_name'].startswith('EEG')]) assert ((orig_pos != new_pos).all()) r0 = _fit_sphere(new_pos)[1] assert_allclose(r0, [0.000775, 0.006881, 0.047398], atol=1e-3) # spot check assert_allclose(new_pos[:2], [[0.000273, 0.084920, 0.105838], [0.028822, 0.083529, 0.099164]], atol=atol) # XXX: this does not check ch_names + it cannot work because of write_dig def _check_roundtrip(montage, fname, coord_frame='head'): """Check roundtrip writing.""" montage.save(fname) montage_read = read_dig_fif(fname=fname) assert_equal(repr(montage), repr(montage_read)) assert_equal(_check_get_coord_frame(montage_read.dig), coord_frame) assert_dig_allclose(montage, montage_read) def _fake_montage(ch_names): pos = np.random.RandomState(42).randn(len(ch_names), 3) return make_dig_montage(ch_pos=dict(zip(ch_names, pos)), coord_frame='head') cnt_ignore_warns = [ pytest.mark.filterwarnings( 'ignore:.*Could not parse meas date from the header. Setting to None.' ), pytest.mark.filterwarnings(( 'ignore:.*Could not define the number of bytes automatically.' ' Defaulting to 2.') ), ] def test_digmontage_constructor_errors(): """Test proper error messaging.""" with pytest.raises(ValueError, match='does not match the number'): _ = DigMontage(ch_names=['foo', 'bar'], dig=list()) def test_transform_to_head_and_compute_dev_head_t(): """Test transform_to_head and compute_dev_head_t.""" EXPECTED_DEV_HEAD_T = \ [[-3.72201691e-02, -9.98212167e-01, -4.67667497e-02, -7.31583414e-04], [8.98064989e-01, -5.39382685e-02, 4.36543170e-01, 1.60134431e-02], [-4.38285221e-01, -2.57513699e-02, 8.98466990e-01, 6.13035748e-02], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]] EXPECTED_FID_IN_POLHEMUS = { 'nasion': np.array([0.001393, 0.0131613, -0.0046967]), 'lpa': np.array([-0.0624997, -0.0737271, 0.07996]), 'rpa': np.array([-0.0748957, 0.0873785, 0.0811943]), } EXPECTED_FID_IN_HEAD = { 'nasion': np.array([-8.94466792e-18, 1.10559624e-01, -3.85185989e-34]), 'lpa': np.array([-8.10816716e-02, 6.56321671e-18, 0]), 'rpa': np.array([8.05048781e-02, -6.47441364e-18, 0]), } hpi_dev = np.array( [[ 2.13951493e-02, 8.47444056e-02, -5.65431188e-02], # noqa [ 2.10299433e-02, -8.03141101e-02, -6.34420259e-02], # noqa [ 1.05916829e-01, 8.18485672e-05, 1.19928083e-02], # noqa [ 9.26595105e-02, 4.64804385e-02, 8.45141253e-03], # noqa [ 9.42554419e-02, -4.35206589e-02, 8.78999363e-03]] # noqa ) hpi_polhemus = np.array( [[-0.0595004, -0.0704836, 0.075893 ], # noqa [-0.0646373, 0.0838228, 0.0762123], # noqa [-0.0135035, 0.0072522, -0.0268405], # noqa [-0.0202967, -0.0351498, -0.0129305], # noqa [-0.0277519, 0.0452628, -0.0222407]] # noqa ) montage_polhemus = make_dig_montage( **EXPECTED_FID_IN_POLHEMUS, hpi=hpi_polhemus, coord_frame='unknown' ) montage_meg = make_dig_montage(hpi=hpi_dev, coord_frame='meg') # Test regular workflow to get dev_head_t montage = montage_polhemus + montage_meg fids, _ = _get_fid_coords(montage.dig) for kk in fids: assert_allclose(fids[kk], EXPECTED_FID_IN_POLHEMUS[kk], atol=1e-5) with pytest.raises(ValueError, match='set to head coordinate system'): _ = compute_dev_head_t(montage) montage = transform_to_head(montage) fids, _ = _get_fid_coords(montage.dig) for kk in fids: assert_allclose(fids[kk], EXPECTED_FID_IN_HEAD[kk], atol=1e-5) dev_head_t = compute_dev_head_t(montage) assert_allclose(dev_head_t['trans'], EXPECTED_DEV_HEAD_T, atol=5e-7) # Test errors when number of HPI points do not match EXPECTED_ERR_MSG = 'Device-to-Head .*Got 0 .*device and 5 points in head' with pytest.raises(ValueError, match=EXPECTED_ERR_MSG): _ = compute_dev_head_t(transform_to_head(montage_polhemus)) EXPECTED_ERR_MSG = 'Device-to-Head .*Got 5 .*device and 0 points in head' with pytest.raises(ValueError, match=EXPECTED_ERR_MSG): _ = compute_dev_head_t(transform_to_head( montage_meg + make_dig_montage(**EXPECTED_FID_IN_POLHEMUS) )) EXPECTED_ERR_MSG = 'Device-to-Head .*Got 3 .*device and 5 points in head' with pytest.raises(ValueError, match=EXPECTED_ERR_MSG): _ = compute_dev_head_t(transform_to_head( DigMontage(dig=_format_dig_points(montage_meg.dig[:3])) + montage_polhemus )) def test_set_montage_with_mismatching_ch_names(): """Test setting a DigMontage with mismatching ch_names.""" raw = read_raw_fif(fif_fname) montage = make_standard_montage('mgh60') # 'EEG 001' and 'EEG001' won't match missing_err = '60 channel positions not present' with pytest.raises(ValueError, match=missing_err): raw.set_montage(montage) montage.ch_names = [ # modify the names in place name.replace('EEG', 'EEG ') for name in montage.ch_names ] raw.set_montage(montage) # does not raise # Case sensitivity raw.rename_channels(lambda x: x.lower()) with pytest.raises(ValueError, match=missing_err): raw.set_montage(montage) # should work raw.set_montage(montage, match_case=False) raw.rename_channels(lambda x: x.upper()) # restore assert 'EEG 001' in raw.ch_names and 'eeg 001' not in raw.ch_names raw.rename_channels({'EEG 002': 'eeg 001'}) assert 'EEG 001' in raw.ch_names and 'eeg 001' in raw.ch_names raw.set_channel_types({'eeg 001': 'misc'}) raw.set_montage(montage) raw.set_channel_types({'eeg 001': 'eeg'}) with pytest.raises(ValueError, match='1 channel position not present'): raw.set_montage(montage) with pytest.raises(ValueError, match='match_case=False as 1 channel name'): raw.set_montage(montage, match_case=False) info = create_info(['EEG 001'], 1000., 'eeg') mon = make_dig_montage({'EEG 001': np.zeros(3), 'eeg 001': np.zeros(3)}, nasion=[0, 1., 0], rpa=[1., 0, 0], lpa=[-1., 0, 0]) info.set_montage(mon) with pytest.raises(ValueError, match='match_case=False as 1 montage name'): info.set_montage(mon, match_case=False) def test_set_montage_with_sub_super_set_of_ch_names(): """Test info and montage ch_names matching criteria.""" N_CHANNELS = len('abcdef') montage = _make_toy_dig_montage(N_CHANNELS, coord_frame='head') # montage and info match info = create_info(ch_names=list('abcdef'), sfreq=1, ch_types='eeg') info.set_montage(montage) # montage is a SUPERset of info info = create_info(list('abc'), sfreq=1, ch_types='eeg') info.set_montage(montage) assert len(info['dig']) == len(list('abc')) # montage is a SUBset of info _MSG = 'subset of info. There are 2 .* not present in the DigMontage' info = create_info(ch_names=list('abcdfgh'), sfreq=1, ch_types='eeg') with pytest.raises(ValueError, match=_MSG) as exc: info.set_montage(montage) # plus suggestions assert exc.match('set_channel_types') assert exc.match('on_missing') def test_heterogeneous_ch_type(): """Test ch_names matching criteria with heterogeneous ch_type.""" VALID_MONTAGE_NAMED_CHS = ('eeg', 'ecog', 'seeg') montage = _make_toy_dig_montage( n_channels=len(VALID_MONTAGE_NAMED_CHS), coord_frame='head', ) # Montage and info match info = create_info(montage.ch_names, 1., list(VALID_MONTAGE_NAMED_CHS)) RawArray(np.zeros((3, 1)), info, copy=None).set_montage(montage) def test_set_montage_coord_frame_in_head_vs_unknown(): """Test set montage using head and unknown only.""" N_CHANNELS, NaN = 3, np.nan raw = _make_toy_raw(N_CHANNELS) montage_in_head = _make_toy_dig_montage(N_CHANNELS, coord_frame='head') montage_in_unknown = _make_toy_dig_montage( N_CHANNELS, coord_frame='unknown' ) montage_in_unknown_with_fid = _make_toy_dig_montage( N_CHANNELS, coord_frame='unknown', nasion=[0, 1, 0], lpa=[1, 0, 0], rpa=[-1, 0, 0], ) assert_allclose( actual=np.array([ch['loc'] for ch in raw.info['chs']]), desired=np.full((N_CHANNELS, 12), np.nan) ) raw.set_montage(montage_in_head) assert_allclose( actual=np.array([ch['loc'] for ch in raw.info['chs']]), desired=[ [0., 1., 2., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], [3., 4., 5., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], [6., 7., 8., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], ] ) with pytest.warns(RuntimeWarning, match='assuming identity'): raw.set_montage(montage_in_unknown) raw.set_montage(montage_in_unknown_with_fid) assert_allclose( actual=np.array([ch['loc'] for ch in raw.info['chs']]), desired=[ [-0., 1., -2., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], [-3., 4., -5., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], [-6., 7., -8., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], ] ) # check no collateral effects from transforming montage assert _check_get_coord_frame(montage_in_unknown_with_fid.dig) == 'unknown' assert_array_equal( _get_dig_montage_pos(montage_in_unknown_with_fid), [[0, 1, 2], [3, 4, 5], [6, 7, 8]], ) def test_set_montage_with_missing_coordinates(): """Test set montage with missing coordinates.""" N_CHANNELS, NaN = 3, np.nan raw = _make_toy_raw(N_CHANNELS) raw.set_channel_types({ch: 'ecog' for ch in raw.ch_names}) # don't include all the channels ch_names = raw.ch_names[1:] n_channels = len(ch_names) ch_coords = np.arange(n_channels * 3).reshape(n_channels, 3) montage_in_mri = make_dig_montage( ch_pos=dict(zip(ch_names, ch_coords,)), coord_frame='unknown', nasion=[0, 1, 0], lpa=[1, 0, 0], rpa=[-1, 0, 0], ) with pytest.raises(ValueError, match='DigMontage is ' 'only a subset of info'): raw.set_montage(montage_in_mri) with pytest.raises(ValueError, match='Invalid value'): raw.set_montage(montage_in_mri, on_missing='foo') with pytest.raises(TypeError, match='must be an instance'): raw.set_montage(montage_in_mri, on_missing=True) with pytest.warns(RuntimeWarning, match='DigMontage is ' 'only a subset of info'): raw.set_montage(montage_in_mri, on_missing='warn') raw.set_montage(montage_in_mri, on_missing='ignore') assert_allclose( actual=np.array([ch['loc'] for ch in raw.info['chs']]), desired=[ [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], [0., 1., -2., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], [-3., 4., -5., 0., 0., 0., NaN, NaN, NaN, NaN, NaN, NaN], ] ) @testing.requires_testing_data def test_get_montage(): """Test get montage from Instance. Test with standard montage and then loaded in montage. """ # 1. read in testing data and assert montage roundtrip # for testing dataset: 'test_raw.fif' raw = read_raw_fif(fif_fname) raw = raw.rename_channels(lambda name: name.replace('EEG ', 'EEG')) raw2 = raw.copy() # get montage and then set montage and # it should be the same montage = raw.get_montage() raw.set_montage(montage, on_missing='raise') test_montage = raw.get_montage() assert_object_equal(raw.info['chs'], raw2.info['chs']) assert_dig_allclose(raw2.info, raw.info) assert_object_equal(raw2.info['dig'], raw.info['dig']) # the montage does not change assert_object_equal(montage.dig, test_montage.dig) # the montage should fulfill a roundtrip with make_dig_montage test2_montage = make_dig_montage(**montage.get_positions()) assert_object_equal(test2_montage.dig, test_montage.dig) # 2. now do a standard montage montage = make_standard_montage('mgh60') # set the montage; note renaming to make standard montage map raw.set_montage(montage) # get montage back and set it # the channel locations should be the same raw2 = raw.copy() test_montage = raw.get_montage() raw.set_montage(test_montage, on_missing='ignore') # the montage should fulfill a roundtrip with make_dig_montage test2_montage = make_dig_montage(**test_montage.get_positions()) assert_object_equal(test2_montage.dig, test_montage.dig) # chs should not change assert_object_equal(raw2.info['chs'], raw.info['chs']) # dig order might be different after set_montage assert montage.ch_names == test_montage.ch_names # note that test_montage will have different coordinate frame # compared to standard montage assert_dig_allclose(raw2.info, raw.info) assert_object_equal(raw2.info['dig'], raw.info['dig']) # 3. if montage gets set to None raw.set_montage(None) assert raw.get_montage() is None # 4. read in BV test dataset and make sure montage # fulfills roundtrip on non-standard montage dig_montage = read_dig_fif(fif_dig_montage_fname) # Make a BrainVision file like the one the user would have had # with testing dataset 'test.vhdr' raw_bv = read_raw_brainvision(bv_fname, preload=True) raw_bv_2 = raw_bv.copy() # rename channels to make it have the full set # of channels mapping = dict() for ii, ch_name in enumerate(raw_bv.ch_names): mapping[ch_name] = 'EEG%03d' % (ii + 1,) raw_bv.rename_channels(mapping) for ii, ch_name in enumerate(raw_bv_2.ch_names): mapping[ch_name] = 'EEG%03d' % (ii + 33,) raw_bv_2.rename_channels(mapping) raw_bv.add_channels([raw_bv_2]) for ch in raw_bv.info['chs']: ch['kind'] = FIFF.FIFFV_EEG_CH # Set the montage and roundtrip raw_bv.set_montage(dig_montage) raw_bv2 = raw_bv.copy() # reset the montage test_montage = raw_bv.get_montage() raw_bv.set_montage(test_montage, on_missing='ignore') # dig order might be different after set_montage assert_object_equal(raw_bv2.info['dig'], raw_bv.info['dig']) assert_dig_allclose(raw_bv2.info, raw_bv.info) # if dig is not set in the info, then montage returns None raw.info['dig'] = None assert raw.get_montage() is None # the montage should fulfill a roundtrip with make_dig_montage test2_montage = make_dig_montage(**test_montage.get_positions()) assert_object_equal(test2_montage.dig, test_montage.dig) def test_read_dig_hpts(): """Test reading .hpts file (from MNE legacy).""" fname = op.join( op.dirname(_BRAINVISON_FILE), 'tests', 'data', 'test.hpts' ) montage = read_dig_hpts(fname) assert repr(montage) == ( '<DigMontage | ' '0 extras (headshape), 5 HPIs, 3 fiducials, 34 channels>' ) def test_get_builtin_montages(): """Test help function to obtain builtin montages.""" EXPECTED_NUM = 24 assert len(get_builtin_montages()) == EXPECTED_NUM @testing.requires_testing_data def test_plot_montage(): """Test plotting montage.""" # gh-8025 montage = read_dig_captrak(bvct_dig_montage_fname) montage.plot() plt.close('all') run_tests_if_main()
bsd-3-clause
GustavePate/perfect_python_script
pps/demos/demo_matplot.py
1
1062
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates logger = logging.getLogger(__name__) def demo(): res = False try: logger.info("****** Matplot demo *******") # get a date axis x = pd.date_range('1/1/2015', periods=72, freq='H') y = np.arange(72) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m/%d/%Y %H:%M')) # date x axis tuning: every 4 hours # loc = mdates.HourLocator(interval=4) # date x axis tuning: full auto (between x and y tick, be regular and go !) loc = mdates.AutoDateLocator(minticks=4, maxticks=16, interval_multiples=True) plt.gca().xaxis.set_major_locator(loc) # plot plt.plot(x, y) plt.gcf().autofmt_xdate() plt.show() except Exception: logger.exception("Matplot demo failed") raise else: res = True finally: return res
mit
lightalchemist/ML-algorithms
dim_reduction/test_spectral_embedding.py
1
1960
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_moons import spectral_embedding import sys sys.path.insert(0, '../cluster') import kmeans def test(): k = 2 X, y_true = make_moons(n_samples=500, random_state=0, noise=0.01) Y = spectral_embedding.transform(X, k, n_neighbors=7, sigma=0.1) n = np.linalg.norm(Y, axis=1) n = n.reshape(-1, 1) Y = Y / n # Apply K-Means to cluster Y y_pred, _, _ = kmeans.kmeans(Y, k) fig = plt.figure() ax = fig.add_subplot(121) ax.scatter(np.arange(len(Y)), Y[:, 0]) ax.set_title("Eigenvector 1") ax = fig.add_subplot(122) ax.scatter(np.arange(len(Y)), Y[:, 1]) ax.set_title("Eigenvector 2") # Plot the data fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(X[y_true==0, 0], X[y_true==0, 1], c='b', alpha=0.5, label="Class 1") ax.scatter(X[y_true==1, 0], X[y_true==1, 1], c='g', alpha=0.5, label="Class 2") ax.set_title("Original data") ax.legend() # Plot the predictions fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(X[y_pred==0, 0], X[y_pred==0, 1], c='r', alpha=0.5, label="Class 1") ax.scatter(X[y_pred==1, 0], X[y_pred==1, 1], c='y', alpha=0.5, label="Class 2") ax.set_title("Result of clustering") ax.legend() # Plot the transformed data fig = plt.figure() ax = fig.add_subplot(111) idx_class0 = np.argwhere(y_true==0) idx_class1 = np.argwhere(y_true==1) ax.scatter(Y[idx_class0, 0], Y[idx_class0, 1], c='b', alpha=0.5, label="Class 1") ax.scatter(Y[idx_class1, 0], Y[idx_class1, 1], c='g', alpha=0.5, label="Class 2") ax.set_title("Original data after spectral embedding") ax.legend() print("Number in class 0: {}".format(np.sum(y_pred==0))) print("Number in class 1: {}".format(np.sum(y_pred==1))) plt.show() if __name__ == '__main__': test()
mit
ueshin/apache-spark
python/pyspark/pandas/data_type_ops/boolean_ops.py
6
15029
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from typing import cast, Any, Union import pandas as pd from pandas.api.types import CategoricalDtype from pyspark.pandas.base import column_op, IndexOpsMixin from pyspark.pandas._typing import Dtype, IndexOpsLike, SeriesOrIndex from pyspark.pandas.data_type_ops.base import ( DataTypeOps, is_valid_operand_for_numeric_arithmetic, transform_boolean_operand_to_numeric, _as_bool_type, _as_categorical_type, _as_other_type, ) from pyspark.pandas.internal import InternalField from pyspark.pandas.spark import functions as SF from pyspark.pandas.typedef import extension_dtypes, pandas_on_spark_type from pyspark.pandas.typedef.typehints import as_spark_type from pyspark.sql import functions as F from pyspark.sql.column import Column from pyspark.sql.types import BooleanType, StringType class BooleanOps(DataTypeOps): """ The class for binary operations of pandas-on-Spark objects with spark type: BooleanType. """ @property def pretty_name(self) -> str: return "bools" def add(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError( "Addition can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, bool): return left.__or__(right) elif isinstance(right, numbers.Number): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left + right else: assert isinstance(right, IndexOpsMixin) if isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, BooleanType): return left.__or__(right) else: left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left + right def sub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right, allow_bool=False): raise TypeError( "Subtraction can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left - right else: assert isinstance(right, IndexOpsMixin) left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left - right def mul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right): raise TypeError( "Multiplication can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, bool): return left.__and__(right) elif isinstance(right, numbers.Number): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left * right else: assert isinstance(right, IndexOpsMixin) if isinstance(right, IndexOpsMixin) and isinstance(right.spark.data_type, BooleanType): return left.__and__(right) else: left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left * right def truediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right, allow_bool=False): raise TypeError( "True division can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left / right else: assert isinstance(right, IndexOpsMixin) left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left / right def floordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right, allow_bool=False): raise TypeError( "Floor division can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left // right else: assert isinstance(right, IndexOpsMixin) left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left // right def mod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right, allow_bool=False): raise TypeError( "Modulo can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left % right else: assert isinstance(right, IndexOpsMixin) left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left % right def pow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if not is_valid_operand_for_numeric_arithmetic(right, allow_bool=False): raise TypeError( "Exponentiation can not be applied to %s and the given type." % self.pretty_name ) if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return left ** right else: assert isinstance(right, IndexOpsMixin) left = transform_boolean_operand_to_numeric(left, right.spark.data_type) return left ** right def radd(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, bool): return left.__or__(right) elif isinstance(right, numbers.Number): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right + left else: raise TypeError( "Addition can not be applied to %s and the given type." % self.pretty_name ) def rsub(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right - left else: raise TypeError( "Subtraction can not be applied to %s and the given type." % self.pretty_name ) def rmul(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, bool): return left.__and__(right) elif isinstance(right, numbers.Number): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right * left else: raise TypeError( "Multiplication can not be applied to %s and the given type." % self.pretty_name ) def rtruediv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right / left else: raise TypeError( "True division can not be applied to %s and the given type." % self.pretty_name ) def rfloordiv(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right // left else: raise TypeError( "Floor division can not be applied to %s and the given type." % self.pretty_name ) def rpow(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right ** left else: raise TypeError( "Exponentiation can not be applied to %s and the given type." % self.pretty_name ) def rmod(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, numbers.Number) and not isinstance(right, bool): left = left.spark.transform(lambda scol: scol.cast(as_spark_type(type(right)))) return right % left else: raise TypeError( "Modulo can not be applied to %s and the given type." % self.pretty_name ) def __and__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, IndexOpsMixin) and isinstance(right.dtype, extension_dtypes): return right.__and__(left) else: def and_func(left: Column, right: Any) -> Column: if not isinstance(right, Column): if pd.isna(right): right = SF.lit(None) else: right = SF.lit(right) scol = left & right return F.when(scol.isNull(), False).otherwise(scol) return column_op(and_func)(left, right) def __or__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: if isinstance(right, IndexOpsMixin) and isinstance(right.dtype, extension_dtypes): return right.__or__(left) else: def or_func(left: Column, right: Any) -> Column: if not isinstance(right, Column) and pd.isna(right): return SF.lit(False) else: scol = left | SF.lit(right) return F.when(left.isNull() | scol.isNull(), False).otherwise(scol) return column_op(or_func)(left, right) def astype(self, index_ops: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: dtype, spark_type = pandas_on_spark_type(dtype) if isinstance(dtype, CategoricalDtype): return _as_categorical_type(index_ops, dtype, spark_type) elif isinstance(spark_type, BooleanType): return _as_bool_type(index_ops, dtype) elif isinstance(spark_type, StringType): if isinstance(dtype, extension_dtypes): scol = F.when( index_ops.spark.column.isNotNull(), F.when(index_ops.spark.column, "True").otherwise("False"), ) else: null_str = str(None) casted = F.when(index_ops.spark.column, "True").otherwise("False") scol = F.when(index_ops.spark.column.isNull(), null_str).otherwise(casted) return index_ops._with_new_scol( scol.alias(index_ops._internal.data_spark_column_names[0]), field=InternalField(dtype=dtype), ) else: return _as_other_type(index_ops, dtype, spark_type) def neg(self, operand: IndexOpsLike) -> IndexOpsLike: return ~operand def abs(self, operand: IndexOpsLike) -> IndexOpsLike: return operand def lt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op return column_op(Column.__lt__)(left, right) def le(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op return column_op(Column.__le__)(left, right) def ge(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op return column_op(Column.__ge__)(left, right) def gt(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: from pyspark.pandas.base import column_op return column_op(Column.__gt__)(left, right) def invert(self, operand: IndexOpsLike) -> IndexOpsLike: from pyspark.pandas.base import column_op return cast(IndexOpsLike, column_op(Column.__invert__)(operand)) class BooleanExtensionOps(BooleanOps): """ The class for binary operations of pandas-on-Spark objects with spark type BooleanType, and dtype BooleanDtype. """ @property def pretty_name(self) -> str: return "booleans" def __and__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: def and_func(left: Column, right: Any) -> Column: if not isinstance(right, Column): if pd.isna(right): right = SF.lit(None) else: right = SF.lit(right) return left & right return column_op(and_func)(left, right) def __or__(self, left: IndexOpsLike, right: Any) -> SeriesOrIndex: def or_func(left: Column, right: Any) -> Column: if not isinstance(right, Column): if pd.isna(right): right = SF.lit(None) else: right = SF.lit(right) return left | right return column_op(or_func)(left, right) def restore(self, col: pd.Series) -> pd.Series: """Restore column when to_pandas.""" return col.astype(self.dtype) def neg(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary - can not be applied to %s." % self.pretty_name) def invert(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("Unary ~ can not be applied to %s." % self.pretty_name) def abs(self, operand: IndexOpsLike) -> IndexOpsLike: raise TypeError("abs() can not be applied to %s." % self.pretty_name)
apache-2.0
matthew-tucker/mne-python
examples/inverse/plot_dics_beamformer.py
18
2905
""" ===================================== Compute DICS beamfomer on evoked data ===================================== Compute a Dynamic Imaging of Coherent Sources (DICS) beamformer from single trial activity in a time-frequency window to estimate source time courses based on evoked data. The original reference for DICS is: Gross et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. PNAS (2001) vol. 98 (2) pp. 694-699 """ # Author: Roman Goj <[email protected]> # # License: BSD (3-clause) import mne import matplotlib.pyplot as plt import numpy as np from mne.io import Raw from mne.datasets import sample from mne.time_frequency import compute_epochs_csd from mne.beamformer import dics print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name subjects_dir = data_path + '/subjects' ############################################################################### # Read raw data raw = Raw(raw_fname) raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels # Set picks picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude='bads') # Read epochs event_id, tmin, tmax = 1, -0.2, 0.5 events = mne.read_events(event_fname) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, mag=4e-12)) evoked = epochs.average() # Read forward operator forward = mne.read_forward_solution(fname_fwd, surf_ori=True) # Computing the data and noise cross-spectral density matrices # The time-frequency window was chosen on the basis of spectrograms from # example time_frequency/plot_time_frequency.py data_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=0.04, tmax=0.15, fmin=6, fmax=10) noise_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=-0.11, tmax=0.0, fmin=6, fmax=10) evoked = epochs.average() # Compute DICS spatial filter and estimate source time courses on evoked data stc = dics(evoked, forward, noise_csd, data_csd) plt.figure() ts_show = -30 # show the 40 largest responses plt.plot(1e3 * stc.times, stc.data[np.argsort(stc.data.max(axis=1))[ts_show:]].T) plt.xlabel('Time (ms)') plt.ylabel('DICS value') plt.title('DICS time course of the 30 largest sources.') plt.show() # Plot brain in 3D with PySurfer if available brain = stc.plot(hemi='rh', subjects_dir=subjects_dir) brain.set_data_time_index(180) brain.show_view('lateral') # Uncomment to save image # brain.save_image('DICS_map.png')
bsd-3-clause
manu3618/legendary-potato
src/legendary_potato/classifiers.py
1
19414
# coding: utf-8 """ Classifiers. Based on sklearn doc: "http://scikit-learn.org/dev/developers/contributing.html\ #rolling-your-own-estimator" """ from itertools import product import numpy as np import pandas as pd from scipy.optimize import LinearConstraint, minimize from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_is_fitted from .methods import KernelMethod def multiclass2one_vs_all(labels, first_class=1): """Transform multiclas label to 2 class labels Params: labels (array-like): list of labels first_class: label considered as not the rest Returns: (list) list of labels containing only 1/-1 """ if first_class not in labels: first_class = labels[0] return [1 if elt == first_class else -1 for elt in labels] class SVDD(BaseEstimator, ClassifierMixin, KernelMethod): """Implement Support Vector DataDescription .. math:: \\begin{cases} min_{r, c} & r^2 - C \\sum_t \\xi_t \\\\ s.t & y_i \\| \\phi(x_i) -c \\| < r^2 + xi_i \\forall i \\\\ & \\xi_i > 0 \\forall i \\\\ \\end{cases} """ def __init__(self, kernel_matrix=None, kernel=None, C=1): """Initialize some parameters. Those parameters may be overwritten by the fit() method. """ self.kernel_matrix = kernel_matrix # kernel matrix used for training if kernel is None: self.kernel = np.dot else: self.kernel = kernel self.C = C self.string_labels = False # are labels strings or int? self.hypersphere_nb = 1 self.trained_on_sample = True # use directly kernel matrix or sample? def fit(self, X, y=None, C=None, kernel=None, is_kernel_matrix=False): """Fit the classifier. Args: X: training samples. y: training labels. If None, consider all samples belongs to the same class (labeled "1"). C (numeric): contraint in the soft margin case. If None or zero, then fall back to hard margin case. kernel (fun): kernel method to use. (default: linear) is_kernel_matrix (bool): if True, the input is treated as a kernel matrix. """ # X, y = check_X_y(X, y) # TODO: add check method for X self._classifier_checks(X, y, C, kernel, is_kernel_matrix) if len(self.classes_) > 2 or ( len(self.classes_) == 2 and self.string_labels ): # each class has its own hypersphere (one class vs rest) self.hypersphere_nb = len(self.classes_) self.individual_svdd = {} for cl in self.classes_: # TODO: multithread/asyncio cl_svdd = SVDD( kernel_matrix=self.kernel_matrix, kernel=self.kernel, C=self.C, ) cl_y = [1 if elt == cl else -1 for elt in y] cl_svdd.fit(X, cl_y, C, kernel, is_kernel_matrix) self.individual_svdd[cl] = cl_svdd self.y_ = y self.alphas_ = np.array([0]) self.radius_ = 0 else: # one hypersphere self.y_ = np.sign(y) self.radius_, self.alphas_ = self._fit_one_hypersphere() return self def predict(self, X, decision_radius=1): """Predict classes Args: X (array like): list of test samples. decision_radius (numeric): modification of decision radius. The frontier between classes will be the computed hypersphere whose radius is multiply by this factor. """ check_is_fitted(self, ["X_", "alphas_"]) # X = check_array(X) if self.hypersphere_nb == 1: return self._predict_one_hypersphere(X, decision_radius) else: # check class dist_classes = self.relative_dist_all_centers(X) return np.array(dist_classes.idxmin(axis=1)) def fit_predict(self, X, y, C=None, kernel=None, is_kernel_matrix=False): """Fit as the fit() methods. Returns: (array) : class for each training sample. """ self.fit(X, y, C, kernel, is_kernel_matrix) self.predict(X) def _predict_one_hypersphere(self, X=None, decision_radius=1): """Compute results for one hypersphere Args: decision_radius (numeric): modification of decision radius. The frontier between classes will be the computed hypersphere whose radius is multiply by this factor. Returns: (np.array) """ pred = self._dist_center(X) * decision_radius / self.radius_ - 1 ret = np.sign(pred).reshape(-1) return list(map(lambda x: 1 if x == 0 else x, ret)) def decision_function(self, X): """Generic decision value. Args: X (array-like): list of sample """ return self._dist_center(X) / self.radius_ def _dist_center(self, X=None): """Compute ditance to class center. Args: X (array-like): list of input vectors. If None, use the train set. Distance to center: .. math:: \\| z - c \\|^2 = \\|z\\|^2 - 2 K(z, c) + \\|c\\|^2 c = \\sum_t \\alpha_t \\phi(X_t) """ if not self.hypersphere_nb == 1: raise RuntimeWarning("Not available for multiclass SVDD") check_is_fitted(self, ["X_", "alphas_"]) dim = len(self.alphas_) if X is None: # return distances for training set square_dists = [ self.kernel_matrix[i, i] - 2 * sum( self.alphas_[t] * self.kernel_matrix[i, t] for t in range(dim) ) + sum( self.alphas_[t] * self.alphas_[s] * self.kernel_matrix[s, t] for s in range(dim) for t in range(dim) ) for i in range(dim) ] else: # return distances for vector X square_dists = [ self.kernel(z, z) - 2 * sum( self.alphas_[t] * self.kernel(self.X_[t], z) for t in range(dim) ) + sum( self.alphas_[s] * self.alphas_[t] * self.kernel(self.X_[t], self.X_[s]) for s in range(dim) for t in range(dim) ) for z in X ] return np.sqrt(square_dists) def _fit_one_hypersphere(self, y=None, class1=1, class2=-1): """Perform actual fit process * compute alphas * compute support vectors * recompute minimal kernel matrix """ if y is None: y = self.y_ dim = len(self.X_) alphas = [1 / dim] * dim C = self.C upper = C * np.ones(dim) one = np.array([1]) # TODO: test other solver # https://pypi.org/project/quadprog/ # http://cvxopt.org/r def ell_d(al): """Dual function to minimize. function to maximize: .. maths:: L_D = \\alpha diag(K)^T - \\alpha K \\alpha^T L_D = \\sum_s \\alpha_s K<x_s, x_s> - \\sum_s \\sum_t \\alpha_s \\alpha_t K(x_s, x_t) """ ay = al * y return -( np.mat(ay).dot(np.diag(self.kernel_matrix)) - np.mat(ay).dot(self.kernel_matrix).dot(np.mat(ay).T) ) cons = [ # \forall i 0 \leq \alpha[i] \leq C LinearConstraint(A=np.identity(dim), lb=np.zeros(dim), ub=upper), # \sum_i \alpha[i] = 1 LinearConstraint(A=np.ones(dim), lb=one, ub=one), ] # TODO: asyncio predicted_alphas = minimize( ell_d, alphas, constraints=cons, options={"maxiter": 10000} ) if not predicted_alphas.success: raise RuntimeError(predicted_alphas.message) alphas = predicted_alphas.x # nullify almost null alphas: alphas = list(map(lambda x: 0 if np.isclose(x, 0) else x, alphas)) # support vectors: 0 < alphas <= C support_vectors = set.intersection( set(np.where(np.less_equal(alphas, C))[0]), set(np.nonzero(alphas)[0]), ) self.support_vectors_ = self.support_vectors_.union(support_vectors) if len(self.support_vectors_) < 2: radius = np.min( self.distance_matrix() + np.diag([C for _ in range(dim)]) ) else: # mean distance to support vectors radius = np.mean( [ self.dist_center_training_sample(r, alphas) for r in self.support_vectors_ ] ) return radius, np.array(alphas) def dist_all_centers(self, X=None): """Return distance to each class center. """ if self.hypersphere_nb > 1: dist_classes = { cl: svdd._dist_center(X) for cl, svdd in self.individual_svdd.items() } else: dist_classes = {1: self._dist_center(X)} return pd.DataFrame(dist_classes) def relative_dist_all_centers(self, X=None): """Distane to all centers divided by class radius. """ if self.hypersphere_nb > 1: dist_classes = { cl: svdd._dist_center(X) / svdd.radius_ for cl, svdd in self.individual_svdd.items() } else: dist_classes = {1: self._dist_center(X) / self.radius_} return pd.DataFrame(dist_classes) def dist_center_training_sample(self, r, alphas=None, cl=None): """Distance from vector #r to center. Args: r (int): rank of the vector alphas (array): list of alphas cl : class whose center will be used. """ if cl is None: cl = 1 if alphas is None: if len(self.classes_) > 1: alphas = alphas[cl] else: alphas = self.alphas K = self.kernel_matrix n = K.shape[0] # dist: # K_(r, r) # - 2 \sum_t \alpha_t \K_(r ,t) # + \sum_s\sum_t \alpha_s \alpha_t K_(r, t) return sum( [ K[r, r], -2 * sum(alphas[t] * K[r, t] for t in range(n)), sum( alphas[s] * alphas[t] * K[r, t] for s, t in product(range(n), range(n)) ), ] ) def _center_one_class(self, mapping): """Compute hypersphere center. Args: mapping (fun): feature map. Default to identity (consistent with default kernel function) """ check_is_fitted(self, ["X_", "alphas_"]) if not self.trained_on_sample: raise RuntimeError("No access to initial vectors") center = np.sum( [ self.alphas_[i] * np.array(mapping(self.X_[i])) for i in range(len(self.X_)) ], axis=0, ) return center def center(self, mapping=lambda x: x): """Compute center coordonates. Args: mapping (fun): feature map. Default to identity (consistent with default kernel function) """ if self.hypersphere_nb > 1: return { cl: svdd._center_one_class(mapping) for cl, svdd in self.individual_svdd.items() } else: return {1: self._center_one_class(mapping)} class SVM(BaseEstimator, ClassifierMixin, KernelMethod): """Implement Support Vector Machine .. math:: \\begin{cases} min_{w, w_0, \\xi} & \\frac{1}{2} \\|w\\|^2 - C \\sum_t \\xi_t \\\\ s.t & y_t K(w, x_t) + w_0 > 1 - \\xi_t \\forall t \\\\ & \\xi_t > 0 \\forall t \\\\ \\end{cases} """ # TODO: multiclass: implement 1 set of alphas per class # {class: [alphas], } def __init__(self, kernel_matrix=None, kernel=None, C=1): self.kernel_matrix = kernel_matrix # kernel matrix used for training if kernel is None: self.kernel = np.dot else: self.kernel = kernel self.C = C self.string_labels = False # are labels strings or int? self.trained_on_sample = True # use directly kernel matrix or sample? def fit(self, X, y=None, C=None, kernel=None, is_kernel_matrix=False): """Fit the classifier. Args: X: training samples. y: training labels. If None, consider all samples belongs to the same class (labeled "1"). C (numeric): contraint in the soft margin case. If None or zero, then fall back to hard margin case. kernel (fun): kernel method to use. (default: linear) is_kernel_matrix (bool): if True, the input is treated as a kernel matrix. The optimisation problem is .. math:: \\begin{cases} min_{\\alpha} & \\frac{1}{2} \\alpha^T K \\alpha - \\alpha^T ones \\\\ s.t & 0 \\leq \\alpha_t < C \\forall t \\\\ & (0 \\leq I alpha \\leq C I) \\\\ & \\alpha^T diag(Y) = 0 \\end{cases} The generic QP problem is .. math:: \\begin{cases} min_x & \\frac{1}{2} x^T.P.x + q^T.x \\\\ s.t & G.x \\leq h \\\\ & A.x = b \\end{cases} In this SVM case: .. math:: G = \\begin{pmatrix} -1 & & & 1 & & \\\\ & \\ddots & & & \\ddots & \\\\ & & -1 & & & 1 \\end{pmatrix} .. math:: h = \\begin{pmatrix} 0 \\\\ \\vdots \\\\ 0 \\\\ C \\\\ \\vdots \\\\ C \\end{pmatrix} .. math:: A = \\begin{pmatrix} y_1 & \\hdots & y_n \\end{pmatrix} .. math:: b = 0 """ self._classifier_checks(X, y, C, kernel, is_kernel_matrix) self.y_ = y if len(self.classes_) > 2 or isinstance(y[0], str): self.individual_svm = {} for label in self.classes_: self.individual_svm[label] = self._fit_two_classes( X, multiclass2one_vs_all(y, label), C, kernel, is_kernel_matrix, ) return self.individual_svm[self.y_[0]] self.y_ = multiclass2one_vs_all(y) if len(set(self.y_)) < 2: # One class SVM # TODO raise NotImplementedError("One class SVM not implemeted.") return self._fit_two_classes(X, self.y_, C, kernel, is_kernel_matrix) def _fit_two_classes(self, X, y, C, kernel, is_kernel_matrix): # TODO test other solver # # G = np.hstack([-1 * np.identity(dim), np.identity(dim)]) # h = np.matrix( # np.hstack([np.zeros(dim), C * np.ones(dim)]) # ).transpose() # A = np.matrix(self.y) C = self.C dim = len(self.X_) alphas = [1 / dim] * dim # warm start def ell_d(x): """Function to minimize. """ x = np.array(x).transpose() return 1 / 2 * float( x.transpose().dot(self.kernel_matrix).dot(x) ) - float(np.ones(dim).dot(x)) cons = [ LinearConstraint( A=np.identity(dim), lb=np.zeros(dim), ub=C * np.ones(dim) ), LinearConstraint(A=y, lb=np.array([0]), ub=np.array([0])), ] predicted_alphas = minimize( ell_d, alphas, constraints=cons, options={"maxiter": 10000} ) if not predicted_alphas.success: raise RuntimeError(predicted_alphas.message) alphas = predicted_alphas.x # nullify almost null alphas: alphas = list(map(lambda x: 0 if np.isclose(x, 0) else x, alphas)) self.alphas_ = alphas # support vectors: 0 < alphas <= C support_vectors = set.intersection( set(np.where(np.less_equal(alphas, C))[0]), set(np.nonzero(alphas)[0]), ) self.support_vectors_ = self.support_vectors_.union(support_vectors) w0 = np.mean( [ 1 - np.sum( [ y[t] * alphas[t] * self.kernel_matrix[i, t] for t in range(dim) ] ) for i in support_vectors ] ) self.w0 = w0 return {"alphas": np.array(alphas), "w0": w0} def predict(self, X=None, decision_value=0): """Predict classes Args: X (array like): list of test samples. decision_value (numeric): decision value """ check_is_fitted(self, ["X_", "alphas_"]) if X is None: X = self.X_ if hasattr(self, "individual_svm"): # mmulticlass results = self._dist_hyperplane_multiclass(X) return results.transpose().idxmax() else: return [np.sign(self._dist_hyperplane(x)) for x in X] def _dist_hyperplane(self, x, label=None): if label is None: # One hyperplane check_is_fitted(self, ["X_", "alphas_"]) alphas = self.alphas_ y = self.y_ w0 = self.w0 else: params = self.individual_svm[label] alphas = params["alphas"] w0 = params["w0"] y = multiclass2one_vs_all(self.y_, label) return ( sum( [ alphas[i] * y[i] * self.kernel(x, self.X_[i]) for i in range(len(alphas)) ] ) + w0 ) def _dist_hyperplane_multiclass(self, X): res = { lab: [self._dist_hyperplane(x, lab) for x in X] for lab, res in self.individual_svm.items() } return pd.DataFrame(res) def fit_predict(self, X, y, C=1, kernel=None, is_kernel_matrix=False): """Fit as the fit() methods. Returns: (array) : class for each training sample. """ self.fit(X, y, C, kernel, is_kernel_matrix) self.predict(X) def decision_function(self, X): """Generic decision value. Args: X (array-like): list of samples """ return [self._dist_hyperplane(s) for s in X]
mit
SCECcode/BBP
bbp/utils/batch/combine_dist_gof_gen.py
1
9736
#!/usr/bin/env python """ Copyright 2010-2017 University Of Southern California Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This program created a distance-based GOF, combining information from all realizations into a single plot. """ # Import Python modules import os import glob import optparse import matplotlib if (matplotlib.get_backend() != 'agg'): matplotlib.use('Agg') # Disables use of Tk/X11 #import matplotlib.colors as mcolors #import matplotlib.cm as cm #from matplotlib.ticker import FormatStrFormatter import pylab import numpy # Import Broadband modules import plot_config import bband_utils # Constants MIN_Y_AXIS = -1.75 MAX_Y_AXIS = 1.75 DIST_PERIODS = [0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0] # -------------------------------------------------------------------------- # Functions # -------------------------------------------------------------------------- def combine_realization_data(tmpdir, period): """ This function reads the resid files from all realizations and returns the combined data set """ data = {} realizations = sorted(os.listdir(tmpdir)) for realization in realizations: basedir = os.path.join(tmpdir, realization) resid_file = glob.glob("%s%s*-resid-%.3f-rotd50.txt" % (basedir, os.sep, period)) if len(resid_file) != 1: raise bband_utils.ProcessingError("Residuals file not found for " "realization %s!" % (realization)) resid_file = resid_file[0] input_file = open(resid_file, 'r') for line in input_file: line = line.strip() # Skip comments and empty lines if line.startswith("#") or line.startswith("%") or not line: continue pieces = line.split() # Make sure we have enough tokens if len(pieces) != 2: continue # Convert to floats pieces = [float(piece) for piece in pieces] dist = pieces[0] val = pieces[1] if dist in data: data[dist].append(val) else: data[dist] = [val] input_file.close() # Ok, processed all realizations, now combine the data sta_dist_data = [] sta_min_data = [] sta_max_data = [] sta_resid_data = [] for item in data: sta_dist_data.append(item) sta_min_data.append(numpy.std(data[item])) sta_max_data.append(numpy.std(data[item])) sta_resid_data.append(numpy.mean(data[item])) # Return the data we found return sta_dist_data, sta_min_data, sta_max_data, sta_resid_data def plot_combined_dist_gof(indir, outdir, codebase): """ This function reads data from the residuals files from multiple realizations and plots a dist gof plot with a number of periods """ # Capture number of realizations and event label num_realizations = len(os.listdir(indir)) basedir = os.path.join(indir, os.listdir(indir)[0]) resid_file = glob.glob("%s%s*-resid-%.3f-rotd50.txt" % (basedir, os.sep, DIST_PERIODS[0]))[0] event_label = os.path.basename(resid_file).split("-")[0] # Collect all the data from the residuals file all_sta_dist_data = [] all_sta_min_data = [] all_sta_max_data = [] all_sta_resid_data = [] for period in DIST_PERIODS: (sta_dist_data, sta_min_data, sta_max_data, sta_resid_data) = combine_realization_data(indir, period) all_sta_dist_data.append(sta_dist_data) all_sta_min_data.append(sta_min_data) all_sta_max_data.append(sta_max_data) all_sta_resid_data.append(sta_resid_data) # Now create the dist GOFs outfile = os.path.join(outdir, "gof-dist-linear-combined-%s-%s-rotd50.png" % (codebase, event_label)) create_combined_dist_gof(all_sta_resid_data, all_sta_dist_data, all_sta_min_data, all_sta_max_data, event_label, num_realizations, codebase, outfile) outfile = os.path.join(outdir, "gof-dist-log-combined-%s-%s-rotd50.png" % (codebase, event_label)) create_combined_dist_gof(all_sta_resid_data, all_sta_dist_data, all_sta_min_data, all_sta_max_data, event_label, num_realizations, codebase, outfile, log_scale=True) def create_combined_dist_gof(all_sta_resid_data, all_sta_dist_data, all_sta_min_data, all_sta_max_data, event_label, num_realizations, codebase, outfile, log_scale=False): """ Creates a combined gof dist plot for all the data and distances provided """ plottitle = ("GOF Comparison for %s\n%d Realizations\n%s Method" % (event_label, num_realizations, codebase.upper())) # Create figure num_plots = len(DIST_PERIODS) if len(DIST_PERIODS) % 2: num_plots = num_plots + 1 num_columns = num_plots / 2 fig, axs = pylab.plt.subplots(2, num_columns) fig.set_size_inches(18, 8) fig.subplots_adjust(left = 0.05, right = 0.95, top = 0.86, bottom = 0.06) # Find max, min values for x_axis if log_scale: min_x = 1 else: min_x = 0 max_x = 0 for dist in all_sta_dist_data: # Check if not empty if len(dist): max_x = max(max_x, max(dist)) # If no data, set it to 90 (will get rounded to 100) if max_x == 0: max_x = 90 # Round to the next 10' max_x = max_x + (10 - (max_x % 10)) if log_scale and max_x > 100: # Round to the next 100' max_x = max_x + (100 - (max_x % 100)) # y-axis is fixed min_y = MIN_Y_AXIS max_y = MAX_Y_AXIS # Convert to list subfigs = [] for y_subplot in range(0, 2): for x_subplot in range(0, num_columns): subfigs.append(axs[y_subplot, x_subplot]) # Good, now walk through each subfig for (subfig, sta_dist_data, sta_min_data, sta_max_data, sta_resid_data, period) in zip(subfigs, all_sta_dist_data, all_sta_min_data, all_sta_max_data, all_sta_resid_data, DIST_PERIODS): # sta_min_data = [abs(x - y) for x, y in zip(sta_resid_data, # sta_min_data)] # sta_max_data = [abs(x - y) for x, y in zip(sta_resid_data, # sta_max_data)] subfig.set_xlim(min_x, max_x) subfig.set_ylim(min_y, max_y) subfig.set_title("Period = %.3f s" % (period), size=8) if DIST_PERIODS.index(period) % num_columns == 0: subfig.set_ylabel("ln (data/model)", size=8) subfig.tick_params(labelsize=8) # subfig.plot(sta_dist_data, sta_resid_data, 'o', color='black', # label='_nolegend_') subfig.errorbar(sta_dist_data, sta_resid_data, yerr=[sta_min_data, sta_max_data], fmt='o', color='black', ecolor='grey', label='_nolegend_') subfig.plot([min_x, max_x], [0.0, 0.0], color='grey', label='_nolegend_') if log_scale: subfig.set_xscale('log') # Only add label to last row if DIST_PERIODS.index(period) >= (2 * num_columns) / 2: subfig.set_xlabel("Distance (km)", size=8) fig.suptitle('%s' % (plottitle), size=12) print "Saving dist GoF plot to %s" % (outfile) fig.savefig(outfile, format="png", transparent=False, dpi=plot_config.dpi) # -------------------------------------------------------------------------- # Main # -------------------------------------------------------------------------- PARSER = optparse.OptionParser() PARSER.add_option("-d", "--dir", dest="input_dir", help="Input directory containing simulation results") PARSER.add_option("-o", "--output_dir", dest="output_dir", help="Output file") PARSER.add_option("-c", "--codebase", dest="codebase", help="Method used for the simulation") (OPTIONS, ARGS) = PARSER.parse_args() if OPTIONS.input_dir is None: PARSER.error("Please specify the input directory!") TOP_INPUT_DIR = OPTIONS.input_dir if not os.path.isdir(TOP_INPUT_DIR): PARSER.error("Invalid input directory!") if not "Sims" in os.listdir(TOP_INPUT_DIR): PARSER.error("Please provide the top-level simulation directory!\n" "This is the directory given to the cluster script") INPUT_OUTDIR = os.path.join(TOP_INPUT_DIR, "Sims" , "outdata") if OPTIONS.output_dir is None: PARSER.error("error specify output directory!") else: OUTPUT_DIR = OPTIONS.output_dir if not os.path.isdir(OUTPUT_DIR): PARSER.error("Invalid output directory!") if OPTIONS.codebase is None: PARSER.error("Please specify codebase!") # Create combined dist gof plot plot_combined_dist_gof(INPUT_OUTDIR, OUTPUT_DIR, OPTIONS.codebase) # All done! print "All Done!"
apache-2.0
abhishekkrthakur/scikit-learn
sklearn/metrics/pairwise.py
10
41636
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs={}): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ========== X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ======= argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also ======== sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances, } def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=True) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
LohithBlaze/scikit-learn
sklearn/naive_bayes.py
128
28358
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <[email protected]> # Minor fixes by Fabian Pedregosa # Amit Aides <[email protected]> # Yehuda Finkelstein <[email protected]> # Lars Buitinck <[email protected]> # Jan Hendrik Metzen <[email protected]> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array from .utils.extmath import safe_sparse_dot, logsumexp from .utils.multiclass import _check_partial_fit_first_call from .utils.fixes import in1d from .utils.validation import check_is_fitted from .externals import six __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB'] class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape [n_classes, n_samples]. Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X """ jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via `partial_fit` method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Attributes ---------- class_prior_ : array, shape (n_classes,) probability of each class. class_count_ : array, shape (n_classes,) number of training samples observed in each class. theta_ : array, shape (n_classes, n_features) mean of each feature per class sigma_ : array, shape (n_classes, n_features) variance of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB() >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like, shape (number of Gaussians,) Means for Gaussians in original set. var : array-like, shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like, shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like, shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight / n_new) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight / n_new) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_past / float(n_new * n_total)) * (n_new * mu - n_new * new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit: bool If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) epsilon = 1e-9 if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_prior_ = np.zeros(n_classes) self.class_count_ = np.zeros(n_classes) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= epsilon classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += epsilon self.class_prior_[:] = self.class_count_ / np.sum(self.class_count_) return self def _joint_log_likelihood(self, X): check_is_fitted(self, "classes_") X = check_array(X) joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood class BaseDiscreteNB(BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per BaseNB """ def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: # empirical prior, with sample_weight taken into account self.class_log_prior_ = (np.log(self.class_count_) - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. classes : array-like, shape = [n_classes] List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) elif n_features != self.coef_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.coef_.shape[-1])) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_samples, n_classes = Y.shape if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self # XXX The following is a stopgap measure; we need to set the dimensions # of class_log_prior_ and feature_log_prob_ correctly. def _get_coef(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) def _get_intercept(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) coef_ = property(_get_coef) intercept_ = property(_get_intercept) class MultinomialNB(BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape (n_classes, ) Smoothed empirical log probability for each class. intercept_ : property Mirrors ``class_log_prior_`` for interpreting MultinomialNB as a linear model. feature_log_prob_ : array, shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. coef_ : property Mirrors ``feature_log_prob_`` for interpreting MultinomialNB as a linear model. class_count_ : array, shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if np.any((X.data if issparse(X) else X) < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class BernoulliNB(BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, optional Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size=[n_classes,] Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape = [n_classes] Log probability of each class (smoothed). feature_log_prob_ : array, shape = [n_classes, n_features] Empirical log probability of features given a class, P(x_i|y). class_count_ : array, shape = [n_classes] Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape = [n_classes, n_features] Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ def __init__(self, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if self.binarize is not None: X = binarize(X, threshold=self.binarize) self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = self.class_count_ + self.alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') if self.binarize is not None: X = binarize(X, threshold=self.binarize) n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll
bsd-3-clause
ihc/futhark
tools/benchmark-performance-plot.py
3
3759
#!/usr/bin/env python import numpy as np import sys import json import re import subprocess import datetime import matplotlib matplotlib.use('Agg') # For headless use import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import os _, results_dir, machine, benchmark, plotfile = sys.argv def compute_commit_timestamps(): log = subprocess.check_output(['git', 'log', '--pretty=format:%H %at']) result = {} for line in log.split('\n'): commit,timestamp = line.split(' ') result[commit] = int(timestamp) return result def remove_nones(l): return filter(lambda x: x is not None, l) commit_timestamps = compute_commit_timestamps() def cut_desc(s): if s[0] == '#': return s.split(' ')[0] else: return s def extract_result(filename): match = re.search('^{}-([a-f0-9]+).json$'.format(machine), filename) if match: commit=match.group(1) results = json.load(open(results_dir + '/' + filename)) try: benchmark_results = results['futhark-benchmarks/'+benchmark] def get_runtime(r): for dataset in r: if type(r[dataset]) is dict: return np.mean(r[dataset]['runtimes']) runtimes={} for dataset in benchmark_results['datasets']: if type(benchmark_results['datasets'][dataset]) is dict: runtimes[cut_desc(dataset)] = np.mean(benchmark_results['datasets'][dataset]['runtimes']) return {'timestamp': commit_timestamps[commit], 'commit': commit, 'runtimes': runtimes} except: return None results = remove_nones(map (extract_result, os.listdir(results_dir))) results.sort(key=lambda x: x['timestamp']) if len(results) == 0: sys.exit('No results found for benchmark {}.'.format(benchmark)) best = {} def from_unixtime(timestamp): return datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d') for r in results: time = from_unixtime(r['timestamp']) for dataset in r['runtimes']: if dataset not in best or r['runtimes'][dataset] < best[dataset]['runtime']: best[dataset] = {'runtime': r['runtimes'][dataset], 'timestamp': r['timestamp'], 'commit': r['commit'] } print r['commit'], dataset, time, r['runtimes'][dataset] for dataset in sorted(best.keys()): best_time = from_unixtime(best[dataset]['timestamp']) print 'Dataset {} best: {} {} {}'.format(dataset, best_time, best[dataset]['commit'], best[dataset]['runtime']) def make_xticks(results): times = np.array(map(lambda x: from_unixtime(x['timestamp']), results)) return times[np.arange(0,len(times),len(times)/10)] fig, ax = plt.subplots() ax.set_title(benchmark) ax.set_ylabel('Slowdown compared to fastest') for dataset in sorted(best.keys()): best_runtime=best[dataset]['runtime'] xs=[] ys=[] i = 0 for r in results: if dataset in r['runtimes']: xs += [i] ys += [r['runtimes'][dataset]/best_runtime] i += 1 ax.plot(xs, ys, label=dataset) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) grey='#aaaaaa' xticks=make_xticks(results) ax.set_yscale('log') ax.set_ylim(ymin=0.9,ymax=3) ax.yaxis.grid(color=grey,zorder=0) ax.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax.yaxis.set_minor_formatter(FormatStrFormatter('')) ax.set_yticks(np.arange(0.9,3,0.1)) ax.set_xticks(1+np.arange(len(xticks))*(len(results)/10)) ax.set_xticklabels(xticks, rotation=-45) plt.rc('text') plt.savefig(plotfile, bbox_inches='tight')
isc
GrimDerp/numpy
numpy/fft/fftpack.py
72
45497
""" Discrete Fourier Transforms Routines in this module: fft(a, n=None, axis=-1) ifft(a, n=None, axis=-1) rfft(a, n=None, axis=-1) irfft(a, n=None, axis=-1) hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) fftn(a, s=None, axes=None) ifftn(a, s=None, axes=None) rfftn(a, s=None, axes=None) irfftn(a, s=None, axes=None) fft2(a, s=None, axes=(-2,-1)) ifft2(a, s=None, axes=(-2, -1)) rfft2(a, s=None, axes=(-2,-1)) irfft2(a, s=None, axes=(-2, -1)) i = inverse transform r = transform of purely real data h = Hermite transform n = n-dimensional transform 2 = 2-dimensional transform (Note: 2D routines are just nD routines with different default behavior.) The underlying code for these functions is an f2c-translated and modified version of the FFTPACK routines. """ from __future__ import division, absolute_import, print_function __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] from numpy.core import (array, asarray, zeros, swapaxes, shape, conjugate, take, sqrt) from . import fftpack_lite as fftpack _fft_cache = {} _real_fft_cache = {} def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, work_function=fftpack.cfftf, fft_cache=_fft_cache): a = asarray(a) if n is None: n = a.shape[axis] if n < 1: raise ValueError("Invalid number of FFT data points (%d) specified." % n) try: # Thread-safety note: We rely on list.pop() here to atomically # retrieve-and-remove a wsave from the cache. This ensures that no # other thread can get the same wsave while we're using it. wsave = fft_cache.setdefault(n, []).pop() except (IndexError): wsave = init_function(n) if a.shape[axis] != n: s = list(a.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0, n) a = a[index] else: index = [slice(None)]*len(s) index[axis] = slice(0, s[axis]) s[axis] = n z = zeros(s, a.dtype.char) z[index] = a a = z if axis != -1: a = swapaxes(a, axis, -1) r = work_function(a, wsave) if axis != -1: r = swapaxes(r, axis, -1) # As soon as we put wsave back into the cache, another thread could pick it # up and start using it, so we must not do this until after we're # completely done using it ourselves. fft_cache[n].append(wsave) return r def _unitary(norm): if norm not in (None, "ortho"): raise ValueError("Invalid norm value %s, should be None or \"ortho\"." % norm) return norm is not None def fft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ a = asarray(a).astype(complex) if n is None: n = a.shape[axis] output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) if _unitary(norm): output *= 1 / sqrt(n) return output def ifft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., ``a[0]`` should contain the zero frequency term, ``a[1:n/2+1]`` should contain the positive-frequency terms, and ``a[n/2+1:]`` should contain the negative-frequency terms, in order of decreasingly negative frequency. See `numpy.fft` for details. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at 0x...> >>> plt.show() """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) return output * (1 / (sqrt(n) if unitary else n)) def rfft(a, n=None, axis=-1, norm=None): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, _real_fft_cache) if _unitary(norm): output *= 1 / sqrt(a.shape[axis]) return output def irfft(a, n=None, axis=-1, norm=None): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, _real_fft_cache) return output * (1 / (sqrt(n) if unitary else n)) def hfft(a, n=None, axis=-1, norm=None): """ Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n) def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = conjugate(rfft(a, n, axis)) return output * (1 / (sqrt(n) if unitary else n)) def _cook_nd_args(a, s=None, axes=None, invreal=0): if s is None: shapeless = 1 if axes is None: s = list(a.shape) else: s = take(a.shape, axes) else: shapeless = 0 s = list(s) if axes is None: axes = list(range(-len(s), 0)) if len(s) != len(axes): raise ValueError("Shape and axes have different lengths.") if invreal and shapeless: s[-1] = (a.shape[axes[-1]] - 1) * 2 return s, axes def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None): a = asarray(a) s, axes = _cook_nd_args(a, s, axes) itl = list(range(len(axes))) itl.reverse() for ii in itl: a = function(a, n=s[ii], axis=axes[ii], norm=norm) return a def fftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, fft, norm) def ifftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, ifft, norm) def fft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]]) """ return _raw_fftnd(a, s, axes, fft, norm) def ifft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a, s, axes, ifft, norm) def rfftn(a, s=None, axes=None, norm=None): """ Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) s, axes = _cook_nd_args(a, s, axes) a = rfft(a, s[-1], axes[-1], norm) for ii in range(len(axes)-1): a = fft(a, s[ii], axes[ii], norm) return a def rfft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`. """ return rfftn(a, s, axes, norm) def irfftn(a, s=None, axes=None, norm=None): """ Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) s, axes = _cook_nd_args(a, s, axes, invreal=1) for ii in range(len(axes)-1): a = ifft(a, s[ii], axes[ii], norm) a = irfft(a, s[-1], axes[-1], norm) return a def irfft2(a, s=None, axes=(-2, -1), norm=None): """ Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`. """ return irfftn(a, s, axes, norm)
bsd-3-clause
ndingwall/scikit-learn
sklearn/ensemble/_hist_gradient_boosting/tests/test_splitting.py
10
31920
import numpy as np import pytest from numpy.testing import assert_array_equal from sklearn.ensemble._hist_gradient_boosting.common import HISTOGRAM_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import X_BINNED_DTYPE from sklearn.ensemble._hist_gradient_boosting.common import MonotonicConstraint from sklearn.ensemble._hist_gradient_boosting.splitting import ( Splitter, compute_node_value ) from sklearn.ensemble._hist_gradient_boosting.histogram import HistogramBuilder from sklearn.utils._testing import skip_if_32bit @pytest.mark.parametrize('n_bins', [3, 32, 256]) def test_histogram_split(n_bins): rng = np.random.RandomState(42) feature_idx = 0 l2_regularization = 0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. X_binned = np.asfortranarray( rng.randint(0, n_bins - 1, size=(int(1e4), 1)), dtype=X_BINNED_DTYPE) binned_feature = X_binned.T[feature_idx] sample_indices = np.arange(binned_feature.shape[0], dtype=np.uint32) ordered_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE) all_hessians = ordered_hessians sum_hessians = all_hessians.sum() hessians_are_constant = False for true_bin in range(1, n_bins - 2): for sign in [-1, 1]: ordered_gradients = np.full_like(binned_feature, sign, dtype=G_H_DTYPE) ordered_gradients[binned_feature <= true_bin] *= -1 all_gradients = ordered_gradients sum_gradients = all_gradients.sum() builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) split_info = splitter.find_node_split( sample_indices.shape[0], histograms, sum_gradients, sum_hessians, value) assert split_info.bin_idx == true_bin assert split_info.gain >= 0 assert split_info.feature_idx == feature_idx assert (split_info.n_samples_left + split_info.n_samples_right == sample_indices.shape[0]) # Constant hessian: 1. per sample. assert split_info.n_samples_left == split_info.sum_hessian_left @skip_if_32bit @pytest.mark.parametrize('constant_hessian', [True, False]) def test_gradient_and_hessian_sanity(constant_hessian): # This test checks that the values of gradients and hessians are # consistent in different places: # - in split_info: si.sum_gradient_left + si.sum_gradient_right must be # equal to the gradient at the node. Same for hessians. # - in the histograms: summing 'sum_gradients' over the bins must be # constant across all features, and those sums must be equal to the # node's gradient. Same for hessians. rng = np.random.RandomState(42) n_bins = 10 n_features = 20 n_samples = 500 l2_regularization = 0. min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. X_binned = rng.randint(0, n_bins, size=(n_samples, n_features), dtype=X_BINNED_DTYPE) X_binned = np.asfortranarray(X_binned) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.randn(n_samples).astype(G_H_DTYPE) sum_gradients = all_gradients.sum() if constant_hessian: all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_hessians = 1 * n_samples else: all_hessians = rng.lognormal(size=n_samples).astype(G_H_DTYPE) sum_hessians = all_hessians.sum() builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, constant_hessian) n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, constant_hessian) hists_parent = builder.compute_histograms_brute(sample_indices) value_parent = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) si_parent = splitter.find_node_split(n_samples, hists_parent, sum_gradients, sum_hessians, value_parent) sample_indices_left, sample_indices_right, _ = splitter.split_indices( si_parent, sample_indices) hists_left = builder.compute_histograms_brute(sample_indices_left) value_left = compute_node_value(si_parent.sum_gradient_left, si_parent.sum_hessian_left, -np.inf, np.inf, l2_regularization) hists_right = builder.compute_histograms_brute(sample_indices_right) value_right = compute_node_value(si_parent.sum_gradient_right, si_parent.sum_hessian_right, -np.inf, np.inf, l2_regularization) si_left = splitter.find_node_split(n_samples, hists_left, si_parent.sum_gradient_left, si_parent.sum_hessian_left, value_left) si_right = splitter.find_node_split(n_samples, hists_right, si_parent.sum_gradient_right, si_parent.sum_hessian_right, value_right) # make sure that si.sum_gradient_left + si.sum_gradient_right have their # expected value, same for hessians for si, indices in ( (si_parent, sample_indices), (si_left, sample_indices_left), (si_right, sample_indices_right)): gradient = si.sum_gradient_right + si.sum_gradient_left expected_gradient = all_gradients[indices].sum() hessian = si.sum_hessian_right + si.sum_hessian_left if constant_hessian: expected_hessian = indices.shape[0] * all_hessians[0] else: expected_hessian = all_hessians[indices].sum() assert np.isclose(gradient, expected_gradient) assert np.isclose(hessian, expected_hessian) # make sure sum of gradients in histograms are the same for all features, # and make sure they're equal to their expected value hists_parent = np.asarray(hists_parent, dtype=HISTOGRAM_DTYPE) hists_left = np.asarray(hists_left, dtype=HISTOGRAM_DTYPE) hists_right = np.asarray(hists_right, dtype=HISTOGRAM_DTYPE) for hists, indices in ( (hists_parent, sample_indices), (hists_left, sample_indices_left), (hists_right, sample_indices_right)): # note: gradients and hessians have shape (n_features,), # we're comparing them to *scalars*. This has the benefit of also # making sure that all the entries are equal across features. gradients = hists['sum_gradients'].sum(axis=1) # shape = (n_features,) expected_gradient = all_gradients[indices].sum() # scalar hessians = hists['sum_hessians'].sum(axis=1) if constant_hessian: # 0 is not the actual hessian, but it's not computed in this case expected_hessian = 0. else: expected_hessian = all_hessians[indices].sum() assert np.allclose(gradients, expected_gradient) assert np.allclose(hessians, expected_hessian) def test_split_indices(): # Check that split_indices returns the correct splits and that # splitter.partition is consistent with what is returned. rng = np.random.RandomState(421) n_bins = 5 n_samples = 10 l2_regularization = 0. min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. # split will happen on feature 1 and on bin 3 X_binned = [[0, 0], [0, 3], [0, 4], [0, 0], [0, 0], [0, 0], [0, 0], [0, 4], [0, 0], [0, 4]] X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE) sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = rng.randn(n_samples).astype(G_H_DTYPE) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = 1 * n_samples hessians_are_constant = True builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) assert np.all(sample_indices == splitter.partition) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) si_root = splitter.find_node_split(n_samples, histograms, sum_gradients, sum_hessians, value) # sanity checks for best split assert si_root.feature_idx == 1 assert si_root.bin_idx == 3 samples_left, samples_right, position_right = splitter.split_indices( si_root, splitter.partition) assert set(samples_left) == set([0, 1, 3, 4, 5, 6, 8]) assert set(samples_right) == set([2, 7, 9]) assert list(samples_left) == list(splitter.partition[:position_right]) assert list(samples_right) == list(splitter.partition[position_right:]) # Check that the resulting split indices sizes are consistent with the # count statistics anticipated when looking for the best split. assert samples_left.shape[0] == si_root.n_samples_left assert samples_right.shape[0] == si_root.n_samples_right def test_min_gain_to_split(): # Try to split a pure node (all gradients are equal, same for hessians) # with min_gain_to_split = 0 and make sure that the node is not split (best # possible gain = -1). Note: before the strict inequality comparison, this # test would fail because the node would be split with a gain of 0. rng = np.random.RandomState(42) l2_regularization = 0 min_hessian_to_split = 0 min_samples_leaf = 1 min_gain_to_split = 0. n_bins = 255 n_samples = 100 X_binned = np.asfortranarray( rng.randint(0, n_bins, size=(n_samples, 1)), dtype=X_BINNED_DTYPE) binned_feature = X_binned[:, 0] sample_indices = np.arange(n_samples, dtype=np.uint32) all_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE) all_gradients = np.ones_like(binned_feature, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = all_hessians.sum() hessians_are_constant = False builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32) has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) split_info = splitter.find_node_split(n_samples, histograms, sum_gradients, sum_hessians, value) assert split_info.gain == -1 @pytest.mark.parametrize( 'X_binned, all_gradients, has_missing_values, n_bins_non_missing, ' ' expected_split_on_nan, expected_bin_idx, expected_go_to_left', [ # basic sanity check with no missing values: given the gradient # values, the split must occur on bin_idx=3 ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], # X_binned [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], # gradients False, # no missing values 10, # n_bins_non_missing False, # don't split on nans 3, # expected_bin_idx 'not_applicable'), # We replace 2 samples by NaNs (bin_idx=8) # These 2 samples were mapped to the left node before, so they should # be mapped to left node again # Notice how the bin_idx threshold changes from 3 to 1. ([8, 0, 1, 8, 2, 3, 4, 5, 6, 7], # 8 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 1, # cut on bin_idx=1 True), # missing values go to left # same as above, but with non-consecutive missing_values_bin ([9, 0, 1, 9, 2, 3, 4, 5, 6, 7], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 1, # cut on bin_idx=1 True), # missing values go to left # this time replacing 2 samples that were on the right. ([0, 1, 2, 3, 8, 4, 8, 5, 6, 7], # 8 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 3, # cut on bin_idx=3 (like in first case) False), # missing values go to right # same as above, but with non-consecutive missing_values_bin ([0, 1, 2, 3, 9, 4, 9, 5, 6, 7], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 8, # n_bins_non_missing False, # don't split on nans 3, # cut on bin_idx=3 (like in first case) False), # missing values go to right # For the following cases, split_on_nans is True (we replace all of # the samples with nans, instead of just 2). ([0, 1, 2, 3, 4, 4, 4, 4, 4, 4], # 4 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 4, # n_bins_non_missing True, # split on nans 3, # cut on bin_idx=3 False), # missing values go to right # same as above, but with non-consecutive missing_values_bin ([0, 1, 2, 3, 9, 9, 9, 9, 9, 9], # 9 <=> missing [1, 1, 1, 1, 1, 1, 5, 5, 5, 5], True, # missing values 4, # n_bins_non_missing True, # split on nans 3, # cut on bin_idx=3 False), # missing values go to right ([6, 6, 6, 6, 0, 1, 2, 3, 4, 5], # 6 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 6, # n_bins_non_missing True, # split on nans 5, # cut on bin_idx=5 False), # missing values go to right # same as above, but with non-consecutive missing_values_bin ([9, 9, 9, 9, 0, 1, 2, 3, 4, 5], # 9 <=> missing [1, 1, 1, 1, 5, 5, 5, 5, 5, 5], True, # missing values 6, # n_bins_non_missing True, # split on nans 5, # cut on bin_idx=5 False), # missing values go to right ] ) def test_splitting_missing_values(X_binned, all_gradients, has_missing_values, n_bins_non_missing, expected_split_on_nan, expected_bin_idx, expected_go_to_left): # Make sure missing values are properly supported. # we build an artificial example with gradients such that the best split # is on bin_idx=3, when there are no missing values. # Then we introduce missing values and: # - make sure the chosen bin is correct (find_best_bin()): it's # still the same split, even though the index of the bin may change # - make sure the missing values are mapped to the correct child # (split_indices()) n_bins = max(X_binned) + 1 n_samples = len(X_binned) l2_regularization = 0. min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. sample_indices = np.arange(n_samples, dtype=np.uint32) X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1) X_binned = np.asfortranarray(X_binned) all_gradients = np.array(all_gradients, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = 1 * n_samples hessians_are_constant = True builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array( [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) split_info = splitter.find_node_split(n_samples, histograms, sum_gradients, sum_hessians, value) assert split_info.bin_idx == expected_bin_idx if has_missing_values: assert split_info.missing_go_to_left == expected_go_to_left split_on_nan = split_info.bin_idx == n_bins_non_missing[0] - 1 assert split_on_nan == expected_split_on_nan # Make sure the split is properly computed. # This also make sure missing values are properly assigned to the correct # child in split_indices() samples_left, samples_right, _ = splitter.split_indices( split_info, splitter.partition) if not expected_split_on_nan: # When we don't split on nans, the split should always be the same. assert set(samples_left) == set([0, 1, 2, 3]) assert set(samples_right) == set([4, 5, 6, 7, 8, 9]) else: # When we split on nans, samples with missing values are always mapped # to the right child. missing_samples_indices = np.flatnonzero( np.array(X_binned) == missing_values_bin_idx) non_missing_samples_indices = np.flatnonzero( np.array(X_binned) != missing_values_bin_idx) assert set(samples_right) == set(missing_samples_indices) assert set(samples_left) == set(non_missing_samples_indices) @pytest.mark.parametrize( 'X_binned, has_missing_values, n_bins_non_missing, ', [ # one category ([0] * 20, False, 1), # all categories appear less than MIN_CAT_SUPPORT (hardcoded to 10) ([0] * 9 + [1] * 8, False, 2), # only one category appears more than MIN_CAT_SUPPORT ([0] * 12 + [1] * 8, False, 2), # missing values + category appear less than MIN_CAT_SUPPORT # 9 is missing ([0] * 9 + [1] * 8 + [9] * 4, True, 2), # no non-missing category ([9] * 11, True, 0), ]) def test_splitting_categorical_cat_smooth(X_binned, has_missing_values, n_bins_non_missing): # Checks categorical splits are correct when the MIN_CAT_SUPPORT constraint # isn't respected: there are no splits n_bins = max(X_binned) + 1 n_samples = len(X_binned) X_binned = np.array([X_binned], dtype=X_BINNED_DTYPE).T X_binned = np.asfortranarray(X_binned) l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0.0 sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = np.ones(n_samples, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) all_hessians = np.ones(1, dtype=G_H_DTYPE) sum_gradients = all_gradients.sum() sum_hessians = n_samples hessians_are_constant = True builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array([MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8) missing_values_bin_idx = n_bins - 1 splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) split_info = splitter.find_node_split(n_samples, histograms, sum_gradients, sum_hessians, value) # no split found assert split_info.gain == -1 def _assert_categories_equals_bitset(categories, bitset): # assert that the bitset exactly corresponds to the categories # bitset is assumed to be an array of 8 uint32 elements # form bitset from threshold expected_bitset = np.zeros(8, dtype=np.uint32) for cat in categories: idx = cat // 32 shift = cat % 32 expected_bitset[idx] |= 1 << shift # check for equality assert_array_equal(expected_bitset, bitset) @pytest.mark.parametrize( "X_binned, all_gradients, expected_categories_left, n_bins_non_missing," "missing_values_bin_idx, has_missing_values, expected_missing_go_to_left", [ # 4 categories ([0, 1, 2, 3] * 11, # X_binned [10, 1, 10, 10] * 11, # all_gradients [1], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None), # expected_missing_go_to_left, unchecked # Make sure that the categories that are on the right (second half) of # the sorted categories array can still go in the left child. In this # case, the best split was found when scanning from right to left. ([0, 1, 2, 3] * 11, # X_binned [10, 10, 10, 1] * 11, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None), # expected_missing_go_to_left, unchecked # categories that don't respect MIN_CAT_SUPPORT (cat 4) are always # mapped to the right child ([0, 1, 2, 3] * 11 + [4] * 5, # X_binned [10, 10, 10, 1] * 11 + [10] * 5, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None), # expected_missing_go_to_left, unchecked # categories that don't respect MIN_CAT_SUPPORT are always mapped to # the right child: in this case a more sensible split could have been # 3, 4 - 0, 1, 2 # But the split is still 3 - 0, 1, 2, 4. this is because we only scan # up to the middle of the sorted category array (0, 1, 2, 3), and # because we exclude cat 4 in this array. ([0, 1, 2, 3] * 11 + [4] * 5, # X_binned [10, 10, 10, 1] * 11 + [1] * 5, # all_gradients [3], # expected_categories_left 4, # n_bins_non_missing 4, # missing_values_bin_idx False, # has_missing_values None), # expected_missing_go_to_left, unchecked # 4 categories with missing values that go to the right ([0, 1, 2] * 11 + [9] * 11, # X_binned [10, 1, 10] * 11 + [10] * 11, # all_gradients [1], # expected_categories_left 3, # n_bins_non_missing 9, # missing_values_bin_idx True, # has_missing_values False), # expected_missing_go_to_left # 4 categories with missing values that go to the left ([0, 1, 2] * 11 + [9] * 11, # X_binned [10, 1, 10] * 11 + [1] * 11, # all_gradients [1, 9], # expected_categories_left 3, # n_bins_non_missing 9, # missing_values_bin_idx True, # has_missing_values True), # expected_missing_go_to_left # split is on the missing value ([0, 1, 2, 3, 4] * 11 + [255] * 12, # X_binned [10, 10, 10, 10, 10] * 11 + [1] * 12, # all_gradients [255], # expected_categories_left 5, # n_bins_non_missing 255, # missing_values_bin_idx True, # has_missing_values True), # expected_missing_go_to_left # split on even categories (list(range(60)) * 12, # X_binned [10, 1] * 360, # all_gradients list(range(1, 60, 2)), # expected_categories_left 59, # n_bins_non_missing 59, # missing_values_bin_idx True, # has_missing_values True), # expected_missing_go_to_left # split on every 8 categories (list(range(256)) * 12, # X_binned [10, 10, 10, 10, 10, 10, 10, 1] * 384, # all_gradients list(range(7, 256, 8)), # expected_categories_left 255, # n_bins_non_missing 255, # missing_values_bin_idx True, # has_missing_values True), # expected_missing_go_to_left ]) def test_splitting_categorical_sanity(X_binned, all_gradients, expected_categories_left, n_bins_non_missing, missing_values_bin_idx, has_missing_values, expected_missing_go_to_left): # Tests various combinations of categorical splits n_samples = len(X_binned) n_bins = max(X_binned) + 1 X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1) X_binned = np.asfortranarray(X_binned) l2_regularization = 0.0 min_hessian_to_split = 1e-3 min_samples_leaf = 1 min_gain_to_split = 0. sample_indices = np.arange(n_samples, dtype=np.uint32) all_gradients = np.array(all_gradients, dtype=G_H_DTYPE) all_hessians = np.ones(1, dtype=G_H_DTYPE) has_missing_values = np.array([has_missing_values], dtype=np.uint8) sum_gradients = all_gradients.sum() sum_hessians = n_samples hessians_are_constant = True builder = HistogramBuilder(X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant) n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32) monotonic_cst = np.array([MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8) is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8) splitter = Splitter(X_binned, n_bins_non_missing, missing_values_bin_idx, has_missing_values, is_categorical, monotonic_cst, l2_regularization, min_hessian_to_split, min_samples_leaf, min_gain_to_split, hessians_are_constant) histograms = builder.compute_histograms_brute(sample_indices) value = compute_node_value(sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization) split_info = splitter.find_node_split(n_samples, histograms, sum_gradients, sum_hessians, value) assert split_info.is_categorical assert split_info.gain > 0 _assert_categories_equals_bitset(expected_categories_left, split_info.left_cat_bitset) if has_missing_values: assert split_info.missing_go_to_left == expected_missing_go_to_left # If there is no missing value during training, the flag missing_go_to_left # is set later in the grower. # make sure samples are split correctly samples_left, samples_right, _ = splitter.split_indices( split_info, splitter.partition) left_mask = np.isin(X_binned.ravel(), expected_categories_left) assert_array_equal(sample_indices[left_mask], samples_left) assert_array_equal(sample_indices[~left_mask], samples_right)
bsd-3-clause
jseabold/statsmodels
statsmodels/tsa/statespace/tests/test_save.py
3
4402
""" Tests of save / load / remove_data state space functionality. """ import pickle import os import tempfile import pytest from statsmodels import datasets from statsmodels.tsa.statespace import (sarimax, structural, varmax, dynamic_factor) from numpy.testing import assert_allclose current_path = os.path.dirname(os.path.abspath(__file__)) macrodata = datasets.macrodata.load_pandas().data @pytest.fixture() def temp_filename(): fd, filename = tempfile.mkstemp() yield filename try: os.close(fd) os.unlink(filename) except Exception: print("Couldn't close or delete file " "{filename}.".format(filename=filename)) def test_sarimax(temp_filename): mod = sarimax.SARIMAX(macrodata['realgdp'].values, order=(4, 1, 0)) res = mod.smooth(mod.start_params) res.summary() res.save(temp_filename) res2 = sarimax.SARIMAXResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_sarimax_pickle(): mod = sarimax.SARIMAX(macrodata['realgdp'].values, order=(4, 1, 0)) pkl_mod = pickle.loads(pickle.dumps(mod)) res = mod.smooth(mod.start_params) pkl_res = pkl_mod.smooth(mod.start_params) assert_allclose(res.params, pkl_res.params) assert_allclose(res.bse, pkl_res.bse) assert_allclose(res.llf, pkl_res.llf) def test_structural(temp_filename): mod = structural.UnobservedComponents( macrodata['realgdp'].values, 'llevel') res = mod.smooth(mod.start_params) res.summary() res.save(temp_filename) res2 = structural.UnobservedComponentsResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_structural_pickle(): mod = structural.UnobservedComponents( macrodata['realgdp'].values, 'llevel') pkl_mod = pickle.loads(pickle.dumps(mod)) res = mod.smooth(mod.start_params) pkl_res = pkl_mod.smooth(pkl_mod.start_params) assert_allclose(res.params, pkl_res.params) assert_allclose(res.bse, pkl_res.bse) assert_allclose(res.llf, pkl_res.llf) def test_dynamic_factor(temp_filename): mod = dynamic_factor.DynamicFactor( macrodata[['realgdp', 'realcons']].diff().iloc[1:].values, k_factors=1, factor_order=1) res = mod.smooth(mod.start_params) res.summary() res.save(temp_filename) res2 = dynamic_factor.DynamicFactorResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_dynamic_factor_pickle(temp_filename): mod = varmax.VARMAX( macrodata[['realgdp', 'realcons']].diff().iloc[1:].values, order=(1, 0)) pkl_mod = pickle.loads(pickle.dumps(mod)) res = mod.smooth(mod.start_params) pkl_res = pkl_mod.smooth(mod.start_params) assert_allclose(res.params, pkl_res.params) assert_allclose(res.bse, pkl_res.bse) assert_allclose(res.llf, pkl_res.llf) res.summary() res.save(temp_filename) res2 = varmax.VARMAXResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_varmax(temp_filename): mod = varmax.VARMAX( macrodata[['realgdp', 'realcons']].diff().iloc[1:].values, order=(1, 0)) res = mod.smooth(mod.start_params) res.summary() res.save(temp_filename) res2 = varmax.VARMAXResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_varmax_pickle(temp_filename): mod = varmax.VARMAX( macrodata[['realgdp', 'realcons']].diff().iloc[1:].values, order=(1, 0)) res = mod.smooth(mod.start_params) res.summary() res.save(temp_filename) res2 = varmax.VARMAXResults.load(temp_filename) assert_allclose(res.params, res2.params) assert_allclose(res.bse, res2.bse) assert_allclose(res.llf, res2.llf) def test_existing_pickle(): pkl_file = os.path.join(current_path, 'results', 'sm-0.9-sarimax.pkl') loaded = sarimax.SARIMAXResults.load(pkl_file) assert isinstance(loaded, sarimax.SARIMAXResultsWrapper)
bsd-3-clause
abhishekgahlot/scikit-learn
sklearn/neighbors/nearest_centroid.py
10
7258
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..externals.six.moves import xrange from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in y_ind: center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, "centroids_"): raise AttributeError("Model has not been trained yet.") return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
murali-munna/scikit-learn
sklearn/linear_model/randomized_l1.py
95
23365
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], y_numeric=True) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
benoitsteiner/tensorflow
tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
44
19373
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce(offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(self.num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies([q.enqueue_many( math_ops.range(self.num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(self.batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Make a small test set num_points = 10 points, true_assignments, true_offsets = make_random_points(clusters, num_points) # Test predict assignments = list(kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot( points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_fit_raise_if_num_clusters_larger_than_num_points_random_init(self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError('less'): kmeans = learn.KMeansClustering( num_clusters=3, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=10) def test_fit_raise_if_num_clusters_larger_than_num_points_kmeans_plus_plus( self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError(AssertionError): kmeans = learn.KMeansClustering( num_clusters=3, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=10) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean( normalize(self.points)[0:4, :], axis=0, keepdims=True))[0], normalize( np.mean( normalize(self.points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list(self.kmeans.predict_cluster_idx( input_fn=self.input_fn(num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score(input_fn=self.input_fn( batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean( normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean( normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize(np.mean( normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return ( input_lib.limit_epochs(constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
naturali/tensorflow
tensorflow/examples/skflow/resnet.py
12
5640
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example builds deep residual network for mnist data. Reference Paper: http://arxiv.org/pdf/1512.03385.pdf Note that this is still a work-in-progress. Feel free to submit a PR to make this better. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple from math import sqrt import os from sklearn import metrics import tensorflow as tf from tensorflow.contrib import learn from tensorflow.examples.tutorials.mnist import input_data def res_net(x, y, activation=tf.nn.relu): """Builds a residual network. Note that if the input tensor is 2D, it must be square in order to be converted to a 4D tensor. Borrowed structure from: github.com/pkmital/tensorflow_tutorials/blob/master/10_residual_network.py Args: x: Input of the network y: Output of the network activation: Activation function to apply after each convolution Returns: Predictions and loss tensors. """ # Configurations for each bottleneck group. BottleneckGroup = namedtuple( 'BottleneckGroup', ['num_blocks', 'num_filters', 'bottleneck_size']) groups = [BottleneckGroup(3, 128, 32), BottleneckGroup(3, 256, 64), BottleneckGroup(3, 512, 128), BottleneckGroup(3, 1024, 256)] input_shape = x.get_shape().as_list() # Reshape the input into the right shape if it's 2D tensor if len(input_shape) == 2: ndim = int(sqrt(input_shape[1])) x = tf.reshape(x, [-1, ndim, ndim, 1]) # First convolution expands to 64 channels with tf.variable_scope('conv_layer1'): net = learn.ops.conv2d(x, 64, [7, 7], batch_norm=True, activation=activation, bias=False) # Max pool net = tf.nn.max_pool( net, [1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') # First chain of resnets with tf.variable_scope('conv_layer2'): net = learn.ops.conv2d(net, groups[0].num_filters, [1, 1], [1, 1, 1, 1], padding='VALID', bias=True) # Create the bottleneck groups, each of which contains `num_blocks` # bottleneck groups. for group_i, group in enumerate(groups): for block_i in range(group.num_blocks): name = 'group_%d/block_%d' % (group_i, block_i) # 1x1 convolution responsible for reducing dimension with tf.variable_scope(name + '/conv_in'): conv = learn.ops.conv2d(net, group.bottleneck_size, [1, 1], [1, 1, 1, 1], padding='VALID', activation=activation, batch_norm=True, bias=False) with tf.variable_scope(name + '/conv_bottleneck'): conv = learn.ops.conv2d(conv, group.bottleneck_size, [3, 3], [1, 1, 1, 1], padding='SAME', activation=activation, batch_norm=True, bias=False) # 1x1 convolution responsible for restoring dimension with tf.variable_scope(name + '/conv_out'): input_dim = net.get_shape()[-1].value conv = learn.ops.conv2d(conv, input_dim, [1, 1], [1, 1, 1, 1], padding='VALID', activation=activation, batch_norm=True, bias=False) # shortcut connections that turn the network into its counterpart # residual function (identity shortcut) net = conv + net try: # upscale to the next group size next_group = groups[group_i + 1] with tf.variable_scope('block_%d/conv_upscale' % group_i): net = learn.ops.conv2d(net, next_group.num_filters, [1, 1], [1, 1, 1, 1], bias=False, padding='SAME') except IndexError: pass net_shape = net.get_shape().as_list() net = tf.nn.avg_pool(net, ksize=[1, net_shape[1], net_shape[2], 1], strides=[1, 1, 1, 1], padding='VALID') net_shape = net.get_shape().as_list() net = tf.reshape(net, [-1, net_shape[1] * net_shape[2] * net_shape[3]]) return learn.models.logistic_regression(net, y) # Download and load MNIST data. mnist = input_data.read_data_sets('MNIST_data') # Restore model if graph is saved into a folder. if os.path.exists('models/resnet/graph.pbtxt'): classifier = learn.TensorFlowEstimator.restore('models/resnet/') while True: # Train model and save summaries into logdir. classifier.fit( mnist.train.images, mnist.train.labels, logdir='models/resnet/') # Calculate accuracy. score = metrics.accuracy_score( mnist.test.labels, classifier.predict(mnist.test.images, batch_size=64)) print('Accuracy: {0:f}'.format(score))
apache-2.0
HealthCatalystSLC/healthcareai-py
healthcareai/tests/test_predict.py
4
1135
import unittest from sklearn.linear_model import LinearRegression from healthcareai.common.healthcareai_error import HealthcareAIError from healthcareai.common.predict import validate_estimator class TestPredictValidation(unittest.TestCase): def test_predict_validation_should_raise_error_on_non_estimator(self): self.assertRaises(HealthcareAIError, validate_estimator, 'foo') def test_predict_validation_error_message_on_non_estimator(self): non_estimator_junk_data = 'foo' try: validate_estimator(non_estimator_junk_data) # Fail the test if no error is raised self.fail() except HealthcareAIError as e: expected_message = 'Predictions require an estimator. You passed in foo, which is of type: {}'.format( type(non_estimator_junk_data)) self.assertEqual(expected_message, e.message) def test_predict_validation_should_be_true_with_instance_of_scikit_estimator(self): estimator = LinearRegression() self.assertTrue(validate_estimator(estimator)) if __name__ == '__main__': unittest.main()
mit
csutorasr/BMEVIAUAL00
model/alg.py
1
7812
import numpy as np import math import util import xmlh import sys import os from os.path import isfile, join from keras.models import load_model from sklearn import preprocessing class Algorithm: """ Collection of algorithms to calculate the handedness of the writer of the given text. For basic usage import ... """ def __init__(self, file_name): self.model = load_model('right_left.h5') self.strokes = [] self.h_line_indexes = [] self.length = None self.file_name = file_name self.right_strokes = [] self.load_data() def load_data(self): """ Loads the data from the xml, and calculates the horizontal lines. :return: """ try: self.strokes = xmlh.build_structure(self.file_name) except IOError as e: print('I/O error({0}): {1}.'.format(e.errno, e.strerror)) self.h_line_indexes = self.predict(self.standardize_input(self.create_stroke_statistics())) def predict(self, stroke_params): """ Predicts the horizontal lines, using the loaded model. :param stroke_params: Standardized n by 4 array of stroke parameters. :return: Indexes of the horizontal lines. """ stroke_params = np.array(stroke_params) stroke_params = stroke_params.reshape(stroke_params.shape[0], stroke_params.shape[1]) h_lines = [] output = [] for params in stroke_params: output.append(self.model.predict(np.array(params).reshape(-1, 4))) for index, stroke in enumerate(self.strokes): if output[index] > 0.2 and self.length[index] > 0.15: h_lines.append(index) return h_lines def get_horizontal_lines(self): return self.h_line_indexes @staticmethod def get_stroke_parameters(stroke): """ Calculates the parameters of a stroke and concatenates it with the predetermined horizontal value. :param stroke: A single stroke of the text. :return: The calculated parameters of the stroke. The values are Nan, if the stroke is too short. """ h_line_avg_distance = 0 d_line_avg_distance = 0 stroke_length = 0 avg_degree = 0 # In case of comas, dots, or xml errors the stroke is marked with null values, and will be removed from the # training data in the next processing step. if len(stroke) == 0 or len(stroke) == 1 or len(stroke) == 2: return -1, -1, -1, 0 else: for index in range(len(stroke)): try: if index in range(0, len(stroke) - 1): stroke_length += util.point_2_point(stroke[index], stroke[index + 1]) avg_degree += math.fabs(util.calculate_angle(stroke[0], stroke[index + 1])) / (len(stroke) - 1) if index in range(1, len(stroke) - 1): # Average distance of the stroke's points from the line, # that connects the first and the final point. d_line_avg_distance += util.point_2_line(stroke[0], stroke[-1], stroke[index]) / (len(stroke) - 2) if index in range(1, len(stroke)): # Average distance of the stroke's points from the horizontal line, # that goes through the first point. h_line_avg_distance += \ util.point_2_line(stroke[0], util.Point(stroke[0].x + 1, stroke[0].y), stroke[index]) / (len(stroke) - 1) except ZeroDivisionError: # In case of division error, that occurs during the calculation of the angle # (due to faulty xml data) # ignore the point and move to the next. pass return avg_degree, h_line_avg_distance, d_line_avg_distance, stroke_length def create_stroke_statistics(self): """ Generates the parameter vector for each stroke. The strokes are stored in numpy array for each file. :return: An n by 4 array, containing stroke parameters per column. """ length_sum = 0 stroke_set = [] for stroke_index, stroke in enumerate(self.strokes): params = self.get_stroke_parameters(stroke) length_sum += params[3] stroke_set.append(params) return np.array([(deg, h_dist, d_dist, length / (length_sum / len(self.strokes))) for (deg, h_dist, d_dist, length) in stroke_set]) def standardize_input(self, stat): """ Standardizes the statistics. :param stat: An n by 4 matrix, that contains the stroke parameters per column. :return: The standardized input, that will be processed by the model. """ # Dividing the parameters into separate lists for scaling. avg_degree = stat[:, 0].reshape(-1, 1) h_distance = stat[:, 1].reshape(-1, 1) d_distance = stat[:, 2].reshape(-1, 1) length = stat[:, 3].reshape(-1, 1) self.length = length # If the parameter is None due to faulty xml or outlying stroke length, it is necessary to # define them before scaling. To make sure these wont be classified as horizontal lines, # the highest values are given. avg_degree = np.array([np.nanmax(avg_degree) if deg is None else deg for deg in avg_degree]) h_distance = np.array([np.nanmax(h_distance) if dist is None else dist for dist in h_distance]) d_distance = np.array([np.nanmax(d_distance) if dist is None else dist for dist in d_distance]) # Calculating mean average degree_scale = preprocessing.StandardScaler().fit(avg_degree) h_distance_scale = preprocessing.StandardScaler().fit(h_distance) d_distance_scale = preprocessing.StandardScaler().fit(d_distance) length_scale = preprocessing.StandardScaler().fit(length) # Transforming data avg_degree = degree_scale.transform(avg_degree) h_distance = h_distance_scale.transform(h_distance) d_distance = d_distance_scale.transform(d_distance) length = length_scale.transform(length) temp_array = np.array([avg_degree, h_distance, d_distance, length]) std_input = [] for i in range(temp_array.shape[1]): std_input.append(temp_array[:, i]) return std_input def determine_handedness(self): line_dir = [] for index in self.h_line_indexes: if self.strokes[int(index)][0].x < self.strokes[int(index)][-1].x: line_dir.append(False) self.right_strokes.append(index) else: line_dir.append(True) if line_dir.count(True) > 2: return "left" elif len(line_dir) <= 2: return "unknown" else: return "right" def dump_predictions(root_dir): for file in os.listdir(root_dir): if isfile(join(root_dir, file)): alg = Algorithm(join(root_dir, file)) xmlh.dump_results(join(root_dir, file), calculated_handedness=alg.determine_handedness()) xmlh.mark_horizontal(join(root_dir, file), alg.get_horizontal_lines(), alg.right_strokes) print(join(root_dir, file) + "-Completed") else: dump_predictions(join(root_dir, file)) def main(): dump_predictions(str(sys.argv[1])) if __name__ == "__main__": main()
mit
daq-tools/kotori
kotori/io/export/util.py
1
3386
# -*- coding: utf-8 -*- # (c) 2016-2021 Andreas Motl <[email protected]> from twisted.logger import Logger, LogLevel log = Logger() try: import pandas except ImportError: log.failure('Dataframe functions not available, please install "pandas".', level=LogLevel.warn) try: from pandas.tslib import Timedelta except ImportError: try: from pandas import Timedelta except ImportError: log.failure('Dataframe functions not available, please install "pandas".', level=LogLevel.warn) def dataframe_index_to_column(df, column): """ Copy DataFrame index column to real data column. """ dt = df.index df[column] = dt #df.reset_index(drop=True, inplace=True) return df def dataframe_wide_to_long_indexed(df, column): """ Convert DataFrame from wide to long format using specified column as index column, followed by indexing the DataFrame on the very same column and finally sorting it. See also: - http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-by-melt - http://stackoverflow.com/questions/17688155/complicated-for-me-reshaping-from-wide-to-long-in-pandas """ df = pandas.melt(df, id_vars=column).dropna() df = dataframe_index_and_sort(df, column) return df def dataframe_index_and_sort(df, column): """ Index and sort DataFrame on specified column. """ df = df.set_index([column]) df = df.sort_index() return df def matplotlib_locator_formatter(timedelta, span=1): """ Compute appropriate locator and formatter for renderers based on matplotlib, depending on designated time span. """ from matplotlib.dates import date_ticker_factory, DateFormatter locator, formatter = date_ticker_factory(span) # http://pandas.pydata.org/pandas-docs/stable/timedeltas.html # https://stackoverflow.com/questions/16103238/pandas-timedelta-in-days is_macro = timedelta <= Timedelta(days=1) is_supermacro = timedelta <= Timedelta(minutes=5) if is_macro: #formatter = DateFormatter(fmt='%H:%M:%S.%f') formatter = DateFormatter(fmt='%H:%M') if is_supermacro: formatter = DateFormatter(fmt='%H:%M:%S') # Formatter overrides #if formatter.fmt == '%H:%M\n%b %d': # formatter = DateFormatter(fmt='%Y-%m-%d %H:%M') # Labs #from matplotlib.dates import AutoDateLocator, AutoDateFormatter, HOURLY #locator = AutoDateLocator(maxticks=7) #locator.autoscale() #locator.intervald[HOURLY] = [5] #formatter = AutoDateFormatter(breaks) #formatter = date_format('%Y-%m-%d\n%H:%M') # Default building blocks #from matplotlib.dates import AutoDateFormatter, AutoDateLocator #locator = AutoDateLocator() #formatter = AutoDateFormatter(locator) return locator, formatter def make_timezone_unaware(df): # Please ensure that datetimes are timezone unaware before writing to Excel. # https://github.com/pandas-dev/pandas/pull/27129 # https://github.com/pandas-dev/pandas/issues/28921 # https://stackoverflow.com/questions/61802080/excelwriter-valueerror-excel-does-not-support-datetime-with-timezone-when-savin # https://github.com/pandas-dev/pandas/issues/7056 df['time'] = pandas.to_datetime( df['time'], utc=True) \ .dt.tz_convert('UTC') \ .dt.tz_localize(None)
agpl-3.0
Chilipp/psy-simple
psy_simple/base.py
1
33362
import six from abc import abstractmethod from collections import defaultdict from itertools import chain import numpy as np import inspect import pandas as pd import matplotlib.pyplot as plt from psyplot.docstring import docstrings, safe_modulo, dedent from psyplot.data import InteractiveList, open_dataset from psyplot.compat.pycompat import filter from psyplot.plotter import ( Plotter, Formatoption, rcParams, START) docstrings.params['replace_note'] = inspect.cleandoc(""" You can insert any meta key from the :attr:`xarray.DataArray.attrs` via a string like ``'%%(key)s'``. Furthermore there are some special cases: - Strings like ``'%%Y'``, ``'%%b'``, etc. will be replaced using the :meth:`datetime.datetime.strftime` method as long as the data has a time coordinate and this can be converted to a :class:`~datetime.datetime` object. - ``'%%(x)s'``, ``'%%(y)s'``, ``'%%(z)s'``, ``'%%(t)s'`` will be replaced by the value of the x-, y-, z- or time coordinate (as long as this coordinate is one-dimensional in the data) - any attribute of one of the above coordinates is inserted via ``axis + key`` (e.g. the name of the x-coordinate can be inserted via ``'%%(xname)s'``). - Labels defined in the :class:`psyplot.rcParams` ``'texts.labels'`` key are also replaced when enclosed by '{}'. The standard labels are - %s""" % '\n - '.join( '%s: ``%s``' % tuple(item) for item in six.iteritems( rcParams['texts.labels']))) docstrings.params['colors'] = inspect.cleandoc(""" The following color abbreviations are supported: ========== ======== character color ========== ======== 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ========== ======== In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``).""") docstrings.params['fontsizes'] = inspect.cleandoc(""" float The absolute font size in points (e.g., 12) string Strings might be 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'.""") class TextBase(object): """Abstract base class for formatoptions that provides a replace method""" delimiter = None group = 'labels' @property def enhanced_attrs(self): """The enhanced attributes of the array""" arr = self.data return self.get_enhanced_attrs(arr) @property def rc(self): """:class:`~psyplot.config.rcsetup.SubDict` of rcParams 'texts' key""" try: return self._rc except AttributeError: return rcParams.find_and_replace(base_str=['texts.']) data_dependent = True @docstrings.dedent def replace(self, s, data, attrs=None): """ Replace the attributes of the plotter data in a string %(replace_note)s Parameters ---------- s: str String where the replacements shall be made data: InteractiveBase Data object from which to use the coordinates and insert the coordinate and attribute informations attrs: dict Meta attributes that shall be used for replacements. If None, it will be gained from `data.attrs` Returns ------- str `s` with inserted informations""" # insert labels s = s.format(**self.rc['labels']) # replace attributes attrs = attrs or data.attrs if hasattr(getattr(data, 'psy', None), 'arr_name'): attrs = attrs.copy() attrs['arr_name'] = data.psy.arr_name s = safe_modulo(s, attrs) # replace datetime.datetime like time informations if isinstance(data, InteractiveList): data = data[0] tname = self.any_decoder.get_tname( next(self.plotter.iter_base_variables), data.coords) if tname is not None and tname in data.coords: time = data.coords[tname] if not time.values.ndim: try: # assume a valid datetime.datetime instance s = pd.to_datetime(str(time.values[()])).strftime(s) except ValueError: pass if six.PY2: return s.decode('utf-8') return s def get_fig_data_attrs(self, delimiter=None): """Join the data attributes with other plotters in the project This method joins the attributes of the :class:`~psyplot.InteractiveBase` instances in the project that draw on the same figure as this instance does. Parameters ---------- delimiter: str Specifies the delimiter with what the attributes are joined. If None, the :attr:`delimiter` attribute of this instance or (if the latter is also None), the rcParams['texts.delimiter'] item is used. Returns ------- dict A dictionary with all the meta attributes joined by the specified `delimiter`""" if self.project is not None: delimiter = next(filter(lambda d: d is not None, [ delimiter, self.delimiter, self.rc['delimiter']])) figs = self.project.figs fig = self.ax.get_figure() if self.plotter._initialized and fig in figs: ret = figs[fig].joined_attrs(delimiter=delimiter, plot_data=True) else: ret = self.get_enhanced_attrs(self.plotter.plot_data) self.logger.debug( 'Can not get the figure attributes because plot has not ' 'yet been initialized!') return ret else: return self.get_enhanced_attrs(self.plotter.plot_data) def get_enhanced_attrs(self, *args, **kwargs): replot = kwargs.pop('replot', False) if hasattr(self, '_enhanced_attrs') and not ( self.plotter.replot or replot): return self._enhanced_attrs self._enhanced_attrs = self.plotter.get_enhanced_attrs(*args, **kwargs) return self._enhanced_attrs def get_fmt_widget(self, parent, project): """Create a combobox with the attributes""" from psy_simple.widgets.texts import LabelWidget return LabelWidget(parent, self, project) docstrings.params['fontweights'] = inspect.cleandoc(""" float a float between 0 and 1000 string Possible strings are one of 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'.""") @docstrings.get_sections(base='label_weight') @dedent def label_weight(base, label_name=None, children=[], parents=[], dependencies=[]): """ Function that returns a Formatoption class for modifying the fontweight This function returns a :class:`~psyplot.plotter.Formatoption` instance that modifies the weight of the given `base` formatoption Parameters ---------- base: Formatoption The base formatoption instance that is used in the :class:`psyplot.Plotter` subclass to create the label. The instance must have a ``texts`` attribute which stores all the :class:`matplotlib.text.Text` instances. label_name: str The name of the label to use in the documentation. If None, it will be ``key``, where ``key`` is the :attr:`psyplot.plotter.Formatoption.key`` attribute of `base` children: list of str The childrens of the resulting formatoption class (besides the `base` formatoption which is included anyway) parents: list of str The parents of the resulting formatoption class (besides the `base` the properties formatoption from `base` (see :func:`label_props`)) dependencies: list of str The dependencies of the formatoption Returns ------- Formatoption The formatoption instance that modifies the fontweight of `base` See Also -------- label_size, label_props, Figtitle, Title""" label_name = label_name or base.key cl_children = children cl_parents = parents cl_dependencies = dependencies class LabelWeight(Formatoption): __doc__ = """ Set the fontweight of the %s Possible types -------------- %%(fontweights)s See Also -------- %s, %s, %s""" % (label_name, base.key, base.key + 'size', base.key + 'props') children = [base.key] + \ cl_children parent = [base.key + 'props'] + cl_parents dependencies = cl_dependencies group = 'labels' name = 'Font weight of ' + (base.name or base.key) def update(self, value): for text in getattr(self, base.key).texts: text.set_weight(value) def get_fmt_widget(self, parent, project): """Get a widget with the different font weights""" from psy_simple.widgets.texts import FontWeightWidget return FontWeightWidget( parent, self, next(iter(getattr(self, base.key).texts), None), base) return LabelWeight(base.key + 'weight') @docstrings.dedent def label_size(base, label_name=None, children=[], parents=[], dependencies=[]): """ Function that returns a Formatoption class for modifying the fontsite This function returns a :class:`~psyplot.plotter.Formatoption` instance that modifies the size of the given `base` formatoption Parameters ---------- %(label_weight.parameters)s Returns ------- Formatoption The formatoption instance that modifies the fontsize of `base` See Also -------- label_weight, label_props, Figtitle, Title""" label_name = label_name or base.key cl_children = children cl_parents = parents cl_dependencies = dependencies class LabelSize(Formatoption): __doc__ = """ Set the size of the %s Possible types -------------- %%(fontsizes)s See Also -------- %s, %s, %s""" % (label_name, base.key, base.key + 'weight', base.key + 'props') children = [base.key] + cl_children parent = [base.key + 'props'] + cl_parents dependencies = cl_dependencies group = 'labels' name = 'Font size of ' + (base.name or base.key) def update(self, value): for text in getattr(self, base.key).texts: text.set_size(value) def get_fmt_widget(self, parent, project): """Get a widget with the different font weights""" from psy_simple.widgets.texts import FontSizeWidget return FontSizeWidget( parent, self, next(iter(getattr(self, base.key).texts), None), base) return LabelSize(base.key + 'size') docstrings.keep_params('label_weight.parameters', 'base', 'label_name') @docstrings.dedent def label_props(base, label_name=None, children=[], parents=[], dependencies=[]): """ Function that returns a Formatoption class for modifying the fontsite This function returns a :class:`~psyplot.plotter.Formatoption` instance that modifies the size of the given `base` formatoption Parameters ---------- %(label_weight.parameters)s children: list of str The childrens of the resulting formatoption class (besides the `base` formatoption, the ``base.key + 'size'`` and ``base.key + 'weight'`` keys, which are included anyway (see :func:`label_size`, :func:`label_weight`)) parents: list of str The parents of the resulting formatoption class Returns ------- Formatoption The formatoption instance that modifies the fontsize of `base` See Also -------- label_weight, label_props, Figtitle, Title""" label_name = label_name or base.key cl_children = children cl_parents = parents cl_dependencies = dependencies class LabelProps(Formatoption): __doc__ = """ Properties of the %s Specify the font properties of the figure title manually. Possible types -------------- dict Items may be any valid text property See Also -------- %s, %s, %s""" % (label_name, base.key, base.key + 'size', base.key + 'weight') children = cl_children parents = cl_parents dependencies = [base.key, base.key + 'size', base.key + 'weight'] + \ cl_dependencies group = 'labels' name = 'Font properties of ' + (base.name or base.key) def __init__(self, *args, **kwargs): super(LabelProps, self).__init__(*args, **kwargs) self.default_props = {} self._todefault = False def set_value(self, value, validate=True, todefault=False): self._todefault = todefault super(LabelProps, self).set_value(value, validate, todefault) def update(self, fontprops): fontprops = fontprops.copy() # store default font properties try: text = next(iter(getattr(self, base.key).texts)) except StopIteration: return # TODO: This handling of the default management is not really # satisfying because you run into troubles when using alternate # property names (e.g. if you use 'ha' and 'horizontalalignment' # at the same time) if not self._todefault: for key in fontprops: if key == 'bbox': default = dict(facecolor='none', edgecolor='none') else: default = getattr(text, 'get_' + key)() self.default_props.setdefault(key, default) else: fontprops = self.default_props.copy() self.default_props.clear() if 'size' not in fontprops and 'fontsize' not in fontprops: fontprops['size'] = getattr(self, base.key + 'size').value if 'weight' not in fontprops and 'fontweight' not in fontprops: fontprops['weight'] = getattr(self, base.key + 'weight').value for text in getattr(self, base.key).texts: text.update(fontprops) self._todefault = False def get_fmt_widget(self, parent, project): """Get a widget with the different font weights""" from psy_simple.widgets.texts import FontPropertiesWidget return FontPropertiesWidget( parent, self, next(iter(getattr(self, base.key).texts), None), base) return LabelProps(base.key + 'props') class Title(TextBase, Formatoption): """ Show the title Set the title of the plot. %(replace_note)s Possible types -------------- str The title for the :func:`~matplotlib.pyplot.title` function. Notes ----- This is the title of this specific subplot! For the title of the whole figure, see the :attr:`figtitle` formatoption. See Also -------- figtitle, titlesize, titleweight, titleprops""" name = 'Axes title' def initialize_plot(self, value): arr = self.data self.texts = [self.ax.set_title( self.replace(value, arr, attrs=self.enhanced_attrs))] def update(self, value): arr = self.data self.texts[0].set_text(self.replace( value, arr, attrs=self.enhanced_attrs)) class Figtitle(TextBase, Formatoption): """ Plot a figure title Set the title of the figure. %(replace_note)s Possible types -------------- str The title for the :func:`~matplotlib.pyplot.suptitle` function Notes ----- - If the plotter is part of a :class:`psyplot.project.Project` and multiple plotters of this project are on the same figure, the replacement attributes (see above) are joined by a delimiter. If the :attr:`delimiter` attribute of this :class:`Figtitle` instance is not None, it will be used. Otherwise the rcParams['texts.delimiter'] item is used. - This is the title of the whole figure! For the title of this specific subplot, see the :attr:`title` formatoption. See Also -------- title, figtitlesize, figtitleweight, figtitleprops""" name = 'Figure title' @property def enhanced_attrs(self): return self.get_fig_data_attrs() def initialize_plot(self, s): if s: self.texts = [self.ax.get_figure().suptitle( self.replace(s, self.plotter.data, self.enhanced_attrs))] self.clear_other_texts() else: self.texts = [self.ax.get_figure().suptitle('')] def update(self, s): if s: self.texts[0].set_text(self.replace(s, self.plotter.data, self.enhanced_attrs)) self.clear_other_texts() else: self.texts[0].set_text('') def clear_other_texts(self, remove=False): """Make sure that no other text is a the same position as this one This method clears all text instances in the figure that are at the same position as the :attr:`_text` attribute Parameters ---------- remove: bool If True, the Text instances are permanently deleted from the figure, otherwise there text is simply set to ''""" fig = self.ax.get_figure() # don't do anything if our figtitle is the only Text instance if len(fig.texts) == 1: return for i, text in enumerate(fig.texts): if text == self._text: continue if text.get_position() == self._text.get_position(): if not remove: text.set_text('') else: del fig[i] class Text(TextBase, Formatoption): """ Add text anywhere on the plot This formatoption draws a text on the specified position on the figure. %(replace_note)s Possible types -------------- str If string s: this will be used as (1., 1., s, {'ha': 'right'}) (i.e. a string in the upper right corner of the axes). tuple or list of tuples (x,y,s[,coord.-system][,options]]) Each tuple defines a text instance on the plot. 0<=x, y<=1 are the coordinates. The coord.-system can be either the data coordinates (default, ``'data'``) or the axes coordinates (``'axes'``) or the figure coordinates ('fig'). The string s finally is the text. options may be a dictionary to specify format the appearence (e.g. ``'color'``, ``'fontweight'``, ``'fontsize'``, etc., see :class:`matplotlib.text.Text` for possible keys). To remove one single text from the plot, set (x,y,''[, coord.-system]) for the text at position (x,y) empty list remove all texts from the plot See Also -------- title, figtitle""" name = 'Arbitrary text on the plot' @property def transform(self): """Dictionary containing the relevant transformations""" ax = self.ax return {'axes': ax.transAxes, 'fig': ax.get_figure().transFigure, 'data': ax.transData} def __init__(self, *args, **kwargs): Formatoption.__init__(self, *args, **kwargs) #: texts that shall be removed when updating self._texts_to_remove = set() #: :class:`matplotlib.texts.Text` instances on the figure self._texts = defaultdict(set) def _remove_texttuple(self, pos): """Remove a texttuple from the value in the plotter Parameters ---------- pos: tuple (x, y, cs) x and y are the x- and y-positions and cs the coordinate system""" for i, (old_x, old_y, s, old_cs, d) in enumerate(self.value): if (old_x, old_y, old_cs) == pos: self.value.pop(i) return raise ValueError("{0} not found!".format(pos)) def _update_texttuple(self, x, y, s, cs, d): """Update the text tuple at `x` and `y` with the given `s` and `d`""" pos = (x, y, cs) for i, (old_x, old_y, old_s, old_cs, old_d) in enumerate(self.value): if (old_x, old_y, old_cs) == pos: self.value[i] = (old_x, old_y, s, old_cs, d) return raise ValueError("No text tuple found at {0}!".format(pos)) def set_value(self, value, validate=True, todefault=False): value = self.validate(value) if validate else value # mark all texts for removing if value is empty if not value or todefault: with self.plotter.no_validation: self.plotter[self.key] = [] for cs, texts in self._texts.items(): for t in texts: pos = t.get_position() self._texts_to_remove.add((pos[0], pos[1], cs)) # loop through texttuples to see whether one changed or has to be # removed. x: x-coord, y: y-coord, s: string, cs: coord.-system, # d: text params dictionary for x, y, s, cs, d in value: if not s: try: self._remove_texttuple((x, y, cs)) self._texts_to_remove.add((x, y, cs)) except ValueError: pass else: try: self._update_texttuple(x, y, s, cs, d) except ValueError: self.value.append((x, y, s, cs, d)) def update(self, value, texts_to_remove=None): # remove texts for (x, y, cs) in texts_to_remove or self._texts_to_remove: for t in self._texts[cs]: if (x, y) == t.get_position(): self._texts[cs].remove(t) t.remove() break if self.plotter.replot: value = self.value + value # now update the old texts or create new ones for x, y, s, cs, d in value: if cs == 'fig': s = self.replace( s, self.plotter.data, self.get_fig_data_attrs( d.pop('delimiter', None))) else: s = self.replace(s, self.plotter.data, self.enhanced_attrs) found = False for t in self._texts[cs]: if (x, y) == t.get_position(): t.set_text(s) t.update(d.copy()) found = True break if not found: self._texts[cs].add(self.ax.text( x, y, s, d.copy(), transform=self.transform[cs])) def share(self, fmto, **kwargs): """Share the settings of this formatoption with other data objects Parameters ---------- fmto: Formatoption The :class:`Formatoption` instance to share the attributes with ``**kwargs`` Any other keyword argument that shall be passed to the update method of `fmto` Notes ----- The Text formatoption sets the 'texts_to_remove' keyword to the :attr:`_texts_to_remove` attribute of this instance (if not already specified in ``**kwargs``""" kwargs.setdefault('texts_to_remove', self._texts_to_remove) super(Text, self).share(fmto, **kwargs) def diff(self, value): my_value = self.value return (not len(value) and len(my_value)) or any( val not in my_value for val in value) def finish_update(self): """Clears the :attr:`_texts_to_remove` set""" self._texts_to_remove.clear() def remove(self): for t in chain.from_iterable(six.itervalues(self._texts)): t.remove() self._texts.clear() class Tight(Formatoption): """ Automatically adjust the plots. If set to True, the plots are automatically adjusted to fit to the figure limitations via the :func:`matplotlib.pyplot.tight_layout()` function. Possible types -------------- bool True for automatic adjustment Warnings -------- There is no update method to undo what happend after this formatoption is set to True!""" group = 'axes' name = 'Tight layout' def update(self, value): if value: plt.sca(self.ax) plt.tight_layout() class BackgroundColor(Formatoption): """The background color for the matplotlib axes. Possible types -------------- 'rc' to use matplotlibs rc params None to use a transparent color color Any possible matplotlib color """ group = 'axes' name = 'Background color of the plot' def update(self, value): if value == 'rc': self.ax.patch.set_facecolor(plt.rcParams['axes.facecolor']) self.ax.set_facecolor(plt.rcParams['axes.facecolor']) elif value is None: self.ax.patch.set_facecolor('none') self.ax.set_facecolor('none') else: self.ax.patch.set_facecolor(value) self.ax.set_facecolor(value) def get_fmt_widget(self, parent, project): from psy_simple.widgets.colors import BackGroundColorWidget return BackGroundColorWidget(parent, self, project) class ValueMaskBase(Formatoption): """Base class for masking formatoptions""" priority = START group = 'masking' data_dependent = True @abstractmethod def mask_func(self): """The masking function that is called""" return def update(self, value): if value is None: pass else: for i, data in enumerate(self.iter_data): self.set_data(self._mask_data(data, value), i) def _mask_data(self, data, value): data = data.copy(data=np.copy(data.values)) data.values[~np.isnan(data.values)] = self.mask_func( data.values[~np.isnan(data.values)], value) return data class MaskLess(ValueMaskBase): """ Mask data points smaller than a number Possible types -------------- float The floating number to mask below See Also -------- maskleq, maskgreater, maskgeq, maskbetween """ name = 'Mask less' def mask_func(self, data, value): data[data < value] = np.nan return data class MaskLeq(ValueMaskBase): """ Mask data points smaller than or equal to a number Possible types -------------- float The floating number to mask below See Also -------- maskless, maskgreater, maskgeq, maskbetween """ name = 'Mask lesser than or equal' def mask_func(self, data, value): data[data <= value] = np.nan return data class MaskGreater(ValueMaskBase): """ Mask data points greater than a number Possible types -------------- float The floating number to mask above See Also -------- maskless, maskleq, maskgeq, maskbetween """ name = 'Mask greater' def mask_func(self, data, value): data[data > value] = np.nan return data class MaskGeq(ValueMaskBase): """ Mask data points greater than or equal to a number Possible types -------------- float The floating number to mask above See Also -------- maskless, maskleq, maskgreater, maskbetween """ name = 'Mask greater than or equal' def mask_func(self, data, value): data[data >= value] = np.nan return data class MaskBetween(ValueMaskBase): """ Mask data points between two numbers Possible types -------------- float The floating number to mask above See Also -------- maskless, maskleq, maskgreater, maskgeq """ name = 'Mask between two values' def mask_func(self, data, value): data[np.all([data >= value[0], data <= value[1]], axis=0)] = np.nan return data class Mask(Formatoption): """Mask the data where a certain condition is True This formatoption can be used to mask the plotting data based on another array. This array can be the name of a variable in the base dataset, or it can be a numeric array. Note that the data needs to be on exactly the same coordinates as the data shown here Possible types -------------- None Apply no mask str The name of a variable in the base dataset to use. - dimensions that are in the given `mask` but not in the visualized base variable will be aggregated using :func:`numpy.any` - if the given `mask` misses dimensions that are in the visualized data (i.e. the data of this plotter), we broadcast the `mask` to match the shape of the data - dimensions that are in `mask` and the base variable, but not in the visualized data will be matched against each other str The path to a netCDF file that shall be loaded xr.DataArray or np.ndarray An array that can be broadcasted to the shape of the data """ priority = START group = 'masking' name = "Apply a mask" def update(self, value): if value is None: return for i, data in enumerate(self.iter_data): mask = self.load_mask(data, value) new_data = data.where(mask.astype(bool)) new_data.psy.base = data.psy.base new_data.psy.idims = data.psy.idims self.set_data(new_data, i) def diff(self, value): try: return bool(self.value != value) except ValueError: if hasattr(value, 'shape') and hasattr(self.value, 'shape'): return ((value.shape != self.value.shape) | (value != self.value).any()) else: return True def load_mask(self, data, value): if isinstance(value, str) and value in data.psy.base: mask = data.psy.base[value] if not set(mask.dims).intersection(data.dims): raise ValueError("No intersection between dimensions of mask " f"{value}: {mask.dims}, and the data: " f"{data.dims}") elif isinstance(value, str): try: mask = open_dataset(value) except Exception: raise ValueError( f"{value} is not in the base dataset of " f"{data.psy.arr_name} and could not be loaded with " f"psy.open_dataset({repr(value)})") else: available_vars = [ v for v in mask if set(mask[v].dims).intersection(data.dims)] if not available_vars: raise ValueError(f"No variable in {value} has an overlap " f"with the data dimensions {data.dims}") else: mask = mask[available_vars[0]] else: mask = value base_var = next(data.psy.iter_base_variables) # aggregate mask over dimensions that are not in the base variable dims2agg = set(mask.dims).difference(set(base_var.dims)) if dims2agg: mask = mask.any(list(dims2agg)) # select idims of mask idims = {d: sl for d, sl in data.psy.idims.items() if d in mask.dims and d not in data.dims} if idims: mask = mask.isel(**idims) return mask class TitlesPlotter(Plotter): """Plotter class for labels""" _rcparams_string = ['plotter.baseplotter.'] title = Title('title') titlesize = label_size(title) titleweight = label_weight(title) titleprops = label_props(title) figtitle = Figtitle('figtitle') figtitlesize = label_size(figtitle, 'figure title') figtitleweight = label_weight(figtitle, 'figure title') figtitleprops = label_props(figtitle, 'figure title') text = Text('text') class BasePlotter(TitlesPlotter): """Base class with formatoptions for plotting on an matplotlib axes""" _rcparams_string = ['plotter.baseplotter.'] tight = Tight('tight') background = BackgroundColor('background') maskless = MaskLess('maskless') maskleq = MaskLeq('maskleq') maskgreater = MaskGreater('maskgreater') maskgeq = MaskGeq('maskgeq') maskbetween = MaskBetween('maskbetween') mask = Mask('mask')
gpl-2.0
navierula/Research-Fall-2017
minMaxCalc/start_again.py
1
4221
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 23 23:06:12 2017 @author: navrajnarula """ #c = [0.5, 3, 6, 40, 90, 130.8, 129, 111, 8, 9, 0.01, 9, 40, 90, 130.1, 112, 108, 90, 77, 68, 0.9, 8, 40, 90, 92, 130.4] #c= [0, 10, 11, 48, 50.5, 0.48, 17, 18, 23, 29, 33, 34.67, 50.1, 0.09, 7, 41, 45, 50] #### METHOD 1: Create generator function lst = [-0.5, 44, 90, 132.22, 129.6, 89, 67.91, 12.5, 11, 0.0006, 10.2, 67, 89.07, 100, 132.224, 129.88, 120.1, 100, 89.5, 75, 40, 9.8, -0.4, 0.1, 90, 99, 112, 132.22, ] def get_groups(lst): up = False for i, (u, v) in enumerate(zip(lst, lst[1:])): if up: if v < u: yield 'End', i, u up = False else: if v > u: yield 'Start', i, u up = True if up: yield 'End', i + 1, lst[-1] #print("METHOD 1:\n") #for t in get_groups(lst): # print(t) #### METHOD 2: using numpy libraries from scipy.signal import argrelextrema import numpy as np lst = [-0.5, 44, 90, 132.22, 129.6, 89, 67.91, 12.5, 11, 0.0006, 10.2, 67, 89.07, 100, 132.224, 129.88, 120.1, 100, 89.5, 75, 40, 9.8, -0.4, 0.1, 90, 99, 112, 132.22] arr = np.array(lst) #Find local minimas index, add zero in the beginning minInd = np.insert(argrelextrema(arr, np.less),0,0) # Find local maximas index, add the length of arr - 1 at the end maxInd = np.append(argrelextrema(arr,np.greater),[len(lst)-1]) # numpy indexing and zip to combine the results end_arr = list(zip(zip(minInd,arr[minInd]),zip(maxInd,arr[maxInd]))) ##Printing the output #print("\nMETHOD 2:\n") #for i in end_arr: # print('Start :' , i[0]) # print('End:', i[1],'\n') #### METHOD 3: Sorting load = lst load.sort(key=float) # previously key = int totals = [] for count, items in enumerate(load): counter = count + 1 last_object = (counter, load[count], load[(len(load)-1) - count]) totals.append(last_object) #our_totals = totals[:3] #print("\nMETHOD 3:\n") #print(our_totals) ############################################### print("\nTrying on REAL data:\n") import pandas as pd # read in dataset xl = pd.ExcelFile("data/130N_Cycles_1-47.xlsx") df = xl.parse("Specimen_RawData_1") df # append data from load column to list load = [] for item in df.index: load.append(df["Round"][item]) #### METHOD 1: Create generator function lst = load def get_groups(lst): up = False for i, (u, v) in enumerate(zip(lst, lst[1:])): if up: if v < u: yield 'End', i, u up = False else: if v > u: yield 'Start', i, u up = True if up: yield 'End', i + 1, lst[-1] print("METHOD 1:\n") for t in get_groups(lst): print(t) #### METHOD 2: using numpy libraries from scipy.signal import argrelextrema import numpy as np lst = load arr = np.array(lst) #Find local minimas index, add zero in the beginning minInd = np.insert(argrelextrema(arr, np.less),0,0) # Find local maximas index, add the length of arr - 1 at the end maxInd = np.append(argrelextrema(arr,np.greater),[len(lst)-1]) # numpy indexing and zip to combine the results end_arr = list(zip(zip(minInd,arr[minInd]),zip(maxInd,arr[maxInd]))) #Printing the output #print("\nMETHOD 2:\n") #count = 0 #for i in end_arr: # if count <= 47: # print('Start :' , i[0]) # print('End:', i[1],'\n') # count += 1 #### METHOD 3: Sorting load.sort(key=float) # previously key = int totals = [] for count, items in enumerate(load): counter = count + 1 last_object = (counter, load[count], load[(len(load)-1) - count]) totals.append(last_object) #our_totals = totals[:47] #print("\nMETHOD 3:\n") #print(our_totals) # save the output in the list, min and the max # run it through my algorithm # compare them separately in algorithm # save rows in file --> rounding to 0 helps # play with rounding to comma 1, # compare it with the real data # check both minimin and maximum # do it manually for 2 - 3 different ones # clean the data from all bad values # use ROUND, not anything else!!! # redownloaded dataset
mit
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/examples/covariance/plot_covariance_estimation.py
250
5070
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.grid_search import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
calliope-project/calliope
calliope/backend/pyomo/util.py
1
6916
""" Copyright (C) since 2013 Calliope contributors listed in AUTHORS. Licensed under the Apache 2.0 License (see LICENSE file). """ import logging import re import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype import xarray as xr import pyomo.core as po from calliope.core.util.tools import memoize from calliope import exceptions logger = logging.getLogger(__name__) @memoize def get_param(backend_model, var, dims): """ Get an input parameter held in a Pyomo object, or held in the defaults dictionary if that Pyomo object doesn't exist. Parameters ---------- backend_model : Pyomo model instance var : str dims : single value or tuple """ try: return getattr(backend_model, var)[dims] except AttributeError: # i.e. parameter doesn't exist at all logger.debug( "get_param: var {} and dims {} leading to default lookup".format(var, dims) ) return backend_model.__calliope_defaults[var] except KeyError: # try removing timestep try: if len(dims) > 2: return getattr(backend_model, var)[dims[:-1]] else: return getattr(backend_model, var)[dims[0]] except KeyError: # Static default value logger.debug( "get_param: var {} and dims {} leading to default lookup".format( var, dims ) ) return backend_model.__calliope_defaults[var] def get_previous_timestep(timesteps, timestep): """Get the timestamp for the timestep previous to the input timestep""" return timesteps[timesteps.ord(timestep) - 1] @memoize def get_timestep_weight(backend_model): """ Get the total number of years this model considers, by summing all timestep resolution with timestep weight (a weight/resolution of 1 = 1 hour) and divide it by number of hours in the year. Weight/resolution will almost always be 1 per step, unless time clustering/masking/resampling has taken place. """ time_res = [po.value(i) for i in backend_model.timestep_resolution.values()] weights = [po.value(i) for i in backend_model.timestep_weights.values()] return sum(np.multiply(time_res, weights)) / 8760 @memoize def get_conversion_plus_io(backend_model, tier): """ from a carrier_tier, return the primary tier (of `in`, `out`) and corresponding decision variable (`carrier_con` and `carrier_prod`, respectively) """ if "out" in tier: return "out", backend_model.carrier_prod elif "in" in tier: return "in", backend_model.carrier_con def get_var(backend_model, var, dims=None, sparse=False, expr=False): """ Return output for variable `var` as a pandas.Series (1d), pandas.Dataframe (2d), or xarray.DataArray (3d and higher). Parameters ---------- var : variable name as string, e.g. 'resource' dims : list, optional indices as strings, e.g. ('loc_techs', 'timesteps'); if not given, they are auto-detected sparse : bool, optional; default = False If extracting Pyomo Param data, the output sparse array includes inputs the user left as NaN replaced with the default value for that Param. """ try: var_container = getattr(backend_model, var) except AttributeError: raise exceptions.BackendError("Variable {} inexistent.".format(var)) if not dims: if var + "_index" == var_container.index_set().name: dims = [i.name for i in var_container.index_set().subsets()] else: dims = [var_container.index_set().name] if sparse and not expr: result = pd.Series(var_container.extract_values_sparse()) else: if expr: result = pd.Series(var_container._data).apply( lambda x: po.value(x) if not invalid(x) else np.nan ) else: result = pd.Series(var_container.extract_values()) if result.empty: raise exceptions.BackendError("Variable {} has no data.".format(var)) result = result.rename_axis(index=dims) return xr.DataArray.from_series(result) def loc_tech_is_in(backend_model, loc_tech, model_set): """ Check if set exists and if loc_tech is in the set Parameters ---------- loc_tech : string model_set : string """ if hasattr(backend_model, model_set) and loc_tech in getattr( backend_model, model_set ): return True else: return False def get_domain(var: xr.DataArray) -> str: def check_sign(var): if re.match("resource|node_coordinates|cost*", var.name): return "" else: return "NonNegative" if var.dtype.kind == "b": return "Boolean" elif is_numeric_dtype(var.dtype): return check_sign(var) + "Reals" else: return "Any" def invalid(val) -> bool: if isinstance(val, po.base.param._ParamData): return val._value == po.base.param._NotValid or pd.isnull(po.value(val)) else: return pd.isnull(val) def datetime_to_string( backend_model: po.ConcreteModel, model_data: xr.Dataset ) -> xr.Dataset: """ Convert from datetime to string xarray dataarrays, to reduce the memory footprint of converting datetimes from numpy.datetime64 -> pandas.Timestamp when creating the pyomo model object. Parameters ---------- backend_model : the backend pyomo model object model_data : the Calliope xarray Dataset of model data """ datetime_data = set() for attr in ["coords", "data_vars"]: for set_name, set_data in getattr(model_data, attr).items(): if set_data.dtype.kind == "M": attrs = model_data[set_name].attrs model_data[set_name] = model_data[set_name].dt.strftime( "%Y-%m-%d %H:%M" ) model_data[set_name].attrs = attrs datetime_data.add((attr, set_name)) backend_model.__calliope_datetime_data = datetime_data return model_data def string_to_datetime( backend_model: po.ConcreteModel, model_data: xr.Dataset ) -> xr.Dataset: """ Convert from string to datetime xarray dataarrays, reverting the process undertaken in datetime_to_string Parameters ---------- backend_model : the backend pyomo model object model_data : the Calliope xarray Dataset of model data """ for attr, set_name in backend_model.__calliope_datetime_data: if attr == "coords" and set_name in model_data: model_data.coords[set_name] = model_data[set_name].astype("datetime64[ns]") elif set_name in model_data: model_data[set_name] = ( model_data[set_name].fillna(pd.NaT).astype("datetime64[ns]") ) return model_data
apache-2.0
revanthkolli/osf.io
scripts/analytics/links.py
55
1227
# -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt from framework.mongo import database from website import settings from .utils import plot_dates, mkdirp link_collection = database['privatelink'] FIG_PATH = os.path.join(settings.ANALYTICS_PATH, 'figs', 'features') mkdirp(FIG_PATH) def analyze_view_only_links(): dates = [ record['date_created'] for record in link_collection.find({}, {'date_created': True}) ] if not dates: return fig = plot_dates(dates) plt.title('view-only links ({} total)'.format(len(dates))) plt.savefig(os.path.join(FIG_PATH, 'view-only-links.png')) plt.close() def analyze_view_only_links_anonymous(): dates = [ record['date_created'] for record in link_collection.find( {'anonymous': True}, {'date_created': True}, ) ] if not dates: return fig = plot_dates(dates) plt.title('anonymous view-only links ({} total)'.format(len(dates))) plt.savefig(os.path.join(FIG_PATH, 'view-only-links-anonymous.png')) plt.close() def main(): analyze_view_only_links() analyze_view_only_links_anonymous() if __name__ == '__main__': main()
apache-2.0
NSLS-II-HXN/PyXRF
pyxrf/gui_module/wd_preview_plot_spectrum.py
1
5064
from qtpy.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QRadioButton, QButtonGroup, QComboBox) from qtpy.QtCore import Slot from .useful_widgets import set_tooltip, global_gui_variables from ..model.lineplot import PlotTypes, EnergyRangePresets from matplotlib.backends.backend_qt5agg import \ FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar import logging logger = logging.getLogger(__name__) class PreviewPlotSpectrum(QWidget): def __init__(self, *, gpc, gui_vars): super().__init__() # Global processing classes self.gpc = gpc # Global GUI variables (used for control of GUI state) self.gui_vars = gui_vars self.cb_plot_type = QComboBox() self.cb_plot_type.addItems(["LinLog", "Linear"]) self.cb_plot_type.setCurrentIndex(self.gpc.get_preview_plot_type()) self.cb_plot_type.currentIndexChanged.connect(self.cb_plot_type_current_index_changed) self.rb_selected_region = QRadioButton("Selected region") self.rb_selected_region.setChecked(True) self.rb_full_spectrum = QRadioButton("Full spectrum") if self.gpc.get_preview_energy_range() == EnergyRangePresets.SELECTED_RANGE: self.rb_selected_region.setChecked(True) elif self.gpc.get_preview_energy_range() == EnergyRangePresets.FULL_SPECTRUM: self.rb_full_spectrum.setChecked(True) else: logger.error("Spectrum preview: incorrect Enum value for energy range was used:\n" " Report the error to the development team.") self.btn_group_region = QButtonGroup() self.btn_group_region.addButton(self.rb_selected_region) self.btn_group_region.addButton(self.rb_full_spectrum) self.btn_group_region.buttonToggled.connect(self.btn_group_region_button_toggled) self.mpl_canvas = FigureCanvas(self.gpc.plot_model._fig_preview) self.mpl_toolbar = NavigationToolbar(self.mpl_canvas, self) # Keep layout without change when canvas is hidden (invisible) sp_retain = self.mpl_canvas.sizePolicy() sp_retain.setRetainSizeWhenHidden(True) self.mpl_canvas.setSizePolicy(sp_retain) vbox = QVBoxLayout() hbox = QHBoxLayout() hbox.addWidget(self.cb_plot_type) hbox.addStretch(1) hbox.addWidget(self.rb_selected_region) hbox.addWidget(self.rb_full_spectrum) vbox.addLayout(hbox) vbox.addWidget(self.mpl_toolbar) vbox.addWidget(self.mpl_canvas) self.setLayout(vbox) self._set_tooltips() def _set_tooltips(self): set_tooltip(self.cb_plot_type, "Use <b>Linear</b> or <b>LinLog</b> axes to plot spectra") set_tooltip( self.rb_selected_region, "Plot spectrum in the <b>selected range</b> of energies. The range may be set " "in the 'Model' tab. Click the button <b>'Find Automatically ...'</b> " "to set the range of energies before finding the emission lines. The range " "may be changed in General Settings dialog (button <b>'General ...'</b>) at any time.") set_tooltip(self.rb_full_spectrum, "Plot full spectrum over <b>all available eneriges</b>.") def update_widget_state(self, condition=None): if condition == "tooltips": self._set_tooltips() self.mpl_toolbar.setVisible(self.gui_vars["show_matplotlib_toolbar"]) # Hide Matplotlib canvas during computations state_compute = global_gui_variables["gui_state"]["running_computations"] self.mpl_canvas.setVisible(not state_compute) @Slot() @Slot(bool) def redraw_preview_plot(self): # It is assumed that the plot is visible self.gpc.update_preview_spectrum_plot() def btn_group_region_button_toggled(self, button, checked): if checked: if button == self.rb_selected_region: self.gpc.set_preview_energy_range(EnergyRangePresets.SELECTED_RANGE) self.gpc.update_preview_spectrum_plot() logger.debug("GUI: Display only selected region") elif button == self.rb_full_spectrum: self.gpc.set_preview_energy_range(EnergyRangePresets.FULL_SPECTRUM) self.gpc.update_preview_spectrum_plot() logger.debug("GUI: Display full spectrum") else: logger.error("Spectrum preview: unknown button was toggled. " "Please, report the error to the development team.") def cb_plot_type_current_index_changed(self, index): try: self.gpc.set_preview_plot_type(PlotTypes(index)) self.gpc.plot_model.update_preview_spectrum_plot() except ValueError: logger.error("Spectrum preview: incorrect index for energy range preset was detected.\n" "Please report the error to the development team.")
bsd-3-clause
arhik/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/_cm.py
70
375423
""" Color data and pre-defined cmap objects. This is a helper for cm.py, originally part of that file. Separating the data (this file) from cm.py makes both easier to deal with. Objects visible in cm.py are the individual cmap objects ('autumn', etc.) and a dictionary, 'datad', including all of these objects. """ import matplotlib as mpl import matplotlib.colors as colors LUTSIZE = mpl.rcParams['image.lut'] _binary_data = { 'red' : ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 1., 1.), (1., 0., 0.)), 'blue' : ((0., 1., 1.), (1., 0., 0.)) } _bone_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 1.0, 1.0))} _autumn_data = {'red': ((0., 1.0, 1.0),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(1.0, 0., 0.))} _bone_data = {'red': ((0., 0., 0.),(0.746032, 0.652778, 0.652778),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.319444, 0.319444), (0.746032, 0.777778, 0.777778),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.365079, 0.444444, 0.444444),(1.0, 1.0, 1.0))} _cool_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 1., 1.), (1.0, 0., 0.)), 'blue': ((0., 1., 1.), (1.0, 1., 1.))} _copper_data = {'red': ((0., 0., 0.),(0.809524, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 0.7812, 0.7812)), 'blue': ((0., 0., 0.),(1.0, 0.4975, 0.4975))} _flag_data = {'red': ((0., 1., 1.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.111111, 0.000000, 0.000000), (0.126984, 1.000000, 1.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.000000, 0.000000), (0.190476, 1.000000, 1.000000),(0.206349, 1.000000, 1.000000), (0.222222, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.301587, 0.000000, 0.000000), (0.317460, 1.000000, 1.000000),(0.333333, 1.000000, 1.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.000000, 0.000000), (0.380952, 1.000000, 1.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.492063, 0.000000, 0.000000), (0.507937, 1.000000, 1.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.000000, 0.000000), (0.571429, 1.000000, 1.000000),(0.587302, 1.000000, 1.000000), (0.603175, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.682540, 0.000000, 0.000000), (0.698413, 1.000000, 1.000000),(0.714286, 1.000000, 1.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.000000, 0.000000), (0.761905, 1.000000, 1.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.873016, 0.000000, 0.000000), (0.888889, 1.000000, 1.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.000000, 0.000000), (0.952381, 1.000000, 1.000000),(0.968254, 1.000000, 1.000000), (0.984127, 0.000000, 0.000000),(1.0, 0., 0.)), 'green': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 1.000000, 1.000000),(0.095238, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 0.000000, 0.000000),(0.190476, 0.000000, 0.000000), (0.206349, 1.000000, 1.000000),(0.222222, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.317460, 0.000000, 0.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 1.000000, 1.000000),(0.476190, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 0.000000, 0.000000),(0.571429, 0.000000, 0.000000), (0.587302, 1.000000, 1.000000),(0.603175, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.698413, 0.000000, 0.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 0.000000, 0.000000),(0.952381, 0.000000, 0.000000), (0.968254, 1.000000, 1.000000),(0.984127, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.015873, 1.000000, 1.000000), (0.031746, 1.000000, 1.000000),(0.047619, 0.000000, 0.000000), (0.063492, 0.000000, 0.000000),(0.079365, 1.000000, 1.000000), (0.095238, 1.000000, 1.000000),(0.111111, 0.000000, 0.000000), (0.126984, 0.000000, 0.000000),(0.142857, 1.000000, 1.000000), (0.158730, 1.000000, 1.000000),(0.174603, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.206349, 1.000000, 1.000000), (0.222222, 1.000000, 1.000000),(0.238095, 0.000000, 0.000000), (0.253968, 0.000000, 0.000000),(0.269841, 1.000000, 1.000000), (0.285714, 1.000000, 1.000000),(0.301587, 0.000000, 0.000000), (0.317460, 0.000000, 0.000000),(0.333333, 1.000000, 1.000000), (0.349206, 1.000000, 1.000000),(0.365079, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.396825, 1.000000, 1.000000), (0.412698, 1.000000, 1.000000),(0.428571, 0.000000, 0.000000), (0.444444, 0.000000, 0.000000),(0.460317, 1.000000, 1.000000), (0.476190, 1.000000, 1.000000),(0.492063, 0.000000, 0.000000), (0.507937, 0.000000, 0.000000),(0.523810, 1.000000, 1.000000), (0.539683, 1.000000, 1.000000),(0.555556, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.587302, 1.000000, 1.000000), (0.603175, 1.000000, 1.000000),(0.619048, 0.000000, 0.000000), (0.634921, 0.000000, 0.000000),(0.650794, 1.000000, 1.000000), (0.666667, 1.000000, 1.000000),(0.682540, 0.000000, 0.000000), (0.698413, 0.000000, 0.000000),(0.714286, 1.000000, 1.000000), (0.730159, 1.000000, 1.000000),(0.746032, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.777778, 1.000000, 1.000000), (0.793651, 1.000000, 1.000000),(0.809524, 0.000000, 0.000000), (0.825397, 0.000000, 0.000000),(0.841270, 1.000000, 1.000000), (0.857143, 1.000000, 1.000000),(0.873016, 0.000000, 0.000000), (0.888889, 0.000000, 0.000000),(0.904762, 1.000000, 1.000000), (0.920635, 1.000000, 1.000000),(0.936508, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.968254, 1.000000, 1.000000), (0.984127, 1.000000, 1.000000),(1.0, 0., 0.))} _gray_data = {'red': ((0., 0, 0), (1., 1, 1)), 'green': ((0., 0, 0), (1., 1, 1)), 'blue': ((0., 0, 0), (1., 1, 1))} _hot_data = {'red': ((0., 0.0416, 0.0416),(0.365079, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.365079, 0.000000, 0.000000), (0.746032, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.746032, 0.000000, 0.000000),(1.0, 1.0, 1.0))} _hsv_data = {'red': ((0., 1., 1.),(0.158730, 1.000000, 1.000000), (0.174603, 0.968750, 0.968750),(0.333333, 0.031250, 0.031250), (0.349206, 0.000000, 0.000000),(0.666667, 0.000000, 0.000000), (0.682540, 0.031250, 0.031250),(0.841270, 0.968750, 0.968750), (0.857143, 1.000000, 1.000000),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.158730, 0.937500, 0.937500), (0.174603, 1.000000, 1.000000),(0.507937, 1.000000, 1.000000), (0.666667, 0.062500, 0.062500),(0.682540, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.),(0.333333, 0.000000, 0.000000), (0.349206, 0.062500, 0.062500),(0.507937, 1.000000, 1.000000), (0.841270, 1.000000, 1.000000),(0.857143, 0.937500, 0.937500), (1.0, 0.09375, 0.09375))} _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} _pink_data = {'red': ((0., 0.1178, 0.1178),(0.015873, 0.195857, 0.195857), (0.031746, 0.250661, 0.250661),(0.047619, 0.295468, 0.295468), (0.063492, 0.334324, 0.334324),(0.079365, 0.369112, 0.369112), (0.095238, 0.400892, 0.400892),(0.111111, 0.430331, 0.430331), (0.126984, 0.457882, 0.457882),(0.142857, 0.483867, 0.483867), (0.158730, 0.508525, 0.508525),(0.174603, 0.532042, 0.532042), (0.190476, 0.554563, 0.554563),(0.206349, 0.576204, 0.576204), (0.222222, 0.597061, 0.597061),(0.238095, 0.617213, 0.617213), (0.253968, 0.636729, 0.636729),(0.269841, 0.655663, 0.655663), (0.285714, 0.674066, 0.674066),(0.301587, 0.691980, 0.691980), (0.317460, 0.709441, 0.709441),(0.333333, 0.726483, 0.726483), (0.349206, 0.743134, 0.743134),(0.365079, 0.759421, 0.759421), (0.380952, 0.766356, 0.766356),(0.396825, 0.773229, 0.773229), (0.412698, 0.780042, 0.780042),(0.428571, 0.786796, 0.786796), (0.444444, 0.793492, 0.793492),(0.460317, 0.800132, 0.800132), (0.476190, 0.806718, 0.806718),(0.492063, 0.813250, 0.813250), (0.507937, 0.819730, 0.819730),(0.523810, 0.826160, 0.826160), (0.539683, 0.832539, 0.832539),(0.555556, 0.838870, 0.838870), (0.571429, 0.845154, 0.845154),(0.587302, 0.851392, 0.851392), (0.603175, 0.857584, 0.857584),(0.619048, 0.863731, 0.863731), (0.634921, 0.869835, 0.869835),(0.650794, 0.875897, 0.875897), (0.666667, 0.881917, 0.881917),(0.682540, 0.887896, 0.887896), (0.698413, 0.893835, 0.893835),(0.714286, 0.899735, 0.899735), (0.730159, 0.905597, 0.905597),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.517549, 0.517549),(0.396825, 0.540674, 0.540674), (0.412698, 0.562849, 0.562849),(0.428571, 0.584183, 0.584183), (0.444444, 0.604765, 0.604765),(0.460317, 0.624669, 0.624669), (0.476190, 0.643958, 0.643958),(0.492063, 0.662687, 0.662687), (0.507937, 0.680900, 0.680900),(0.523810, 0.698638, 0.698638), (0.539683, 0.715937, 0.715937),(0.555556, 0.732828, 0.732828), (0.571429, 0.749338, 0.749338),(0.587302, 0.765493, 0.765493), (0.603175, 0.781313, 0.781313),(0.619048, 0.796819, 0.796819), (0.634921, 0.812029, 0.812029),(0.650794, 0.826960, 0.826960), (0.666667, 0.841625, 0.841625),(0.682540, 0.856040, 0.856040), (0.698413, 0.870216, 0.870216),(0.714286, 0.884164, 0.884164), (0.730159, 0.897896, 0.897896),(0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208),(0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673),(0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999),(0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190),(0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250),(0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185),(0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999),(0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695),(1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479),(0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738),(0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976),(0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957),(0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300),(0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348),(0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900),(0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476),(0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436),(0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044),(0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498),(0.365079, 0.493342, 0.493342), (0.380952, 0.503953, 0.503953),(0.396825, 0.514344, 0.514344), (0.412698, 0.524531, 0.524531),(0.428571, 0.534522, 0.534522), (0.444444, 0.544331, 0.544331),(0.460317, 0.553966, 0.553966), (0.476190, 0.563436, 0.563436),(0.492063, 0.572750, 0.572750), (0.507937, 0.581914, 0.581914),(0.523810, 0.590937, 0.590937), (0.539683, 0.599824, 0.599824),(0.555556, 0.608581, 0.608581), (0.571429, 0.617213, 0.617213),(0.587302, 0.625727, 0.625727), (0.603175, 0.634126, 0.634126),(0.619048, 0.642416, 0.642416), (0.634921, 0.650600, 0.650600),(0.650794, 0.658682, 0.658682), (0.666667, 0.666667, 0.666667),(0.682540, 0.674556, 0.674556), (0.698413, 0.682355, 0.682355),(0.714286, 0.690066, 0.690066), (0.730159, 0.697691, 0.697691),(0.746032, 0.705234, 0.705234), (0.761905, 0.727166, 0.727166),(0.777778, 0.748455, 0.748455), (0.793651, 0.769156, 0.769156),(0.809524, 0.789314, 0.789314), (0.825397, 0.808969, 0.808969),(0.841270, 0.828159, 0.828159), (0.857143, 0.846913, 0.846913),(0.873016, 0.865261, 0.865261), (0.888889, 0.883229, 0.883229),(0.904762, 0.900837, 0.900837), (0.920635, 0.918109, 0.918109),(0.936508, 0.935061, 0.935061), (0.952381, 0.951711, 0.951711),(0.968254, 0.968075, 0.968075), (0.984127, 0.984167, 0.984167),(1.0, 1.0, 1.0))} _prism_data = {'red': ((0., 1., 1.),(0.031746, 1.000000, 1.000000), (0.047619, 0.000000, 0.000000),(0.063492, 0.000000, 0.000000), (0.079365, 0.666667, 0.666667),(0.095238, 1.000000, 1.000000), (0.126984, 1.000000, 1.000000),(0.142857, 0.000000, 0.000000), (0.158730, 0.000000, 0.000000),(0.174603, 0.666667, 0.666667), (0.190476, 1.000000, 1.000000),(0.222222, 1.000000, 1.000000), (0.238095, 0.000000, 0.000000),(0.253968, 0.000000, 0.000000), (0.269841, 0.666667, 0.666667),(0.285714, 1.000000, 1.000000), (0.317460, 1.000000, 1.000000),(0.333333, 0.000000, 0.000000), (0.349206, 0.000000, 0.000000),(0.365079, 0.666667, 0.666667), (0.380952, 1.000000, 1.000000),(0.412698, 1.000000, 1.000000), (0.428571, 0.000000, 0.000000),(0.444444, 0.000000, 0.000000), (0.460317, 0.666667, 0.666667),(0.476190, 1.000000, 1.000000), (0.507937, 1.000000, 1.000000),(0.523810, 0.000000, 0.000000), (0.539683, 0.000000, 0.000000),(0.555556, 0.666667, 0.666667), (0.571429, 1.000000, 1.000000),(0.603175, 1.000000, 1.000000), (0.619048, 0.000000, 0.000000),(0.634921, 0.000000, 0.000000), (0.650794, 0.666667, 0.666667),(0.666667, 1.000000, 1.000000), (0.698413, 1.000000, 1.000000),(0.714286, 0.000000, 0.000000), (0.730159, 0.000000, 0.000000),(0.746032, 0.666667, 0.666667), (0.761905, 1.000000, 1.000000),(0.793651, 1.000000, 1.000000), (0.809524, 0.000000, 0.000000),(0.825397, 0.000000, 0.000000), (0.841270, 0.666667, 0.666667),(0.857143, 1.000000, 1.000000), (0.888889, 1.000000, 1.000000),(0.904762, 0.000000, 0.000000), (0.920635, 0.000000, 0.000000),(0.936508, 0.666667, 0.666667), (0.952381, 1.000000, 1.000000),(0.984127, 1.000000, 1.000000), (1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(0.031746, 1.000000, 1.000000), (0.047619, 1.000000, 1.000000),(0.063492, 0.000000, 0.000000), (0.095238, 0.000000, 0.000000),(0.126984, 1.000000, 1.000000), (0.142857, 1.000000, 1.000000),(0.158730, 0.000000, 0.000000), (0.190476, 0.000000, 0.000000),(0.222222, 1.000000, 1.000000), (0.238095, 1.000000, 1.000000),(0.253968, 0.000000, 0.000000), (0.285714, 0.000000, 0.000000),(0.317460, 1.000000, 1.000000), (0.333333, 1.000000, 1.000000),(0.349206, 0.000000, 0.000000), (0.380952, 0.000000, 0.000000),(0.412698, 1.000000, 1.000000), (0.428571, 1.000000, 1.000000),(0.444444, 0.000000, 0.000000), (0.476190, 0.000000, 0.000000),(0.507937, 1.000000, 1.000000), (0.523810, 1.000000, 1.000000),(0.539683, 0.000000, 0.000000), (0.571429, 0.000000, 0.000000),(0.603175, 1.000000, 1.000000), (0.619048, 1.000000, 1.000000),(0.634921, 0.000000, 0.000000), (0.666667, 0.000000, 0.000000),(0.698413, 1.000000, 1.000000), (0.714286, 1.000000, 1.000000),(0.730159, 0.000000, 0.000000), (0.761905, 0.000000, 0.000000),(0.793651, 1.000000, 1.000000), (0.809524, 1.000000, 1.000000),(0.825397, 0.000000, 0.000000), (0.857143, 0.000000, 0.000000),(0.888889, 1.000000, 1.000000), (0.904762, 1.000000, 1.000000),(0.920635, 0.000000, 0.000000), (0.952381, 0.000000, 0.000000),(0.984127, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.),(0.047619, 0.000000, 0.000000), (0.063492, 1.000000, 1.000000),(0.079365, 1.000000, 1.000000), (0.095238, 0.000000, 0.000000),(0.142857, 0.000000, 0.000000), (0.158730, 1.000000, 1.000000),(0.174603, 1.000000, 1.000000), (0.190476, 0.000000, 0.000000),(0.238095, 0.000000, 0.000000), (0.253968, 1.000000, 1.000000),(0.269841, 1.000000, 1.000000), (0.285714, 0.000000, 0.000000),(0.333333, 0.000000, 0.000000), (0.349206, 1.000000, 1.000000),(0.365079, 1.000000, 1.000000), (0.380952, 0.000000, 0.000000),(0.428571, 0.000000, 0.000000), (0.444444, 1.000000, 1.000000),(0.460317, 1.000000, 1.000000), (0.476190, 0.000000, 0.000000),(0.523810, 0.000000, 0.000000), (0.539683, 1.000000, 1.000000),(0.555556, 1.000000, 1.000000), (0.571429, 0.000000, 0.000000),(0.619048, 0.000000, 0.000000), (0.634921, 1.000000, 1.000000),(0.650794, 1.000000, 1.000000), (0.666667, 0.000000, 0.000000),(0.714286, 0.000000, 0.000000), (0.730159, 1.000000, 1.000000),(0.746032, 1.000000, 1.000000), (0.761905, 0.000000, 0.000000),(0.809524, 0.000000, 0.000000), (0.825397, 1.000000, 1.000000),(0.841270, 1.000000, 1.000000), (0.857143, 0.000000, 0.000000),(0.904762, 0.000000, 0.000000), (0.920635, 1.000000, 1.000000),(0.936508, 1.000000, 1.000000), (0.952381, 0.000000, 0.000000),(1.0, 0.0, 0.0))} _spring_data = {'red': ((0., 1., 1.),(1.0, 1.0, 1.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.0, 0.0))} _summer_data = {'red': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'green': ((0., 0.5, 0.5),(1.0, 1.0, 1.0)), 'blue': ((0., 0.4, 0.4),(1.0, 0.4, 0.4))} _winter_data = {'red': ((0., 0., 0.),(1.0, 0.0, 0.0)), 'green': ((0., 0., 0.),(1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.),(1.0, 0.5, 0.5))} _spectral_data = {'red': [(0.0, 0.0, 0.0), (0.05, 0.4667, 0.4667), (0.10, 0.5333, 0.5333), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.0, 0.0), (0.30, 0.0, 0.0), (0.35, 0.0, 0.0), (0.40, 0.0, 0.0), (0.45, 0.0, 0.0), (0.50, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.7333, 0.7333), (0.70, 0.9333, 0.9333), (0.75, 1.0, 1.0), (0.80, 1.0, 1.0), (0.85, 1.0, 1.0), (0.90, 0.8667, 0.8667), (0.95, 0.80, 0.80), (1.0, 0.80, 0.80)], 'green': [(0.0, 0.0, 0.0), (0.05, 0.0, 0.0), (0.10, 0.0, 0.0), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.4667, 0.4667), (0.30, 0.6000, 0.6000), (0.35, 0.6667, 0.6667), (0.40, 0.6667, 0.6667), (0.45, 0.6000, 0.6000), (0.50, 0.7333, 0.7333), (0.55, 0.8667, 0.8667), (0.60, 1.0, 1.0), (0.65, 1.0, 1.0), (0.70, 0.9333, 0.9333), (0.75, 0.8000, 0.8000), (0.80, 0.6000, 0.6000), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], 'blue': [(0.0, 0.0, 0.0), (0.05, 0.5333, 0.5333), (0.10, 0.6000, 0.6000), (0.15, 0.6667, 0.6667), (0.20, 0.8667, 0.8667), (0.25, 0.8667, 0.8667), (0.30, 0.8667, 0.8667), (0.35, 0.6667, 0.6667), (0.40, 0.5333, 0.5333), (0.45, 0.0, 0.0), (0.5, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.0, 0.0), (0.70, 0.0, 0.0), (0.75, 0.0, 0.0), (0.80, 0.0, 0.0), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)]} autumn = colors.LinearSegmentedColormap('autumn', _autumn_data, LUTSIZE) bone = colors.LinearSegmentedColormap('bone ', _bone_data, LUTSIZE) binary = colors.LinearSegmentedColormap('binary ', _binary_data, LUTSIZE) cool = colors.LinearSegmentedColormap('cool', _cool_data, LUTSIZE) copper = colors.LinearSegmentedColormap('copper', _copper_data, LUTSIZE) flag = colors.LinearSegmentedColormap('flag', _flag_data, LUTSIZE) gray = colors.LinearSegmentedColormap('gray', _gray_data, LUTSIZE) hot = colors.LinearSegmentedColormap('hot', _hot_data, LUTSIZE) hsv = colors.LinearSegmentedColormap('hsv', _hsv_data, LUTSIZE) jet = colors.LinearSegmentedColormap('jet', _jet_data, LUTSIZE) pink = colors.LinearSegmentedColormap('pink', _pink_data, LUTSIZE) prism = colors.LinearSegmentedColormap('prism', _prism_data, LUTSIZE) spring = colors.LinearSegmentedColormap('spring', _spring_data, LUTSIZE) summer = colors.LinearSegmentedColormap('summer', _summer_data, LUTSIZE) winter = colors.LinearSegmentedColormap('winter', _winter_data, LUTSIZE) spectral = colors.LinearSegmentedColormap('spectral', _spectral_data, LUTSIZE) datad = { 'autumn': _autumn_data, 'bone': _bone_data, 'binary': _binary_data, 'cool': _cool_data, 'copper': _copper_data, 'flag': _flag_data, 'gray' : _gray_data, 'hot': _hot_data, 'hsv': _hsv_data, 'jet' : _jet_data, 'pink': _pink_data, 'prism': _prism_data, 'spring': _spring_data, 'summer': _summer_data, 'winter': _winter_data, 'spectral': _spectral_data } # 34 colormaps based on color specifications and designs # developed by Cynthia Brewer (http://colorbrewer.org). # The ColorBrewer palettes have been included under the terms # of an Apache-stype license (for details, see the file # LICENSE_COLORBREWER in the license directory of the matplotlib # source distribution). _Accent_data = {'blue': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.83137255907058716, 0.83137255907058716), (0.2857142857142857, 0.52549022436141968, 0.52549022436141968), (0.42857142857142855, 0.60000002384185791, 0.60000002384185791), (0.5714285714285714, 0.69019609689712524, 0.69019609689712524), (0.7142857142857143, 0.49803921580314636, 0.49803921580314636), (0.8571428571428571, 0.090196080505847931, 0.090196080505847931), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.78823530673980713, 0.78823530673980713), (0.14285714285714285, 0.68235296010971069, 0.68235296010971069), (0.2857142857142857, 0.75294119119644165, 0.75294119119644165), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.42352941632270813, 0.42352941632270813), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.35686275362968445, 0.35686275362968445), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.7450980544090271, 0.7450980544090271), (0.2857142857142857, 0.99215686321258545, 0.99215686321258545), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.21960784494876862, 0.21960784494876862), (0.7142857142857143, 0.94117647409439087, 0.94117647409439087), (0.8571428571428571, 0.74901962280273438, 0.74901962280273438), (1.0, 0.40000000596046448, 0.40000000596046448)]} _Blues_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.93725490570068359, 0.93725490570068359), (0.375, 0.88235294818878174, 0.88235294818878174), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.7764706015586853, 0.7764706015586853), (0.75, 0.70980393886566162, 0.70980393886566162), (0.875, 0.61176472902297974, 0.61176472902297974), (1.0, 0.41960784792900085, 0.41960784792900085)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92156863212585449, 0.92156863212585449), (0.25, 0.85882353782653809, 0.85882353782653809), (0.375, 0.7921568751335144, 0.7921568751335144), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.57254904508590698, 0.57254904508590698), (0.75, 0.44313725829124451, 0.44313725829124451), (0.875, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87058824300765991, 0.87058824300765991), (0.25, 0.7764706015586853, 0.7764706015586853), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.25882354378700256, 0.25882354378700256), (0.75, 0.12941177189350128, 0.12941177189350128), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _BrBG_data = {'blue': [(0.0, 0.019607843831181526, 0.019607843831181526), (0.10000000000000001, 0.039215687662363052, 0.039215687662363052), (0.20000000000000001, 0.17647059261798859, 0.17647059261798859), (0.29999999999999999, 0.49019607901573181, 0.49019607901573181), (0.40000000000000002, 0.76470589637756348, 0.76470589637756348), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.75686275959014893, 0.75686275959014893), (0.80000000000000004, 0.56078433990478516, 0.56078433990478516), (0.90000000000000002, 0.36862745881080627, 0.36862745881080627), (1.0, 0.18823529779911041, 0.18823529779911041)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.10000000000000001, 0.31764706969261169, 0.31764706969261169), (0.20000000000000001, 0.5058823823928833, 0.5058823823928833), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.91764706373214722, 0.91764706373214722), (0.69999999999999996, 0.80392158031463623, 0.80392158031463623), (0.80000000000000004, 0.59215688705444336, 0.59215688705444336), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.23529411852359772, 0.23529411852359772)], 'red': [(0.0, 0.32941177487373352, 0.32941177487373352), (0.10000000000000001, 0.54901963472366333, 0.54901963472366333), (0.20000000000000001, 0.74901962280273438, 0.74901962280273438), (0.29999999999999999, 0.87450981140136719, 0.87450981140136719), (0.40000000000000002, 0.96470588445663452, 0.96470588445663452), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.78039216995239258, 0.78039216995239258), (0.69999999999999996, 0.50196081399917603, 0.50196081399917603), (0.80000000000000004, 0.20784313976764679, 0.20784313976764679), (0.90000000000000002, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)]} _BuGn_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.97647058963775635, 0.97647058963775635), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.46274510025978088, 0.46274510025978088), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92549020051956177, 0.92549020051956177), (0.375, 0.84705883264541626, 0.84705883264541626), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.68235296010971069, 0.68235296010971069), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.60000002384185791, 0.60000002384185791), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _BuPu_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.95686274766921997, 0.95686274766921997), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85490196943283081, 0.85490196943283081), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.69411766529083252, 0.69411766529083252), (0.75, 0.61568629741668701, 0.61568629741668701), (0.875, 0.48627451062202454, 0.48627451062202454), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.82745099067687988, 0.82745099067687988), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.41960784792900085, 0.41960784792900085), (0.75, 0.25490197539329529, 0.25490197539329529), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.74901962280273438, 0.74901962280273438), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.54901963472366333, 0.54901963472366333), (0.75, 0.53333336114883423, 0.53333336114883423), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.30196079611778259, 0.30196079611778259)]} _Dark2_data = {'blue': [(0.0, 0.46666666865348816, 0.46666666865348816), (0.14285714285714285, 0.0078431377187371254, 0.0078431377187371254), (0.2857142857142857, 0.70196080207824707, 0.70196080207824707), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.11764705926179886, 0.11764705926179886), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.11372549086809158, 0.11372549086809158), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.14285714285714285, 0.37254902720451355, 0.37254902720451355), (0.2857142857142857, 0.43921568989753723, 0.43921568989753723), (0.42857142857142855, 0.16078431904315948, 0.16078431904315948), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 0.67058825492858887, 0.67058825492858887), (0.8571428571428571, 0.46274510025978088, 0.46274510025978088), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.10588235408067703, 0.10588235408067703), (0.14285714285714285, 0.85098040103912354, 0.85098040103912354), (0.2857142857142857, 0.45882353186607361, 0.45882353186607361), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.40000000596046448, 0.40000000596046448), (0.7142857142857143, 0.90196079015731812, 0.90196079015731812), (0.8571428571428571, 0.65098041296005249, 0.65098041296005249), (1.0, 0.40000000596046448, 0.40000000596046448)]} _GnBu_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.85882353782653809, 0.85882353782653809), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.82745099067687988, 0.82745099067687988), (0.75, 0.7450980544090271, 0.7450980544090271), (0.875, 0.67450982332229614, 0.67450982332229614), (1.0, 0.5058823823928833, 0.5058823823928833)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.9529411792755127, 0.9529411792755127), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.80000001192092896, 0.80000001192092896), (0.625, 0.70196080207824707, 0.70196080207824707), (0.75, 0.54901963472366333, 0.54901963472366333), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.25098040699958801, 0.25098040699958801)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.65882354974746704, 0.65882354974746704), (0.5, 0.48235294222831726, 0.48235294222831726), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.16862745583057404, 0.16862745583057404), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _Greens_data = {'blue': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.60784316062927246, 0.60784316062927246), (0.5, 0.46274510025978088, 0.46274510025978088), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.85098040103912354, 0.85098040103912354), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.63137257099151611, 0.63137257099151611), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _Greys_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)]} _Oranges_data = {'blue': [(0.0, 0.92156863212585449, 0.92156863212585449), (0.125, 0.80784314870834351, 0.80784314870834351), (0.25, 0.63529413938522339, 0.63529413938522339), (0.375, 0.41960784792900085, 0.41960784792900085), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.074509806931018829, 0.074509806931018829), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.011764706112444401, 0.011764706112444401), (1.0, 0.015686275437474251, 0.015686275437474251)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.90196079015731812, 0.90196079015731812), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.68235296010971069, 0.68235296010971069), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.4117647111415863, 0.4117647111415863), (0.75, 0.28235295414924622, 0.28235295414924622), (0.875, 0.21176470816135406, 0.21176470816135406), (1.0, 0.15294118225574493, 0.15294118225574493)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.94509804248809814, 0.94509804248809814), (0.75, 0.85098040103912354, 0.85098040103912354), (0.875, 0.65098041296005249, 0.65098041296005249), (1.0, 0.49803921580314636, 0.49803921580314636)]} _OrRd_data = {'blue': [(0.0, 0.92549020051956177, 0.92549020051956177), (0.125, 0.78431373834609985, 0.78431373834609985), (0.25, 0.61960786581039429, 0.61960786581039429), (0.375, 0.51764708757400513, 0.51764708757400513), (0.5, 0.3490196168422699, 0.3490196168422699), (0.625, 0.28235295414924622, 0.28235295414924622), (0.75, 0.12156862765550613, 0.12156862765550613), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90980392694473267, 0.90980392694473267), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.3960784375667572, 0.3960784375667572), (0.75, 0.18823529779911041, 0.18823529779911041), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.98823529481887817, 0.98823529481887817), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.84313726425170898, 0.84313726425170898), (0.875, 0.70196080207824707, 0.70196080207824707), (1.0, 0.49803921580314636, 0.49803921580314636)]} _Paired_data = {'blue': [(0.0, 0.89019608497619629, 0.89019608497619629), (0.090909090909090912, 0.70588237047195435, 0.70588237047195435), (0.18181818181818182, 0.54117649793624878, 0.54117649793624878), (0.27272727272727271, 0.17254902422428131, 0.17254902422428131), (0.36363636363636365, 0.60000002384185791, 0.60000002384185791), (0.45454545454545453, 0.10980392247438431, 0.10980392247438431), (0.54545454545454541, 0.43529412150382996, 0.43529412150382996), (0.63636363636363635, 0.0, 0.0), (0.72727272727272729, 0.83921569585800171, 0.83921569585800171), (0.81818181818181823, 0.60392159223556519, 0.60392159223556519), (0.90909090909090906, 0.60000002384185791, 0.60000002384185791), (1.0, 0.15686275064945221, 0.15686275064945221)], 'green': [(0.0, 0.80784314870834351, 0.80784314870834351), (0.090909090909090912, 0.47058823704719543, 0.47058823704719543), (0.18181818181818182, 0.87450981140136719, 0.87450981140136719), (0.27272727272727271, 0.62745100259780884, 0.62745100259780884), (0.36363636363636365, 0.60392159223556519, 0.60392159223556519), (0.45454545454545453, 0.10196078568696976, 0.10196078568696976), (0.54545454545454541, 0.74901962280273438, 0.74901962280273438), (0.63636363636363635, 0.49803921580314636, 0.49803921580314636), (0.72727272727272729, 0.69803923368453979, 0.69803923368453979), (0.81818181818181823, 0.23921568691730499, 0.23921568691730499), (0.90909090909090906, 1.0, 1.0), (1.0, 0.3490196168422699, 0.3490196168422699)], 'red': [(0.0, 0.65098041296005249, 0.65098041296005249), (0.090909090909090912, 0.12156862765550613, 0.12156862765550613), (0.18181818181818182, 0.69803923368453979, 0.69803923368453979), (0.27272727272727271, 0.20000000298023224, 0.20000000298023224), (0.36363636363636365, 0.9843137264251709, 0.9843137264251709), (0.45454545454545453, 0.89019608497619629, 0.89019608497619629), (0.54545454545454541, 0.99215686321258545, 0.99215686321258545), (0.63636363636363635, 1.0, 1.0), (0.72727272727272729, 0.7921568751335144, 0.7921568751335144), (0.81818181818181823, 0.41568627953529358, 0.41568627953529358), (0.90909090909090906, 1.0, 1.0), (1.0, 0.69411766529083252, 0.69411766529083252)]} _Pastel1_data = {'blue': [(0.0, 0.68235296010971069, 0.68235296010971069), (0.125, 0.89019608497619629, 0.89019608497619629), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.89411765336990356, 0.89411765336990356), (0.5, 0.65098041296005249, 0.65098041296005249), (0.625, 0.80000001192092896, 0.80000001192092896), (0.75, 0.74117648601531982, 0.74117648601531982), (0.875, 0.92549020051956177, 0.92549020051956177), (1.0, 0.94901961088180542, 0.94901961088180542)], 'green': [(0.0, 0.70588237047195435, 0.70588237047195435), (0.125, 0.80392158031463623, 0.80392158031463623), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.79607844352722168, 0.79607844352722168), (0.5, 0.85098040103912354, 0.85098040103912354), (0.625, 1.0, 1.0), (0.75, 0.84705883264541626, 0.84705883264541626), (0.875, 0.85490196943283081, 0.85490196943283081), (1.0, 0.94901961088180542, 0.94901961088180542)], 'red': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.70196080207824707, 0.70196080207824707), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.87058824300765991, 0.87058824300765991), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 1.0, 1.0), (0.75, 0.89803922176361084, 0.89803922176361084), (0.875, 0.99215686321258545, 0.99215686321258545), (1.0, 0.94901961088180542, 0.94901961088180542)]} _Pastel2_data = {'blue': [(0.0, 0.80392158031463623, 0.80392158031463623), (0.14285714285714285, 0.67450982332229614, 0.67450982332229614), (0.2857142857142857, 0.90980392694473267, 0.90980392694473267), (0.42857142857142855, 0.89411765336990356, 0.89411765336990356), (0.5714285714285714, 0.78823530673980713, 0.78823530673980713), (0.7142857142857143, 0.68235296010971069, 0.68235296010971069), (0.8571428571428571, 0.80000001192092896, 0.80000001192092896), (1.0, 0.80000001192092896, 0.80000001192092896)], 'green': [(0.0, 0.88627451658248901, 0.88627451658248901), (0.14285714285714285, 0.80392158031463623, 0.80392158031463623), (0.2857142857142857, 0.83529412746429443, 0.83529412746429443), (0.42857142857142855, 0.7921568751335144, 0.7921568751335144), (0.5714285714285714, 0.96078431606292725, 0.96078431606292725), (0.7142857142857143, 0.94901961088180542, 0.94901961088180542), (0.8571428571428571, 0.88627451658248901, 0.88627451658248901), (1.0, 0.80000001192092896, 0.80000001192092896)], 'red': [(0.0, 0.70196080207824707, 0.70196080207824707), (0.14285714285714285, 0.99215686321258545, 0.99215686321258545), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.95686274766921997, 0.95686274766921997), (0.5714285714285714, 0.90196079015731812, 0.90196079015731812), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.94509804248809814, 0.94509804248809814), (1.0, 0.80000001192092896, 0.80000001192092896)]} _PiYG_data = {'blue': [(0.0, 0.32156863808631897, 0.32156863808631897), (0.10000000000000001, 0.49019607901573181, 0.49019607901573181), (0.20000000000000001, 0.68235296010971069, 0.68235296010971069), (0.29999999999999999, 0.85490196943283081, 0.85490196943283081), (0.40000000000000002, 0.93725490570068359, 0.93725490570068359), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81568628549575806, 0.81568628549575806), (0.69999999999999996, 0.52549022436141968, 0.52549022436141968), (0.80000000000000004, 0.25490197539329529, 0.25490197539329529), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.098039217293262482, 0.098039217293262482)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.10588235408067703, 0.10588235408067703), (0.20000000000000001, 0.46666666865348816, 0.46666666865348816), (0.29999999999999999, 0.7137255072593689, 0.7137255072593689), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.88235294818878174, 0.88235294818878174), (0.80000000000000004, 0.73725491762161255, 0.73725491762161255), (0.90000000000000002, 0.57254904508590698, 0.57254904508590698), (1.0, 0.39215686917304993, 0.39215686917304993)], 'red': [(0.0, 0.55686277151107788, 0.55686277151107788), (0.10000000000000001, 0.77254903316497803, 0.77254903316497803), (0.20000000000000001, 0.87058824300765991, 0.87058824300765991), (0.29999999999999999, 0.94509804248809814, 0.94509804248809814), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.72156864404678345, 0.72156864404678345), (0.80000000000000004, 0.49803921580314636, 0.49803921580314636), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.15294118225574493, 0.15294118225574493)]} _PRGn_data = {'blue': [(0.0, 0.29411765933036804, 0.29411765933036804), (0.10000000000000001, 0.51372551918029785, 0.51372551918029785), (0.20000000000000001, 0.67058825492858887, 0.67058825492858887), (0.29999999999999999, 0.81176471710205078, 0.81176471710205078), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.82745099067687988, 0.82745099067687988), (0.69999999999999996, 0.62745100259780884, 0.62745100259780884), (0.80000000000000004, 0.3803921639919281, 0.3803921639919281), (0.90000000000000002, 0.21568627655506134, 0.21568627655506134), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.16470588743686676, 0.16470588743686676), (0.20000000000000001, 0.43921568989753723, 0.43921568989753723), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.83137255907058716, 0.83137255907058716), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.85882353782653809, 0.85882353782653809), (0.80000000000000004, 0.68235296010971069, 0.68235296010971069), (0.90000000000000002, 0.47058823704719543, 0.47058823704719543), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.25098040699958801, 0.25098040699958801), (0.10000000000000001, 0.46274510025978088, 0.46274510025978088), (0.20000000000000001, 0.60000002384185791, 0.60000002384185791), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90588235855102539, 0.90588235855102539), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.35294118523597717, 0.35294118523597717), (0.90000000000000002, 0.10588235408067703, 0.10588235408067703), (1.0, 0.0, 0.0)]} _PuBu_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94901961088180542, 0.94901961088180542), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.69019609689712524, 0.69019609689712524), (0.875, 0.55294120311737061, 0.55294120311737061), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.43921568989753723, 0.43921568989753723), (0.875, 0.35294118523597717, 0.35294118523597717), (1.0, 0.21960784494876862, 0.21960784494876862)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.019607843831181526, 0.019607843831181526), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.0078431377187371254, 0.0078431377187371254)]} _PuBuGn_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.54117649793624878, 0.54117649793624878), (0.875, 0.3490196168422699, 0.3490196168422699), (1.0, 0.21176470816135406, 0.21176470816135406)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.88627451658248901, 0.88627451658248901), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.5058823823928833, 0.5058823823928833), (0.875, 0.42352941632270813, 0.42352941632270813), (1.0, 0.27450981736183167, 0.27450981736183167)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.40392157435417175, 0.40392157435417175), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} _PuOr_data = {'blue': [(0.0, 0.031372550874948502, 0.031372550874948502), (0.10000000000000001, 0.023529412224888802, 0.023529412224888802), (0.20000000000000001, 0.078431375324726105, 0.078431375324726105), (0.29999999999999999, 0.38823530077934265, 0.38823530077934265), (0.40000000000000002, 0.7137255072593689, 0.7137255072593689), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.92156863212585449, 0.92156863212585449), (0.69999999999999996, 0.82352942228317261, 0.82352942228317261), (0.80000000000000004, 0.67450982332229614, 0.67450982332229614), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.23137255012989044, 0.23137255012989044), (0.10000000000000001, 0.34509804844856262, 0.34509804844856262), (0.20000000000000001, 0.50980395078659058, 0.50980395078659058), (0.29999999999999999, 0.72156864404678345, 0.72156864404678345), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85490196943283081, 0.85490196943283081), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.45098039507865906, 0.45098039507865906), (0.90000000000000002, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.10000000000000001, 0.70196080207824707, 0.70196080207824707), (0.20000000000000001, 0.87843137979507446, 0.87843137979507446), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.84705883264541626, 0.84705883264541626), (0.69999999999999996, 0.69803923368453979, 0.69803923368453979), (0.80000000000000004, 0.50196081399917603, 0.50196081399917603), (0.90000000000000002, 0.32941177487373352, 0.32941177487373352), (1.0, 0.17647059261798859, 0.17647059261798859)]} _PuRd_data = {'blue': [(0.0, 0.97647058963775635, 0.97647058963775635), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.78039216995239258, 0.78039216995239258), (0.5, 0.69019609689712524, 0.69019609689712524), (0.625, 0.54117649793624878, 0.54117649793624878), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.26274511218070984, 0.26274511218070984), (1.0, 0.12156862765550613, 0.12156862765550613)], 'green': [(0.0, 0.95686274766921997, 0.95686274766921997), (0.125, 0.88235294818878174, 0.88235294818878174), (0.25, 0.72549021244049072, 0.72549021244049072), (0.375, 0.58039218187332153, 0.58039218187332153), (0.5, 0.3960784375667572, 0.3960784375667572), (0.625, 0.16078431904315948, 0.16078431904315948), (0.75, 0.070588238537311554, 0.070588238537311554), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.87450981140136719, 0.87450981140136719), (0.625, 0.90588235855102539, 0.90588235855102539), (0.75, 0.80784314870834351, 0.80784314870834351), (0.875, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Purples_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86274510622024536, 0.86274510622024536), (0.5, 0.78431373834609985, 0.78431373834609985), (0.625, 0.729411780834198, 0.729411780834198), (0.75, 0.63921570777893066, 0.63921570777893066), (0.875, 0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181, 0.49019607901573181)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.60392159223556519, 0.60392159223556519), (0.625, 0.49019607901573181, 0.49019607901573181), (0.75, 0.31764706969261169, 0.31764706969261169), (0.875, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.61960786581039429, 0.61960786581039429), (0.625, 0.50196081399917603, 0.50196081399917603), (0.75, 0.41568627953529358, 0.41568627953529358), (0.875, 0.32941177487373352, 0.32941177487373352), (1.0, 0.24705882370471954, 0.24705882370471954)]} _RdBu_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.87058824300765991, 0.87058824300765991), (0.80000000000000004, 0.76470589637756348, 0.76470589637756348), (0.90000000000000002, 0.67450982332229614, 0.67450982332229614), (1.0, 0.3803921639919281, 0.3803921639919281)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.77254903316497803, 0.77254903316497803), (0.80000000000000004, 0.57647061347961426, 0.57647061347961426), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81960785388946533, 0.81960785388946533), (0.69999999999999996, 0.57254904508590698, 0.57254904508590698), (0.80000000000000004, 0.26274511218070984, 0.26274511218070984), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.019607843831181526, 0.019607843831181526)]} _RdGy_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)]} _RdPu_data = {'blue': [(0.0, 0.9529411792755127, 0.9529411792755127), (0.125, 0.86666667461395264, 0.86666667461395264), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.63137257099151611, 0.63137257099151611), (0.625, 0.59215688705444336, 0.59215688705444336), (0.75, 0.49411764740943909, 0.49411764740943909), (0.875, 0.46666666865348816, 0.46666666865348816), (1.0, 0.41568627953529358, 0.41568627953529358)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.62352943420410156, 0.62352943420410156), (0.5, 0.40784314274787903, 0.40784314274787903), (0.625, 0.20392157137393951, 0.20392157137393951), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99215686321258545, 0.99215686321258545), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98039215803146362, 0.98039215803146362), (0.5, 0.9686274528503418, 0.9686274528503418), (0.625, 0.86666667461395264, 0.86666667461395264), (0.75, 0.68235296010971069, 0.68235296010971069), (0.875, 0.47843137383460999, 0.47843137383460999), (1.0, 0.28627452254295349, 0.28627452254295349)]} _RdYlBu_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000149011612, 0.15294118225574493, 0.15294118225574493), (0.20000000298023224, 0.26274511218070984, 0.26274511218070984), (0.30000001192092896, 0.3803921639919281, 0.3803921639919281), (0.40000000596046448, 0.56470590829849243, 0.56470590829849243), (0.5, 0.74901962280273438, 0.74901962280273438), (0.60000002384185791, 0.97254902124404907, 0.97254902124404907), (0.69999998807907104, 0.91372549533843994, 0.91372549533843994), (0.80000001192092896, 0.81960785388946533, 0.81960785388946533), (0.89999997615814209, 0.70588237047195435, 0.70588237047195435), (1.0, 0.58431375026702881, 0.58431375026702881)], 'green': [(0.0, 0.0, 0.0), (0.10000000149011612, 0.18823529779911041, 0.18823529779911041), (0.20000000298023224, 0.42745098471641541, 0.42745098471641541), (0.30000001192092896, 0.68235296010971069, 0.68235296010971069), (0.40000000596046448, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.60000002384185791, 0.9529411792755127, 0.9529411792755127), (0.69999998807907104, 0.85098040103912354, 0.85098040103912354), (0.80000001192092896, 0.67843139171600342, 0.67843139171600342), (0.89999997615814209, 0.45882353186607361, 0.45882353186607361), (1.0, 0.21176470816135406, 0.21176470816135406)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000149011612, 0.84313726425170898, 0.84313726425170898), (0.20000000298023224, 0.95686274766921997, 0.95686274766921997), (0.30000001192092896, 0.99215686321258545, 0.99215686321258545), (0.40000000596046448, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.60000002384185791, 0.87843137979507446, 0.87843137979507446), (0.69999998807907104, 0.67058825492858887, 0.67058825492858887), (0.80000001192092896, 0.45490196347236633, 0.45490196347236633), (0.89999997615814209, 0.27058824896812439, 0.27058824896812439), (1.0, 0.19215686619281769, 0.19215686619281769)]} _RdYlGn_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000000000001, 0.15294118225574493, 0.15294118225574493), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.54509806632995605, 0.54509806632995605), (0.69999999999999996, 0.41568627953529358, 0.41568627953529358), (0.80000000000000004, 0.38823530077934265, 0.38823530077934265), (0.90000000000000002, 0.31372550129890442, 0.31372550129890442), (1.0, 0.21568627655506134, 0.21568627655506134)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.18823529779911041, 0.18823529779911041), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.93725490570068359, 0.93725490570068359), (0.69999999999999996, 0.85098040103912354, 0.85098040103912354), (0.80000000000000004, 0.74117648601531982, 0.74117648601531982), (0.90000000000000002, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40784314274787903, 0.40784314274787903)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000000000001, 0.84313726425170898, 0.84313726425170898), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.10196078568696976, 0.10196078568696976), (1.0, 0.0, 0.0)]} _Reds_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.82352942228317261, 0.82352942228317261), (0.25, 0.63137257099151611, 0.63137257099151611), (0.375, 0.44705882668495178, 0.44705882668495178), (0.5, 0.29019609093666077, 0.29019609093666077), (0.625, 0.17254902422428131, 0.17254902422428131), (0.75, 0.11372549086809158, 0.11372549086809158), (0.875, 0.08235294371843338, 0.08235294371843338), (1.0, 0.050980392843484879, 0.050980392843484879)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.73333334922790527, 0.73333334922790527), (0.375, 0.57254904508590698, 0.57254904508590698), (0.5, 0.41568627953529358, 0.41568627953529358), (0.625, 0.23137255012989044, 0.23137255012989044), (0.75, 0.094117648899555206, 0.094117648899555206), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98823529481887817, 0.98823529481887817), (0.5, 0.9843137264251709, 0.9843137264251709), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.79607844352722168, 0.79607844352722168), (0.875, 0.64705884456634521, 0.64705884456634521), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Set1_data = {'blue': [(0.0, 0.10980392247438431, 0.10980392247438431), (0.125, 0.72156864404678345, 0.72156864404678345), (0.25, 0.29019609093666077, 0.29019609093666077), (0.375, 0.63921570777893066, 0.63921570777893066), (0.5, 0.0, 0.0), (0.625, 0.20000000298023224, 0.20000000298023224), (0.75, 0.15686275064945221, 0.15686275064945221), (0.875, 0.74901962280273438, 0.74901962280273438), (1.0, 0.60000002384185791, 0.60000002384185791)], 'green': [(0.0, 0.10196078568696976, 0.10196078568696976), (0.125, 0.49411764740943909, 0.49411764740943909), (0.25, 0.68627452850341797, 0.68627452850341797), (0.375, 0.30588236451148987, 0.30588236451148987), (0.5, 0.49803921580314636, 0.49803921580314636), (0.625, 1.0, 1.0), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.60000002384185791, 0.60000002384185791)], 'red': [(0.0, 0.89411765336990356, 0.89411765336990356), (0.125, 0.21568627655506134, 0.21568627655506134), (0.25, 0.30196079611778259, 0.30196079611778259), (0.375, 0.59607845544815063, 0.59607845544815063), (0.5, 1.0, 1.0), (0.625, 1.0, 1.0), (0.75, 0.65098041296005249, 0.65098041296005249), (0.875, 0.9686274528503418, 0.9686274528503418), (1.0, 0.60000002384185791, 0.60000002384185791)]} _Set2_data = {'blue': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.14285714285714285, 0.38431373238563538, 0.38431373238563538), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.76470589637756348, 0.76470589637756348), (0.5714285714285714, 0.32941177487373352, 0.32941177487373352), (0.7142857142857143, 0.18431372940540314, 0.18431372940540314), (0.8571428571428571, 0.58039218187332153, 0.58039218187332153), (1.0, 0.70196080207824707, 0.70196080207824707)], 'green': [(0.0, 0.7607843279838562, 0.7607843279838562), (0.14285714285714285, 0.55294120311737061, 0.55294120311737061), (0.2857142857142857, 0.62745100259780884, 0.62745100259780884), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.84705883264541626, 0.84705883264541626), (0.7142857142857143, 0.85098040103912354, 0.85098040103912354), (0.8571428571428571, 0.76862746477127075, 0.76862746477127075), (1.0, 0.70196080207824707, 0.70196080207824707)], 'red': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.14285714285714285, 0.98823529481887817, 0.98823529481887817), (0.2857142857142857, 0.55294120311737061, 0.55294120311737061), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.89803922176361084, 0.89803922176361084), (1.0, 0.70196080207824707, 0.70196080207824707)]} _Set3_data = {'blue': [(0.0, 0.78039216995239258, 0.78039216995239258), (0.090909090909090912, 0.70196080207824707, 0.70196080207824707), (0.18181818181818182, 0.85490196943283081, 0.85490196943283081), (0.27272727272727271, 0.44705882668495178, 0.44705882668495178), (0.36363636363636365, 0.82745099067687988, 0.82745099067687988), (0.45454545454545453, 0.38431373238563538, 0.38431373238563538), (0.54545454545454541, 0.4117647111415863, 0.4117647111415863), (0.63636363636363635, 0.89803922176361084, 0.89803922176361084), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.74117648601531982, 0.74117648601531982), (0.90909090909090906, 0.77254903316497803, 0.77254903316497803), (1.0, 0.43529412150382996, 0.43529412150382996)], 'green': [(0.0, 0.82745099067687988, 0.82745099067687988), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.729411780834198, 0.729411780834198), (0.27272727272727271, 0.50196081399917603, 0.50196081399917603), (0.36363636363636365, 0.69411766529083252, 0.69411766529083252), (0.45454545454545453, 0.70588237047195435, 0.70588237047195435), (0.54545454545454541, 0.87058824300765991, 0.87058824300765991), (0.63636363636363635, 0.80392158031463623, 0.80392158031463623), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.50196081399917603, 0.50196081399917603), (0.90909090909090906, 0.92156863212585449, 0.92156863212585449), (1.0, 0.92941176891326904, 0.92941176891326904)], 'red': [(0.0, 0.55294120311737061, 0.55294120311737061), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.7450980544090271, 0.7450980544090271), (0.27272727272727271, 0.9843137264251709, 0.9843137264251709), (0.36363636363636365, 0.50196081399917603, 0.50196081399917603), (0.45454545454545453, 0.99215686321258545, 0.99215686321258545), (0.54545454545454541, 0.70196080207824707, 0.70196080207824707), (0.63636363636363635, 0.98823529481887817, 0.98823529481887817), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.73725491762161255, 0.73725491762161255), (0.90909090909090906, 0.80000001192092896, 0.80000001192092896), (1.0, 1.0, 1.0)]} _Spectral_data = {'blue': [(0.0, 0.25882354378700256, 0.25882354378700256), (0.10000000000000001, 0.30980393290519714, 0.30980393290519714), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.59607845544815063, 0.59607845544815063), (0.69999999999999996, 0.64313727617263794, 0.64313727617263794), (0.80000000000000004, 0.64705884456634521, 0.64705884456634521), (0.90000000000000002, 0.74117648601531982, 0.74117648601531982), (1.0, 0.63529413938522339, 0.63529413938522339)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.24313725531101227, 0.24313725531101227), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.86666667461395264, 0.86666667461395264), (0.80000000000000004, 0.7607843279838562, 0.7607843279838562), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.30980393290519714, 0.30980393290519714)], 'red': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.10000000000000001, 0.83529412746429443, 0.83529412746429443), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.19607843458652496, 0.19607843458652496), (1.0, 0.36862745881080627, 0.36862745881080627)]} _YlGn_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.72549021244049072, 0.72549021244049072), (0.25, 0.63921570777893066, 0.63921570777893066), (0.375, 0.55686277151107788, 0.55686277151107788), (0.5, 0.47450980544090271, 0.47450980544090271), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.26274511218070984, 0.26274511218070984), (0.875, 0.21568627655506134, 0.21568627655506134), (1.0, 0.16078431904315948, 0.16078431904315948)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.98823529481887817, 0.98823529481887817), (0.25, 0.94117647409439087, 0.94117647409439087), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.51764708757400513, 0.51764708757400513), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.27058824896812439, 0.27058824896812439)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.67843139171600342, 0.67843139171600342), (0.5, 0.47058823704719543, 0.47058823704719543), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _YlGnBu_data = {'blue': [(0.0, 0.85098040103912354, 0.85098040103912354), (0.125, 0.69411766529083252, 0.69411766529083252), (0.25, 0.70588237047195435, 0.70588237047195435), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.65882354974746704, 0.65882354974746704), (0.875, 0.58039218187332153, 0.58039218187332153), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.97254902124404907, 0.97254902124404907), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.80392158031463623, 0.80392158031463623), (0.5, 0.7137255072593689, 0.7137255072593689), (0.625, 0.56862747669219971, 0.56862747669219971), (0.75, 0.36862745881080627, 0.36862745881080627), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.11372549086809158, 0.11372549086809158)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.49803921580314636, 0.49803921580314636), (0.5, 0.25490197539329529, 0.25490197539329529), (0.625, 0.11372549086809158, 0.11372549086809158), (0.75, 0.13333334028720856, 0.13333334028720856), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.031372550874948502, 0.031372550874948502)]} _YlOrBr_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.73725491762161255, 0.73725491762161255), (0.25, 0.56862747669219971, 0.56862747669219971), (0.375, 0.30980393290519714, 0.30980393290519714), (0.5, 0.16078431904315948, 0.16078431904315948), (0.625, 0.078431375324726105, 0.078431375324726105), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.023529412224888802, 0.023529412224888802)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.89019608497619629, 0.89019608497619629), (0.375, 0.76862746477127075, 0.76862746477127075), (0.5, 0.60000002384185791, 0.60000002384185791), (0.625, 0.43921568989753723, 0.43921568989753723), (0.75, 0.29803922772407532, 0.29803922772407532), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.14509804546833038, 0.14509804546833038)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 0.92549020051956177, 0.92549020051956177), (0.75, 0.80000001192092896, 0.80000001192092896), (0.875, 0.60000002384185791, 0.60000002384185791), (1.0, 0.40000000596046448, 0.40000000596046448)]} _YlOrRd_data = {'blue': [(0.0, 0.80000001192092896, 0.80000001192092896), (0.125, 0.62745100259780884, 0.62745100259780884), (0.25, 0.46274510025978088, 0.46274510025978088), (0.375, 0.29803922772407532, 0.29803922772407532), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.16470588743686676, 0.16470588743686676), (0.75, 0.10980392247438431, 0.10980392247438431), (0.875, 0.14901961386203766, 0.14901961386203766), (1.0, 0.14901961386203766, 0.14901961386203766)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.69803923368453979, 0.69803923368453979), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.10196078568696976, 0.10196078568696976), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.98823529481887817, 0.98823529481887817), (0.75, 0.89019608497619629, 0.89019608497619629), (0.875, 0.74117648601531982, 0.74117648601531982), (1.0, 0.50196081399917603, 0.50196081399917603)]} # The next 7 palettes are from the Yorick scientific visalisation package, # an evolution of the GIST package, both by David H. Munro. # They are released under a BSD-like license (see LICENSE_YORICK in # the license directory of the matplotlib source distribution). _gist_earth_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.18039216101169586, 0.18039216101169586), (0.0084033617749810219, 0.22745098173618317, 0.22745098173618317), (0.012605042196810246, 0.27058824896812439, 0.27058824896812439), (0.016806723549962044, 0.31764706969261169, 0.31764706969261169), (0.021008403971791267, 0.36078432202339172, 0.36078432202339172), (0.025210084393620491, 0.40784314274787903, 0.40784314274787903), (0.029411764815449715, 0.45490196347236633, 0.45490196347236633), (0.033613447099924088, 0.45490196347236633, 0.45490196347236633), (0.037815127521753311, 0.45490196347236633, 0.45490196347236633), (0.042016807943582535, 0.45490196347236633, 0.45490196347236633), (0.046218488365411758, 0.45490196347236633, 0.45490196347236633), (0.050420168787240982, 0.45882353186607361, 0.45882353186607361), (0.054621849209070206, 0.45882353186607361, 0.45882353186607361), (0.058823529630899429, 0.45882353186607361, 0.45882353186607361), (0.063025213778018951, 0.45882353186607361, 0.45882353186607361), (0.067226894199848175, 0.45882353186607361, 0.45882353186607361), (0.071428574621677399, 0.46274510025978088, 0.46274510025978088), (0.075630255043506622, 0.46274510025978088, 0.46274510025978088), (0.079831935465335846, 0.46274510025978088, 0.46274510025978088), (0.08403361588716507, 0.46274510025978088, 0.46274510025978088), (0.088235296308994293, 0.46274510025978088, 0.46274510025978088), (0.092436976730823517, 0.46666666865348816, 0.46666666865348816), (0.09663865715265274, 0.46666666865348816, 0.46666666865348816), (0.10084033757448196, 0.46666666865348816, 0.46666666865348816), (0.10504201799631119, 0.46666666865348816, 0.46666666865348816), (0.10924369841814041, 0.46666666865348816, 0.46666666865348816), (0.11344537883996964, 0.47058823704719543, 0.47058823704719543), (0.11764705926179886, 0.47058823704719543, 0.47058823704719543), (0.12184873968362808, 0.47058823704719543, 0.47058823704719543), (0.1260504275560379, 0.47058823704719543, 0.47058823704719543), (0.13025210797786713, 0.47058823704719543, 0.47058823704719543), (0.13445378839969635, 0.47450980544090271, 0.47450980544090271), (0.13865546882152557, 0.47450980544090271, 0.47450980544090271), (0.1428571492433548, 0.47450980544090271, 0.47450980544090271), (0.14705882966518402, 0.47450980544090271, 0.47450980544090271), (0.15126051008701324, 0.47450980544090271, 0.47450980544090271), (0.15546219050884247, 0.47843137383460999, 0.47843137383460999), (0.15966387093067169, 0.47843137383460999, 0.47843137383460999), (0.16386555135250092, 0.47843137383460999, 0.47843137383460999), (0.16806723177433014, 0.47843137383460999, 0.47843137383460999), (0.17226891219615936, 0.47843137383460999, 0.47843137383460999), (0.17647059261798859, 0.48235294222831726, 0.48235294222831726), (0.18067227303981781, 0.48235294222831726, 0.48235294222831726), (0.18487395346164703, 0.48235294222831726, 0.48235294222831726), (0.18907563388347626, 0.48235294222831726, 0.48235294222831726), (0.19327731430530548, 0.48235294222831726, 0.48235294222831726), (0.1974789947271347, 0.48627451062202454, 0.48627451062202454), (0.20168067514896393, 0.48627451062202454, 0.48627451062202454), (0.20588235557079315, 0.48627451062202454, 0.48627451062202454), (0.21008403599262238, 0.48627451062202454, 0.48627451062202454), (0.2142857164144516, 0.48627451062202454, 0.48627451062202454), (0.21848739683628082, 0.49019607901573181, 0.49019607901573181), (0.22268907725811005, 0.49019607901573181, 0.49019607901573181), (0.22689075767993927, 0.49019607901573181, 0.49019607901573181), (0.23109243810176849, 0.49019607901573181, 0.49019607901573181), (0.23529411852359772, 0.49019607901573181, 0.49019607901573181), (0.23949579894542694, 0.49411764740943909, 0.49411764740943909), (0.24369747936725616, 0.49411764740943909, 0.49411764740943909), (0.24789915978908539, 0.49411764740943909, 0.49411764740943909), (0.25210085511207581, 0.49411764740943909, 0.49411764740943909), (0.25630253553390503, 0.49411764740943909, 0.49411764740943909), (0.26050421595573425, 0.49803921580314636, 0.49803921580314636), (0.26470589637756348, 0.49803921580314636, 0.49803921580314636), (0.2689075767993927, 0.49803921580314636, 0.49803921580314636), (0.27310925722122192, 0.49803921580314636, 0.49803921580314636), (0.27731093764305115, 0.49803921580314636, 0.49803921580314636), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.49411764740943909, 0.49411764740943909), (0.28991597890853882, 0.49019607901573181, 0.49019607901573181), (0.29411765933036804, 0.48627451062202454, 0.48627451062202454), (0.29831933975219727, 0.48235294222831726, 0.48235294222831726), (0.30252102017402649, 0.47843137383460999, 0.47843137383460999), (0.30672270059585571, 0.47058823704719543, 0.47058823704719543), (0.31092438101768494, 0.46666666865348816, 0.46666666865348816), (0.31512606143951416, 0.46274510025978088, 0.46274510025978088), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.45098039507865906, 0.45098039507865906), (0.32773110270500183, 0.44705882668495178, 0.44705882668495178), (0.33193278312683105, 0.44313725829124451, 0.44313725829124451), (0.33613446354866028, 0.43529412150382996, 0.43529412150382996), (0.3403361439704895, 0.43137255311012268, 0.43137255311012268), (0.34453782439231873, 0.42745098471641541, 0.42745098471641541), (0.34873950481414795, 0.42352941632270813, 0.42352941632270813), (0.35294118523597717, 0.41568627953529358, 0.41568627953529358), (0.3571428656578064, 0.4117647111415863, 0.4117647111415863), (0.36134454607963562, 0.40784314274787903, 0.40784314274787903), (0.36554622650146484, 0.40000000596046448, 0.40000000596046448), (0.36974790692329407, 0.3960784375667572, 0.3960784375667572), (0.37394958734512329, 0.39215686917304993, 0.39215686917304993), (0.37815126776695251, 0.38431373238563538, 0.38431373238563538), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.37647059559822083, 0.37647059559822083), (0.39075630903244019, 0.36862745881080627, 0.36862745881080627), (0.39495798945426941, 0.364705890417099, 0.364705890417099), (0.39915966987609863, 0.36078432202339172, 0.36078432202339172), (0.40336135029792786, 0.35294118523597717, 0.35294118523597717), (0.40756303071975708, 0.3490196168422699, 0.3490196168422699), (0.4117647111415863, 0.34509804844856262, 0.34509804844856262), (0.41596639156341553, 0.33725491166114807, 0.33725491166114807), (0.42016807198524475, 0.3333333432674408, 0.3333333432674408), (0.42436975240707397, 0.32941177487373352, 0.32941177487373352), (0.4285714328289032, 0.32156863808631897, 0.32156863808631897), (0.43277311325073242, 0.31764706969261169, 0.31764706969261169), (0.43697479367256165, 0.31372550129890442, 0.31372550129890442), (0.44117647409439087, 0.30588236451148987, 0.30588236451148987), (0.44537815451622009, 0.30196079611778259, 0.30196079611778259), (0.44957983493804932, 0.29803922772407532, 0.29803922772407532), (0.45378151535987854, 0.29019609093666077, 0.29019609093666077), (0.45798319578170776, 0.28627452254295349, 0.28627452254295349), (0.46218487620353699, 0.27843138575553894, 0.27843138575553894), (0.46638655662536621, 0.27450981736183167, 0.27450981736183167), (0.47058823704719543, 0.27843138575553894, 0.27843138575553894), (0.47478991746902466, 0.28235295414924622, 0.28235295414924622), (0.47899159789085388, 0.28235295414924622, 0.28235295414924622), (0.48319327831268311, 0.28627452254295349, 0.28627452254295349), (0.48739495873451233, 0.28627452254295349, 0.28627452254295349), (0.49159663915634155, 0.29019609093666077, 0.29019609093666077), (0.49579831957817078, 0.29411765933036804, 0.29411765933036804), (0.5, 0.29411765933036804, 0.29411765933036804), (0.50420171022415161, 0.29803922772407532, 0.29803922772407532), (0.50840336084365845, 0.29803922772407532, 0.29803922772407532), (0.51260507106781006, 0.30196079611778259, 0.30196079611778259), (0.51680672168731689, 0.30196079611778259, 0.30196079611778259), (0.52100843191146851, 0.30588236451148987, 0.30588236451148987), (0.52521008253097534, 0.30980393290519714, 0.30980393290519714), (0.52941179275512695, 0.30980393290519714, 0.30980393290519714), (0.53361344337463379, 0.31372550129890442, 0.31372550129890442), (0.5378151535987854, 0.31372550129890442, 0.31372550129890442), (0.54201680421829224, 0.31764706969261169, 0.31764706969261169), (0.54621851444244385, 0.32156863808631897, 0.32156863808631897), (0.55042016506195068, 0.32156863808631897, 0.32156863808631897), (0.55462187528610229, 0.32156863808631897, 0.32156863808631897), (0.55882352590560913, 0.32549020648002625, 0.32549020648002625), (0.56302523612976074, 0.32549020648002625, 0.32549020648002625), (0.56722688674926758, 0.32549020648002625, 0.32549020648002625), (0.57142859697341919, 0.32941177487373352, 0.32941177487373352), (0.57563024759292603, 0.32941177487373352, 0.32941177487373352), (0.57983195781707764, 0.32941177487373352, 0.32941177487373352), (0.58403360843658447, 0.3333333432674408, 0.3333333432674408), (0.58823531866073608, 0.3333333432674408, 0.3333333432674408), (0.59243696928024292, 0.3333333432674408, 0.3333333432674408), (0.59663867950439453, 0.33725491166114807, 0.33725491166114807), (0.60084033012390137, 0.33725491166114807, 0.33725491166114807), (0.60504204034805298, 0.33725491166114807, 0.33725491166114807), (0.60924369096755981, 0.34117648005485535, 0.34117648005485535), (0.61344540119171143, 0.34117648005485535, 0.34117648005485535), (0.61764705181121826, 0.34117648005485535, 0.34117648005485535), (0.62184876203536987, 0.34509804844856262, 0.34509804844856262), (0.62605041265487671, 0.34509804844856262, 0.34509804844856262), (0.63025212287902832, 0.34509804844856262, 0.34509804844856262), (0.63445377349853516, 0.3490196168422699, 0.3490196168422699), (0.63865548372268677, 0.3490196168422699, 0.3490196168422699), (0.6428571343421936, 0.3490196168422699, 0.3490196168422699), (0.64705884456634521, 0.35294118523597717, 0.35294118523597717), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.35294118523597717, 0.35294118523597717), (0.6596638560295105, 0.35686275362968445, 0.35686275362968445), (0.66386556625366211, 0.35686275362968445, 0.35686275362968445), (0.66806721687316895, 0.35686275362968445, 0.35686275362968445), (0.67226892709732056, 0.36078432202339172, 0.36078432202339172), (0.67647057771682739, 0.36078432202339172, 0.36078432202339172), (0.680672287940979, 0.36078432202339172, 0.36078432202339172), (0.68487393856048584, 0.364705890417099, 0.364705890417099), (0.68907564878463745, 0.364705890417099, 0.364705890417099), (0.69327729940414429, 0.364705890417099, 0.364705890417099), (0.6974790096282959, 0.36862745881080627, 0.36862745881080627), (0.70168066024780273, 0.36862745881080627, 0.36862745881080627), (0.70588237047195435, 0.36862745881080627, 0.36862745881080627), (0.71008402109146118, 0.37254902720451355, 0.37254902720451355), (0.71428573131561279, 0.37254902720451355, 0.37254902720451355), (0.71848738193511963, 0.37254902720451355, 0.37254902720451355), (0.72268909215927124, 0.37647059559822083, 0.37647059559822083), (0.72689074277877808, 0.37647059559822083, 0.37647059559822083), (0.73109245300292969, 0.3803921639919281, 0.3803921639919281), (0.73529410362243652, 0.3803921639919281, 0.3803921639919281), (0.73949581384658813, 0.3803921639919281, 0.3803921639919281), (0.74369746446609497, 0.38431373238563538, 0.38431373238563538), (0.74789917469024658, 0.38431373238563538, 0.38431373238563538), (0.75210082530975342, 0.38431373238563538, 0.38431373238563538), (0.75630253553390503, 0.38823530077934265, 0.38823530077934265), (0.76050418615341187, 0.38823530077934265, 0.38823530077934265), (0.76470589637756348, 0.38823530077934265, 0.38823530077934265), (0.76890754699707031, 0.39215686917304993, 0.39215686917304993), (0.77310925722122192, 0.39215686917304993, 0.39215686917304993), (0.77731090784072876, 0.39215686917304993, 0.39215686917304993), (0.78151261806488037, 0.3960784375667572, 0.3960784375667572), (0.78571426868438721, 0.3960784375667572, 0.3960784375667572), (0.78991597890853882, 0.40784314274787903, 0.40784314274787903), (0.79411762952804565, 0.41568627953529358, 0.41568627953529358), (0.79831933975219727, 0.42352941632270813, 0.42352941632270813), (0.8025209903717041, 0.43529412150382996, 0.43529412150382996), (0.80672270059585571, 0.44313725829124451, 0.44313725829124451), (0.81092435121536255, 0.45490196347236633, 0.45490196347236633), (0.81512606143951416, 0.46274510025978088, 0.46274510025978088), (0.819327712059021, 0.47450980544090271, 0.47450980544090271), (0.82352942228317261, 0.48235294222831726, 0.48235294222831726), (0.82773107290267944, 0.49411764740943909, 0.49411764740943909), (0.83193278312683105, 0.5058823823928833, 0.5058823823928833), (0.83613443374633789, 0.51372551918029785, 0.51372551918029785), (0.8403361439704895, 0.52549022436141968, 0.52549022436141968), (0.84453779458999634, 0.5372549295425415, 0.5372549295425415), (0.84873950481414795, 0.54509806632995605, 0.54509806632995605), (0.85294115543365479, 0.55686277151107788, 0.55686277151107788), (0.8571428656578064, 0.56862747669219971, 0.56862747669219971), (0.86134451627731323, 0.58039218187332153, 0.58039218187332153), (0.86554622650146484, 0.58823531866073608, 0.58823531866073608), (0.86974787712097168, 0.60000002384185791, 0.60000002384185791), (0.87394958734512329, 0.61176472902297974, 0.61176472902297974), (0.87815123796463013, 0.62352943420410156, 0.62352943420410156), (0.88235294818878174, 0.63529413938522339, 0.63529413938522339), (0.88655459880828857, 0.64705884456634521, 0.64705884456634521), (0.89075630903244019, 0.65882354974746704, 0.65882354974746704), (0.89495795965194702, 0.66666668653488159, 0.66666668653488159), (0.89915966987609863, 0.67843139171600342, 0.67843139171600342), (0.90336132049560547, 0.69019609689712524, 0.69019609689712524), (0.90756303071975708, 0.70196080207824707, 0.70196080207824707), (0.91176468133926392, 0.7137255072593689, 0.7137255072593689), (0.91596639156341553, 0.72549021244049072, 0.72549021244049072), (0.92016804218292236, 0.74117648601531982, 0.74117648601531982), (0.92436975240707397, 0.75294119119644165, 0.75294119119644165), (0.92857140302658081, 0.76470589637756348, 0.76470589637756348), (0.93277311325073242, 0.7764706015586853, 0.7764706015586853), (0.93697476387023926, 0.78823530673980713, 0.78823530673980713), (0.94117647409439087, 0.80000001192092896, 0.80000001192092896), (0.94537812471389771, 0.81176471710205078, 0.81176471710205078), (0.94957983493804932, 0.82745099067687988, 0.82745099067687988), (0.95378148555755615, 0.83921569585800171, 0.83921569585800171), (0.95798319578170776, 0.85098040103912354, 0.85098040103912354), (0.9621848464012146, 0.86274510622024536, 0.86274510622024536), (0.96638655662536621, 0.87843137979507446, 0.87843137979507446), (0.97058820724487305, 0.89019608497619629, 0.89019608497619629), (0.97478991746902466, 0.90196079015731812, 0.90196079015731812), (0.97899156808853149, 0.91764706373214722, 0.91764706373214722), (0.98319327831268311, 0.92941176891326904, 0.92941176891326904), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.011764706112444401, 0.011764706112444401), (0.037815127521753311, 0.023529412224888802, 0.023529412224888802), (0.042016807943582535, 0.031372550874948502, 0.031372550874948502), (0.046218488365411758, 0.043137256056070328, 0.043137256056070328), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.062745101749897003, 0.062745101749897003), (0.058823529630899429, 0.070588238537311554, 0.070588238537311554), (0.063025213778018951, 0.08235294371843338, 0.08235294371843338), (0.067226894199848175, 0.090196080505847931, 0.090196080505847931), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10980392247438431, 0.10980392247438431), (0.079831935465335846, 0.12156862765550613, 0.12156862765550613), (0.08403361588716507, 0.12941177189350128, 0.12941177189350128), (0.088235296308994293, 0.14117647707462311, 0.14117647707462311), (0.092436976730823517, 0.14901961386203766, 0.14901961386203766), (0.09663865715265274, 0.16078431904315948, 0.16078431904315948), (0.10084033757448196, 0.16862745583057404, 0.16862745583057404), (0.10504201799631119, 0.17647059261798859, 0.17647059261798859), (0.10924369841814041, 0.18823529779911041, 0.18823529779911041), (0.11344537883996964, 0.19607843458652496, 0.19607843458652496), (0.11764705926179886, 0.20392157137393951, 0.20392157137393951), (0.12184873968362808, 0.21568627655506134, 0.21568627655506134), (0.1260504275560379, 0.22352941334247589, 0.22352941334247589), (0.13025210797786713, 0.23137255012989044, 0.23137255012989044), (0.13445378839969635, 0.23921568691730499, 0.23921568691730499), (0.13865546882152557, 0.25098040699958801, 0.25098040699958801), (0.1428571492433548, 0.25882354378700256, 0.25882354378700256), (0.14705882966518402, 0.26666668057441711, 0.26666668057441711), (0.15126051008701324, 0.27450981736183167, 0.27450981736183167), (0.15546219050884247, 0.28235295414924622, 0.28235295414924622), (0.15966387093067169, 0.29019609093666077, 0.29019609093666077), (0.16386555135250092, 0.30196079611778259, 0.30196079611778259), (0.16806723177433014, 0.30980393290519714, 0.30980393290519714), (0.17226891219615936, 0.31764706969261169, 0.31764706969261169), (0.17647059261798859, 0.32549020648002625, 0.32549020648002625), (0.18067227303981781, 0.3333333432674408, 0.3333333432674408), (0.18487395346164703, 0.34117648005485535, 0.34117648005485535), (0.18907563388347626, 0.3490196168422699, 0.3490196168422699), (0.19327731430530548, 0.35686275362968445, 0.35686275362968445), (0.1974789947271347, 0.364705890417099, 0.364705890417099), (0.20168067514896393, 0.37254902720451355, 0.37254902720451355), (0.20588235557079315, 0.3803921639919281, 0.3803921639919281), (0.21008403599262238, 0.38823530077934265, 0.38823530077934265), (0.2142857164144516, 0.39215686917304993, 0.39215686917304993), (0.21848739683628082, 0.40000000596046448, 0.40000000596046448), (0.22268907725811005, 0.40784314274787903, 0.40784314274787903), (0.22689075767993927, 0.41568627953529358, 0.41568627953529358), (0.23109243810176849, 0.42352941632270813, 0.42352941632270813), (0.23529411852359772, 0.42745098471641541, 0.42745098471641541), (0.23949579894542694, 0.43529412150382996, 0.43529412150382996), (0.24369747936725616, 0.44313725829124451, 0.44313725829124451), (0.24789915978908539, 0.45098039507865906, 0.45098039507865906), (0.25210085511207581, 0.45490196347236633, 0.45490196347236633), (0.25630253553390503, 0.46274510025978088, 0.46274510025978088), (0.26050421595573425, 0.47058823704719543, 0.47058823704719543), (0.26470589637756348, 0.47450980544090271, 0.47450980544090271), (0.2689075767993927, 0.48235294222831726, 0.48235294222831726), (0.27310925722122192, 0.49019607901573181, 0.49019607901573181), (0.27731093764305115, 0.49411764740943909, 0.49411764740943909), (0.28151261806488037, 0.50196081399917603, 0.50196081399917603), (0.28571429848670959, 0.50196081399917603, 0.50196081399917603), (0.28991597890853882, 0.5058823823928833, 0.5058823823928833), (0.29411765933036804, 0.5058823823928833, 0.5058823823928833), (0.29831933975219727, 0.50980395078659058, 0.50980395078659058), (0.30252102017402649, 0.51372551918029785, 0.51372551918029785), (0.30672270059585571, 0.51372551918029785, 0.51372551918029785), (0.31092438101768494, 0.51764708757400513, 0.51764708757400513), (0.31512606143951416, 0.5215686559677124, 0.5215686559677124), (0.31932774186134338, 0.5215686559677124, 0.5215686559677124), (0.32352942228317261, 0.52549022436141968, 0.52549022436141968), (0.32773110270500183, 0.52549022436141968, 0.52549022436141968), (0.33193278312683105, 0.52941179275512695, 0.52941179275512695), (0.33613446354866028, 0.53333336114883423, 0.53333336114883423), (0.3403361439704895, 0.53333336114883423, 0.53333336114883423), (0.34453782439231873, 0.5372549295425415, 0.5372549295425415), (0.34873950481414795, 0.54117649793624878, 0.54117649793624878), (0.35294118523597717, 0.54117649793624878, 0.54117649793624878), (0.3571428656578064, 0.54509806632995605, 0.54509806632995605), (0.36134454607963562, 0.54901963472366333, 0.54901963472366333), (0.36554622650146484, 0.54901963472366333, 0.54901963472366333), (0.36974790692329407, 0.55294120311737061, 0.55294120311737061), (0.37394958734512329, 0.55294120311737061, 0.55294120311737061), (0.37815126776695251, 0.55686277151107788, 0.55686277151107788), (0.38235294818878174, 0.56078433990478516, 0.56078433990478516), (0.38655462861061096, 0.56078433990478516, 0.56078433990478516), (0.39075630903244019, 0.56470590829849243, 0.56470590829849243), (0.39495798945426941, 0.56862747669219971, 0.56862747669219971), (0.39915966987609863, 0.56862747669219971, 0.56862747669219971), (0.40336135029792786, 0.57254904508590698, 0.57254904508590698), (0.40756303071975708, 0.57254904508590698, 0.57254904508590698), (0.4117647111415863, 0.57647061347961426, 0.57647061347961426), (0.41596639156341553, 0.58039218187332153, 0.58039218187332153), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.58431375026702881, 0.58431375026702881), (0.4285714328289032, 0.58823531866073608, 0.58823531866073608), (0.43277311325073242, 0.58823531866073608, 0.58823531866073608), (0.43697479367256165, 0.59215688705444336, 0.59215688705444336), (0.44117647409439087, 0.59215688705444336, 0.59215688705444336), (0.44537815451622009, 0.59607845544815063, 0.59607845544815063), (0.44957983493804932, 0.60000002384185791, 0.60000002384185791), (0.45378151535987854, 0.60000002384185791, 0.60000002384185791), (0.45798319578170776, 0.60392159223556519, 0.60392159223556519), (0.46218487620353699, 0.60784316062927246, 0.60784316062927246), (0.46638655662536621, 0.60784316062927246, 0.60784316062927246), (0.47058823704719543, 0.61176472902297974, 0.61176472902297974), (0.47478991746902466, 0.61176472902297974, 0.61176472902297974), (0.47899159789085388, 0.61568629741668701, 0.61568629741668701), (0.48319327831268311, 0.61960786581039429, 0.61960786581039429), (0.48739495873451233, 0.61960786581039429, 0.61960786581039429), (0.49159663915634155, 0.62352943420410156, 0.62352943420410156), (0.49579831957817078, 0.62745100259780884, 0.62745100259780884), (0.5, 0.62745100259780884, 0.62745100259780884), (0.50420171022415161, 0.63137257099151611, 0.63137257099151611), (0.50840336084365845, 0.63137257099151611, 0.63137257099151611), (0.51260507106781006, 0.63529413938522339, 0.63529413938522339), (0.51680672168731689, 0.63921570777893066, 0.63921570777893066), (0.52100843191146851, 0.63921570777893066, 0.63921570777893066), (0.52521008253097534, 0.64313727617263794, 0.64313727617263794), (0.52941179275512695, 0.64705884456634521, 0.64705884456634521), (0.53361344337463379, 0.64705884456634521, 0.64705884456634521), (0.5378151535987854, 0.65098041296005249, 0.65098041296005249), (0.54201680421829224, 0.65098041296005249, 0.65098041296005249), (0.54621851444244385, 0.65490198135375977, 0.65490198135375977), (0.55042016506195068, 0.65882354974746704, 0.65882354974746704), (0.55462187528610229, 0.65882354974746704, 0.65882354974746704), (0.55882352590560913, 0.65882354974746704, 0.65882354974746704), (0.56302523612976074, 0.66274511814117432, 0.66274511814117432), (0.56722688674926758, 0.66274511814117432, 0.66274511814117432), (0.57142859697341919, 0.66666668653488159, 0.66666668653488159), (0.57563024759292603, 0.66666668653488159, 0.66666668653488159), (0.57983195781707764, 0.67058825492858887, 0.67058825492858887), (0.58403360843658447, 0.67058825492858887, 0.67058825492858887), (0.58823531866073608, 0.67450982332229614, 0.67450982332229614), (0.59243696928024292, 0.67450982332229614, 0.67450982332229614), (0.59663867950439453, 0.67450982332229614, 0.67450982332229614), (0.60084033012390137, 0.67843139171600342, 0.67843139171600342), (0.60504204034805298, 0.67843139171600342, 0.67843139171600342), (0.60924369096755981, 0.68235296010971069, 0.68235296010971069), (0.61344540119171143, 0.68235296010971069, 0.68235296010971069), (0.61764705181121826, 0.68627452850341797, 0.68627452850341797), (0.62184876203536987, 0.68627452850341797, 0.68627452850341797), (0.62605041265487671, 0.68627452850341797, 0.68627452850341797), (0.63025212287902832, 0.69019609689712524, 0.69019609689712524), (0.63445377349853516, 0.69019609689712524, 0.69019609689712524), (0.63865548372268677, 0.69411766529083252, 0.69411766529083252), (0.6428571343421936, 0.69411766529083252, 0.69411766529083252), (0.64705884456634521, 0.69803923368453979, 0.69803923368453979), (0.65126049518585205, 0.69803923368453979, 0.69803923368453979), (0.65546220541000366, 0.70196080207824707, 0.70196080207824707), (0.6596638560295105, 0.70196080207824707, 0.70196080207824707), (0.66386556625366211, 0.70196080207824707, 0.70196080207824707), (0.66806721687316895, 0.70588237047195435, 0.70588237047195435), (0.67226892709732056, 0.70588237047195435, 0.70588237047195435), (0.67647057771682739, 0.70980393886566162, 0.70980393886566162), (0.680672287940979, 0.70980393886566162, 0.70980393886566162), (0.68487393856048584, 0.7137255072593689, 0.7137255072593689), (0.68907564878463745, 0.7137255072593689, 0.7137255072593689), (0.69327729940414429, 0.71764707565307617, 0.71764707565307617), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.7137255072593689, 0.7137255072593689), (0.70588237047195435, 0.70980393886566162, 0.70980393886566162), (0.71008402109146118, 0.70980393886566162, 0.70980393886566162), (0.71428573131561279, 0.70588237047195435, 0.70588237047195435), (0.71848738193511963, 0.70196080207824707, 0.70196080207824707), (0.72268909215927124, 0.69803923368453979, 0.69803923368453979), (0.72689074277877808, 0.69411766529083252, 0.69411766529083252), (0.73109245300292969, 0.69019609689712524, 0.69019609689712524), (0.73529410362243652, 0.68627452850341797, 0.68627452850341797), (0.73949581384658813, 0.68235296010971069, 0.68235296010971069), (0.74369746446609497, 0.67843139171600342, 0.67843139171600342), (0.74789917469024658, 0.67450982332229614, 0.67450982332229614), (0.75210082530975342, 0.67058825492858887, 0.67058825492858887), (0.75630253553390503, 0.66666668653488159, 0.66666668653488159), (0.76050418615341187, 0.66274511814117432, 0.66274511814117432), (0.76470589637756348, 0.65882354974746704, 0.65882354974746704), (0.76890754699707031, 0.65490198135375977, 0.65490198135375977), (0.77310925722122192, 0.65098041296005249, 0.65098041296005249), (0.77731090784072876, 0.64705884456634521, 0.64705884456634521), (0.78151261806488037, 0.64313727617263794, 0.64313727617263794), (0.78571426868438721, 0.63921570777893066, 0.63921570777893066), (0.78991597890853882, 0.63921570777893066, 0.63921570777893066), (0.79411762952804565, 0.64313727617263794, 0.64313727617263794), (0.79831933975219727, 0.64313727617263794, 0.64313727617263794), (0.8025209903717041, 0.64705884456634521, 0.64705884456634521), (0.80672270059585571, 0.64705884456634521, 0.64705884456634521), (0.81092435121536255, 0.65098041296005249, 0.65098041296005249), (0.81512606143951416, 0.65490198135375977, 0.65490198135375977), (0.819327712059021, 0.65490198135375977, 0.65490198135375977), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66274511814117432, 0.66274511814117432), (0.83193278312683105, 0.66666668653488159, 0.66666668653488159), (0.83613443374633789, 0.67058825492858887, 0.67058825492858887), (0.8403361439704895, 0.67450982332229614, 0.67450982332229614), (0.84453779458999634, 0.67843139171600342, 0.67843139171600342), (0.84873950481414795, 0.68235296010971069, 0.68235296010971069), (0.85294115543365479, 0.68627452850341797, 0.68627452850341797), (0.8571428656578064, 0.69019609689712524, 0.69019609689712524), (0.86134451627731323, 0.69411766529083252, 0.69411766529083252), (0.86554622650146484, 0.69803923368453979, 0.69803923368453979), (0.86974787712097168, 0.70196080207824707, 0.70196080207824707), (0.87394958734512329, 0.70980393886566162, 0.70980393886566162), (0.87815123796463013, 0.7137255072593689, 0.7137255072593689), (0.88235294818878174, 0.72156864404678345, 0.72156864404678345), (0.88655459880828857, 0.72549021244049072, 0.72549021244049072), (0.89075630903244019, 0.73333334922790527, 0.73333334922790527), (0.89495795965194702, 0.73725491762161255, 0.73725491762161255), (0.89915966987609863, 0.7450980544090271, 0.7450980544090271), (0.90336132049560547, 0.75294119119644165, 0.75294119119644165), (0.90756303071975708, 0.7607843279838562, 0.7607843279838562), (0.91176468133926392, 0.76862746477127075, 0.76862746477127075), (0.91596639156341553, 0.7764706015586853, 0.7764706015586853), (0.92016804218292236, 0.78431373834609985, 0.78431373834609985), (0.92436975240707397, 0.7921568751335144, 0.7921568751335144), (0.92857140302658081, 0.80000001192092896, 0.80000001192092896), (0.93277311325073242, 0.80784314870834351, 0.80784314870834351), (0.93697476387023926, 0.81568628549575806, 0.81568628549575806), (0.94117647409439087, 0.82745099067687988, 0.82745099067687988), (0.94537812471389771, 0.83529412746429443, 0.83529412746429443), (0.94957983493804932, 0.84313726425170898, 0.84313726425170898), (0.95378148555755615, 0.85490196943283081, 0.85490196943283081), (0.95798319578170776, 0.86666667461395264, 0.86666667461395264), (0.9621848464012146, 0.87450981140136719, 0.87450981140136719), (0.96638655662536621, 0.88627451658248901, 0.88627451658248901), (0.97058820724487305, 0.89803922176361084, 0.89803922176361084), (0.97478991746902466, 0.90980392694473267, 0.90980392694473267), (0.97899156808853149, 0.92156863212585449, 0.92156863212585449), (0.98319327831268311, 0.93333333730697632, 0.93333333730697632), (0.98739492893218994, 0.94509804248809814, 0.94509804248809814), (0.99159663915634155, 0.95686274766921997, 0.95686274766921997), (0.99579828977584839, 0.97254902124404907, 0.97254902124404907), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0039215688593685627, 0.0039215688593685627), (0.042016807943582535, 0.0078431377187371254, 0.0078431377187371254), (0.046218488365411758, 0.0078431377187371254, 0.0078431377187371254), (0.050420168787240982, 0.011764706112444401, 0.011764706112444401), (0.054621849209070206, 0.015686275437474251, 0.015686275437474251), (0.058823529630899429, 0.019607843831181526, 0.019607843831181526), (0.063025213778018951, 0.019607843831181526, 0.019607843831181526), (0.067226894199848175, 0.023529412224888802, 0.023529412224888802), (0.071428574621677399, 0.027450980618596077, 0.027450980618596077), (0.075630255043506622, 0.031372550874948502, 0.031372550874948502), (0.079831935465335846, 0.031372550874948502, 0.031372550874948502), (0.08403361588716507, 0.035294119268655777, 0.035294119268655777), (0.088235296308994293, 0.039215687662363052, 0.039215687662363052), (0.092436976730823517, 0.043137256056070328, 0.043137256056070328), (0.09663865715265274, 0.043137256056070328, 0.043137256056070328), (0.10084033757448196, 0.047058824449777603, 0.047058824449777603), (0.10504201799631119, 0.050980392843484879, 0.050980392843484879), (0.10924369841814041, 0.054901961237192154, 0.054901961237192154), (0.11344537883996964, 0.058823529630899429, 0.058823529630899429), (0.11764705926179886, 0.058823529630899429, 0.058823529630899429), (0.12184873968362808, 0.062745101749897003, 0.062745101749897003), (0.1260504275560379, 0.066666670143604279, 0.066666670143604279), (0.13025210797786713, 0.070588238537311554, 0.070588238537311554), (0.13445378839969635, 0.070588238537311554, 0.070588238537311554), (0.13865546882152557, 0.074509806931018829, 0.074509806931018829), (0.1428571492433548, 0.078431375324726105, 0.078431375324726105), (0.14705882966518402, 0.08235294371843338, 0.08235294371843338), (0.15126051008701324, 0.086274512112140656, 0.086274512112140656), (0.15546219050884247, 0.086274512112140656, 0.086274512112140656), (0.15966387093067169, 0.090196080505847931, 0.090196080505847931), (0.16386555135250092, 0.094117648899555206, 0.094117648899555206), (0.16806723177433014, 0.098039217293262482, 0.098039217293262482), (0.17226891219615936, 0.10196078568696976, 0.10196078568696976), (0.17647059261798859, 0.10196078568696976, 0.10196078568696976), (0.18067227303981781, 0.10588235408067703, 0.10588235408067703), (0.18487395346164703, 0.10980392247438431, 0.10980392247438431), (0.18907563388347626, 0.11372549086809158, 0.11372549086809158), (0.19327731430530548, 0.11764705926179886, 0.11764705926179886), (0.1974789947271347, 0.12156862765550613, 0.12156862765550613), (0.20168067514896393, 0.12156862765550613, 0.12156862765550613), (0.20588235557079315, 0.12549020349979401, 0.12549020349979401), (0.21008403599262238, 0.12941177189350128, 0.12941177189350128), (0.2142857164144516, 0.13333334028720856, 0.13333334028720856), (0.21848739683628082, 0.13725490868091583, 0.13725490868091583), (0.22268907725811005, 0.14117647707462311, 0.14117647707462311), (0.22689075767993927, 0.14117647707462311, 0.14117647707462311), (0.23109243810176849, 0.14509804546833038, 0.14509804546833038), (0.23529411852359772, 0.14901961386203766, 0.14901961386203766), (0.23949579894542694, 0.15294118225574493, 0.15294118225574493), (0.24369747936725616, 0.15686275064945221, 0.15686275064945221), (0.24789915978908539, 0.16078431904315948, 0.16078431904315948), (0.25210085511207581, 0.16078431904315948, 0.16078431904315948), (0.25630253553390503, 0.16470588743686676, 0.16470588743686676), (0.26050421595573425, 0.16862745583057404, 0.16862745583057404), (0.26470589637756348, 0.17254902422428131, 0.17254902422428131), (0.2689075767993927, 0.17647059261798859, 0.17647059261798859), (0.27310925722122192, 0.18039216101169586, 0.18039216101169586), (0.27731093764305115, 0.18431372940540314, 0.18431372940540314), (0.28151261806488037, 0.18823529779911041, 0.18823529779911041), (0.28571429848670959, 0.18823529779911041, 0.18823529779911041), (0.28991597890853882, 0.18823529779911041, 0.18823529779911041), (0.29411765933036804, 0.19215686619281769, 0.19215686619281769), (0.29831933975219727, 0.19215686619281769, 0.19215686619281769), (0.30252102017402649, 0.19607843458652496, 0.19607843458652496), (0.30672270059585571, 0.19607843458652496, 0.19607843458652496), (0.31092438101768494, 0.20000000298023224, 0.20000000298023224), (0.31512606143951416, 0.20000000298023224, 0.20000000298023224), (0.31932774186134338, 0.20392157137393951, 0.20392157137393951), (0.32352942228317261, 0.20392157137393951, 0.20392157137393951), (0.32773110270500183, 0.20784313976764679, 0.20784313976764679), (0.33193278312683105, 0.20784313976764679, 0.20784313976764679), (0.33613446354866028, 0.21176470816135406, 0.21176470816135406), (0.3403361439704895, 0.21176470816135406, 0.21176470816135406), (0.34453782439231873, 0.21568627655506134, 0.21568627655506134), (0.34873950481414795, 0.21568627655506134, 0.21568627655506134), (0.35294118523597717, 0.21960784494876862, 0.21960784494876862), (0.3571428656578064, 0.21960784494876862, 0.21960784494876862), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.22352941334247589, 0.22352941334247589), (0.36974790692329407, 0.22745098173618317, 0.22745098173618317), (0.37394958734512329, 0.22745098173618317, 0.22745098173618317), (0.37815126776695251, 0.23137255012989044, 0.23137255012989044), (0.38235294818878174, 0.23137255012989044, 0.23137255012989044), (0.38655462861061096, 0.23529411852359772, 0.23529411852359772), (0.39075630903244019, 0.23921568691730499, 0.23921568691730499), (0.39495798945426941, 0.23921568691730499, 0.23921568691730499), (0.39915966987609863, 0.24313725531101227, 0.24313725531101227), (0.40336135029792786, 0.24313725531101227, 0.24313725531101227), (0.40756303071975708, 0.24705882370471954, 0.24705882370471954), (0.4117647111415863, 0.24705882370471954, 0.24705882370471954), (0.41596639156341553, 0.25098040699958801, 0.25098040699958801), (0.42016807198524475, 0.25098040699958801, 0.25098040699958801), (0.42436975240707397, 0.25490197539329529, 0.25490197539329529), (0.4285714328289032, 0.25490197539329529, 0.25490197539329529), (0.43277311325073242, 0.25882354378700256, 0.25882354378700256), (0.43697479367256165, 0.26274511218070984, 0.26274511218070984), (0.44117647409439087, 0.26274511218070984, 0.26274511218070984), (0.44537815451622009, 0.26666668057441711, 0.26666668057441711), (0.44957983493804932, 0.26666668057441711, 0.26666668057441711), (0.45378151535987854, 0.27058824896812439, 0.27058824896812439), (0.45798319578170776, 0.27058824896812439, 0.27058824896812439), (0.46218487620353699, 0.27450981736183167, 0.27450981736183167), (0.46638655662536621, 0.27843138575553894, 0.27843138575553894), (0.47058823704719543, 0.28627452254295349, 0.28627452254295349), (0.47478991746902466, 0.29803922772407532, 0.29803922772407532), (0.47899159789085388, 0.30588236451148987, 0.30588236451148987), (0.48319327831268311, 0.31764706969261169, 0.31764706969261169), (0.48739495873451233, 0.32549020648002625, 0.32549020648002625), (0.49159663915634155, 0.33725491166114807, 0.33725491166114807), (0.49579831957817078, 0.34509804844856262, 0.34509804844856262), (0.5, 0.35686275362968445, 0.35686275362968445), (0.50420171022415161, 0.36862745881080627, 0.36862745881080627), (0.50840336084365845, 0.37647059559822083, 0.37647059559822083), (0.51260507106781006, 0.38823530077934265, 0.38823530077934265), (0.51680672168731689, 0.3960784375667572, 0.3960784375667572), (0.52100843191146851, 0.40784314274787903, 0.40784314274787903), (0.52521008253097534, 0.41568627953529358, 0.41568627953529358), (0.52941179275512695, 0.42745098471641541, 0.42745098471641541), (0.53361344337463379, 0.43529412150382996, 0.43529412150382996), (0.5378151535987854, 0.44705882668495178, 0.44705882668495178), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.46666666865348816, 0.46666666865348816), (0.55042016506195068, 0.47450980544090271, 0.47450980544090271), (0.55462187528610229, 0.47843137383460999, 0.47843137383460999), (0.55882352590560913, 0.48627451062202454, 0.48627451062202454), (0.56302523612976074, 0.49411764740943909, 0.49411764740943909), (0.56722688674926758, 0.50196081399917603, 0.50196081399917603), (0.57142859697341919, 0.5058823823928833, 0.5058823823928833), (0.57563024759292603, 0.51372551918029785, 0.51372551918029785), (0.57983195781707764, 0.5215686559677124, 0.5215686559677124), (0.58403360843658447, 0.52941179275512695, 0.52941179275512695), (0.58823531866073608, 0.53333336114883423, 0.53333336114883423), (0.59243696928024292, 0.54117649793624878, 0.54117649793624878), (0.59663867950439453, 0.54901963472366333, 0.54901963472366333), (0.60084033012390137, 0.55294120311737061, 0.55294120311737061), (0.60504204034805298, 0.56078433990478516, 0.56078433990478516), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.57647061347961426, 0.57647061347961426), (0.61764705181121826, 0.58431375026702881, 0.58431375026702881), (0.62184876203536987, 0.58823531866073608, 0.58823531866073608), (0.62605041265487671, 0.59607845544815063, 0.59607845544815063), (0.63025212287902832, 0.60392159223556519, 0.60392159223556519), (0.63445377349853516, 0.61176472902297974, 0.61176472902297974), (0.63865548372268677, 0.61568629741668701, 0.61568629741668701), (0.6428571343421936, 0.62352943420410156, 0.62352943420410156), (0.64705884456634521, 0.63137257099151611, 0.63137257099151611), (0.65126049518585205, 0.63921570777893066, 0.63921570777893066), (0.65546220541000366, 0.64705884456634521, 0.64705884456634521), (0.6596638560295105, 0.65098041296005249, 0.65098041296005249), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67450982332229614, 0.67450982332229614), (0.67647057771682739, 0.68235296010971069, 0.68235296010971069), (0.680672287940979, 0.68627452850341797, 0.68627452850341797), (0.68487393856048584, 0.69411766529083252, 0.69411766529083252), (0.68907564878463745, 0.70196080207824707, 0.70196080207824707), (0.69327729940414429, 0.70980393886566162, 0.70980393886566162), (0.6974790096282959, 0.71764707565307617, 0.71764707565307617), (0.70168066024780273, 0.71764707565307617, 0.71764707565307617), (0.70588237047195435, 0.72156864404678345, 0.72156864404678345), (0.71008402109146118, 0.72156864404678345, 0.72156864404678345), (0.71428573131561279, 0.72549021244049072, 0.72549021244049072), (0.71848738193511963, 0.72549021244049072, 0.72549021244049072), (0.72268909215927124, 0.729411780834198, 0.729411780834198), (0.72689074277877808, 0.729411780834198, 0.729411780834198), (0.73109245300292969, 0.73333334922790527, 0.73333334922790527), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.73725491762161255, 0.73725491762161255), (0.75210082530975342, 0.74117648601531982, 0.74117648601531982), (0.75630253553390503, 0.74117648601531982, 0.74117648601531982), (0.76050418615341187, 0.7450980544090271, 0.7450980544090271), (0.76470589637756348, 0.7450980544090271, 0.7450980544090271), (0.76890754699707031, 0.7450980544090271, 0.7450980544090271), (0.77310925722122192, 0.74901962280273438, 0.74901962280273438), (0.77731090784072876, 0.74901962280273438, 0.74901962280273438), (0.78151261806488037, 0.75294119119644165, 0.75294119119644165), (0.78571426868438721, 0.75294119119644165, 0.75294119119644165), (0.78991597890853882, 0.75686275959014893, 0.75686275959014893), (0.79411762952804565, 0.76470589637756348, 0.76470589637756348), (0.79831933975219727, 0.76862746477127075, 0.76862746477127075), (0.8025209903717041, 0.77254903316497803, 0.77254903316497803), (0.80672270059585571, 0.7764706015586853, 0.7764706015586853), (0.81092435121536255, 0.78039216995239258, 0.78039216995239258), (0.81512606143951416, 0.78823530673980713, 0.78823530673980713), (0.819327712059021, 0.7921568751335144, 0.7921568751335144), (0.82352942228317261, 0.79607844352722168, 0.79607844352722168), (0.82773107290267944, 0.80000001192092896, 0.80000001192092896), (0.83193278312683105, 0.80392158031463623, 0.80392158031463623), (0.83613443374633789, 0.81176471710205078, 0.81176471710205078), (0.8403361439704895, 0.81568628549575806, 0.81568628549575806), (0.84453779458999634, 0.81960785388946533, 0.81960785388946533), (0.84873950481414795, 0.82352942228317261, 0.82352942228317261), (0.85294115543365479, 0.82745099067687988, 0.82745099067687988), (0.8571428656578064, 0.83529412746429443, 0.83529412746429443), (0.86134451627731323, 0.83921569585800171, 0.83921569585800171), (0.86554622650146484, 0.84313726425170898, 0.84313726425170898), (0.86974787712097168, 0.84705883264541626, 0.84705883264541626), (0.87394958734512329, 0.85098040103912354, 0.85098040103912354), (0.87815123796463013, 0.85882353782653809, 0.85882353782653809), (0.88235294818878174, 0.86274510622024536, 0.86274510622024536), (0.88655459880828857, 0.86666667461395264, 0.86666667461395264), (0.89075630903244019, 0.87058824300765991, 0.87058824300765991), (0.89495795965194702, 0.87450981140136719, 0.87450981140136719), (0.89915966987609863, 0.88235294818878174, 0.88235294818878174), (0.90336132049560547, 0.88627451658248901, 0.88627451658248901), (0.90756303071975708, 0.89019608497619629, 0.89019608497619629), (0.91176468133926392, 0.89411765336990356, 0.89411765336990356), (0.91596639156341553, 0.89803922176361084, 0.89803922176361084), (0.92016804218292236, 0.90588235855102539, 0.90588235855102539), (0.92436975240707397, 0.90980392694473267, 0.90980392694473267), (0.92857140302658081, 0.91372549533843994, 0.91372549533843994), (0.93277311325073242, 0.91764706373214722, 0.91764706373214722), (0.93697476387023926, 0.92156863212585449, 0.92156863212585449), (0.94117647409439087, 0.92941176891326904, 0.92941176891326904), (0.94537812471389771, 0.93333333730697632, 0.93333333730697632), (0.94957983493804932, 0.93725490570068359, 0.93725490570068359), (0.95378148555755615, 0.94117647409439087, 0.94117647409439087), (0.95798319578170776, 0.94509804248809814, 0.94509804248809814), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.95686274766921997, 0.95686274766921997), (0.97058820724487305, 0.96078431606292725, 0.96078431606292725), (0.97478991746902466, 0.96470588445663452, 0.96470588445663452), (0.97899156808853149, 0.9686274528503418, 0.9686274528503418), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_gray_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.035294119268655777, 0.035294119268655777), (0.037815127521753311, 0.039215687662363052, 0.039215687662363052), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.098039217293262482, 0.098039217293262482), (0.10084033757448196, 0.10196078568696976, 0.10196078568696976), (0.10504201799631119, 0.10588235408067703, 0.10588235408067703), (0.10924369841814041, 0.10980392247438431, 0.10980392247438431), (0.11344537883996964, 0.11372549086809158, 0.11372549086809158), (0.11764705926179886, 0.11764705926179886, 0.11764705926179886), (0.12184873968362808, 0.12156862765550613, 0.12156862765550613), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.16078431904315948, 0.16078431904315948), (0.16386555135250092, 0.16470588743686676, 0.16470588743686676), (0.16806723177433014, 0.16862745583057404, 0.16862745583057404), (0.17226891219615936, 0.17254902422428131, 0.17254902422428131), (0.17647059261798859, 0.17647059261798859, 0.17647059261798859), (0.18067227303981781, 0.18039216101169586, 0.18039216101169586), (0.18487395346164703, 0.18431372940540314, 0.18431372940540314), (0.18907563388347626, 0.18823529779911041, 0.18823529779911041), (0.19327731430530548, 0.19215686619281769, 0.19215686619281769), (0.1974789947271347, 0.19607843458652496, 0.19607843458652496), (0.20168067514896393, 0.20000000298023224, 0.20000000298023224), (0.20588235557079315, 0.20392157137393951, 0.20392157137393951), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.22352941334247589, 0.22352941334247589), (0.22689075767993927, 0.22745098173618317, 0.22745098173618317), (0.23109243810176849, 0.23137255012989044, 0.23137255012989044), (0.23529411852359772, 0.23529411852359772, 0.23529411852359772), (0.23949579894542694, 0.23921568691730499, 0.23921568691730499), (0.24369747936725616, 0.24313725531101227, 0.24313725531101227), (0.24789915978908539, 0.24705882370471954, 0.24705882370471954), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28627452254295349, 0.28627452254295349), (0.28991597890853882, 0.29019609093666077, 0.29019609093666077), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.3490196168422699, 0.3490196168422699), (0.35294118523597717, 0.35294118523597717, 0.35294118523597717), (0.3571428656578064, 0.35686275362968445, 0.35686275362968445), (0.36134454607963562, 0.36078432202339172, 0.36078432202339172), (0.36554622650146484, 0.364705890417099, 0.364705890417099), (0.36974790692329407, 0.36862745881080627, 0.36862745881080627), (0.37394958734512329, 0.37254902720451355, 0.37254902720451355), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.4117647111415863, 0.4117647111415863), (0.41596639156341553, 0.41568627953529358, 0.41568627953529358), (0.42016807198524475, 0.41960784792900085, 0.41960784792900085), (0.42436975240707397, 0.42352941632270813, 0.42352941632270813), (0.4285714328289032, 0.42745098471641541, 0.42745098471641541), (0.43277311325073242, 0.43137255311012268, 0.43137255311012268), (0.43697479367256165, 0.43529412150382996, 0.43529412150382996), (0.44117647409439087, 0.43921568989753723, 0.43921568989753723), (0.44537815451622009, 0.44313725829124451, 0.44313725829124451), (0.44957983493804932, 0.44705882668495178, 0.44705882668495178), (0.45378151535987854, 0.45098039507865906, 0.45098039507865906), (0.45798319578170776, 0.45490196347236633, 0.45490196347236633), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47450980544090271, 0.47450980544090271), (0.47899159789085388, 0.47843137383460999, 0.47843137383460999), (0.48319327831268311, 0.48235294222831726, 0.48235294222831726), (0.48739495873451233, 0.48627451062202454, 0.48627451062202454), (0.49159663915634155, 0.49019607901573181, 0.49019607901573181), (0.49579831957817078, 0.49411764740943909, 0.49411764740943909), (0.5, 0.49803921580314636, 0.49803921580314636), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.5372549295425415, 0.5372549295425415), (0.54201680421829224, 0.54117649793624878, 0.54117649793624878), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.60392159223556519, 0.60392159223556519), (0.60924369096755981, 0.60784316062927246, 0.60784316062927246), (0.61344540119171143, 0.61176472902297974, 0.61176472902297974), (0.61764705181121826, 0.61568629741668701, 0.61568629741668701), (0.62184876203536987, 0.61960786581039429, 0.61960786581039429), (0.62605041265487671, 0.62352943420410156, 0.62352943420410156), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.66274511814117432, 0.66274511814117432), (0.66806721687316895, 0.66666668653488159, 0.66666668653488159), (0.67226892709732056, 0.67058825492858887, 0.67058825492858887), (0.67647057771682739, 0.67450982332229614, 0.67450982332229614), (0.680672287940979, 0.67843139171600342, 0.67843139171600342), (0.68487393856048584, 0.68235296010971069, 0.68235296010971069), (0.68907564878463745, 0.68627452850341797, 0.68627452850341797), (0.69327729940414429, 0.69019609689712524, 0.69019609689712524), (0.6974790096282959, 0.69411766529083252, 0.69411766529083252), (0.70168066024780273, 0.69803923368453979, 0.69803923368453979), (0.70588237047195435, 0.70196080207824707, 0.70196080207824707), (0.71008402109146118, 0.70588237047195435, 0.70588237047195435), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72549021244049072, 0.72549021244049072), (0.73109245300292969, 0.729411780834198, 0.729411780834198), (0.73529410362243652, 0.73333334922790527, 0.73333334922790527), (0.73949581384658813, 0.73725491762161255, 0.73725491762161255), (0.74369746446609497, 0.74117648601531982, 0.74117648601531982), (0.74789917469024658, 0.7450980544090271, 0.7450980544090271), (0.75210082530975342, 0.74901962280273438, 0.74901962280273438), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78823530673980713, 0.78823530673980713), (0.79411762952804565, 0.7921568751335144, 0.7921568751335144), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.85098040103912354, 0.85098040103912354), (0.8571428656578064, 0.85490196943283081, 0.85490196943283081), (0.86134451627731323, 0.85882353782653809, 0.85882353782653809), (0.86554622650146484, 0.86274510622024536, 0.86274510622024536), (0.86974787712097168, 0.86666667461395264, 0.86666667461395264), (0.87394958734512329, 0.87058824300765991, 0.87058824300765991), (0.87815123796463013, 0.87450981140136719, 0.87450981140136719), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.91372549533843994, 0.91372549533843994), (0.92016804218292236, 0.91764706373214722, 0.91764706373214722), (0.92436975240707397, 0.92156863212585449, 0.92156863212585449), (0.92857140302658081, 0.92549020051956177, 0.92549020051956177), (0.93277311325073242, 0.92941176891326904, 0.92941176891326904), (0.93697476387023926, 0.93333333730697632, 0.93333333730697632), (0.94117647409439087, 0.93725490570068359, 0.93725490570068359), (0.94537812471389771, 0.94117647409439087, 0.94117647409439087), (0.94957983493804932, 0.94509804248809814, 0.94509804248809814), (0.95378148555755615, 0.94901961088180542, 0.94901961088180542), (0.95798319578170776, 0.9529411792755127, 0.9529411792755127), (0.9621848464012146, 0.95686274766921997, 0.95686274766921997), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97647058963775635, 0.97647058963775635), (0.98319327831268311, 0.98039215803146362, 0.98039215803146362), (0.98739492893218994, 0.9843137264251709, 0.9843137264251709), (0.99159663915634155, 0.98823529481887817, 0.98823529481887817), (0.99579828977584839, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_heat_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.027450980618596077, 0.027450980618596077), (0.76050418615341187, 0.043137256056070328, 0.043137256056070328), (0.76470589637756348, 0.058823529630899429, 0.058823529630899429), (0.76890754699707031, 0.074509806931018829, 0.074509806931018829), (0.77310925722122192, 0.090196080505847931, 0.090196080505847931), (0.77731090784072876, 0.10588235408067703, 0.10588235408067703), (0.78151261806488037, 0.12156862765550613, 0.12156862765550613), (0.78571426868438721, 0.13725490868091583, 0.13725490868091583), (0.78991597890853882, 0.15294118225574493, 0.15294118225574493), (0.79411762952804565, 0.16862745583057404, 0.16862745583057404), (0.79831933975219727, 0.20000000298023224, 0.20000000298023224), (0.8025209903717041, 0.21176470816135406, 0.21176470816135406), (0.80672270059585571, 0.22745098173618317, 0.22745098173618317), (0.81092435121536255, 0.24313725531101227, 0.24313725531101227), (0.81512606143951416, 0.25882354378700256, 0.25882354378700256), (0.819327712059021, 0.27450981736183167, 0.27450981736183167), (0.82352942228317261, 0.29019609093666077, 0.29019609093666077), (0.82773107290267944, 0.30588236451148987, 0.30588236451148987), (0.83193278312683105, 0.32156863808631897, 0.32156863808631897), (0.83613443374633789, 0.33725491166114807, 0.33725491166114807), (0.8403361439704895, 0.35294118523597717, 0.35294118523597717), (0.84453779458999634, 0.36862745881080627, 0.36862745881080627), (0.84873950481414795, 0.38431373238563538, 0.38431373238563538), (0.85294115543365479, 0.40000000596046448, 0.40000000596046448), (0.8571428656578064, 0.4117647111415863, 0.4117647111415863), (0.86134451627731323, 0.42745098471641541, 0.42745098471641541), (0.86554622650146484, 0.44313725829124451, 0.44313725829124451), (0.86974787712097168, 0.45882353186607361, 0.45882353186607361), (0.87394958734512329, 0.47450980544090271, 0.47450980544090271), (0.87815123796463013, 0.49019607901573181, 0.49019607901573181), (0.88235294818878174, 0.5215686559677124, 0.5215686559677124), (0.88655459880828857, 0.5372549295425415, 0.5372549295425415), (0.89075630903244019, 0.55294120311737061, 0.55294120311737061), (0.89495795965194702, 0.56862747669219971, 0.56862747669219971), (0.89915966987609863, 0.58431375026702881, 0.58431375026702881), (0.90336132049560547, 0.60000002384185791, 0.60000002384185791), (0.90756303071975708, 0.61176472902297974, 0.61176472902297974), (0.91176468133926392, 0.62745100259780884, 0.62745100259780884), (0.91596639156341553, 0.64313727617263794, 0.64313727617263794), (0.92016804218292236, 0.65882354974746704, 0.65882354974746704), (0.92436975240707397, 0.67450982332229614, 0.67450982332229614), (0.92857140302658081, 0.69019609689712524, 0.69019609689712524), (0.93277311325073242, 0.70588237047195435, 0.70588237047195435), (0.93697476387023926, 0.72156864404678345, 0.72156864404678345), (0.94117647409439087, 0.73725491762161255, 0.73725491762161255), (0.94537812471389771, 0.75294119119644165, 0.75294119119644165), (0.94957983493804932, 0.76862746477127075, 0.76862746477127075), (0.95378148555755615, 0.78431373834609985, 0.78431373834609985), (0.95798319578170776, 0.80000001192092896, 0.80000001192092896), (0.9621848464012146, 0.81176471710205078, 0.81176471710205078), (0.96638655662536621, 0.84313726425170898, 0.84313726425170898), (0.97058820724487305, 0.85882353782653809, 0.85882353782653809), (0.97478991746902466, 0.87450981140136719, 0.87450981140136719), (0.97899156808853149, 0.89019608497619629, 0.89019608497619629), (0.98319327831268311, 0.90588235855102539, 0.90588235855102539), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0039215688593685627, 0.0039215688593685627), (0.48319327831268311, 0.011764706112444401, 0.011764706112444401), (0.48739495873451233, 0.019607843831181526, 0.019607843831181526), (0.49159663915634155, 0.027450980618596077, 0.027450980618596077), (0.49579831957817078, 0.035294119268655777, 0.035294119268655777), (0.5, 0.043137256056070328, 0.043137256056070328), (0.50420171022415161, 0.058823529630899429, 0.058823529630899429), (0.50840336084365845, 0.066666670143604279, 0.066666670143604279), (0.51260507106781006, 0.070588238537311554, 0.070588238537311554), (0.51680672168731689, 0.078431375324726105, 0.078431375324726105), (0.52100843191146851, 0.086274512112140656, 0.086274512112140656), (0.52521008253097534, 0.094117648899555206, 0.094117648899555206), (0.52941179275512695, 0.10196078568696976, 0.10196078568696976), (0.53361344337463379, 0.10980392247438431, 0.10980392247438431), (0.5378151535987854, 0.11764705926179886, 0.11764705926179886), (0.54201680421829224, 0.12549020349979401, 0.12549020349979401), (0.54621851444244385, 0.13725490868091583, 0.13725490868091583), (0.55042016506195068, 0.14509804546833038, 0.14509804546833038), (0.55462187528610229, 0.15294118225574493, 0.15294118225574493), (0.55882352590560913, 0.16078431904315948, 0.16078431904315948), (0.56302523612976074, 0.16862745583057404, 0.16862745583057404), (0.56722688674926758, 0.17647059261798859, 0.17647059261798859), (0.57142859697341919, 0.18431372940540314, 0.18431372940540314), (0.57563024759292603, 0.19215686619281769, 0.19215686619281769), (0.57983195781707764, 0.20000000298023224, 0.20000000298023224), (0.58403360843658447, 0.20392157137393951, 0.20392157137393951), (0.58823531866073608, 0.21176470816135406, 0.21176470816135406), (0.59243696928024292, 0.21960784494876862, 0.21960784494876862), (0.59663867950439453, 0.22745098173618317, 0.22745098173618317), (0.60084033012390137, 0.23529411852359772, 0.23529411852359772), (0.60504204034805298, 0.24313725531101227, 0.24313725531101227), (0.60924369096755981, 0.25098040699958801, 0.25098040699958801), (0.61344540119171143, 0.25882354378700256, 0.25882354378700256), (0.61764705181121826, 0.26666668057441711, 0.26666668057441711), (0.62184876203536987, 0.27058824896812439, 0.27058824896812439), (0.62605041265487671, 0.27843138575553894, 0.27843138575553894), (0.63025212287902832, 0.29411765933036804, 0.29411765933036804), (0.63445377349853516, 0.30196079611778259, 0.30196079611778259), (0.63865548372268677, 0.30980393290519714, 0.30980393290519714), (0.6428571343421936, 0.31764706969261169, 0.31764706969261169), (0.64705884456634521, 0.32549020648002625, 0.32549020648002625), (0.65126049518585205, 0.3333333432674408, 0.3333333432674408), (0.65546220541000366, 0.33725491166114807, 0.33725491166114807), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.35294118523597717, 0.35294118523597717), (0.66806721687316895, 0.36078432202339172, 0.36078432202339172), (0.67226892709732056, 0.36862745881080627, 0.36862745881080627), (0.67647057771682739, 0.37647059559822083, 0.37647059559822083), (0.680672287940979, 0.38431373238563538, 0.38431373238563538), (0.68487393856048584, 0.39215686917304993, 0.39215686917304993), (0.68907564878463745, 0.40000000596046448, 0.40000000596046448), (0.69327729940414429, 0.40392157435417175, 0.40392157435417175), (0.6974790096282959, 0.4117647111415863, 0.4117647111415863), (0.70168066024780273, 0.41960784792900085, 0.41960784792900085), (0.70588237047195435, 0.42745098471641541, 0.42745098471641541), (0.71008402109146118, 0.43529412150382996, 0.43529412150382996), (0.71428573131561279, 0.45098039507865906, 0.45098039507865906), (0.71848738193511963, 0.45882353186607361, 0.45882353186607361), (0.72268909215927124, 0.46666666865348816, 0.46666666865348816), (0.72689074277877808, 0.47058823704719543, 0.47058823704719543), (0.73109245300292969, 0.47843137383460999, 0.47843137383460999), (0.73529410362243652, 0.48627451062202454, 0.48627451062202454), (0.73949581384658813, 0.49411764740943909, 0.49411764740943909), (0.74369746446609497, 0.50196081399917603, 0.50196081399917603), (0.74789917469024658, 0.50980395078659058, 0.50980395078659058), (0.75210082530975342, 0.51764708757400513, 0.51764708757400513), (0.75630253553390503, 0.53333336114883423, 0.53333336114883423), (0.76050418615341187, 0.5372549295425415, 0.5372549295425415), (0.76470589637756348, 0.54509806632995605, 0.54509806632995605), (0.76890754699707031, 0.55294120311737061, 0.55294120311737061), (0.77310925722122192, 0.56078433990478516, 0.56078433990478516), (0.77731090784072876, 0.56862747669219971, 0.56862747669219971), (0.78151261806488037, 0.57647061347961426, 0.57647061347961426), (0.78571426868438721, 0.58431375026702881, 0.58431375026702881), (0.78991597890853882, 0.59215688705444336, 0.59215688705444336), (0.79411762952804565, 0.60000002384185791, 0.60000002384185791), (0.79831933975219727, 0.61176472902297974, 0.61176472902297974), (0.8025209903717041, 0.61960786581039429, 0.61960786581039429), (0.80672270059585571, 0.62745100259780884, 0.62745100259780884), (0.81092435121536255, 0.63529413938522339, 0.63529413938522339), (0.81512606143951416, 0.64313727617263794, 0.64313727617263794), (0.819327712059021, 0.65098041296005249, 0.65098041296005249), (0.82352942228317261, 0.65882354974746704, 0.65882354974746704), (0.82773107290267944, 0.66666668653488159, 0.66666668653488159), (0.83193278312683105, 0.67058825492858887, 0.67058825492858887), (0.83613443374633789, 0.67843139171600342, 0.67843139171600342), (0.8403361439704895, 0.68627452850341797, 0.68627452850341797), (0.84453779458999634, 0.69411766529083252, 0.69411766529083252), (0.84873950481414795, 0.70196080207824707, 0.70196080207824707), (0.85294115543365479, 0.70980393886566162, 0.70980393886566162), (0.8571428656578064, 0.71764707565307617, 0.71764707565307617), (0.86134451627731323, 0.72549021244049072, 0.72549021244049072), (0.86554622650146484, 0.73333334922790527, 0.73333334922790527), (0.86974787712097168, 0.73725491762161255, 0.73725491762161255), (0.87394958734512329, 0.7450980544090271, 0.7450980544090271), (0.87815123796463013, 0.75294119119644165, 0.75294119119644165), (0.88235294818878174, 0.76862746477127075, 0.76862746477127075), (0.88655459880828857, 0.7764706015586853, 0.7764706015586853), (0.89075630903244019, 0.78431373834609985, 0.78431373834609985), (0.89495795965194702, 0.7921568751335144, 0.7921568751335144), (0.89915966987609863, 0.80000001192092896, 0.80000001192092896), (0.90336132049560547, 0.80392158031463623, 0.80392158031463623), (0.90756303071975708, 0.81176471710205078, 0.81176471710205078), (0.91176468133926392, 0.81960785388946533, 0.81960785388946533), (0.91596639156341553, 0.82745099067687988, 0.82745099067687988), (0.92016804218292236, 0.83529412746429443, 0.83529412746429443), (0.92436975240707397, 0.84313726425170898, 0.84313726425170898), (0.92857140302658081, 0.85098040103912354, 0.85098040103912354), (0.93277311325073242, 0.85882353782653809, 0.85882353782653809), (0.93697476387023926, 0.86666667461395264, 0.86666667461395264), (0.94117647409439087, 0.87058824300765991, 0.87058824300765991), (0.94537812471389771, 0.87843137979507446, 0.87843137979507446), (0.94957983493804932, 0.88627451658248901, 0.88627451658248901), (0.95378148555755615, 0.89411765336990356, 0.89411765336990356), (0.95798319578170776, 0.90196079015731812, 0.90196079015731812), (0.9621848464012146, 0.90980392694473267, 0.90980392694473267), (0.96638655662536621, 0.92549020051956177, 0.92549020051956177), (0.97058820724487305, 0.93333333730697632, 0.93333333730697632), (0.97478991746902466, 0.93725490570068359, 0.93725490570068359), (0.97899156808853149, 0.94509804248809814, 0.94509804248809814), (0.98319327831268311, 0.9529411792755127, 0.9529411792755127), (0.98739492893218994, 0.96078431606292725, 0.96078431606292725), (0.99159663915634155, 0.9686274528503418, 0.9686274528503418), (0.99579828977584839, 0.97647058963775635, 0.97647058963775635), (1.0, 0.9843137264251709, 0.9843137264251709)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.015686275437474251, 0.015686275437474251), (0.016806723549962044, 0.019607843831181526, 0.019607843831181526), (0.021008403971791267, 0.027450980618596077, 0.027450980618596077), (0.025210084393620491, 0.031372550874948502, 0.031372550874948502), (0.029411764815449715, 0.039215687662363052, 0.039215687662363052), (0.033613447099924088, 0.043137256056070328, 0.043137256056070328), (0.037815127521753311, 0.050980392843484879, 0.050980392843484879), (0.042016807943582535, 0.058823529630899429, 0.058823529630899429), (0.046218488365411758, 0.066666670143604279, 0.066666670143604279), (0.050420168787240982, 0.070588238537311554, 0.070588238537311554), (0.054621849209070206, 0.078431375324726105, 0.078431375324726105), (0.058823529630899429, 0.08235294371843338, 0.08235294371843338), (0.063025213778018951, 0.090196080505847931, 0.090196080505847931), (0.067226894199848175, 0.094117648899555206, 0.094117648899555206), (0.071428574621677399, 0.10196078568696976, 0.10196078568696976), (0.075630255043506622, 0.10588235408067703, 0.10588235408067703), (0.079831935465335846, 0.10980392247438431, 0.10980392247438431), (0.08403361588716507, 0.11764705926179886, 0.11764705926179886), (0.088235296308994293, 0.12156862765550613, 0.12156862765550613), (0.092436976730823517, 0.12941177189350128, 0.12941177189350128), (0.09663865715265274, 0.13333334028720856, 0.13333334028720856), (0.10084033757448196, 0.14117647707462311, 0.14117647707462311), (0.10504201799631119, 0.14509804546833038, 0.14509804546833038), (0.10924369841814041, 0.15294118225574493, 0.15294118225574493), (0.11344537883996964, 0.15686275064945221, 0.15686275064945221), (0.11764705926179886, 0.16470588743686676, 0.16470588743686676), (0.12184873968362808, 0.16862745583057404, 0.16862745583057404), (0.1260504275560379, 0.18039216101169586, 0.18039216101169586), (0.13025210797786713, 0.18431372940540314, 0.18431372940540314), (0.13445378839969635, 0.19215686619281769, 0.19215686619281769), (0.13865546882152557, 0.19607843458652496, 0.19607843458652496), (0.1428571492433548, 0.20392157137393951, 0.20392157137393951), (0.14705882966518402, 0.20784313976764679, 0.20784313976764679), (0.15126051008701324, 0.21568627655506134, 0.21568627655506134), (0.15546219050884247, 0.21960784494876862, 0.21960784494876862), (0.15966387093067169, 0.22352941334247589, 0.22352941334247589), (0.16386555135250092, 0.23137255012989044, 0.23137255012989044), (0.16806723177433014, 0.23529411852359772, 0.23529411852359772), (0.17226891219615936, 0.24313725531101227, 0.24313725531101227), (0.17647059261798859, 0.24705882370471954, 0.24705882370471954), (0.18067227303981781, 0.25490197539329529, 0.25490197539329529), (0.18487395346164703, 0.25882354378700256, 0.25882354378700256), (0.18907563388347626, 0.26666668057441711, 0.26666668057441711), (0.19327731430530548, 0.27058824896812439, 0.27058824896812439), (0.1974789947271347, 0.27450981736183167, 0.27450981736183167), (0.20168067514896393, 0.28235295414924622, 0.28235295414924622), (0.20588235557079315, 0.28627452254295349, 0.28627452254295349), (0.21008403599262238, 0.29803922772407532, 0.29803922772407532), (0.2142857164144516, 0.30588236451148987, 0.30588236451148987), (0.21848739683628082, 0.30980393290519714, 0.30980393290519714), (0.22268907725811005, 0.31764706969261169, 0.31764706969261169), (0.22689075767993927, 0.32156863808631897, 0.32156863808631897), (0.23109243810176849, 0.32941177487373352, 0.32941177487373352), (0.23529411852359772, 0.3333333432674408, 0.3333333432674408), (0.23949579894542694, 0.33725491166114807, 0.33725491166114807), (0.24369747936725616, 0.34509804844856262, 0.34509804844856262), (0.24789915978908539, 0.3490196168422699, 0.3490196168422699), (0.25210085511207581, 0.36078432202339172, 0.36078432202339172), (0.25630253553390503, 0.36862745881080627, 0.36862745881080627), (0.26050421595573425, 0.37254902720451355, 0.37254902720451355), (0.26470589637756348, 0.3803921639919281, 0.3803921639919281), (0.2689075767993927, 0.38431373238563538, 0.38431373238563538), (0.27310925722122192, 0.38823530077934265, 0.38823530077934265), (0.27731093764305115, 0.3960784375667572, 0.3960784375667572), (0.28151261806488037, 0.40000000596046448, 0.40000000596046448), (0.28571429848670959, 0.40784314274787903, 0.40784314274787903), (0.28991597890853882, 0.4117647111415863, 0.4117647111415863), (0.29411765933036804, 0.42352941632270813, 0.42352941632270813), (0.29831933975219727, 0.43137255311012268, 0.43137255311012268), (0.30252102017402649, 0.43529412150382996, 0.43529412150382996), (0.30672270059585571, 0.44313725829124451, 0.44313725829124451), (0.31092438101768494, 0.44705882668495178, 0.44705882668495178), (0.31512606143951416, 0.45098039507865906, 0.45098039507865906), (0.31932774186134338, 0.45882353186607361, 0.45882353186607361), (0.32352942228317261, 0.46274510025978088, 0.46274510025978088), (0.32773110270500183, 0.47058823704719543, 0.47058823704719543), (0.33193278312683105, 0.47450980544090271, 0.47450980544090271), (0.33613446354866028, 0.48235294222831726, 0.48235294222831726), (0.3403361439704895, 0.48627451062202454, 0.48627451062202454), (0.34453782439231873, 0.49411764740943909, 0.49411764740943909), (0.34873950481414795, 0.49803921580314636, 0.49803921580314636), (0.35294118523597717, 0.50196081399917603, 0.50196081399917603), (0.3571428656578064, 0.50980395078659058, 0.50980395078659058), (0.36134454607963562, 0.51372551918029785, 0.51372551918029785), (0.36554622650146484, 0.5215686559677124, 0.5215686559677124), (0.36974790692329407, 0.52549022436141968, 0.52549022436141968), (0.37394958734512329, 0.53333336114883423, 0.53333336114883423), (0.37815126776695251, 0.54509806632995605, 0.54509806632995605), (0.38235294818878174, 0.54901963472366333, 0.54901963472366333), (0.38655462861061096, 0.55294120311737061, 0.55294120311737061), (0.39075630903244019, 0.56078433990478516, 0.56078433990478516), (0.39495798945426941, 0.56470590829849243, 0.56470590829849243), (0.39915966987609863, 0.57254904508590698, 0.57254904508590698), (0.40336135029792786, 0.57647061347961426, 0.57647061347961426), (0.40756303071975708, 0.58431375026702881, 0.58431375026702881), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.59607845544815063, 0.59607845544815063), (0.42016807198524475, 0.60000002384185791, 0.60000002384185791), (0.42436975240707397, 0.60784316062927246, 0.60784316062927246), (0.4285714328289032, 0.61176472902297974, 0.61176472902297974), (0.43277311325073242, 0.61568629741668701, 0.61568629741668701), (0.43697479367256165, 0.62352943420410156, 0.62352943420410156), (0.44117647409439087, 0.62745100259780884, 0.62745100259780884), (0.44537815451622009, 0.63529413938522339, 0.63529413938522339), (0.44957983493804932, 0.63921570777893066, 0.63921570777893066), (0.45378151535987854, 0.64705884456634521, 0.64705884456634521), (0.45798319578170776, 0.65098041296005249, 0.65098041296005249), (0.46218487620353699, 0.66274511814117432, 0.66274511814117432), (0.46638655662536621, 0.66666668653488159, 0.66666668653488159), (0.47058823704719543, 0.67450982332229614, 0.67450982332229614), (0.47478991746902466, 0.67843139171600342, 0.67843139171600342), (0.47899159789085388, 0.68627452850341797, 0.68627452850341797), (0.48319327831268311, 0.69019609689712524, 0.69019609689712524), (0.48739495873451233, 0.69803923368453979, 0.69803923368453979), (0.49159663915634155, 0.70196080207824707, 0.70196080207824707), (0.49579831957817078, 0.70980393886566162, 0.70980393886566162), (0.5, 0.7137255072593689, 0.7137255072593689), (0.50420171022415161, 0.72549021244049072, 0.72549021244049072), (0.50840336084365845, 0.729411780834198, 0.729411780834198), (0.51260507106781006, 0.73725491762161255, 0.73725491762161255), (0.51680672168731689, 0.74117648601531982, 0.74117648601531982), (0.52100843191146851, 0.74901962280273438, 0.74901962280273438), (0.52521008253097534, 0.75294119119644165, 0.75294119119644165), (0.52941179275512695, 0.7607843279838562, 0.7607843279838562), (0.53361344337463379, 0.76470589637756348, 0.76470589637756348), (0.5378151535987854, 0.77254903316497803, 0.77254903316497803), (0.54201680421829224, 0.7764706015586853, 0.7764706015586853), (0.54621851444244385, 0.78823530673980713, 0.78823530673980713), (0.55042016506195068, 0.7921568751335144, 0.7921568751335144), (0.55462187528610229, 0.80000001192092896, 0.80000001192092896), (0.55882352590560913, 0.80392158031463623, 0.80392158031463623), (0.56302523612976074, 0.81176471710205078, 0.81176471710205078), (0.56722688674926758, 0.81568628549575806, 0.81568628549575806), (0.57142859697341919, 0.82352942228317261, 0.82352942228317261), (0.57563024759292603, 0.82745099067687988, 0.82745099067687988), (0.57983195781707764, 0.83137255907058716, 0.83137255907058716), (0.58403360843658447, 0.83921569585800171, 0.83921569585800171), (0.58823531866073608, 0.84313726425170898, 0.84313726425170898), (0.59243696928024292, 0.85098040103912354, 0.85098040103912354), (0.59663867950439453, 0.85490196943283081, 0.85490196943283081), (0.60084033012390137, 0.86274510622024536, 0.86274510622024536), (0.60504204034805298, 0.86666667461395264, 0.86666667461395264), (0.60924369096755981, 0.87450981140136719, 0.87450981140136719), (0.61344540119171143, 0.87843137979507446, 0.87843137979507446), (0.61764705181121826, 0.88627451658248901, 0.88627451658248901), (0.62184876203536987, 0.89019608497619629, 0.89019608497619629), (0.62605041265487671, 0.89411765336990356, 0.89411765336990356), (0.63025212287902832, 0.90588235855102539, 0.90588235855102539), (0.63445377349853516, 0.91372549533843994, 0.91372549533843994), (0.63865548372268677, 0.91764706373214722, 0.91764706373214722), (0.6428571343421936, 0.92549020051956177, 0.92549020051956177), (0.64705884456634521, 0.92941176891326904, 0.92941176891326904), (0.65126049518585205, 0.93725490570068359, 0.93725490570068359), (0.65546220541000366, 0.94117647409439087, 0.94117647409439087), (0.6596638560295105, 0.94509804248809814, 0.94509804248809814), (0.66386556625366211, 0.9529411792755127, 0.9529411792755127), (0.66806721687316895, 0.95686274766921997, 0.95686274766921997), (0.67226892709732056, 0.96470588445663452, 0.96470588445663452), (0.67647057771682739, 0.9686274528503418, 0.9686274528503418), (0.680672287940979, 0.97647058963775635, 0.97647058963775635), (0.68487393856048584, 0.98039215803146362, 0.98039215803146362), (0.68907564878463745, 0.98823529481887817, 0.98823529481887817), (0.69327729940414429, 0.99215686321258545, 0.99215686321258545), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_ncar_data = {'blue': [(0.0, 0.50196081399917603, 0.50196081399917603), (0.0050505050458014011, 0.45098039507865906, 0.45098039507865906), (0.010101010091602802, 0.40392157435417175, 0.40392157435417175), (0.015151515603065491, 0.35686275362968445, 0.35686275362968445), (0.020202020183205605, 0.30980393290519714, 0.30980393290519714), (0.025252524763345718, 0.25882354378700256, 0.25882354378700256), (0.030303031206130981, 0.21176470816135406, 0.21176470816135406), (0.035353533923625946, 0.16470588743686676, 0.16470588743686676), (0.040404040366411209, 0.11764705926179886, 0.11764705926179886), (0.045454546809196472, 0.070588238537311554, 0.070588238537311554), (0.050505049526691437, 0.019607843831181526, 0.019607843831181526), (0.0555555559694767, 0.047058824449777603, 0.047058824449777603), (0.060606062412261963, 0.14509804546833038, 0.14509804546833038), (0.065656565129756927, 0.23921568691730499, 0.23921568691730499), (0.070707067847251892, 0.3333333432674408, 0.3333333432674408), (0.075757578015327454, 0.43137255311012268, 0.43137255311012268), (0.080808080732822418, 0.52549022436141968, 0.52549022436141968), (0.085858583450317383, 0.61960786581039429, 0.61960786581039429), (0.090909093618392944, 0.71764707565307617, 0.71764707565307617), (0.095959596335887909, 0.81176471710205078, 0.81176471710205078), (0.10101009905338287, 0.90588235855102539, 0.90588235855102539), (0.10606060922145844, 1.0, 1.0), (0.1111111119389534, 1.0, 1.0), (0.11616161465644836, 1.0, 1.0), (0.12121212482452393, 1.0, 1.0), (0.12626262009143829, 1.0, 1.0), (0.13131313025951385, 1.0, 1.0), (0.13636364042758942, 1.0, 1.0), (0.14141413569450378, 1.0, 1.0), (0.14646464586257935, 1.0, 1.0), (0.15151515603065491, 1.0, 1.0), (0.15656565129756927, 1.0, 1.0), (0.16161616146564484, 1.0, 1.0), (0.1666666716337204, 1.0, 1.0), (0.17171716690063477, 1.0, 1.0), (0.17676767706871033, 1.0, 1.0), (0.18181818723678589, 1.0, 1.0), (0.18686868250370026, 1.0, 1.0), (0.19191919267177582, 1.0, 1.0), (0.19696970283985138, 1.0, 1.0), (0.20202019810676575, 1.0, 1.0), (0.20707070827484131, 1.0, 1.0), (0.21212121844291687, 0.99215686321258545, 0.99215686321258545), (0.21717171370983124, 0.95686274766921997, 0.95686274766921997), (0.2222222238779068, 0.91764706373214722, 0.91764706373214722), (0.22727273404598236, 0.88235294818878174, 0.88235294818878174), (0.23232322931289673, 0.84313726425170898, 0.84313726425170898), (0.23737373948097229, 0.80392158031463623, 0.80392158031463623), (0.24242424964904785, 0.76862746477127075, 0.76862746477127075), (0.24747474491596222, 0.729411780834198, 0.729411780834198), (0.25252524018287659, 0.69019609689712524, 0.69019609689712524), (0.25757575035095215, 0.65490198135375977, 0.65490198135375977), (0.26262626051902771, 0.61568629741668701, 0.61568629741668701), (0.26767677068710327, 0.56470590829849243, 0.56470590829849243), (0.27272728085517883, 0.50980395078659058, 0.50980395078659058), (0.27777779102325439, 0.45098039507865906, 0.45098039507865906), (0.28282827138900757, 0.39215686917304993, 0.39215686917304993), (0.28787878155708313, 0.3333333432674408, 0.3333333432674408), (0.29292929172515869, 0.27843138575553894, 0.27843138575553894), (0.29797980189323425, 0.21960784494876862, 0.21960784494876862), (0.30303031206130981, 0.16078431904315948, 0.16078431904315948), (0.30808082222938538, 0.10588235408067703, 0.10588235408067703), (0.31313130259513855, 0.047058824449777603, 0.047058824449777603), (0.31818181276321411, 0.0, 0.0), (0.32323232293128967, 0.0, 0.0), (0.32828283309936523, 0.0, 0.0), (0.3333333432674408, 0.0, 0.0), (0.33838382363319397, 0.0, 0.0), (0.34343433380126953, 0.0, 0.0), (0.34848484396934509, 0.0, 0.0), (0.35353535413742065, 0.0, 0.0), (0.35858586430549622, 0.0, 0.0), (0.36363637447357178, 0.0, 0.0), (0.36868685483932495, 0.0, 0.0), (0.37373736500740051, 0.0, 0.0), (0.37878787517547607, 0.0, 0.0), (0.38383838534355164, 0.0, 0.0), (0.3888888955116272, 0.0, 0.0), (0.39393940567970276, 0.0, 0.0), (0.39898988604545593, 0.0, 0.0), (0.40404039621353149, 0.0, 0.0), (0.40909090638160706, 0.0, 0.0), (0.41414141654968262, 0.0, 0.0), (0.41919192671775818, 0.0, 0.0), (0.42424243688583374, 0.0039215688593685627, 0.0039215688593685627), (0.42929291725158691, 0.027450980618596077, 0.027450980618596077), (0.43434342741966248, 0.050980392843484879, 0.050980392843484879), (0.43939393758773804, 0.074509806931018829, 0.074509806931018829), (0.4444444477558136, 0.094117648899555206, 0.094117648899555206), (0.44949495792388916, 0.11764705926179886, 0.11764705926179886), (0.45454546809196472, 0.14117647707462311, 0.14117647707462311), (0.4595959484577179, 0.16470588743686676, 0.16470588743686676), (0.46464645862579346, 0.18823529779911041, 0.18823529779911041), (0.46969696879386902, 0.21176470816135406, 0.21176470816135406), (0.47474747896194458, 0.23529411852359772, 0.23529411852359772), (0.47979798913002014, 0.22352941334247589, 0.22352941334247589), (0.4848484992980957, 0.20000000298023224, 0.20000000298023224), (0.48989897966384888, 0.17647059261798859, 0.17647059261798859), (0.49494948983192444, 0.15294118225574493, 0.15294118225574493), (0.5, 0.12941177189350128, 0.12941177189350128), (0.50505048036575317, 0.10980392247438431, 0.10980392247438431), (0.51010102033615112, 0.086274512112140656, 0.086274512112140656), (0.5151515007019043, 0.062745101749897003, 0.062745101749897003), (0.52020204067230225, 0.039215687662363052, 0.039215687662363052), (0.52525252103805542, 0.015686275437474251, 0.015686275437474251), (0.53030300140380859, 0.0, 0.0), (0.53535354137420654, 0.0, 0.0), (0.54040402173995972, 0.0, 0.0), (0.54545456171035767, 0.0, 0.0), (0.55050504207611084, 0.0, 0.0), (0.55555558204650879, 0.0, 0.0), (0.56060606241226196, 0.0, 0.0), (0.56565654277801514, 0.0, 0.0), (0.57070708274841309, 0.0, 0.0), (0.57575756311416626, 0.0, 0.0), (0.58080810308456421, 0.0, 0.0), (0.58585858345031738, 0.0039215688593685627, 0.0039215688593685627), (0.59090906381607056, 0.0078431377187371254, 0.0078431377187371254), (0.59595960378646851, 0.011764706112444401, 0.011764706112444401), (0.60101008415222168, 0.019607843831181526, 0.019607843831181526), (0.60606062412261963, 0.023529412224888802, 0.023529412224888802), (0.6111111044883728, 0.031372550874948502, 0.031372550874948502), (0.61616164445877075, 0.035294119268655777, 0.035294119268655777), (0.62121212482452393, 0.043137256056070328, 0.043137256056070328), (0.6262626051902771, 0.047058824449777603, 0.047058824449777603), (0.63131314516067505, 0.054901961237192154, 0.054901961237192154), (0.63636362552642822, 0.054901961237192154, 0.054901961237192154), (0.64141416549682617, 0.050980392843484879, 0.050980392843484879), (0.64646464586257935, 0.043137256056070328, 0.043137256056070328), (0.65151512622833252, 0.039215687662363052, 0.039215687662363052), (0.65656566619873047, 0.031372550874948502, 0.031372550874948502), (0.66161614656448364, 0.027450980618596077, 0.027450980618596077), (0.66666668653488159, 0.019607843831181526, 0.019607843831181526), (0.67171716690063477, 0.015686275437474251, 0.015686275437474251), (0.67676764726638794, 0.011764706112444401, 0.011764706112444401), (0.68181818723678589, 0.0039215688593685627, 0.0039215688593685627), (0.68686866760253906, 0.0, 0.0), (0.69191920757293701, 0.0, 0.0), (0.69696968793869019, 0.0, 0.0), (0.70202022790908813, 0.0, 0.0), (0.70707070827484131, 0.0, 0.0), (0.71212118864059448, 0.0, 0.0), (0.71717172861099243, 0.0, 0.0), (0.72222220897674561, 0.0, 0.0), (0.72727274894714355, 0.0, 0.0), (0.73232322931289673, 0.0, 0.0), (0.7373737096786499, 0.0, 0.0), (0.74242424964904785, 0.031372550874948502, 0.031372550874948502), (0.74747473001480103, 0.12941177189350128, 0.12941177189350128), (0.75252526998519897, 0.22352941334247589, 0.22352941334247589), (0.75757575035095215, 0.32156863808631897, 0.32156863808631897), (0.7626262903213501, 0.41568627953529358, 0.41568627953529358), (0.76767677068710327, 0.50980395078659058, 0.50980395078659058), (0.77272725105285645, 0.60784316062927246, 0.60784316062927246), (0.77777779102325439, 0.70196080207824707, 0.70196080207824707), (0.78282827138900757, 0.79607844352722168, 0.79607844352722168), (0.78787881135940552, 0.89411765336990356, 0.89411765336990356), (0.79292929172515869, 0.98823529481887817, 0.98823529481887817), (0.79797977209091187, 1.0, 1.0), (0.80303031206130981, 1.0, 1.0), (0.80808079242706299, 1.0, 1.0), (0.81313133239746094, 1.0, 1.0), (0.81818181276321411, 1.0, 1.0), (0.82323235273361206, 1.0, 1.0), (0.82828283309936523, 1.0, 1.0), (0.83333331346511841, 1.0, 1.0), (0.83838385343551636, 1.0, 1.0), (0.84343433380126953, 1.0, 1.0), (0.84848487377166748, 0.99607843160629272, 0.99607843160629272), (0.85353535413742065, 0.98823529481887817, 0.98823529481887817), (0.85858583450317383, 0.9843137264251709, 0.9843137264251709), (0.86363637447357178, 0.97647058963775635, 0.97647058963775635), (0.86868685483932495, 0.9686274528503418, 0.9686274528503418), (0.8737373948097229, 0.96470588445663452, 0.96470588445663452), (0.87878787517547607, 0.95686274766921997, 0.95686274766921997), (0.88383835554122925, 0.94901961088180542, 0.94901961088180542), (0.8888888955116272, 0.94509804248809814, 0.94509804248809814), (0.89393937587738037, 0.93725490570068359, 0.93725490570068359), (0.89898991584777832, 0.93333333730697632, 0.93333333730697632), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)], 'green': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.035294119268655777, 0.035294119268655777), (0.010101010091602802, 0.074509806931018829, 0.074509806931018829), (0.015151515603065491, 0.10980392247438431, 0.10980392247438431), (0.020202020183205605, 0.14901961386203766, 0.14901961386203766), (0.025252524763345718, 0.18431372940540314, 0.18431372940540314), (0.030303031206130981, 0.22352941334247589, 0.22352941334247589), (0.035353533923625946, 0.25882354378700256, 0.25882354378700256), (0.040404040366411209, 0.29803922772407532, 0.29803922772407532), (0.045454546809196472, 0.3333333432674408, 0.3333333432674408), (0.050505049526691437, 0.37254902720451355, 0.37254902720451355), (0.0555555559694767, 0.36862745881080627, 0.36862745881080627), (0.060606062412261963, 0.3333333432674408, 0.3333333432674408), (0.065656565129756927, 0.29411765933036804, 0.29411765933036804), (0.070707067847251892, 0.25882354378700256, 0.25882354378700256), (0.075757578015327454, 0.21960784494876862, 0.21960784494876862), (0.080808080732822418, 0.18431372940540314, 0.18431372940540314), (0.085858583450317383, 0.14509804546833038, 0.14509804546833038), (0.090909093618392944, 0.10980392247438431, 0.10980392247438431), (0.095959596335887909, 0.070588238537311554, 0.070588238537311554), (0.10101009905338287, 0.035294119268655777, 0.035294119268655777), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.074509806931018829, 0.074509806931018829), (0.11616161465644836, 0.14509804546833038, 0.14509804546833038), (0.12121212482452393, 0.21568627655506134, 0.21568627655506134), (0.12626262009143829, 0.28627452254295349, 0.28627452254295349), (0.13131313025951385, 0.36078432202339172, 0.36078432202339172), (0.13636364042758942, 0.43137255311012268, 0.43137255311012268), (0.14141413569450378, 0.50196081399917603, 0.50196081399917603), (0.14646464586257935, 0.57254904508590698, 0.57254904508590698), (0.15151515603065491, 0.64705884456634521, 0.64705884456634521), (0.15656565129756927, 0.71764707565307617, 0.71764707565307617), (0.16161616146564484, 0.7607843279838562, 0.7607843279838562), (0.1666666716337204, 0.78431373834609985, 0.78431373834609985), (0.17171716690063477, 0.80784314870834351, 0.80784314870834351), (0.17676767706871033, 0.83137255907058716, 0.83137255907058716), (0.18181818723678589, 0.85490196943283081, 0.85490196943283081), (0.18686868250370026, 0.88235294818878174, 0.88235294818878174), (0.19191919267177582, 0.90588235855102539, 0.90588235855102539), (0.19696970283985138, 0.92941176891326904, 0.92941176891326904), (0.20202019810676575, 0.9529411792755127, 0.9529411792755127), (0.20707070827484131, 0.97647058963775635, 0.97647058963775635), (0.21212121844291687, 0.99607843160629272, 0.99607843160629272), (0.21717171370983124, 0.99607843160629272, 0.99607843160629272), (0.2222222238779068, 0.99215686321258545, 0.99215686321258545), (0.22727273404598236, 0.99215686321258545, 0.99215686321258545), (0.23232322931289673, 0.99215686321258545, 0.99215686321258545), (0.23737373948097229, 0.98823529481887817, 0.98823529481887817), (0.24242424964904785, 0.98823529481887817, 0.98823529481887817), (0.24747474491596222, 0.9843137264251709, 0.9843137264251709), (0.25252524018287659, 0.9843137264251709, 0.9843137264251709), (0.25757575035095215, 0.98039215803146362, 0.98039215803146362), (0.26262626051902771, 0.98039215803146362, 0.98039215803146362), (0.26767677068710327, 0.98039215803146362, 0.98039215803146362), (0.27272728085517883, 0.98039215803146362, 0.98039215803146362), (0.27777779102325439, 0.9843137264251709, 0.9843137264251709), (0.28282827138900757, 0.9843137264251709, 0.9843137264251709), (0.28787878155708313, 0.98823529481887817, 0.98823529481887817), (0.29292929172515869, 0.98823529481887817, 0.98823529481887817), (0.29797980189323425, 0.99215686321258545, 0.99215686321258545), (0.30303031206130981, 0.99215686321258545, 0.99215686321258545), (0.30808082222938538, 0.99607843160629272, 0.99607843160629272), (0.31313130259513855, 0.99607843160629272, 0.99607843160629272), (0.31818181276321411, 0.99607843160629272, 0.99607843160629272), (0.32323232293128967, 0.97647058963775635, 0.97647058963775635), (0.32828283309936523, 0.95686274766921997, 0.95686274766921997), (0.3333333432674408, 0.93725490570068359, 0.93725490570068359), (0.33838382363319397, 0.92156863212585449, 0.92156863212585449), (0.34343433380126953, 0.90196079015731812, 0.90196079015731812), (0.34848484396934509, 0.88235294818878174, 0.88235294818878174), (0.35353535413742065, 0.86274510622024536, 0.86274510622024536), (0.35858586430549622, 0.84705883264541626, 0.84705883264541626), (0.36363637447357178, 0.82745099067687988, 0.82745099067687988), (0.36868685483932495, 0.80784314870834351, 0.80784314870834351), (0.37373736500740051, 0.81568628549575806, 0.81568628549575806), (0.37878787517547607, 0.83529412746429443, 0.83529412746429443), (0.38383838534355164, 0.85098040103912354, 0.85098040103912354), (0.3888888955116272, 0.87058824300765991, 0.87058824300765991), (0.39393940567970276, 0.89019608497619629, 0.89019608497619629), (0.39898988604545593, 0.90980392694473267, 0.90980392694473267), (0.40404039621353149, 0.92549020051956177, 0.92549020051956177), (0.40909090638160706, 0.94509804248809814, 0.94509804248809814), (0.41414141654968262, 0.96470588445663452, 0.96470588445663452), (0.41919192671775818, 0.9843137264251709, 0.9843137264251709), (0.42424243688583374, 1.0, 1.0), (0.42929291725158691, 1.0, 1.0), (0.43434342741966248, 1.0, 1.0), (0.43939393758773804, 1.0, 1.0), (0.4444444477558136, 1.0, 1.0), (0.44949495792388916, 1.0, 1.0), (0.45454546809196472, 1.0, 1.0), (0.4595959484577179, 1.0, 1.0), (0.46464645862579346, 1.0, 1.0), (0.46969696879386902, 1.0, 1.0), (0.47474747896194458, 1.0, 1.0), (0.47979798913002014, 1.0, 1.0), (0.4848484992980957, 1.0, 1.0), (0.48989897966384888, 1.0, 1.0), (0.49494948983192444, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50505048036575317, 1.0, 1.0), (0.51010102033615112, 1.0, 1.0), (0.5151515007019043, 1.0, 1.0), (0.52020204067230225, 1.0, 1.0), (0.52525252103805542, 1.0, 1.0), (0.53030300140380859, 0.99215686321258545, 0.99215686321258545), (0.53535354137420654, 0.98039215803146362, 0.98039215803146362), (0.54040402173995972, 0.96470588445663452, 0.96470588445663452), (0.54545456171035767, 0.94901961088180542, 0.94901961088180542), (0.55050504207611084, 0.93333333730697632, 0.93333333730697632), (0.55555558204650879, 0.91764706373214722, 0.91764706373214722), (0.56060606241226196, 0.90588235855102539, 0.90588235855102539), (0.56565654277801514, 0.89019608497619629, 0.89019608497619629), (0.57070708274841309, 0.87450981140136719, 0.87450981140136719), (0.57575756311416626, 0.85882353782653809, 0.85882353782653809), (0.58080810308456421, 0.84313726425170898, 0.84313726425170898), (0.58585858345031738, 0.83137255907058716, 0.83137255907058716), (0.59090906381607056, 0.81960785388946533, 0.81960785388946533), (0.59595960378646851, 0.81176471710205078, 0.81176471710205078), (0.60101008415222168, 0.80000001192092896, 0.80000001192092896), (0.60606062412261963, 0.78823530673980713, 0.78823530673980713), (0.6111111044883728, 0.7764706015586853, 0.7764706015586853), (0.61616164445877075, 0.76470589637756348, 0.76470589637756348), (0.62121212482452393, 0.75294119119644165, 0.75294119119644165), (0.6262626051902771, 0.74117648601531982, 0.74117648601531982), (0.63131314516067505, 0.729411780834198, 0.729411780834198), (0.63636362552642822, 0.70980393886566162, 0.70980393886566162), (0.64141416549682617, 0.66666668653488159, 0.66666668653488159), (0.64646464586257935, 0.62352943420410156, 0.62352943420410156), (0.65151512622833252, 0.58039218187332153, 0.58039218187332153), (0.65656566619873047, 0.5372549295425415, 0.5372549295425415), (0.66161614656448364, 0.49411764740943909, 0.49411764740943909), (0.66666668653488159, 0.45098039507865906, 0.45098039507865906), (0.67171716690063477, 0.40392157435417175, 0.40392157435417175), (0.67676764726638794, 0.36078432202339172, 0.36078432202339172), (0.68181818723678589, 0.31764706969261169, 0.31764706969261169), (0.68686866760253906, 0.27450981736183167, 0.27450981736183167), (0.69191920757293701, 0.24705882370471954, 0.24705882370471954), (0.69696968793869019, 0.21960784494876862, 0.21960784494876862), (0.70202022790908813, 0.19607843458652496, 0.19607843458652496), (0.70707070827484131, 0.16862745583057404, 0.16862745583057404), (0.71212118864059448, 0.14509804546833038, 0.14509804546833038), (0.71717172861099243, 0.11764705926179886, 0.11764705926179886), (0.72222220897674561, 0.090196080505847931, 0.090196080505847931), (0.72727274894714355, 0.066666670143604279, 0.066666670143604279), (0.73232322931289673, 0.039215687662363052, 0.039215687662363052), (0.7373737096786499, 0.015686275437474251, 0.015686275437474251), (0.74242424964904785, 0.0, 0.0), (0.74747473001480103, 0.0, 0.0), (0.75252526998519897, 0.0, 0.0), (0.75757575035095215, 0.0, 0.0), (0.7626262903213501, 0.0, 0.0), (0.76767677068710327, 0.0, 0.0), (0.77272725105285645, 0.0, 0.0), (0.77777779102325439, 0.0, 0.0), (0.78282827138900757, 0.0, 0.0), (0.78787881135940552, 0.0, 0.0), (0.79292929172515869, 0.0, 0.0), (0.79797977209091187, 0.015686275437474251, 0.015686275437474251), (0.80303031206130981, 0.031372550874948502, 0.031372550874948502), (0.80808079242706299, 0.050980392843484879, 0.050980392843484879), (0.81313133239746094, 0.066666670143604279, 0.066666670143604279), (0.81818181276321411, 0.086274512112140656, 0.086274512112140656), (0.82323235273361206, 0.10588235408067703, 0.10588235408067703), (0.82828283309936523, 0.12156862765550613, 0.12156862765550613), (0.83333331346511841, 0.14117647707462311, 0.14117647707462311), (0.83838385343551636, 0.15686275064945221, 0.15686275064945221), (0.84343433380126953, 0.17647059261798859, 0.17647059261798859), (0.84848487377166748, 0.20000000298023224, 0.20000000298023224), (0.85353535413742065, 0.23137255012989044, 0.23137255012989044), (0.85858583450317383, 0.25882354378700256, 0.25882354378700256), (0.86363637447357178, 0.29019609093666077, 0.29019609093666077), (0.86868685483932495, 0.32156863808631897, 0.32156863808631897), (0.8737373948097229, 0.35294118523597717, 0.35294118523597717), (0.87878787517547607, 0.38431373238563538, 0.38431373238563538), (0.88383835554122925, 0.41568627953529358, 0.41568627953529358), (0.8888888955116272, 0.44313725829124451, 0.44313725829124451), (0.89393937587738037, 0.47450980544090271, 0.47450980544090271), (0.89898991584777832, 0.5058823823928833, 0.5058823823928833), (0.90404039621353149, 0.52941179275512695, 0.52941179275512695), (0.90909093618392944, 0.55294120311737061, 0.55294120311737061), (0.91414141654968262, 0.57254904508590698, 0.57254904508590698), (0.91919189691543579, 0.59607845544815063, 0.59607845544815063), (0.92424243688583374, 0.61960786581039429, 0.61960786581039429), (0.92929291725158691, 0.64313727617263794, 0.64313727617263794), (0.93434345722198486, 0.66274511814117432, 0.66274511814117432), (0.93939393758773804, 0.68627452850341797, 0.68627452850341797), (0.94444441795349121, 0.70980393886566162, 0.70980393886566162), (0.94949495792388916, 0.729411780834198, 0.729411780834198), (0.95454543828964233, 0.75294119119644165, 0.75294119119644165), (0.95959597826004028, 0.78039216995239258, 0.78039216995239258), (0.96464645862579346, 0.80392158031463623, 0.80392158031463623), (0.96969699859619141, 0.82745099067687988, 0.82745099067687988), (0.97474747896194458, 0.85098040103912354, 0.85098040103912354), (0.97979795932769775, 0.87450981140136719, 0.87450981140136719), (0.9848484992980957, 0.90196079015731812, 0.90196079015731812), (0.98989897966384888, 0.92549020051956177, 0.92549020051956177), (0.99494951963424683, 0.94901961088180542, 0.94901961088180542), (1.0, 0.97254902124404907, 0.97254902124404907)], 'red': [(0.0, 0.0, 0.0), (0.0050505050458014011, 0.0, 0.0), (0.010101010091602802, 0.0, 0.0), (0.015151515603065491, 0.0, 0.0), (0.020202020183205605, 0.0, 0.0), (0.025252524763345718, 0.0, 0.0), (0.030303031206130981, 0.0, 0.0), (0.035353533923625946, 0.0, 0.0), (0.040404040366411209, 0.0, 0.0), (0.045454546809196472, 0.0, 0.0), (0.050505049526691437, 0.0, 0.0), (0.0555555559694767, 0.0, 0.0), (0.060606062412261963, 0.0, 0.0), (0.065656565129756927, 0.0, 0.0), (0.070707067847251892, 0.0, 0.0), (0.075757578015327454, 0.0, 0.0), (0.080808080732822418, 0.0, 0.0), (0.085858583450317383, 0.0, 0.0), (0.090909093618392944, 0.0, 0.0), (0.095959596335887909, 0.0, 0.0), (0.10101009905338287, 0.0, 0.0), (0.10606060922145844, 0.0, 0.0), (0.1111111119389534, 0.0, 0.0), (0.11616161465644836, 0.0, 0.0), (0.12121212482452393, 0.0, 0.0), (0.12626262009143829, 0.0, 0.0), (0.13131313025951385, 0.0, 0.0), (0.13636364042758942, 0.0, 0.0), (0.14141413569450378, 0.0, 0.0), (0.14646464586257935, 0.0, 0.0), (0.15151515603065491, 0.0, 0.0), (0.15656565129756927, 0.0, 0.0), (0.16161616146564484, 0.0, 0.0), (0.1666666716337204, 0.0, 0.0), (0.17171716690063477, 0.0, 0.0), (0.17676767706871033, 0.0, 0.0), (0.18181818723678589, 0.0, 0.0), (0.18686868250370026, 0.0, 0.0), (0.19191919267177582, 0.0, 0.0), (0.19696970283985138, 0.0, 0.0), (0.20202019810676575, 0.0, 0.0), (0.20707070827484131, 0.0, 0.0), (0.21212121844291687, 0.0, 0.0), (0.21717171370983124, 0.0, 0.0), (0.2222222238779068, 0.0, 0.0), (0.22727273404598236, 0.0, 0.0), (0.23232322931289673, 0.0, 0.0), (0.23737373948097229, 0.0, 0.0), (0.24242424964904785, 0.0, 0.0), (0.24747474491596222, 0.0, 0.0), (0.25252524018287659, 0.0, 0.0), (0.25757575035095215, 0.0, 0.0), (0.26262626051902771, 0.0, 0.0), (0.26767677068710327, 0.0, 0.0), (0.27272728085517883, 0.0, 0.0), (0.27777779102325439, 0.0, 0.0), (0.28282827138900757, 0.0, 0.0), (0.28787878155708313, 0.0, 0.0), (0.29292929172515869, 0.0, 0.0), (0.29797980189323425, 0.0, 0.0), (0.30303031206130981, 0.0, 0.0), (0.30808082222938538, 0.0, 0.0), (0.31313130259513855, 0.0, 0.0), (0.31818181276321411, 0.0039215688593685627, 0.0039215688593685627), (0.32323232293128967, 0.043137256056070328, 0.043137256056070328), (0.32828283309936523, 0.08235294371843338, 0.08235294371843338), (0.3333333432674408, 0.11764705926179886, 0.11764705926179886), (0.33838382363319397, 0.15686275064945221, 0.15686275064945221), (0.34343433380126953, 0.19607843458652496, 0.19607843458652496), (0.34848484396934509, 0.23137255012989044, 0.23137255012989044), (0.35353535413742065, 0.27058824896812439, 0.27058824896812439), (0.35858586430549622, 0.30980393290519714, 0.30980393290519714), (0.36363637447357178, 0.3490196168422699, 0.3490196168422699), (0.36868685483932495, 0.38431373238563538, 0.38431373238563538), (0.37373736500740051, 0.40392157435417175, 0.40392157435417175), (0.37878787517547607, 0.41568627953529358, 0.41568627953529358), (0.38383838534355164, 0.42352941632270813, 0.42352941632270813), (0.3888888955116272, 0.43137255311012268, 0.43137255311012268), (0.39393940567970276, 0.44313725829124451, 0.44313725829124451), (0.39898988604545593, 0.45098039507865906, 0.45098039507865906), (0.40404039621353149, 0.45882353186607361, 0.45882353186607361), (0.40909090638160706, 0.47058823704719543, 0.47058823704719543), (0.41414141654968262, 0.47843137383460999, 0.47843137383460999), (0.41919192671775818, 0.49019607901573181, 0.49019607901573181), (0.42424243688583374, 0.50196081399917603, 0.50196081399917603), (0.42929291725158691, 0.52549022436141968, 0.52549022436141968), (0.43434342741966248, 0.54901963472366333, 0.54901963472366333), (0.43939393758773804, 0.57254904508590698, 0.57254904508590698), (0.4444444477558136, 0.60000002384185791, 0.60000002384185791), (0.44949495792388916, 0.62352943420410156, 0.62352943420410156), (0.45454546809196472, 0.64705884456634521, 0.64705884456634521), (0.4595959484577179, 0.67058825492858887, 0.67058825492858887), (0.46464645862579346, 0.69411766529083252, 0.69411766529083252), (0.46969696879386902, 0.72156864404678345, 0.72156864404678345), (0.47474747896194458, 0.7450980544090271, 0.7450980544090271), (0.47979798913002014, 0.76862746477127075, 0.76862746477127075), (0.4848484992980957, 0.7921568751335144, 0.7921568751335144), (0.48989897966384888, 0.81568628549575806, 0.81568628549575806), (0.49494948983192444, 0.83921569585800171, 0.83921569585800171), (0.5, 0.86274510622024536, 0.86274510622024536), (0.50505048036575317, 0.88627451658248901, 0.88627451658248901), (0.51010102033615112, 0.90980392694473267, 0.90980392694473267), (0.5151515007019043, 0.93333333730697632, 0.93333333730697632), (0.52020204067230225, 0.95686274766921997, 0.95686274766921997), (0.52525252103805542, 0.98039215803146362, 0.98039215803146362), (0.53030300140380859, 1.0, 1.0), (0.53535354137420654, 1.0, 1.0), (0.54040402173995972, 1.0, 1.0), (0.54545456171035767, 1.0, 1.0), (0.55050504207611084, 1.0, 1.0), (0.55555558204650879, 1.0, 1.0), (0.56060606241226196, 1.0, 1.0), (0.56565654277801514, 1.0, 1.0), (0.57070708274841309, 1.0, 1.0), (0.57575756311416626, 1.0, 1.0), (0.58080810308456421, 1.0, 1.0), (0.58585858345031738, 1.0, 1.0), (0.59090906381607056, 1.0, 1.0), (0.59595960378646851, 1.0, 1.0), (0.60101008415222168, 1.0, 1.0), (0.60606062412261963, 1.0, 1.0), (0.6111111044883728, 1.0, 1.0), (0.61616164445877075, 1.0, 1.0), (0.62121212482452393, 1.0, 1.0), (0.6262626051902771, 1.0, 1.0), (0.63131314516067505, 1.0, 1.0), (0.63636362552642822, 1.0, 1.0), (0.64141416549682617, 1.0, 1.0), (0.64646464586257935, 1.0, 1.0), (0.65151512622833252, 1.0, 1.0), (0.65656566619873047, 1.0, 1.0), (0.66161614656448364, 1.0, 1.0), (0.66666668653488159, 1.0, 1.0), (0.67171716690063477, 1.0, 1.0), (0.67676764726638794, 1.0, 1.0), (0.68181818723678589, 1.0, 1.0), (0.68686866760253906, 1.0, 1.0), (0.69191920757293701, 1.0, 1.0), (0.69696968793869019, 1.0, 1.0), (0.70202022790908813, 1.0, 1.0), (0.70707070827484131, 1.0, 1.0), (0.71212118864059448, 1.0, 1.0), (0.71717172861099243, 1.0, 1.0), (0.72222220897674561, 1.0, 1.0), (0.72727274894714355, 1.0, 1.0), (0.73232322931289673, 1.0, 1.0), (0.7373737096786499, 1.0, 1.0), (0.74242424964904785, 1.0, 1.0), (0.74747473001480103, 1.0, 1.0), (0.75252526998519897, 1.0, 1.0), (0.75757575035095215, 1.0, 1.0), (0.7626262903213501, 1.0, 1.0), (0.76767677068710327, 1.0, 1.0), (0.77272725105285645, 1.0, 1.0), (0.77777779102325439, 1.0, 1.0), (0.78282827138900757, 1.0, 1.0), (0.78787881135940552, 1.0, 1.0), (0.79292929172515869, 1.0, 1.0), (0.79797977209091187, 0.96470588445663452, 0.96470588445663452), (0.80303031206130981, 0.92549020051956177, 0.92549020051956177), (0.80808079242706299, 0.89019608497619629, 0.89019608497619629), (0.81313133239746094, 0.85098040103912354, 0.85098040103912354), (0.81818181276321411, 0.81568628549575806, 0.81568628549575806), (0.82323235273361206, 0.7764706015586853, 0.7764706015586853), (0.82828283309936523, 0.74117648601531982, 0.74117648601531982), (0.83333331346511841, 0.70196080207824707, 0.70196080207824707), (0.83838385343551636, 0.66666668653488159, 0.66666668653488159), (0.84343433380126953, 0.62745100259780884, 0.62745100259780884), (0.84848487377166748, 0.61960786581039429, 0.61960786581039429), (0.85353535413742065, 0.65098041296005249, 0.65098041296005249), (0.85858583450317383, 0.68235296010971069, 0.68235296010971069), (0.86363637447357178, 0.7137255072593689, 0.7137255072593689), (0.86868685483932495, 0.7450980544090271, 0.7450980544090271), (0.8737373948097229, 0.77254903316497803, 0.77254903316497803), (0.87878787517547607, 0.80392158031463623, 0.80392158031463623), (0.88383835554122925, 0.83529412746429443, 0.83529412746429443), (0.8888888955116272, 0.86666667461395264, 0.86666667461395264), (0.89393937587738037, 0.89803922176361084, 0.89803922176361084), (0.89898991584777832, 0.92941176891326904, 0.92941176891326904), (0.90404039621353149, 0.93333333730697632, 0.93333333730697632), (0.90909093618392944, 0.93725490570068359, 0.93725490570068359), (0.91414141654968262, 0.93725490570068359, 0.93725490570068359), (0.91919189691543579, 0.94117647409439087, 0.94117647409439087), (0.92424243688583374, 0.94509804248809814, 0.94509804248809814), (0.92929291725158691, 0.94509804248809814, 0.94509804248809814), (0.93434345722198486, 0.94901961088180542, 0.94901961088180542), (0.93939393758773804, 0.9529411792755127, 0.9529411792755127), (0.94444441795349121, 0.9529411792755127, 0.9529411792755127), (0.94949495792388916, 0.95686274766921997, 0.95686274766921997), (0.95454543828964233, 0.96078431606292725, 0.96078431606292725), (0.95959597826004028, 0.96470588445663452, 0.96470588445663452), (0.96464645862579346, 0.9686274528503418, 0.9686274528503418), (0.96969699859619141, 0.97254902124404907, 0.97254902124404907), (0.97474747896194458, 0.97647058963775635, 0.97647058963775635), (0.97979795932769775, 0.98039215803146362, 0.98039215803146362), (0.9848484992980957, 0.9843137264251709, 0.9843137264251709), (0.98989897966384888, 0.98823529481887817, 0.98823529481887817), (0.99494951963424683, 0.99215686321258545, 0.99215686321258545), (1.0, 0.99607843160629272, 0.99607843160629272)]} _gist_rainbow_data = {'blue': [(0.0, 0.16470588743686676, 0.16470588743686676), (0.0042016808874905109, 0.14117647707462311, 0.14117647707462311), (0.0084033617749810219, 0.12156862765550613, 0.12156862765550613), (0.012605042196810246, 0.10196078568696976, 0.10196078568696976), (0.016806723549962044, 0.078431375324726105, 0.078431375324726105), (0.021008403971791267, 0.058823529630899429, 0.058823529630899429), (0.025210084393620491, 0.039215687662363052, 0.039215687662363052), (0.029411764815449715, 0.015686275437474251, 0.015686275437474251), (0.033613447099924088, 0.0, 0.0), (0.037815127521753311, 0.0, 0.0), (0.042016807943582535, 0.0, 0.0), (0.046218488365411758, 0.0, 0.0), (0.050420168787240982, 0.0, 0.0), (0.054621849209070206, 0.0, 0.0), (0.058823529630899429, 0.0, 0.0), (0.063025213778018951, 0.0, 0.0), (0.067226894199848175, 0.0, 0.0), (0.071428574621677399, 0.0, 0.0), (0.075630255043506622, 0.0, 0.0), (0.079831935465335846, 0.0, 0.0), (0.08403361588716507, 0.0, 0.0), (0.088235296308994293, 0.0, 0.0), (0.092436976730823517, 0.0, 0.0), (0.09663865715265274, 0.0, 0.0), (0.10084033757448196, 0.0, 0.0), (0.10504201799631119, 0.0, 0.0), (0.10924369841814041, 0.0, 0.0), (0.11344537883996964, 0.0, 0.0), (0.11764705926179886, 0.0, 0.0), (0.12184873968362808, 0.0, 0.0), (0.1260504275560379, 0.0, 0.0), (0.13025210797786713, 0.0, 0.0), (0.13445378839969635, 0.0, 0.0), (0.13865546882152557, 0.0, 0.0), (0.1428571492433548, 0.0, 0.0), (0.14705882966518402, 0.0, 0.0), (0.15126051008701324, 0.0, 0.0), (0.15546219050884247, 0.0, 0.0), (0.15966387093067169, 0.0, 0.0), (0.16386555135250092, 0.0, 0.0), (0.16806723177433014, 0.0, 0.0), (0.17226891219615936, 0.0, 0.0), (0.17647059261798859, 0.0, 0.0), (0.18067227303981781, 0.0, 0.0), (0.18487395346164703, 0.0, 0.0), (0.18907563388347626, 0.0, 0.0), (0.19327731430530548, 0.0, 0.0), (0.1974789947271347, 0.0, 0.0), (0.20168067514896393, 0.0, 0.0), (0.20588235557079315, 0.0, 0.0), (0.21008403599262238, 0.0, 0.0), (0.2142857164144516, 0.0, 0.0), (0.21848739683628082, 0.0, 0.0), (0.22268907725811005, 0.0, 0.0), (0.22689075767993927, 0.0, 0.0), (0.23109243810176849, 0.0, 0.0), (0.23529411852359772, 0.0, 0.0), (0.23949579894542694, 0.0, 0.0), (0.24369747936725616, 0.0, 0.0), (0.24789915978908539, 0.0, 0.0), (0.25210085511207581, 0.0, 0.0), (0.25630253553390503, 0.0, 0.0), (0.26050421595573425, 0.0, 0.0), (0.26470589637756348, 0.0, 0.0), (0.2689075767993927, 0.0, 0.0), (0.27310925722122192, 0.0, 0.0), (0.27731093764305115, 0.0, 0.0), (0.28151261806488037, 0.0, 0.0), (0.28571429848670959, 0.0, 0.0), (0.28991597890853882, 0.0, 0.0), (0.29411765933036804, 0.0, 0.0), (0.29831933975219727, 0.0, 0.0), (0.30252102017402649, 0.0, 0.0), (0.30672270059585571, 0.0, 0.0), (0.31092438101768494, 0.0, 0.0), (0.31512606143951416, 0.0, 0.0), (0.31932774186134338, 0.0, 0.0), (0.32352942228317261, 0.0, 0.0), (0.32773110270500183, 0.0, 0.0), (0.33193278312683105, 0.0, 0.0), (0.33613446354866028, 0.0, 0.0), (0.3403361439704895, 0.0, 0.0), (0.34453782439231873, 0.0, 0.0), (0.34873950481414795, 0.0, 0.0), (0.35294118523597717, 0.0, 0.0), (0.3571428656578064, 0.0, 0.0), (0.36134454607963562, 0.0, 0.0), (0.36554622650146484, 0.0, 0.0), (0.36974790692329407, 0.0, 0.0), (0.37394958734512329, 0.0, 0.0), (0.37815126776695251, 0.0, 0.0), (0.38235294818878174, 0.0, 0.0), (0.38655462861061096, 0.0, 0.0), (0.39075630903244019, 0.0, 0.0), (0.39495798945426941, 0.0, 0.0), (0.39915966987609863, 0.0, 0.0), (0.40336135029792786, 0.0, 0.0), (0.40756303071975708, 0.0039215688593685627, 0.0039215688593685627), (0.4117647111415863, 0.047058824449777603, 0.047058824449777603), (0.41596639156341553, 0.066666670143604279, 0.066666670143604279), (0.42016807198524475, 0.090196080505847931, 0.090196080505847931), (0.42436975240707397, 0.10980392247438431, 0.10980392247438431), (0.4285714328289032, 0.12941177189350128, 0.12941177189350128), (0.43277311325073242, 0.15294118225574493, 0.15294118225574493), (0.43697479367256165, 0.17254902422428131, 0.17254902422428131), (0.44117647409439087, 0.19215686619281769, 0.19215686619281769), (0.44537815451622009, 0.21568627655506134, 0.21568627655506134), (0.44957983493804932, 0.23529411852359772, 0.23529411852359772), (0.45378151535987854, 0.25882354378700256, 0.25882354378700256), (0.45798319578170776, 0.27843138575553894, 0.27843138575553894), (0.46218487620353699, 0.29803922772407532, 0.29803922772407532), (0.46638655662536621, 0.32156863808631897, 0.32156863808631897), (0.47058823704719543, 0.34117648005485535, 0.34117648005485535), (0.47478991746902466, 0.38431373238563538, 0.38431373238563538), (0.47899159789085388, 0.40392157435417175, 0.40392157435417175), (0.48319327831268311, 0.42745098471641541, 0.42745098471641541), (0.48739495873451233, 0.44705882668495178, 0.44705882668495178), (0.49159663915634155, 0.46666666865348816, 0.46666666865348816), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.50980395078659058, 0.50980395078659058), (0.50420171022415161, 0.52941179275512695, 0.52941179275512695), (0.50840336084365845, 0.55294120311737061, 0.55294120311737061), (0.51260507106781006, 0.57254904508590698, 0.57254904508590698), (0.51680672168731689, 0.59607845544815063, 0.59607845544815063), (0.52100843191146851, 0.61568629741668701, 0.61568629741668701), (0.52521008253097534, 0.63529413938522339, 0.63529413938522339), (0.52941179275512695, 0.65882354974746704, 0.65882354974746704), (0.53361344337463379, 0.67843139171600342, 0.67843139171600342), (0.5378151535987854, 0.72156864404678345, 0.72156864404678345), (0.54201680421829224, 0.74117648601531982, 0.74117648601531982), (0.54621851444244385, 0.76470589637756348, 0.76470589637756348), (0.55042016506195068, 0.78431373834609985, 0.78431373834609985), (0.55462187528610229, 0.80392158031463623, 0.80392158031463623), (0.55882352590560913, 0.82745099067687988, 0.82745099067687988), (0.56302523612976074, 0.84705883264541626, 0.84705883264541626), (0.56722688674926758, 0.87058824300765991, 0.87058824300765991), (0.57142859697341919, 0.89019608497619629, 0.89019608497619629), (0.57563024759292603, 0.90980392694473267, 0.90980392694473267), (0.57983195781707764, 0.93333333730697632, 0.93333333730697632), (0.58403360843658447, 0.9529411792755127, 0.9529411792755127), (0.58823531866073608, 0.97254902124404907, 0.97254902124404907), (0.59243696928024292, 0.99607843160629272, 0.99607843160629272), (0.59663867950439453, 1.0, 1.0), (0.60084033012390137, 1.0, 1.0), (0.60504204034805298, 1.0, 1.0), (0.60924369096755981, 1.0, 1.0), (0.61344540119171143, 1.0, 1.0), (0.61764705181121826, 1.0, 1.0), (0.62184876203536987, 1.0, 1.0), (0.62605041265487671, 1.0, 1.0), (0.63025212287902832, 1.0, 1.0), (0.63445377349853516, 1.0, 1.0), (0.63865548372268677, 1.0, 1.0), (0.6428571343421936, 1.0, 1.0), (0.64705884456634521, 1.0, 1.0), (0.65126049518585205, 1.0, 1.0), (0.65546220541000366, 1.0, 1.0), (0.6596638560295105, 1.0, 1.0), (0.66386556625366211, 1.0, 1.0), (0.66806721687316895, 1.0, 1.0), (0.67226892709732056, 1.0, 1.0), (0.67647057771682739, 1.0, 1.0), (0.680672287940979, 1.0, 1.0), (0.68487393856048584, 1.0, 1.0), (0.68907564878463745, 1.0, 1.0), (0.69327729940414429, 1.0, 1.0), (0.6974790096282959, 1.0, 1.0), (0.70168066024780273, 1.0, 1.0), (0.70588237047195435, 1.0, 1.0), (0.71008402109146118, 1.0, 1.0), (0.71428573131561279, 1.0, 1.0), (0.71848738193511963, 1.0, 1.0), (0.72268909215927124, 1.0, 1.0), (0.72689074277877808, 1.0, 1.0), (0.73109245300292969, 1.0, 1.0), (0.73529410362243652, 1.0, 1.0), (0.73949581384658813, 1.0, 1.0), (0.74369746446609497, 1.0, 1.0), (0.74789917469024658, 1.0, 1.0), (0.75210082530975342, 1.0, 1.0), (0.75630253553390503, 1.0, 1.0), (0.76050418615341187, 1.0, 1.0), (0.76470589637756348, 1.0, 1.0), (0.76890754699707031, 1.0, 1.0), (0.77310925722122192, 1.0, 1.0), (0.77731090784072876, 1.0, 1.0), (0.78151261806488037, 1.0, 1.0), (0.78571426868438721, 1.0, 1.0), (0.78991597890853882, 1.0, 1.0), (0.79411762952804565, 1.0, 1.0), (0.79831933975219727, 1.0, 1.0), (0.8025209903717041, 1.0, 1.0), (0.80672270059585571, 1.0, 1.0), (0.81092435121536255, 1.0, 1.0), (0.81512606143951416, 1.0, 1.0), (0.819327712059021, 1.0, 1.0), (0.82352942228317261, 1.0, 1.0), (0.82773107290267944, 1.0, 1.0), (0.83193278312683105, 1.0, 1.0), (0.83613443374633789, 1.0, 1.0), (0.8403361439704895, 1.0, 1.0), (0.84453779458999634, 1.0, 1.0), (0.84873950481414795, 1.0, 1.0), (0.85294115543365479, 1.0, 1.0), (0.8571428656578064, 1.0, 1.0), (0.86134451627731323, 1.0, 1.0), (0.86554622650146484, 1.0, 1.0), (0.86974787712097168, 1.0, 1.0), (0.87394958734512329, 1.0, 1.0), (0.87815123796463013, 1.0, 1.0), (0.88235294818878174, 1.0, 1.0), (0.88655459880828857, 1.0, 1.0), (0.89075630903244019, 1.0, 1.0), (0.89495795965194702, 1.0, 1.0), (0.89915966987609863, 1.0, 1.0), (0.90336132049560547, 1.0, 1.0), (0.90756303071975708, 1.0, 1.0), (0.91176468133926392, 1.0, 1.0), (0.91596639156341553, 1.0, 1.0), (0.92016804218292236, 1.0, 1.0), (0.92436975240707397, 1.0, 1.0), (0.92857140302658081, 1.0, 1.0), (0.93277311325073242, 1.0, 1.0), (0.93697476387023926, 1.0, 1.0), (0.94117647409439087, 1.0, 1.0), (0.94537812471389771, 1.0, 1.0), (0.94957983493804932, 1.0, 1.0), (0.95378148555755615, 1.0, 1.0), (0.95798319578170776, 1.0, 1.0), (0.9621848464012146, 1.0, 1.0), (0.96638655662536621, 0.99607843160629272, 0.99607843160629272), (0.97058820724487305, 0.97647058963775635, 0.97647058963775635), (0.97478991746902466, 0.9529411792755127, 0.9529411792755127), (0.97899156808853149, 0.91372549533843994, 0.91372549533843994), (0.98319327831268311, 0.89019608497619629, 0.89019608497619629), (0.98739492893218994, 0.87058824300765991, 0.87058824300765991), (0.99159663915634155, 0.85098040103912354, 0.85098040103912354), (0.99579828977584839, 0.82745099067687988, 0.82745099067687988), (1.0, 0.80784314870834351, 0.80784314870834351)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0, 0.0), (0.0084033617749810219, 0.0, 0.0), (0.012605042196810246, 0.0, 0.0), (0.016806723549962044, 0.0, 0.0), (0.021008403971791267, 0.0, 0.0), (0.025210084393620491, 0.0, 0.0), (0.029411764815449715, 0.0, 0.0), (0.033613447099924088, 0.019607843831181526, 0.019607843831181526), (0.037815127521753311, 0.043137256056070328, 0.043137256056070328), (0.042016807943582535, 0.062745101749897003, 0.062745101749897003), (0.046218488365411758, 0.086274512112140656, 0.086274512112140656), (0.050420168787240982, 0.10588235408067703, 0.10588235408067703), (0.054621849209070206, 0.12549020349979401, 0.12549020349979401), (0.058823529630899429, 0.14901961386203766, 0.14901961386203766), (0.063025213778018951, 0.16862745583057404, 0.16862745583057404), (0.067226894199848175, 0.18823529779911041, 0.18823529779911041), (0.071428574621677399, 0.21176470816135406, 0.21176470816135406), (0.075630255043506622, 0.23137255012989044, 0.23137255012989044), (0.079831935465335846, 0.25490197539329529, 0.25490197539329529), (0.08403361588716507, 0.27450981736183167, 0.27450981736183167), (0.088235296308994293, 0.29411765933036804, 0.29411765933036804), (0.092436976730823517, 0.31764706969261169, 0.31764706969261169), (0.09663865715265274, 0.35686275362968445, 0.35686275362968445), (0.10084033757448196, 0.3803921639919281, 0.3803921639919281), (0.10504201799631119, 0.40000000596046448, 0.40000000596046448), (0.10924369841814041, 0.42352941632270813, 0.42352941632270813), (0.11344537883996964, 0.44313725829124451, 0.44313725829124451), (0.11764705926179886, 0.46274510025978088, 0.46274510025978088), (0.12184873968362808, 0.48627451062202454, 0.48627451062202454), (0.1260504275560379, 0.5058823823928833, 0.5058823823928833), (0.13025210797786713, 0.52941179275512695, 0.52941179275512695), (0.13445378839969635, 0.54901963472366333, 0.54901963472366333), (0.13865546882152557, 0.56862747669219971, 0.56862747669219971), (0.1428571492433548, 0.59215688705444336, 0.59215688705444336), (0.14705882966518402, 0.61176472902297974, 0.61176472902297974), (0.15126051008701324, 0.63137257099151611, 0.63137257099151611), (0.15546219050884247, 0.65490198135375977, 0.65490198135375977), (0.15966387093067169, 0.69803923368453979, 0.69803923368453979), (0.16386555135250092, 0.71764707565307617, 0.71764707565307617), (0.16806723177433014, 0.73725491762161255, 0.73725491762161255), (0.17226891219615936, 0.7607843279838562, 0.7607843279838562), (0.17647059261798859, 0.78039216995239258, 0.78039216995239258), (0.18067227303981781, 0.80000001192092896, 0.80000001192092896), (0.18487395346164703, 0.82352942228317261, 0.82352942228317261), (0.18907563388347626, 0.84313726425170898, 0.84313726425170898), (0.19327731430530548, 0.86666667461395264, 0.86666667461395264), (0.1974789947271347, 0.88627451658248901, 0.88627451658248901), (0.20168067514896393, 0.90588235855102539, 0.90588235855102539), (0.20588235557079315, 0.92941176891326904, 0.92941176891326904), (0.21008403599262238, 0.94901961088180542, 0.94901961088180542), (0.2142857164144516, 0.9686274528503418, 0.9686274528503418), (0.21848739683628082, 0.99215686321258545, 0.99215686321258545), (0.22268907725811005, 1.0, 1.0), (0.22689075767993927, 1.0, 1.0), (0.23109243810176849, 1.0, 1.0), (0.23529411852359772, 1.0, 1.0), (0.23949579894542694, 1.0, 1.0), (0.24369747936725616, 1.0, 1.0), (0.24789915978908539, 1.0, 1.0), (0.25210085511207581, 1.0, 1.0), (0.25630253553390503, 1.0, 1.0), (0.26050421595573425, 1.0, 1.0), (0.26470589637756348, 1.0, 1.0), (0.2689075767993927, 1.0, 1.0), (0.27310925722122192, 1.0, 1.0), (0.27731093764305115, 1.0, 1.0), (0.28151261806488037, 1.0, 1.0), (0.28571429848670959, 1.0, 1.0), (0.28991597890853882, 1.0, 1.0), (0.29411765933036804, 1.0, 1.0), (0.29831933975219727, 1.0, 1.0), (0.30252102017402649, 1.0, 1.0), (0.30672270059585571, 1.0, 1.0), (0.31092438101768494, 1.0, 1.0), (0.31512606143951416, 1.0, 1.0), (0.31932774186134338, 1.0, 1.0), (0.32352942228317261, 1.0, 1.0), (0.32773110270500183, 1.0, 1.0), (0.33193278312683105, 1.0, 1.0), (0.33613446354866028, 1.0, 1.0), (0.3403361439704895, 1.0, 1.0), (0.34453782439231873, 1.0, 1.0), (0.34873950481414795, 1.0, 1.0), (0.35294118523597717, 1.0, 1.0), (0.3571428656578064, 1.0, 1.0), (0.36134454607963562, 1.0, 1.0), (0.36554622650146484, 1.0, 1.0), (0.36974790692329407, 1.0, 1.0), (0.37394958734512329, 1.0, 1.0), (0.37815126776695251, 1.0, 1.0), (0.38235294818878174, 1.0, 1.0), (0.38655462861061096, 1.0, 1.0), (0.39075630903244019, 1.0, 1.0), (0.39495798945426941, 1.0, 1.0), (0.39915966987609863, 1.0, 1.0), (0.40336135029792786, 1.0, 1.0), (0.40756303071975708, 1.0, 1.0), (0.4117647111415863, 1.0, 1.0), (0.41596639156341553, 1.0, 1.0), (0.42016807198524475, 1.0, 1.0), (0.42436975240707397, 1.0, 1.0), (0.4285714328289032, 1.0, 1.0), (0.43277311325073242, 1.0, 1.0), (0.43697479367256165, 1.0, 1.0), (0.44117647409439087, 1.0, 1.0), (0.44537815451622009, 1.0, 1.0), (0.44957983493804932, 1.0, 1.0), (0.45378151535987854, 1.0, 1.0), (0.45798319578170776, 1.0, 1.0), (0.46218487620353699, 1.0, 1.0), (0.46638655662536621, 1.0, 1.0), (0.47058823704719543, 1.0, 1.0), (0.47478991746902466, 1.0, 1.0), (0.47899159789085388, 1.0, 1.0), (0.48319327831268311, 1.0, 1.0), (0.48739495873451233, 1.0, 1.0), (0.49159663915634155, 1.0, 1.0), (0.49579831957817078, 1.0, 1.0), (0.5, 1.0, 1.0), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 1.0, 1.0), (0.51260507106781006, 1.0, 1.0), (0.51680672168731689, 1.0, 1.0), (0.52100843191146851, 1.0, 1.0), (0.52521008253097534, 1.0, 1.0), (0.52941179275512695, 1.0, 1.0), (0.53361344337463379, 1.0, 1.0), (0.5378151535987854, 1.0, 1.0), (0.54201680421829224, 1.0, 1.0), (0.54621851444244385, 1.0, 1.0), (0.55042016506195068, 1.0, 1.0), (0.55462187528610229, 1.0, 1.0), (0.55882352590560913, 1.0, 1.0), (0.56302523612976074, 1.0, 1.0), (0.56722688674926758, 1.0, 1.0), (0.57142859697341919, 1.0, 1.0), (0.57563024759292603, 1.0, 1.0), (0.57983195781707764, 1.0, 1.0), (0.58403360843658447, 1.0, 1.0), (0.58823531866073608, 1.0, 1.0), (0.59243696928024292, 1.0, 1.0), (0.59663867950439453, 0.98039215803146362, 0.98039215803146362), (0.60084033012390137, 0.93725490570068359, 0.93725490570068359), (0.60504204034805298, 0.91764706373214722, 0.91764706373214722), (0.60924369096755981, 0.89411765336990356, 0.89411765336990356), (0.61344540119171143, 0.87450981140136719, 0.87450981140136719), (0.61764705181121826, 0.85490196943283081, 0.85490196943283081), (0.62184876203536987, 0.83137255907058716, 0.83137255907058716), (0.62605041265487671, 0.81176471710205078, 0.81176471710205078), (0.63025212287902832, 0.78823530673980713, 0.78823530673980713), (0.63445377349853516, 0.76862746477127075, 0.76862746477127075), (0.63865548372268677, 0.74901962280273438, 0.74901962280273438), (0.6428571343421936, 0.72549021244049072, 0.72549021244049072), (0.64705884456634521, 0.70588237047195435, 0.70588237047195435), (0.65126049518585205, 0.68235296010971069, 0.68235296010971069), (0.65546220541000366, 0.66274511814117432, 0.66274511814117432), (0.6596638560295105, 0.64313727617263794, 0.64313727617263794), (0.66386556625366211, 0.60000002384185791, 0.60000002384185791), (0.66806721687316895, 0.58039218187332153, 0.58039218187332153), (0.67226892709732056, 0.55686277151107788, 0.55686277151107788), (0.67647057771682739, 0.5372549295425415, 0.5372549295425415), (0.680672287940979, 0.51372551918029785, 0.51372551918029785), (0.68487393856048584, 0.49411764740943909, 0.49411764740943909), (0.68907564878463745, 0.47450980544090271, 0.47450980544090271), (0.69327729940414429, 0.45098039507865906, 0.45098039507865906), (0.6974790096282959, 0.43137255311012268, 0.43137255311012268), (0.70168066024780273, 0.4117647111415863, 0.4117647111415863), (0.70588237047195435, 0.38823530077934265, 0.38823530077934265), (0.71008402109146118, 0.36862745881080627, 0.36862745881080627), (0.71428573131561279, 0.34509804844856262, 0.34509804844856262), (0.71848738193511963, 0.32549020648002625, 0.32549020648002625), (0.72268909215927124, 0.30588236451148987, 0.30588236451148987), (0.72689074277877808, 0.26274511218070984, 0.26274511218070984), (0.73109245300292969, 0.24313725531101227, 0.24313725531101227), (0.73529410362243652, 0.21960784494876862, 0.21960784494876862), (0.73949581384658813, 0.20000000298023224, 0.20000000298023224), (0.74369746446609497, 0.17647059261798859, 0.17647059261798859), (0.74789917469024658, 0.15686275064945221, 0.15686275064945221), (0.75210082530975342, 0.13725490868091583, 0.13725490868091583), (0.75630253553390503, 0.11372549086809158, 0.11372549086809158), (0.76050418615341187, 0.094117648899555206, 0.094117648899555206), (0.76470589637756348, 0.070588238537311554, 0.070588238537311554), (0.76890754699707031, 0.050980392843484879, 0.050980392843484879), (0.77310925722122192, 0.031372550874948502, 0.031372550874948502), (0.77731090784072876, 0.0078431377187371254, 0.0078431377187371254), (0.78151261806488037, 0.0, 0.0), (0.78571426868438721, 0.0, 0.0), (0.78991597890853882, 0.0, 0.0), (0.79411762952804565, 0.0, 0.0), (0.79831933975219727, 0.0, 0.0), (0.8025209903717041, 0.0, 0.0), (0.80672270059585571, 0.0, 0.0), (0.81092435121536255, 0.0, 0.0), (0.81512606143951416, 0.0, 0.0), (0.819327712059021, 0.0, 0.0), (0.82352942228317261, 0.0, 0.0), (0.82773107290267944, 0.0, 0.0), (0.83193278312683105, 0.0, 0.0), (0.83613443374633789, 0.0, 0.0), (0.8403361439704895, 0.0, 0.0), (0.84453779458999634, 0.0, 0.0), (0.84873950481414795, 0.0, 0.0), (0.85294115543365479, 0.0, 0.0), (0.8571428656578064, 0.0, 0.0), (0.86134451627731323, 0.0, 0.0), (0.86554622650146484, 0.0, 0.0), (0.86974787712097168, 0.0, 0.0), (0.87394958734512329, 0.0, 0.0), (0.87815123796463013, 0.0, 0.0), (0.88235294818878174, 0.0, 0.0), (0.88655459880828857, 0.0, 0.0), (0.89075630903244019, 0.0, 0.0), (0.89495795965194702, 0.0, 0.0), (0.89915966987609863, 0.0, 0.0), (0.90336132049560547, 0.0, 0.0), (0.90756303071975708, 0.0, 0.0), (0.91176468133926392, 0.0, 0.0), (0.91596639156341553, 0.0, 0.0), (0.92016804218292236, 0.0, 0.0), (0.92436975240707397, 0.0, 0.0), (0.92857140302658081, 0.0, 0.0), (0.93277311325073242, 0.0, 0.0), (0.93697476387023926, 0.0, 0.0), (0.94117647409439087, 0.0, 0.0), (0.94537812471389771, 0.0, 0.0), (0.94957983493804932, 0.0, 0.0), (0.95378148555755615, 0.0, 0.0), (0.95798319578170776, 0.0, 0.0), (0.9621848464012146, 0.0, 0.0), (0.96638655662536621, 0.0, 0.0), (0.97058820724487305, 0.0, 0.0), (0.97478991746902466, 0.0, 0.0), (0.97899156808853149, 0.0, 0.0), (0.98319327831268311, 0.0, 0.0), (0.98739492893218994, 0.0, 0.0), (0.99159663915634155, 0.0, 0.0), (0.99579828977584839, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 1.0, 1.0), (0.0084033617749810219, 1.0, 1.0), (0.012605042196810246, 1.0, 1.0), (0.016806723549962044, 1.0, 1.0), (0.021008403971791267, 1.0, 1.0), (0.025210084393620491, 1.0, 1.0), (0.029411764815449715, 1.0, 1.0), (0.033613447099924088, 1.0, 1.0), (0.037815127521753311, 1.0, 1.0), (0.042016807943582535, 1.0, 1.0), (0.046218488365411758, 1.0, 1.0), (0.050420168787240982, 1.0, 1.0), (0.054621849209070206, 1.0, 1.0), (0.058823529630899429, 1.0, 1.0), (0.063025213778018951, 1.0, 1.0), (0.067226894199848175, 1.0, 1.0), (0.071428574621677399, 1.0, 1.0), (0.075630255043506622, 1.0, 1.0), (0.079831935465335846, 1.0, 1.0), (0.08403361588716507, 1.0, 1.0), (0.088235296308994293, 1.0, 1.0), (0.092436976730823517, 1.0, 1.0), (0.09663865715265274, 1.0, 1.0), (0.10084033757448196, 1.0, 1.0), (0.10504201799631119, 1.0, 1.0), (0.10924369841814041, 1.0, 1.0), (0.11344537883996964, 1.0, 1.0), (0.11764705926179886, 1.0, 1.0), (0.12184873968362808, 1.0, 1.0), (0.1260504275560379, 1.0, 1.0), (0.13025210797786713, 1.0, 1.0), (0.13445378839969635, 1.0, 1.0), (0.13865546882152557, 1.0, 1.0), (0.1428571492433548, 1.0, 1.0), (0.14705882966518402, 1.0, 1.0), (0.15126051008701324, 1.0, 1.0), (0.15546219050884247, 1.0, 1.0), (0.15966387093067169, 1.0, 1.0), (0.16386555135250092, 1.0, 1.0), (0.16806723177433014, 1.0, 1.0), (0.17226891219615936, 1.0, 1.0), (0.17647059261798859, 1.0, 1.0), (0.18067227303981781, 1.0, 1.0), (0.18487395346164703, 1.0, 1.0), (0.18907563388347626, 1.0, 1.0), (0.19327731430530548, 1.0, 1.0), (0.1974789947271347, 1.0, 1.0), (0.20168067514896393, 1.0, 1.0), (0.20588235557079315, 1.0, 1.0), (0.21008403599262238, 1.0, 1.0), (0.2142857164144516, 1.0, 1.0), (0.21848739683628082, 1.0, 1.0), (0.22268907725811005, 0.96078431606292725, 0.96078431606292725), (0.22689075767993927, 0.94117647409439087, 0.94117647409439087), (0.23109243810176849, 0.92156863212585449, 0.92156863212585449), (0.23529411852359772, 0.89803922176361084, 0.89803922176361084), (0.23949579894542694, 0.87843137979507446, 0.87843137979507446), (0.24369747936725616, 0.85882353782653809, 0.85882353782653809), (0.24789915978908539, 0.83529412746429443, 0.83529412746429443), (0.25210085511207581, 0.81568628549575806, 0.81568628549575806), (0.25630253553390503, 0.7921568751335144, 0.7921568751335144), (0.26050421595573425, 0.77254903316497803, 0.77254903316497803), (0.26470589637756348, 0.75294119119644165, 0.75294119119644165), (0.2689075767993927, 0.729411780834198, 0.729411780834198), (0.27310925722122192, 0.70980393886566162, 0.70980393886566162), (0.27731093764305115, 0.68627452850341797, 0.68627452850341797), (0.28151261806488037, 0.66666668653488159, 0.66666668653488159), (0.28571429848670959, 0.62352943420410156, 0.62352943420410156), (0.28991597890853882, 0.60392159223556519, 0.60392159223556519), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.56078433990478516, 0.56078433990478516), (0.30252102017402649, 0.54117649793624878, 0.54117649793624878), (0.30672270059585571, 0.51764708757400513, 0.51764708757400513), (0.31092438101768494, 0.49803921580314636, 0.49803921580314636), (0.31512606143951416, 0.47843137383460999, 0.47843137383460999), (0.31932774186134338, 0.45490196347236633, 0.45490196347236633), (0.32352942228317261, 0.43529412150382996, 0.43529412150382996), (0.32773110270500183, 0.41568627953529358, 0.41568627953529358), (0.33193278312683105, 0.39215686917304993, 0.39215686917304993), (0.33613446354866028, 0.37254902720451355, 0.37254902720451355), (0.3403361439704895, 0.3490196168422699, 0.3490196168422699), (0.34453782439231873, 0.32941177487373352, 0.32941177487373352), (0.34873950481414795, 0.28627452254295349, 0.28627452254295349), (0.35294118523597717, 0.26666668057441711, 0.26666668057441711), (0.3571428656578064, 0.24705882370471954, 0.24705882370471954), (0.36134454607963562, 0.22352941334247589, 0.22352941334247589), (0.36554622650146484, 0.20392157137393951, 0.20392157137393951), (0.36974790692329407, 0.18039216101169586, 0.18039216101169586), (0.37394958734512329, 0.16078431904315948, 0.16078431904315948), (0.37815126776695251, 0.14117647707462311, 0.14117647707462311), (0.38235294818878174, 0.11764705926179886, 0.11764705926179886), (0.38655462861061096, 0.098039217293262482, 0.098039217293262482), (0.39075630903244019, 0.074509806931018829, 0.074509806931018829), (0.39495798945426941, 0.054901961237192154, 0.054901961237192154), (0.39915966987609863, 0.035294119268655777, 0.035294119268655777), (0.40336135029792786, 0.011764706112444401, 0.011764706112444401), (0.40756303071975708, 0.0, 0.0), (0.4117647111415863, 0.0, 0.0), (0.41596639156341553, 0.0, 0.0), (0.42016807198524475, 0.0, 0.0), (0.42436975240707397, 0.0, 0.0), (0.4285714328289032, 0.0, 0.0), (0.43277311325073242, 0.0, 0.0), (0.43697479367256165, 0.0, 0.0), (0.44117647409439087, 0.0, 0.0), (0.44537815451622009, 0.0, 0.0), (0.44957983493804932, 0.0, 0.0), (0.45378151535987854, 0.0, 0.0), (0.45798319578170776, 0.0, 0.0), (0.46218487620353699, 0.0, 0.0), (0.46638655662536621, 0.0, 0.0), (0.47058823704719543, 0.0, 0.0), (0.47478991746902466, 0.0, 0.0), (0.47899159789085388, 0.0, 0.0), (0.48319327831268311, 0.0, 0.0), (0.48739495873451233, 0.0, 0.0), (0.49159663915634155, 0.0, 0.0), (0.49579831957817078, 0.0, 0.0), (0.5, 0.0, 0.0), (0.50420171022415161, 0.0, 0.0), (0.50840336084365845, 0.0, 0.0), (0.51260507106781006, 0.0, 0.0), (0.51680672168731689, 0.0, 0.0), (0.52100843191146851, 0.0, 0.0), (0.52521008253097534, 0.0, 0.0), (0.52941179275512695, 0.0, 0.0), (0.53361344337463379, 0.0, 0.0), (0.5378151535987854, 0.0, 0.0), (0.54201680421829224, 0.0, 0.0), (0.54621851444244385, 0.0, 0.0), (0.55042016506195068, 0.0, 0.0), (0.55462187528610229, 0.0, 0.0), (0.55882352590560913, 0.0, 0.0), (0.56302523612976074, 0.0, 0.0), (0.56722688674926758, 0.0, 0.0), (0.57142859697341919, 0.0, 0.0), (0.57563024759292603, 0.0, 0.0), (0.57983195781707764, 0.0, 0.0), (0.58403360843658447, 0.0, 0.0), (0.58823531866073608, 0.0, 0.0), (0.59243696928024292, 0.0, 0.0), (0.59663867950439453, 0.0, 0.0), (0.60084033012390137, 0.0, 0.0), (0.60504204034805298, 0.0, 0.0), (0.60924369096755981, 0.0, 0.0), (0.61344540119171143, 0.0, 0.0), (0.61764705181121826, 0.0, 0.0), (0.62184876203536987, 0.0, 0.0), (0.62605041265487671, 0.0, 0.0), (0.63025212287902832, 0.0, 0.0), (0.63445377349853516, 0.0, 0.0), (0.63865548372268677, 0.0, 0.0), (0.6428571343421936, 0.0, 0.0), (0.64705884456634521, 0.0, 0.0), (0.65126049518585205, 0.0, 0.0), (0.65546220541000366, 0.0, 0.0), (0.6596638560295105, 0.0, 0.0), (0.66386556625366211, 0.0, 0.0), (0.66806721687316895, 0.0, 0.0), (0.67226892709732056, 0.0, 0.0), (0.67647057771682739, 0.0, 0.0), (0.680672287940979, 0.0, 0.0), (0.68487393856048584, 0.0, 0.0), (0.68907564878463745, 0.0, 0.0), (0.69327729940414429, 0.0, 0.0), (0.6974790096282959, 0.0, 0.0), (0.70168066024780273, 0.0, 0.0), (0.70588237047195435, 0.0, 0.0), (0.71008402109146118, 0.0, 0.0), (0.71428573131561279, 0.0, 0.0), (0.71848738193511963, 0.0, 0.0), (0.72268909215927124, 0.0, 0.0), (0.72689074277877808, 0.0, 0.0), (0.73109245300292969, 0.0, 0.0), (0.73529410362243652, 0.0, 0.0), (0.73949581384658813, 0.0, 0.0), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.0, 0.0), (0.75210082530975342, 0.0, 0.0), (0.75630253553390503, 0.0, 0.0), (0.76050418615341187, 0.0, 0.0), (0.76470589637756348, 0.0, 0.0), (0.76890754699707031, 0.0, 0.0), (0.77310925722122192, 0.0, 0.0), (0.77731090784072876, 0.0, 0.0), (0.78151261806488037, 0.0078431377187371254, 0.0078431377187371254), (0.78571426868438721, 0.027450980618596077, 0.027450980618596077), (0.78991597890853882, 0.070588238537311554, 0.070588238537311554), (0.79411762952804565, 0.094117648899555206, 0.094117648899555206), (0.79831933975219727, 0.11372549086809158, 0.11372549086809158), (0.8025209903717041, 0.13333334028720856, 0.13333334028720856), (0.80672270059585571, 0.15686275064945221, 0.15686275064945221), (0.81092435121536255, 0.17647059261798859, 0.17647059261798859), (0.81512606143951416, 0.19607843458652496, 0.19607843458652496), (0.819327712059021, 0.21960784494876862, 0.21960784494876862), (0.82352942228317261, 0.23921568691730499, 0.23921568691730499), (0.82773107290267944, 0.26274511218070984, 0.26274511218070984), (0.83193278312683105, 0.28235295414924622, 0.28235295414924622), (0.83613443374633789, 0.30196079611778259, 0.30196079611778259), (0.8403361439704895, 0.32549020648002625, 0.32549020648002625), (0.84453779458999634, 0.34509804844856262, 0.34509804844856262), (0.84873950481414795, 0.364705890417099, 0.364705890417099), (0.85294115543365479, 0.40784314274787903, 0.40784314274787903), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.45098039507865906, 0.45098039507865906), (0.86554622650146484, 0.47058823704719543, 0.47058823704719543), (0.86974787712097168, 0.49411764740943909, 0.49411764740943909), (0.87394958734512329, 0.51372551918029785, 0.51372551918029785), (0.87815123796463013, 0.53333336114883423, 0.53333336114883423), (0.88235294818878174, 0.55686277151107788, 0.55686277151107788), (0.88655459880828857, 0.57647061347961426, 0.57647061347961426), (0.89075630903244019, 0.60000002384185791, 0.60000002384185791), (0.89495795965194702, 0.61960786581039429, 0.61960786581039429), (0.89915966987609863, 0.63921570777893066, 0.63921570777893066), (0.90336132049560547, 0.66274511814117432, 0.66274511814117432), (0.90756303071975708, 0.68235296010971069, 0.68235296010971069), (0.91176468133926392, 0.70588237047195435, 0.70588237047195435), (0.91596639156341553, 0.7450980544090271, 0.7450980544090271), (0.92016804218292236, 0.76862746477127075, 0.76862746477127075), (0.92436975240707397, 0.78823530673980713, 0.78823530673980713), (0.92857140302658081, 0.80784314870834351, 0.80784314870834351), (0.93277311325073242, 0.83137255907058716, 0.83137255907058716), (0.93697476387023926, 0.85098040103912354, 0.85098040103912354), (0.94117647409439087, 0.87450981140136719, 0.87450981140136719), (0.94537812471389771, 0.89411765336990356, 0.89411765336990356), (0.94957983493804932, 0.91372549533843994, 0.91372549533843994), (0.95378148555755615, 0.93725490570068359, 0.93725490570068359), (0.95798319578170776, 0.95686274766921997, 0.95686274766921997), (0.9621848464012146, 0.97647058963775635, 0.97647058963775635), (0.96638655662536621, 1.0, 1.0), (0.97058820724487305, 1.0, 1.0), (0.97478991746902466, 1.0, 1.0), (0.97899156808853149, 1.0, 1.0), (0.98319327831268311, 1.0, 1.0), (0.98739492893218994, 1.0, 1.0), (0.99159663915634155, 1.0, 1.0), (0.99579828977584839, 1.0, 1.0), (1.0, 1.0, 1.0)]} _gist_stern_data = {'blue': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.011764706112444401, 0.011764706112444401), (0.012605042196810246, 0.019607843831181526, 0.019607843831181526), (0.016806723549962044, 0.027450980618596077, 0.027450980618596077), (0.021008403971791267, 0.035294119268655777, 0.035294119268655777), (0.025210084393620491, 0.043137256056070328, 0.043137256056070328), (0.029411764815449715, 0.050980392843484879, 0.050980392843484879), (0.033613447099924088, 0.058823529630899429, 0.058823529630899429), (0.037815127521753311, 0.066666670143604279, 0.066666670143604279), (0.042016807943582535, 0.08235294371843338, 0.08235294371843338), (0.046218488365411758, 0.090196080505847931, 0.090196080505847931), (0.050420168787240982, 0.098039217293262482, 0.098039217293262482), (0.054621849209070206, 0.10588235408067703, 0.10588235408067703), (0.058823529630899429, 0.11372549086809158, 0.11372549086809158), (0.063025213778018951, 0.12156862765550613, 0.12156862765550613), (0.067226894199848175, 0.12941177189350128, 0.12941177189350128), (0.071428574621677399, 0.13725490868091583, 0.13725490868091583), (0.075630255043506622, 0.14509804546833038, 0.14509804546833038), (0.079831935465335846, 0.15294118225574493, 0.15294118225574493), (0.08403361588716507, 0.16078431904315948, 0.16078431904315948), (0.088235296308994293, 0.16862745583057404, 0.16862745583057404), (0.092436976730823517, 0.17647059261798859, 0.17647059261798859), (0.09663865715265274, 0.18431372940540314, 0.18431372940540314), (0.10084033757448196, 0.19215686619281769, 0.19215686619281769), (0.10504201799631119, 0.20000000298023224, 0.20000000298023224), (0.10924369841814041, 0.20784313976764679, 0.20784313976764679), (0.11344537883996964, 0.21568627655506134, 0.21568627655506134), (0.11764705926179886, 0.22352941334247589, 0.22352941334247589), (0.12184873968362808, 0.23137255012989044, 0.23137255012989044), (0.1260504275560379, 0.24705882370471954, 0.24705882370471954), (0.13025210797786713, 0.25490197539329529, 0.25490197539329529), (0.13445378839969635, 0.26274511218070984, 0.26274511218070984), (0.13865546882152557, 0.27058824896812439, 0.27058824896812439), (0.1428571492433548, 0.27843138575553894, 0.27843138575553894), (0.14705882966518402, 0.28627452254295349, 0.28627452254295349), (0.15126051008701324, 0.29411765933036804, 0.29411765933036804), (0.15546219050884247, 0.30196079611778259, 0.30196079611778259), (0.15966387093067169, 0.30980393290519714, 0.30980393290519714), (0.16386555135250092, 0.31764706969261169, 0.31764706969261169), (0.16806723177433014, 0.32549020648002625, 0.32549020648002625), (0.17226891219615936, 0.3333333432674408, 0.3333333432674408), (0.17647059261798859, 0.34117648005485535, 0.34117648005485535), (0.18067227303981781, 0.3490196168422699, 0.3490196168422699), (0.18487395346164703, 0.35686275362968445, 0.35686275362968445), (0.18907563388347626, 0.364705890417099, 0.364705890417099), (0.19327731430530548, 0.37254902720451355, 0.37254902720451355), (0.1974789947271347, 0.3803921639919281, 0.3803921639919281), (0.20168067514896393, 0.38823530077934265, 0.38823530077934265), (0.20588235557079315, 0.3960784375667572, 0.3960784375667572), (0.21008403599262238, 0.4117647111415863, 0.4117647111415863), (0.2142857164144516, 0.41960784792900085, 0.41960784792900085), (0.21848739683628082, 0.42745098471641541, 0.42745098471641541), (0.22268907725811005, 0.43529412150382996, 0.43529412150382996), (0.22689075767993927, 0.44313725829124451, 0.44313725829124451), (0.23109243810176849, 0.45098039507865906, 0.45098039507865906), (0.23529411852359772, 0.45882353186607361, 0.45882353186607361), (0.23949579894542694, 0.46666666865348816, 0.46666666865348816), (0.24369747936725616, 0.47450980544090271, 0.47450980544090271), (0.24789915978908539, 0.48235294222831726, 0.48235294222831726), (0.25210085511207581, 0.49803921580314636, 0.49803921580314636), (0.25630253553390503, 0.5058823823928833, 0.5058823823928833), (0.26050421595573425, 0.51372551918029785, 0.51372551918029785), (0.26470589637756348, 0.5215686559677124, 0.5215686559677124), (0.2689075767993927, 0.52941179275512695, 0.52941179275512695), (0.27310925722122192, 0.5372549295425415, 0.5372549295425415), (0.27731093764305115, 0.54509806632995605, 0.54509806632995605), (0.28151261806488037, 0.55294120311737061, 0.55294120311737061), (0.28571429848670959, 0.56078433990478516, 0.56078433990478516), (0.28991597890853882, 0.56862747669219971, 0.56862747669219971), (0.29411765933036804, 0.58431375026702881, 0.58431375026702881), (0.29831933975219727, 0.59215688705444336, 0.59215688705444336), (0.30252102017402649, 0.60000002384185791, 0.60000002384185791), (0.30672270059585571, 0.60784316062927246, 0.60784316062927246), (0.31092438101768494, 0.61568629741668701, 0.61568629741668701), (0.31512606143951416, 0.62352943420410156, 0.62352943420410156), (0.31932774186134338, 0.63137257099151611, 0.63137257099151611), (0.32352942228317261, 0.63921570777893066, 0.63921570777893066), (0.32773110270500183, 0.64705884456634521, 0.64705884456634521), (0.33193278312683105, 0.65490198135375977, 0.65490198135375977), (0.33613446354866028, 0.66274511814117432, 0.66274511814117432), (0.3403361439704895, 0.67058825492858887, 0.67058825492858887), (0.34453782439231873, 0.67843139171600342, 0.67843139171600342), (0.34873950481414795, 0.68627452850341797, 0.68627452850341797), (0.35294118523597717, 0.69411766529083252, 0.69411766529083252), (0.3571428656578064, 0.70196080207824707, 0.70196080207824707), (0.36134454607963562, 0.70980393886566162, 0.70980393886566162), (0.36554622650146484, 0.71764707565307617, 0.71764707565307617), (0.36974790692329407, 0.72549021244049072, 0.72549021244049072), (0.37394958734512329, 0.73333334922790527, 0.73333334922790527), (0.37815126776695251, 0.74901962280273438, 0.74901962280273438), (0.38235294818878174, 0.75686275959014893, 0.75686275959014893), (0.38655462861061096, 0.76470589637756348, 0.76470589637756348), (0.39075630903244019, 0.77254903316497803, 0.77254903316497803), (0.39495798945426941, 0.78039216995239258, 0.78039216995239258), (0.39915966987609863, 0.78823530673980713, 0.78823530673980713), (0.40336135029792786, 0.79607844352722168, 0.79607844352722168), (0.40756303071975708, 0.80392158031463623, 0.80392158031463623), (0.4117647111415863, 0.81176471710205078, 0.81176471710205078), (0.41596639156341553, 0.81960785388946533, 0.81960785388946533), (0.42016807198524475, 0.82745099067687988, 0.82745099067687988), (0.42436975240707397, 0.83529412746429443, 0.83529412746429443), (0.4285714328289032, 0.84313726425170898, 0.84313726425170898), (0.43277311325073242, 0.85098040103912354, 0.85098040103912354), (0.43697479367256165, 0.85882353782653809, 0.85882353782653809), (0.44117647409439087, 0.86666667461395264, 0.86666667461395264), (0.44537815451622009, 0.87450981140136719, 0.87450981140136719), (0.44957983493804932, 0.88235294818878174, 0.88235294818878174), (0.45378151535987854, 0.89019608497619629, 0.89019608497619629), (0.45798319578170776, 0.89803922176361084, 0.89803922176361084), (0.46218487620353699, 0.91372549533843994, 0.91372549533843994), (0.46638655662536621, 0.92156863212585449, 0.92156863212585449), (0.47058823704719543, 0.92941176891326904, 0.92941176891326904), (0.47478991746902466, 0.93725490570068359, 0.93725490570068359), (0.47899159789085388, 0.94509804248809814, 0.94509804248809814), (0.48319327831268311, 0.9529411792755127, 0.9529411792755127), (0.48739495873451233, 0.96078431606292725, 0.96078431606292725), (0.49159663915634155, 0.9686274528503418, 0.9686274528503418), (0.49579831957817078, 0.97647058963775635, 0.97647058963775635), (0.5, 0.9843137264251709, 0.9843137264251709), (0.50420171022415161, 1.0, 1.0), (0.50840336084365845, 0.9843137264251709, 0.9843137264251709), (0.51260507106781006, 0.9686274528503418, 0.9686274528503418), (0.51680672168731689, 0.9529411792755127, 0.9529411792755127), (0.52100843191146851, 0.93333333730697632, 0.93333333730697632), (0.52521008253097534, 0.91764706373214722, 0.91764706373214722), (0.52941179275512695, 0.90196079015731812, 0.90196079015731812), (0.53361344337463379, 0.88627451658248901, 0.88627451658248901), (0.5378151535987854, 0.86666667461395264, 0.86666667461395264), (0.54201680421829224, 0.85098040103912354, 0.85098040103912354), (0.54621851444244385, 0.81960785388946533, 0.81960785388946533), (0.55042016506195068, 0.80000001192092896, 0.80000001192092896), (0.55462187528610229, 0.78431373834609985, 0.78431373834609985), (0.55882352590560913, 0.76862746477127075, 0.76862746477127075), (0.56302523612976074, 0.75294119119644165, 0.75294119119644165), (0.56722688674926758, 0.73333334922790527, 0.73333334922790527), (0.57142859697341919, 0.71764707565307617, 0.71764707565307617), (0.57563024759292603, 0.70196080207824707, 0.70196080207824707), (0.57983195781707764, 0.68627452850341797, 0.68627452850341797), (0.58403360843658447, 0.66666668653488159, 0.66666668653488159), (0.58823531866073608, 0.65098041296005249, 0.65098041296005249), (0.59243696928024292, 0.63529413938522339, 0.63529413938522339), (0.59663867950439453, 0.61960786581039429, 0.61960786581039429), (0.60084033012390137, 0.60000002384185791, 0.60000002384185791), (0.60504204034805298, 0.58431375026702881, 0.58431375026702881), (0.60924369096755981, 0.56862747669219971, 0.56862747669219971), (0.61344540119171143, 0.55294120311737061, 0.55294120311737061), (0.61764705181121826, 0.53333336114883423, 0.53333336114883423), (0.62184876203536987, 0.51764708757400513, 0.51764708757400513), (0.62605041265487671, 0.50196081399917603, 0.50196081399917603), (0.63025212287902832, 0.46666666865348816, 0.46666666865348816), (0.63445377349853516, 0.45098039507865906, 0.45098039507865906), (0.63865548372268677, 0.43529412150382996, 0.43529412150382996), (0.6428571343421936, 0.41960784792900085, 0.41960784792900085), (0.64705884456634521, 0.40000000596046448, 0.40000000596046448), (0.65126049518585205, 0.38431373238563538, 0.38431373238563538), (0.65546220541000366, 0.36862745881080627, 0.36862745881080627), (0.6596638560295105, 0.35294118523597717, 0.35294118523597717), (0.66386556625366211, 0.3333333432674408, 0.3333333432674408), (0.66806721687316895, 0.31764706969261169, 0.31764706969261169), (0.67226892709732056, 0.30196079611778259, 0.30196079611778259), (0.67647057771682739, 0.28627452254295349, 0.28627452254295349), (0.680672287940979, 0.26666668057441711, 0.26666668057441711), (0.68487393856048584, 0.25098040699958801, 0.25098040699958801), (0.68907564878463745, 0.23529411852359772, 0.23529411852359772), (0.69327729940414429, 0.21960784494876862, 0.21960784494876862), (0.6974790096282959, 0.20000000298023224, 0.20000000298023224), (0.70168066024780273, 0.18431372940540314, 0.18431372940540314), (0.70588237047195435, 0.16862745583057404, 0.16862745583057404), (0.71008402109146118, 0.15294118225574493, 0.15294118225574493), (0.71428573131561279, 0.11764705926179886, 0.11764705926179886), (0.71848738193511963, 0.10196078568696976, 0.10196078568696976), (0.72268909215927124, 0.086274512112140656, 0.086274512112140656), (0.72689074277877808, 0.066666670143604279, 0.066666670143604279), (0.73109245300292969, 0.050980392843484879, 0.050980392843484879), (0.73529410362243652, 0.035294119268655777, 0.035294119268655777), (0.73949581384658813, 0.019607843831181526, 0.019607843831181526), (0.74369746446609497, 0.0, 0.0), (0.74789917469024658, 0.011764706112444401, 0.011764706112444401), (0.75210082530975342, 0.027450980618596077, 0.027450980618596077), (0.75630253553390503, 0.058823529630899429, 0.058823529630899429), (0.76050418615341187, 0.074509806931018829, 0.074509806931018829), (0.76470589637756348, 0.086274512112140656, 0.086274512112140656), (0.76890754699707031, 0.10196078568696976, 0.10196078568696976), (0.77310925722122192, 0.11764705926179886, 0.11764705926179886), (0.77731090784072876, 0.13333334028720856, 0.13333334028720856), (0.78151261806488037, 0.14901961386203766, 0.14901961386203766), (0.78571426868438721, 0.16078431904315948, 0.16078431904315948), (0.78991597890853882, 0.17647059261798859, 0.17647059261798859), (0.79411762952804565, 0.19215686619281769, 0.19215686619281769), (0.79831933975219727, 0.22352941334247589, 0.22352941334247589), (0.8025209903717041, 0.23529411852359772, 0.23529411852359772), (0.80672270059585571, 0.25098040699958801, 0.25098040699958801), (0.81092435121536255, 0.26666668057441711, 0.26666668057441711), (0.81512606143951416, 0.28235295414924622, 0.28235295414924622), (0.819327712059021, 0.29803922772407532, 0.29803922772407532), (0.82352942228317261, 0.30980393290519714, 0.30980393290519714), (0.82773107290267944, 0.32549020648002625, 0.32549020648002625), (0.83193278312683105, 0.34117648005485535, 0.34117648005485535), (0.83613443374633789, 0.35686275362968445, 0.35686275362968445), (0.8403361439704895, 0.37254902720451355, 0.37254902720451355), (0.84453779458999634, 0.38431373238563538, 0.38431373238563538), (0.84873950481414795, 0.40000000596046448, 0.40000000596046448), (0.85294115543365479, 0.41568627953529358, 0.41568627953529358), (0.8571428656578064, 0.43137255311012268, 0.43137255311012268), (0.86134451627731323, 0.44705882668495178, 0.44705882668495178), (0.86554622650146484, 0.45882353186607361, 0.45882353186607361), (0.86974787712097168, 0.47450980544090271, 0.47450980544090271), (0.87394958734512329, 0.49019607901573181, 0.49019607901573181), (0.87815123796463013, 0.5058823823928833, 0.5058823823928833), (0.88235294818878174, 0.5372549295425415, 0.5372549295425415), (0.88655459880828857, 0.54901963472366333, 0.54901963472366333), (0.89075630903244019, 0.56470590829849243, 0.56470590829849243), (0.89495795965194702, 0.58039218187332153, 0.58039218187332153), (0.89915966987609863, 0.59607845544815063, 0.59607845544815063), (0.90336132049560547, 0.61176472902297974, 0.61176472902297974), (0.90756303071975708, 0.62352943420410156, 0.62352943420410156), (0.91176468133926392, 0.63921570777893066, 0.63921570777893066), (0.91596639156341553, 0.65490198135375977, 0.65490198135375977), (0.92016804218292236, 0.67058825492858887, 0.67058825492858887), (0.92436975240707397, 0.68627452850341797, 0.68627452850341797), (0.92857140302658081, 0.69803923368453979, 0.69803923368453979), (0.93277311325073242, 0.7137255072593689, 0.7137255072593689), (0.93697476387023926, 0.729411780834198, 0.729411780834198), (0.94117647409439087, 0.7450980544090271, 0.7450980544090271), (0.94537812471389771, 0.7607843279838562, 0.7607843279838562), (0.94957983493804932, 0.77254903316497803, 0.77254903316497803), (0.95378148555755615, 0.78823530673980713, 0.78823530673980713), (0.95798319578170776, 0.80392158031463623, 0.80392158031463623), (0.9621848464012146, 0.81960785388946533, 0.81960785388946533), (0.96638655662536621, 0.84705883264541626, 0.84705883264541626), (0.97058820724487305, 0.86274510622024536, 0.86274510622024536), (0.97478991746902466, 0.87843137979507446, 0.87843137979507446), (0.97899156808853149, 0.89411765336990356, 0.89411765336990356), (0.98319327831268311, 0.90980392694473267, 0.90980392694473267), (0.98739492893218994, 0.92156863212585449, 0.92156863212585449), (0.99159663915634155, 0.93725490570068359, 0.93725490570068359), (0.99579828977584839, 0.9529411792755127, 0.9529411792755127), (1.0, 0.9686274528503418, 0.9686274528503418)], 'green': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.0039215688593685627, 0.0039215688593685627), (0.0084033617749810219, 0.0078431377187371254, 0.0078431377187371254), (0.012605042196810246, 0.011764706112444401, 0.011764706112444401), (0.016806723549962044, 0.015686275437474251, 0.015686275437474251), (0.021008403971791267, 0.019607843831181526, 0.019607843831181526), (0.025210084393620491, 0.023529412224888802, 0.023529412224888802), (0.029411764815449715, 0.027450980618596077, 0.027450980618596077), (0.033613447099924088, 0.031372550874948502, 0.031372550874948502), (0.037815127521753311, 0.035294119268655777, 0.035294119268655777), (0.042016807943582535, 0.043137256056070328, 0.043137256056070328), (0.046218488365411758, 0.047058824449777603, 0.047058824449777603), (0.050420168787240982, 0.050980392843484879, 0.050980392843484879), (0.054621849209070206, 0.054901961237192154, 0.054901961237192154), (0.058823529630899429, 0.058823529630899429, 0.058823529630899429), (0.063025213778018951, 0.062745101749897003, 0.062745101749897003), (0.067226894199848175, 0.066666670143604279, 0.066666670143604279), (0.071428574621677399, 0.070588238537311554, 0.070588238537311554), (0.075630255043506622, 0.074509806931018829, 0.074509806931018829), (0.079831935465335846, 0.078431375324726105, 0.078431375324726105), (0.08403361588716507, 0.08235294371843338, 0.08235294371843338), (0.088235296308994293, 0.086274512112140656, 0.086274512112140656), (0.092436976730823517, 0.090196080505847931, 0.090196080505847931), (0.09663865715265274, 0.094117648899555206, 0.094117648899555206), (0.10084033757448196, 0.098039217293262482, 0.098039217293262482), (0.10504201799631119, 0.10196078568696976, 0.10196078568696976), (0.10924369841814041, 0.10588235408067703, 0.10588235408067703), (0.11344537883996964, 0.10980392247438431, 0.10980392247438431), (0.11764705926179886, 0.11372549086809158, 0.11372549086809158), (0.12184873968362808, 0.11764705926179886, 0.11764705926179886), (0.1260504275560379, 0.12549020349979401, 0.12549020349979401), (0.13025210797786713, 0.12941177189350128, 0.12941177189350128), (0.13445378839969635, 0.13333334028720856, 0.13333334028720856), (0.13865546882152557, 0.13725490868091583, 0.13725490868091583), (0.1428571492433548, 0.14117647707462311, 0.14117647707462311), (0.14705882966518402, 0.14509804546833038, 0.14509804546833038), (0.15126051008701324, 0.14901961386203766, 0.14901961386203766), (0.15546219050884247, 0.15294118225574493, 0.15294118225574493), (0.15966387093067169, 0.15686275064945221, 0.15686275064945221), (0.16386555135250092, 0.16078431904315948, 0.16078431904315948), (0.16806723177433014, 0.16470588743686676, 0.16470588743686676), (0.17226891219615936, 0.16862745583057404, 0.16862745583057404), (0.17647059261798859, 0.17254902422428131, 0.17254902422428131), (0.18067227303981781, 0.17647059261798859, 0.17647059261798859), (0.18487395346164703, 0.18039216101169586, 0.18039216101169586), (0.18907563388347626, 0.18431372940540314, 0.18431372940540314), (0.19327731430530548, 0.18823529779911041, 0.18823529779911041), (0.1974789947271347, 0.19215686619281769, 0.19215686619281769), (0.20168067514896393, 0.19607843458652496, 0.19607843458652496), (0.20588235557079315, 0.20000000298023224, 0.20000000298023224), (0.21008403599262238, 0.20784313976764679, 0.20784313976764679), (0.2142857164144516, 0.21176470816135406, 0.21176470816135406), (0.21848739683628082, 0.21568627655506134, 0.21568627655506134), (0.22268907725811005, 0.21960784494876862, 0.21960784494876862), (0.22689075767993927, 0.22352941334247589, 0.22352941334247589), (0.23109243810176849, 0.22745098173618317, 0.22745098173618317), (0.23529411852359772, 0.23137255012989044, 0.23137255012989044), (0.23949579894542694, 0.23529411852359772, 0.23529411852359772), (0.24369747936725616, 0.23921568691730499, 0.23921568691730499), (0.24789915978908539, 0.24313725531101227, 0.24313725531101227), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)], 'red': [(0.0, 0.0, 0.0), (0.0042016808874905109, 0.070588238537311554, 0.070588238537311554), (0.0084033617749810219, 0.14117647707462311, 0.14117647707462311), (0.012605042196810246, 0.21176470816135406, 0.21176470816135406), (0.016806723549962044, 0.28235295414924622, 0.28235295414924622), (0.021008403971791267, 0.35294118523597717, 0.35294118523597717), (0.025210084393620491, 0.42352941632270813, 0.42352941632270813), (0.029411764815449715, 0.49803921580314636, 0.49803921580314636), (0.033613447099924088, 0.56862747669219971, 0.56862747669219971), (0.037815127521753311, 0.63921570777893066, 0.63921570777893066), (0.042016807943582535, 0.78039216995239258, 0.78039216995239258), (0.046218488365411758, 0.85098040103912354, 0.85098040103912354), (0.050420168787240982, 0.92156863212585449, 0.92156863212585449), (0.054621849209070206, 0.99607843160629272, 0.99607843160629272), (0.058823529630899429, 0.97647058963775635, 0.97647058963775635), (0.063025213778018951, 0.95686274766921997, 0.95686274766921997), (0.067226894199848175, 0.93725490570068359, 0.93725490570068359), (0.071428574621677399, 0.91764706373214722, 0.91764706373214722), (0.075630255043506622, 0.89803922176361084, 0.89803922176361084), (0.079831935465335846, 0.87450981140136719, 0.87450981140136719), (0.08403361588716507, 0.85490196943283081, 0.85490196943283081), (0.088235296308994293, 0.83529412746429443, 0.83529412746429443), (0.092436976730823517, 0.81568628549575806, 0.81568628549575806), (0.09663865715265274, 0.79607844352722168, 0.79607844352722168), (0.10084033757448196, 0.77254903316497803, 0.77254903316497803), (0.10504201799631119, 0.75294119119644165, 0.75294119119644165), (0.10924369841814041, 0.73333334922790527, 0.73333334922790527), (0.11344537883996964, 0.7137255072593689, 0.7137255072593689), (0.11764705926179886, 0.69411766529083252, 0.69411766529083252), (0.12184873968362808, 0.67450982332229614, 0.67450982332229614), (0.1260504275560379, 0.63137257099151611, 0.63137257099151611), (0.13025210797786713, 0.61176472902297974, 0.61176472902297974), (0.13445378839969635, 0.59215688705444336, 0.59215688705444336), (0.13865546882152557, 0.57254904508590698, 0.57254904508590698), (0.1428571492433548, 0.54901963472366333, 0.54901963472366333), (0.14705882966518402, 0.52941179275512695, 0.52941179275512695), (0.15126051008701324, 0.50980395078659058, 0.50980395078659058), (0.15546219050884247, 0.49019607901573181, 0.49019607901573181), (0.15966387093067169, 0.47058823704719543, 0.47058823704719543), (0.16386555135250092, 0.45098039507865906, 0.45098039507865906), (0.16806723177433014, 0.42745098471641541, 0.42745098471641541), (0.17226891219615936, 0.40784314274787903, 0.40784314274787903), (0.17647059261798859, 0.38823530077934265, 0.38823530077934265), (0.18067227303981781, 0.36862745881080627, 0.36862745881080627), (0.18487395346164703, 0.3490196168422699, 0.3490196168422699), (0.18907563388347626, 0.32549020648002625, 0.32549020648002625), (0.19327731430530548, 0.30588236451148987, 0.30588236451148987), (0.1974789947271347, 0.28627452254295349, 0.28627452254295349), (0.20168067514896393, 0.26666668057441711, 0.26666668057441711), (0.20588235557079315, 0.24705882370471954, 0.24705882370471954), (0.21008403599262238, 0.20392157137393951, 0.20392157137393951), (0.2142857164144516, 0.18431372940540314, 0.18431372940540314), (0.21848739683628082, 0.16470588743686676, 0.16470588743686676), (0.22268907725811005, 0.14509804546833038, 0.14509804546833038), (0.22689075767993927, 0.12549020349979401, 0.12549020349979401), (0.23109243810176849, 0.10196078568696976, 0.10196078568696976), (0.23529411852359772, 0.08235294371843338, 0.08235294371843338), (0.23949579894542694, 0.062745101749897003, 0.062745101749897003), (0.24369747936725616, 0.043137256056070328, 0.043137256056070328), (0.24789915978908539, 0.023529412224888802, 0.023529412224888802), (0.25210085511207581, 0.25098040699958801, 0.25098040699958801), (0.25630253553390503, 0.25490197539329529, 0.25490197539329529), (0.26050421595573425, 0.25882354378700256, 0.25882354378700256), (0.26470589637756348, 0.26274511218070984, 0.26274511218070984), (0.2689075767993927, 0.26666668057441711, 0.26666668057441711), (0.27310925722122192, 0.27058824896812439, 0.27058824896812439), (0.27731093764305115, 0.27450981736183167, 0.27450981736183167), (0.28151261806488037, 0.27843138575553894, 0.27843138575553894), (0.28571429848670959, 0.28235295414924622, 0.28235295414924622), (0.28991597890853882, 0.28627452254295349, 0.28627452254295349), (0.29411765933036804, 0.29411765933036804, 0.29411765933036804), (0.29831933975219727, 0.29803922772407532, 0.29803922772407532), (0.30252102017402649, 0.30196079611778259, 0.30196079611778259), (0.30672270059585571, 0.30588236451148987, 0.30588236451148987), (0.31092438101768494, 0.30980393290519714, 0.30980393290519714), (0.31512606143951416, 0.31372550129890442, 0.31372550129890442), (0.31932774186134338, 0.31764706969261169, 0.31764706969261169), (0.32352942228317261, 0.32156863808631897, 0.32156863808631897), (0.32773110270500183, 0.32549020648002625, 0.32549020648002625), (0.33193278312683105, 0.32941177487373352, 0.32941177487373352), (0.33613446354866028, 0.3333333432674408, 0.3333333432674408), (0.3403361439704895, 0.33725491166114807, 0.33725491166114807), (0.34453782439231873, 0.34117648005485535, 0.34117648005485535), (0.34873950481414795, 0.34509804844856262, 0.34509804844856262), (0.35294118523597717, 0.3490196168422699, 0.3490196168422699), (0.3571428656578064, 0.35294118523597717, 0.35294118523597717), (0.36134454607963562, 0.35686275362968445, 0.35686275362968445), (0.36554622650146484, 0.36078432202339172, 0.36078432202339172), (0.36974790692329407, 0.364705890417099, 0.364705890417099), (0.37394958734512329, 0.36862745881080627, 0.36862745881080627), (0.37815126776695251, 0.37647059559822083, 0.37647059559822083), (0.38235294818878174, 0.3803921639919281, 0.3803921639919281), (0.38655462861061096, 0.38431373238563538, 0.38431373238563538), (0.39075630903244019, 0.38823530077934265, 0.38823530077934265), (0.39495798945426941, 0.39215686917304993, 0.39215686917304993), (0.39915966987609863, 0.3960784375667572, 0.3960784375667572), (0.40336135029792786, 0.40000000596046448, 0.40000000596046448), (0.40756303071975708, 0.40392157435417175, 0.40392157435417175), (0.4117647111415863, 0.40784314274787903, 0.40784314274787903), (0.41596639156341553, 0.4117647111415863, 0.4117647111415863), (0.42016807198524475, 0.41568627953529358, 0.41568627953529358), (0.42436975240707397, 0.41960784792900085, 0.41960784792900085), (0.4285714328289032, 0.42352941632270813, 0.42352941632270813), (0.43277311325073242, 0.42745098471641541, 0.42745098471641541), (0.43697479367256165, 0.43137255311012268, 0.43137255311012268), (0.44117647409439087, 0.43529412150382996, 0.43529412150382996), (0.44537815451622009, 0.43921568989753723, 0.43921568989753723), (0.44957983493804932, 0.44313725829124451, 0.44313725829124451), (0.45378151535987854, 0.44705882668495178, 0.44705882668495178), (0.45798319578170776, 0.45098039507865906, 0.45098039507865906), (0.46218487620353699, 0.45882353186607361, 0.45882353186607361), (0.46638655662536621, 0.46274510025978088, 0.46274510025978088), (0.47058823704719543, 0.46666666865348816, 0.46666666865348816), (0.47478991746902466, 0.47058823704719543, 0.47058823704719543), (0.47899159789085388, 0.47450980544090271, 0.47450980544090271), (0.48319327831268311, 0.47843137383460999, 0.47843137383460999), (0.48739495873451233, 0.48235294222831726, 0.48235294222831726), (0.49159663915634155, 0.48627451062202454, 0.48627451062202454), (0.49579831957817078, 0.49019607901573181, 0.49019607901573181), (0.5, 0.49411764740943909, 0.49411764740943909), (0.50420171022415161, 0.50196081399917603, 0.50196081399917603), (0.50840336084365845, 0.5058823823928833, 0.5058823823928833), (0.51260507106781006, 0.50980395078659058, 0.50980395078659058), (0.51680672168731689, 0.51372551918029785, 0.51372551918029785), (0.52100843191146851, 0.51764708757400513, 0.51764708757400513), (0.52521008253097534, 0.5215686559677124, 0.5215686559677124), (0.52941179275512695, 0.52549022436141968, 0.52549022436141968), (0.53361344337463379, 0.52941179275512695, 0.52941179275512695), (0.5378151535987854, 0.53333336114883423, 0.53333336114883423), (0.54201680421829224, 0.5372549295425415, 0.5372549295425415), (0.54621851444244385, 0.54509806632995605, 0.54509806632995605), (0.55042016506195068, 0.54901963472366333, 0.54901963472366333), (0.55462187528610229, 0.55294120311737061, 0.55294120311737061), (0.55882352590560913, 0.55686277151107788, 0.55686277151107788), (0.56302523612976074, 0.56078433990478516, 0.56078433990478516), (0.56722688674926758, 0.56470590829849243, 0.56470590829849243), (0.57142859697341919, 0.56862747669219971, 0.56862747669219971), (0.57563024759292603, 0.57254904508590698, 0.57254904508590698), (0.57983195781707764, 0.57647061347961426, 0.57647061347961426), (0.58403360843658447, 0.58039218187332153, 0.58039218187332153), (0.58823531866073608, 0.58431375026702881, 0.58431375026702881), (0.59243696928024292, 0.58823531866073608, 0.58823531866073608), (0.59663867950439453, 0.59215688705444336, 0.59215688705444336), (0.60084033012390137, 0.59607845544815063, 0.59607845544815063), (0.60504204034805298, 0.60000002384185791, 0.60000002384185791), (0.60924369096755981, 0.60392159223556519, 0.60392159223556519), (0.61344540119171143, 0.60784316062927246, 0.60784316062927246), (0.61764705181121826, 0.61176472902297974, 0.61176472902297974), (0.62184876203536987, 0.61568629741668701, 0.61568629741668701), (0.62605041265487671, 0.61960786581039429, 0.61960786581039429), (0.63025212287902832, 0.62745100259780884, 0.62745100259780884), (0.63445377349853516, 0.63137257099151611, 0.63137257099151611), (0.63865548372268677, 0.63529413938522339, 0.63529413938522339), (0.6428571343421936, 0.63921570777893066, 0.63921570777893066), (0.64705884456634521, 0.64313727617263794, 0.64313727617263794), (0.65126049518585205, 0.64705884456634521, 0.64705884456634521), (0.65546220541000366, 0.65098041296005249, 0.65098041296005249), (0.6596638560295105, 0.65490198135375977, 0.65490198135375977), (0.66386556625366211, 0.65882354974746704, 0.65882354974746704), (0.66806721687316895, 0.66274511814117432, 0.66274511814117432), (0.67226892709732056, 0.66666668653488159, 0.66666668653488159), (0.67647057771682739, 0.67058825492858887, 0.67058825492858887), (0.680672287940979, 0.67450982332229614, 0.67450982332229614), (0.68487393856048584, 0.67843139171600342, 0.67843139171600342), (0.68907564878463745, 0.68235296010971069, 0.68235296010971069), (0.69327729940414429, 0.68627452850341797, 0.68627452850341797), (0.6974790096282959, 0.69019609689712524, 0.69019609689712524), (0.70168066024780273, 0.69411766529083252, 0.69411766529083252), (0.70588237047195435, 0.69803923368453979, 0.69803923368453979), (0.71008402109146118, 0.70196080207824707, 0.70196080207824707), (0.71428573131561279, 0.70980393886566162, 0.70980393886566162), (0.71848738193511963, 0.7137255072593689, 0.7137255072593689), (0.72268909215927124, 0.71764707565307617, 0.71764707565307617), (0.72689074277877808, 0.72156864404678345, 0.72156864404678345), (0.73109245300292969, 0.72549021244049072, 0.72549021244049072), (0.73529410362243652, 0.729411780834198, 0.729411780834198), (0.73949581384658813, 0.73333334922790527, 0.73333334922790527), (0.74369746446609497, 0.73725491762161255, 0.73725491762161255), (0.74789917469024658, 0.74117648601531982, 0.74117648601531982), (0.75210082530975342, 0.7450980544090271, 0.7450980544090271), (0.75630253553390503, 0.75294119119644165, 0.75294119119644165), (0.76050418615341187, 0.75686275959014893, 0.75686275959014893), (0.76470589637756348, 0.7607843279838562, 0.7607843279838562), (0.76890754699707031, 0.76470589637756348, 0.76470589637756348), (0.77310925722122192, 0.76862746477127075, 0.76862746477127075), (0.77731090784072876, 0.77254903316497803, 0.77254903316497803), (0.78151261806488037, 0.7764706015586853, 0.7764706015586853), (0.78571426868438721, 0.78039216995239258, 0.78039216995239258), (0.78991597890853882, 0.78431373834609985, 0.78431373834609985), (0.79411762952804565, 0.78823530673980713, 0.78823530673980713), (0.79831933975219727, 0.79607844352722168, 0.79607844352722168), (0.8025209903717041, 0.80000001192092896, 0.80000001192092896), (0.80672270059585571, 0.80392158031463623, 0.80392158031463623), (0.81092435121536255, 0.80784314870834351, 0.80784314870834351), (0.81512606143951416, 0.81176471710205078, 0.81176471710205078), (0.819327712059021, 0.81568628549575806, 0.81568628549575806), (0.82352942228317261, 0.81960785388946533, 0.81960785388946533), (0.82773107290267944, 0.82352942228317261, 0.82352942228317261), (0.83193278312683105, 0.82745099067687988, 0.82745099067687988), (0.83613443374633789, 0.83137255907058716, 0.83137255907058716), (0.8403361439704895, 0.83529412746429443, 0.83529412746429443), (0.84453779458999634, 0.83921569585800171, 0.83921569585800171), (0.84873950481414795, 0.84313726425170898, 0.84313726425170898), (0.85294115543365479, 0.84705883264541626, 0.84705883264541626), (0.8571428656578064, 0.85098040103912354, 0.85098040103912354), (0.86134451627731323, 0.85490196943283081, 0.85490196943283081), (0.86554622650146484, 0.85882353782653809, 0.85882353782653809), (0.86974787712097168, 0.86274510622024536, 0.86274510622024536), (0.87394958734512329, 0.86666667461395264, 0.86666667461395264), (0.87815123796463013, 0.87058824300765991, 0.87058824300765991), (0.88235294818878174, 0.87843137979507446, 0.87843137979507446), (0.88655459880828857, 0.88235294818878174, 0.88235294818878174), (0.89075630903244019, 0.88627451658248901, 0.88627451658248901), (0.89495795965194702, 0.89019608497619629, 0.89019608497619629), (0.89915966987609863, 0.89411765336990356, 0.89411765336990356), (0.90336132049560547, 0.89803922176361084, 0.89803922176361084), (0.90756303071975708, 0.90196079015731812, 0.90196079015731812), (0.91176468133926392, 0.90588235855102539, 0.90588235855102539), (0.91596639156341553, 0.90980392694473267, 0.90980392694473267), (0.92016804218292236, 0.91372549533843994, 0.91372549533843994), (0.92436975240707397, 0.91764706373214722, 0.91764706373214722), (0.92857140302658081, 0.92156863212585449, 0.92156863212585449), (0.93277311325073242, 0.92549020051956177, 0.92549020051956177), (0.93697476387023926, 0.92941176891326904, 0.92941176891326904), (0.94117647409439087, 0.93333333730697632, 0.93333333730697632), (0.94537812471389771, 0.93725490570068359, 0.93725490570068359), (0.94957983493804932, 0.94117647409439087, 0.94117647409439087), (0.95378148555755615, 0.94509804248809814, 0.94509804248809814), (0.95798319578170776, 0.94901961088180542, 0.94901961088180542), (0.9621848464012146, 0.9529411792755127, 0.9529411792755127), (0.96638655662536621, 0.96078431606292725, 0.96078431606292725), (0.97058820724487305, 0.96470588445663452, 0.96470588445663452), (0.97478991746902466, 0.9686274528503418, 0.9686274528503418), (0.97899156808853149, 0.97254902124404907, 0.97254902124404907), (0.98319327831268311, 0.97647058963775635, 0.97647058963775635), (0.98739492893218994, 0.98039215803146362, 0.98039215803146362), (0.99159663915634155, 0.9843137264251709, 0.9843137264251709), (0.99579828977584839, 0.98823529481887817, 0.98823529481887817), (1.0, 0.99215686321258545, 0.99215686321258545)]} _gist_yarg_data = {'blue': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'green': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)], 'red': [(0.0, 1.0, 1.0), (0.0042016808874905109, 0.99607843160629272, 0.99607843160629272), (0.0084033617749810219, 0.99215686321258545, 0.99215686321258545), (0.012605042196810246, 0.98823529481887817, 0.98823529481887817), (0.016806723549962044, 0.9843137264251709, 0.9843137264251709), (0.021008403971791267, 0.98039215803146362, 0.98039215803146362), (0.025210084393620491, 0.97647058963775635, 0.97647058963775635), (0.029411764815449715, 0.97254902124404907, 0.97254902124404907), (0.033613447099924088, 0.96470588445663452, 0.96470588445663452), (0.037815127521753311, 0.96078431606292725, 0.96078431606292725), (0.042016807943582535, 0.95686274766921997, 0.95686274766921997), (0.046218488365411758, 0.9529411792755127, 0.9529411792755127), (0.050420168787240982, 0.94901961088180542, 0.94901961088180542), (0.054621849209070206, 0.94509804248809814, 0.94509804248809814), (0.058823529630899429, 0.94117647409439087, 0.94117647409439087), (0.063025213778018951, 0.93725490570068359, 0.93725490570068359), (0.067226894199848175, 0.93333333730697632, 0.93333333730697632), (0.071428574621677399, 0.92941176891326904, 0.92941176891326904), (0.075630255043506622, 0.92549020051956177, 0.92549020051956177), (0.079831935465335846, 0.92156863212585449, 0.92156863212585449), (0.08403361588716507, 0.91764706373214722, 0.91764706373214722), (0.088235296308994293, 0.91372549533843994, 0.91372549533843994), (0.092436976730823517, 0.90980392694473267, 0.90980392694473267), (0.09663865715265274, 0.90196079015731812, 0.90196079015731812), (0.10084033757448196, 0.89803922176361084, 0.89803922176361084), (0.10504201799631119, 0.89411765336990356, 0.89411765336990356), (0.10924369841814041, 0.89019608497619629, 0.89019608497619629), (0.11344537883996964, 0.88627451658248901, 0.88627451658248901), (0.11764705926179886, 0.88235294818878174, 0.88235294818878174), (0.12184873968362808, 0.87843137979507446, 0.87843137979507446), (0.1260504275560379, 0.87450981140136719, 0.87450981140136719), (0.13025210797786713, 0.87058824300765991, 0.87058824300765991), (0.13445378839969635, 0.86666667461395264, 0.86666667461395264), (0.13865546882152557, 0.86274510622024536, 0.86274510622024536), (0.1428571492433548, 0.85882353782653809, 0.85882353782653809), (0.14705882966518402, 0.85490196943283081, 0.85490196943283081), (0.15126051008701324, 0.85098040103912354, 0.85098040103912354), (0.15546219050884247, 0.84705883264541626, 0.84705883264541626), (0.15966387093067169, 0.83921569585800171, 0.83921569585800171), (0.16386555135250092, 0.83529412746429443, 0.83529412746429443), (0.16806723177433014, 0.83137255907058716, 0.83137255907058716), (0.17226891219615936, 0.82745099067687988, 0.82745099067687988), (0.17647059261798859, 0.82352942228317261, 0.82352942228317261), (0.18067227303981781, 0.81960785388946533, 0.81960785388946533), (0.18487395346164703, 0.81568628549575806, 0.81568628549575806), (0.18907563388347626, 0.81176471710205078, 0.81176471710205078), (0.19327731430530548, 0.80784314870834351, 0.80784314870834351), (0.1974789947271347, 0.80392158031463623, 0.80392158031463623), (0.20168067514896393, 0.80000001192092896, 0.80000001192092896), (0.20588235557079315, 0.79607844352722168, 0.79607844352722168), (0.21008403599262238, 0.7921568751335144, 0.7921568751335144), (0.2142857164144516, 0.78823530673980713, 0.78823530673980713), (0.21848739683628082, 0.78431373834609985, 0.78431373834609985), (0.22268907725811005, 0.7764706015586853, 0.7764706015586853), (0.22689075767993927, 0.77254903316497803, 0.77254903316497803), (0.23109243810176849, 0.76862746477127075, 0.76862746477127075), (0.23529411852359772, 0.76470589637756348, 0.76470589637756348), (0.23949579894542694, 0.7607843279838562, 0.7607843279838562), (0.24369747936725616, 0.75686275959014893, 0.75686275959014893), (0.24789915978908539, 0.75294119119644165, 0.75294119119644165), (0.25210085511207581, 0.74901962280273438, 0.74901962280273438), (0.25630253553390503, 0.7450980544090271, 0.7450980544090271), (0.26050421595573425, 0.74117648601531982, 0.74117648601531982), (0.26470589637756348, 0.73725491762161255, 0.73725491762161255), (0.2689075767993927, 0.73333334922790527, 0.73333334922790527), (0.27310925722122192, 0.729411780834198, 0.729411780834198), (0.27731093764305115, 0.72549021244049072, 0.72549021244049072), (0.28151261806488037, 0.72156864404678345, 0.72156864404678345), (0.28571429848670959, 0.7137255072593689, 0.7137255072593689), (0.28991597890853882, 0.70980393886566162, 0.70980393886566162), (0.29411765933036804, 0.70588237047195435, 0.70588237047195435), (0.29831933975219727, 0.70196080207824707, 0.70196080207824707), (0.30252102017402649, 0.69803923368453979, 0.69803923368453979), (0.30672270059585571, 0.69411766529083252, 0.69411766529083252), (0.31092438101768494, 0.69019609689712524, 0.69019609689712524), (0.31512606143951416, 0.68627452850341797, 0.68627452850341797), (0.31932774186134338, 0.68235296010971069, 0.68235296010971069), (0.32352942228317261, 0.67843139171600342, 0.67843139171600342), (0.32773110270500183, 0.67450982332229614, 0.67450982332229614), (0.33193278312683105, 0.67058825492858887, 0.67058825492858887), (0.33613446354866028, 0.66666668653488159, 0.66666668653488159), (0.3403361439704895, 0.66274511814117432, 0.66274511814117432), (0.34453782439231873, 0.65882354974746704, 0.65882354974746704), (0.34873950481414795, 0.65098041296005249, 0.65098041296005249), (0.35294118523597717, 0.64705884456634521, 0.64705884456634521), (0.3571428656578064, 0.64313727617263794, 0.64313727617263794), (0.36134454607963562, 0.63921570777893066, 0.63921570777893066), (0.36554622650146484, 0.63529413938522339, 0.63529413938522339), (0.36974790692329407, 0.63137257099151611, 0.63137257099151611), (0.37394958734512329, 0.62745100259780884, 0.62745100259780884), (0.37815126776695251, 0.62352943420410156, 0.62352943420410156), (0.38235294818878174, 0.61960786581039429, 0.61960786581039429), (0.38655462861061096, 0.61568629741668701, 0.61568629741668701), (0.39075630903244019, 0.61176472902297974, 0.61176472902297974), (0.39495798945426941, 0.60784316062927246, 0.60784316062927246), (0.39915966987609863, 0.60392159223556519, 0.60392159223556519), (0.40336135029792786, 0.60000002384185791, 0.60000002384185791), (0.40756303071975708, 0.59607845544815063, 0.59607845544815063), (0.4117647111415863, 0.58823531866073608, 0.58823531866073608), (0.41596639156341553, 0.58431375026702881, 0.58431375026702881), (0.42016807198524475, 0.58039218187332153, 0.58039218187332153), (0.42436975240707397, 0.57647061347961426, 0.57647061347961426), (0.4285714328289032, 0.57254904508590698, 0.57254904508590698), (0.43277311325073242, 0.56862747669219971, 0.56862747669219971), (0.43697479367256165, 0.56470590829849243, 0.56470590829849243), (0.44117647409439087, 0.56078433990478516, 0.56078433990478516), (0.44537815451622009, 0.55686277151107788, 0.55686277151107788), (0.44957983493804932, 0.55294120311737061, 0.55294120311737061), (0.45378151535987854, 0.54901963472366333, 0.54901963472366333), (0.45798319578170776, 0.54509806632995605, 0.54509806632995605), (0.46218487620353699, 0.54117649793624878, 0.54117649793624878), (0.46638655662536621, 0.5372549295425415, 0.5372549295425415), (0.47058823704719543, 0.53333336114883423, 0.53333336114883423), (0.47478991746902466, 0.52549022436141968, 0.52549022436141968), (0.47899159789085388, 0.5215686559677124, 0.5215686559677124), (0.48319327831268311, 0.51764708757400513, 0.51764708757400513), (0.48739495873451233, 0.51372551918029785, 0.51372551918029785), (0.49159663915634155, 0.50980395078659058, 0.50980395078659058), (0.49579831957817078, 0.5058823823928833, 0.5058823823928833), (0.5, 0.50196081399917603, 0.50196081399917603), (0.50420171022415161, 0.49803921580314636, 0.49803921580314636), (0.50840336084365845, 0.49411764740943909, 0.49411764740943909), (0.51260507106781006, 0.49019607901573181, 0.49019607901573181), (0.51680672168731689, 0.48627451062202454, 0.48627451062202454), (0.52100843191146851, 0.48235294222831726, 0.48235294222831726), (0.52521008253097534, 0.47843137383460999, 0.47843137383460999), (0.52941179275512695, 0.47450980544090271, 0.47450980544090271), (0.53361344337463379, 0.47058823704719543, 0.47058823704719543), (0.5378151535987854, 0.46274510025978088, 0.46274510025978088), (0.54201680421829224, 0.45882353186607361, 0.45882353186607361), (0.54621851444244385, 0.45490196347236633, 0.45490196347236633), (0.55042016506195068, 0.45098039507865906, 0.45098039507865906), (0.55462187528610229, 0.44705882668495178, 0.44705882668495178), (0.55882352590560913, 0.44313725829124451, 0.44313725829124451), (0.56302523612976074, 0.43921568989753723, 0.43921568989753723), (0.56722688674926758, 0.43529412150382996, 0.43529412150382996), (0.57142859697341919, 0.43137255311012268, 0.43137255311012268), (0.57563024759292603, 0.42745098471641541, 0.42745098471641541), (0.57983195781707764, 0.42352941632270813, 0.42352941632270813), (0.58403360843658447, 0.41960784792900085, 0.41960784792900085), (0.58823531866073608, 0.41568627953529358, 0.41568627953529358), (0.59243696928024292, 0.4117647111415863, 0.4117647111415863), (0.59663867950439453, 0.40784314274787903, 0.40784314274787903), (0.60084033012390137, 0.40000000596046448, 0.40000000596046448), (0.60504204034805298, 0.3960784375667572, 0.3960784375667572), (0.60924369096755981, 0.39215686917304993, 0.39215686917304993), (0.61344540119171143, 0.38823530077934265, 0.38823530077934265), (0.61764705181121826, 0.38431373238563538, 0.38431373238563538), (0.62184876203536987, 0.3803921639919281, 0.3803921639919281), (0.62605041265487671, 0.37647059559822083, 0.37647059559822083), (0.63025212287902832, 0.37254902720451355, 0.37254902720451355), (0.63445377349853516, 0.36862745881080627, 0.36862745881080627), (0.63865548372268677, 0.364705890417099, 0.364705890417099), (0.6428571343421936, 0.36078432202339172, 0.36078432202339172), (0.64705884456634521, 0.35686275362968445, 0.35686275362968445), (0.65126049518585205, 0.35294118523597717, 0.35294118523597717), (0.65546220541000366, 0.3490196168422699, 0.3490196168422699), (0.6596638560295105, 0.34509804844856262, 0.34509804844856262), (0.66386556625366211, 0.33725491166114807, 0.33725491166114807), (0.66806721687316895, 0.3333333432674408, 0.3333333432674408), (0.67226892709732056, 0.32941177487373352, 0.32941177487373352), (0.67647057771682739, 0.32549020648002625, 0.32549020648002625), (0.680672287940979, 0.32156863808631897, 0.32156863808631897), (0.68487393856048584, 0.31764706969261169, 0.31764706969261169), (0.68907564878463745, 0.31372550129890442, 0.31372550129890442), (0.69327729940414429, 0.30980393290519714, 0.30980393290519714), (0.6974790096282959, 0.30588236451148987, 0.30588236451148987), (0.70168066024780273, 0.30196079611778259, 0.30196079611778259), (0.70588237047195435, 0.29803922772407532, 0.29803922772407532), (0.71008402109146118, 0.29411765933036804, 0.29411765933036804), (0.71428573131561279, 0.29019609093666077, 0.29019609093666077), (0.71848738193511963, 0.28627452254295349, 0.28627452254295349), (0.72268909215927124, 0.28235295414924622, 0.28235295414924622), (0.72689074277877808, 0.27450981736183167, 0.27450981736183167), (0.73109245300292969, 0.27058824896812439, 0.27058824896812439), (0.73529410362243652, 0.26666668057441711, 0.26666668057441711), (0.73949581384658813, 0.26274511218070984, 0.26274511218070984), (0.74369746446609497, 0.25882354378700256, 0.25882354378700256), (0.74789917469024658, 0.25490197539329529, 0.25490197539329529), (0.75210082530975342, 0.25098040699958801, 0.25098040699958801), (0.75630253553390503, 0.24705882370471954, 0.24705882370471954), (0.76050418615341187, 0.24313725531101227, 0.24313725531101227), (0.76470589637756348, 0.23921568691730499, 0.23921568691730499), (0.76890754699707031, 0.23529411852359772, 0.23529411852359772), (0.77310925722122192, 0.23137255012989044, 0.23137255012989044), (0.77731090784072876, 0.22745098173618317, 0.22745098173618317), (0.78151261806488037, 0.22352941334247589, 0.22352941334247589), (0.78571426868438721, 0.21960784494876862, 0.21960784494876862), (0.78991597890853882, 0.21176470816135406, 0.21176470816135406), (0.79411762952804565, 0.20784313976764679, 0.20784313976764679), (0.79831933975219727, 0.20392157137393951, 0.20392157137393951), (0.8025209903717041, 0.20000000298023224, 0.20000000298023224), (0.80672270059585571, 0.19607843458652496, 0.19607843458652496), (0.81092435121536255, 0.19215686619281769, 0.19215686619281769), (0.81512606143951416, 0.18823529779911041, 0.18823529779911041), (0.819327712059021, 0.18431372940540314, 0.18431372940540314), (0.82352942228317261, 0.18039216101169586, 0.18039216101169586), (0.82773107290267944, 0.17647059261798859, 0.17647059261798859), (0.83193278312683105, 0.17254902422428131, 0.17254902422428131), (0.83613443374633789, 0.16862745583057404, 0.16862745583057404), (0.8403361439704895, 0.16470588743686676, 0.16470588743686676), (0.84453779458999634, 0.16078431904315948, 0.16078431904315948), (0.84873950481414795, 0.15686275064945221, 0.15686275064945221), (0.85294115543365479, 0.14901961386203766, 0.14901961386203766), (0.8571428656578064, 0.14509804546833038, 0.14509804546833038), (0.86134451627731323, 0.14117647707462311, 0.14117647707462311), (0.86554622650146484, 0.13725490868091583, 0.13725490868091583), (0.86974787712097168, 0.13333334028720856, 0.13333334028720856), (0.87394958734512329, 0.12941177189350128, 0.12941177189350128), (0.87815123796463013, 0.12549020349979401, 0.12549020349979401), (0.88235294818878174, 0.12156862765550613, 0.12156862765550613), (0.88655459880828857, 0.11764705926179886, 0.11764705926179886), (0.89075630903244019, 0.11372549086809158, 0.11372549086809158), (0.89495795965194702, 0.10980392247438431, 0.10980392247438431), (0.89915966987609863, 0.10588235408067703, 0.10588235408067703), (0.90336132049560547, 0.10196078568696976, 0.10196078568696976), (0.90756303071975708, 0.098039217293262482, 0.098039217293262482), (0.91176468133926392, 0.094117648899555206, 0.094117648899555206), (0.91596639156341553, 0.086274512112140656, 0.086274512112140656), (0.92016804218292236, 0.08235294371843338, 0.08235294371843338), (0.92436975240707397, 0.078431375324726105, 0.078431375324726105), (0.92857140302658081, 0.074509806931018829, 0.074509806931018829), (0.93277311325073242, 0.070588238537311554, 0.070588238537311554), (0.93697476387023926, 0.066666670143604279, 0.066666670143604279), (0.94117647409439087, 0.062745101749897003, 0.062745101749897003), (0.94537812471389771, 0.058823529630899429, 0.058823529630899429), (0.94957983493804932, 0.054901961237192154, 0.054901961237192154), (0.95378148555755615, 0.050980392843484879, 0.050980392843484879), (0.95798319578170776, 0.047058824449777603, 0.047058824449777603), (0.9621848464012146, 0.043137256056070328, 0.043137256056070328), (0.96638655662536621, 0.039215687662363052, 0.039215687662363052), (0.97058820724487305, 0.035294119268655777, 0.035294119268655777), (0.97478991746902466, 0.031372550874948502, 0.031372550874948502), (0.97899156808853149, 0.023529412224888802, 0.023529412224888802), (0.98319327831268311, 0.019607843831181526, 0.019607843831181526), (0.98739492893218994, 0.015686275437474251, 0.015686275437474251), (0.99159663915634155, 0.011764706112444401, 0.011764706112444401), (0.99579828977584839, 0.0078431377187371254, 0.0078431377187371254), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} Accent = colors.LinearSegmentedColormap('Accent', _Accent_data, LUTSIZE) Blues = colors.LinearSegmentedColormap('Blues', _Blues_data, LUTSIZE) BrBG = colors.LinearSegmentedColormap('BrBG', _BrBG_data, LUTSIZE) BuGn = colors.LinearSegmentedColormap('BuGn', _BuGn_data, LUTSIZE) BuPu = colors.LinearSegmentedColormap('BuPu', _BuPu_data, LUTSIZE) Dark2 = colors.LinearSegmentedColormap('Dark2', _Dark2_data, LUTSIZE) GnBu = colors.LinearSegmentedColormap('GnBu', _GnBu_data, LUTSIZE) Greens = colors.LinearSegmentedColormap('Greens', _Greens_data, LUTSIZE) Greys = colors.LinearSegmentedColormap('Greys', _Greys_data, LUTSIZE) Oranges = colors.LinearSegmentedColormap('Oranges', _Oranges_data, LUTSIZE) OrRd = colors.LinearSegmentedColormap('OrRd', _OrRd_data, LUTSIZE) Paired = colors.LinearSegmentedColormap('Paired', _Paired_data, LUTSIZE) Pastel1 = colors.LinearSegmentedColormap('Pastel1', _Pastel1_data, LUTSIZE) Pastel2 = colors.LinearSegmentedColormap('Pastel2', _Pastel2_data, LUTSIZE) PiYG = colors.LinearSegmentedColormap('PiYG', _PiYG_data, LUTSIZE) PRGn = colors.LinearSegmentedColormap('PRGn', _PRGn_data, LUTSIZE) PuBu = colors.LinearSegmentedColormap('PuBu', _PuBu_data, LUTSIZE) PuBuGn = colors.LinearSegmentedColormap('PuBuGn', _PuBuGn_data, LUTSIZE) PuOr = colors.LinearSegmentedColormap('PuOr', _PuOr_data, LUTSIZE) PuRd = colors.LinearSegmentedColormap('PuRd', _PuRd_data, LUTSIZE) Purples = colors.LinearSegmentedColormap('Purples', _Purples_data, LUTSIZE) RdBu = colors.LinearSegmentedColormap('RdBu', _RdBu_data, LUTSIZE) RdGy = colors.LinearSegmentedColormap('RdGy', _RdGy_data, LUTSIZE) RdPu = colors.LinearSegmentedColormap('RdPu', _RdPu_data, LUTSIZE) RdYlBu = colors.LinearSegmentedColormap('RdYlBu', _RdYlBu_data, LUTSIZE) RdYlGn = colors.LinearSegmentedColormap('RdYlGn', _RdYlGn_data, LUTSIZE) Reds = colors.LinearSegmentedColormap('Reds', _Reds_data, LUTSIZE) Set1 = colors.LinearSegmentedColormap('Set1', _Set1_data, LUTSIZE) Set2 = colors.LinearSegmentedColormap('Set2', _Set2_data, LUTSIZE) Set3 = colors.LinearSegmentedColormap('Set3', _Set3_data, LUTSIZE) Spectral = colors.LinearSegmentedColormap('Spectral', _Spectral_data, LUTSIZE) YlGn = colors.LinearSegmentedColormap('YlGn', _YlGn_data, LUTSIZE) YlGnBu = colors.LinearSegmentedColormap('YlGnBu', _YlGnBu_data, LUTSIZE) YlOrBr = colors.LinearSegmentedColormap('YlOrBr', _YlOrBr_data, LUTSIZE) YlOrRd = colors.LinearSegmentedColormap('YlOrRd', _YlOrRd_data, LUTSIZE) gist_earth = colors.LinearSegmentedColormap('gist_earth', _gist_earth_data, LUTSIZE) gist_gray = colors.LinearSegmentedColormap('gist_gray', _gist_gray_data, LUTSIZE) gist_heat = colors.LinearSegmentedColormap('gist_heat', _gist_heat_data, LUTSIZE) gist_ncar = colors.LinearSegmentedColormap('gist_ncar', _gist_ncar_data, LUTSIZE) gist_rainbow = colors.LinearSegmentedColormap('gist_rainbow', _gist_rainbow_data, LUTSIZE) gist_stern = colors.LinearSegmentedColormap('gist_stern', _gist_stern_data, LUTSIZE) gist_yarg = colors.LinearSegmentedColormap('gist_yarg', _gist_yarg_data, LUTSIZE) datad['Accent']=_Accent_data datad['Blues']=_Blues_data datad['BrBG']=_BrBG_data datad['BuGn']=_BuGn_data datad['BuPu']=_BuPu_data datad['Dark2']=_Dark2_data datad['GnBu']=_GnBu_data datad['Greens']=_Greens_data datad['Greys']=_Greys_data datad['Oranges']=_Oranges_data datad['OrRd']=_OrRd_data datad['Paired']=_Paired_data datad['Pastel1']=_Pastel1_data datad['Pastel2']=_Pastel2_data datad['PiYG']=_PiYG_data datad['PRGn']=_PRGn_data datad['PuBu']=_PuBu_data datad['PuBuGn']=_PuBuGn_data datad['PuOr']=_PuOr_data datad['PuRd']=_PuRd_data datad['Purples']=_Purples_data datad['RdBu']=_RdBu_data datad['RdGy']=_RdGy_data datad['RdPu']=_RdPu_data datad['RdYlBu']=_RdYlBu_data datad['RdYlGn']=_RdYlGn_data datad['Reds']=_Reds_data datad['Set1']=_Set1_data datad['Set2']=_Set2_data datad['Set3']=_Set3_data datad['Spectral']=_Spectral_data datad['YlGn']=_YlGn_data datad['YlGnBu']=_YlGnBu_data datad['YlOrBr']=_YlOrBr_data datad['YlOrRd']=_YlOrRd_data datad['gist_earth']=_gist_earth_data datad['gist_gray']=_gist_gray_data datad['gist_heat']=_gist_heat_data datad['gist_ncar']=_gist_ncar_data datad['gist_rainbow']=_gist_rainbow_data datad['gist_stern']=_gist_stern_data datad['gist_yarg']=_gist_yarg_data # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def revcmap(data): data_r = {} for key, val in data.iteritems(): valnew = [(1.-a, b, c) for a, b, c in reversed(val)] data_r[key] = valnew return data_r cmapnames = datad.keys() for cmapname in cmapnames: cmapname_r = cmapname+'_r' cmapdat_r = revcmap(datad[cmapname]) datad[cmapname_r] = cmapdat_r locals()[cmapname_r] = colors.LinearSegmentedColormap(cmapname_r, cmapdat_r, LUTSIZE)
agpl-3.0
genialis/resolwe-bio
resolwe_bio/tools/expression_rpkum.py
1
3076
#!/usr/bin/env python3 """Normalize expressions to RPKUM.""" import argparse import sys from os.path import basename import pandas as pd from resolwe_runtime_utils import error, send_message def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Normalize expressions using RPKUM.") parser.add_argument("-c", "--counts", required=True, help="Raw counts file.") parser.add_argument("-m", "--mappability", required=True, help="Mappability file.") parser.add_argument("-o", "--output", required=True, help="Output file name.") return parser.parse_args() def parse_expression_file(exp_file): """Parse expression file to a Pandas Series.""" try: expression = pd.read_csv( exp_file, sep="\t", compression="gzip", usecols=["Gene", "Expression"], index_col="Gene", dtype={ "Gene": str, "Expression": float, }, squeeze=True, ) return expression.dropna() except (ValueError, OSError) as parse_error: send_message( error( "Failed to read input file {}. {}".format( basename(exp_file), parse_error ) ) ) sys.exit(1) def parse_mapability_file(mapability_file): """Parse mapability file to a Pandas Series.""" try: mappability = pd.read_csv( mapability_file, sep="\t", usecols=["gene_id", "coverage"], index_col="gene_id", dtype={ "gene_id": str, "coverage": float, }, squeeze=True, ) return mappability.dropna() except (ValueError, OSError) as parse_error: send_message( error( "Failed to read mappability file {}. {}".format( basename(mapability_file), parse_error ) ) ) sys.exit(1) def main(): """Invoke when run directly as a program.""" args = parse_arguments() mappability = parse_mapability_file(args.mappability) expression = parse_expression_file(args.counts) missing_genes = expression.index.difference(mappability.index) if len(missing_genes) > 0: send_message( error( "Feature ID {} is not present in the mappability file. " "Make sure that the expressions and mappability file are " "derived from the same annotations (GTF/GFF) file.".format( missing_genes[0] ) ) ) sys.exit(1) lib_size = expression.sum() result = 10 ** 9 * expression / lib_size / mappability result[mappability == 0] = 0.0 result.loc[expression.index].to_csv( args.output, index_label="Gene", header=["Expression"], sep="\t", compression="gzip", ) if __name__ == "__main__": main()
apache-2.0
guaix-ucm/megaradrp
tools/main_plus_poly.py
2
5041
from __future__ import print_function import glob import shutil import json import pandas as pd import os def copy_from_folder(): for base in glob.glob("*"): print(base) for file in glob.glob("%s/*.json" % base): full_file_name = "%s" % file dest = "%s.json" % base print("\t %s" % full_file_name) shutil.copy(full_file_name, dest) def read_json(name): lin_lrv = [6163.59390, 6150.29600, 6143.06260, 6128.44990, 6096.16310, 6074.33770, 6029.99690, 5975.53400, 5944.83420, 5913.63100, 5881.89520, 5852.48790, 5433.64990, 5418.55770, 5400.56180, 5341.09320] lin_lri = [7272.935, 7372.128, 7383.980, 7435.488, 7503.868, 7514.651, 7635.105, 7723.984, 7891.040, 7948.176, 7979.004, 8006.156, 8014.785, 8053.307, 8103.692, 8115.311, 8264.521, 8330.425, 8408.209, 8424.647, 8521.441, 8605.768, 8620.491, 8667.943] lin_lrz = [8046.11, 8136.40, 8205.11, 8266.08, 8320.86, 8358.72, 8421.22, 8446.51, 8582.90, 8621.30, 8709.23, 8812.51, 8865.31, 9148.67, 9276.27, 9459.21, 9547.74] lin_lrr = [7298.1436, 7173.3726, 7059.5254, 6955.3149, 6876.2925, 6658.6772, 6524.7627, 6412.5918, 6337.6206, 6326.3667, 6214.4413, 6098.8032, 6090.1079, 6020.1191, 6013.2817] with open('%s.json' % name) as data_file: data = json.load(data_file) c0 = [] c1 = [] c2 = [] c3 = [] c4 = [] c5 = [] xpos = [] ypos = [] fwhm = [] wave = [] ref = [] list_fib = [] list_coeffs = [] list_ind = [] fibra = 1 contents = data['contents'] if isinstance(contents, dict): conts = contents.values() else: conts = contents for elem in conts: list_coeffs=elem['coeff'] for linea in elem['features']: xpos.append(linea['xpos']) ypos.append(linea['ypos']) fwhm.append(linea['fwhm']) wave.append(linea['wavelength']) ref.append(linea['reference']) c0.append(list_coeffs[0]) c1.append(list_coeffs[1]) c2.append(list_coeffs[2]) c3.append(list_coeffs[3]) c4.append(list_coeffs[4]) c5.append(list_coeffs[5]) list_fib.append(fibra) if 'LRZ' in name: list_ind.append(lin_lrz.index(linea['reference']) + 1) elif 'LRV' in name: list_ind.append(lin_lrv.index(linea['reference']) + 1) elif 'LRR' in name: try: list_ind.append(lin_lrr.index(linea['reference']) + 1) except: list_ind.append(0) else: try: list_ind.append(lin_lri.index(linea['reference']) + 1) except: list_ind.append(0) fibra += 1 data = { 'xpos': xpos, 'ypos': ypos, 'fwhm': fwhm, 'wavelength': wave, 'reference': ref, 'fibra': list_fib, 'line': list_ind, 'zc0': c0, 'zc1': c1, 'zc2': c2, 'zc3': c3, 'zc4': c4, 'zc5': c5 } df = pd.DataFrame(data) # Create a Pandas Excel writer using XlsxWriter as the engine. excel = pd.ExcelWriter('%s.xlsx' % name, engine='xlsxwriter') df.to_excel(excel, sheet_name='Sheet1', index=False) # df.to_excel(writer, sheet_name='Sheet2') csv = df.to_csv('%s.csv' % name, sep=' ', index=False, encoding='utf-8') def generar_xls(): lista_ficheros = [] for base in glob.glob("*.json"): file_name = base.split('.')[0] lista_ficheros.append(file_name) read_json(file_name) lista = {'LRR':[], 'LRV':[], 'LRZ':[], 'sci_LRR':[], 'sci_LRV':[], 'sci_LRZ':[], 'sci_LRI':[], } for elem in lista_ficheros: if 'LRZ' in elem: if 'sci' in elem: lista['sci_LRZ'].append(elem) else: lista['LRZ'].append(elem) elif 'LRR' in elem: if 'sci' in elem: lista['sci_LRR'].append(elem) else: lista['LRR'].append(elem) elif 'LRI' in elem: if 'sci' in elem: lista['sci_LRI'].append(elem) else: lista['LRI'].append(elem) else: if 'sci' in elem: lista['sci_LRV'].append(elem) else: lista['LRV'].append(elem) for elem in lista: lista[elem].sort() if lista[elem]: file = open('%s.txt'%elem, 'w') for item in lista[elem]: file.write("%s\n" % item) os.chdir(".") generar_xls() print('**************************Fin*************************')
gpl-3.0
adamcandy/qgis-plugins-meshing-initial
dev/old/shape/extractPoints.py
3
6740
""" ########################################################################## # # QGIS-meshing plugins. # # Copyright (C) 2012-2013 Imperial College London and others. # # Please see the AUTHORS file in the main source directory for a # full list of copyright holders. # # Dr Adam S. Candy, [email protected] # Applied Modelling and Computation Group # Department of Earth Science and Engineering # Imperial College London # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation, # version 2.1 of the License. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA # ########################################################################## Sets the read and the write file stream according to the command line arguments given. The first argument specifies which shape file the user wants to specify the boundaries of The second arguments specifies the boundary polygon The third argument specifies the file path to which the new shape has to be written """ from shapely.ops import cascaded_union import shapefile from shapely.geometry import * import sys import matplotlib.pyplot as pyplot """ Write the results to .shp. """ def writeShapeFile(points, filepath) : #begin the instance pf writer class w = shapefile.Writer() #ensure shape and records the balance w.autobalance = 1 i = 0 for l in points: pList = [] pList.append(l) if len(l)==1 : w.point(pList[0][0],pList[0][1]) w.field("%d_FLD"%i,"C","40") i+=1 elif len(l)==2 : w.line(parts = pList) w.field("%d_FLD"%i,"C","40") i+=1 else : w.poly(parts = pList) w.field("%d_FLD"%i,"C","40") i += 1 w.save(filepath) print("Number of shapes Written %d" %i) """ Used if there is only one shape in the boundary shapefile. """ def getBoundaryPointsList(bounds): shapes = bounds.shapes() pointsList = (shapes[0].points) polygon = Polygon(pointsList) return (polygon,pointsList) """ When more than one shapefile, works out which objects from the .shp file are overlapping and return the exterior coords of this new shape. """ def overlap (bounds, plot = False): # Read shapefile and work out overlap. Optional plot. shapes = bounds.shapes() pointsList = [] for i in range(len(shapes)): # Check datapoint is valid. pointsList.append(shapes[i].points) # Turn the points into polygons. polygons = [] for j in range(len(pointsList)): polygons.append(Polygon([pointsList[j][i] for i in range(len(pointsList[j]))])) # Add overlapping shapes into a list so we know which to join together. overlapping = [] for n in range(len(polygons) - 1): if polygons[n].intersects(polygons[n+1]) == True: # Two if statements to make sure the same polygon isn't being entered more than once. if polygons[n] not in overlapping: overlapping.append(polygons[n]) if polygons[n + 1] not in overlapping: overlapping.append(polygons[n + 1]) # Create a new shape from the overlapping shapes. join = cascaded_union(overlapping) poly = [join] # Take the coords. of the perimeter of this new shape. coords = [] for i in range(len(join.exterior.coords)): coords.append(list(join.exterior.coords[i])) # Plot results if True. Store x-y coords of the perimeter in two lists to plot. if plot == True: x = []; y = [] for i in range(len(coords)): x.append(coords[i][0]); y.append(coords[i][1]) # Plot results. pyplot.plot(x, y) pyplot.xlim(-4, 4) pyplot.ylim(-4, 4) pyplot.show() return join, coords """ Output the final results as a .geo file. """ def write_geo (coords, filename): # Write new shape to .geo. print coords target = open("%s.geo" % filename, "w") # Creates .geo file to write to. for i in range(len(coords)): # Write point. target.write('Point(%d) = {%.3f, %.3f, 0, %.3f};\n' %(i + 1, coords[i][0], coords[i][1], 1.0)) # Write the lines connecting the sequential points. if (i + 1 > 1): target.write('Line(%d) = {%d, %d};\n' % (i, i, i + 1)) # Connect first and last points. target.write('Line(%d) = {%d, %d};\n' % (i + 1, 1, i + 1)) target.close() return False assert len(sys.argv)==5, "Incorrect Number of Arguments passed" readPath = sys.argv[1] boundaryPath = sys.argv[2] writePath = sys.argv[3] areaThreshold = float(sys.argv[4]) #input stream for the given shape sf = shapefile.Reader(readPath) #shapes contained in the given file shapes = sf.shapes(); #boundary = bounds.shapes[0] boundary = shapefile.Reader(boundaryPath) if (len(boundary.shapes()) > 1): boundaryPolygons, boundaryPointList1 = overlap(boundary); boundaryPointList = [boundaryPointList1] else: boundaryPolygons, boundaryPointList = getBoundaryPointsList(boundary) """ Takes shape from shapefile and converts to a Shapely Polygon. Checks if this polygon lies within the boundary using a.intersect(b). If it does it will perform a.intersection(b) operation returning a Polygon/MultiPolygon which lies within the boundary and then plots result. """ shapeList = [] for shape in shapes: x = []; y = []; shp = [] polygon = Polygon([shape.points[i] for i in range(len(shape.points))]) if (polygon.intersects(boundaryPolygons)): intersection = boundaryPolygons.intersection(polygon) if intersection.area >= areaThreshold: if intersection.geom_type == 'Polygon': for i in range(len(list(intersection.exterior.coords))): x.append(intersection.exterior.coords[i][0]); y.append(intersection.exterior.coords[i][1]) pyplot.plot(x, y) shp.append([intersection.exterior.coords[i][0], intersection.exterior.coords[i][1]]) if intersection.geom_type == 'MultiPolygon': for j in range(len(intersection)): for i in range(len(list(intersection[j].exterior.coords))): x.append(intersection[j].exterior.coords[i][0]); y.append(intersection[j].exterior.coords[i][1]) pyplot.plot(x, y) shp.append([intersection[j].exterior.coords[i][0], intersection[j].exterior.coords[i][1]]) shapeList.append(shp) writeShapeFile(shapeList, writePath) # Plot boundary. x=[] y=[] for i in range(len(boundaryPointList)): x.append(boundaryPointList[i][0]); y.append(boundaryPointList[i][1]) pyplot.plot(x,y) pyplot.xlim(min(x)-1,max(x)+1) pyplot.ylim(min(y)-1,max(y)+1) pyplot.show()
lgpl-2.1
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tseries/tests/test_timedeltas.py
7
78075
# pylint: disable-msg=E1101,W0612 from __future__ import division from datetime import timedelta, time import nose from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, Timestamp, Timedelta, TimedeltaIndex, isnull, date_range, timedelta_range, Int64Index) from pandas.compat import range from pandas import compat, to_timedelta, tslib from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal, assert_index_equal) from pandas.tseries.offsets import Day, Second import pandas.util.testing as tm from numpy.random import randn from pandas import _np_version_under1p8 iNaT = tslib.iNaT class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_get_loc_nat(self): tidx = TimedeltaIndex(['1 days 01:00:00', 'NaT', '2 days 01:00:00']) self.assertEqual(tidx.get_loc(pd.NaT), 1) self.assertEqual(tidx.get_loc(None), 1) self.assertEqual(tidx.get_loc(float('nan')), 1) self.assertEqual(tidx.get_loc(np.nan), 1) def test_contains(self): # Checking for any NaT-like objects # GH 13603 td = to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertFalse((v in td)) td = to_timedelta([pd.NaT]) for v in [pd.NaT, None, float('nan'), np.nan]: self.assertTrue((v in td)) def test_construction(self): expected = np.timedelta64(10, 'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10, unit='d').value, expected) self.assertEqual(Timedelta(10.0, unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10, 's').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10, seconds=10).value, expected) self.assertEqual( Timedelta(days=10, milliseconds=10 * 1000).value, expected) self.assertEqual( Timedelta(days=10, microseconds=10 * 1000 * 1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days': 'D', 'seconds': 's', 'microseconds': 'us', 'milliseconds': 'ms', 'minutes': 'm', 'hours': 'h', 'weeks': 'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual( Timedelta(**{pykwarg: npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta( 82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta( 123072001000000))) # string conversion with/without leading zero # GH 9570 self.assertEqual(Timedelta('0:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('00:00:00'), timedelta(hours=0)) self.assertEqual(Timedelta('-1:00:00'), -timedelta(hours=1)) self.assertEqual(Timedelta('-01:00:00'), -timedelta(hours=1)) # more strings & abbrevs # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hr'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10, hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta( days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), - timedelta(days=10, hours=1, minutes=1, seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=1, microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), - timedelta(days=10, hours=1, minutes=1, seconds=31, microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on # the days) self.assertRaises(ValueError, lambda: Timedelta('-10 days -1 h 1.5m 1s 3us')) # only leading neg signs are allowed self.assertRaises(ValueError, lambda: Timedelta('10 days -1 h 1.5m 1s 3us')) # no units specified self.assertRaises(ValueError, lambda: Timedelta('3.1415')) # invalid construction tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta", lambda: Timedelta()) tm.assertRaisesRegexp(ValueError, "unit abbreviation w/o a number", lambda: Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a Timedelta from the passed " "arguments, allowed keywords are ", lambda: Timedelta(day=10)) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value), td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)), td) self.assertEqual(Timedelta(td._repr_base(format='all')), td) # floats expected = np.timedelta64( 10, 's').astype('m8[ns]').view('i8') + np.timedelta64( 500, 'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5, unit='s').value, expected) # nat self.assertEqual(Timedelta('').value, iNaT) self.assertEqual(Timedelta('nat').value, iNaT) self.assertEqual(Timedelta('NAT').value, iNaT) self.assertEqual(Timedelta(None).value, iNaT) self.assertEqual(Timedelta(np.nan).value, iNaT) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)), Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)), Timedelta('0 days, 00:00:02')) # unicode # GH 11995 expected = Timedelta('1H') result = pd.Timedelta(u'1H') self.assertEqual(result, expected) self.assertEqual(to_timedelta(pd.offsets.Hour(2)), Timedelta(u'0 days, 02:00:00')) self.assertRaises(ValueError, lambda: Timedelta(u'foo bar')) def test_round(self): t1 = Timedelta('1 days 02:34:56.789123456') t2 = Timedelta('-1 days 02:34:56.789123456') for (freq, s1, s2) in [('N', t1, t2), ('U', Timedelta('1 days 02:34:56.789123000'), Timedelta('-1 days 02:34:56.789123000')), ('L', Timedelta('1 days 02:34:56.789000000'), Timedelta('-1 days 02:34:56.789000000')), ('S', Timedelta('1 days 02:34:57'), Timedelta('-1 days 02:34:57')), ('2S', Timedelta('1 days 02:34:56'), Timedelta('-1 days 02:34:56')), ('5S', Timedelta('1 days 02:34:55'), Timedelta('-1 days 02:34:55')), ('T', Timedelta('1 days 02:35:00'), Timedelta('-1 days 02:35:00')), ('12T', Timedelta('1 days 02:36:00'), Timedelta('-1 days 02:36:00')), ('H', Timedelta('1 days 03:00:00'), Timedelta('-1 days 03:00:00')), ('d', Timedelta('1 days'), Timedelta('-1 days'))]: r1 = t1.round(freq) self.assertEqual(r1, s1) r2 = t2.round(freq) self.assertEqual(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) t1 = timedelta_range('1 days', periods=3, freq='1 min 2 s 3 us') t2 = -1 * t1 t1a = timedelta_range('1 days', periods=3, freq='1 min 2 s') t1c = pd.TimedeltaIndex([1, 1, 1], unit='D') # note that negative times round DOWN! so don't give whole numbers for (freq, s1, s2) in [('N', t1, t2), ('U', t1, t2), ('L', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('S', t1a, TimedeltaIndex(['-1 days +00:00:00', '-2 days +23:58:58', '-2 days +23:57:56'], dtype='timedelta64[ns]', freq=None) ), ('12T', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('H', t1c, TimedeltaIndex(['-1 days', '-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None) ), ('d', t1c, pd.TimedeltaIndex([-1, -1, -1], unit='D') )]: r1 = t1.round(freq) tm.assert_index_equal(r1, s1) r2 = t2.round(freq) tm.assert_index_equal(r2, s2) # invalid for freq in ['Y', 'M', 'foobar']: self.assertRaises(ValueError, lambda: t1.round(freq)) def test_repr(self): self.assertEqual(repr(Timedelta(10, unit='d')), "Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10, unit='s')), "Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10, unit='ms')), "Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10, unit='ms')), "Timedelta('-1 days +23:59:59.990000')") def test_identity(self): td = Timedelta(10, unit='d') self.assertTrue(isinstance(td, Timedelta)) self.assertTrue(isinstance(td, timedelta)) def test_conversion(self): for td in [Timedelta(10, unit='d'), Timedelta('1 days, 10:11:12.012345')]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance( pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1, 'D') self.assertEqual(result, td.value / float(86400 * 1e9)) result = td / np.timedelta64(1, 's') self.assertEqual(result, td.value / float(1e9)) result = td / np.timedelta64(1, 'ns') self.assertEqual(result, td.value) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_compare_timedelta_series(self): # regresssion test for GH5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_compare_timedelta_ndarray(self): # GH11835 periods = [Timedelta('0 days 01:00:00'), Timedelta('0 days 01:00:00')] arr = np.array(periods) result = arr[0] > arr expected = np.array([False, False]) self.assert_numpy_array_equal(result, expected) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 td = Timedelta('1 day') for l, r in [(td, 'a'), ('a', td)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r self.assertFalse(l == r) self.assertTrue(l != r) def test_fields(self): def check(value): # that we are int/long like self.assertTrue(isinstance(value, (int, compat.long))) # compat to datetime.timedelta rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days, 1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 0) self.assertEqual(rng.nanoseconds, 0) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td), Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td, Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value, 49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value, -49728000000000) rng = to_timedelta('-1 days, 10:11:12.100123456') self.assertEqual(rng.days, -1) self.assertEqual(rng.seconds, 10 * 3600 + 11 * 60 + 12) self.assertEqual(rng.microseconds, 100 * 1000 + 123) self.assertEqual(rng.nanoseconds, 456) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days, -1) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) # GH 10050 check(tup.days) check(tup.hours) check(tup.minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days, -2) self.assertEqual(tup.hours, 23) self.assertEqual(tup.minutes, 59) self.assertEqual(tup.seconds, 59) self.assertEqual(tup.milliseconds, 999) self.assertEqual(tup.microseconds, 999) self.assertEqual(tup.nanoseconds, 0) def test_timedelta_range(self): expected = to_timedelta(np.arange(5), unit='D') result = timedelta_range('0 days', periods=5, freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(11), unit='D') result = timedelta_range('0 days', '10 days', freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(5), unit='D') + Second(2) + Day() result = timedelta_range('1 days, 00:00:02', '5 days, 00:00:02', freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta([1, 3, 5, 7, 9], unit='D') + Second(2) result = timedelta_range('1 days, 00:00:02', periods=5, freq='2D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(50), unit='T') * 30 result = timedelta_range('0 days', freq='30T', periods=50) tm.assert_index_equal(result, expected) # GH 11776 arr = np.arange(10).reshape(2, 5) df = pd.DataFrame(np.arange(10).reshape(2, 5)) for arg in (arr, df): with tm.assertRaisesRegexp(TypeError, "1-d array"): to_timedelta(arg) for errors in ['ignore', 'raise', 'coerce']: with tm.assertRaisesRegexp(TypeError, "1-d array"): to_timedelta(arg, errors=errors) # issue10583 df = pd.DataFrame(np.random.normal(size=(10, 4))) df.index = pd.timedelta_range(start='0s', periods=10, freq='s') expected = df.loc[pd.Timedelta('0s'):, :] result = df.loc['0s':, :] assert_frame_equal(expected, result) def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0, 'ns')) self.assertEqual(ct(10), np.timedelta64(10, 'ns')) self.assertEqual(ct(10, unit='ns'), np.timedelta64( 10, 'ns').astype('m8[ns]')) self.assertEqual(ct(10, unit='us'), np.timedelta64( 10, 'us').astype('m8[ns]')) self.assertEqual(ct(10, unit='ms'), np.timedelta64( 10, 'ms').astype('m8[ns]')) self.assertEqual(ct(10, unit='s'), np.timedelta64( 10, 's').astype('m8[ns]')) self.assertEqual(ct(10, unit='d'), np.timedelta64( 10, 'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1, 's').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1, 'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1, 'D').astype('m8[ns]')) def test_short_format_converters(self): def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10, 'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10, 'ns')) self.assertEqual(ct('100'), np.timedelta64(100, 'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100, 'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000, 'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000, 'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000, 'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000, 'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000, 'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000, 'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000, 'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000, 'ns')) self.assertEqual(ct('100s'), np.timedelta64(100000000000, 'ns')) self.assertEqual(ct('1000s'), np.timedelta64(1000000000000, 'ns')) self.assertEqual(ct('1d'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('-1d'), -conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('1D'), conv(np.timedelta64(1, 'D'))) self.assertEqual(ct('10D'), conv(np.timedelta64(10, 'D'))) self.assertEqual(ct('100D'), conv(np.timedelta64(100, 'D'))) self.assertEqual(ct('1000D'), conv(np.timedelta64(1000, 'D'))) self.assertEqual(ct('10000D'), conv(np.timedelta64(10000, 'D'))) # space self.assertEqual(ct(' 10000D '), conv(np.timedelta64(10000, 'D'))) self.assertEqual(ct(' - 10000D '), -conv(np.timedelta64(10000, 'D'))) # invalid self.assertRaises(ValueError, ct, '1foo') self.assertRaises(ValueError, ct, 'foo') def test_full_format_converters(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1, 'D') self.assertEqual(ct('1days'), conv(d1)) self.assertEqual(ct('1days,'), conv(d1)) self.assertEqual(ct('- 1days,'), -conv(d1)) self.assertEqual(ct('00:00:01'), conv(np.timedelta64(1, 's'))) self.assertEqual(ct('06:00:01'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.0'), conv( np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('06:00:01.01'), conv( np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) self.assertEqual(ct('- 1days, 00:00:01'), conv(-d1 + np.timedelta64(1, 's'))) self.assertEqual(ct('1days, 06:00:01'), conv( d1 + np.timedelta64(6 * 3600 + 1, 's'))) self.assertEqual(ct('1days, 06:00:01.01'), conv( d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms'))) # invalid self.assertRaises(ValueError, ct, '- 1days, 00') def test_nat_converters(self): self.assertEqual(to_timedelta( 'nat', box=False).astype('int64'), tslib.iNaT) self.assertEqual(to_timedelta( 'nan', box=False).astype('int64'), tslib.iNaT) def test_to_timedelta(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1, 'D') self.assertEqual(to_timedelta('1 days 06:05:01.00003', box=False), conv(d1 + np.timedelta64(6 * 3600 + 5 * 60 + 1, 's') + np.timedelta64(30, 'us'))) self.assertEqual(to_timedelta('15.5us', box=False), conv(np.timedelta64(15500, 'ns'))) # empty string result = to_timedelta('', box=False) self.assertEqual(result.astype('int64'), tslib.iNaT) result = to_timedelta(['', '']) self.assertTrue(isnull(result).all()) # pass thru result = to_timedelta(np.array([np.timedelta64(1, 's')])) expected = pd.Index(np.array([np.timedelta64(1, 's')])) tm.assert_index_equal(result, expected) # ints result = np.timedelta64(0, 'ns') expected = to_timedelta(0, box=False) self.assertEqual(result, expected) # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(['1d', '1days 00:00:01'])) tm.assert_series_equal(result, expected) # with units result = TimedeltaIndex([np.timedelta64(0, 'ns'), np.timedelta64( 10, 's').astype('m8[ns]')]) expected = to_timedelta([0, 10], unit='s') tm.assert_index_equal(result, expected) # single element conversion v = timedelta(seconds=1) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) v = np.timedelta64(timedelta(seconds=1)) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) # arrays of various dtypes arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='s') expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='m') expected = TimedeltaIndex([np.timedelta64(1, 'm')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='h') expected = TimedeltaIndex([np.timedelta64(1, 'h')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='timedelta64[s]') result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='timedelta64[D]') result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, 'D')] * 5) tm.assert_index_equal(result, expected) # Test with lists as input when box=false expected = np.array(np.arange(3) * 1000000000, dtype='timedelta64[ns]') result = to_timedelta(range(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta(np.arange(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta([0, 1, 2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) # Tests with fractional seconds as input: expected = np.array( [0, 500000000, 800000000, 1200000000], dtype='timedelta64[ns]') result = to_timedelta([0., 0.5, 0.8, 1.2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) def testit(unit, transform): # array result = to_timedelta(np.arange(5), unit=unit) expected = TimedeltaIndex([np.timedelta64(i, transform(unit)) for i in np.arange(5).tolist()]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2, unit=unit) expected = Timedelta(np.timedelta64(2, transform(unit)).astype( 'timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']: testit(unit, lambda x: x.upper()) for unit in ['days', 'day', 'Day', 'Days']: testit(unit, lambda x: 'D') for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US', 'NS']: testit(unit, lambda x: x.lower()) # offsets # m testit('T', lambda x: 'm') # ms testit('L', lambda x: 'ms') def test_to_timedelta_invalid(self): # bad value for errors parameter msg = "errors must be one of" tm.assertRaisesRegexp(ValueError, msg, to_timedelta, ['foo'], errors='never') # these will error self.assertRaises(ValueError, lambda: to_timedelta([1, 2], unit='foo')) self.assertRaises(ValueError, lambda: to_timedelta(1, unit='foo')) # time not supported ATM self.assertRaises(ValueError, lambda: to_timedelta(time(second=1))) self.assertTrue(to_timedelta( time(second=1), errors='coerce') is pd.NaT) self.assertRaises(ValueError, lambda: to_timedelta(['foo', 'bar'])) tm.assert_index_equal(TimedeltaIndex([pd.NaT, pd.NaT]), to_timedelta(['foo', 'bar'], errors='coerce')) tm.assert_index_equal(TimedeltaIndex(['1 day', pd.NaT, '1 min']), to_timedelta(['1 day', 'bar', '1 min'], errors='coerce')) # gh-13613: these should not error because errors='ignore' invalid_data = 'apple' self.assertEqual(invalid_data, to_timedelta( invalid_data, errors='ignore')) invalid_data = ['apple', '1 days'] tm.assert_numpy_array_equal( np.array(invalid_data, dtype=object), to_timedelta(invalid_data, errors='ignore')) invalid_data = pd.Index(['apple', '1 days']) tm.assert_index_equal(invalid_data, to_timedelta( invalid_data, errors='ignore')) invalid_data = Series(['apple', '1 days']) tm.assert_series_equal(invalid_data, to_timedelta( invalid_data, errors='ignore')) def test_to_timedelta_via_apply(self): # GH 5458 expected = Series([np.timedelta64(1, 's')]) result = Series(['00:00:01']).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta('00:00:01')]) tm.assert_series_equal(result, expected) def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_overflow(self): # GH 9442 s = Series(pd.date_range('20130101', periods=100000, freq='H')) s[0] += pd.Timedelta('1s 1ms') # mean result = (s - s.min()).mean() expected = pd.Timedelta((pd.DatetimeIndex((s - s.min())).asi8 / len(s) ).sum()) # the computation is converted to float so might be some loss of # precision self.assertTrue(np.allclose(result.value / 1000, expected.value / 1000)) # sum self.assertRaises(ValueError, lambda: (s - s.min()).sum()) s1 = s[0:10000] self.assertRaises(ValueError, lambda: (s1 - s1.min()).sum()) s2 = s[0:1000] result = (s2 - s2.min()).sum() def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'), pd.offsets.Day() + pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_to_timedelta_on_missing_values(self): # GH5438 timedelta_NaT = np.timedelta64('NaT') actual = pd.to_timedelta(Series(['00:00:01', np.nan])) expected = Series([np.timedelta64(1000000000, 'ns'), timedelta_NaT], dtype='<m8[ns]') assert_series_equal(actual, expected) actual = pd.to_timedelta(Series(['00:00:01', pd.NaT])) assert_series_equal(actual, expected) actual = pd.to_timedelta(np.nan) self.assertEqual(actual.value, timedelta_NaT.astype('int64')) actual = pd.to_timedelta(pd.NaT) self.assertEqual(actual.value, timedelta_NaT.astype('int64')) def test_to_timedelta_on_nanoseconds(self): # GH 9273 result = Timedelta(nanoseconds=100) expected = Timedelta('100ns') self.assertEqual(result, expected) result = Timedelta(days=1, hours=1, minutes=1, weeks=1, seconds=1, milliseconds=1, microseconds=1, nanoseconds=1) expected = Timedelta(694861001001001) self.assertEqual(result, expected) result = Timedelta(microseconds=1) + Timedelta(nanoseconds=1) expected = Timedelta('1us1ns') self.assertEqual(result, expected) result = Timedelta(microseconds=1) - Timedelta(nanoseconds=1) expected = Timedelta('999ns') self.assertEqual(result, expected) result = Timedelta(microseconds=1) + 5 * Timedelta(nanoseconds=-2) expected = Timedelta('990ns') self.assertEqual(result, expected) self.assertRaises(TypeError, lambda: Timedelta(nanoseconds='abc')) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = scalar1 + s1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = -scalar1 + s2 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = NA + s1 assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = -NA + s1 assert_series_equal(actual, sn) actual = s1 + pd.NaT assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1 assert_frame_equal(actual, df2) actual = df2 - scalar1 assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 + NA assert_frame_equal(actual, dfn) actual = df1 - NA assert_frame_equal(actual, dfn) actual = df1 + pd.NaT # NaT is datetime, not timedelta assert_frame_equal(actual, dfn) actual = df1 - pd.NaT assert_frame_equal(actual, dfn) def test_apply_to_timedelta(self): timedelta_NaT = pd.to_timedelta('NaT') list_of_valid_strings = ['00:00:01', '00:00:02'] a = pd.to_timedelta(list_of_valid_strings) b = Series(list_of_valid_strings).apply(pd.to_timedelta) # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b) list_of_strings = ['00:00:01', np.nan, pd.NaT, timedelta_NaT] # TODO: unused? a = pd.to_timedelta(list_of_strings) # noqa b = Series(list_of_strings).apply(pd.to_timedelta) # noqa # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b) def test_pickle(self): v = Timedelta('1 days 10:11:12.0123456') v_p = self.round_trip_pickle(v) self.assertEqual(v, v_p) def test_timedelta_hash_equality(self): # GH 11129 v = Timedelta(1, 'D') td = timedelta(days=1) self.assertEqual(hash(v), hash(td)) d = {td: 2} self.assertEqual(d[v], 2) tds = timedelta_range('1 second', periods=20) self.assertTrue(all(hash(td) == hash(td.to_pytimedelta()) for td in tds)) # python timedeltas drop ns resolution ns_td = Timedelta(1, 'ns') self.assertNotEqual(hash(ns_td), hash(ns_td.to_pytimedelta())) def test_implementation_limits(self): min_td = Timedelta(Timedelta.min) max_td = Timedelta(Timedelta.max) # GH 12727 # timedelta limits correspond to int64 boundaries self.assertTrue(min_td.value == np.iinfo(np.int64).min + 1) self.assertTrue(max_td.value == np.iinfo(np.int64).max) # Beyond lower limit, a NAT before the Overflow self.assertIsInstance(min_td - Timedelta(1, 'ns'), pd.tslib.NaTType) with tm.assertRaises(OverflowError): min_td - Timedelta(2, 'ns') with tm.assertRaises(OverflowError): max_td + Timedelta(1, 'ns') # Same tests using the internal nanosecond values td = Timedelta(min_td.value - 1, 'ns') self.assertIsInstance(td, pd.tslib.NaTType) with tm.assertRaises(OverflowError): Timedelta(min_td.value - 2, 'ns') with tm.assertRaises(OverflowError): Timedelta(max_td.value + 1, 'ns') class TestTimedeltaIndex(tm.TestCase): _multiprocess_can_split_ = True def test_pass_TimedeltaIndex_to_index(self): rng = timedelta_range('1 days', '10 days') idx = Index(rng, dtype=object) expected = Index(rng.to_pytimedelta(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_pickle(self): rng = timedelta_range('1 days', periods=10) rng_p = self.round_trip_pickle(rng) tm.assert_index_equal(rng, rng_p) def test_hash_error(self): index = timedelta_range('1 days', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_append_join_nondatetimeindex(self): rng = timedelta_range('1 days', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assertIsInstance(result[0], Timedelta) # it works rng.join(idx, how='outer') def test_append_numpy_bug_1681(self): td = timedelta_range('1 days', '10 days', freq='2D') a = DataFrame() c = DataFrame({'A': 'foo', 'B': td}, index=td) str(c) result = a.append(c) self.assertTrue((result['B'] == td).all()) def test_fields(self): rng = timedelta_range('1 days, 10:11:12.100123456', periods=2, freq='s') self.assert_numpy_array_equal(rng.days, np.array( [1, 1], dtype='int64')) self.assert_numpy_array_equal( rng.seconds, np.array([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype='int64')) self.assert_numpy_array_equal(rng.microseconds, np.array( [100 * 1000 + 123, 100 * 1000 + 123], dtype='int64')) self.assert_numpy_array_equal(rng.nanoseconds, np.array( [456, 456], dtype='int64')) self.assertRaises(AttributeError, lambda: rng.hours) self.assertRaises(AttributeError, lambda: rng.minutes) self.assertRaises(AttributeError, lambda: rng.milliseconds) # with nat s = Series(rng) s[1] = np.nan tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1])) tm.assert_series_equal(s.dt.seconds, Series( [10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])) def test_total_seconds(self): # GH 10939 # test index rng = timedelta_range('1 days, 10:11:12.100123456', periods=2, freq='s') expt = [1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, 1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456. / 1e9] tm.assert_almost_equal(rng.total_seconds(), np.array(expt)) # test Series s = Series(rng) s_expt = Series(expt, index=[0, 1]) tm.assert_series_equal(s.dt.total_seconds(), s_expt) # with nat s[1] = np.nan s_expt = Series([1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, np.nan], index=[0, 1]) tm.assert_series_equal(s.dt.total_seconds(), s_expt) # with both nat s = Series([np.nan, np.nan], dtype='timedelta64[ns]') tm.assert_series_equal(s.dt.total_seconds(), Series([np.nan, np.nan], index=[0, 1])) def test_total_seconds_scalar(self): # GH 10939 rng = Timedelta('1 days, 10:11:12.100123456') expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) self.assertTrue(np.isnan(rng.total_seconds())) def test_components(self): rng = timedelta_range('1 days, 10:11:12', periods=2, freq='s') rng.components # with nat s = Series(rng) s[1] = np.nan result = s.dt.components self.assertFalse(result.iloc[0].isnull().all()) self.assertTrue(result.iloc[1].isnull().all()) def test_constructor(self): expected = TimedeltaIndex(['1 days', '1 days 00:00:05', '2 days', '2 days 00:00:02', '0 days 00:00:03']) result = TimedeltaIndex(['1 days', '1 days, 00:00:05', np.timedelta64( 2, 'D'), timedelta(days=2, seconds=2), pd.offsets.Second(3)]) tm.assert_index_equal(result, expected) # unicode result = TimedeltaIndex([u'1 days', '1 days, 00:00:05', np.timedelta64( 2, 'D'), timedelta(days=2, seconds=2), pd.offsets.Second(3)]) expected = TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02']) tm.assert_index_equal(TimedeltaIndex(range(3), unit='s'), expected) expected = TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:05', '0 days 00:00:09']) tm.assert_index_equal(TimedeltaIndex([0, 5, 9], unit='s'), expected) expected = TimedeltaIndex( ['0 days 00:00:00.400', '0 days 00:00:00.450', '0 days 00:00:01.200']) tm.assert_index_equal(TimedeltaIndex([400, 450, 1200], unit='ms'), expected) def test_constructor_coverage(self): rng = timedelta_range('1 days', periods=10.5) exp = timedelta_range('1 days', periods=10) self.assert_index_equal(rng, exp) self.assertRaises(ValueError, TimedeltaIndex, start='1 days', periods='foo', freq='D') self.assertRaises(ValueError, TimedeltaIndex, start='1 days', end='10 days') self.assertRaises(ValueError, TimedeltaIndex, '1 days') # generator expression gen = (timedelta(i) for i in range(10)) result = TimedeltaIndex(gen) expected = TimedeltaIndex([timedelta(i) for i in range(10)]) self.assert_index_equal(result, expected) # NumPy string array strings = np.array(['1 days', '2 days', '3 days']) result = TimedeltaIndex(strings) expected = to_timedelta([1, 2, 3], unit='d') self.assert_index_equal(result, expected) from_ints = TimedeltaIndex(expected.asi8) self.assert_index_equal(from_ints, expected) # non-conforming freq self.assertRaises(ValueError, TimedeltaIndex, ['1 days', '2 days', '4 days'], freq='D') self.assertRaises(ValueError, TimedeltaIndex, periods=10, freq='D') def test_constructor_name(self): idx = TimedeltaIndex(start='1 days', periods=1, freq='D', name='TEST') self.assertEqual(idx.name, 'TEST') # GH10025 idx2 = TimedeltaIndex(idx, name='something else') self.assertEqual(idx2.name, 'something else') def test_freq_conversion(self): # doc example # series td = Series(date_range('20130101', periods=4)) - \ Series(date_range('20121201', periods=4)) td[2] += timedelta(minutes=5, seconds=3) td[3] = np.nan result = td / np.timedelta64(1, 'D') expected = Series([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan ]) assert_series_equal(result, expected) result = td.astype('timedelta64[D]') expected = Series([31, 31, 31, np.nan]) assert_series_equal(result, expected) result = td / np.timedelta64(1, 's') expected = Series([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]) assert_series_equal(result, expected) result = td.astype('timedelta64[s]') assert_series_equal(result, expected) # tdi td = TimedeltaIndex(td) result = td / np.timedelta64(1, 'D') expected = Index([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]) assert_index_equal(result, expected) result = td.astype('timedelta64[D]') expected = Index([31, 31, 31, np.nan]) assert_index_equal(result, expected) result = td / np.timedelta64(1, 's') expected = Index([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]) assert_index_equal(result, expected) result = td.astype('timedelta64[s]') assert_index_equal(result, expected) def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] exp = np.array([True, True, True] + [False] * 7) self.assert_numpy_array_equal(result, exp) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) if _np_version_under1p8: # cannot test array because np.datetime('nat') returns today's date cases = [(tdidx1, tdidx2)] else: cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) self.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) self.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) self.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) self.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) self.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) self.assert_numpy_array_equal(result, expected) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_map(self): rng = timedelta_range('1 day', periods=10) f = lambda x: x.days result = rng.map(f) exp = np.array([f(x) for x in rng], dtype=np.int64) self.assert_numpy_array_equal(result, exp) def test_misc_coverage(self): rng = timedelta_range('1 day', periods=5) result = rng.groupby(rng.days) tm.assertIsInstance(list(result.values())[0][0], Timedelta) idx = TimedeltaIndex(['3d', '1d', '2d']) self.assertFalse(idx.equals(list(idx))) non_td = Index(list('abc')) self.assertFalse(idx.equals(list(non_td))) def test_union(self): i1 = timedelta_range('1day', periods=5) i2 = timedelta_range('3day', periods=5) result = i1.union(i2) expected = timedelta_range('1day', periods=7) self.assert_index_equal(result, expected) i1 = Int64Index(np.arange(0, 20, 2)) i2 = TimedeltaIndex(start='1 day', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_union_coverage(self): idx = TimedeltaIndex(['3d', '1d', '2d']) ordered = TimedeltaIndex(idx.sort_values(), freq='infer') result = ordered.union(idx) self.assert_index_equal(result, ordered) result = ordered[:0].union(ordered) self.assert_index_equal(result, ordered) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = timedelta_range('1 day', periods=4, freq='3H') rng_b = timedelta_range('1 day', periods=4, freq='4H') result = rng_a.union(rng_b) exp = TimedeltaIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assert_index_equal(result, exp) def test_union_bug_1745(self): left = TimedeltaIndex(['1 day 15:19:49.695000']) right = TimedeltaIndex(['2 day 13:04:21.322000', '1 day 15:27:24.873000', '1 day 15:31:05.350000']) result = left.union(right) exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right)))) self.assert_index_equal(result, exp) def test_union_bug_4564(self): left = timedelta_range("1 day", "30d") right = left + pd.offsets.Minute(15) result = left.union(right) exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right)))) self.assert_index_equal(result, exp) def test_intersection_bug_1708(self): index_1 = timedelta_range('1 day', periods=4, freq='h') index_2 = index_1 + pd.offsets.Hour(5) result = index_1 & index_2 self.assertEqual(len(result), 0) index_1 = timedelta_range('1 day', periods=4, freq='h') index_2 = index_1 + pd.offsets.Hour(1) result = index_1 & index_2 expected = timedelta_range('1 day 01:00:00', periods=3, freq='h') tm.assert_index_equal(result, expected) def test_get_duplicates(self): idx = TimedeltaIndex(['1 day', '2 day', '2 day', '3 day', '3day', '4day']) result = idx.get_duplicates() ex = TimedeltaIndex(['2 day', '3day']) self.assert_index_equal(result, ex) def test_argmin_argmax(self): idx = TimedeltaIndex(['1 day 00:00:05', '1 day 00:00:01', '1 day 00:00:02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_sort_values(self): idx = TimedeltaIndex(['4d', '1d', '2d']) ordered = idx.sort_values() self.assertTrue(ordered.is_monotonic) ordered = idx.sort_values(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.sort_values(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, np.array([1, 2, 0]), check_dtype=False) ordered, dexer = idx.sort_values(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, np.array([0, 2, 1]), check_dtype=False) def test_insert(self): idx = TimedeltaIndex(['4day', '1day', '2day'], name='idx') result = idx.insert(2, timedelta(days=5)) exp = TimedeltaIndex(['4day', '1day', '5day', '2day'], name='idx') self.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([Timedelta('4day'), 'inserted', Timedelta('1day'), Timedelta('2day')], name='idx') self.assertNotIsInstance(result, TimedeltaIndex) tm.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) idx = timedelta_range('1day 00:00:01', periods=3, freq='s', name='idx') # preserve freq expected_0 = TimedeltaIndex(['1day', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq='s') expected_3 = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:04'], name='idx', freq='s') # reset freq to None expected_1_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq=None) expected_3_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:05'], name='idx', freq=None) cases = [(0, Timedelta('1day'), expected_0), (-3, Timedelta('1day'), expected_0), (3, Timedelta('1day 00:00:04'), expected_3), (1, Timedelta('1day 00:00:01'), expected_1_nofreq), (3, Timedelta('1day 00:00:05'), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) def test_delete(self): idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx') # prserve freq expected_0 = timedelta_range(start='2 Days', periods=4, freq='D', name='idx') expected_4 = timedelta_range(start='1 Days', periods=4, freq='D', name='idx') # reset freq to None expected_1 = TimedeltaIndex( ['1 day', '3 day', '4 day', '5 day'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_delete_slice(self): idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D', name='idx') expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = TimedeltaIndex(['1 d', '2 d', '3 d', '7 d', '8 d', '9 d', '10d'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) result = idx.delete(slice(n[0], n[-1] + 1)) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) def test_take(self): tds = ['1day 02:00:00', '1 day 04:00:00', '1 day 10:00:00'] idx = TimedeltaIndex(start='1d', end='2d', freq='H', name='idx') expected = TimedeltaIndex(tds, freq=None, name='idx') taken1 = idx.take([2, 4, 10]) taken2 = idx[[2, 4, 10]] for taken in [taken1, taken2]: self.assert_index_equal(taken, expected) tm.assertIsInstance(taken, TimedeltaIndex) self.assertIsNone(taken.freq) self.assertEqual(taken.name, expected.name) def test_take_fill_value(self): # GH 12631 idx = pd.TimedeltaIndex(['1 days', '2 days', '3 days'], name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.TimedeltaIndex(['2 days', '1 days', '3 days'], name='xxx') tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.TimedeltaIndex(['2 days', '1 days', 'NaT'], name='xxx') tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.TimedeltaIndex(['2 days', '1 days', '3 days'], name='xxx') tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with tm.assertRaises(IndexError): idx.take(np.array([1, -5])) def test_isin(self): index = tm.makeTimedeltaIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), np.array([False, False, True, False])) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='td') str(df) cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) tm.assert_index_equal(cols, joined) def test_slice_keeps_name(self): # GH4226 dr = pd.timedelta_range('1d', '5d', freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = timedelta_range('1 day', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) tm.assert_index_equal(index, joined) def test_factorize(self): idx1 = TimedeltaIndex(['1 day', '1 day', '2 day', '2 day', '3 day', '3 day']) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = TimedeltaIndex(['1 day', '2 day', '3 day']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assert_index_equal(idx, exp_idx) # freq must be preserved idx3 = timedelta_range('1 day', periods=4, freq='s') exp_arr = np.array([0, 1, 2, 3], dtype=np.intp) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assert_index_equal(idx, idx3) class TestSlicing(tm.TestCase): def test_partial_slice(self): rng = timedelta_range('1 day 10:11:12', freq='h', periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['5 day':'6 day'] expected = s.iloc[86:134] assert_series_equal(result, expected) result = s['5 day':] expected = s.iloc[86:] assert_series_equal(result, expected) result = s[:'6 day'] expected = s.iloc[:134] assert_series_equal(result, expected) result = s['6 days, 23:11:12'] self.assertEqual(result, s.iloc[133]) self.assertRaises(KeyError, s.__getitem__, '50 days') def test_partial_slice_high_reso(self): # higher reso rng = timedelta_range('1 day 10:11:12', freq='us', periods=2000) s = Series(np.arange(len(rng)), index=rng) result = s['1 day 10:11:12':] expected = s.iloc[0:] assert_series_equal(result, expected) result = s['1 day 10:11:12.001':] expected = s.iloc[1000:] assert_series_equal(result, expected) result = s['1 days, 10:11:12.001001'] self.assertEqual(result, s.iloc[1001]) def test_slice_with_negative_step(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.ix[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1]) assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1]) assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1]) assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1]) assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):- 1], SLC[15:6:-1]) assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0]) def test_slice_with_zero_step_raises(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.loc[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.ix[::0]) def test_tdi_ops_attributes(self): rng = timedelta_range('2 days', periods=5, freq='2D', name='x') result = rng + 1 exp = timedelta_range('4 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng - 2 exp = timedelta_range('-2 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng * 2 exp = timedelta_range('4 days', periods=5, freq='4D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '4D') result = rng / 2 exp = timedelta_range('1 days', periods=5, freq='D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, 'D') result = -rng exp = timedelta_range('-2 days', periods=5, freq='-2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '-2D') rng = pd.timedelta_range('-2 days', periods=5, freq='D', name='x') result = abs(rng) exp = TimedeltaIndex(['2 days', '1 days', '0 days', '1 days', '2 days'], name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, None) def test_add_overflow(self): # see gh-14068 msg = "too (big|large) to convert" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(106580, 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta(106580, 'D') msg = "Overflow in int64 addition" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([106580], 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta([106580], 'D') if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
hippo91/XVOF
xfv/post_processing/free_surface_velocity.py
1
4486
# -*- coding: utf-8 -*- """ Plot the free surface velocity eventually with experimental data """ import argparse import pathlib import numpy as np import matplotlib.pyplot as plt from xfv.post_processing.tools.hdf5_postprocessing_tools import get_field_evolution_in_time_for_item def run(): """ Run post processing program """ # ---------------------------------------------------------- # Read instructions # ---------------------------------------------------------- parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", action="store_true", help="Increase program verbosity") parser.add_argument("-case", action='append', nargs='+', help="the path to the output repository from /xfv/tests/") parser.add_argument("-experimental_data", help="the path to experimental data to plot") parser.add_argument("--output_filename", default="all_fields.hdf5", help="the name of the output hdf5 band (default = all_fields.hdf5)") parser.add_argument("--shift_t0", action="store_true", help="Shift time origin to put t0 when the velocity signal arrives on " "the free surface velocity") parser.add_argument("--write_data", default="free_surface_velocity.dat", help="Name of the output file") args = parser.parse_args() if args.case is None: raise ValueError("At least one case is needed. Use -case to specify cases to plot") if args.verbose: print("Cases : ") print(args.case) if args.experimental_data is not None: print("Experimental data : " + args.experimental_data) print("~~~~~~~~~~~~~") exp_data = args.experimental_data # ---------------------------------------------------------- # Prepare figure # ---------------------------------------------------------- plt.figure(1) plt.title("Evolution of the free surface velocity", fontweight='bold', fontsize=18) plt.xlabel("Time [mus]", fontsize=16) plt.ylabel("Free surface velocity [m/s]", fontsize=16) # ---------------------------------------------------------- # Plot free surface velocity for each case # ---------------------------------------------------------- for case in args.case[0]: if args.verbose: print("Case is : " + case) path_to_db = pathlib.Path.cwd().joinpath("..", "tests", case, args.output_filename) if args.verbose: print("Path to database : {:}".format(path_to_db)) print("Read VelocityField in database... ") # Read database : # Free surface is the last node => index -1 in Numpy array item_history = get_field_evolution_in_time_for_item(path_to_db, -1, "ClassicalNodeVelocity") # NodeVelocity => calls the true_field_extraction with NodeCoordinates reading # ClassicalNodeVelocity => calls field_extraction to get the field without NodeCoordinates extraction if args.verbose: print("Done !") print("~~~~~~~~~~~~~") # Plot velocity with t0 = detection of free surface movement: time = item_history[:, 0] velocity = item_history[:, 1] time_0 = 0. if args.shift_t0: time_0 = time[velocity > 1][0] # 1st time where non zero velocity if args.verbose: print("New t0 is : " + str(time_0)) plt.plot((time - time_0) * 1.e+6, velocity, label=case) if (args.write_data): data_path=case + args.write_data with open(data_path, "w") as file_object: for x_data, y_data in zip(time, velocity): file_object.write("{:20.18g}\t{:20.18g}\n".format(x_data, y_data)) print("Data written in {:s}".format(data_path)) # ---------------------------------------------------------- # Plot experimental data # ---------------------------------------------------------- if exp_data is not None: experimental_velocity = np.loadtxt(exp_data) plt.plot(experimental_velocity[:, 0], experimental_velocity[:, 1], "--", color="black", label="Experiment") if __name__ == "__main__": run() # ---------------------------------------------------------- # Show figure # ---------------------------------------------------------- plt.legend(loc="best") plt.show()
gpl-3.0
ExeClim/Isca
src/extra/python/scripts/gfdl_grid_files/grid_file_generator.py
4
1170
import numpy as np from netCDF4 import Dataset import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # specify resolution t_res = 42 #read in grid from approriate file resolution_file = Dataset('t'+str(t_res)+'_atmos_daily.nc', 'r', format='NETCDF3_CLASSIC') lons = resolution_file.variables['lon'][:] lats = resolution_file.variables['lat'][:] lonsb = resolution_file.variables['lonb'][:] latsb = resolution_file.variables['latb'][:] nlon=lons.shape[0] nlat=lats.shape[0] nlonb=lonsb.shape[0] nlatb=latsb.shape[0] output_file = Dataset('t'+str(t_res)+'.nc', 'w', format='NETCDF3_CLASSIC') lat = output_file.createDimension('lat', nlat) lon = output_file.createDimension('lon', nlon) latb = output_file.createDimension('latb', nlatb) lonb = output_file.createDimension('lonb', nlonb) latitudes = output_file.createVariable('lat','f4',('lat',)) longitudes = output_file.createVariable('lon','f4',('lon',)) latitudesb = output_file.createVariable('latb','f4',('latb',)) longitudesb = output_file.createVariable('lonb','f4',('lonb',)) latitudes[:] = lats longitudes[:] = lons latitudesb[:] = latsb longitudesb[:] = lonsb output_file.close()
gpl-3.0
bundgus/python-playground
matplotlib-playground/examples/animation/bayes_update.py
1
1468
# update a distribution based on new data. import numpy as np import matplotlib.pyplot as plt import scipy.stats as ss from matplotlib.animation import FuncAnimation class UpdateDist(object): def __init__(self, ax, prob=0.5): self.success = 0 self.prob = prob self.line, = ax.plot([], [], 'k-') self.x = np.linspace(0, 1, 200) self.ax = ax # Set up plot parameters self.ax.set_xlim(0, 1) self.ax.set_ylim(0, 15) self.ax.grid(True) # This vertical line represents the theoretical value, to # which the plotted distribution should converge. self.ax.axvline(prob, linestyle='--', color='black') def init(self): self.success = 0 self.line.set_data([], []) return self.line, def __call__(self, i): # This way the plot can continuously run and we just keep # watching new realizations of the process if i == 0: return self.init() # Choose success based on exceed a threshold with a uniform pick if np.random.rand(1,) < self.prob: self.success += 1 y = ss.beta.pdf(self.x, self.success + 1, (i - self.success) + 1) self.line.set_data(self.x, y) return self.line, fig, ax = plt.subplots() ud = UpdateDist(ax, prob=0.7) anim = FuncAnimation(fig, ud, frames=np.arange(100), init_func=ud.init, interval=100, blit=True) plt.show()
mit
0x0all/scikit-learn
sklearn/__init__.py
12
2540
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings __version__ = '0.16-git' # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'hmm', 'isotonic', 'kernel_approximation', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'multiclass', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs """ import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
cl4rke/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
wolfram74/numerical_methods_iserles_notes
venv/lib/python2.7/site-packages/numpy/lib/function_base.py
30
124613
from __future__ import division, absolute_import, print_function import warnings import sys import collections import operator import numpy as np import numpy.core.numeric as _nx from numpy.core import linspace, atleast_1d, atleast_2d from numpy.core.numeric import ( ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, empty_like, ndarray, around, floor, ceil, take, dot, where, intp, integer, isscalar ) from numpy.core.umath import ( pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, mod, exp, log10 ) from numpy.core.fromnumeric import ( ravel, nonzero, sort, partition, mean ) from numpy.core.numerictypes import typecodes, number from numpy.lib.twodim_base import diag from .utils import deprecate from ._compiled_base import _insert, add_docstring from ._compiled_base import digitize, bincount, interp as compiled_interp from ._compiled_base import add_newdoc_ufunc from numpy.compat import long # Force range to be a generator, for np.delete's usage. if sys.version_info[0] < 3: range = xrange __all__ = [ 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' ] def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will be removed in Numpy 2.0. Use the density keyword instead. If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use `density` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 density : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the `normed` keyword if given. Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError( '`bins` should be a positive integer.') if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. range = (0, 1) else: range = (a.min(), a.max()) mn, mx = [mi + 0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins + 1, endpoint=True) else: bins = asarray(bins) if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = int else: ntype = weights.dtype n = np.zeros(bins.shape, ntype) block = 65536 if weights is None: for i in arange(0, len(a), block): sa = sort(a[i:i+block]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), block): tmp_a = a[i:i+block] tmp_w = weights[i:i+block] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero, ], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for Numpy 2.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. weights : array_like (N,), optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # avoid rounding issues for comparisons when dealing with inexact types if np.issubdtype(sample.dtype, np.inexact): edge_dt = sample.dtype else: edge_dt = float # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError( "Element at index %s in `bins` should be a positive " "integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) else: edges[i] = asarray(bins[i], edge_dt) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError( "Found bin edge of size <= 0. Did you specify `bins` with" "non-monotonic sequence?") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right edge to be # counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal)) # Shift these points one bin to the left. Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1, -1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : {array_type, double} Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix): a = np.asarray(a) if weights is None: avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else: a = a + 0.0 wgt = np.array(weights, dtype=a.dtype, copy=0) # Sanity checks if a.shape != wgt.shape: if axis is None: raise TypeError( "Axis must be specified when shapes of a and weights " "differ.") if wgt.ndim != 1: raise TypeError( "1D weights expected when shapes of a and weights differ.") if wgt.shape[0] != a.shape[axis]: raise ValueError( "Length of weights not compatible with specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """ Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have a default value of 0. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if (isscalar(condlist) or not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray))): condlist = [condlist] condlist = array(condlist, dtype=bool) n = len(condlist) # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars zerod = False if x.ndim == 0: x = x[None] zerod = True if condlist.shape[-1] != 1: condlist = condlist.T if n == n2 - 1: # compute the "otherwise" condition. totlist = np.logical_or.reduce(condlist, axis=0) condlist = np.vstack([condlist, ~totlist]) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections.Callable): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ # Check the size of condlist and choicelist are the same, or abort. if len(condlist) != len(choicelist): raise ValueError( 'list of cases must be same length as list of conditions') # Now that the dtype is known, handle the deprecated select([], []) case if len(condlist) == 0: warnings.warn("select with an empty condition list is not possible" "and will be deprecated", DeprecationWarning) return np.asarray(default)[()] choicelist = [np.asarray(choice) for choice in choicelist] choicelist.append(np.asarray(default)) # need to get the result type before broadcasting for correct scalar # behaviour dtype = np.result_type(*choicelist) # Convert conditions to arrays and broadcast conditions and choices # as the shape is needed for the result. Doing it seperatly optimizes # for example when all choices are scalars. condlist = np.broadcast_arrays(*condlist) choicelist = np.broadcast_arrays(*choicelist) # If cond array is not an ndarray in boolean format or scalar bool, abort. deprecated_ints = False for i in range(len(condlist)): cond = condlist[i] if cond.dtype.type is not np.bool_: if np.issubdtype(cond.dtype, np.integer): # A previous implementation accepted int ndarrays accidentally. # Supported here deliberately, but deprecated. condlist[i] = condlist[i].astype(bool) deprecated_ints = True else: raise ValueError( 'invalid entry in choicelist: should be boolean ndarray') if deprecated_ints: msg = "select condlists containing integer ndarrays is deprecated " \ "and will be removed in the future. Use `.astype(bool)` to " \ "convert to bools." warnings.warn(msg, DeprecationWarning) if choicelist[0].ndim == 0: # This may be common, so avoid the call. result_shape = condlist[0].shape else: result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape result = np.full(result_shape, choicelist[-1], dtype) # Use np.copyto to burn each choicelist array onto result, using the # corresponding condlist as a boolean mask. This is done in reverse # order since the first choice should take precedence. choicelist = choicelist[-2::-1] condlist = condlist[::-1] for choice, cond in zip(choicelist, condlist): np.copyto(result, choice, where=cond) return result def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:ndarray.copy are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. The gradient is computed using second order accurate central differences in the interior and either first differences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. varargs : list of scalar, optional N scalars specifying the sample distances for each dimension, i.e. `dx`, `dy`, `dz`, ... Default distance: 1. edge_order : {1, 2}, optional Gradient is calculated using N\ :sup:`th` order accurate differences at the boundaries. Default: 1. .. versionadded:: 1.9.1 Returns ------- gradient : ndarray N arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] >>> x = np.array([0, 1, 2, 3, 4]) >>> dx = np.gradient(x) >>> y = x**2 >>> np.gradient(y, dx, edge_order=2) array([-0., 2., 4., 6., 8.]) """ f = np.asanyarray(f) N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") edge_order = kwargs.pop('edge_order', 1) if kwargs: raise TypeError('"{}" are not valid keyword arguments.'.format( '", "'.join(kwargs.keys()))) if edge_order > 2: raise ValueError("'edge_order' greater than 2 not supported") # use central differences on interior and one-sided differences on the # endpoints. This preserves second order-accuracy over the full domain. outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N slice4 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M': # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm': # Needs to keep the specific units, can't be a general unit otype = f.dtype # Convert datetime64 data into ints. Make dummy variable `y` # that is a view of ints if the data is datetime64, otherwise # just set y equal to the the array `f`. if f.dtype.char in ["M", "m"]: y = f.view('int64') else: y = f for axis in range(N): if y.shape[axis] < 2: raise ValueError( "Shape of array too small to calculate a numerical gradient, " "at least two elements are required.") # Numerical differentiation: 1st order edges, 2nd order interior if y.shape[axis] == 2 or edge_order == 1: # Use first order differences for time data out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (y[1] - y[0]) out[slice1] = (y[slice2] - y[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (y[-1] - y[-2]) out[slice1] = (y[slice2] - y[slice3]) # Numerical differentiation: 2st order edges, 2nd order interior else: # Use second order differences where possible out = np.empty_like(y, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 out[slice1] = (y[slice2] - y[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 0 slice3[axis] = 1 slice4[axis] = 2 # 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0 out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 slice4[axis] = -3 # 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3]) out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 # divide by step size out /= dx[axis] outvals.append(out) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) slice4[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d, cumsum Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, default is `fp[-1]`. Returns ------- y : {float, ndarray} The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() """ if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : {ndarray, scalar} The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd + pi, 2*pi) - pi _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) ph_correct = ddmod - dd _nx.copyto(ph_correct, 0, where=abs(dd) < discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a, copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True], tmp[1:] != tmp[:-1])) return tmp[idx] except AttributeError: items = sorted(set(x)) return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. """ def __init__(self, pyfunc, otypes='', doc=None, excluded=None, cache=False): self.pyfunc = pyfunc self.cache = cache self._ufunc = None # Caching to improve default performance if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError( "Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError( "Invalid otype specification") # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty if not args: raise ValueError('args can not be empty') if self.otypes: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) inputs = [asarray(_a).flat[0] for _a in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple # functions at least -- this wrapping can almost double the # execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if not args: _res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(_a, copy=False, subok=True, dtype=object) for _a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: _res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: _res = tuple([array(_x, copy=False, subok=True, dtype=_t) for _x, _t in zip(outputs, otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None): """ Estimate a covariance matrix, given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError( "ddof must be integer") # Handles complex arrays too m = np.asarray(m) if y is None: dtype = np.result_type(m, np.float64) else: y = np.asarray(y) dtype = np.result_type(m, y, np.float64) X = array(m, ndmin=2, dtype=dtype) if X.shape[0] == 1: rowvar = 1 if rowvar: N = X.shape[1] axis = 0 else: N = X.shape[0] axis = 1 # check ddof if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) if fact <= 0: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) fact = 0.0 if y is not None: y = array(y, copy=False, ndmin=2, dtype=dtype) X = concatenate((X, y), axis) X -= X.mean(axis=1-axis, keepdims=True) if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: return (dot(X, X.T.conj()) / fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ Return correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `P`, and the covariance matrix, `C`, is .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `P` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : {None, int}, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix """ c = cov(x, y, rowvar, bias, ddof) try: d = diag(c) except ValueError: # scalar covariance # nan if incorrect value (nan, inf, 0), 1 otherwise return c / c return c / sqrt(multiply.outer(d, d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius van Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 ] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 ] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x < 0) x[ind] = -x[ind] ind = (x <= 8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M, beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0, M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi * where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b def _ureduce(a, func, **kwargs): """ Internal Function. Call `func` with `a` as first argument swapping the axes to use extended axis on functions that don't support it natively. Returns result and a.shape with axis dims set to 1. Parameters ---------- a : array_like Input array or object that can be converted to an array. func : callable Reduction function Kapable of receiving an axis argument. It is is called with `a` as first argument followed by `kwargs`. kwargs : keyword arguments additional keyword arguments to pass to `func`. Returns ------- result : tuple Result of func(a, **kwargs) and a.shape with axis dims set to 1 which can be used to reshape the result to the same shape a ufunc with keepdims=True would produce. """ a = np.asanyarray(a) axis = kwargs.get('axis', None) if axis is not None: keepdim = list(a.shape) nd = a.ndim try: axis = operator.index(axis) if axis >= nd or axis < -nd: raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) keepdim[axis] = 1 except TypeError: sax = set() for x in axis: if x >= nd or x < -nd: raise IndexError("axis %d out of bounds (%d)" % (x, nd)) if x in sax: raise ValueError("duplicate value in axis") sax.add(x % nd) keepdim[x] = 1 keep = sax.symmetric_difference(frozenset(range(nd))) nkeep = len(keep) # swap axis that should not be reduced to front for i, s in enumerate(sorted(keep)): a = a.swapaxes(i, s) # merge reduced axis a = a.reshape(a.shape[:nkeep] + (-1,)) kwargs['axis'] = -1 else: keepdim = [1] * a.ndim r = func(a, **kwargs) return r, keepdim def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ r, k = _ureduce(a, func=_median, axis=axis, out=out, overwrite_input=overwrite_input) if keepdims: return r.reshape(k) else: return r def _median(a, axis=None, out=None, overwrite_input=False): # can't be reasonably be implemented in terms of percentile as we have to # call mean to not break astropy a = np.asanyarray(a) if axis is not None and axis >= a.ndim: raise IndexError( "axis %d out of bounds (%d)" % (axis, a.ndim)) if overwrite_input: if axis is None: part = a.ravel() sz = part.size if sz % 2 == 0: szh = sz // 2 part.partition((szh - 1, szh)) else: part.partition((sz - 1) // 2) else: sz = a.shape[axis] if sz % 2 == 0: szh = sz // 2 a.partition((szh - 1, szh), axis=axis) else: a.partition((sz - 1) // 2, axis=axis) part = a else: if axis is None: sz = a.size else: sz = a.shape[axis] if sz % 2 == 0: part = partition(a, ((sz // 2) - 1, sz // 2), axis=axis) else: part = partition(a, (sz - 1) // 2, axis=axis) if part.shape == (): # make 0-D arrays work return part.item() if axis is None: axis = 0 indexer = [slice(None)] * part.ndim index = part.shape[axis] // 2 if part.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Use mean in odd and even case to coerce data type # and check, use out array. return mean(part[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int or sequence of int, optional Axis along which the percentiles are computed. The default (None) is to compute the percentiles along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the content of the passed in array `a` after this function completes -- treat it as undefined. Default is False. Note that, if the `a` input is not already an array this parameter will have no effect, `a` will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. .. versionadded:: 1.9.0 Returns ------- percentile : scalar or ndarray If a single percentile `q` is given and axis=None a scalar is returned. If multiple percentiles `q` are given an array holding the result is returned. The results are listed in the first axis. (If `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if ``q=50``, the same as the minimum if ``q=0`` and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) array([ 3.5]) >>> np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([[ 7.], [ 2.]]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) array([[ 6.5, 4.5, 2.5]]) >>> m array([[ 6.5, 4.5, 2.5]]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([[ 7.], [ 2.]]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) array([ 3.5]) """ q = array(q, dtype=np.float64, copy=True) r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation) if keepdims: if q.ndim == 0: return r.reshape(k) else: return r.reshape([len(q)] + k) else: return r def _percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): a = asarray(a) if q.ndim == 0: # Do not allow 0-d arrays because following code fails for scalar zerod = True q = q[None] else: zerod = False # avoid expensive reductions, relevant for arrays with < O(1000) elements if q.size < 10: for i in range(q.size): if q[i] < 0. or q[i] > 100.: raise ValueError("Percentiles must be in the range [0,100]") q[i] /= 100. else: # faster than any() if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): raise ValueError("Percentiles must be in the range [0,100]") q /= 100. # prepare a for partioning if overwrite_input: if axis is None: ap = a.ravel() else: ap = a else: if axis is None: ap = a.flatten() else: ap = a.copy() if axis is None: axis = 0 Nx = ap.shape[axis] indices = q * (Nx - 1) # round fractional indices according to interpolation method if interpolation == 'lower': indices = floor(indices).astype(intp) elif interpolation == 'higher': indices = ceil(indices).astype(intp) elif interpolation == 'midpoint': indices = floor(indices) + 0.5 elif interpolation == 'nearest': indices = around(indices).astype(intp) elif interpolation == 'linear': pass # keep index as fraction and interpolate else: raise ValueError( "interpolation can only be 'linear', 'lower' 'higher', " "'midpoint', or 'nearest'") if indices.dtype == intp: # take the points along axis ap.partition(indices, axis=axis) # ensure axis with qth is first ap = np.rollaxis(ap, axis, 0) axis = 0 if zerod: indices = indices[0] r = take(ap, indices, axis=axis, out=out) else: # weight the points above and below the indices indices_below = floor(indices).astype(intp) indices_above = indices_below + 1 indices_above[indices_above > Nx - 1] = Nx - 1 weights_above = indices - indices_below weights_below = 1.0 - weights_above weights_shape = [1, ] * ap.ndim weights_shape[axis] = len(indices) weights_below.shape = weights_shape weights_above.shape = weights_shape ap.partition(concatenate((indices_below, indices_above)), axis=axis) x1 = take(ap, indices_below, axis=axis) * weights_below x2 = take(ap, indices_above, axis=axis) * weights_above # ensure axis with qth is first x1 = np.rollaxis(x1, axis, 0) x2 = np.rollaxis(x2, axis, 0) if zerod: x1 = x1.squeeze(0) x2 = x2.squeeze(0) if out is not None: r = add(x1, x2, out=out) else: r = add(x1, x2) return r def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) try: ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = getattr(__import__(place, globals(), {}, [obj]), obj) if isinstance(doc, str): add_docstring(new, doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new, doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new, val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(xi)] shape = [x.size for x in output] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Notes ----- Often it is preferable to use a boolean mask. For example: >>> mask = np.ones(len(arr), dtype=bool) >>> mask[[0,2,4]] = False >>> result = arr[mask,...] Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further use of `mask`. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 if ndim == 0: warnings.warn( "in the future the special handling of scalars will be removed " "from delete and raise an error", DeprecationWarning) if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): start, stop, step = obj.indices(N) xr = range(start, stop, step) numtodel = len(xr) if numtodel <= 0: if wrap: return wrap(arr.copy()) else: return arr.copy() # Invert if step is negative: if step < 0: step = -step start = xr[-1] stop = xr[0] + 1 newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. keep = ones(stop-start, dtype=bool) keep[:stop-start:step] = False slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(start, stop) arr = arr[slobj2] slobj2[axis] = keep new[slobj] = arr[slobj2] if wrap: return wrap(new) else: return new _obj = obj obj = np.asarray(obj) # After removing the special handling of booleans and out of # bounds values, the conversion to the array can be removed. if obj.dtype == bool: warnings.warn( "in the future insert will treat boolean arrays and array-likes " "as boolean index instead of casting it to integer", FutureWarning) obj = obj.astype(intp) if isinstance(_obj, (int, long, integer)): # optimization for a single value obj = obj.item() if (obj < -N or obj >= N): raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (obj < 0): obj += N newshape[axis] -= 1 new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1, None) new[slobj] = arr[slobj2] else: if obj.size == 0 and not isinstance(_obj, np.ndarray): obj = obj.astype(intp) if not np.can_cast(obj, intp, 'same_kind'): # obj.size = 1 special case always failed and would just # give superfluous warnings. warnings.warn( "using a non-integer array as obj in delete will result in an " "error in the future", DeprecationWarning) obj = obj.astype(intp) keep = ones(N, dtype=bool) # Test if there are out of bound indices, this is deprecated inside_bounds = (obj < N) & (obj >= -N) if not inside_bounds.all(): warnings.warn( "in the future out of bounds indices will raise an error " "instead of being ignored by `numpy.delete`.", DeprecationWarning) obj = obj[inside_bounds] positive_indices = obj >= 0 if not positive_indices.all(): warnings.warn( "in the future negative indices will not be ignored by " "`numpy.delete`.", FutureWarning) obj = obj[positive_indices] keep[obj, ] = False slobj[axis] = keep new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. .. versionadded:: 1.8.0 Support for multiple insertions when `obj` is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. `values` should be shaped so that ``arr[...,obj,...] = values`` is legal. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. concatenate : Join a sequence of arrays together. delete : Delete elements from an array. Notes ----- Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim - 1 else: if ndim > 0 and (axis < -ndim or axis >= ndim): raise IndexError( "axis %i is out of bounds for an array of " "dimension %i" % (axis, ndim)) if (axis < 0): axis += ndim if (ndim == 0): warnings.warn( "in the future the special handling of scalars will be removed " "from insert and raise an error", DeprecationWarning) arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): # turn it into a range object indices = arange(*obj.indices(N), **{'dtype': intp}) else: # need to copy obj, because indices will be changed in-place indices = np.array(obj) if indices.dtype == bool: # See also delete warnings.warn( "in the future insert will treat boolean arrays and " "array-likes as a boolean index instead of casting it to " "integer", FutureWarning) indices = indices.astype(intp) # Code after warning period: #if obj.ndim != 1: # raise ValueError('boolean array argument obj to insert ' # 'must be one dimensional') #indices = np.flatnonzero(obj) elif indices.ndim > 1: raise ValueError( "index array argument obj to insert must be one dimensional " "or scalar") if indices.size == 1: index = indices.item() if index < -N or index > N: raise IndexError( "index %i is out of bounds for axis %i with " "size %i" % (obj, axis, N)) if (index < 0): index += N # There are some object array corner cases here, but we cannot avoid # that: values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) if indices.ndim == 0: # broadcasting is very different here, since a[:,0,:] = ... behaves # very different from a[:,[0],:] = ...! This changes values so that # it works likes the second case. (here a[:,0:1,:]) values = np.rollaxis(values, 0, (axis % values.ndim) + 1) numnew = values.shape[axis] newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, index) new[slobj] = arr[slobj] slobj[axis] = slice(index, index+numnew) new[slobj] = values slobj[axis] = slice(index+numnew, None) slobj2 = [slice(None)] * ndim slobj2[axis] = slice(index, None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif indices.size == 0 and not isinstance(obj, np.ndarray): # Can safely cast the empty list to intp indices = indices.astype(intp) if not np.can_cast(indices, intp, 'same_kind'): warnings.warn( "using a non-integer array as obj in insert will result in an " "error in the future", DeprecationWarning) indices = indices.astype(intp) indices[indices < 0] += N numnew = len(indices) order = indices.argsort(kind='mergesort') # stable sort indices[order] += np.arange(numnew) newshape[axis] += numnew old_mask = ones(newshape[axis], dtype=bool) old_mask[indices] = False new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = indices slobj2[axis] = old_mask new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
mit
hsuantien/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
giacomov/3ML
threeML/minimizer/minimization.py
1
40378
from __future__ import division from builtins import zip from builtins import str from builtins import range from past.utils import old_div from builtins import object import collections import math import numpy as np import pandas as pd import scipy.optimize from threeML.io.progress_bar import progress_bar from threeML.exceptions.custom_exceptions import custom_warnings from threeML.utils.differentiation import get_hessian, ParameterOnBoundary # Set the warnings to be issued always for this module custom_warnings.simplefilter("always", RuntimeWarning) # Special constants FIT_FAILED = 1e12 # Define a bunch of custom exceptions relevant for what is being accomplished here class CannotComputeCovariance(RuntimeWarning): pass class CannotComputeErrors(RuntimeWarning): pass class ParameterIsNotFree(Exception): pass class FitFailed(Exception): pass class MinimizerNotAvailable(Exception): pass class BetterMinimumDuringProfiling(RuntimeWarning): pass # This will contain the available minimizers _minimizers = {} def get_minimizer(minimizer_type): """ Return the requested minimizer *class* (not instance) :param minimizer_type: MINUIT, ROOT, PYOPT... :return: the class (i.e., the type) for the requested minimizer """ try: return _minimizers[minimizer_type.upper()] except KeyError: raise MinimizerNotAvailable( "Minimizer %s is not available on your system" % minimizer_type ) class FunctionWrapper(object): def __init__(self, function, all_parameters, fixed_parameters): """ :param function: :param all_parameters: :param fixed_parameters: list of fixed parameters """ self._function = function self._all_parameters = all_parameters self._fixed_parameters_values = np.zeros(len(fixed_parameters)) self._fixed_parameters_names = fixed_parameters self._indexes_of_fixed_par = np.zeros(len(self._all_parameters), bool) for i, parameter_name in enumerate(self._fixed_parameters_names): this_index = list(self._all_parameters.keys()).index(parameter_name) self._indexes_of_fixed_par[this_index] = True self._all_values = np.zeros(len(self._all_parameters)) def set_fixed_values(self, new_fixed_values): # Note that this will receive the fixed values in internal reference (after the transformations, if any) # A use [:] so there is an implicit check on the right size of new_fixed_values self._fixed_parameters_values[:] = new_fixed_values def __call__(self, *trial_values): # Note that this function will receive the trial values in internal reference (after the transformations, # if any) self._all_values[self._indexes_of_fixed_par] = self._fixed_parameters_values self._all_values[~self._indexes_of_fixed_par] = trial_values return self._function(*self._all_values) class ProfileLikelihood(object): def __init__(self, minimizer_instance, fixed_parameters): self._fixed_parameters = fixed_parameters assert ( len(self._fixed_parameters) <= 2 ), "Can handle only one or two fixed parameters" # Get some info from the original minimizer self._function = minimizer_instance.function # Note that here we have to use the original parameters (not the internal parameters) self._all_parameters = minimizer_instance.parameters # Create a copy of the dictionary of parameters free_parameters = collections.OrderedDict(self._all_parameters) # Remove the fixed ones for parameter_name in fixed_parameters: free_parameters.pop(parameter_name) # Now compute how many free parameters we have self._n_free_parameters = len(free_parameters) if self._n_free_parameters > 0: self._wrapper = FunctionWrapper( self._function, self._all_parameters, self._fixed_parameters ) # Create a copy of the optimizer with the new parameters (i.e., one or two # parameters fixed to their current values) self._optimizer = type(minimizer_instance)( self._wrapper, free_parameters, verbosity=0 ) if minimizer_instance.algorithm_name is not None: self._optimizer.set_algorithm(minimizer_instance.algorithm_name) else: # Special case when there are no free parameters after fixing the requested ones # There is no profiling necessary here self._wrapper = None self._optimizer = None def _transform_steps(self, parameter_name, steps): """ If the parameter has a transformation, use it for the steps and return the transformed steps :return: transformed steps """ if self._all_parameters[parameter_name].has_transformation(): new_steps = self._all_parameters[parameter_name].transformation.forward( steps ) return new_steps else: # Nothing to do return steps def step(self, steps1, steps2=None): if steps2 is not None: assert ( len(self._fixed_parameters) == 2 ), "Cannot step in 2d if you fix only one parameter" # Find out if the user is giving flipped steps (i.e. param_1 is after param_2 in the # parameters dictionary) param_1_name = self._fixed_parameters[0] param_1_idx = list(self._all_parameters.keys()).index(param_1_name) param_2_name = self._fixed_parameters[1] param_2_idx = list(self._all_parameters.keys()).index(param_2_name) # Fix steps if needed steps1 = self._transform_steps(param_1_name, steps1) if steps2 is not None: steps2 = self._transform_steps(param_2_name, steps2) if param_1_idx > param_2_idx: # Switch steps swap = steps1 steps1 = steps2 steps2 = swap results = self._step2d(steps1, steps2).T else: results = self._step2d(steps1, steps2) return results else: assert ( len(self._fixed_parameters) == 1 ), "You cannot step in 1d if you fix 2 parameters" param_1_name = self._fixed_parameters[0] # Fix steps if needed. steps1 = self._transform_steps(param_1_name, steps1) return self._step1d(steps1) def __call__(self, values): self._wrapper.set_fixed_values(values) _, this_log_like = self._optimizer.minimize(compute_covar=False) return this_log_like def _step1d(self, steps1): log_likes = np.zeros_like(steps1) with progress_bar(len(steps1), title="Profiling likelihood") as p: for i, step in enumerate(steps1): if self._n_free_parameters > 0: # Profile out the free parameters self._wrapper.set_fixed_values(step) _, this_log_like = self._optimizer.minimize(compute_covar=False) else: # No free parameters, just compute the likelihood this_log_like = self._function(step) log_likes[i] = this_log_like p.increase() return log_likes def _step2d(self, steps1, steps2): log_likes = np.zeros((len(steps1), len(steps2))) with progress_bar(len(steps1) * len(steps2), title="Profiling likelihood") as p: for i, step1 in enumerate(steps1): for j, step2 in enumerate(steps2): if self._n_free_parameters > 0: # Profile out the free parameters self._wrapper.set_fixed_values([step1, step2]) try: _, this_log_like = self._optimizer.minimize( compute_covar=False ) except FitFailed: # If the user is stepping too far it might be that the fit fails. It is usually not a # problem this_log_like = np.nan else: # No free parameters, just compute the likelihood this_log_like = self._function(step1, step2) log_likes[i, j] = this_log_like p.increase() return log_likes # This classes are used directly by the user to have better control on the minimizers. # They are actually factories class _Minimization(object): def __init__(self, minimizer_type): self._minimizer_type = get_minimizer(minimizer_type=minimizer_type) self._algorithm = None self._setup_dict = {} def setup(self, **setup_dict): valid_setup_keys = self._minimizer_type.valid_setup_keys # Check that the setup has been specified well for key in list(setup_dict.keys()): assert key in valid_setup_keys, ( "%s is not a valid setup parameter for this minimizer" % key ) self._setup_dict = setup_dict def set_algorithm(self, algorithm): # Note that algorithm might be None self._algorithm = algorithm class LocalMinimization(_Minimization): def __init__(self, minimizer_type): super(LocalMinimization, self).__init__(minimizer_type) assert issubclass(self._minimizer_type, LocalMinimizer), ( "Minimizer %s is not a local minimizer" % minimizer_type ) def get_instance(self, *args, **kwargs): instance = self._minimizer_type(*args, **kwargs) if self._algorithm is not None: instance.set_algorithm(self._algorithm) # Set up the minimizer instance._setup(self._setup_dict) return instance class GlobalMinimization(_Minimization): def __init__(self, minimizer_type): super(GlobalMinimization, self).__init__(minimizer_type) assert issubclass(self._minimizer_type, GlobalMinimizer), ( "Minimizer %s is not a local minimizer" % minimizer_type ) self._2nd_minimization = None def setup(self, **setup_dict): assert "second_minimization" in setup_dict, ( "You have to provide a secondary minimizer during setup, " "using the second_minimization keyword" ) self._2nd_minimization = setup_dict["second_minimization"] super(GlobalMinimization, self).setup(**setup_dict) def get_second_minimization_instance(self, *args, **kwargs): return self._2nd_minimization.get_instance(*args, **kwargs) def get_instance(self, *args, **kwargs): instance = self._minimizer_type(*args, **kwargs) if self._algorithm is not None: instance.set_algorithm(self._algorithm) # Set up the minimizer instance._setup(self._setup_dict) return instance class Minimizer(object): def __init__(self, function, parameters, verbosity=1, setup_dict=None): """ :param function: function to be minimized :param parameters: ordered dictionary of the FREE parameters in the fit. The order must be the same as in the calling sequence of the function to be minimized. :param verbosity: control the verbosity of the output :param type: type of the optimizer (use the enums LOCAL_OPTIMIZER or GLOBAL_OPTIMIZER) :return: """ self._function = function self._external_parameters = parameters self._internal_parameters = self._update_internal_parameter_dictionary() self._Npar = len(list(self.parameters.keys())) self._verbosity = verbosity self._setup(setup_dict) self._fit_results = None self._covariance_matrix = None self._correlation_matrix = None self._algorithm_name = None self._m_log_like_minimum = None self._optimizer_type = str(type) def _update_internal_parameter_dictionary(self): """ Returns a dictionary parameter_name -> (current value, delta, minimum, maximum) in the internal frame (if the parameter has a transformation set). This should be used by the implementation of the minimizers to get the parameters to optimize. :return: dictionary """ # Prepare the dictionary for the parameters which will be used by iminuit internal_parameter_dictionary = collections.OrderedDict() # NOTE: we use the internal_ versions of value, min_value and max_value because they don't have # units, and they are transformed to make the fit easier (for example in log scale) # NOTE as well that as in the entire class here, the .parameters dictionary only contains free parameters, # as only free parameters are passed to the constructor of the minimizer for k, par in self.parameters.items(): current_name = par.path current_value = par._get_internal_value() current_delta = par._get_internal_delta() current_min = par._get_internal_min_value() current_max = par._get_internal_max_value() # Now fix sensible values for parameters deltas if current_min is None and current_max is None: # No boundaries, use 2% of value as initial delta if abs(current_delta) < abs(current_value) * 0.02 or not np.isfinite( current_delta ): current_delta = abs(current_value) * 0.02 elif current_min is not None: if current_max is not None: # Bounded in both directions. Use 20% of the value current_delta = abs(current_value) * 0.02 # Make sure we do not violate the boundaries current_delta = min( current_delta, abs(current_value - current_delta) / 10.0, abs(current_value + current_delta) / 10.0, ) else: # Bounded only in the negative direction. Make sure we are not at the boundary if np.isclose( current_value, current_min, old_div(abs(current_value), 20) ): custom_warnings.warn( "The current value of parameter %s is very close to " "its lower bound when starting the fit. Fixing it" % par.name ) current_value = current_value + 0.1 * abs(current_value) current_delta = 0.05 * abs(current_value) else: current_delta = min( current_delta, abs(current_value - current_min) / 10.0 ) else: if current_max is not None: # Bounded only in the positive direction # Bounded only in the negative direction. Make sure we are not at the boundary if np.isclose( current_value, current_max, old_div(abs(current_value), 20) ): custom_warnings.warn( "The current value of parameter %s is very close to " "its upper bound when starting the fit. Fixing it" % par.name ) current_value = current_value - 0.04 * abs(current_value) current_delta = 0.02 * abs(current_value) else: current_delta = min( current_delta, abs(current_max - current_value) / 2.0 ) # Sometimes, if the value was 0, the delta could be 0 as well which would crash # certain algorithms if current_value == 0: current_delta = 0.1 internal_parameter_dictionary[current_name] = ( current_value, current_delta, current_min, current_max, ) return internal_parameter_dictionary @property def function(self): return self._function @property def parameters(self): return self._external_parameters @property def Npar(self): return self._Npar @property def verbosity(self): return self._verbosity def _setup(self, setup_dict): raise NotImplementedError("You have to implement this.") @property def algorithm_name(self): return self._algorithm_name def minimize(self, compute_covar=True): """ Minimize objective function. This call _minimize, which is implemented by each subclass. :param compute_covar: :return: best fit values (in external reference) and minimum of the objective function """ # Gather the best fit values from the minimizer and the covariance matrix (if provided) try: internal_best_fit_values, function_minimum = self._minimize() except FitFailed: raise # Check that all values are finite # Check that the best_fit_values are finite if not np.all(np.isfinite(internal_best_fit_values)): raise FitFailed( "_Minimization apparently succeeded, " "but best fit values are not all finite: %s" % (internal_best_fit_values) ) # Now set the internal values of the parameters to their best fit values and collect the # values in external reference external_best_fit_values = [] for i, parameter in enumerate(self.parameters.values()): parameter._set_internal_value(internal_best_fit_values[i]) external_best_fit_values.append(parameter.value) # Now compute the covariance matrix, if requested if compute_covar: covariance = self._compute_covariance_matrix(internal_best_fit_values) else: covariance = None # Finally store everything self._store_fit_results(internal_best_fit_values, function_minimum, covariance) return external_best_fit_values, function_minimum def _minimize(self): # This should return the list of best fit parameters and the minimum of the function raise NotImplemented( "This is the method of the base class. Must be implemented by the actual minimizer" ) def set_algorithm(self, algorithm): raise NotImplementedError( "Must be implemented by the actual minimizer if it provides more than one algorithm" ) def _store_fit_results( self, best_fit_values, m_log_like_minimum, covariance_matrix=None ): self._m_log_like_minimum = m_log_like_minimum # Create a pandas DataFrame with the fit results values = collections.OrderedDict() errors = collections.OrderedDict() # to become compatible with python3 keys_list = list(self.parameters.keys()) parameters_list = list(self.parameters.values()) for i in range(self.Npar): name = keys_list[i] value = best_fit_values[i] # Set the parameter to the best fit value (sometimes the optimization happen in a different thread/node, # so we need to make sure that the parameter has the best fit value) parameters_list[i]._set_internal_value(value) if covariance_matrix is not None: element = covariance_matrix[i, i] if element > 0: error = math.sqrt(covariance_matrix[i, i]) else: custom_warnings.warn( "Negative element on diagonal of covariance matrix", CannotComputeErrors, ) error = np.nan else: error = np.nan values[name] = value errors[name] = error data = collections.OrderedDict() data["value"] = pd.Series(values) data["error"] = pd.Series(errors) self._fit_results = pd.DataFrame(data) self._covariance_matrix = covariance_matrix # Compute correlation matrix self._correlation_matrix = np.zeros_like(self._covariance_matrix) if covariance_matrix is not None: for i in range(self.Npar): variance_i = self._covariance_matrix[i, i] for j in range(self.Npar): variance_j = self._covariance_matrix[j, j] if variance_i * variance_j > 0: self._correlation_matrix[i, j] = old_div( self._covariance_matrix[i, j], (math.sqrt(variance_i * variance_j)), ) else: # We already issued a warning about this, so let's quietly fail self._correlation_matrix[i, j] = np.nan @property def fit_results(self): return self._fit_results @property def covariance_matrix(self): return self._covariance_matrix @property def correlation_matrix(self): return self._correlation_matrix def restore_best_fit(self): """ Reset all the parameters to their best fit value (from the last run fit) :return: none """ best_fit_values = self._fit_results["value"].values for parameter_name, best_fit_value in zip( list(self.parameters.keys()), best_fit_values ): self.parameters[parameter_name]._set_internal_value(best_fit_value) # Regenerate the internal parameter dictionary with the new values self._internal_parameters = self._update_internal_parameter_dictionary() def _compute_covariance_matrix(self, best_fit_values): """ This function compute the approximate covariance matrix as the inverse of the Hessian matrix, which is the matrix of second derivatives of the likelihood function with respect to the parameters. The sqrt of the diagonal of the result is an accurate estimate of the errors only if the log.likelihood is parabolic in the neighborhood of the minimum. Derivatives are computed numerically. :return: the covariance matrix """ minima = [ parameter._get_internal_min_value() for parameter in list(self.parameters.values()) ] maxima = [ parameter._get_internal_max_value() for parameter in list(self.parameters.values()) ] # Check whether some of the minima or of the maxima are None. If they are, set them # to a value 1000 times smaller or larger respectively than the best fit. # An error of 3 orders of magnitude is not interesting in general, and this is the only # way to be able to compute a derivative numerically for i in range(len(minima)): if minima[i] is None: minima[i] = best_fit_values[i] / 1000.0 if maxima[i] is None: maxima[i] = best_fit_values[i] * 1000.0 # Transform them in np.array minima = np.array(minima) maxima = np.array(maxima) try: hessian_matrix = get_hessian(self.function, best_fit_values, minima, maxima) except ParameterOnBoundary: custom_warnings.warn( "One or more of the parameters are at their boundaries. Cannot compute covariance and" " errors", CannotComputeCovariance, ) n_dim = len(best_fit_values) return np.zeros((n_dim, n_dim)) * np.nan # Invert it to get the covariance matrix try: covariance_matrix = np.linalg.inv(hessian_matrix) except: custom_warnings.warn( "Cannot invert Hessian matrix, looks like the matrix is singular" ) n_dim = len(best_fit_values) return np.zeros((n_dim, n_dim)) * np.nan # Now check that the covariance matrix is semi-positive definite (it must be unless # there have been numerical problems, which can happen when some parameter is unconstrained) # The fastest way is to try and compute the Cholesky decomposition, which # works only if the matrix is positive definite try: _ = np.linalg.cholesky(covariance_matrix) except: custom_warnings.warn( "Covariance matrix is NOT semi-positive definite. Cannot estimate errors. This can " "happen for many reasons, the most common being one or more unconstrained parameters", CannotComputeCovariance, ) return covariance_matrix def _get_one_error(self, parameter_name, target_delta_log_like, sign=-1): """ A generic procedure to numerically compute the error for the parameters. You can override this if the minimizer provides its own method to compute the error of one parameter. If it provides a method to compute all errors are once, override the _get_errors method instead. :param parameter_name: :param target_delta_log_like: :param sign: :return: """ # Since the procedure might find a better minimum, we can repeat it # up to a maximum of 10 times repeats = 0 while repeats < 10: # Let's start optimistic... repeat = False repeats += 1 # Restore best fit (which also updates the internal parameter dictionary) self.restore_best_fit() ( current_value, current_delta, current_min, current_max, ) = self._internal_parameters[parameter_name] best_fit_value = current_value if sign == -1: extreme_allowed = current_min else: extreme_allowed = current_max # If the parameter has no boundary in the direction we are sampling, put a hard limit on # 10 times the current value (to avoid looping forever) if extreme_allowed is None: extreme_allowed = best_fit_value + sign * 10 * abs(best_fit_value) # We need to look for a value for the parameter where the difference between the minimum of the # log-likelihood and the likelihood for that value differs by more than target_delta_log_likelihood. # This is needed by the root-finding procedure, which needs to know an interval where the biased likelihood # function (see below) changes sign trials = best_fit_value + sign * np.linspace(0.1, 0.9, 9) * abs( best_fit_value ) trials = np.append(trials, extreme_allowed) # Make sure we don't go below the allowed minimum or above the allowed maximum if sign == -1: np.clip(trials, extreme_allowed, np.inf, trials) else: np.clip(trials, -np.inf, extreme_allowed, trials) # There might be more than one value which was below the minimum (or above the maximum), so let's # take only unique elements trials = np.unique(trials) trials.sort() if sign == -1: trials = trials[::-1] # At this point we have a certain number of unique trials which always # contain the allowed minimum (or maximum) minimum_bound = None maximum_bound = None # Instance the profile likelihood function pl = ProfileLikelihood(self, [parameter_name]) for i, trial in enumerate(trials): this_log_like = pl([trial]) delta = this_log_like - self._m_log_like_minimum if delta < -0.1: custom_warnings.warn( "Found a better minimum (%.2f) for %s = %s during error " "computation." % (this_log_like, parameter_name, trial), BetterMinimumDuringProfiling, ) xs = [x.value for x in list(self.parameters.values())] self._store_fit_results(xs, this_log_like, None) repeat = True break if delta > target_delta_log_like: bound1 = trial if i > 0: bound2 = trials[i - 1] else: bound2 = best_fit_value minimum_bound = min(bound1, bound2) maximum_bound = max(bound1, bound2) repeat = False break if repeat: # We found a better minimum, restart from scratch custom_warnings.warn("Restarting search...", RuntimeWarning) continue if minimum_bound is None: # Cannot find error in this direction (it's probably outside the allowed boundaries) custom_warnings.warn( "Cannot find boundary for parameter %s" % parameter_name, CannotComputeErrors, ) error = np.nan break else: # Define the "biased likelihood", since brenq only finds zeros of function biased_likelihood = ( lambda x: pl(x) - self._m_log_like_minimum - target_delta_log_like ) try: precise_bound = scipy.optimize.brentq( biased_likelihood, minimum_bound, maximum_bound, xtol=1e-5, maxiter=1000, ) # type: float except: custom_warnings.warn( "Cannot find boundary for parameter %s" % parameter_name, CannotComputeErrors, ) error = np.nan break error = precise_bound - best_fit_value break return error def get_errors(self): """ Compute asymmetric errors using the profile likelihood method (slow, but accurate). :return: a dictionary with asymmetric errors for each parameter """ # Restore best fit so error computation starts from there self.restore_best_fit() # Get errors errors_dict = self._get_errors() # Transform in external reference if needed best_fit_values = self._fit_results["value"] for par_name, (negative_error, positive_error) in errors_dict.items(): parameter = self.parameters[par_name] if parameter.has_transformation(): _, negative_error_external = parameter.internal_to_external_delta( best_fit_values[parameter.path], negative_error ) _, positive_error_external = parameter.internal_to_external_delta( best_fit_values[parameter.path], positive_error ) errors_dict[par_name] = ( negative_error_external, positive_error_external, ) else: # No need to transform pass return errors_dict def _get_errors(self): """ Override this method if the minimizer provide a function to get all errors at once. If instead it provides a method to get one error at the time, override the _get_one_error method :return: a ordered dictionary parameter_path -> (negative_error, positive_error) """ # TODO: options for other significance levels target_delta_log_like = 0.5 errors = collections.OrderedDict() with progress_bar(2 * len(self.parameters), title="Computing errors") as p: for parameter_name in self.parameters: negative_error = self._get_one_error( parameter_name, target_delta_log_like, -1 ) p.increase() positive_error = self._get_one_error( parameter_name, target_delta_log_like, +1 ) p.increase() errors[parameter_name] = (negative_error, positive_error) return errors def contours( self, param_1, param_1_minimum, param_1_maximum, param_1_n_steps, param_2=None, param_2_minimum=None, param_2_maximum=None, param_2_n_steps=None, progress=True, **options ): """ Generate confidence contours for the given parameters by stepping for the given number of steps between the given boundaries. Call it specifying only source_1, param_1, param_1_minimum and param_1_maximum to generate the profile of the likelihood for parameter 1. Specify all parameters to obtain instead a 2d contour of param_1 vs param_2 :param param_1: name of the first parameter :param param_1_minimum: lower bound for the range for the first parameter :param param_1_maximum: upper bound for the range for the first parameter :param param_1_n_steps: number of steps for the first parameter :param param_2: name of the second parameter :param param_2_minimum: lower bound for the range for the second parameter :param param_2_maximum: upper bound for the range for the second parameter :param param_2_n_steps: number of steps for the second parameter :param progress: (True or False) whether to display progress or not :param log: by default the steps are taken linearly. With this optional parameter you can provide a tuple of booleans which specify whether the steps are to be taken logarithmically. For example, 'log=(True,False)' specify that the steps for the first parameter are to be taken logarithmically, while they are linear for the second parameter. If you are generating the profile for only one parameter, you can specify 'log=(True,)' or 'log=(False,)' (optional) :param: parallel: whether to use or not parallel computation (default:False) :return: a : an array corresponding to the steps for the first parameter b : an array corresponding to the steps for the second parameter (or None if stepping only in one direction) contour : a matrix of size param_1_steps x param_2_steps containing the value of the function at the corresponding points in the grid. If param_2_steps is None (only one parameter), then this reduces to an array of size param_1_steps. """ # Figure out if we are making a 1d or a 2d contour if param_2 is None: n_dimensions = 1 fixed_parameters = [param_1] else: n_dimensions = 2 fixed_parameters = [param_1, param_2] # Check the options p1log = False p2log = False if "log" in list(options.keys()): assert len(options["log"]) == n_dimensions, ( "When specifying the 'log' option you have to provide a " + "boolean for each dimension you are stepping on." ) p1log = bool(options["log"][0]) if param_2 is not None: p2log = bool(options["log"][1]) # Generate the steps if p1log: param_1_steps = np.logspace( math.log10(param_1_minimum), math.log10(param_1_maximum), param_1_n_steps, ) else: param_1_steps = np.linspace( param_1_minimum, param_1_maximum, param_1_n_steps ) if n_dimensions == 2: if p2log: param_2_steps = np.logspace( math.log10(param_2_minimum), math.log10(param_2_maximum), param_2_n_steps, ) else: param_2_steps = np.linspace( param_2_minimum, param_2_maximum, param_2_n_steps ) else: # Only one parameter to step through # Put param_2_steps as nan so that the worker can realize that it does not have # to step through it param_2_steps = np.array([np.nan]) # Define the worker which will compute the value of the function at a given point in the grid # Restore best fit if self.fit_results is not None: self.restore_best_fit() else: custom_warnings.warn( "No best fit to restore before contours computation. " "Perform the fit before running contours to remove this warnings." ) pr = ProfileLikelihood(self, fixed_parameters) if n_dimensions == 1: results = pr.step(param_1_steps) else: results = pr.step(param_1_steps, param_2_steps) # Return results return ( param_1_steps, param_2_steps, np.array(results).reshape((param_1_steps.shape[0], param_2_steps.shape[0])), ) class LocalMinimizer(Minimizer): pass class GlobalMinimizer(Minimizer): pass # Check which minimizers are available try: from threeML.minimizer.minuit_minimizer import MinuitMinimizer except ImportError: custom_warnings.warn("Minuit minimizer not available", ImportWarning) else: _minimizers["MINUIT"] = MinuitMinimizer try: from threeML.minimizer.ROOT_minimizer import ROOTMinimizer except ImportError: custom_warnings.warn("ROOT minimizer not available", ImportWarning) else: _minimizers["ROOT"] = ROOTMinimizer try: from threeML.minimizer.multinest_minimizer import MultinestMinimizer except ImportError: custom_warnings.warn("Multinest minimizer not available", ImportWarning) else: _minimizers["MULTINEST"] = MultinestMinimizer try: from threeML.minimizer.pagmo_minimizer import PAGMOMinimizer except ImportError: custom_warnings.warn("PyGMO is not available", ImportWarning) else: _minimizers["PAGMO"] = PAGMOMinimizer try: from threeML.minimizer.scipy_minimizer import ScipyMinimizer except ImportError: custom_warnings.warn("Scipy minimizer is not available", ImportWarning) else: _minimizers["SCIPY"] = ScipyMinimizer # Check that we have at least one minimizer available if len(_minimizers) == 0: raise SystemError( "You do not have any minimizer available! You need to install at least iminuit." ) # Add the GRID minimizer here since it needs at least one other minimizer from threeML.minimizer.grid_minimizer import GridMinimizer _minimizers["GRID"] = GridMinimizer
bsd-3-clause
tcompa/anneal
examples/generalized_linear_model/anneal_glm.py
1
2393
''' program: anneal_glm.py author: tc created: 2016-04-19 -- 10 CEST notes: performs one simulated-annealing run, for a GLM problem. ''' import numpy import matplotlib.pyplot as plt from anneal import simulated_annealing from lib_generalized_linear_model import GLM # define D-dimensional General Linear Model: Y=M*X+Q D = 25 Q = numpy.random.uniform(-1.0, 1.0, D) M = numpy.random.uniform(-1.0, 1.0, size=(D, D)) # generate noisy data Npoints = 100 eps = 0.1 X = numpy.random.uniform(-1.0, 1.0, (Npoints, D)) Y = numpy.matmul(X, M) + Q Y += numpy.random.uniform(-eps, eps, size=Y.shape) # initialize GLM instance G = GLM(X, Y) # perform annealing print 'SA start' G, E, et = simulated_annealing(G, 'GLM', beta_min=1e-1, beta_max=1e4, cooling_rate=5e-2, n_steps_per_T=200, quench_to_T0=True, n_steps_T0=10000) print 'SA end (elapsed: %.1f s)' % et # plot energy fig, ax = plt.subplots(1, 1) ax.plot(E) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('time') ax.set_ylabel('energy') plt.savefig('fig_energy.png', bbox_inches='tight') plt.close() # plot M fig, axs = plt.subplots(2, 2, figsize=(10, 10)) ax1, ax2, ax3, ax4 = axs.flatten() vmin = min(M.min(), G.M0.min(), G.M.min()) / 1.05 vmax = max(M.max(), G.M0.max(), G.M.max()) * 1.05 props = {'cmap': 'viridis', 'vmin': vmin, 'vmax': vmax, 'origin': 'lower'} im1 = ax1.matshow(M, **props) im2 = ax2.matshow(G.M, **props) im3 = ax3.matshow(G.M0, **props) im4 = ax4.matshow(M - G.M, **props) ax1.set_title('\"true\"') ax2.set_title('final') ax3.set_title('starting') ax4.set_title('diff') for ax in axs.flatten(): ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_label_position('bottom') ax_cb = fig.add_axes([0.25, 0.95, 0.5, 0.025]) CB = fig.colorbar(im1, cax=ax_cb, orientation='horizontal') CB.ax.tick_params(labelsize=10, direction='in', labeltop='on', labelbottom='off') CB.ax.xaxis.set_ticks_position('top') CB.ax.xaxis.set_label_position('top') CB.ax.xaxis.labelpad = 10 plt.savefig('fig_matrix.png', bbox_inches='tight', dpi=128) plt.close() # plot Q plt.plot(G.Q0, 'o-', label='starting') plt.plot(Q, 'x-', ms=8, label='\"true\"') plt.plot(G.Q, 'o-', ms=5, label='final') plt.legend(loc='best') plt.xlabel('component') plt.title('offset Q') plt.savefig('fig_offset.png', bbox_inches='tight')
mit
CosmoJG/neural-heatmap
dependencies/NeuronGeometry.py
1
98029
#!/usr/bin/python _usageStr=\ """usage: neuron_readExportedGeometry.py geoFile get dictionary object describing neuron model geometry info by reading file """ import os from scipy import special, mean, std from collections import deque import matplotlib.pyplot as pyplot from math import log, sqrt, atan, isnan, pi, acos from bisect import bisect_left import numpy as np """ Geometry class public methods: (self is always first argument) setFileName(_fileName) numCompartments() readGeometry() pure virtual displaySummary() findBranches() checkConnectivity() shollAnalysis() """ terminalColors = { 'endColor' : '\033[0m', 'black' : '\033[0;30m', 'red' : '\033[0;31m', 'green' : '\033[0;32m', 'yellow' : '\033[0;33m', 'blue' : '\033[0;34m', 'purple' : '\033[0;35m', 'cyan' : '\033[0;36m', 'lightGray' : '\033[0;37m', 'darkGray' : '\033[1;30m', 'boldRed' : '\033[1;31m', 'boldGreen' : '\033[1;32m', 'boldYellow' : '\033[1;33m', 'boldBlue' : '\033[1;34m', 'boldPurple' : '\033[1;35m', 'boldCyan' : '\033[1;36m', 'white' : '\033[1;37m' } def warn(warnStr, extraInfo='', color='boldRed'): if extraInfo: print(terminalColors[color] + warnStr + terminalColors['endColor'] + ': ' + extraInfo) else: print(terminalColors[color] + warnStr + terminalColors['endColor']) def cumsum(values, start=0.0, yieldStart=True): """ Return generator to running cumulative sum of values """ if yieldStart: yield start for v in values: start += v yield start """ class PathDistanceFinder Finds network distances from one segment/branch at specified position Can report distance to another segment/branch at specified position via .distanceTo() Can report optimal path to another segment/branch at specified position va .pathTo() Can report tortuosity of optimal path via .tortuosityTo() Can compute electrotonic lengths from a list of voltages via .getElectrotonicLengths() """ class PathDistanceFinder(object): def __init__(self, geometry, segment, pos=0.5, warnLoops=False): self.geometry = geometry if type(segment) == int: segment = geometry.segments[segment] self.network = geometry.segments elif segment in geometry.segments: self.network = geometry.segments elif segment in geometry.branches: self.network = geometry.branches else: raise TypeError('Start segment must be an index to geometry.segments, or' ' an object from geometry.segments or geometry.branches') self.warnLoops = warnLoops self.startSegment = segment self.startPos = pos self.startCoord = segment.coordAt(pos) self.distances, self.branchOrders = self._computeDistances() def distanceTo(self, segment, pos=0.5): # return distance to specified segment at the specified location if type(segment) == int: segment = self.network[segment] if segment not in self.distances: raise KeyError('%s is not reachable from the network' % segment.name) return min(baseD + segment.length * abs(pos - startPos) for baseD, startPos, pathDesc, path in self.distances[segment]) def pathTo(self, segment, pos=0.5): # return optimal path to specified segment at specified location return min(((baseD + segment.length * abs(pos - startPos), path) for baseD, startPos, pathDesc, path in self.distances[segment]), key=lambda x:x[0])[1] def pathDescriptionTo(self, segment, pos=0.5): # return optimal path to specified segment at specified location return min(((baseD + segment.length * abs(pos - startPos), pathDesc) for baseD, startPos, pathDesc, path in self.distances[segment]), key=lambda x:x[0])[1] def tortuosityTo(self, segment, pos=0.5): stopCoord = segment.coordAt(pos) euclideanD = sqrt(sum((r0-r1)**2 for r0,r1 in zip(self.startCoord, stopCoord))) pathD = self.distanceTo(segment, pos) tortuosity = pathD / euclideanD if tortuosity < 1.0: warn('Tortuosity < 1', self.pathDescriptionTo(segment, pos)) raise RuntimeError('Path to %s at %g has tortuosity < 1' % (segment.name, pos)) return tortuosity def branchOrder(self, segment): return self.branchOrders[segment] def getElectrotonicLengths(self, steadyVoltages): # given a list of steady-state voltages, return electrotonic lengths of all # segments return [self._getElectrotonicLength(ind, seg, steadyVoltages) for ind, seg in enumerate(self.network)] def _getElectrotonicLength(self, index, segment, steadyVoltages): # given list of steady-state voltages, compute the electrotonic length of a # specific segment dSeg = self.distanceTo(segment) vSeg = steadyVoltages[index] segOrder = self.branchOrders[segment] # use only one other neighbor, pick the closest one that is of a different # branch order neighbor = min((s for s in segment.neighbors if self.branchOrders[s] != segOrder), key=lambda n: abs(self.distanceTo(n) - dSeg)) dNeighbor = self.distanceTo(neighbor) vNeighbor = steadyVoltages[self.network.index(neighbor)] eLength = (dNeighbor - dSeg) / log(vSeg / vNeighbor) if eLength < 0: nIndex = self.network.index(neighbor) nOrder = self.branchOrders[neighbor] print('eLength=%g: ind=%d, nInd=%d, d=%g, nd=%g, v=%g, nV=%g, ' % (eLength, index, nIndex, dSeg, dNeighbor, vSeg, vNeighbor) + 'order=%d, nOrder=%d' % (segOrder, nOrder)) return eLength def _computeDistances(self): # use Dijkstra's algorithm to find path distance from start to rest of # neuron. # Keep track of effect of startPos (starting position in startSegment) # Also keep track of effect of pos of each final segment segment, startPos = self.startSegment, self.startPos # distances is a dict object, with segments as keys # the values are a list of paths, each path described by a tuple # (pathDistance, connecting location in the segment, path description, # list of segments in path ) distances = { segment : [(0.0, startPos, segment.name + '(%.1f)' % startPos, [segment])] } branchOrders = { segment : 0 } openSegments = { segment, } while openSegments: segment = openSegments.pop() for currentD, startPos, segPathDesc, segPath in distances[segment]: branchOrderInc = 1 if branchOrders[segment] > 0 and len(segment.neighbors) <= 2: branchOrderInc = 0 #branchOrderInc = int(len(segment.neighbors) > 2) for neighbor, (connectLoc, nConnectLoc, node) \ in zip(segment.neighbors, segment.neighborLocations): pathD = currentD + segment.length * abs(startPos - connectLoc) # check if neighbor in distances? if neighbor not in distances: # found path to new segment nPath = segPath + [neighbor] nPathDesc = segPathDesc + '->(%.1f)->' % connectLoc + \ neighbor.name + '(%.1f)' % nConnectLoc distances[neighbor] = [(pathD, nConnectLoc, nPathDesc, nPath)] openSegments.add(neighbor) branchOrders[neighbor] = branchOrders[segment] + branchOrderInc else: # Either there is a loop involving this segment, or the path is # backtracking # Check if the current path is an efficient route to the loop efficient = True insertInd = None loopDistances = distances[neighbor] for ind, (loopD, loopPos, loopPathDesc, loopPath) in \ enumerate(loopDistances): traverse = neighbor.length * abs(loopPos - nConnectLoc) if pathD >= loopD + traverse: # the new path to neighbor is too slow to ever be useful efficient = False break elif pathD + traverse < loopD: # the new path to neighbor renders an old one obsolete loopDistances.pop(ind) if insertInd is None and pathD < loopD: insertInd = ind if efficient: nPath = segPath + [neighbor] nPathDesc = segPathDesc + '->(%.1f)->' % connectLoc + \ neighbor.name + '(%.1f)' % nConnectLoc pathInfo = (pathD, nConnectLoc, nPathDesc, nPath) if insertInd is None: loopDistances.append(pathInfo) else: loopDistances.insert(insertInd, pathInfo) distances[neighbor] = loopDistances openSegments.add(neighbor) branchOrders[neighbor] = branchOrders[segment] + branchOrderInc if self.warnLoops and len(loopDistances) > 1: warn('%d efficient paths to %s.' % (len(loopDistances), neighbor.name)) for ind, loopPos, loopPath in loopDistances: print(loopPath) return distances, branchOrders class Geometry: def __init__(self, _fileName = None): # who knows, do something? self.path = None self.fileName = None self.name = None # store the geometry info here self.nodes = [] self.segments = [] self.branches = [] self.compartments = [] self.branchOrders = None self.tags = {'*' : 0} # helper sets for efficient deleting self._removeNodes = set() self._removeSegments = set() # keep track of which objects have had connectivity checked self._connectivityChecked = set() self._soma = None self._somaBranch = None self._axons = None self._axonsBranch = None self.surfaceArea = 0.0 # mm^2 self.volume = 0.0 # mm^3 self.minRange = [float('nan'), float('nan'), float('nan')] self.maxRange = [float('nan'), float('nan'), float('nan')] if _fileName is not None: self.setFileName(_fileName) self.readGeometry() def setFileName(self, fileName): self.path = os.path.dirname(os.path.abspath(fileName)) self.fileName = fileName self.name = os.path.basename(fileName).split('.')[0] def numCompartments(self): return len(self.compartments) def readGeometry(self): raise RuntimeError( \ 'Geometry must be a subclass that knows how to read files') def displaySummary(self): """ Display summary statistics of neuron geometry """ print("total number of nodes: %d" % len(self.nodes)) print("total number of compartments: %d" % len(self.compartments)) print("total number of segments: %d" % len(self.segments)) subGraphs = self.checkConnectivity(removeDisconnected=True, debugInfo=True) print("number of connected nodes: %d" % len(self.nodes)) print("number of connected compartments: %d" % len(self.compartments)) print("number of connected segments: %d" % len(self.segments)) self.findBranches() print("number of branches: %d" % len(self.branches)) soma = self.soma somaArea = sum(c.surfaceArea for c in soma.compartments \ if 'Soma' in c.tags) print('Soma Area = %g mm^2' % somaArea) print('Found %d axon%s' % (len(self._axons), 's'*(len(self._axons)!=1))) print("volume: %g mm^3" % self.volume) print("surface area: %s mm^2" % self.surfaceArea) self.calcBranchOrder(doPlot=False) self.shollAnalysis(straightenNeurites=True) self.mergeBranchesByDistanceToEdge() pyplot.show() ##### SHOW PLOTS!!!!!!!!!!!!!!!!!!!!!!!!!!! ############################################################################# def getProperties(self, passiveFile="", display=False, # CHANGED FALSE makePlots=False): def _dispListStats(L, confidence = 0.05, display=True, printName=""): # return median, lowBound, highBound sortedL = sorted(L) numL = len(L) if numL % 2: # odd number of elements medianInd = int((numL - 1) / 2) median = sortedL[medianInd] else: medianInd = numL / 2 median = (sortedL[int(medianInd)] + sortedL[int(medianInd - 1)]) / 2.0 lowInd = int(round( 0.5 * confidence * numL )) highInd = int(round( (1.0 - 0.5 * confidence) * numL )) low = sortedL[lowInd] ; high = sortedL[highInd] if display and printName: print('%s = %.2f +%.2f -%.2f' % (printName, median, high - median, median - low)) def _plotTraces(timeTrace, vTraces): from scipy import array fig = pyplot.figure() axes = fig.add_subplot(1,1,1) y = array(vTraces.values()).transpose() axes.plot(timeTrace, y) pyplot.ylabel('Membrane Potential (mV)') pyplot.xlabel('Time (ms)') pyplot.title('Model Response to Step Current') pyplot.tight_layout() from scipy.optimize import brentq, fmin def _rallLaw(p, *ratios): try: return sum(r**p for r in ratios) - 1.0 except OverflowError: return float('inf') def _rallLawTrouble(p, *ratios): try: return (sum(r**p for r in ratios) - 1.0)**2 except OverflowError: return float('inf') def _getRallPow(parentR, daughterRs): ratios = tuple(d / parentR for d in daughterRs) checkPows = [-log(len(ratios)) / log(r) for r in ratios if r != 1.0] try: return brentq(_rallLaw, min(checkPows), max(checkPows), args=ratios) except ValueError: #print('Rall-incompatible branch ratios: %s' # % ' '.join('%.2f' % r for r in ratios)) return fmin(_rallLawTrouble, 0.0, args=ratios, disp=False)[0] def _overallRall(p, ratiosList): return sum(_rallLawTrouble(p, *ratios) for ratios in ratiosList) def _getOverallRallPow(ratiosList): return fmin(_overallRall, 0.0, args=(ratiosList,), disp=False)[0] # check connectivity self.checkConnectivity(removeDisconnected=True, removeLoops=True) self.findBranches() if display: print("number of connected nodes: %d" % len(self.nodes)) print("number of connected compartments: %d" % len(self.compartments)) print("number of connected segments: %d" % len(self.segments)) print("number of branches: %d" % len(self.branches)) print('Surface area = %g mm^2' % self.surfaceArea) print('Volume = %g mm^3' % self.volume) print('Surface to volume ratio = %g mm^-1' % (self.surfaceArea/self.volume)) # make a path distance finder centered at the soma pDF = PathDistanceFinder(self, self.soma) # find all the neuron tips tips, tipPositions = self.getTips() # measure path lengths from Soma to tips pathLengths = [pDF.distanceTo(tip, pos) for tip, pos in zip(tips, tipPositions)] _dispListStats(pathLengths, display=display, printName='Path length from Soma to tips') # measure tortuosities from Soma to tips tortuosities = [pDF.tortuosityTo(tip, pos) for tip, pos in zip(tips, tipPositions)] _dispListStats(tortuosities, display=display, printName='Tortuosity of path from Soma to tips') # measure branch tortuosities bTortuosities = [branch.tortuosity for branch in self.branches if branch.tortuosity < float('inf')] _dispListStats(bTortuosities, display=display, printName='Tortuosity of neuron branches') if self.soma.branchOrder is None: self.calcBranchOrder(doPlot=False) self.mergeBranchesByDistanceToEdge(makePlots=makePlots) branchAngles = [getBranchAngle(branch, neighbor, segLoc, nLoc, node) for branch in self.branches for neighbor, (segLoc, nLoc, node) in zip(branch.neighbors, branch.neighborLocations) if neighbor.branchOrder > branch.branchOrder] _dispListStats(branchAngles, display=display, printName='For neuron branches, branch angle') radList = [] # added 11.12.2014 rallRatios = [] daughterRatios = [] rallPowers = [] ratiosList = [] DPratios = [] # added 11.12.2014 daughterdaughter = [] # daughter-daughter ratio for segment in self.branches: #if segment.branchOrder < 4: # continue daughters = [n for n in segment.neighbors if n.branchOrder > segment.branchOrder] if daughters: rallRatio = \ sum(n.avgRadius**1.5 for n in daughters) / segment.avgRadius**1.5 rallRatios.append(rallRatio) daughterRatios.extend(n.avgRadius / segment.avgRadius for n in daughters) # added 11.12.2014 daughtRads, daughtCount = [], 0 DDR = [] for n in daughters: daughtRads.append(n.avgRadius) daughtCount = daughtCount + 1 DDR.append(n.avgRadius) DPratios.append( (sum(daughtRads)/daughtCount)/segment.avgRadius ) daughterdaughter.append(np.mean([DDR[d]/DDR[d+1] for d in range(len(DDR)-1)])) rallPowers.append(_getRallPow(segment.avgRadius, [n.avgRadius for n in daughters])) ratiosList.append([n.avgRadius / segment.avgRadius for n in daughters]) radList.append(segment.avgRadius) _dispListStats(rallRatios, display=display, printName='For neuron branches, Rall ratio') _dispListStats(daughterRatios, display=display, printName='For neuron branches, daughter branch ratio') _dispListStats(rallPowers, display=display, printName='For neuron branches, Rall power') properties = { 'Num Nodes' : len(self.nodes), 'Num Compartments' : len(self.compartments), 'Num Segments' : len(self.segments), 'Num Branches' : len(self.branches), 'Surface Area' : self.surfaceArea, 'Volume' : self.volume, 'Area-To-Volume Ratio' : self.surfaceArea / self.volume, 'Path Length' : pathLengths, 'Tortuosity' : tortuosities, 'Branch Tortuosity' : bTortuosities, 'Branch Angles' : branchAngles, 'Rall Ratio' : rallRatios, 'Daughter/Parent Radius' : daughterRatios, 'Overall Rall Power' : _getOverallRallPow(ratiosList), 'Radius List': radList, 'DP Ratio': DPratios, 'DD Ratio': daughterdaughter } units = { 'Num Nodes' : '', 'Num Compartments' : '', 'Num Segments' : '', 'Num Branches' : '', 'Surface Area' : 'mm^2', 'Volume' : 'mm^3', 'Area-To-Volume Ratio' : 'mm^-1', 'Path Length' : 'um', 'Tortuosity' : '', 'Branch Tortuosity' : '', 'Branch Angles' : 'degrees', 'Rall Ratio' : '', 'Daughter/Parent Radius' : '', 'Overall Rall Power' : '', 'Radius List': 'um', 'DP Ratio': '', 'DD Ratio': '' } if passiveFile: from neuron_simulateGeometry import makeModel, simulateModel import peelLength import json # get the properties with open(passiveFile, 'r') as fIn: passiveProperties = json.load(fIn) # make a demo model model = makeModel(self, passiveProperties) # simulation model on specified geometry timeTrace, vTraces, textOutput = simulateModel(self, model) if makePlots: _plotTraces(timeTrace, vTraces) somaV = max(vTraces[self.soma.name]) rIn = somaV / model['stimulus']['amplitude'] properties['Input resistance'] = rIn units['Input resistance'] = 'MOhm' if display: print('Input resistance = %g MOhm' % rIn) tipsV = [max(vTraces[segment.name]) for segment in self.segments if 'Soma' not in segment.tags and segment.isTerminal] tipsTransfer = [tipV / somaV for tipV in tipsV] _dispListStats(tipsTransfer, display=display, printName='Coupling coefficient from soma to tips') properties['Coupling Coefficient'] = tipsTransfer units['Coupling Coefficient'] = '' model, vErr, vResid = \ peelLength.modelResponse(timeTrace, vTraces[self.soma.name], verbose=False, findStepWindow=True, plotFit=False, debugPlots=False, displayModel=display) tauM = model[0][0] if display: print('membrane tau = %6.2f ms' % tauM) properties['Membrane Time Constant'] = tauM units['Membrane Time Constant'] = 'ms' if makePlots: self.shollAnalysis() return properties, units def findBranches(self): """ Break up geometry into segments defined by branch points, starting at the soma """ if self.branches: return self.checkConnectivity(removeDisconnected=True) if not self._somaBranch: self._findSoma() somaBranch, somaNeighbors0, somaNeighbors1 = self._somaBranch # This can cause weird errors if not fixed: if somaBranch.neighbors: warn('Some routine cleared self.branches without removing ' + 'somaBranch.neighbors') somaBranch.neighbors = [] self.branches = [somaBranch] openBranches = [(somaBranch, 0, somaNeighbors0), \ (somaBranch, 1, somaNeighbors1)] openCompartments = set(self.compartments).difference( somaBranch.compartments) while openBranches: # check an open branch to see if it has any neighbors branching off checkBranch, side, neighbors = openBranches.pop() # find neighbors on specified side of checkBranch commonNeighbors = { (checkBranch, side), } checkNode = checkBranch.nodes[-side] for segment, pos, compartment in neighbors: if compartment not in openCompartments: continue # for each neighboring segment, find the branch it's in, based on # compartment (ignore segment and pos) branch, neighbors0, neighbors1 = self._getBranch(compartment) # add that branch to geometry self.branches.append(branch) # remove the compartments in branch from openCompartments openCompartments.difference_update(branch.compartments) # add branch to dict of common neighbors, at appropriate side # and add to openBranches with appropriate neighbors if branch.nodes[-1] == checkNode: if branch.nodes[0] == checkNode: # branch is a loop with both ends connected to _check commonNeighbors.add( (branch, 0) ) commonNeighbors.add( (branch, 1) ) else: # side 1 of branch connects to checkBranch at checkNode if branch.nodes[-1] != checkNode: checkTags = ' '.join(checkBranch.tags) checkNodeInd = self.nodes.index(checkNode) branchTags = ' '.join(branch.tags) branchNodes =str(tuple(self.nodes.index(n) for n in branch.nodes)) raise AssertionError(('Node mismatch. %s (with tags %s) should' + ' connects to %s (with tags %s) at node %d, but %s has ' + 'nodes %s') % (checkBranch.name, checkTags, branch.name, branchTags, checkNodeInd, branch.name, branchNodes)) commonNeighbors.add( (branch, 1) ) # side 0 is still open openBranches.append((branch, 0, neighbors0)) else: # side 0 of branch connects to checkBranch at checkNode if branch.nodes[0] != checkNode: checkTags = ' '.join(checkBranch.tags) checkNodeInd = self.nodes.index(checkNode) branchTags = ' '.join(branch.tags) branchNodes = str(tuple(self.nodes.index(n) for n in branch.nodes)) raise AssertionError(('Node mismatch. %s (with tags %s) should' + ' connects to %s (with tags %s) at node %d, but %s has ' + 'nodes %s') % (checkBranch.name, checkTags, branch.name, branchTags, checkNodeInd, branch.name, branchNodes)) commonNeighbors.add( (branch, 0) ) # side 1 is still open openBranches.append((branch, 1, neighbors1)) # update the neighbors of _check and all the new branches while commonNeighbors: n1, n1Side = commonNeighbors.pop() for n2, n2Side in commonNeighbors: _makeNeighbors(n1, n2, n1Side, n2Side, checkNode) def _plotBranchStat(self, branchStat, yLabel, title, \ fontSize=22, barWidth=0.25): ### plot collected statistic along with number of branches ### branchStat should be a dictionary with: ### -each key is a branch order (an integer) ### -each item is a list of y-values (the list for all branches with ### that branch order) order = list(branchStat.keys()) order.sort() y = [branchStat[o] for o in order] x = list(range(len(order))) orderStr = [str(o) for o in order] numBranches = [len(y_n) for y_n in y] # make new figure fig = pyplot.figure() # plot number of branches as bar plot ax1 = pyplot.gca() pyplot.bar(x, numBranches, width=barWidth, color='g') pyplot.ylabel('# branches', fontsize=fontSize) pyplot.xlabel('Branch Order', fontsize=fontSize) pyplot.xticks(x, orderStr) # plot y statistics as a box and whisker plot positions = [x_n - barWidth/2.0 for x_n in x] ax2 = pyplot.twinx() pyplot.boxplot(y, positions=positions, widths=barWidth) pyplot.title(title, fontsize=fontSize) pyplot.ylabel(yLabel, fontsize=fontSize) pyplot.xlabel('Branch Order', fontsize=fontSize) pyplot.xticks(x, orderStr) # set the numBranches y-axis and labels on right, main on left ax1.yaxis.tick_right() ax1.yaxis.set_label_position('right') ax2.yaxis.tick_left() ax2.yaxis.set_label_position('left') pyplot.tight_layout() return fig def _plotBranchOrderStatistics(self): ### Visualize various statistics dependent upon branch order # collect data branchRadius = {} branchLength = {} for branch in self.mergedBranches: order = branch.centripetalOrder if order not in branchRadius: branchRadius[order] = [branch.maxRadius] branchLength[order] = [branch.length] else: branchRadius[order].append(branch.maxRadius) branchLength[order].append(branch.length) self._plotBranchStat(branchRadius, \ 'Radius (um)', 'Branch Order vs. Radius') self._plotBranchStat(branchLength, \ 'Length (um)', 'Branch Order vs Length') def calcBranchOrder(self, doPlot=True): self.calcForewardBranchOrder(doPlot=False, printAxonInfo=False) self.calcCentripetalOrder(doPlot=doPlot, network=self.branches) self.calcCentripetalOrder(doPlot=doPlot, network=self.segments) def calcForewardBranchOrder(self, doPlot=True, printAxonInfo=False): somaPos = self.soma.centroidPosition(mandateTag='Soma') pDF = PathDistanceFinder(self, self.soma, somaPos) for segment in self.segments: segment.branchOrder = pDF.branchOrder(segment) self.findBranches() somaPos = self.somaBranch.centroidPosition(mandateTag='Soma') pDF = PathDistanceFinder(self, self.somaBranch, somaPos) for branch in self.branches: branch.branchOrder = pDF.branchOrder(branch) def calcCentripetalOrder(self, doPlot=True, network=None): """ Define neurite "ends" to be segments that have locally maximal branchOrder (ends are terminal segments unless there are loops). Label each end with centripetal order 0. Every other segment is labeled with centripetal order equal to the length of the longest path from an end to that segment, provided that allowable paths ALWAYS move towards the soma. geometry.calcCentripetalOrder() sets segment.centripetalOrder set to this value for all segments in network """ if network is None or not network: self.findBranches() network = self.branches def _isEnd(segment): return all(segment.branchOrder >= n.branchOrder for n in segment.neighbors) ends = [segment for segment in network if _isEnd(segment)] for segment in ends: if 'Soma' in segment.tags: print('FUCK') print(segment.branchOrder) print([n.branchOrder for n in segment.neighbors]) print(all(segment.branchOrder >= n.branchOrder for n in segment.neighbors)) for segment in network: segment.centripetalOrder = -1 for segment in ends: # mark each end as having centripetal order 0 segment.centripetalOrder = 0 # now find paths from each end towards the soma. Each segment's # centripetal order is the length of the longest path from an end to the # segment, PROVIDED that the path ALWAYS moves towards the soma openSegs = [segment] while openSegs: currentSeg = openSegs.pop() neighborCentripOrder = currentSeg.centripetalOrder + 1 for neighbor in currentSeg.neighbors: # look for new paths to soma, insisting that: # 1. The path ALWAYS moves closer to soma # 2. There isn't already a longer path through this area if neighbor.branchOrder < currentSeg.branchOrder and \ neighbor.centripetalOrder < neighborCentripOrder: # this is a new (good) path, so mark the centripetal order and # continue it neighbor.centripetalOrder = neighborCentripOrder openSegs.append(neighbor) def checkConnectivity(self, removeDisconnected=False, checkObjects=None, debugInfo=True, removeLoops=False): """ Compute the connectivity of the network: -The number/members of connected subgraphs -The presence of any loops if removeDisconnected is True, remove all but largest subgraph from network Return the list of subgraphs """ if checkObjects is None: checkObjects = self.segments checkHash = hash(str(checkObjects)+str(removeDisconnected)) if checkHash in self._connectivityChecked: # don't need to check again return # check to be sure that neighborhood at a location/node is transitive for segment in checkObjects: for neighbor, (pos, nPos, node) in zip(segment.neighbors, segment.neighborLocations): assert segment in node.segments, \ "%s should be in node %d's list of segments, but is not" \ % (segment.name, self.nodes.index(node)) assert neighbor in node.segments, \ "%s should be in node %d's list of segments, but is not" \ % (neighbor.name, self.nodes.index(node)) for n2, (pos2, nPos2, node2) in zip(neighbor.neighbors, neighbor.neighborLocations): if node2 != node: continue assert n2 == segment or n2 in segment.neighbors, \ "%s and %s are neighbors at node %d, and so are %s and %s,"\ " but %s and %s are not" % (segment.name, neighbor.name, self.nodes.index(node), neighbor.name, n2.name, segment.name, n2.name) subGraphs = [] checkObjs = {obj for obj in checkObjects} while checkObjs: # start checking new subgraph start = checkObjs.pop() connected = { (start, None) } subGraph = { start } pathSegNames = { start : [start.name] } paths = {start : []} while connected: # find all the elements connected to this subgraph segment, startNode = connected.pop() for neighbor, (pos, nPos, node) in zip(segment.neighbors, segment.neighborLocations): if node == startNode and neighbor != segment: # this is just backtracking continue if neighbor in checkObjs: connected.add((neighbor, node)) subGraph.add(neighbor) checkObjs.remove(neighbor) pathSegNames[neighbor] = pathSegNames[segment] + [neighbor.name] paths[neighbor] = paths[segment] + [(segment, node, neighbor)] else: # there is a loop! names1 = pathSegNames[segment] try: names2 = pathSegNames[neighbor] except KeyError as err: print(segment.name, neighbor.name, neighbor in self.segments, neighbor in checkObjs, neighbor in subGraph, neighbor in pathSegNames) print([neighbor in s for s in subGraphs]) raise err ind = 0 for name1, name2 in zip(names1, names2): if name1 != name2: ind -= 1 break ind += 1 loopSegNames = names1[ind:] + names2[:ind-1:-1] if removeLoops: #loops.append(loopSegNames) warn('Have not implement loop removal.\nLoop detected', '->'.join(loopSegNames)) else: pass # warn('Loop detected', '->'.join(loopSegNames)) subGraphs.append(subGraph) # sort the subgraphs so that the largest is first if isinstance(checkObjects[0], Segment): checkType = 'Segment' subGraphs.sort(key=lambda x: sum([len(y.compartments) for y in x])) elif isinstance(checkObjects[0], Compartment): checkType = 'Compartment' subGraphs.sort(key=lambda x: len(x)) else: raise RuntimeError("Can't sort type: %s" % str(type(checkObjects[0]))) if debugInfo: print('Number of subgraphs = %d / size of graphs: %s' % (len(subGraphs), str([len(graph) for graph in subGraphs]))) if removeDisconnected and len(subGraphs) > 1: badGraphs, subGraphs = subGraphs[:-1], subGraphs[-1] badSegs = set() badComps = set() badNodes = set() if checkType == 'Segment': while badGraphs: subGraph = badGraphs.pop() # find unwanted objects in the subgraph badSegs.update(subGraph) for seg in subGraph: badComps.update(seg.compartments) badNodes.update(seg.nodes) else: while badGraphs: subGraph = badGraphs.pop() # find unwanted objects in the subgraph badComps.update(subGraph) for comp in subGraph: badNodes.update(comp.nodes) badSegs.add(comp.segment) self.segments[:] = \ [seg for seg in self.segments if seg not in badSegs] self.compartments[:] = \ [comp for comp in self.compartments if comp not in badComps] self.nodes[:] = [node for node in self.nodes if node not in badNodes] self.branches = [] if self._somaBranch is not None: self._somaBranch[0].neighbors = [] checkHash = hash(str(checkObjects)+str(removeDisconnected)) print("Removed all but largest subgraphs") # record that the connectivity is already checked self._connectivityChecked.add(checkHash) return subGraphs def _plotShollGraph(self, distances): """ Plot the number of neurites at a given distance """ # neuriteDistance starts at zero, and has two data points for each # distance: one with the previous (running) number of compartments, and one # with the change added in (running +1 or -1) runningNum = 0 neuriteDistance = [0.0] numIntersections = [0] lastNeuriteDistance = 0.0 for d in distances: if d[0] > lastNeuriteDistance: neuriteDistance.append(lastNeuriteDistance) numIntersections.append(runningNum) neuriteDistance.append(d[0]) numIntersections.append(runningNum) lastNeuriteDistance = d[0] runningNum += d[1] neuriteDistance.append(lastNeuriteDistance) numIntersections.append(runningNum) fig = pyplot.figure() pyplot.plot(neuriteDistance, numIntersections, 'k-') pyplot.title('Sholl Analysis', fontsize=22) pyplot.xlabel('Distance from soma', fontsize=22) pyplot.ylabel('Number of compartments', fontsize=22) ax = pyplot.gca() for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(16) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(16) pyplot.tight_layout() def shollAnalysis(self, straightenNeurites=True): """ Find the number of neurites that intersect a sphere of a given radius """ # get the centroid of the soma, weighting each compartment's contribution # by volume # define how distance from centroid to compartment is measured if straightenNeurites: # get distance traveled along neurites (e.g. as though neuron was # straightened out centroid = self.soma.centroidPosition(mandateTag='Soma') # compute distance from soma to each segment somaPaths = PathDistanceFinder(self, self.soma, centroid) # store results in an array distances = [] for s in self.segments: d0, d1 = somaPaths.distanceTo(s, 0.0), somaPaths.distanceTo(s, 1.0) if d1 < d0: d0, d1 = d1, d0 distances.append((d0, 1)) distances.append((d1, -1)) else: # get euclidean distance from soma centroid to each compartment # (must be done compartment by compartment, because segments curve) centroid = self.soma.centroid(mandateTag='Soma') # define distance from centroid to compartment def _centroidDist(c): def _tupleDist(_t1, _t2): return sqrt( (_t1[0] - _t2[0])**2 + \ (_t1[1] - _t2[1])**2 + \ (_t1[2] - _t2[2])**2 ) d0 = _tupleDist(centroid, (c.x0, c.y0, c.z0)) d1 = _tupleDist(centroid, (c.x1, c.y1, c.z1)) if d0 <= d1: return d0, d1 else: return d1, d0 # compute the distance from the soma centroid to each compartment that's # not in the soma distances = [] for c in self.compartments: if 'Soma' in c.tags: continue d0, d1 = _centroidDist(c) distances.append((d0, 1)) distances.append((d1, -1)) # sort the distances by increasing distance distances.sort(key=lambda x: x[0]) self._plotShollGraph(distances) def _addSegment(self, name, segList=None): """ Add a new segment to the model """ if name in self.tags: raise IOError('Tried to create segment with existing name/tag') newSeg = Segment(self) newSeg.name = name if name not in self.tags: self.tags[name] = 0 if segList is None: segList = self.segments segList.append(newSeg) return newSeg def _addNode(self, segment, _x, _y, _z, _r1, _r2=None, _r3=None, _theta = 0.0, _phi=0.0): """ Define and add a new node to the model within the specified segment """ newNode = Node(_x, _y, _z, _r1, _r2, _r3, _theta, _phi) newNode.segments.append(segment) newNode.tags.update(segment.tags) newNode.tags.add(segment.name) self.nodes.append(newNode) segment.nodes.append(newNode) return newNode def _addCompartment(self, segment, node0, node1=None, append=False): """ Define and add compartment to geometry within specified segment """ if type(node0) is int: # passed an index, get the node object node0 = self.nodes[node0] if node1 is None: # define one-node compartment and add it to the segment newComp = OneNodeCompartment(node0) node0.compartments.append(newComp) if node0 == segment.nodes[0]: segment.compartments.insert(0, newComp) else: assert node0 == segment.nodes[-1] segment.compartments.append(newComp) else: # define two-node compartment and add it to the segment if type(node1) is int: node1 = self.nodes[node1] newComp = TwoNodeCompartment(node0, node1) node0.compartments.append(newComp) node1.compartments.append(newComp) if append or _node1 == segment.nodes[-1]: segment.compartments.append(newComp) else: compInd = segment.nodes.index(node0) if len(segment.compartments) and \ isinstance(segment.compartments[0], OneNodeCompartment): compInd += 1 segment.compartments.insert(compInd, newComp) # add segment information to compartment newComp.tags.update(segment.tags) newComp.tags.add(segment.name) newComp.segment = segment # add compartment to geometry self.compartments.append(newComp) # update tag counts self.tags['*'] += 1 for tag in newComp.tags: self.tags[tag] += 1 # update geometry totals self.surfaceArea += newComp.surfaceArea self.volume += newComp.volume return newComp def _connectSegments(self, segment0, location0, segment1, location1, implicitConnect=True): """ Connect two segments in the geometry, managing the connecting info in the segments and their nodes and compartments if implicitConnect is set to True: if A connects to B at position (x,y,z) AND _connectSegments is called to connect A and C and (x,y,z): then ensure that A, B, and C are all connected at (x,y,z) """ node0 = segment0.nodeAt(location0) node1 = segment1.nodeAt(location1) # check to make sure the two nodes are identical try: assert (node0.x, node0.y, node0.z, node0.r1) == \ (node1.x, node1.y, node1.z, node1.r1), \ 'Tried to connect %s (at %f) and %s (at %f) but connecting nodes ' \ % (segment0.name, location0, segment1.name, location1 ) \ + 'were different' except AssertionError: # buggy .hoc file with non-matching connecting nodes # check to see if there is a location where these segments COULD connect # find location where segment0 and segment1 connect numMatches = 0 oldLoc0, oldLoc1 = location0, location1 node0, location0, node1, location1 = None, None, None, None if not segment0.nodeLocations: segment0._setNodeLocations() if not segment1.nodeLocations: segment1._setNodeLocations() for n0, l0 in zip(segment0.nodes, segment0.nodeLocations): for n1, l1 in zip(segment1.nodes, segment1.nodeLocations): if (n0.x, n0.y, n0.z, n0.r1) == (n1.x, n1.y, n1.z, n1.r1): numMatches += 1 node0, location0, node1, location1 = n0, l0, n1, l1 if numMatches == 0: # no valid connection print(len(segment0.nodeLocations), len(segment1.nodeLocations)) print('No way to connect %s and %s' % (segment0.name, segment1.name)) raise elif numMatches > 1: # ambiguous as to where to connect print('Multiple possible connections between %s and %s, giving up' % (segment0.name, segment1.name)) #else: #warn('incorrect connection location for %s (at %.1f) and %s (at %.1f)' # % (segment0.name, oldLoc0, segment1.name, oldLoc1), # 'actual connection at %.1f and %.1f' % (location0, location1)) def _replaceNode(_oldNode, _replacementNode): """ swap _oldNode with _replacementNode in all objects that use _oldNode """ # swap nodes in all relevant segments #_replacementNode.segments.extend(_oldNode.segments) for _seg in _oldNode.segments: _ind = _seg.nodes.index(_oldNode) _seg.nodes[_ind] = _replacementNode if _seg not in _replacementNode.segments: _replacementNode.segments.append(_seg) for _nInd in range(len(_seg.neighbors)): _loc, _nLoc, _node = _seg.neighborLocations[_nInd] if _node == _oldNode: _seg.neighborLocations[_nInd] = (_loc, _nLoc, _replacementNode) # swap nodes in all relevant compartments #_replacementNode.compartments.extend(_oldNode.compartments) for _comp in _oldNode.compartments: _ind = _comp.nodes.index(_oldNode) _comp.nodes[_ind] = _replacementNode if _comp not in _replacementNode.compartments: _replacementNode.compartments.append(_comp) # remove node1 from geometry self._removeNodes.add(_oldNode) if implicitConnect: # loop through neighbors of segment0 at location0 for nSeg, (loc, nLoc, node) in zip(segment0.neighbors[:], segment0.neighborLocations[:]): if node == node0: assert loc == location0 if loc == location0: if nSeg == segment1: assert nLoc != location1, \ 'Tried to connect %s and %s, which are already connected' \ % (segment0.name, segment1.name) # segment0 (at location0) connects to segment1 in two locations! # location1 (the new connection), and # nLoc (an older connection) assert node == node0, 'Weird node mismatch near loop segment' # this is unneccessary if the assertion is true (it should be): # _replaceNode(node, node0) # make nSeg neighbors with segment1 _makeNeighbors(segment1, nSeg, location1, nLoc, node0, checkDuplicate=True) # make nSeg neighbors with all of segment1's neighbors at loc1 for nSegN, (locN, nLocN, nodeN) in zip(segment1.neighbors[:], segment1.neighborLocations[:]): if nodeN != node1: continue assert locN == location1 _makeNeighbors(nSeg, nSegN, loc, nLocN, node0) for nSeg, (loc, nLoc, node) in zip(segment1.neighbors[:], segment1.neighborLocations[:]): if node == node1: assert loc == location1 if loc == location1: if nSeg == segment0: assert nLoc != location0, \ 'Tried to connect %s and %s, which are already connected' \ % (segment0.name, segment1.name) # segment1 (at location1) connects to segment0 in two locations! # location0 (the new connection), and # nLoc (an older connection) assert node == node1, 'Weird node mismatch near loop segment' # this is unneccessary if the assertion is true (it should be): #_replaceNode(node, node0) # make nSeg neighbors with segment0 _makeNeighbors(segment0, nSeg, location0, nLoc, node0, checkDuplicate=True) # make segment0 and segment1 neighbors, with node0 as the connecting node _makeNeighbors(segment0, segment1, location0, location1, node0) # remove node1 from the geometry and replace it everywhere with node0 _replaceNode(node1, node0) def _mergeSegments(self, segmentA, segmentB, _segList): # Merge segmentA and segmentB into one segment, preserving their neighbor # information # assert segmentA in _segList assert segmentB in _segList assert segmentB in segmentA.neighbors and \ segmentA in segmentB.neighbors, \ "Merged segments must be neighbors" # find the connection location ind = segmentA.neighbors.index(segmentB) (locationA, locationB, nodeAB) = segmentA.neighborLocations[ind] assert locationA in [0.0, 1.0] and locationB in [0.0, 1.0], \ "Tried to merge with locationA=%g, locationB=%g, but both locations must be an end point" \ % (locationA, locationB) lenA = segmentA.length lenB = segmentB.length newLen = lenA + lenB if locationA == 1.0: if locationB == 0.0: # define function to get location on the new segment # add segmentB compartments + nodes to segmentA segmentA.compartments += segmentB.compartments segmentA.nodes += segmentB.nodes[1:] else: #locationB == 1.0: # add segmentB compartments + nodes to segmentA segmentA.compartments += reversed(segmentB.compartments) segmentA.nodes += reversed(segmentB.nodes[:-1]) else: if locationB == 0.0: # add segmentB compartments + nodes to segmentA segmentA.compartments = list(reversed(segmentB.compartments)) \ + segmentA.compartments segmentA.nodes = list(reversed(segmentB.nodes[1:])) \ + segmentA.nodes else: #locationB == 1.0: # add segmentB compartments + nodes to segmentA segmentA.compartments = segmentB.compartments + segmentA.compartments segmentA.nodes = segmentB.nodes[:-1] + segmentA.nodes # update node locations segmentA._setNodeLocations() # remove segmentB from segmentA's neighbors _removeNeighbor(segmentA, segmentB) # remove segmentA from segmentB's neighbors _removeNeighbor(segmentB, segmentA) # recompute the location of segmentA's old neighbors for ind in range(len(segmentA.neighbors)): neighbor = segmentA.neighbors[ind] loc, nLoc, node = segmentA.neighborLocations[ind] nodeInd = segmentA.nodes.index(node) newLoc = segmentA.nodeLocations[nodeInd] # update the connection location in segmentA segmentA.neighborLocations[ind] = (newLoc, nLoc, node) # update the connection location in the neighbor nInd = zip(neighbor.neighbors, neighbor.neighborLocations).index((segmentA, (nLoc, loc, node))) neighbor.neighborLocations[nInd] = ((nLoc, newLoc, node)) # replace segmentB with segmentA in other segments' neighbors # and add those neighbors as new neighbors to segmentA for neighbor, (loc, nLoc, node) in zip(segmentB.neighbors, segmentB.neighborLocations): # update the location nInd = zip(neighbor.neighbors, neighbor.neighborLocations).index((segmentB, (nLoc, loc, node))) nodeInd = segmentA.nodes.index(node) newLoc = segmentA.nodeLocations[nodeInd] # make segmentB no longer neighbor's neighbor #_removeNeighbor(neighbor, segmentB) # make segmentA and neighbor neighbors #_makeNeighbors(segmentA, neighbor, newLoc, nLoc, node) # replace segmentB by segmentA in neighbor.neighbors, at new location neighbor.neighbors[nInd] = segmentA neighbor.neighborLocations[nInd] = (nLoc, newLoc, node) # add neighbor to segmentA's list of neighbors segmentA.neighbors.append(neighbor) segmentA.neighborLocations.append((newLoc, nLoc, node)) # update segmentB's tags into segmentA segmentA.tags.update(segmentB.tags) segmentA.tags.add(segmentB.name) # remove segmentB from the list of segments #[SLOW] #_segList.remove(segmentB) self._removeSegments.add(segmentB) def mergeBranchesByDistanceToEdge(self, makePlots=True): if not hasattr(self.soma, 'centripetalOrder') or \ self.soma.centripetalOrder is None: self.calcBranchOrder(doPlot=False) def _getMergePath(startB, considerBranches): startLen = startB.length if startB.branchOrder == 0: startLen *= 0.5 finishedPaths = [] # start at startB openPaths = [([startB], startLen)] # find all the paths from startB to a neurite tip while openPaths: path, length = openPaths.pop() current = path[-1] ; nextOrder = current.branchOrder + 1 nextBranches = [n for n in current.neighbors if n.branchOrder == nextOrder] if nextBranches: for n in nextBranches: openPaths.append((path + [n], length + n.length)) else: finishedPaths.append((path, length)) # return the longest path return max(finishedPaths, key=lambda x:x[1])[0] self.mergedBranches = [] considerBranches = {b for b in self.branches} while considerBranches: minOrder = min(b.branchOrder for b in considerBranches) startB = [b for b in considerBranches if b.branchOrder == minOrder].pop() mergePath = _getMergePath(startB, considerBranches) merged = Segment(self) merged.name = 'MergedBranch%d' % len(self.mergedBranches) # add the compartments, nodes, tags, and branch order merged.compartments = startB.compartments[:] merged.nodes = startB.nodes[:] merged.tags = {t for t in startB.tags} merged.branchOrder = startB.branchOrder merged.centripetalOrder = startB.centripetalOrder # add .merged element to startB startB.merged = merged considerBranches.remove(startB) previous = startB for b in mergePath[1:]: # add the compartments, nodes, and tags merged.compartments += [TwoNodeCompartment(previous.nodes[-1], b.nodes[0])] merged.compartments += b.compartments merged.nodes += b.nodes merged.tags.update(b.tags) # add .merged element to b b.merged = merged considerBranches.remove(b) previous = b # set nodeLocations in merged merged._setNodeLocations() # add merged to mergedBranches self.mergedBranches.append(merged) # find the neighbors and neighborLocations of the merged branches for branch in self.branches: merged = branch.merged for n, (loc, nLoc, node) in zip(branch.neighbors, branch.neighborLocations): if n == branch: # this is a loop assert (loc == 0 and nLoc == 1) or (loc == 1 and nLoc == 0) merged.neighbors.append(merged) merged.neighborLocations.append((loc, nLoc, node)) else: nMerged = n.merged if nMerged == merged: # both branches are part of merged, so no neighbor need be added continue # find the location of the neighbors on each merged branch mergedLoc = merged.nodeLocations[merged.nodes.index(node)] nMergedLoc = nMerged.nodeLocations[nMerged.nodes.index(node)] # make them neighbors _makeNeighbors(merged, nMerged, mergedLoc, nMergedLoc, node) if makePlots: self._plotBranchOrderStatistics() def mergeBranchesByOrder(self, makePlots=True): # merge branches together if one of a branch's neighbors is clearly a # continuation of it (using centripetalOrder as method of determining # continuation) if not hasattr(self.soma, 'centripetalOrder') or \ self.soma.centripetalOrder is None: self.calcBranchOrder(doPlot=False) def _getMergeBranch(currentBranch): # find the branch that should be merged with current branch # and what the order of the merged branch should be # if no branch should be merged, return None orders0 = {} orders1 = {} mergeBranch = None mergeCentripetalOrder = currentBranch.centripetalOrder + 1 mergeBranchOrder = currentBranch.branchOrder - 1 for n, (locC, locN, nodeC) in zip(currentBranch.neighbors, currentBranch.neighborLocations): assert locC in [0, 1] and locN in [0, 1] #if locC not in [0, 1] or locN not in [0, 1]: # # only merge at branch end points # continue if n.centripetalOrder == mergeCentripetalOrder and \ n.branchOrder == mergeBranchOrder: if mergeBranch is not None: # too many potential merges => this branch can't merge return None else: # potential merge mergeBranch = n if mergeBranch is not None: # check to make sure no other branch can merge onto mergeBranch: for n in mergeBranch.neighbors: if n != currentBranch and n.branchOrder == currentBranch.branchOrder\ and n.centripetalOrder == currentBranch.centripetalOrder: # another branch could equally merge onto mergeBranch, which means # that no merge can be preferred return None return mergeBranch self.mergedBranches = [] visited = {b : False for b in self.branches} openBranches = {b for b in self.branches if b.centripetalOrder == 0} # find the new merged branches while openBranches: # get the next branch that could start a merged branch current = openBranches.pop() visited[current] = True # mark all the neighbors as open branches #openBranches.update(n for n in current.neighbors if not visited[n]) # create the merged branch that will hold current and anything that # continues it merged = Segment(self) merged.name = 'MergedBranch%d' % len(self.mergedBranches) # add the compartments, nodes, tags, and branch order merged.compartments = current.compartments[:] merged.nodes = current.nodes[:] merged.tags = {t for t in current.tags} merged.branchOrder = current.branchOrder merged.centripetalOrder = current.centripetalOrder # add .merged element to current current.merged = merged barf = (current.name, current.branchOrder, current.centripetalOrder) # find the continuation, if any current = _getMergeBranch(current) while current is not None: # don't allow any other branches to use current branch openBranches.discard(current) if visited[current]: print('%s with tags: %s' % (current.name, ' '.join(t for t in current.tags))) print(current.branchOrder, current.centripetalOrder) for n in current.neighbors: print('%s with tags: %s' % (n.name, ' '.join(t for t in n.tags))) print(n.branchOrder, n.centripetalOrder) print(barf) if current.merged is not None: print(current.merged.name) for b in self.branches: if hasattr(b, 'merged') and b.merged == current.merged: print(b.name) else: print('None') visited[current] = True # add the compartments, nodes, and tags merged.compartments[0:0] = [TwoNodeCompartment(current.nodes[-1], merged.nodes[0])] merged.compartments[0:0] = current.compartments merged.nodes[0:0] = current.nodes merged.tags.update(current.tags) merged.branchOrder = current.branchOrder merged.centripetalOrder = current.centripetalOrder # add .merged element to current current.merged = merged # find the continuation, if any barf = (current.name, current.branchOrder, current.centripetalOrder) current = _getMergeBranch(current) # set nodeLocations in merged merged._setNodeLocations() # add merged to mergedBranches self.mergedBranches.append(merged) # add any missed branches if not openBranches: try: minUnvisitedOrder = min(b.centripetalOrder for b in self.branches if not visited[b]) openBranches = {b for b in self.branches if not visited[b] and b.centripetalOrder == minUnvisitedOrder} except ValueError: openBranches = {} # find the neighbors and neighborLocations of the merged branches for branch in self.branches: merged = branch.merged for n, (loc, nLoc, node) in zip(branch.neighbors, branch.neighborLocations): if n == branch: # this is a loop assert (loc == 0 and nLoc == 1) or (loc == 1 and nLoc == 0) merged.neighbors.append(merged) merged.neighborLocations.append((loc, nLoc, node)) else: nMerged = n.merged if nMerged == merged: # both branches are part of merged, so no neighbor need be added continue # find the location of the neighbors on each merged branch mergedLoc = merged.nodeLocations[merged.nodes.index(node)] nMergedLoc = nMerged.nodeLocations[nMerged.nodes.index(node)] # make them neighbors _makeNeighbors(merged, nMerged, mergedLoc, nMergedLoc, node) if makePlots: self._plotBranchOrderStatistics() def _addOneNodeCompartments(self): """ Add extra compartments to account for regions covered by nodes with only one compartment attached (the end of the soma is probably the most important) """ for segment in self.segments: if not segment.nodes: # empty segment warn("Warning, empty segment: %s" % segment.name) node0 = segment.nodes[0] if len(node0.compartments) == 1: self._addCompartment(segment, node0) node1 = segment.nodes[-1] if len(node1.compartments) == 1: self._addCompartment(segment, node1) def _getBranch(self, branchStart): """ self._getBranch(branchStart) branchStart: starting compartment returns branch, neighbors0, neighbors1 branch: a Segment with 0 or >= 2 neighbors at each endpoint, and no neighbors in the middle neighbors0, neighbors1: list of neighbors at 0 and 1 end respectively each neighbor is a tuple (segment, position, compartment) segment: the neighbor segment position: the position (in the neighbor segment) of the connection compartment: the neighbor compartment Find the branch (bounded by compartments with more than two neighbors) that starts with startCompartment. The end of each branch is a node with a number of attached compartments not equal to 2. NOTE: must add compartment-by-compartment (instead of by segments) because segments can in principle have neighbors midway instead of at endpoints NOTE: don't add _neighbors0 or _neighbors1 to _branch.neighbors, because they are *Compartment* neighbors, and _branch will want *branch* neighbors """ assert isinstance(branchStart, Compartment), \ 'Must start a branch with a compartment' # determine starting segment, position of starting compartment in segment startSeg = branchStart.segment startPos = branchStart.length / 2.0 for c in startSeg.compartments: if c == branchStart: break startPos += c.length # create the branch branch = Segment(self) branch.name = 'branch%d' % len(self.branches) branch.tags = {t for t in startSeg.tags} branch.tags.add(startSeg.name) def _getBranchNeighbors(segment, startPos): neighbors0, neighbors1 = [], [] pos0, nPos0, pos1, nPos1 = 0, None, 1, None for neighbor, (location, nLocation, node) in zip(segment.neighbors, segment.neighborLocations): nComps = [c for c in node.compartments if c in neighbor.compartments] # this assertion fails when a segment is its own neighbor: #assert len(nComps) == (2 - (nLocation in [0, 1])), \ # 'Found %d neighbor compartments at %f' % (len(nComps), nLocation) if location == 0: neighbors0.append((neighbor, nLocation, nComps[0])) if nLocation not in [0, 1]: neighbors0.append((neighbor, nLocation, nComps[-1])) elif location == 1: neighbors1.append((neighbor, nLocation, nComps[0])) if nLocation not in [0, 1]: neighbors1.append((neighbor, nLocation, nComps[-1])) elif location < startPos: assert nLocation in [0, 1] if location > pos0: pos0 = location farComp = segment.compartmentAt(location, choice=0) neighbors0 = [(neighbor, nLocation, nComps[0]), (segment, location, farComp)] elif location == pos0: farComp = segment.compartmentAt(location, choice=0) neighbors0 += [(neighbor, nLocation, nComps[0]), (segment, location, farComp)] else: assert nLocation in [0, 1] if location < pos1: pos1 = location farComp = segment.compartmentAt(location, choice=1) neighbors1 = [(neighbor, nLocation, nComps[0]), (segment, location, farComp)] else: farComp = segment.compartmentAt(location, choice=1) neighbors1 += [(neighbor, nLocation, nComps[0]), (segment, location, farComp)] return neighbors0, pos0, neighbors1, pos1 def _getBranchPart(segment, pos0, pos1): # return the compartments and nodes in segment between pos0 and pos1 if pos0 == 0: if pos1 == 1: return segment.compartments[:], segment.nodes[:] else: pos0L = 0.0 else: pos0L = pos0 * segment.length if not segment.nodeLocations: locs = list(cumsum(comp.length for comp in segment.compartments)) segment.nodeLocations = [loc / locs[-1] for loc in locs] n0 = bisect_left(segment.nodeLocations, pos0) assert segment.nodeLocations[n0] == pos0 n1 = bisect_left(segment.nodeLocations, pos1) assert segment.nodeLocations[n1] == pos1 n1 -= 1 return segment.compartments[n1:n2], segment.nodes[n1:n2+1] # find neighbors of startSeg neighbors0, pos0, neighbors1, pos1 = \ _getBranchNeighbors(startSeg, startPos) # get the part of startSeg between pos0 and pos1 branch.compartments, branch.nodes = _getBranchPart(startSeg, pos0, pos1) while len(neighbors0) == 1: # extend branch in 0 direction # get the neighbor segment segment, nPos0, nComp = neighbors0.pop() # add the segment's name to branch tags branch.tags.add(segment.name) if nPos0 == 1: # normal case, the neighbor is oriented in the same direction # get the new neighbors0 neighbors0, pos0, nDummy, posDummy = _getBranchNeighbors(segment, 1) # update branch with neighbor's segment, removing duplicate node branch.compartments[0:0], branch.nodes[0:1] = \ _getBranchPart(segment, pos0, 1) else: # the neighbor is oriented backwards relative to startSeg # get the new neighbors0 nDummy, posDummy, neighbors0, pos0 = _getBranchNeighbors(segment, 0) # update branch with neighbor's segment, removing duplicate node branch.compartments[0:0], branch.nodes[0:1] = ( reversed(L) for L in _getBranchPart(segment, 0, pos0)) while len(neighbors1) == 1: # extend branch in 1 direction # get the neighbor segment segment, nPos1, nComp = neighbors1.pop() # add the segment's name to branch tags branch.tags.add(segment.name) if nPos1 == 0: # normal case, the neighbor is oriented in the same direction # get the new neighbors1 nDummy, posDummy, neighbors1, pos1 = _getBranchNeighbors(segment, 0) # update branch with neighbor's segment, removing duplicate node numC, numN = len(branch.compartments), len(branch.nodes) branch.compartments[numC:], branch.nodes[numN-1:] = \ _getBranchPart(segment, 0, pos1) else: # the neighbor is oriented backwards relative to startSeg # get the new neighbors1 neighbors1, pos1, nDummy, posDummy = _getBranchNeighbors(segment, 1) # update branch with neighbor's segment, removing duplicate node numC, numN = len(branch.compartments), len(branch.nodes) branch.compartments[numC:], branch.nodes[numN-1:] = ( reversed(L) for L in _getBranchPart(segment, pos1, 1)) return branch, neighbors0, neighbors1 @property def soma(self): if self._soma is None: self._findSoma() return self._soma @property def somaBranch(self): if self._somaBranch is None: self._findSoma() return self._somaBranch[0] def _findSoma(self): """ Find the compartment with the largest diameter (which is presumably in the soma). Return the segment or branch that contains this compartment. """ # locate the largest radius compartment -it should be the soma somaCenter = max(self.compartments, key=lambda c: c.maxRadius) # get the segment that contains the soma (plus extra stuff) soma = somaCenter.segment self._soma = soma # add the Soma tag to the segment, but not its compartments soma.tags.add('Soma') # find a cutoff on radius that defines the Soma proper rCutoff = (soma.minRadius * soma.maxRadius**3)**0.25 # find the index to the center of the Soma centerInd = soma.compartments.index(somaCenter) # apply the Soma tag to contiguous stretch of large compartments near # the center self.tags['Soma'] = 0 for ind in range(centerInd, len(soma.compartments)): c = soma.compartments[ind] if c.avgRadius >= rCutoff: c.tags.add('Soma') self.tags['Soma'] += 1 else: break for ind in range(centerInd - 1, -1, -1): c = soma.compartments[ind] if c.avgRadius >= rCutoff: c.tags.add('Soma') self.tags['Soma'] += 1 else: break self._somaBranch = self._getBranch(somaCenter) def findAxons(self, findBranch=False, debugInfo=False, minLength=10, edgeSafety=2.0): """ Locate any axon branches To be an axon branch, it must: 1. be terminal, but not contain the Soma 2. be longer then minLength 3. have its terminal node less than edgeSafety * node radius from the furthest extent of the neuron in x, y, or z """ for segment in self.segments: if len(segment.nodes) != len(segment.compartments) + 1: raise AssertionError('%s has %d nodes and %d compartments' % (segment.name, len(segment.nodes), len(segment.compartments))) if self._axons is not None: # already found the axons, return the results if findBranch: return self._axonBranches else: return self._axons # need the Soma to be tagged somaBranch = self.somaBranch # need to know the range of the whole geometry self._findGeometryRange() # need the branches, because one criterion for axons is length, and # one axon may be made up of many consecutive segments self.findBranches() def _isEdgeNode(_node, _safety): _radius = _node.avgRadius def _edgeCoord(_coord, _dim): return _coord - _safety * _radius < self.minRange[_dim] or \ _coord + _safety * _radius > self.maxRange[_dim] return _edgeCoord(_node.x, 0) or \ _edgeCoord(_node.y, 1) or \ _edgeCoord(_node.z, 2) if debugInfo: print('Edges: %6.1f %6.1f %6.1f' % tuple(self.minRange)) print(' %6.1f %6.1f %6.1f' % tuple(self.maxRange)) self._axons = list() self._axonBranches = list() for branch in self.branches: if branch == somaBranch: # it's the Soma continue if branch.length < minLength: # too short to be sure it's an axon continue n0 = branch.neighborsAt(0) n1 = branch.neighborsAt(1) if n0 and n1: # not terminal continue if debugInfo: print('Possible axon: %s (%s)' % (branch.name, ' '.join(t for t in branch.tags))) if not n0: print('\t%d neighbors at 0.0' % len(n0)) node = branch.nodeAt(0) print('\t node at 0.0: %.1f, %.1f, %.1f, %f' % (node.x, node.y, node.z, node.r1)) if not n1: print('\t%d neighbors at 1.0' % len(n1)) node = branch.nodeAt(1) print('\t node at 1.0: %.1f, %.1f, %.1f, %f' % (node.x, node.y, node.z, node.r1)) if ((not n0 and _isEdgeNode(branch.nodes[0], edgeSafety)) or (not n1 and _isEdgeNode(branch.nodes[-1], edgeSafety))): branch.addTag('Axon') self._axonBranches.append(branch) segments = {c.segment for c in branch.compartments} if debugInfo: print('Found axon with segments %s' % ' '.join(s.name for s in segments)) for s in segments: s.addTag('Axon') if s.isTerminal: self._axons.append(s) if findBranch: return self._axonBranches else: return self._axons def _findGeometryRange(self): """ Find the physical extent of the geometry in x,y,z """ if (not any(isnan(x) for x in self.minRange) and not any(isnan(x) for x in self.maxRange)): # the range has already been found/specified return self.minRange = [float('inf'), float('inf'), float('inf')] self.maxRange = [float('-inf'), float('-inf'), float('-inf')] def _updateRange(_nodeCoord, _rangeInd): if _nodeCoord < self.minRange[_rangeInd]: self.minRange[_rangeInd] = _nodeCoord if _nodeCoord > self.maxRange[_rangeInd]: self.maxRange[_rangeInd] = _nodeCoord for _node in self.nodes: _updateRange(_node.x, 0) _updateRange(_node.y, 1) _updateRange(_node.z, 2) def _makeNeighbors(segment1, segment2, location1, location2, node, checkDuplicate=False): # make segment1 and segment2 neighbors if checkDuplicate: preExist = any(neighbor == segment2 and (loc, nLoc, n) == (location1, location2, node) for neighbor, (loc, nLoc, n) in zip(segment1.neighbors, segment1.neighborLocations)) if not preExist: segment1.neighbors.append(segment2) segment1.neighborLocations.append((location1, location2, node)) preExist = any(neighbor == segment1 and (loc, nLoc, n) == (location2, location1, node) for neighbor, (loc, nLoc, n) in zip(segment2.neighbors, segment2.neighborLocations)) if not preExist: segment2.neighbors.append(segment1) segment2.neighborLocations.append((location2, location1, node)) else: segment1.neighbors.append(segment2) segment1.neighborLocations.append((location1, location2, node)) segment2.neighbors.append(segment1) segment2.neighborLocations.append((location2, location1, node)) def _removeNeighbor(segment, neighbor): # remove neighbor from list of segment's neighbors ind = segment.neighbors.index(neighbor) segment.neighbors.pop(ind) segment.neighborLocations.pop(ind) def getBranchAngle(segment, neighbor, segLoc, nLoc, node): # calculate angle between segment and its neighbor # 2-node segment progression (produced from xml knossos skeletons) if len(segment.nodes) == 2 and len(neighbor.nodes) == 2: if segLoc == 0: segNode = segment.nodes[0] elif segLoc == 1: segNode = segment.nodes[-1] else: ind = segment.nodes.index(node) segNode = segment.nodes[ind] # why -1? if nLoc == 0: nNode = neighbor.nodes[0] elif nLoc == 1: nNode = neighbor.nodes[1] else: ind = neighbor.nodes.index(node) nNode = neighbor.nodes[ind] # normal progression else: if segLoc == 0: segNode = segment.nodes[1] elif segLoc == 1: segNode = segment.nodes[-2] else: ind = segment.nodes.index(node) segNode = segment.nodes[ind-1] if nLoc == 0: nNode = neighbor.nodes[1] elif nLoc == 1: nNode = neighbor.nodes[-2] else: ind = neighbor.nodes.index(node) nNode = neighbor.nodes[ind+1] segVec = (node.x - segNode.x, node.y - segNode.y, node.z - segNode.z) nVec = (nNode.x - node.x, nNode.y - node.y, nNode.z - node.z) dot = sum(sC * nC for sC, nC in zip(segVec, nVec)) segMag = sum(sC * sC for sC in segVec) nMag = sum(nC * nC for nC in nVec) if len(segment.nodes) > 2: #cosAngle = max(-1.0, min(1.0, dot / sqrt(segment.length))) cosAngle = max(-1.0, min(1.0, dot / sqrt(segMag * nMag))) ########## MAJOR EDIT else: print('2-node segment') cosAngle = max(-1.0, min(1.0, dot / sqrt(segment.length))) try: angle = (180/pi) * acos(cosAngle) except ValueError: print(dot, segMag, nMag) print(dot / sqrt(segMag * nMag)) raise return angle class Segment: def __init__(self, geometry): self.geometry = geometry self.name = None self.tags = set() self.compartments = [] self.nodes = [] self.neighbors = [] self.nodeLocations = [] # neighborLocations are tuples: # (location in this segment [0.0 - 1.0], # location in neighbor segment [0.0 - 1.0], # connecting Node) self.neighborLocations = [] #self.volume = None self.branchOrder = None def neighborsAt(self, location): return [n for n, (loc, nLoc, node) in zip(self.neighbors, self.neighborLocations) if loc == location] def _setNodeLocations(self): try: locs = list(cumsum(comp.length for comp in self.compartments)) self.nodeLocations = [loc / locs[-1] for loc in locs] except: self.nodeLocations = [0.0, 1.0] def compartmentAt(self, location, choice=None): if not self.nodeLocations: self._setNodeLocations() ind = bisect_left(self.nodeLocations, location) if self.nodeLocations[ind] == location: if choice == 0: return self.compartments[ind - 1] elif choice == 1: return self.compartments[ind] else: assert self.nodeLocations[ind] != location, \ 'Two compartments touch requested location' else: return self.compartments[ind - 1] def nodeAt(self, location): if not self.nodeLocations: self._setNodeLocations() ind = bisect_left(self.nodeLocations, location) assert self.nodeLocations[ind] == location, 'No node at requested location' return self.nodes[ind] def coordAt(self, location): if not self.nodeLocations: self._setNodeLocations() ind = bisect_left(self.nodeLocations, location) if self.nodeLocations[ind] == location: # exactly at a node: n = self.nodes[ind] return (n.x, n.y, n.z) else: # need to interpolate i0 = ind - 1 n0 = self.nodes[i0] n1 = self.nodes[ind] cN0 = ( (self.nodeLocations[ind] - location) / (self.nodeLocations[ind] - self.nodeLocations[i0]) ) cN1 = 1.0 - cN0 return (cN0 * n0.x + cN1 * n1.x, cN0 * n0.y + cN1 * n1.y, cN0 * n0.z + cN1 * n1.z) def clear(self): if self.compartments: for c in self.compartments: for tag in c.tags: self.geometry.tags[tag] -= 1 self.geometry.compartments = [c for c in self.geometry.compartments if c not in self.compartments] self.compartments = [] if self.nodes: delNodes = [] for n in self.nodes: n.segments.remove(self) if not n.segments: delNodes.append(n) self.geometry.nodes = [n for n in self.geometry.nodes if n not in delNodes] self.nodes = [] def addTag(self, newTag): """ Add a new tag to the segment and all its compartments """ if newTag not in self.geometry.tags: self.geometry.tags[newTag] = 0 self.tags.add(newTag) for c in self.compartments: c.tags.add(newTag) self.geometry.tags[newTag] += 1 @property def length(self): return sum([c.length for c in self.compartments]) @property def surfaceArea(self): return sum([c.surfaceArea for c in self.compartments]) @property def maxRadius(self): # compute maximum radius return max(c.maxRadius for c in self.compartments) @property def minRadius(self): # compute minimum radius return min(c.minRadius for c in self.compartments) @property def avgRadius(self): # compute average radius, weighted by volume return sum(c.avgRadius * c.volume for c in self.compartments) / \ sum(c.volume for c in self.compartments) @property def volume(self): return sum(c.volume for c in self.compartments) @property def tortuosity(self): n0 = self.nodes[0] ; n1 = self.nodes[-1] if n0 == n1: return float('inf') euclideanD = sqrt((n0.x - n1.x)**2 + (n0.y - n1.y)**2 + (n0.z - n1.z)**2) if euclideanD == 0: return 1 else: return self.length / euclideanD @property def isTerminal(self): n0, n1 = False, False for loc, nLoc, node in self.neighborLocations: if loc == 0.0: if n1: return False n0 = True elif loc == 1.0: if n0: return False n1 = True return True def lengthPerArea(self, _x1, _x2 = 0.5): """ Compute length per cross sectional area for segment """ if _x2 < _x1: _temp = _x1 _x1 = _x2 _x2 = _temp _lengths = [c.length for c in self.compartments] _cumLengths = list(cumsum(_lengths)) def _findComp(_l): for n in range(len(_lengths)): if _cumLengths[n] >= _l: _c = self.compartments[n] _x = 1.0 - (_cumLengths[n] - _l) / _c.length return (n, _c, _x) # find 1st compartment, and proportion of distance across c1 (_compInd1, _c1, _cX1) = _findComp(_x1 * _cumLengths[-1]) # find 2nd compartment, and proportion of distance across c2 (_compInd2, _c2, _cX2) = _findComp(_x2 * _cumLengths[-1]) # compute length per area across distance if _compInd2 == _compInd1: return _c1.lengthPerArea(_cX1, _cX2) else: lPA = _c1.lengthPerArea(_cX1, 1.0) + _c2.lengthPerArea(0.0, _cX2) _compInd2 -= 1 while _compInd2 > _compInd1: lPA += self.compartments[_compInd2].lengthPerArea(0.0, 1.0) _compInd2 -= 1 return lPA def centroid(self, mandateTag=None): # return the centroid of a Segment, weighted by volume def _weightedC(_c): # return the weighted centroid of a compartment return tuple(_t * _c.volume / v for _t in _c.centroid) if mandateTag is None: v = self.volume centroids = [_weightedC(c) for c in self.compartments] else: v = sum(c.volume for c in self.compartments if mandateTag in c.tags) centroids = [_weightedC(c) for c in self.compartments if \ mandateTag in c.tags] # sum up the centroids centroid = (0.0, 0.0, 0.0) for pos in centroids: centroid = tuple(a + b for a,b in zip(centroid, pos)) return centroid def centroidPosition(self, mandateTag=None): # return the position of the centroid of a Segment, weighted by volume # (in this case, position is a number from 0 to 1, denoting proportion of # distance along the segment) if mandateTag is None: halfV = self.volume / 2 segLen = self.length centroidLen = 0.0 for c in self.compartments: if c.volume < halfV: halfV -= c.volume centroidLen += c.length else: cFrac = halfV / c.volume centroidLen += c.length * cFrac break else: v = sum(c.volume for c in self.compartments if mandateTag in c.tags) halfV = v / 2 segLen = self.length centroidLen = 0.0 for c in self.compartments: if mandateTag in c.tags: if c.volume < halfV: halfV -= c.volume centroidLen += c.length else: cFrac = halfV / c.volume centroidLen += c.length * cFrac break else: centroidLen += c.length # return the position of the centroid return centroidLen / segLen class Node: def __init__(self, _x, _y, _z, _r1, \ _r2=None, _r3=None, _theta=0.0, _phi=0.0): self.x = _x self.y = _y self.z = _z self.r1 = _r1 if self.r1 <= 0.0: if self.r1 < 0: raise ValueError('Encountered negative radius') else: raise ValueError('Encountered radius=0') if _r2 is None: if _r3 is not None: raise ValueError(\ 'Specify 1 radius for spherical nodes, 3 for ellipsoidal nodes') self.r2 = _r1 self.r3 = _r1 else: self.r2 = _r2 self.r3 = _r3 self.theta = _theta # angle from z axis self.phi = _phi # angle of azimuth (from x axis to semi-major axis) self.surface_area = None self.volume = None self.compartments = [] self.segments = [] self.tags = set() @property def maxRadius(self): return min(self.r1, self.r2, self.r3) @property def minRadius(self): return min(self.r1, self.r2, self.r3) @property def avgRadius(self): return (self.r1 * self.r2 * self.r3)**(1.0/3.0) def getElipse(self, node1): """ Return details of elipse from intersection with compartment defined by connecting this node and node1 """ if self.r2 != self.r1 or self.r3 != self.r1: raise IOError('Currently cannot handle ellipsoidal nodes') # unnecessary when dealing with spheres: #(xAxis, yAxis, zAxis) = (node1.x - x, node1.y - y, node1.z - z) return (self.r1, self.r1, 0.0, self.x, self.y, self.z) class Compartment: def __init__(self): # do nothing, this is a pure virtual class self._surfaceArea = None self._volume = None self._length = None self.x0 = None self.y0 = None self.z0 = None self.x1 = None self.y1 = None self.z1 = None self.tags = set() self.name = None self.segment = None self.nodes = None @property def neighbors(self): """ Find the compartment's neighbors """ raise RuntimeError('Compartment is a pure virtual class') @property def length(self): if self._length is None: self._length = self._calcLength() return self._length def _calcLength(self): raise RuntimeError('Compartment is a pure virtual class') @property def surfaceArea(self): if self._surfaceArea is None: # compute surface area and convert from um^2 to mm^2 self._surfaceArea = 1.0e-6 * self._calcSurfaceArea() return self._surfaceArea def _calcSurfaceArea(self): raise RuntimeError('Compartment is a pure virtual class') @property def volume(self): if self._volume is None: # compute volume and convert from um^3 to mm^3 self._volume = 1.0e-9 * self._calcVolume() return self._volume def _calcVolume(self): raise RuntimeError('Compartment is a pure virtual class') def lengthPerArea(self, _x1, _x2 = 0.5): raise RuntimeError('Compartment is a pure virtual class') @property def maxRadius(self): return max(n.maxRadius for n in self.nodes) @property def minRadius(self): return min(n.minRadius for n in self.nodes) @property def avgRadius(self): """ Return an estimate of average radius, pretending compartment was a cylinder or sphere (as appropriate to subclass) """ raise RuntimeError('Compartment is a pure virtual class') @property def centroid(self): """ return centroid of compartment as a tuple """ raise RuntimeError('Compartment is a pure virtual class') class OneNodeCompartment(Compartment): def __init__(self, node): # init Compartment object Compartment.__init__(self) self.nodes = [node] connectCompartment = node.compartments[0] if connectCompartment.node0 == node: node1 = connectCompartment.node1 else: node1 = connectCompartment.node0 (self.semiMajor, self.semiMinor, self.theta, self.x0, self.y0, self.z0) = \ node.getElipse(node1) _direction = (node.x - node1.x, node.y - node1.y, node.z - node1.z) _norm = sqrt(sum([x*x for x in _direction])) _scale = self.length / _norm self.x1 = self.x0 + _scale * _direction[0] self.y1 = self.y0 + _scale * _direction[1] self.z1 = self.z0 + _scale * _direction[2] _scale *= 3.0/8.0 self._centroid = (self.x0 + _scale * _direction[0], \ self.y0 + _scale * _direction[1], \ self.z0 + _scale * _direction[2]) @property def node(self): return self.nodes[0] @property def neighbors(self): """ Return a list of this compartments neighbors """ return [comp for comp in self.node.compartments if comp != self] def _calcLength(self): """ compute and set length """ if self.node.r2 != self.node.r1 or self.node.r3 != self.node.r1: raise IOError('Currently cannot handle ellipsoidal nodes') return self.semiMajor def _calcSurfaceArea(self): """ compute and set surface area """ if self.semiMajor == self.semiMinor: return 4 * pi * self.semiMajor * self.semiMinor else: a = node.r1 b = node.r2 c = node.r3 p = 1.6075 # approximate formula accurate to relative error of <= 1.061% return 4 * pi * ( ((a*b)**p + (a*c)**p + (b*c)**p)/3 )**(1/p) def _calcVolume(self): """ compute and set volume """ return 4.0 * pi / 3.0 * self.node.r1 * self.node.r2 * self.node.r3 def lengthPerArea(self, _x1, _x2 = 0.5): """ compute and return length per area between relative positions _x1 and _x2 0 <= _x <= 1, _x2 defaults to 0.5 """ if self.node.r2 != self.node.r1 or self.node.r3 != self.node.r1: raise IOError('Currently cannot handle ellipsoidal nodes') if _x2 < _x1: _temp = _x2 _x2 = _x1 _x1 = _temp return ( log((1.0 - _x1*_x1) / (1.0 - _x2*_x2)) / (2 * pi * self.node.r1) ) @property def avgRadius(self): """ Return an estimate of average radius, pretending compartment was a cylinder or sphere (as appropriate to subclass) """ return (1.0e9 * self.volume / pi)**(1.0/3.0) @property def centroid(self): """ return centroid of compartment as a tuple """ return self._centroid class TwoNodeCompartment(Compartment): def __init__(self, node0, node1): # init Compartment object Compartment.__init__(self) self.nodes = [node0, node1] (self.semiMajor0, self.semiMinor0, self.theta0, self.x0, self.y0, self.z0)\ = node0.getElipse(node1) (self.semiMajor1, self.semiMinor1, self.theta1, self.x1, self.y1, self.z1)\ = node1.getElipse(node0) self._centroid = None @property def node0(self): return self.nodes[0] @property def node1(self): return self.nodes[-1] @property def neighbors(self): """ Return a list of this compartments neighbors """ neighbors = [comp for comp in self.node0.compartments if comp != self] neighbors.extend(comp for comp in self.node1.compartments if \ comp != self and comp not in neighbors) return neighbors def _calcLength(self): """ compute and set length """ return sqrt((self.x1 - self.x0)**2 + (self.y1 - self.y0)**2 + (self.z1 - self.z0)**2) def _calcSurfaceArea(self): """ compute and set surface area """ ratio0 = self.semiMinor0 / self.semiMajor0 ratio1 = self.semiMajor1 / self.semiMajor1 if isnan(ratio0): if isnan(ratio1): raise IOError('Degenerate (zero radius) compartment') ratio0 = ratio1 elif isnan(ratio1): ratio1 = ratio0 elif ratio0 != ratio1: raise IOError('Don''t have formula for arbitrary eliptical frustrum') if self.semiMinor0 == self.semiMinor1: # cylinder coneFactor = 1.0 elif self.length == 0: # disk with hole warn('Compartment with zero length') return pi * abs(self.semiMajor0 * self.semiMinor0 - self.semiMajor1 * self.semiMinor1) else: # cone coneFactor = \ sqrt(1 + ((self.semiMinor0 - self.semiMinor1)/self.length)**2) if ratio0 == 1.0: # circular cross section angleFactor = pi else: # eliptical cross section angleFactor = 2.0*special.ellipe(sqrt((1.0 - ratio0*ratio0)) /coneFactor) return coneFactor * angleFactor * \ self.length * (self.semiMajor0 + self.semiMajor1) def _calcVolume(self): """ compute and set volume """ return (pi / 3.0) * self.length * \ (self.semiMajor0 * self.semiMinor0 + self.semiMajor1 * self.semiMinor1 +\ 0.5 * (self.semiMajor0 * self.semiMinor1 + \ self.semiMajor1 * self.semiMinor0)) def lengthPerArea(self, _x1, _x2 = 0.5): """ compute and return length per cross sectional area between relative positions _x1 and _x2 (0 <= _x <= 1, _x2 defaults to 0.5) """ if _x2 < _x1: _temp = _x2 _x2 = _x1 _x1 = _temp if self.semiMajor0 == self.semiMajor1: semiMajor = self.semiMajor0 if self.semiMinor0 == self.semiMinor1: # cylinder semiMinor = self.semiMinor0 coneFact = _x2 - _x1 else: # semi-minor axis is changing, semi-major is constant semiMinor = 0.5 * (self.semiMinor0 + self.semiMinor0) minorRatio = semiMinor / (self.semiMinor1 - self.semiMinor0) coneFact = minorRatio * \ log( (minorRatio + _x2 - 0.5) / (minorRatio + _x1 - 0.5) ) if coneFact < 0: coneFact = -coneFact else: semiMajor = 0.5 * (self.semiMajor0 + self.semiMajor0) majorRatio = semiMajor / (self.semiMajor1 - self.semiMajor0) if self.semiMinor0 == self.semiMinor1: # semi-major axis is changing, semi-minor is constant semiMinor = self.semiMinor0 coneFact = majorRatio * \ log( (majorRatio + _x2 - 0.5) / (majorRatio + _x1 - 0.5) ) if coneFact < 0: coneFact = -coneFact else: semiMinor = 0.5 * (self.semiMinor0 + self.semiMinor0) minorRatio = semiMinor / (self.semiMinor1 - self.semiMinor0) ratioProd = majorRatio * minorRatio avgRatio = 0.5 * (minorRatio + majorRatio) scale1 = (_x1 - 0.5) / ratioProd + avgRatio scale2 = (_x2 - 0.5) / ratioProd + avgRatio if avgRatio > 1.0: # answer in terms of logs ratioRoot = sqrt(avgRatio*avgRatio - 1.0) scale1 /= ratioRoot scale2 /= ratioRoot coneFact = 0.5 * ratioProd / ratioRoot * \ log((scale2 - 1) * (scale1 + 1) / ((scale2 + 1) * scale1 - 1)) elif avgRatio < 1.0: # answer in terms of atan ratioRoot = sqrt(1.0 - avgRatio*avgRatio) scale1 /= ratioRoot scale2 /= ratioRoot coneFact = ratioProd / ratioRoot * (atan(scale2) - atan(scale1)) else: # answer in terms of 1/x coneFact = ratioProd / scale1 - ratioProd / scale2 return coneFact * self.length / (pi * semiMajor * semiMinor) @property def avgRadius(self): """ Return an estimate of average radius, pretending compartment was a cylinder or sphere (as appropriate to subclass) """ try: return sqrt(1.0e9 * self.volume / self.length / pi) except ZeroDivisionError as err: if self.length == 0: return 0.5 * (self.semiMajor0 + self.semiMajor1) raise err @property def centroid(self): """ Return centroid of the compartment as a tuple """ if self._centroid is None: # need to calculate centroid location weightedLength = 0.5 * pi * self.length*self.length * \ ((self.semiMajor0 * self.semiMinor0 + \ self.semiMajor0 * self.semiMinor1 + \ self.semiMajor1 * self.semiMinor0) / 6.0 + \ 0.5 * self.semiMajor1 * self.semiMinor1) ratio1 = weightedLength / (1.0e9 * self.volume) / self.length ratio0 = 1.0 - ratio1 self._centroid = (self.x0 * ratio0 + self.x1 * ratio1, \ self.y0 * ratio0 + self.y1 * ratio1, self.z0 * ratio0 + self.z1 * ratio1) return self._centroid
gpl-3.0
bnaul/scikit-learn
examples/linear_model/plot_logistic_multinomial.py
81
2525
""" ==================================================== Plot multinomial and One-vs-Rest Logistic Regression ==================================================== Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines. """ print(__doc__) # Authors: Tom Dupre la Tour <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression # make 3-class dataset for classification centers = [[-5, 0], [0, 1.5], [5, -1]] X, y = make_blobs(n_samples=1000, centers=centers, random_state=40) transformation = [[0.4, 0.2], [-0.4, 1.2]] X = np.dot(X, transformation) for multi_class in ('multinomial', 'ovr'): clf = LogisticRegression(solver='sag', max_iter=100, random_state=42, multi_class=multi_class).fit(X, y) # print the training scores print("training score : %.3f (%s)" % (clf.score(X, y), multi_class)) # create a mesh to plot in h = .02 # step size in the mesh x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.title("Decision surface of LogisticRegression (%s)" % multi_class) plt.axis('tight') # Plot also the training points colors = "bry" for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor='black', s=20) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.show()
bsd-3-clause
larsmans/scikit-learn
examples/feature_selection/plot_permutation_test_for_classification.py
250
2233
""" ================================================================= Test with permutations the significance of a classification score ================================================================= In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold, permutation_test_score from sklearn import datasets ############################################################################## # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(y, 2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) ############################################################################### # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib #plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) #plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
bsd-3-clause
metaml/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/interpolate.py
73
7068
import numpy as np from matplotlib._delaunay import compute_planes, linear_interpolate_grid, nn_interpolate_grid from matplotlib._delaunay import nn_interpolate_unstructured __all__ = ['LinearInterpolator', 'NNInterpolator'] def slice2gridspec(key): """Convert a 2-tuple of slices to start,stop,steps for x and y. key -- (slice(ystart,ystop,ystep), slice(xtart, xstop, xstep)) For now, the only accepted step values are imaginary integers (interpreted in the same way numpy.mgrid, etc. do). """ if ((len(key) != 2) or (not isinstance(key[0], slice)) or (not isinstance(key[1], slice))): raise ValueError("only 2-D slices, please") x0 = key[1].start x1 = key[1].stop xstep = key[1].step if not isinstance(xstep, complex) or int(xstep.real) != xstep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") xstep = int(xstep.imag) y0 = key[0].start y1 = key[0].stop ystep = key[0].step if not isinstance(ystep, complex) or int(ystep.real) != ystep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") ystep = int(ystep.imag) return x0, x1, xstep, y0, y1, ystep class LinearInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by using the planes defined by the three function values at each corner of the triangles. LinearInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Attributes: planes -- (ntriangles, 3) array of floats specifying the plane for each triangle. Linear Interpolation -------------------- Given the Delauany triangulation (or indeed *any* complete triangulation) we can interpolate values inside the convex hull by locating the enclosing triangle of the interpolation point and returning the value at that point of the plane defined by the three node values. f = planes[tri,0]*x + planes[tri,1]*y + planes[tri,2] The interpolated function is C0 continuous across the convex hull of the input points. It is C1 continuous across the convex hull except for the nodes and the edges of the triangulation. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value self.planes = compute_planes(triangulation.x, triangulation.y, self.z, triangulation.triangle_nodes) def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = linear_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.planes, self.triangulation.x, self.triangulation.y, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid class NNInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by the natural neighbors method. NNInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Natural Neighbors Interpolation ------------------------------- One feature of the Delaunay triangulation is that for each triangle, its circumcircle contains no other point (although in degenerate cases, like squares, other points may be *on* the circumcircle). One can also construct what is called the Voronoi diagram from a Delaunay triangulation by connecting the circumcenters of the triangles to those of their neighbors to form a tesselation of irregular polygons covering the plane and containing only one node from the triangulation. Each point in one node's Voronoi polygon is closer to that node than any other node. To compute the Natural Neighbors interpolant, we consider adding the interpolation point to the triangulation. We define the natural neighbors of this point as the set of nodes participating in Delaunay triangles whose circumcircles contain the point. To restore the Delaunay-ness of the triangulation, one would only have to alter those triangles and Voronoi polygons. The new Voronooi diagram would have a polygon around the inserted point. This polygon would "steal" area from the original Voronoi polygons. For each node i in the natural neighbors set, we compute the area stolen from its original Voronoi polygon, stolen[i]. We define the natural neighbors coordinates phi[i] = stolen[i] / sum(stolen,axis=0) We then use these phi[i] to weight the corresponding function values from the input data z to compute the interpolated value. The interpolated surface is C1-continuous except at the nodes themselves across the convex hull of the input points. One can find the set of points that a given node will affect by computing the union of the areas covered by the circumcircles of each Delaunay triangle that node participates in. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = nn_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid def __call__(self, intx, inty): intz = nn_interpolate_unstructured(intx, inty, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return intz
agpl-3.0
Melclic/HMG
py_wrapper/melPywafo.py
1
35078
## # @file melPywafo.py # # Contains all the functions required for the analysis of OD growth curves. Includes visual inspection of the gowth curve with first and second derivative to identify the exponential section of the growth curves. This contains user defined parameters for the smoothing parameter and the minimal length required for the growth curve. Using smoothing spline function, the volumetric changes of the growth curve, its instantaneous growth rate post exponential and exponential growth rate are returned. Volumetric changes are calculated based on the Volkmer et al. mean cell volume based on growth rate function. The smoothing spline (also called piecewise polynolmial) has been extracted from the pywafo packges # # @version 1.0 # @author Melchior du Lac # #TODO: use the expoentnial section of the growth curve detection as an indicator of section of the growth curve that is exponential, and have user defined input of start and end of the growht curve. from __future__ import division import numpy as np import scipy.signal import scipy.sparse as sparse from numpy import ones, zeros, prod, sin, diff, pi, inf, vstack, linspace from scipy.interpolate import interp1d import math import csv import polynomial as pl import matplotlib.pyplot as plt ############## Utility function to find the nearest function def find_nearest(array,value): idx = (np.abs(array-value)).argmin() return idx, array[idx] ######################################################################################### ################################### pywafo objects ###################################### ######################################################################################### class PPform(object): """The ppform of the piecewise polynomials is given in terms of coefficients and breaks. The polynomial in the ith interval is x_{i} <= x < x_{i+1} S_i = sum(coefs[m,i]*(x-breaks[i])^(k-m), m=0..k) where k is the degree of the polynomial. Example ------- >>> import matplotlib.pyplot as plt >>> coef = np.array([[1,1]]) # unit step function >>> coef = np.array([[1,1],[0,1]]) # linear from 0 to 2 >>> coef = np.array([[1,1],[1,1],[0,2]]) # linear from 0 to 2 >>> breaks = [0,1,2] >>> self = PPform(coef, breaks) >>> x = linspace(-1,3) >>> h=plt.plot(x,self(x)) """ def __init__(self, coeffs, breaks, fill=0.0, sort=False, a=None, b=None): if sort: self.breaks = np.sort(breaks) else: self.breaks = np.asarray(breaks) if a is None: a = self.breaks[0] if b is None: b = self.breaks[-1] self.coeffs = np.asarray(coeffs) self.order = self.coeffs.shape[0] self.fill = fill self.a = a self.b = b def __call__(self, xnew): saveshape = np.shape(xnew) xnew = np.ravel(xnew) res = np.empty_like(xnew) mask = (self.a <= xnew) & (xnew <= self.b) res[~mask] = self.fill xx = xnew.compress(mask) indxs = np.searchsorted(self.breaks[:-1], xx) - 1 indxs = indxs.clip(0, len(self.breaks)) pp = self.coeffs dx = xx - self.breaks.take(indxs) v = pp[0, indxs] for i in range(1, self.order): v = dx * v + pp[i, indxs] values = v res[mask] = values res.shape = saveshape return res def linear_extrapolate(self, output=True): ''' Return 1D PPform which extrapolate linearly outside its basic interval ''' max_order = 2 if self.order <= max_order: if output: return self else: return breaks = self.breaks.copy() coefs = self.coeffs.copy() # pieces = len(breaks) - 1 # Add new breaks beyond each end breaks2add = breaks[[0, -1]] + np.array([-1, 1]) newbreaks = np.hstack([breaks2add[0], breaks, breaks2add[1]]) dx = newbreaks[[0, -2]] - breaks[[0, -2]] dx = dx.ravel() # Get coefficients for the new last polynomial piece (a_n) # by just relocate the previous last polynomial and # then set all terms of order > maxOrder to zero a_nn = coefs[:, -1] dxN = dx[-1] a_n = pl.polyreloc(a_nn, -dxN) # Relocate last polynomial # set to zero all terms of order > maxOrder a_n[0:self.order - max_order] = 0 # Get the coefficients for the new first piece (a_1) # by first setting all terms of order > maxOrder to zero and then # relocate the polynomial. # Set to zero all terms of order > maxOrder, i.e., not using them a_11 = coefs[self.order - max_order::, 0] dx1 = dx[0] a_1 = pl.polyreloc(a_11, -dx1) # Relocate first polynomial a_1 = np.hstack([zeros(self.order - max_order), a_1]) newcoefs = np.hstack([a_1.reshape(-1, 1), coefs, a_n.reshape(-1, 1)]) if output: return PPform(newcoefs, newbreaks, a=-inf, b=inf) else: self.coeffs = newcoefs self.breaks = newbreaks self.a = -inf self.b = inf def derivative(self): """ Return first derivative of the piecewise polynomial """ cof = pl.polyder(self.coeffs) brks = self.breaks.copy() return PPform(cof, brks, fill=self.fill) def integrate(self): """ Return the indefinite integral of the piecewise polynomial """ cof = pl.polyint(self.coeffs) pieces = len(self.breaks) - 1 if 1 < pieces: # evaluate each integrated polynomial at the right endpoint of its # interval xs = diff(self.breaks[:-1, ...], axis=0) index = np.arange(pieces - 1) vv = xs * cof[0, index] k = self.order for i in range(1, k): vv = xs * (vv + cof[i, index]) cof[-1] = np.hstack((0, vv)).cumsum() return PPform(cof, self.breaks, fill=self.fill) class SmoothSpline(PPform): """ Cubic Smoothing Spline. Parameters ---------- x : array-like x-coordinates of data. (vector) y : array-like y-coordinates of data. (vector or matrix) p : real scalar smoothing parameter between 0 and 1: 0 -> LS-straight line 1 -> cubic spline interpolant lin_extrap : bool if False regular smoothing spline if True a smoothing spline with a constraint on the ends to ensure linear extrapolation outside the range of the data (default) var : array-like variance of each y(i) (default 1) Returns ------- pp : ppform If xx is not given, return self-form of the spline. Given the approximate values y(i) = g(x(i))+e(i) of some smooth function, g, where e(i) is the error. SMOOTH tries to recover g from y by constructing a function, f, which minimizes p * sum (Y(i) - f(X(i)))^2/d2(i) + (1-p) * int (f'')^2 Example ------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> x = np.linspace(0,1) >>> y = np.exp(x)+1e-1*np.random.randn(x.size) >>> pp9 = SmoothSpline(x, y, p=.9) >>> pp99 = SmoothSpline(x, y, p=.99, var=0.01) >>> h=plt.plot(x,y, x,pp99(x),'g', x,pp9(x),'k', x,np.exp(x),'r') See also -------- lc2tr, dat2tr References ---------- Carl de Boor (1978) 'Practical Guide to Splines' Springer Verlag Uses EqXIV.6--9, self 239 """ def __init__(self, xx, yy, p=None, lin_extrap=True, var=1): coefs, brks = self._compute_coefs(xx, yy, p, var) super(SmoothSpline, self).__init__(coefs, brks) if lin_extrap: self.linear_extrapolate(output=False) def _compute_coefs(self, xx, yy, p=None, var=1): x, y = np.atleast_1d(xx, yy) x = x.ravel() dx = np.diff(x) must_sort = (dx < 0).any() if must_sort: ind = x.argsort() x = x[ind] y = y[..., ind] dx = np.diff(x) n = len(x) # ndy = y.ndim szy = y.shape nd = prod(szy[:-1]) ny = szy[-1] if n < 2: raise ValueError('There must be >=2 data points.') elif (dx <= 0).any(): raise ValueError('Two consecutive values in x can not be equal.') elif n != ny: raise ValueError('x and y must have the same length.') dydx = np.diff(y) / dx if (n == 2): # % straight line coefs = np.vstack([dydx.ravel(), y[0, :]]) else: dx1 = 1. / dx D = sparse.spdiags(var * ones(n), 0, n, n) # The variance u, p = self._compute_u(p, D, dydx, dx, dx1, n) dx1.shape = (n - 1, -1) dx.shape = (n - 1, -1) zrs = zeros(int(nd)) if p < 1: # faster than yi-6*(1-p)*Q*u Qu = D * diff(vstack([zrs, diff(vstack([zrs, u, zrs]), axis=0) * dx1, zrs]), axis=0) ai = (y - (6 * (1 - p) * Qu).T).T else: ai = y.reshape(n, -1) # The piecewise polynominals are written as # fi=ai+bi*(x-xi)+ci*(x-xi)^2+di*(x-xi)^3 # where the derivatives in the knots according to Carl de Boor are: # ddfi = 6*p*[0;u] = 2*ci; # dddfi = 2*diff([ci;0])./dx = 6*di; # dfi = diff(ai)./dx-(ci+di.*dx).*dx = bi; ci = np.vstack([zrs, 3 * p * u]) di = (diff(vstack([ci, zrs]), axis=0) * dx1 / 3) bi = (diff(ai, axis=0) * dx1 - (ci + di * dx) * dx) ai = ai[:n - 1, ...] if nd > 1: di = di.T ci = ci.T ai = ai.T if not any(di): if not any(ci): coefs = vstack([bi.ravel(), ai.ravel()]) else: coefs = vstack([ci.ravel(), bi.ravel(), ai.ravel()]) else: coefs = vstack( [di.ravel(), ci.ravel(), bi.ravel(), ai.ravel()]) return coefs, x def _compute_u(self, p, D, dydx, dx, dx1, n): if p is None or p != 0: data = [dx[1:n - 1], 2 * (dx[:n - 2] + dx[1:n - 1]), dx[:n - 2]] R = sparse.spdiags(data, [-1, 0, 1], n - 2, n - 2) if p is None or p < 1: Q = sparse.spdiags( [dx1[:n - 2], -(dx1[:n - 2] + dx1[1:n - 1]), dx1[1:n - 1]], [0, -1, -2], n, n - 2) QDQ = (Q.T * D * Q) if p is None or p < 0: # Estimate p p = 1. / \ (1. + QDQ.diagonal().sum() / (100. * R.diagonal().sum() ** 2)) if p == 0: QQ = 6 * QDQ else: QQ = (6 * (1 - p)) * (QDQ) + p * R else: QQ = R # Make sure it uses symmetric matrix solver ddydx = diff(dydx, axis=0) # sp.linalg.use_solver(useUmfpack=True) u = 2 * sparse.linalg.spsolve((QQ + QQ.T), ddydx) # @UndefinedVariable return u.reshape(n - 2, -1), p ######################################################################################### ######################################################################################### ## # @brief Parser of time series histogram of bacterial DNA content, stained with DAPI. # # Given the histogram output flow cytometry analysis of bacterial population, this function extracts the data from a CSV format to python arrays to be used for further analysis by saving it into a pickle. Must provide it with first order polynomial that determines the channel to DNA peaks. # # @param inputFile Path to the CSV file with histograms # @param polyChannel Array with the parameters of the first order polynomial # # @return times Array of the time series snapshots of histograms # @return tmpData 2D array of the y-axis normalised histogram values # @return scale 1D array of the x-axis DNA scale of the histograms # def parseFlowData(inputFile, polyChannel): data = [] sortedData = [] sortedScale = [] channels = [] times = [] with open(inputFile, 'r') as f: reader = csv.reader(f) isFirst = True for row in reader: if isFirst: for y in range(1, len(row)): data.append([]) sortedData.append([]) sortedScale.append([]) times.append(float(row[y])*60.0) isFirst = False else: channels.append(float(row[0])) for y in range(1,len(row)): data[y-1].append(float(row[y])) #hist_channels = [] #for i in range(len(channels)): # if i==0: # hist_channels.append(channels[0]-(((channels[0]+channels[1])/2)-channels[0])) # hist_channels.append((channels[i]+channels[i+1])/2) # elif i==len(channels)-1: # hist_channels.append(channels[-1]+(((channels[-1]+channels[-2])/2)-channels[-1])) # else: # hist_channels.append((channels[i]+channels[i+1])/2) #scale = [polyChannel[0]*math.pow(x,3.0) + polyChannel[1]*math.pow(x,2.0) + polyChannel[2]*x + polyChannel[3] for x in hist_channels] #scale = [polyChannel[0]*math.pow(x,2.0)+polyChannel[1]*x+polyChannel[2] for x in hist_channels] #scale = [polyChannel[0]*x+polyChannel[1] for x in hist_channels] #scale = [polyChannel[0]*math.pow(x,2.0)+polyChannel[1]*x+polyChannel[2] for x in range(len(channels))] #scale = [0.04183*i+0.03283 for i in range(len(channels))] #scale = [0.0007466*math.pow(x,2.0)+0.008022*x+0.7751 for x in range(len(channels))] #scale = [0.04401*x-0.03389 for x in range(len(channels))] scale = [polyChannel[0]*x+polyChannel[1] for x in range(len(channels))] scale.append(14169.0) #for i in range(len(scale)): # if i<1792: # scale[i] = 0.002556*i-3.578 #scale.append(80.0) #scale = [polyChannel[0]*math.exp(polyChannel[1]*x) for x in range(len(channels))] #scale.append(160.0) #<-- it does not matter what we add since it is much larger #scale = [polyChannel[0]*x+polyChannel[1] for x in range(len(channels))] #scale.append(12.0) #<-- it does not matter what we add since it is much larger tmpData = [] for i in data: tmpData.append([y/sum(i) for y in i]) #for dataIndex in range(len(data)): # a = zip(data[dataIndex], scale) # a = list(a) # b = [i for i in a if i[1]>=0.01 and i[1]<=220.0] # b.append(160.0) # sortedScale[dataIndex] = [i[1] for i in b] # sortedScale[dataIndex].append(scale[scale.index(sortedScale[0][-1])+1]) # sortedData[dataIndex] = [i[0] for i in b] #sortedData[dataIndex] = [i/sum(sortedData[dataIndex]) for i in sortedData[dataIndex]] # sortedData[dataIndex] = [i/sum(sortedData[dataIndex]) if sum(sortedData[dataIndex])>0.0 else 0 for i in sortedData[dataIndex]] #return times, sortedData, sortedScale return times, tmpData, scale ## # @brief Fill the gaps in the OD input data through linear interpolation # # Because the smoothing spline algorithm does not deal well with gaps in data, if that is the case we fill the gaps assuming that the difference between rwo points is lienar. Two points is determined two have a gap if distance between the two is larger than the mean of the sampling intervals. The gap is then filled assuming linear interpolation with equal sampling frequency. # # @param time 1D array of x-axis of the OD growth curve # @param od 1D array of the y-axis of the OD growth curve # # @return time Filled and parsed (minutes) x-axis of the growth curve # @return od Filled and parsed y-axis of the growth curve # @return parcentMissing Calculated percentage of the data that hase been filled # return time, od, percentMissing #TODO: fix WARNING: Buggy, if there is nothing to fill, then this method attempts to divide by 0 def gapFill(time, od): oldODLen = len(od) oldTimeLen = len(time) #calculate the intervals between each time points gapArray = [] for i in range(len(time)-1): gapArray.append(abs(time[i]-time[i+1])) meanGap = sum(gapArray)/float(len(gapArray)) #gap values for time and OD that are bigger than twice the mean where we will fill them gapsTime = [] gapsOD = [] #gap values that value is less than the mean and we will not fill nonGaps = [] count = 0 for i in gapArray: if i>(2.0*meanGap): gapsTime.append([time[count],time[count+1]]) gapsOD.append([od[count],od[count+1]]) elif i<meanGap: nonGaps.append(i) count += 1 nonGapMean = 0.0 if len(nonGaps)==0: return time, od, 0.0 nonGapMean = sum(nonGaps)/float(len(nonGaps)) #Fill the gaps using linear interpolation for i in range(len(gapsTime)): linearFit = interp1d(gapsTime[i], gapsOD[i]) filledTime = np.arange(gapsTime[i][0]+nonGapMean, gapsTime[i][1], nonGapMean) #+1 to include the last value filledOD = linearFit(filledTime) for i in range(len(time)-1): if time[i]<filledTime[0] and time[i+1]>filledTime[-1]: posAdd = i for y in range(len(filledTime)): posAdd += 1 time.insert(posAdd,filledTime[y]) od.insert(posAdd,filledOD[y]) break percentMissing = 0.0 if(oldTimeLen<len(time)): percentMissing = math.ceil(100.0*(len(od)-oldODLen)/len(od)) return time, od, percentMissing ## # @brief Fill the end of the growth curve that is descending with flat OD changes # # Because our modelling strategy cannot handle diminishing growth curves, we replace the death phase with linear unchanging growth. Future plans involve the implementation of cell death so as to be able to model decreasing OD values. # # @param od 1D array with the OD values # # @return od 1D array with parsed OD values # def linearEnds(od): startPin = np.median(od[0:5]) endPin = np.median(od[len(od)-5:-1]) if od[0]!=min(od): for i in range(5): od.insert(i, startPin) if od[-1]!=max(od): for i in range(len(od), len(od)-5, -1): od.insert(i, endPin) return od ################################################################# ############################# Plot ############################## ################################################################# ## # @brief Visual inspection of the growth curve with currently calculated exponential phase, with first and second order polynomials # # To check that the detected exponential section of the growth curve indeed is valid, we plot the OD growth curve (log scale), its first and second orde differential. Theoretically, the section of the growth curve that is linear should be the section of the growth curve where the second order differential is linear. # # @param fitTime Spline interpolation fit time output with dt as time step # @param fitOD Spline interpolation fit OD output with dt as time step # @param time Original 1D array of the time of the growth curve # @param od Original 1D array of the OD of the growth curve # @param diffOD First order differential of fitOD (not used) # @param isNegOD Boolean determining if there are any parts of the fit growth curve that is negative and thus invalid # @param isNegDeriv Boolean determining if there are any parts of the first order differential of the growth curve that is negative and thus inavalid # @param expoTau Calculated doubling rate of the exponential section of the growth curve # @param startLinear Time in minutes of the start of the linear phase # @param stopLinear Time in minutes of the stop of the linear phase # def plotIt(fitTime, fitOD, time, od, diffOD, isNegOD, isNegDeriv, expoTau, startLinear, stopLinear): plt.subplot(4,1,1) plt.title('Valid OD: '+str(not isNegOD)+' | Valid diff(OD): '+str(not isNegDeriv)) plt.plot(time, od) plt.ylabel('OD') plt.subplot(4,1,2) #plt.semilogy(time, od, 'o', label='Original Data') #plt.semilogy(fitTime, fitOD, label='Spline Fit') plt.plot(time, np.log(od), 'o', label='Original Data') plt.plot(fitTime, np.log(fitOD), label='Spline Fit') #plt.axvline(maxOD, color='red', label='Max OD ('+str(round(expoTau,2))+'min-1)') if not startLinear==-1.0 and not stopLinear==-1.0: plt.axvline(startLinear, color='red', label='Start Linear (tau: '+str(round(expoTau,2))+')') plt.axvline(stopLinear, color='yellow', label='Stop Linear') plt.xlabel('Time (min)') plt.ylabel('ln(OD)') #plt.title('Valid OD: '+str(not isNegOD)+' | Valid diff(OD): '+str(not isNegDeriv)) plt.legend(loc=4) plt.subplot(4,1,3) #plt.plot(fitTime, diffOD) #startLoc = -1.0 #for i in range(len(fitTime)): # if fitTime[i]>=startLinear: # startLoc = i # break #ft = fitTime[:] #ft = ft[0:-1] #if not startLinear==-1.0 and not stopLinear==-1.0: # startLoc = find_nearest(fitTime, startLinear)[0] # endLoc = find_nearest(fitTime, stopLinear)[0] # print(len(fitTime[startLoc:endLoc])) # print(len(np.diff(np.log(fitOD))[startLoc:endLoc])) # plt.plot(fitTime[startLoc:endLoc], np.diff(np.log(fitOD))[startLoc:endLoc]) #else: # plt.plot(fitTime[0:-1], np.diff(np.log(fitOD))) plt.plot(fitTime[0:-1], np.diff(np.log(fitOD))) #plt.plot(ft[startLoc:len(ft)], np.gradient(np.log(fitOD)[startLoc:-1])) plt.xlabel('Time (min)') plt.ylabel('F1(ln(OD))') plt.subplot(4,1,4) #if not startLinear==-1.0 and not stopLinear==-1.0: # startLoc = find_nearest(fitTime, startLinear)[0] # endLoc = find_nearest(fitTime, stopLinear)[0] # print(len(fitTime[startLoc:endLoc])) # print(len(np.diff(np.log(fitOD), 2)[startLoc:endLoc])) # #plt.plot(fitTime[startLoc:-1], np.diff(np.log(fitOD)))[startLoc:-1] # plt.plot(fitTime[startLoc:endLoc], np.diff(np.log(fitOD), 2)[startLoc:endLoc]) #else: # plt.plot(fitTime[0:-2], np.diff(np.log(fitOD), 2)) plt.plot(fitTime[0:-2], np.diff(np.log(fitOD), 2)) plt.xlabel('Time (min)') plt.ylabel('F2(ln(OD))') plt.show() """ plt.semilogy(time, od, 'o', label='Original Data') plt.semilogy(fitTime, fitOD, label='Spline Fit') #plt.plot(time, od, 'o', label='Original Data') #plt.plot(fitTime, fitOD, label='Spline Fit') plt.axvline(maxOD, color='red', label='Max OD') plt.xlabel('Time (min)') plt.ylabel('OD') plt.title('Valid OD: '+str(not isNegOD)+' | Valid diff(OD): '+str(not isNegDeriv)) plt.legend(loc=4) plt.show() """ ################################################################ ################################################################ ################################################################ ## # @brief Try a new smoothing parameter # # Because this is user defined smoothing and exponential window determined function, we must recalculate the fitOD # # @param fitTime 1D array of the fitted time using dt as tim step # @param time Original time array # @param od Original od array # @param p Smoothing parameter # @param dt Time step # @param confidenceBound confidence of the linear fit to the OD growth curve # @param minFlatSize Minimal size of the array that is the exponential section of the growth curve # # @return fitOD Spline fit OD values # @return fitDerivOD Spline fit first order derivative OD values # @return maxOD Maximal OD values of the spline fit # @return isNegOD Boolean determining if the spline fit contains negative OD values # @return isNegDeriv Boolean determining the the first order derivative of the spline fit contains decreasing values # @return expoTau Growth rate of the exponential section of the growth curve # @return ss SmoothingSpline object # @return startLinear Start of the linear section of the growth curve # @return stopLinear End of the linear section of the growth curve # def tryNewP(fitTime, time, od, p, dt, confidenceBound, minFlatSize, ignoreTime): ss = SmoothSpline(time, od, p=p) fitOD = ss(fitTime) ssDeriv = ss.derivative() #fitDerivOD = ssDeriv(fitTime).tolist() fitDerivOD = np.gradient(np.log(fitOD)) #lnDeriv = np.diff(np.log(fitOD)).tolist() lnDeriv = np.gradient(np.log(fitOD)).tolist() #cannot use max() function because it may be at time 0 --> data we cannot trust #need to identify and ignore the lag phase #remove anythin with an OD of X maxOD = fitTime[lnDeriv.index(max(lnDeriv))] #the linear growth rate numSide = int(10.0/dt) fitTime = fitTime.tolist() expoTime = fitTime[fitTime.index(maxOD)-numSide:fitTime.index(maxOD)+numSide] expoOD = fitOD[fitTime.index(maxOD)-numSide:fitTime.index(maxOD)+numSide] #test: identify the linear part of growth: second derivative of the natural lof of the od curve. If it is 0 then it is linear. However because of the data must have a confidence interval secondDeriv = np.diff(np.log(fitOD), 2) startLinear = -1.0 stopLinear = -1.0 linearTime = [] linearOD = [] count = 0 for i in range(len(secondDeriv)): if confidenceBound>=secondDeriv[i]>=-confidenceBound and fitTime[i]>ignoreTime: if startLinear==-1.0: startLinear = fitTime[i] else: if count>=minFlatSize: stopLinear = fitTime[i] count += 1 linearTime.append(fitTime[i]) linearOD.append(fitOD[i]) else: if not startLinear==-1.0 and not stopLinear==-1.0: count = 0 break if not startLinear==-1.0 and stopLinear==-1.0: linearTime = [] linearOD = [] startLinear = -1.0 count = 0 if startLinear==-1.0 and stopLinear==-1.0: linearTime = [] linearOD = [] startLoc = -1.0 for i in range(len(fitTime)): if fitTime[i]>=stopLinear: startLoc = i break #[ unicode(x.strip()) if x is not None else '' for x in row ] fitDerivOD = [i if not 0.0>i>-0.0000005 else 0.0 for i in fitDerivOD] fitDerivOD = [i*100.0 for i in fitDerivOD] isNegOD = any(i<0.0 for i in fitOD[startLoc:len(fitOD)]) isNegDeriv = any(y<0.0 for y in fitDerivOD[startLoc:len(fitDerivOD)]) if not fitDerivOD[startLoc]==0.0: #expoTau = math.log(2)/fitDerivOD[startLoc] expoTau = math.log(2)/np.polyfit(linearTime, np.log(linearOD), 1)[0] else: expoTau = 0.0 return fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, ss, startLinear, stopLinear ############################################################# ###################### USER SMOOTHIG ######################## ############################################################# ## # @brief Matplotlib plotting of the OD spline fit with user input of smoothing # # Given that the smoothing parameter, minimal length of the linear section of growth, and the confidence bounds, this functions plots the results and requires the user inout of all of these three parameters. This also checks that there are no decreasing OD values and that the fit is valid overall # # @param time Orginial measured time values # @param od Original measured OD values # @param dt Time step # @param fname Input file name with the histogram time series # # @return fitTime Spline fit time # @return fitOD Spline fit OD values # @return fitDerivOD Spline fit first order derivative OD values # @return p Smoothing parameter of the # @return maxOD Maximal OD values of the spline fit # @return expoTau Growth rate of the exponential section of the growth curve # @return fitObj SmoothingSpline object # @return startLinear Start of the linear section of the growth curve # @return stopLinear End of the linear section of the growth curve # @return minFlatSize Minimal size of the array that is the exponential section of the growth curve # @return confidenceBound confidence of the linear fit to the OD growth curve # #TODO: Make this in something else (javascript), not matplotlib def userSmoothing(time, od, dt, fname): od = [0.0001 if x<=0.0 else x for x in od] spacing = np.mean([math.fabs(time[i+1]-time[i]) for i in range(len(time)-2)]) p = 1.0/(1.0+math.pow(np.mean(spacing),3.0)/6.0) fitTime = np.arange(time[0], time[-1], dt) confidenceBound = 0.000000001 minFlatSize = 3000 ignoreTime = 10.0 #identify maxOD, and if not OD[-1] fill it with maxOD until next Flow Measurement if max(od)!=od[-1]: maxODIndex = od.index(max(od)) od = od[0:maxODIndex] time = time[0:maxODIndex] time, od, percentMissing = gapFill(time[:], od[:]) fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, fitObj, startLinear, stopLinear = tryNewP(fitTime, time, od, p/(1+1), dt, confidenceBound, minFlatSize, ignoreTime) #isValid = False #for i in range(5): # fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, fitObj, startLinear, stopLinear = tryNewP(fitTime, time, od, p/(i+1), dt, confidenceBound) # if not isNegOD and not isNegDeriv: # isValid = True # break #if not isValid: # time, od, percentMissing = gapFill(time[:], od[:]) fitTime = np.arange(time[0], time[-1], dt) plt.ion() fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, fitObj, startLinear, stopLinear = tryNewP(fitTime, time, od, p, dt, confidenceBound, minFlatSize, ignoreTime) print(startLinear) print(stopLinear) plotIt(fitTime, fitOD, time, od, fitDerivOD, isNegOD, isNegDeriv, expoTau, startLinear, stopLinear) while True: print('p: '+str(p)) inP = input('Input different p value?: ') print('confidenceBound: '+str(confidenceBound)) inConfB = input('Input different confidenceBound value?: ') print('minFlatSize: '+str(minFlatSize)) mfs = input('Input different minFlatSize?: ') print('ignoreTime: '+str(ignoreTime)) it = input('Input different ingoreTime?: ') try: p = float(inP) confidenceBound = float(inConfB) minFlatSize = float(mfs) ignoreTime = float(it) plt.clf() fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, fitObj, startLinear, stopLinear= tryNewP(fitTime, time, od, p, dt, confidenceBound, minFlatSize, ignoreTime) plotIt(fitTime, fitOD, time, od, fitDerivOD, isNegOD, isNegDeriv, expoTau, startLinear, stopLinear) print(startLinear) print(stopLinear) except ValueError: if not isNegOD and not isNegDeriv: plt.savefig(fname+'.svg') plt.close() break else: print('The smoothing parameters are invalid... Try again') print('isNegOD: '+str(isNegOD)) print('isNegDeriv: '+str(isNegDeriv)) return fitTime, fitOD, fitDerivOD, p, maxOD, expoTau, fitObj, startLinear, stopLinear, minFlatSize, confidenceBound ############################################################# ######################## SMOOTHIG #$$####################### ############################################################# ## # @bref Non user defined smoothing, and further calculations from the growth curve # # Given the deduced smoothing parameter, minimal size of the linear section of growth and confidence bound calculated from the userSmoothing functions, perform calculation and return all the calculations # # @param time Orginial measured time values # @param od Original measured OD values # @param dt Time step # @param fname Input file name with the histogram time series # @param p Smoothing parameter of the # @param confidenceBound confidence of the linear fit to the OD growth curve # @param minFlatSize Minimal size of the array that is the exponential section of the growth curve # # @return fitTime Spline fit time # @return fitOD Spline fit OD values # @return fitDerivOD Spline fit first order derivative OD values # @return maxOD Maximal OD values of the spline fit # @return expoTau Growth rate of the exponential section of the growth curve # @return fitObj SmoothingSpline object # @return startLinear Start of the linear section of the growth curve # @return stopLinear End of the linear section of the growth curve # def smoothing(time, od, dt, fname, p, confidenceBound, minFlatSize): spacing = np.mean([math.fabs(time[i+1]-time[i]) for i in range(len(time)-2)]) fitTime = np.arange(time[0], time[-1], dt) time, od, percentMissing = gapFill(time[:], od[:]) #identify maxOD, and if not OD[-1] fill it with maxOD until next Flow Measurement if max(od)!=od[-1]: maxODIndex = od.index(max(od)) od = od[0:maxODIndex] time = time[0:maxODIndex] fitOD, fitDerivOD, maxOD, isNegOD, isNegDeriv, expoTau, fitObj, startLinear, stopLinear, ingoreTime = tryNewP(fitTime, time, od, p, dt, confidenceBound, minFlatSize) return fitTime, fitOD, fitDerivOD, p, max(od), expoTau, fitObj, startLinear, stopLinear ############################################################## ############################################################## ############################################################## ## # @brief Main function that calculates the different # # @param inputFile Path to the input file with the histograms # @param inputTime Growth rate input time # @param inputOD Growth rate input OD # @param polyChannel parameters of the first order polynomial that converts the channel DNA content # @param dt Time step # @param p Smoothing parameter # @param confidenceBound Confidence bounds of the linear fit of the growth curve # @param minFlatSize Minimal size of the linear section of the growth curve # # @return flowTimes Ouput flow cytometry times in minutes # @return flowData Output flow cytometry histograms # @return flowScale Output flow cytometry DNA x-axis scale # @return injectionOD Spline fit OD data based on dt time step # @return injectionGR Spline fit instateneous growth rate based on dt # @return injectionGrownMass Calculated spline fit total volumetric changes of the growth curve based on dt # @return injectionTime Spline fit time based on dt # @return expoTau Linear section of the growth curve growth rate # def genData(inputFile, inputTime, inputOD, polyChannel, dt, p=-1.0, confidenceBound=-1.0, minFlatSize=-1.0): flowTimes, flowData, flowScale = parseFlowData(inputFile, polyChannel) if(p==-1.0): fitTime, fitOD, fitDerivOD, p, maxOD, expoTau, fitObj, startLinear, endLinear, minFlatSize, confidenceBound = userSmoothing(inputTime, inputOD, dt, inputFile.split('/')[-1].replace('.csv', '')) else: fitTime, fitOD, fitDerivOD, p, maxOD, expoTau, fitObj, startLinear, endLinear = smoothing(inputTime, inputOD, dt, inputFile.split('/')[-1].replace('.csv', ''), p, confidenceBound, minFlatSize) #the flow data should be limitied to one for the exponential phase and then the rest of the stationnary phase flowLinearData = [] flowLinearScale = [] flowLinearTimes = [] for i in range(len(flowTimes)): if flowTimes[i]>=startLinear and flowTimes[i]<=endLinear: flowLinearData.append(flowData[i]) flowLinearScale.append(flowScale[i]) flowLinearTimes.append(flowTimes[i]) tmpFlowData = [] tmpFlowScale = [] tmpFlowTimes = [] tmpFlowData.append(flowLinearData[-1]) tmpFlowScale.append(flowLinearScale[-1]) tmpFlowTimes.append(flowLinearTimes[-1]) for i in range(len(flowTimes)): if flowTimes[i]>endLinear: tmpFlowData.append(flowData[i]) tmpFlowScale.append(flowScale[i]) tmpFlowTimes.append(flowTimes[i]) flowData = tmpFlowData #flowScale = tmpFlowScale flowTimes = tmpFlowTimes injectionTime = [np.arange(flowTimes[i], flowTimes[i+1]+dt, dt) for i in range(len(flowTimes)-1)] injectionOD = [list(fitObj(i)) for i in injectionTime] injectionGR = [list(np.gradient(np.log(i))*100.0) for i in injectionOD] injectionGrownMass = [[(3.6*y)*math.pow(10.0, 9.0) for y in i] for i in injectionOD] return flowTimes, flowData, flowScale, injectionOD, injectionGR, injectionGrownMass, injectionTime, expoTau
gpl-3.0
thilbern/scikit-learn
benchmarks/bench_multilabel_metrics.py
11
7258
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': f1_score, 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: '.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
MJuddBooth/pandas
pandas/tests/indexes/multi/test_missing.py
2
4113
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas._libs.tslib import iNaT import pandas as pd from pandas import Int64Index, MultiIndex, PeriodIndex, UInt64Index from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm def test_fillna(idx): # GH 11343 # TODO: Remove or Refactor. Not Implemented for MultiIndex for name, index in [('idx', idx), ]: if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy() values = idx.values if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_dropna(): # GH 6194 idx = pd.MultiIndex.from_arrays([[1, np.nan, 3, np.nan, 5], [1, 2, np.nan, np.nan, 5], ['a', 'b', 'c', np.nan, 'e']]) exp = pd.MultiIndex.from_arrays([[1, 5], [1, 5], ['a', 'e']]) tm.assert_index_equal(idx.dropna(), exp) tm.assert_index_equal(idx.dropna(how='any'), exp) exp = pd.MultiIndex.from_arrays([[1, np.nan, 3, 5], [1, 2, np.nan, 5], ['a', 'b', 'c', 'e']]) tm.assert_index_equal(idx.dropna(how='all'), exp) msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): idx.dropna(how='xxx') def test_nulls(idx): # this is really a smoke test for the methods # as these are adequately tested for function elsewhere msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.isna() @pytest.mark.xfail def test_hasnans_isnans(idx): # GH 11343, added tests for hasnans / isnans index = idx.copy() # cases in indices doesn't include NaN expected = np.array([False] * len(index), dtype=bool) tm.assert_numpy_array_equal(index._isnan, expected) assert index.hasnans is False index = idx.copy() values = index.values values[1] = np.nan index = idx.__class__(values) expected = np.array([False] * len(index), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(index._isnan, expected) assert index.hasnans is True def test_nan_stays_float(): # GH 7031 idx0 = pd.MultiIndex(levels=[["A", "B"], []], codes=[[1, 0], [-1, -1]], names=[0, 1]) idx1 = pd.MultiIndex(levels=[["C"], ["D"]], codes=[[0], [0]], names=[0, 1]) idxm = idx0.join(idx1, how='outer') assert pd.isna(idx0.get_level_values(1)).all() # the following failed in 0.14.1 assert pd.isna(idxm.get_level_values(1)[:-1]).all() df0 = pd.DataFrame([[1, 2]], index=idx0) df1 = pd.DataFrame([[3, 4]], index=idx1) dfm = df0 - df1 assert pd.isna(df0.index.get_level_values(1)).all() # the following failed in 0.14.1 assert pd.isna(dfm.index.get_level_values(1)[:-1]).all()
bsd-3-clause
kgadek/evogil
algorithms/NSGAIII/NSGAIII.py
1
18189
import collections import math import random import numpy import numpy.linalg from algorithms.base.drivergen import DriverGen, ImgaProxy EPSILON = numpy.finfo(float).eps import matplotlib.pyplot as plt class NSGAIII(DriverGen): class NSGAIIIImgaProxy(ImgaProxy): def __init__(self, driver, cost, fronts, individuals): super().__init__(driver, cost) self.individuals = individuals self.fronts = fronts def finalized_population(self): return [x.v for x in self.individuals] def current_population(self): return [x.v for x in self.individuals] def deport_emigrants(self, immigrants): immigrants_cp = list(immigrants) to_remove = [] for p in self.individuals: if p.v in immigrants_cp: to_remove.append(p) immigrants_cp.remove(p.v) for p in to_remove: self.individuals.remove(p) return to_remove def assimilate_immigrants(self, emigrants): self.individuals.extend(emigrants) def nominate_delegates(self): return [x.v for x in self.fronts[1]] def __init__(self, population, dims, fitnesses, mutation_eta, crossover_eta, mutation_rate='default', crossover_rate=0.9, theta=5, trim_function=lambda x: x, fitness_archive=None): super().__init__() self.fitness_archive = fitness_archive self.theta = theta self.dims = dims self.dims_no = len(dims) self.objectives = fitnesses self.objective_no = len(self.objectives) self.eta_crossover = crossover_eta self.eta_mutation = mutation_eta self.crossover_rate = crossover_rate self.mutation_rate = 1.0 / len(self.dims) if mutation_rate is 'default' else mutation_rate self.population_size = len(population) self.reference_points = self.generate_reference_points() self.reference_point_lengths = [numpy.linalg.norm(point) for point in self.reference_points] self.individuals = [] self.trim_function = trim_function self.population = [self.trim_function(x) for x in population] self.cost = 0 self.primary_cost_included = False self.budget = None self.ideal_point = [float('inf') for _ in range(self.objective_no)] self.update_ideal_point(self.individuals) # TODO: remove debug # plt.scatter([x.v[0] for x in self.individuals], [x.v[1] for x in self.individuals], c='g') # plt.scatter([x.objectives[0] for x in self.individuals], [x.objectives[1] for x in self.individuals], c='b') # plt.scatter([self.ideal_point[0]], [self.ideal_point[1]], c='r') # plt.show() self.clusters = [[] for _ in self.reference_points] def generate_reference_points(self): return [generate_reference_point(self.objective_no) for _ in range(self.population_size)] @property def population(self): return [x.v for x in self.individuals] @population.setter def population(self, pop): # should work anyway, stabilize after each offspring generaion # if len(pop) % 2 != 0: # raise ValueError("Population must be even") # if len(pop) < len(self.reference_points): # raise ValueError("Population too small for the requested amount of reference points") self.individuals = [Individual(x) for x in pop] self.population_size = len(self.individuals) def _calculate_objectives(self, individuals): for ind in individuals: if ind.objectives is None: if (self.fitness_archive is not None) and (ind.v in self.fitness_archive): ind.objectives = self.fitness_archive[ind.v] else: self.cost += 1 ind.objectives = [objective(ind.v) for objective in self.objectives] if self.fitness_archive is not None: self.fitness_archive[ind.v] = ind.objectives def update_ideal_point(self, individuals): self._calculate_objectives(individuals) for ind in individuals: for i, objective in enumerate(ind.objectives): if self.ideal_point[i] > objective: self.ideal_point[i] = objective def population_generator(self): while True: fronts = self.next_step() yield NSGAIII.NSGAIIIImgaProxy(self, self.cost, fronts, self.individuals) self.cost = 0 def next_step(self): offspring_inds = self.make_offspring_individuals() for ind in offspring_inds: ind.v = self.trim_function(ind.v) # TODO: remove debug # plt.scatter([x.v[0] for x in offspring_inds], [x.v[1] for x in offspring_inds], c='b', marker='^') # plt.show() self.update_ideal_point(offspring_inds) # TODO: remove debug # plt.scatter([x.objectives[0] for x in offspring_inds], # [x.objectives[1] for x in offspring_inds], c='g', marker='^') # plt.scatter([self.ideal_point[0]], [self.ideal_point[1]], c='r') # plt.show() offspring_inds.extend(self.individuals) self.normalize(offspring_inds) # TODO: remove debug # plt.scatter([x.normalized_objectives[0] for x in offspring_inds], # [x.normalized_objectives[1] for x in offspring_inds]) # plt.scatter([x[0] for x in self.reference_points], [x[1] for x in self.reference_points], c='k', marker='+') # plt.show() self.clustering(offspring_inds) # TODO: remove debug # for i, cluster in enumerate(self.clusters): # c = None # k = 7 # if i % k == 0: # c = 'r' # elif i % k == 1: # c = 'g' # elif i % k == 2: # c = 'b' # elif i % k == 3: # c = 'y' # elif i % k == 4: # c = 'k' # elif i % k == 5: # c = 'c' # elif i % k == 6: # c = 'm' # # if len(cluster) > 0: # plt.scatter([x.normalized_objectives[0] for x in cluster], # [x.normalized_objectives[1] for x in cluster], c=c, marker='s') # plt.scatter([self.reference_points[i][0]], [self.reference_points[i][1]], c=c, marker='o', s=500) # plt.scatter([x[0] for x in self.reference_points], [x[1] for x in self.reference_points], c='k', marker='o') # plt.xlim([-0.2, 1.2]) # plt.ylim([-0.2, 1.2]) # plt.show() # # plt.scatter([x.objectives[0] for x in offspring_inds], [x.objectives[1] for x in offspring_inds], # c='g', s=400) self.calculate_theta_fitness() fronts = theta_non_dominated_sort(offspring_inds) # TODO: remove debug # for i in fronts.keys(): # front = fronts[i] # c = None # k = 7 # if i == 1: # c = 'r' # elif i == 2: # c = 'g' # elif i == 3: # c = 'b' # elif i == 4: # c = 'y' # elif i == 5: # c = 'm' # elif i == 6: # c = 'c' # else: # c = 'k' # # plt.scatter([x.normalized_objectives[0] for x in front], [x.normalized_objectives[1] for x in front], # c=c, marker='s', s=100) # plt.xlim([-0.2, 1.2]) # plt.ylim([-0.2, 1.2]) # plt.show() self.create_final_population(fronts) return fronts def make_offspring_individuals(self): offspring_inds = [] for _ in range(int(self.population_size / 2)): parent_a = random.choice(self.individuals) parent_b = random.choice(self.individuals) child_a, child_b = simulated_binary_crossover(parent_a, parent_b, self.dims, crossover_rate=self.crossover_rate, eta=self.eta_crossover) polynomial_mutation(child_a, self.dims, mutation_rate=self.mutation_rate, eta=self.eta_mutation) polynomial_mutation(child_b, self.dims, mutation_rate=self.mutation_rate, eta=self.eta_mutation) offspring_inds.append(child_a) offspring_inds.append(child_b) return offspring_inds def normalize(self, individuals): defiled_point = [float('-inf') for _ in range(self.objective_no)] for ind in individuals: for i, objective in enumerate(ind.objectives): if defiled_point[i] < objective: defiled_point[i] = objective # TODO: remove debug # plt.scatter([defiled_point[0]], [defiled_point[1]], c='r') # plt.show() for ind in individuals: ind.normalized_objectives = numpy.array( [(obj - self.ideal_point[i]) / (defiled_point[i] - self.ideal_point[i] + EPSILON) for i, obj in enumerate(ind.objectives)]) def clustering(self, individuals): self.clusters = [[] for _ in self.reference_points] for ind in individuals: min_rejection = float('inf') min_i = -1 for i, reference_point in enumerate(self.reference_points): rejection = scalar_rejection(ind, reference_point, self.reference_point_lengths[i]) if rejection < min_rejection: min_rejection = rejection min_i = i self.clusters[min_i].append(ind) ind.cluster = min_i ind.rejection = min_rejection def calculate_theta_fitness(self): for i, cluster in enumerate(self.clusters): for ind in cluster: ind.theta_fitness = scalar_projection(ind, self.reference_points[i], self.reference_point_lengths[i]) + self.theta * ind.rejection def create_final_population(self, fronts): new_inds = [] new_size = len(new_inds) i = 1 while new_size + len(fronts[i]) <= self.population_size: new_inds.extend(fronts[i]) new_size = len(new_inds) i += 1 new_inds.extend(random.sample(fronts[i], self.population_size - len(new_inds))) # TODO remove debug # for front in fronts.values(): # plt.scatter([x.v[0] for x in front], [x.v[1] for x in front], c='k', s=100) # plt.scatter([x.v[0] for x in new_inds], [x.v[1] for x in new_inds], c='r', s=50) # plt.xlim(-12, 12) # plt.ylim(-12, 12) # plt.show() # # for front in fronts.values(): # plt.scatter([x.objectives[0] for x in front], [x.objectives[1] for x in front], c='k', s=100) # plt.scatter([x.objectives[0] for x in new_inds], [x.objectives[1] for x in new_inds], c='r', s=50) # plt.xlim(-15., 5.) # plt.ylim(-15., 25.) # plt.show() self.individuals = new_inds def finish(self): return [x.v for x in self.individuals] class Individual: def __init__(self, vector): self.v = vector self.objectives = None def theta_non_dominated_sort(individuals): dominated_by = collections.defaultdict(set) how_many_dominates = collections.defaultdict(int) nsga_rank = collections.defaultdict(int) front = collections.defaultdict(list) for x in individuals: for y in individuals: if dominates(x, y): dominated_by[x].add(y) elif dominates(y, x): how_many_dominates[x] += 1 if how_many_dominates[x] == 0: nsga_rank[x] = 1 front[1].append(x) front_no = 1 while not len(front[front_no]) == 0: for x in front[front_no]: for y in dominated_by[x]: how_many_dominates[y] -= 1 if how_many_dominates[y] == 0: nsga_rank[y] = front_no + 1 front[front_no + 1].append(y) front_no += 1 return front def dominates(x, y): if x.cluster == y.cluster and x.theta_fitness < y.theta_fitness: return True else: return False def generate_reference_point(objective_no): reference_point = [] coord_sum = 0.0 for i in range(1, objective_no + 1): if i < objective_no: rand = 0.0 while rand == 0.0: rand = random.random() coordinate = (1.0 - coord_sum) * (1.0 - math.pow(rand, 1.0 / (objective_no - i))) coord_sum += coordinate reference_point.append(coordinate) else: reference_point.append(1.0 - coord_sum) return numpy.array(reference_point) def scalar_projection(ind, reference_point, reference_point_length): return numpy.dot(ind.normalized_objectives, reference_point) / reference_point_length def scalar_rejection(ind, reference_point, reference_point_length): scalar_projection_value = scalar_projection(ind, reference_point, reference_point_length) return numpy.linalg.norm( ind.normalized_objectives - ((scalar_projection_value / reference_point_length) * reference_point)) def simulated_binary_crossover(parent_a, parent_b, dims, crossover_rate=1.0, eta=30.0): child_a = Individual([x for x in parent_a.v]) child_b = Individual([x for x in parent_b.v]) if random.random() > crossover_rate: child_a.objectives = [x for x in parent_a.objectives] child_b.objectives = [x for x in parent_b.objectives] return child_a, child_b for i, dim in enumerate(dims): if random.random() > 0.5: continue if math.fabs(parent_a.v[i] - parent_b.v[i]) <= EPSILON: continue y1 = min(parent_a.v[i], parent_b.v[i]) y2 = max(parent_a.v[i], parent_b.v[i]) lb, ub = dim rand = random.random() # child a beta = 1.0 + (2.0 * (y1 - lb) / (y2 - y1 + EPSILON)) alpha = 2.0 - pow(beta, -(eta + 1.0)) beta_q = get_beta_q(rand, alpha, eta) child_a.v[i] = 0.5 * ((y1 + y2) - beta_q * (y2 - y1)) # child b beta = 1.0 + (2.0 * (ub - y2) / (y2 - y1 + EPSILON)) alpha = 2.0 - pow(beta, -(eta + 1.0)) beta_q = get_beta_q(rand, alpha, eta) child_b.v[i] = 0.5 * ((y1 + y2) + beta_q * (y2 - y1)) # boundary checking child_a.v[i] = min(ub, max(lb, child_a.v[i])) child_b.v[i] = min(ub, max(lb, child_b.v[i])) if random.random() > 0.5: temp = child_a.v[i] child_a.v[i] = child_b.v[i] child_b.v[i] = temp return child_a, child_b def get_beta_q(rand, alpha, eta): if rand <= (1.0 / alpha): beta_q = pow((rand * alpha), (1.0 / (eta + 1.0))) else: beta_q = pow((1.0 / (2.0 - rand * alpha)), (1.0 / (eta + 1.0))) return beta_q def polynomial_mutation(ind, dims, mutation_rate=0.0, eta=20.0): for i, dim in enumerate(dims): if random.random() > mutation_rate: continue y = ind.v[i] lb, ub = dim delta1 = (y - lb) / (ub - lb + EPSILON) delta2 = (ub - y) / (ub - lb + EPSILON) mut_pow = 1.0 / (eta + 1.0) rnd = random.random() if rnd <= 0.5: xy = 1.0 - delta1 val = 2.0 * rnd + (1.0 - 2.0 * rnd) * (pow(xy, (eta + 1.0))) delta_q = pow(val, mut_pow) - 1.0 else: xy = 1.0 - delta2 val = 2.0 * (1.0 - rnd) + 2.0 * (rnd - 0.5) * (pow(xy, (eta + 1.0))) delta_q = 1.0 - (pow(val, mut_pow)) y += delta_q * (ub - lb) y = min(ub, max(lb, y)) ind.v[i] = y ind.objectives = None if __name__ == '__main__': sample_dims = [(-100.0, 100.0), (-100.0, 100.0)] mutatedX = [] mutatedY = [] for _ in range(100): to_mut = Individual([0.0, 0.0]) polynomial_mutation(to_mut, sample_dims, 0.9, 300.0) mutatedX.append(to_mut.v[0]) mutatedY.append(to_mut.v[1]) plt.scatter(mutatedX, mutatedY) plt.xlim(-100.0, 100.0) plt.ylim(-100.0, 100.0) plt.show() # crossX = [] # crossY = [] # for _ in range(10000): # to_crossA = Individual([-10.0, -10.0]) # to_crossB = Individual([10.0, 10.0]) # newA, newB = simulated_binary_crossover(to_crossA, to_crossB, dims, 1.0, eta=150.0) # crossX.append(newA.v[0]) # crossY.append(newA.v[1]) # crossX.append(newB.v[0]) # crossY.append(newB.v[1]) # plt.scatter(crossX, crossY) # plt.xlim(-100.0, 100.0) # plt.ylim(-100.0, 100.0) # # plt.show() # objectives = [lambda x: -10 * math.exp(-0.2 * math.sqrt(x[0] * x[0] + x[1] * x[1])), # lambda x: math.pow(abs(x[0]), 0.8) + 5 * math.pow(math.sin(x[0]), 3) # + math.pow(abs(x[1]), 0.8) + 5 * math.pow(math.sin(x[1]), 3)] # dimensions = [(-10, 10), (-10, 10)] # my_individuals = [[random.uniform(-10, 10), random.uniform(-10, 10)] for _ in range(250)] # # my_pop = NSGAIII(my_individuals, dimensions, objectives, theta=0) # # population.steps(range(100)) # # for j in range(100): # my_pop.next_step() # print(j) # # effect = my_pop.finish() # X = [my_pop.objectives[0](x) for x in effect] # Y = [my_pop.objectives[1](x) for x in effect] # plt.scatter(X, Y) # # pylab.xlim(-10.,250.) # # pylab.ylim(-10.,250.) # plt.xlim(-15., 5.) # plt.ylim(-15., 25.) # # file = "" # if j < 10: # file += "0" # plt.savefig("pictures//" + file + str(j) + ".png") # plt.clf()
gpl-3.0
Solid-Mechanics/matplotlib-4-abaqus
matplotlib/testing/jpl_units/UnitDblConverter.py
6
5452
#=========================================================================== # # UnitDblConverter # #=========================================================================== """UnitDblConverter module containing class UnitDblConverter.""" #=========================================================================== # Place all imports after here. # from __future__ import print_function import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker import matplotlib.projections.polar as polar from matplotlib.cbook import iterable # # Place all imports before here. #=========================================================================== __all__ = [ 'UnitDblConverter' ] #=========================================================================== # A special function for use with the matplotlib FuncFormatter class # for formatting axes with radian units. # This was copied from matplotlib example code. def rad_fn(x, pos = None ): """Radian function formatter.""" n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return str(x) elif n == 1: return r'$\pi/2$' elif n == 2: return r'$\pi$' elif n % 2 == 0: return r'$%s\pi$' % (n/2,) else: return r'$%s\pi/2$' % (n,) #=========================================================================== class UnitDblConverter( units.ConversionInterface ): """: A matplotlib converter class. Provides matplotlib conversion functionality for the Monte UnitDbl class. """ # default for plotting defaults = { "distance" : 'km', "angle" : 'deg', "time" : 'sec', } #------------------------------------------------------------------------ @staticmethod def axisinfo( unit, axis ): """: Returns information on how to handle an axis that has Epoch data. = INPUT VARIABLES - unit The units to use for a axis with Epoch data. = RETURN VALUE - Returns a matplotlib AxisInfo data structure that contains minor/major formatters, major/minor locators, and default label information. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U # Check to see if the value used for units is a string unit value # or an actual instance of a UnitDbl so that we can use the unit # value for the default axis label value. if ( unit ): if ( isinstance( unit, str ) ): label = unit else: label = unit.label() else: label = None if ( label == "deg" ) and isinstance( axis.axes, polar.PolarAxes ): # If we want degrees for a polar plot, use the PolarPlotFormatter majfmt = polar.PolarAxes.ThetaFormatter() else: majfmt = U.UnitDblFormatter( useOffset = False ) return units.AxisInfo( majfmt = majfmt, label = label ) #------------------------------------------------------------------------ @staticmethod def convert( value, unit, axis ): """: Convert value using unit to a float. If value is a sequence, return the converted sequence. = INPUT VARIABLES - value The value or list of values that need to be converted. - unit The units to use for a axis with Epoch data. = RETURN VALUE - Returns the value parameter converted to floats. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U isNotUnitDbl = True if ( iterable(value) and not isinstance(value, str) ): if ( len(value) == 0 ): return [] else: return [ UnitDblConverter.convert( x, unit, axis ) for x in value ] # We need to check to see if the incoming value is actually a UnitDbl and # set a flag. If we get an empty list, then just return an empty list. if ( isinstance(value, U.UnitDbl) ): isNotUnitDbl = False # If the incoming value behaves like a number, but is not a UnitDbl, # then just return it because we don't know how to convert it # (or it is already converted) if ( isNotUnitDbl and units.ConversionInterface.is_numlike( value ) ): return value # If no units were specified, then get the default units to use. if ( unit == None ): unit = UnitDblConverter.default_units( value, axis ) # Convert the incoming UnitDbl value/values to float/floats if isinstance( axis.axes, polar.PolarAxes ) and (value.type() == "angle"): # Guarantee that units are radians for polar plots. return value.convert( "rad" ) return value.convert( unit ) #------------------------------------------------------------------------ @staticmethod def default_units( value, axis ): """: Return the default unit for value, or None. = INPUT VARIABLES - value The value or list of values that need units. = RETURN VALUE - Returns the default units to use for value. Return the default unit for value, or None. """ # Determine the default units based on the user preferences set for # default units when printing a UnitDbl. if ( iterable(value) and not isinstance(value, str) ): return UnitDblConverter.default_units( value[0], axis ) else: return UnitDblConverter.defaults[ value.type() ]
mit
jepegit/cellpy
cellpy/readers/instruments/ext_nda_reader.py
1
3805
import os import logging import pandas as pd from cellpy.readers.core import ( FileID, Cell, check64bit, humanize_bytes, xldate_as_datetime, ) from cellpy.parameters.internal_settings import get_headers_normal from cellpy.readers.instruments.mixin import Loader from cellpy import prms try: from nda_reader import nda_reader except ImportError: logging.warn("Could not load nda reader") # import nda_reader # read_nda # fix headers etc # check def load_nda(*args, **kwargs): print("dummy function (mock)") print(args) print(kwargs) class NdaLoader(Loader): """ Class for using the NDA loader by Frederik Huld (Beyonder).""" def __init__(self): """initiates the NdaLoader class""" # could use __init__(self, cellpydata_object) and # set self.logger = cellpydata_object.logger etc. # then remember to include that as prm in "out of class" functions # self.prms = prms self.logger = logging.getLogger(__name__) self.headers_normal = get_headers_normal() self.headers_global = self.get_headers_global() self.current_chunk = 0 # use this to set chunks to load def get_raw_units(self): """Include the settings for the units used by the instrument. The units are defined w.r.t. the SI units ('unit-fractions'; currently only units that are multiples of Si units can be used). For example, for current defined in mA, the value for the current unit-fraction will be 0.001. Returns: dictionary containing the unit-fractions for current, charge, and mass """ raise NotImplementedError def get_raw_limits(self): """Include the settings for how to decide what kind of step you are examining here. The raw limits are 'epsilons' used to check if the current and/or voltage is stable (for example for galvanostatic steps, one would expect that the current is stable (constant) and non-zero). It is expected that different instruments (with different resolution etc.) have different 'epsilons'. Returns: the raw limits (dict) """ raise NotImplementedError def loader(self, file_name, *args, **kwargs): """Loads data into a DataSet object and returns it""" new_tests = [] test_no = 1 channel_index = 1 channel_number = 1 creator = "no name" item_ID = 1 schedule_file_name = "no name" start_datetime = "2020.02.24 14:58:00" test_ID = 1 test_name = "no name" if not os.path.isfile(file_name): self.logger.info("Missing file_\n %s" % file_name) return None self.logger.debug("in loader") self.logger.debug("filename: %s" % file_name) filesize = os.path.getsize(file_name) hfilesize = humanize_bytes(filesize) txt = "Filesize: %i (%s)" % (filesize, hfilesize) self.logger.debug(txt) data = Cell() data.cell_no = test_no data.loaded_from = file_name fid = FileID(file_name) data.channel_index = channel_index data.channel_number = channel_number data.creator = creator data.item_ID = item_ID data.schedule_file_name = schedule_file_name data.start_datetime = start_datetime data.test_ID = test_ID data.test_name = test_name data.raw_data_files.append(fid) length_of_test, normal_df = load_nda() data.summary = empty_df data.raw = normal_df data.raw_data_files_length.append(length_of_test) data = self._post_process(data) data = self.identify_last_data_point(data) new_tests.append(data) return new_tests
mit
nzavagli/UnrealPy
UnrealPyEmbed/Development/Python/2015.08.07-Python2710-x64-Source-vs2015/Python27/Source/numpy-1.9.2/doc/sphinxext/numpydoc/docscrape_sphinx.py
41
9437
from __future__ import division, absolute_import, print_function import sys, re, inspect, textwrap, pydoc import sphinx import collections from .docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self): out = [] if self['Returns']: out += self._str_field_list('Returns') out += [''] for param, param_type, desc in self['Returns']: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None if param_obj and (pydoc.getdoc(param_obj) or not desc): # Referenced object has a docstring autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::'] if self.class_members_toctree: out += [' :toctree:'] out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns() for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, collections.Callable): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
mit
Averroes/statsmodels
statsmodels/examples/ex_emplike_1.py
34
3682
""" This is a basic tutorial on how to conduct basic empirical likelihood inference for descriptive statistics. If matplotlib is installed it also generates plots. """ from __future__ import print_function import numpy as np import statsmodels.api as sm print('Welcome to El') np.random.seed(634) # No significance of the seed. # Let's first generate some univariate data. univariate = np.random.standard_normal(30) # Now let's play with it # Initiate an empirical likelihood descriptive statistics instance eldescriptive = sm.emplike.DescStat(univariate) # Empirical likelihood is (typically) a method of inference, # not estimation. Therefore, there is no attribute eldescriptive.mean # However, we can check the mean: eldescriptive_mean = eldescriptive.endog.mean() #.42 #Let's conduct a hypothesis test to see if the mean is 0 print('Hypothesis test results for the mean:') print(eldescriptive.test_mean(0)) # The first value is is -2 *log-likelihood ratio, which is distributed #chi2. The second value is the p-value. # Let's see what the variance is: eldescriptive_var = eldescriptive.endog.var() # 1.01 #Let's test if the variance is 1: print('Hypothesis test results for the variance:') print(eldescriptive.test_var(1)) # Let's test if Skewness and Kurtosis are 0 print('Hypothesis test results for Skewness:') print(eldescriptive.test_skew(0)) print('Hypothesis test results for the Kurtosis:') print(eldescriptive.test_kurt(0)) # Note that the skewness and Kurtosis take longer. This is because # we have to optimize over the nuisance parameters (mean, variance). # We can also test for the joint skewness and kurtoses print(' Joint Skewness-Kurtosis test') eldescriptive.test_joint_skew_kurt(0, 0) # Let's try and get some confidence intervals print('Confidence interval for the mean') print(eldescriptive.ci_mean()) print('Confidence interval for the variance') print(eldescriptive.ci_var()) print('Confidence interval for skewness') print(eldescriptive.ci_skew()) print('Confidence interval for kurtosis') print(eldescriptive.ci_kurt()) # if matplotlib is installed, we can get a contour plot for the mean # and variance. mean_variance_contour = eldescriptive.plot_contour(-.5, 1.2, .2, 2.5, .05, .05) # This returns a figure instance. Just type mean_var_contour.show() # to see the plot. # Once you close the plot, we can start some multivariate analysis. x1 = np.random.exponential(2, (30, 1)) x2 = 2 * x1 + np.random.chisquare(4, (30, 1)) mv_data = np.concatenate((x1, x2), axis=1) mv_elmodel = sm.emplike.DescStat(mv_data) # For multivariate data, the only methods are mv_test_mean, # mv mean contour and ci_corr and test_corr. # Let's test the hypthesis that x1 has a mean of 2 and x2 has a mean of 7 print('Multivaraite mean hypothesis test') print(mv_elmodel.mv_test_mean(np.array([2, 7]))) # Now let's get the confidence interval for correlation print('Correlation Coefficient CI') print(mv_elmodel.ci_corr()) # Note how this took much longer than previous functions. That is # because the function is optimizing over 4 nuisance parameters. # We can also do a hypothesis test for correlation print('Hypothesis test for correlation') print(mv_elmodel.test_corr(.7)) # Finally, let's create a contour plot for the means of the data means_contour = mv_elmodel.mv_mean_contour(1, 3, 6,9, .15,.15, plot_dta=1) # This also returns a fig so we can type mean_contour.show() to see the figure # Sometimes, the data is very dispersed and we would like to see the confidence # intervals without the plotted data. Let's see the difference when we set # plot_dta=0 means_contour2 = mv_elmodel.mv_mean_contour(1, 3, 6,9, .05,.05, plot_dta=0)
bsd-3-clause
hsu/ardupilot
Tools/mavproxy_modules/lib/magcal_graph_ui.py
108
8248
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from matplotlib.backends.backend_wxagg import FigureCanvas from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from pymavlink.mavutil import mavlink from MAVProxy.modules.lib import wx_processguard from MAVProxy.modules.lib.wx_loader import wx import geodesic_grid as grid class MagcalPanel(wx.Panel): _status_markup_strings = { mavlink.MAG_CAL_NOT_STARTED: 'Not started', mavlink.MAG_CAL_WAITING_TO_START: 'Waiting to start', mavlink.MAG_CAL_RUNNING_STEP_ONE: 'Step one', mavlink.MAG_CAL_RUNNING_STEP_TWO: 'Step two', mavlink.MAG_CAL_SUCCESS: '<span color="blue">Success</span>', mavlink.MAG_CAL_FAILED: '<span color="red">Failed</span>', } _empty_color = '#7ea6ce' _filled_color = '#4680b9' def __init__(self, *k, **kw): super(MagcalPanel, self).__init__(*k, **kw) facecolor = self.GetBackgroundColour().GetAsString(wx.C2S_HTML_SYNTAX) fig = plt.figure(facecolor=facecolor, figsize=(1,1)) self._canvas = FigureCanvas(self, wx.ID_ANY, fig) self._canvas.SetMinSize((300,300)) self._id_text = wx.StaticText(self, wx.ID_ANY) self._status_text = wx.StaticText(self, wx.ID_ANY) self._completion_pct_text = wx.StaticText(self, wx.ID_ANY) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self._id_text) sizer.Add(self._status_text) sizer.Add(self._completion_pct_text) sizer.Add(self._canvas, proportion=1, flag=wx.EXPAND) self.SetSizer(sizer) ax = fig.add_subplot(111, axis_bgcolor=facecolor, projection='3d') self.configure_plot(ax) def configure_plot(self, ax): extra = .5 lim = grid.radius + extra ax.set_xlim3d(-lim, lim) ax.set_ylim3d(-lim, lim) ax.set_zlim3d(-lim, lim) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') self._polygons_collection = Poly3DCollection( grid.sections_triangles, edgecolors='#386694', ) ax.add_collection3d(self._polygons_collection) def update_status_from_mavlink(self, m): status_string = self._status_markup_strings.get(m.cal_status, '???') self._status_text.SetLabelMarkup( '<b>Status:</b> %s' % status_string, ) def mavlink_magcal_report(self, m): self.update_status_from_mavlink(m) self._completion_pct_text.SetLabel('') def mavlink_magcal_progress(self, m): facecolors = [] for i, mask in enumerate(m.completion_mask): for j in range(8): section = i * 8 + j if mask & 1 << j: facecolor = self._filled_color else: facecolor = self._empty_color facecolors.append(facecolor) self._polygons_collection.set_facecolors(facecolors) self._canvas.draw() self._id_text.SetLabelMarkup( '<b>Compass id:</b> %d' % m.compass_id ) self._completion_pct_text.SetLabelMarkup( '<b>Completion:</b> %d%%' % m.completion_pct ) self.update_status_from_mavlink(m) _legend_panel = None @staticmethod def legend_panel(*k, **kw): if MagcalPanel._legend_panel: return MagcalPanel._legend_panel p = MagcalPanel._legend_panel = wx.Panel(*k, **kw) sizer = wx.BoxSizer(wx.HORIZONTAL) p.SetSizer(sizer) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._empty_color) sizer.Add(marker, flag=wx.ALIGN_CENTER) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections not hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._filled_color) sizer.Add(marker, border=10, flag=wx.ALIGN_CENTER | wx.LEFT) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) return p class MagcalFrame(wx.Frame): def __init__(self, conn): super(MagcalFrame, self).__init__( None, wx.ID_ANY, title='Magcal Graph', ) self.SetMinSize((300, 300)) self._conn = conn self._main_panel = wx.ScrolledWindow(self, wx.ID_ANY) self._main_panel.SetScrollbars(1, 1, 1, 1) self._magcal_panels = {} self._sizer = wx.BoxSizer(wx.VERTICAL) self._main_panel.SetSizer(self._sizer) idle_text = wx.StaticText(self._main_panel, wx.ID_ANY) idle_text.SetLabelMarkup('<i>No calibration messages received yet...</i>') idle_text.SetForegroundColour('#444444') self._sizer.AddStretchSpacer() self._sizer.Add( idle_text, proportion=0, flag=wx.ALIGN_CENTER | wx.ALL, border=10, ) self._sizer.AddStretchSpacer() self._timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.timer_callback, self._timer) self._timer.Start(200) def add_compass(self, id): if not self._magcal_panels: self._sizer.Clear(deleteWindows=True) self._magcal_panels_sizer = wx.BoxSizer(wx.HORIZONTAL) self._sizer.Add( self._magcal_panels_sizer, proportion=1, flag=wx.EXPAND, ) legend = MagcalPanel.legend_panel(self._main_panel, wx.ID_ANY) self._sizer.Add( legend, proportion=0, flag=wx.ALIGN_CENTER, ) self._magcal_panels[id] = MagcalPanel(self._main_panel, wx.ID_ANY) self._magcal_panels_sizer.Add( self._magcal_panels[id], proportion=1, border=10, flag=wx.EXPAND | wx.ALL, ) def timer_callback(self, evt): close_requested = False mavlink_msgs = {} while self._conn.poll(): m = self._conn.recv() if isinstance(m, str) and m == 'close': close_requested = True continue if m.compass_id not in mavlink_msgs: # Keep the last two messages so that we get the last progress # if the last message is the calibration report. mavlink_msgs[m.compass_id] = [None, m] else: l = mavlink_msgs[m.compass_id] l[0] = l[1] l[1] = m if close_requested: self._timer.Stop() self.Destroy() return if not mavlink_msgs: return needs_fit = False for k in mavlink_msgs: if k not in self._magcal_panels: self.add_compass(k) needs_fit = True if needs_fit: self._sizer.Fit(self) for k, l in mavlink_msgs.items(): for m in l: if not m: continue panel = self._magcal_panels[k] if m.get_type() == 'MAG_CAL_PROGRESS': panel.mavlink_magcal_progress(m) elif m.get_type() == 'MAG_CAL_REPORT': panel.mavlink_magcal_report(m)
gpl-3.0
jEschweiler/Urease
urease_software/integrated_restraints/sampler.py
1
17978
import IMP import IMP.core import IMP.algebra import IMP.atom import IMP.pmi import sys import os.path import IMP.display import numpy as np import math import matplotlib.pyplot as plt import time colors = [(1,.4,.4),(.4,.4,1),(.4,1,.4),(1,.4,1),(.4,1,1),(1,.7,.4),(1,.4,.7)] class MassSpecSystem: def __init__(self,model,fname): self.model = model self.fname = fname self.chains = [] self.ccs = [] self.radii = [] self.ccs_radii = [] self.distances = [] self.raw_connect = [] self.node_labels = [] self.node_structure = [] self.composite = [] self.distance_restraints = [] self.connectivity_restraint = [] self.nparticles = 0 self.nrestraints = 0 self.size = 0 self.ds = [] self.idx = [] self.rigid_bodies = [] self.ptypes = [] self.restraints = [] self.max_score = 100 self.distance_force_constant = 10 self.connectivity_force_constant = 10 self.refcoords = [] self.sympairs = [(0,1),(0,3),(1,3)] self.symres = [] def convert_node_names_node_indices(self, child): child_index = [] for i in range(len(child)): child_index.append(self.chains.index(child[i])) return child_index def get_node(self, node): tmp = node.split("=")[1].split(" ") tmp = list(filter(None,tmp)) if len(tmp) is not 1: #print(list(tmp)[0]) child1 = tmp[0].replace(","," ").strip().replace("["," ").replace("]"," ").strip().split() child1 = self.convert_node_names_node_indices(child1) parent = tmp[1].strip() if len(tmp) is 1: #print(tmp[0]) child1 = tmp[0].replace(","," ").strip().replace("["," ").replace("]"," ").strip().split() child1 = self.convert_node_names_node_indices(child1) parent = None return [child1, parent] def parse_raw_connectivity(self): node_labels = [] node_structure = [] for i in range(len(self.raw_connect)): node_labels.append(self.raw_connect[i].split("=")[0].strip()) node_structure.append(self.get_node(self.raw_connect[i])) if (len(node_labels) == len(node_structure)): self.node_labels = node_labels self.node_structure = node_structure else: #print("error while reading tree") sys.exit(0) def read_restraints(self): refcoords = [] if not os.path.exists(self.fname): #print("%s does not exist"%(self.fname)) sys.exit(0) else: f = open(self.fname, 'r') lines = f.readlines() counter = 0 for line in lines: if not line.startswith('##CCS'): if not line.startswith('##DISTANCE'): if not line.startswith('##CONNECT'): if not line.startswith('##REF'): if (counter is 0): self.ccs_radii.append(line) if (counter is 1): self.distances.append(line) if (counter is 2): self.raw_connect.append(line) if (counter is 3): refcoords.append(line) else: counter = 3 else: counter = 2 else: counter = 1 f.close() # loop over for i in range(len(self.ccs_radii)): if i is 0: self.composite.append(self.ccs_radii[i].split(",")[0].strip()) self.composite.append(self.ccs_radii[i].split(",")[1].strip()) self.composite.append(self.ccs_radii[i].split(",")[2].strip()) else: chain = self.ccs_radii[i].replace('"','').split(",")[0].strip() if (len(chain) is 1): self.chains.append(chain) self.ccs.append(self.ccs_radii[i].split(",")[1].strip()) self.radii.append(self.ccs_radii[i].split(",")[2].strip()) self.nparticles = len(self.chains) self.nrestraints = len(self.distances) self.size = float(self.composite[2]) #print("SELFSIZE",self.size) # get connectivity information from restraint file self.parse_raw_connectivity() #print(self.refcoords) for item in refcoords: item = item.translate([None, "'[]()\n"]) item = item.split(":")[1] item = item.replace("[","").replace("]","") F = np.fromstring(item,sep = " ") self.refcoords.append(F) def setup_system(self): self.bb = IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),(IMP.algebra.Vector3D(self.size*2, self.size*2, self.size*2))) #print(self.bb) self.ps = [IMP.Particle(self.model) for x in range(self.nparticles)] self.idx = self.model.get_particle_indexes() self.rs = [IMP.pmi.Resolution.setup_particle(self.model, x, 300) for x in self.idx] for i in range(self.nparticles): init_coors = IMP.algebra.get_random_vector_in(self.bb) #print(init_coors) self.ds.append(IMP.core.XYZR.setup_particle(self.model, self.idx[i], IMP.algebra.Sphere3D(IMP.algebra.Vector3D(init_coors[0], init_coors[1], init_coors[2]), float(self.radii[i])))) #print(self.ds) self.rigid_bodies.append(IMP.core.RigidBody.setup_particle(self.model, self.ds[i],IMP.algebra.ReferenceFrame3D())) #print("149") self.rigid_bodies[i].set_coordinates(IMP.algebra.Vector3D(init_coors[0], init_coors[1], init_coors[2])) #print("151") self.rigid_bodies[i].set_coordinates_are_optimized(True) #print("153") IMP.atom.Mass.setup_particle(self.model, self.idx[i], 1.0) #print("155") def setup_symmetry_restraint(self): for i,sp in enumerate([self.ds[8],self.ds[16]]): IMP.core.Reference.setup_particle(sp,self.ds[0]) tr = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (i + 1)),IMP.algebra.Vector3D(0, 0, 0)) sm = IMP.core.TransformationSymmetry(tr) c = IMP.core.SingletonConstraint(sm, None,sp) self.symres.append(c) for j, k in enumerate([self.ds[9],self.ds[17]]): IMP.core.Reference.setup_particle(k, self.ds[1]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) #print("SELF.SYMRES ", self.symres) for j, k in enumerate([self.ds[10],self.ds[18]]): IMP.core.Reference.setup_particle(k, self.ds[2]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) for i,sp in enumerate([self.ds[11],self.ds[19]]): IMP.core.Reference.setup_particle(sp,self.ds[3]) tr = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (i + 1)),IMP.algebra.Vector3D(0, 0, 0)) sm = IMP.core.TransformationSymmetry(tr) c = IMP.core.SingletonConstraint(sm, None,sp) self.symres.append(c) for j, k in enumerate([self.ds[12],self.ds[20]]): IMP.core.Reference.setup_particle(k, self.ds[4]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) #print("SELF.SYMRES ", self.symres) for j, k in enumerate([self.ds[13],self.ds[21]]): IMP.core.Reference.setup_particle(k, self.ds[5]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) #print("SELF.SYMRES ", self.symres) for j, k in enumerate([self.ds[14],self.ds[22]]): IMP.core.Reference.setup_particle(k, self.ds[6]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) #print("SELF.SYMRES ", self.symres) for j, k in enumerate([self.ds[15],self.ds[23]]): IMP.core.Reference.setup_particle(k, self.ds[7]) tra = IMP.algebra.Transformation3D( IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) sma = IMP.core.TransformationSymmetry(tra) d = IMP.core.SingletonConstraint(sma,None,k) self.symres.append(d) #print("SELF.SYMRES ", self.symres) # for j, k in enumerate([self.ds[12],self.ds[19]]): # IMP.core.Reference.setup_particle(k, self.ds[5]) # tra = IMP.algebra.Transformation3D( # IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) # sma = IMP.core.TransformationSymmetry(tra) # d = IMP.core.SingletonConstraint(sma,None,k) # self.symres.append(d) # print("SELF.SYMRES ", self.symres) # for j, k in enumerate([self.ds[13],self.ds[20]]): # IMP.core.Reference.setup_particle(k, self.ds[6]) # tra = IMP.algebra.Transformation3D( # IMP.algebra.get_rotation_about_axis(IMP.algebra.get_basis_vector_3d(2),np.pi*(2/3) * (j + 1)),IMP.algebra.Vector3D(0, 0, 0)) # sma = IMP.core.TransformationSymmetry(tra) # d = IMP.core.SingletonConstraint(sma,None,k) # self.symres.append(d) # print("SELF.SYMRES ", self.symres) def setup_distance_restraints(self, d_res = 0): tmp_distance_restraints = self.distances[d_res] tmp_distance_restraints = tmp_distance_restraints.translate([None, "'[]()\n"]) tmp_distance_restraints = tmp_distance_restraints.replace("\n","").split(";") tmp_distance_restraints = list(filter(None, tmp_distance_restraints)) n_distance_restraints = len(tmp_distance_restraints) for i in range(n_distance_restraints): distance_restraint = tmp_distance_restraints[i].replace(",","").replace("[","").replace("]","").replace("'",'').split() distance_restraint = list(filter(None, distance_restraint)) #dref.append(",".join(distance_restraint)) if distance_restraint: pi = int(self.chains.index(distance_restraint[0])) pj = int(self.chains.index(distance_restraint[1])) rij = float(distance_restraint[2].replace("]","")) rij = rij - float(self.radii[pi]) - float(self.radii[pj]) #print(rij) self.distance_restraints.append(IMP.atom.create_distance_restraint(self.rigid_bodies[pi], self.rigid_bodies[pj], rij, self.distance_force_constant)) def setup_connectivity_restraints(self): # Create MS connectivity restraint #hw = IMP.core.HarmonicWell((-18.25,27.5), self.connectivity_force_constant) #hw = IMP.core.HarmonicWell((16,58), 100)# range for ALL protein complexes hw = IMP.core.HarmonicWell((20,46), 100) ss = IMP.core.DistancePairScore(hw) self.connectivity_restraint = IMP.core.MSConnectivityRestraint(self.model, ss) self.connectivity_restraint.set_maximum_score(0) # Connectivity taken from the composite information -- set chain ID -- read in from the restraint file #print("COMPOSITE ", self.composite) for i in range(len(self.composite[0])): index_from_chain = self.chains.index(self.composite[0][i]) self.ptypes.append(self.connectivity_restraint.add_type([self.ds[index_from_chain]])) #print(self.ds[index_from_chain].get_radius()) # Connectivity taken from the composite information -- set chain ID -- read in from the restraint file for i in range(len(self.node_labels)): node = self.node_structure[i] node_label = self.node_structure[i][0] node_parent = self.node_structure[i][1] if node_parent is None: self.connectivity_restraint.add_composite(node_label) else: self.connectivity_restraint.add_composite(node_label, self.node_labels.index(node_parent)) def collect_restraints(self): restraints = [] for i in self.distance_restraints: restraints.append(i) restraints.append(self.connectivity_restraint) self.restraints = restraints def setup_restraints(self, d_res = 0): #print("SETUP RESTRAINTS") self.distance_restraints = [] self.connectivity_restraint = [] self.setup_distance_restraints(d_res = d_res) self.setup_symmetry_restraint() self.setup_connectivity_restraints() self.collect_restraints() #print(self.connectivity_restraint.get_connected_pairs()) #print(self.connectivity_restraint.get_pair_score()) class MassSpecDynamics: #'MC sampling options class' def __init__(self, system, scoring_function, initial_temperature = 1000, final_temperature = 100, mc_cool_cycles = 500, mc_cool_steps = 5000, mc_cycles = 1000, mc_steps = 1000, optimization_cycles = 10): self.system = system self.scoring_function = scoring_function self.initial_temperature = initial_temperature self.final_temperature = final_temperature self.mc_cool_cycles = mc_cool_cycles self.mc_cool_steps = mc_cool_steps self.mc_cycles = mc_cycles self.mc_steps = mc_steps self.optimization_cycles = optimization_cycles self.movers = [] self.optimizer = IMP.core.MonteCarlo(self.system.model) self.print_annealing = True def get_coordinates_xyz(self, header, output): #""" writes out coordinates in xyz format #""" output.write("%s\n" % len(self.system.ds)) output.write("%s\n" % header) for index, particle in enumerate(self.system.ds): outi = "C"+str(index)+" "+str(particle.get_coordinates()[0])+" "+str(particle.get_coordinates()[1])+" "+str(particle.get_coordinates()[2]) output.write("%s\n" % outi) def writepym(self, fname): w = open(fname, 'w') w.write('from pymol.cgo import *'+ '\n') w.write('from pymol import cmd'+ '\n') w.write('from pymol.vfont import plain' + '\n' + 'data={}' + '\n' + "curdata=[]" + '\n') for index, particle in enumerate(self.system.ds): w.write("k='Protein" + str(index) + " geometry'" +'\n'+ "if not k in data.keys():" +'\n'+" data[k]=[]"+'\n'+'curdata=['+'\n'+'COLOR,' + str(colors[index][0])+","+str(colors[index][1])+","+ str(colors[index][2])+"," + '\n' + 'SPHERE,'+ str(particle.get_coordinates()[0])+ ','+ str(particle.get_coordinates()[1])+',' + str(particle.get_coordinates()[2])+','+ str(particle.get_radius()) +'\n') w.write("]"+"\n"+"k='Protein" + str(index) + " geometry'" + '\n' + "if k in data.keys():" + "\n" + " data[k]= data[k]+curdata"+'\n'+"else:" +'\n' +" data[k]= curdata"+"\n") w.write("for k in data.keys():" + "\n" + " cmd.load_cgo(data[k], k, 1)" +"\n"+ "data= {}") w.close() def initialize_MC(self): #""" initialize MC optimizer #""" # Initialize Monte Carlo sampler self.optimizer.set_return_best(True) self.optimizer.set_score_threshold(self.system.max_score*2) self.optimizer.set_scoring_function(self.scoring_function) self.movers = [] self.print_annealing = False # Accumulate movers that are need the Monte Carlo sampler for rbd in self.system.rigid_bodies: self.movers.append(IMP.core.RigidBodyMover(rbd, 1, 2)) # Add movers to the Monte Carlo sampler self.optimizer.add_movers(self.movers) def run_MC(self, i,name): y = 0 #""" optimizies scoring function using Monte Carlo sampling #""" # Setup MC optimizer self.initialize_MC() self.optimizer.set_return_best(False) coords = [] scores = [] for mc in range(self.optimization_cycles): ## RANDOMIZE COORDINATES for particle in self.system.ds: init_coors = IMP.algebra.get_random_vector_in(self.system.bb) particle.set_coordinates(init_coors) if y != 0: for i in [0,1,2,3,5,8,9,10,11,13,16,17,18,19,21]: #self.system.ds[i].set_coordinates_are_optimized(False) self.optimizer.add_mover(self.movers[i]) cycle = "annealing" T = self.initial_temperature print("INIT TEMP", T) start = time.time() score = [] temp = [] #for cc in range(self.mc_cool_cycles*7): print(self.optimizer.get_movers()) for cc in range(self.mc_cool_cycles*10): #for cc in range(500): ## DO THE ANNEALING MC T = 0.999*T self.optimizer.set_kt(T) self.optimizer.optimize(self.mc_cool_steps) score.append(self.scoring_function.evaluate(False)) temp.append(T) #plt.clf() #plt.plot(temp, score) #plt.ylim([0,100000]) #plt.show() print("FINAL TEMP,", T) T = 400 stop = time.time() print("annealing time", stop - start) print(y) #for particle in self.system.ds[np.array([0,1,2,3])]: for i in [0,1,2,3,5,8,9,10,11,13,16,17,18,19,21]: #self.system.ds[i].set_coordinates_are_optimized(False) self.optimizer.remove_mover(self.movers[i]) #init_coors = IMP.algebra.get_random_vector_in(self.system.bb) #particle.set_coordinates_are_optimized(False) print(self.optimizer.get_movers()) #for c in range(self.mc_cycles): ## DO THE CONSTANT TEMP MC start = time.time() score = [] step = [] for c in range(1000): ## DO THE CONSTANT TEMP MC self.optimizer.set_kt(T) #self.optimizer.optimize(self.mc_steps) self.optimizer.optimize(1000000) if c%100 == 0: ## WRITE LIST TO AN ARRAY EVERY 100TH CYCLE score.append(self.scoring_function.evaluate(False)) step.append(c) y+=1 list = [] for i,particle in enumerate(self.system.ds): x = particle.get_coordinates() list.append(x) x = np.array(list) if type(coords) is np.ndarray: coords = coords.tolist() if type(scores) is np.ndarray: scores = scores.tolist() coords.append(list) #print(list) scores.append(self.scoring_function.evaluate(False)) stop = time.time() print("MC Time", stop - start) coords = np.array(coords) scores = np.array(scores) #np.save(name.replace(".pdb1_restraints.txt","")+ "_" + str("%02d" % i) + "_" +"coordfile.npy",coords) np.save("coordfile.npy",coords) ## ALL THE STRUCTURES np.save(name.replace(".pdb1_restraints.txt","")+ "_" + str("%02d" % i) + "_" +"scorefile.npy",scores)
gpl-3.0
scribble/scribble.github.io
src/main/jbake/assets/docs/lchannels/scripts/plot-benchmark.py
2
2325
#!/usr/bin/env python import matplotlib.pyplot as plotlib import numpy import sys DELIMITER = ',' def makePlot(infile, outfile): import matplotlib matplotlib.rcParams.update({'font.size': 12}) (title, headers) = readTitleAndHeaders(infile) data = numpy.genfromtxt(infile, delimiter=DELIMITER, skip_header=1, # Skip benchmark title dtype=numpy.long) / 1000000.0 box_colours = ['ForestGreen', 'SkyBlue', 'Tan', 'Plum', 'ForestGreen', 'Maroon', 'ForestGreen'] locations = range(1, len(headers) + 1) fig = plotlib.figure() plot = plotlib.boxplot(data, widths=0.7, notch=True, positions=locations, patch_artist=True, sym='') # Do not print outliers for box, colour in zip(plot['boxes'], box_colours): plotlib.setp(box, #color='DarkMagenta', linewidth=1, facecolor=colour) # plotlib.setp(plot['whiskers'], color='DarkMagenta', linewidth=1) # plotlib.setp(plot['caps'], color='DarkMagenta', linewidth=1) # plotlib.setp(plot['fliers'], color='OrangeRed', marker='o', markersize=3) # plotlib.setp(plot['medians'], color='OrangeRed', linewidth=1) plotlib.grid(axis='y', # set y-axis grid lines linestyle='--', # use dashed lines which='major', # only major ticks color='lightgrey', # line colour alpha=0.8) # make lines semi-translucent plotlib.xticks(locations, # tick marks headers, # labels rotation=25) # rotate the labels plotlib.ylabel('milliseconds') # y-axis label plotlib.title(title, fontsize=12, fontweight='bold') # plot title # plotlib.show() # render the plot fig.savefig(outfile, bbox_inches='tight') def readTitleAndHeaders(infile): f = open(infile) title = f.readline() headers = map(lambda x: x.replace(' ', "\n"), f.readline().strip().split(DELIMITER)) f.close() return (title, headers) if (__name__ == '__main__'): infile = sys.argv[1] outfile = sys.argv[2] makePlot(infile, outfile)
apache-2.0
fro391/Investing
ArticleScrape/NewsDate.py
1
3272
import RSS_URL from time import strftime, strptime from datetime import datetime, timedelta import threading import timeit import pandas as pd #setting lock variable for threading global lock lock = threading.Lock() def NewsDate (symbol): url = "http://feeds.finance.yahoo.com/rss/2.0/headline?s="+symbol+"&region=US&lang=en-US" #timezone conversion variables #title of articles titles = RSS_URL.getURLs(url) #dates of articles dates = RSS_URL.getURLs3(url) toBeWritten = '' c = -1 #writes symbol, title, and date of news articles if len(titles)!= len(dates): pass elif (len(titles) * len(dates)) == 0: pass else: try: for i in dates: #encoding article titles and replacing "," #using c as index for 'titles' list c += 1 ArticleTitle = titles[c].encode('ascii','ignore').replace(',','') #accounting for time zones utc = datetime.strptime(i,'%a, %d %b %Y %H:%M:%S %z') local = utc + timedelta(hours=-5) #converts yahoo's timestamp to YearMonthDate j = strftime("%Y%m%d",strptime(str(local),"%Y-%m-%d %H:%M:%S")) #stores to be written variable toBeWritten += (str(symbol) + j+ ',' + str(ArticleTitle) +'\n') except Exception as ex: template = "An exception of type {0} occured. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print message, symbol #write variable to file lock.acquire() try: myfile.write(toBeWritten) finally: lock.release() if __name__ == '__main__': start = timeit.default_timer() #creating file in local 'data' directory with open('data\NewsDate'+'.csv', 'w+') as myfile: myfile.write('Ticker&Date,Title'+'\n') #Getting all symbols into list with open("symbols.txt") as symbolfile: symbolslistR = symbolfile.read() symbolslist = symbolslistR.split('\n') #tracks threads running threadlist = [] #open "myfile" file for SentimentRSS to write in with open('data\NewsDate'+'.csv', 'a') as myfile: for u in symbolslist: t = threading.Thread(target = NewsDate,args=(u,)) t.start() threadlist.append(t) #sets top limit of active threads to 10 while threading.activeCount()>50: a=0 #print threading.activeCount() #finishes threads before closing file for b in threadlist: b.join() print '# of threads: ' + str(len(threadlist)) #group by output by number of articles per day ND = pd.read_csv('data\NewsDate'+'.csv').groupby('Ticker&Date').count() ND.to_csv('data\NewsDate'+'.csv') #adds the new data to a NewsDate historical file NDHist = pd.read_csv('data\NewsDateHist'+'.csv',index_col = 0) NDHist.append(ND).to_csv('data\NewsDateHist'+'.csv') #use groupby max to remove duplicates pd.read_csv('data\NewsDateHist'+'.csv').groupby('Ticker&Date').max().to_csv('data\NewsDateHist'+'.csv') stop = timeit.default_timer() print stop - start
gpl-2.0
eggplantbren/STATS331
Figures/marginalisation.py
1
1447
import numpy as np import numpy.random as rng import matplotlib.pyplot as plt plt.rc("font", size=16, family="serif", serif="Computer Sans") plt.rc("text", usetex=True) rng.seed(123) [x, y] = np.meshgrid(np.linspace(-5., 5., 101), np.linspace(-5., 5., 101)) y = y[::-1, :] plt.figure(figsize=(12, 12)) plt.subplot(2,2,1) plt.imshow(-np.exp(-0.5*x**2 - 0.5*(y - x)**2/0.5**2), interpolation='nearest', cmap='gray', extent=[-5, 5, -5, 5]) plt.title('Joint Posterior Distribution') plt.xlabel('$a$') plt.ylabel('$b$') plt.subplot(2,2,2, aspect='equal') xx = rng.randn(500) yy = xx + 0.5*rng.randn(500) plt.plot(xx, yy, 'ko', markersize=2, alpha=0.2) plt.title('Joint Posterior Distribution') plt.gca().set_xticks([-4, -2, 0, 2, 4]) plt.gca().set_yticks([-4, -2, 0, 2, 4]) plt.xlim([-5, 5]) plt.ylim([-5, 5]) plt.xlabel('$a$', fontsize=20) plt.ylabel('$b$', fontsize=20) plt.subplot(2,2,3) x = x[0, :] plt.plot(x, np.exp(-0.5*x**2)/np.sqrt(2*np.pi), 'k', linewidth=2) plt.xlim([-5, 5]) plt.ylim([0, 0.45]) plt.xlabel('$a$', fontsize=20) plt.ylabel('Probability Density') plt.gca().set_yticks([0, 0.2, 0.4]) plt.title('Marginal Posterior Distribution') plt.subplot(2,2,4) plt.hist(xx, 30, alpha=0.5) plt.xlim([-5, 5]) plt.title('Marginal Posterior Distribution') plt.xlabel('$a$', fontsize=20) plt.ylabel('Number of Samples') plt.gca().set_yticks([0, 10, 20, 30, 40, 50]) plt.savefig('marginalisation.pdf', bbox_inches='tight') #plt.show()
mit
khkaminska/bokeh
bokeh/charts/_models.py
4
3865
from __future__ import absolute_import from bokeh.properties import (HasProps, String, Either, Float, Color, Instance, List, Any) from ._properties import ColumnLabel, Column from bokeh.models.sources import ColumnDataSource from bokeh.models.renderers import GlyphRenderer class CompositeGlyph(HasProps): """Represents a subset of data. A collection of hetero or homogeneous glyph renderers which represent a subset of data. The purpose of the composite glyph is to abstract away the details of constructing glyphs, based on the details of a subset of data, from the grouping operations that a generalized builder must implement. In general, the Builder operates at the full column oriented data source level, segmenting and assigning attributes from a large selection, while the composite glyphs will typically be passed an array-like structures with one or more singlular attributes to apply. Another way to explain the concept is that the Builder operates as the groupby, as in pandas, while the CompositeGlyph operates as the apply. What is the responsibility of the Composite Glyph? - Produce GlyphRenderers - Apply any aggregations - Tag the GlyphRenderers with the group label - Apply transforms due to chart operations - Operations require implementation of special methods """ label = String('All', help='Identifies the subset of data.') values = Either(Column(Float), Column(String), help='Array-like values.') color = Color(default='gray') fill_alpha = Float(default=0.8) source = Instance(ColumnDataSource) operations = List(Any) renderers = List(Instance(GlyphRenderer)) left_buffer = Float(default=0.0) right_buffer = Float(default=0.0) top_buffer = Float(default=0.0) bottom_buffer = Float(default=0.0) def __init__(self, **kwargs): label = kwargs.pop('label', None) if label is not None: if not isinstance(label, str): label = str(label) kwargs['label'] = label super(CompositeGlyph, self).__init__(**kwargs) self.setup() def setup(self): self.renderers = [renderer for renderer in self.build_renderers()] if self.renderers is not None: self.refresh() def refresh(self): if self.renderers is not None: self.source = self.build_source() self._set_sources() def build_renderers(self): raise NotImplementedError('You must return list of renderers.') def build_source(self): raise NotImplementedError('You must return ColumnDataSource.') def _set_sources(self): """Store reference to source in each glyph renderer.""" for renderer in self.renderers: renderer.data_source = self.source def __stack__(self, glyphs): pass def __jitter__(self, glyphs): pass def __dodge__(self, glyphs): pass def __overlay__(self, glyphs): pass def apply_operations(self): pass class CollisionModifier(HasProps): renderers = List(Instance(CompositeGlyph)) name = String() method_name = String() columns = Either(ColumnLabel, List(ColumnLabel)) def add_renderer(self, renderer): self.renderers.append(renderer) def apply(self, renderers=None): if len(self.renderers) == 0: self.renderers = renderers if len(self.renderers) > 0: # the first renderer's operation method is applied to the rest getattr(self.renderers[0], self.method_name)(self.renderers) else: raise AttributeError('%s must be applied to available renderers, none found.' % self.__class__.__name__)
bsd-3-clause
liangz0707/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
jrmontag/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter2_MorePyMC/separation_plot.py
86
1494
# separation plot # Author: Cameron Davidson-Pilon,2013 # see http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf import matplotlib.pyplot as plt import numpy as np def separation_plot( p, y, **kwargs ): """ This function creates a separation plot for logistic and probit classification. See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf p: The proportions/probabilities, can be a nxM matrix which represents M models. y: the 0-1 response variables. """ assert p.shape[0] == y.shape[0], "p.shape[0] != y.shape[0]" n = p.shape[0] try: M = p.shape[1] except: p = p.reshape( n, 1 ) M = p.shape[1] #colors = np.array( ["#fdf2db", "#e44a32"] ) colors_bmh = np.array( ["#eeeeee", "#348ABD"] ) fig = plt.figure( )#figsize = (8, 1.3*M) ) for i in range(M): ax = fig.add_subplot(M, 1, i+1) ix = np.argsort( p[:,i] ) #plot the different bars bars = ax.bar( np.arange(n), np.ones(n), width=1., color = colors_bmh[ y[ix].astype(int) ], edgecolor = 'none') ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), "k", linewidth = 1.,drawstyle="steps-post" ) #create expected value bar. ax.vlines( [(1-p[ix,i]).sum()], [0], [1] ) #ax.grid(False) #ax.axis('off') plt.xlim( 0, n) plt.tight_layout() return
mit
yavalvas/yav_com
build/matplotlib/examples/pylab_examples/finance_work2.py
10
6268
import datetime import numpy as np import matplotlib.colors as colors import matplotlib.finance as finance import matplotlib.dates as mdates import matplotlib.ticker as mticker import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager startdate = datetime.date(2006,1,1) today = enddate = datetime.date.today() ticker = 'SPY' fh = finance.fetch_historical_yahoo(ticker, startdate, enddate) # a numpy record array with fields: date, open, high, low, close, volume, adj_close) r = mlab.csv2rec(fh); fh.close() r.sort() def moving_average(x, n, type='simple'): """ compute an n period moving average. type is 'simple' | 'exponential' """ x = np.asarray(x) if type=='simple': weights = np.ones(n) else: weights = np.exp(np.linspace(-1., 0., n)) weights /= weights.sum() a = np.convolve(x, weights, mode='full')[:len(x)] a[:n] = a[n] return a def relative_strength(prices, n=14): """ compute the n period relative strength indicator http://stockcharts.com/school/doku.php?id=chart_school:glossary_r#relativestrengthindex http://www.investopedia.com/terms/r/rsi.asp """ deltas = np.diff(prices) seed = deltas[:n+1] up = seed[seed>=0].sum()/n down = -seed[seed<0].sum()/n rs = up/down rsi = np.zeros_like(prices) rsi[:n] = 100. - 100./(1.+rs) for i in range(n, len(prices)): delta = deltas[i-1] # cause the diff is 1 shorter if delta>0: upval = delta downval = 0. else: upval = 0. downval = -delta up = (up*(n-1) + upval)/n down = (down*(n-1) + downval)/n rs = up/down rsi[i] = 100. - 100./(1.+rs) return rsi def moving_average_convergence(x, nslow=26, nfast=12): """ compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg' return value is emaslow, emafast, macd which are len(x) arrays """ emaslow = moving_average(x, nslow, type='exponential') emafast = moving_average(x, nfast, type='exponential') return emaslow, emafast, emafast - emaslow plt.rc('axes', grid=True) plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5) textsize = 9 left, width = 0.1, 0.8 rect1 = [left, 0.7, width, 0.2] rect2 = [left, 0.3, width, 0.4] rect3 = [left, 0.1, width, 0.2] fig = plt.figure(facecolor='white') axescolor = '#f6f6f6' # the axes background color ax1 = fig.add_axes(rect1, axisbg=axescolor) #left, bottom, width, height ax2 = fig.add_axes(rect2, axisbg=axescolor, sharex=ax1) ax2t = ax2.twinx() ax3 = fig.add_axes(rect3, axisbg=axescolor, sharex=ax1) ### plot the relative strength indicator prices = r.adj_close rsi = relative_strength(prices) fillcolor = 'darkgoldenrod' ax1.plot(r.date, rsi, color=fillcolor) ax1.axhline(70, color=fillcolor) ax1.axhline(30, color=fillcolor) ax1.fill_between(r.date, rsi, 70, where=(rsi>=70), facecolor=fillcolor, edgecolor=fillcolor) ax1.fill_between(r.date, rsi, 30, where=(rsi<=30), facecolor=fillcolor, edgecolor=fillcolor) ax1.text(0.6, 0.9, '>70 = overbought', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.text(0.6, 0.1, '<30 = oversold', transform=ax1.transAxes, fontsize=textsize) ax1.set_ylim(0, 100) ax1.set_yticks([30,70]) ax1.text(0.025, 0.95, 'RSI (14)', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.set_title('%s daily'%ticker) ### plot the price and volume data dx = r.adj_close - r.close low = r.low + dx high = r.high + dx deltas = np.zeros_like(prices) deltas[1:] = np.diff(prices) up = deltas>0 ax2.vlines(r.date[up], low[up], high[up], color='black', label='_nolegend_') ax2.vlines(r.date[~up], low[~up], high[~up], color='black', label='_nolegend_') ma20 = moving_average(prices, 20, type='simple') ma200 = moving_average(prices, 200, type='simple') linema20, = ax2.plot(r.date, ma20, color='blue', lw=2, label='MA (20)') linema200, = ax2.plot(r.date, ma200, color='red', lw=2, label='MA (200)') last = r[-1] s = '%s O:%1.2f H:%1.2f L:%1.2f C:%1.2f, V:%1.1fM Chg:%+1.2f' % ( today.strftime('%d-%b-%Y'), last.open, last.high, last.low, last.close, last.volume*1e-6, last.close-last.open ) t4 = ax2.text(0.3, 0.9, s, transform=ax2.transAxes, fontsize=textsize) props = font_manager.FontProperties(size=10) leg = ax2.legend(loc='center left', shadow=True, fancybox=True, prop=props) leg.get_frame().set_alpha(0.5) volume = (r.close*r.volume)/1e6 # dollar volume in millions vmax = volume.max() poly = ax2t.fill_between(r.date, volume, 0, label='Volume', facecolor=fillcolor, edgecolor=fillcolor) ax2t.set_ylim(0, 5*vmax) ax2t.set_yticks([]) ### compute the MACD indicator fillcolor = 'darkslategrey' nslow = 26 nfast = 12 nema = 9 emaslow, emafast, macd = moving_average_convergence(prices, nslow=nslow, nfast=nfast) ema9 = moving_average(macd, nema, type='exponential') ax3.plot(r.date, macd, color='black', lw=2) ax3.plot(r.date, ema9, color='blue', lw=1) ax3.fill_between(r.date, macd-ema9, 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor) ax3.text(0.025, 0.95, 'MACD (%d, %d, %d)'%(nfast, nslow, nema), va='top', transform=ax3.transAxes, fontsize=textsize) #ax3.set_yticks([]) # turn off upper axis tick labels, rotate the lower ones, etc for ax in ax1, ax2, ax2t, ax3: if ax!=ax3: for label in ax.get_xticklabels(): label.set_visible(False) else: for label in ax.get_xticklabels(): label.set_rotation(30) label.set_horizontalalignment('right') ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') class MyLocator(mticker.MaxNLocator): def __init__(self, *args, **kwargs): mticker.MaxNLocator.__init__(self, *args, **kwargs) def __call__(self, *args, **kwargs): return mticker.MaxNLocator.__call__(self, *args, **kwargs) # at most 5 ticks, pruning the upper and lower so they don't overlap # with other ticks #ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) #ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both')) ax2.yaxis.set_major_locator(MyLocator(5, prune='both')) ax3.yaxis.set_major_locator(MyLocator(5, prune='both')) plt.show()
mit
yarikoptic/pystatsmodels
statsmodels/datasets/macrodata/data.py
3
3078
"""United States Macroeconomic data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = __doc__ SOURCE = """ Compiled by Skipper Seabold. All data are from the Federal Reserve Bank of St. Louis [1] except the unemployment rate which was taken from the National Bureau of Labor Statistics [2]. :: [1] Data Source: FRED, Federal Reserve Economic Data, Federal Reserve Bank of St. Louis; http://research.stlouisfed.org/fred2/; accessed December 15, 2009. [2] Data Source: Bureau of Labor Statistics, U.S. Department of Labor; http://www.bls.gov/data/; accessed December 15, 2009. """ DESCRSHORT = """US Macroeconomic Data for 1959Q1 - 2009Q3""" DESCRLONG = DESCRSHORT NOTE = """ Number of Observations - 203 Number of Variables - 14 Variable name definitions:: year - 1959q1 - 2009q3 quarter - 1-4 realgdp - Real gross domestic product (Bil. of chained 2005 US$, seasonally adjusted annual rate) realcons - Real personal consumption expenditures (Bil. of chained 2005 US$, seasonally adjusted annual rate) realinv - Real gross private domestic investment (Bil. of chained 2005 US$, seasonally adjusted annual rate) realgovt - Real federal consumption expenditures & gross investment (Bil. of chained 2005 US$, seasonally adjusted annual rate) realdpi - Real private disposable income (Bil. of chained 2005 US$, seasonally adjusted annual rate) cpi - End of the quarter consumer price index for all urban consumers: all items (1982-84 = 100, seasonally adjusted). m1 - End of the quarter M1 nominal money stock (Seasonally adjusted) tbilrate - Quarterly monthly average of the monthly 3-month treasury bill: secondary market rate unemp - Seasonally adjusted unemployment rate (%) pop - End of the quarter total population: all ages incl. armed forces over seas infl - Inflation rate (ln(cpi_{t}/cpi_{t-1}) * 400) realint - Real interest rate (tbilrate - infl) """ from numpy import recfromtxt, column_stack, array from pandas import DataFrame from statsmodels.datasets.utils import Dataset from os.path import dirname, abspath def load(): """ Load the US macro data and return a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- The macrodata Dataset instance does not contain endog and exog attributes. """ data = _get_data() names = data.dtype.names dataset = Dataset(data=data, names=names) return dataset def load_pandas(): dataset = load() dataset.data = DataFrame(dataset.data) return dataset def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/macrodata.csv', 'rb'), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
krez13/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
raghavrv/scikit-learn
examples/mixture/plot_gmm.py
122
3265
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians obtained with Expectation Maximisation (``GaussianMixture`` class) and Variational Inference (``BayesianGaussianMixture`` class models with a Dirichlet process prior). Both models have access to five components with which to fit the data. Note that the Expectation Maximisation model will necessarily use all five components while the Variational Inference model will effectively only use as many as are needed for a good fit. Here we can see that the Expectation Maximisation model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold', 'darkorange']) def plot_results(X, Y_, means, covariances, index, title): splot = plt.subplot(2, 1, 1 + index) for i, (mean, covar, color) in enumerate(zip( means, covariances, color_iter)): v, w = linalg.eigh(covar) v = 2. * np.sqrt(2.) * np.sqrt(v) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180. * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-9., 5.) plt.ylim(-3., 6.) plt.xticks(()) plt.yticks(()) plt.title(title) # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a Gaussian mixture with EM using five components gmm = mixture.GaussianMixture(n_components=5, covariance_type='full').fit(X) plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, 'Gaussian Mixture') # Fit a Dirichlet process Gaussian mixture using five components dpgmm = mixture.BayesianGaussianMixture(n_components=5, covariance_type='full').fit(X) plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1, 'Bayesian Gaussian Mixture with a Dirichlet process prior') plt.show()
bsd-3-clause
sarahgrogan/scikit-learn
sklearn/utils/random.py
234
10510
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
pandyag/trading-with-python
lib/functions.py
76
11627
# -*- coding: utf-8 -*- """ twp support functions @author: Jev Kuznetsov Licence: GPL v2 """ from scipy import polyfit, polyval import datetime as dt #from datetime import datetime, date from pandas import DataFrame, Index, Series import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd def nans(shape, dtype=float): ''' create a nan numpy array ''' a = np.empty(shape, dtype) a.fill(np.nan) return a def plotCorrelationMatrix(price, thresh = None): ''' plot a correlation matrix as a heatmap image inputs: price: prices DataFrame thresh: correlation threshold to use for checking, default None ''' symbols = price.columns.tolist() R = price.pct_change() correlationMatrix = R.corr() if thresh is not None: correlationMatrix = correlationMatrix > thresh plt.imshow(abs(correlationMatrix.values),interpolation='none') plt.xticks(range(len(symbols)),symbols) plt.yticks(range(len(symbols)),symbols) plt.colorbar() plt.title('Correlation matrix') return correlationMatrix def pca(A): """ performs principal components analysis (PCA) on the n-by-p DataFrame A Rows of A correspond to observations, columns to variables. Returns : coeff : principal components, column-wise transform: A in principal component space latent : eigenvalues """ # computing eigenvalues and eigenvectors of covariance matrix M = (A - A.mean()).T # subtract the mean (along columns) [latent,coeff] = np.linalg.eig(np.cov(M)) # attention:not always sorted idx = np.argsort(latent) # sort eigenvalues idx = idx[::-1] # in ascending order coeff = coeff[:,idx] latent = latent[idx] score = np.dot(coeff.T,A.T) # projection of the data in the new space transform = DataFrame(index = A.index, data = score.T) return coeff,transform,latent def pos2pnl(price,position , ibTransactionCost=False ): """ calculate pnl based on price and position Inputs: --------- price: series or dataframe of price position: number of shares at each time. Column names must be same as in price ibTransactionCost: use bundled Interactive Brokers transaction cost of 0.005$/share Returns a portfolio DataFrame """ delta=position.diff() port = DataFrame(index=price.index) if isinstance(price,Series): # no need to sum along 1 for series port['cash'] = (-delta*price).cumsum() port['stock'] = (position*price) else: # dealing with DataFrame here port['cash'] = (-delta*price).sum(axis=1).cumsum() port['stock'] = (position*price).sum(axis=1) if ibTransactionCost: tc = -0.005*position.diff().abs() # basic transaction cost tc[(tc>-1) & (tc<0)] = -1 # everything under 1$ will be ceil'd to 1$ if isinstance(price,DataFrame): tc = tc.sum(axis=1) port['tc'] = tc.cumsum() else: port['tc'] = 0. port['total'] = port['stock']+port['cash']+port['tc'] return port def tradeBracket(price,entryBar,maxTradeLength,bracket): ''' trade a symmetrical bracket on price series, return price delta and exit bar # Input ------ price : series of price values entryBar: entry bar number maxTradeLength : max trade duration in bars bracket : allowed price deviation ''' lastBar = min(entryBar+maxTradeLength,len(price)-1) p = price[entryBar:lastBar]-price[entryBar] idxOutOfBound = np.nonzero(abs(p)>bracket) # find indices where price comes out of bracket if idxOutOfBound[0].any(): # found match priceDelta = p[idxOutOfBound[0][0]] exitBar = idxOutOfBound[0][0]+entryBar else: # all in bracket, exiting based on time priceDelta = p[-1] exitBar = lastBar return priceDelta, exitBar def estimateBeta(priceY,priceX,algo = 'standard'): ''' estimate stock Y vs stock X beta using iterative linear regression. Outliers outside 3 sigma boundary are filtered out Parameters -------- priceX : price series of x (usually market) priceY : price series of y (estimate beta of this price) Returns -------- beta : stockY beta relative to stock X ''' X = DataFrame({'x':priceX,'y':priceY}) if algo=='returns': ret = (X/X.shift(1)-1).dropna().values #print len(ret) x = ret[:,0] y = ret[:,1] # filter high values low = np.percentile(x,20) high = np.percentile(x,80) iValid = (x>low) & (x<high) x = x[iValid] y = y[iValid] iteration = 1 nrOutliers = 1 while iteration < 10 and nrOutliers > 0 : (a,b) = polyfit(x,y,1) yf = polyval([a,b],x) #plot(x,y,'x',x,yf,'r-') err = yf-y idxOutlier = abs(err) > 3*np.std(err) nrOutliers =sum(idxOutlier) beta = a #print 'Iteration: %i beta: %.2f outliers: %i' % (iteration,beta, nrOutliers) x = x[~idxOutlier] y = y[~idxOutlier] iteration += 1 elif algo=='log': x = np.log(X['x']) y = np.log(X['y']) (a,b) = polyfit(x,y,1) beta = a elif algo=='standard': ret =np.log(X).diff().dropna() beta = ret['x'].cov(ret['y'])/ret['x'].var() else: raise TypeError("unknown algorithm type, use 'standard', 'log' or 'returns'") return beta def estimateVolatility(ohlc, N=10, algo='YangZhang'): """ Volatility estimation Possible algorithms: ['YangZhang', 'CC'] """ cc = np.log(ohlc.close/ohlc.close.shift(1)) if algo == 'YangZhang': # Yang-zhang volatility ho = np.log(ohlc.high/ohlc.open) lo = np.log(ohlc.low/ohlc.open) co = np.log(ohlc.close/ohlc.open) oc = np.log(ohlc.open/ohlc.close.shift(1)) oc_sq = oc**2 cc_sq = cc**2 rs = ho*(ho-co)+lo*(lo-co) close_vol = pd.rolling_sum(cc_sq, window=N) * (1.0 / (N - 1.0)) open_vol = pd.rolling_sum(oc_sq, window=N) * (1.0 / (N - 1.0)) window_rs = pd.rolling_sum(rs, window=N) * (1.0 / (N - 1.0)) result = (open_vol + 0.164333 * close_vol + 0.835667 * window_rs).apply(np.sqrt) * np.sqrt(252) result[:N-1] = np.nan elif algo == 'CC': # standard close-close estimator result = np.sqrt(252)*np.sqrt(((pd.rolling_sum(cc**2,N))/N)) else: raise ValueError('Unknown algo type.') return result*100 def rank(current,past): ''' calculate a relative rank 0..1 for a value against series ''' return (current>past).sum()/float(past.count()) def returns(df): return (df/df.shift(1)-1) def logReturns(df): t = np.log(df) return t-t.shift(1) def dateTimeToDate(idx): ''' convert datetime index to date ''' dates = [] for dtm in idx: dates.append(dtm.date()) return dates def readBiggerScreener(fName): ''' import data from Bigger Capital screener ''' with open(fName,'rb') as f: reader = csv.reader(f) rows = [row for row in reader] header = rows[0] data = [[] for i in range(len(header))] for row in rows[1:]: for i,elm in enumerate(row): try: data[i].append(float(elm)) except Exception: data[i].append(str(elm)) return DataFrame(dict(zip(header,data)),index=Index(range(len(data[0]))))[header] def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std() def drawdown(s): """ calculate max drawdown and duration Input: s, price or cumulative pnl curve $ Returns: drawdown : vector of drawdwon values duration : vector of drawdown duration """ # convert to array if got pandas series, 10x speedup if isinstance(s,pd.Series): idx = s.index s = s.values returnSeries = True else: returnSeries = False if s.min() < 0: # offset if signal minimum is less than zero s = s-s.min() highwatermark = np.zeros(len(s)) drawdown = np.zeros(len(s)) drawdowndur = np.zeros(len(s)) for t in range(1,len(s)): highwatermark[t] = max(highwatermark[t-1], s[t]) drawdown[t] = (highwatermark[t]-s[t]) drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1) if returnSeries: return pd.Series(index=idx,data=drawdown), pd.Series(index=idx,data=drawdowndur) else: return drawdown , drawdowndur def profitRatio(pnl): ''' calculate profit ratio as sum(pnl)/drawdown Input: pnl - daily pnl, Series or DataFrame ''' def processVector(pnl): # process a single column s = pnl.fillna(0) dd = drawdown(s)[0] p = s.sum()/dd.max() return p if isinstance(pnl,Series): return processVector(pnl) elif isinstance(pnl,DataFrame): p = Series(index = pnl.columns) for col in pnl.columns: p[col] = processVector(pnl[col]) return p else: raise TypeError("Input must be DataFrame or Series, not "+str(type(pnl))) def candlestick(df,width=0.5, colorup='b', colordown='r'): ''' plot a candlestick chart of a dataframe ''' O = df['open'].values H = df['high'].values L = df['low'].values C = df['close'].values fig = plt.gcf() ax = plt.axes() #ax.hold(True) X = df.index #plot high and low ax.bar(X,height=H-L,bottom=L,width=0.1,color='k') idxUp = C>O ax.bar(X[idxUp],height=(C-O)[idxUp],bottom=O[idxUp],width=width,color=colorup) idxDown = C<=O ax.bar(X[idxDown],height=(O-C)[idxDown],bottom=C[idxDown],width=width,color=colordown) try: fig.autofmt_xdate() except Exception: # pragma: no cover pass ax.grid(True) #ax.bar(x,height=H-L,bottom=L,width=0.01,color='k') def datetime2matlab(t): ''' convert datetime timestamp to matlab numeric timestamp ''' mdn = t + dt.timedelta(days = 366) frac = (t-dt.datetime(t.year,t.month,t.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0) return mdn.toordinal() + frac def getDataSources(fName = None): ''' return data sources directories for this machine. directories are defined in datasources.ini or provided filepath''' import socket from ConfigParser import ConfigParser pcName = socket.gethostname() p = ConfigParser() p.optionxform = str if fName is None: fName = 'datasources.ini' p.read(fName) if pcName not in p.sections(): raise NameError('Host name section %s not found in file %s' %(pcName,fName)) dataSources = {} for option in p.options(pcName): dataSources[option] = p.get(pcName,option) return dataSources if __name__ == '__main__': df = DataFrame({'open':[1,2,3],'high':[5,6,7],'low':[-2,-1,0],'close':[2,1,4]}) plt.clf() candlestick(df)
bsd-3-clause
delmarrerikaine/dmc-2017
src/func.py
1
4698
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import pandas as pd import numpy as np import itertools as it def toCategorical(df): """ This function change object datatype in pandas.DataFrame into category datatype. Parameters ---------- df : pandas.DataFrame with train or test DataFrame. Returns ------- df : pandas.DataFrame with new datatypes. """ columns=['availability','group','content','unit','pharmForm', 'campaignIndex','salesIndex', 'category', 'manufacturer'] for col in columns: if col in df.columns: df[col]=df[col].astype('category') return df def solveNA(df,df2,coef,flag): """ This function fills some missing data in pandas.DataFrame. Parameters ---------- df : pandas.DataFrame with train or test DataFrame. df2 : pandas.DataFrame with train or test DataFrame. (Same as df if it's all table instead just items) coef : mean of the relationship between variables competitorPrice and rrp flag : signal of which variant of function we use Returns ------- df : pandas.DataFrame with solved some NA. """ if flag==1: df['pharmForm'] = df['pharmForm'].fillna('no_pharmForm') df['category'] = df['category'].fillna(410) df['campaignIndex'] = df['campaignIndex'].fillna('D') elif flag==2: df['competitorPrice'] = df['competitorPrice'].fillna(df2['rrp']*coef) df['pharmForm'] = df['pharmForm'].fillna('no_pharmForm') df['category'] = df['category'].fillna(410) df['campaignIndex'] = df['campaignIndex'].fillna('D') else: df['competitorPrice'] = df['competitorPrice'].fillna(df2['rrp']*coef) if 'pharmForm' in df.columns: df['pharmForm'] = df['pharmForm'].cat.add_categories(['no_pharmForm']) df['pharmForm'] = df['pharmForm'].fillna('no_pharmForm') if 'category' in df.columns: df['category'] = df['category'].cat.add_categories([410]) df['category'] = df['category'].fillna(410) if 'campaignIndex' in df.columns: df['campaignIndex'] = df['campaignIndex'].cat.add_categories(['D']) df['campaignIndex'] = df['campaignIndex'].fillna('D') columns2=['category', 'manufacturer'] for col2 in columns2: if col2 in df.columns: df[col2]=df[col2].astype('int') df[col2]=df[col2].astype('category') return df def Dummies(df): """ This function creates new columns in pandas.DataFrame uses existing columns with category datatype as input and pd.get_dummies for creation. Parameters ---------- df : pandas.DataFrame with train or test data. Returns ------- df : pandas.DataFrame with new float64 columns. """ columns=['availability','unit','salesIndex','campaignIndex'] dumm=pd.get_dummies(df[columns]) df=pd.concat([df, dumm], axis=1) return df def solveCategorical(c1,df1,df2,flag): """ This function creates new columns in items DataFrame uses existing columns with category datatype and high cardinality as input. Parameters ---------- c1 : string with name of column which we try to describe df1 : pandas.DataFrame with train data. df2 : pandas.DataFrame with items. flag : signal that we should generate count of examples which represent our mean Returns ------- df2 : pandas.DataFrame with new float64 columns. """ columns=['group','content','pharmForm','category','manufacturer'] for L in range(1, 4): for col in it.combinations(columns, L): t1=df1.groupby(list(col)) t2=t1[c1].mean() str1='_'.join(col) t2 = t2.reset_index() t2.rename(columns = {c1:c1+'_'+str1+'_mean'}, inplace = True) df2 = df2.merge(t2, on=list(col), how='left') if flag==1: t2=t1[c1].count() t2 = t2.reset_index() t2[c1]=t2[c1]/2756003.0 t2.rename(columns = {c1:c1+'_'+str1+'_count'}, inplace = True) df2 = df2.merge(t2, on=list(col), how='left') return df2 def moreFeautures(df): """ This function creates new columns in pandas.DataFrame uses existing columns Parameters ---------- df : pandas.DataFrame with train or test data. Returns ------- df : pandas.DataFrame with new float64 columns. """ df['day_of_week']=df['day']%7 df['discount']=df['price']/df['rrp'] df['compDiscount']=df['competitorPrice']/df['price'] return df
mit
acislab/HuMaIN_Microservices
OCRopyServices/SegmentationService/ocrolib/psegutils.py
6
7677
from __future__ import print_function from toplevel import * from pylab import * from scipy.ndimage import filters,interpolation import sl,morph def B(a): if a.dtype==dtype('B'): return a return array(a,'B') class record: def __init__(self,**kw): self.__dict__.update(kw) def blackout_images(image,ticlass): """Takes a page image and a ticlass text/image classification image and replaces all regions tagged as 'image' with rectangles in the page image. The page image is modified in place. All images are iulib arrays.""" rgb = ocropy.intarray() ticlass.textImageProbabilities(rgb,image) r = ocropy.bytearray() g = ocropy.bytearray() b = ocropy.bytearray() ocropy.unpack_rgb(r,g,b,rgb) components = ocropy.intarray() components.copy(g) n = ocropy.label_components(components) print("[note] number of image regions", n) tirects = ocropy.rectarray() ocropy.bounding_boxes(tirects,components) for i in range(1,tirects.length()): r = tirects.at(i) ocropy.fill_rect(image,r,0) r.pad_by(-5,-5) ocropy.fill_rect(image,r,255) def binary_objects(binary): labels,n = morph.label(binary) objects = morph.find_objects(labels) return objects def estimate_scale(binary): objects = binary_objects(binary) bysize = sorted(objects,key=sl.area) scalemap = zeros(binary.shape) for o in bysize: if amax(scalemap[o])>0: continue scalemap[o] = sl.area(o)**0.5 scale = median(scalemap[(scalemap>3)&(scalemap<100)]) return scale def compute_boxmap(binary,scale,threshold=(.5,4),dtype='i'): objects = binary_objects(binary) bysize = sorted(objects,key=sl.area) boxmap = zeros(binary.shape,dtype) for o in bysize: if sl.area(o)**.5<threshold[0]*scale: continue if sl.area(o)**.5>threshold[1]*scale: continue boxmap[o] = 1 return boxmap def compute_lines(segmentation,scale): """Given a line segmentation map, computes a list of tuples consisting of 2D slices and masked images.""" lobjects = morph.find_objects(segmentation) lines = [] for i,o in enumerate(lobjects): if o is None: continue if sl.dim1(o)<2*scale or sl.dim0(o)<scale: continue mask = (segmentation[o]==i+1) if amax(mask)==0: continue result = record() result.label = i+1 result.bounds = o result.mask = mask lines.append(result) return lines def pad_image(image,d,cval=inf): result = ones(array(image.shape)+2*d) result[:,:] = amax(image) if cval==inf else cval result[d:-d,d:-d] = image return result @checks(ARANK(2),int,int,int,int,mode=str,cval=True,_=GRAYSCALE) def extract(image,y0,x0,y1,x1,mode='nearest',cval=0): h,w = image.shape ch,cw = y1-y0,x1-x0 y,x = clip(y0,0,max(h-ch,0)),clip(x0,0,max(w-cw, 0)) sub = image[y:y+ch,x:x+cw] # print("extract", image.dtype, image.shape) try: r = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0) if cw > w or ch > h: pady0, padx0 = max(-y0, 0), max(-x0, 0) r = interpolation.affine_transform(r, eye(2), offset=(pady0, padx0), cval=1, output_shape=(ch, cw)) return r except RuntimeError: # workaround for platform differences between 32bit and 64bit # scipy.ndimage dtype = sub.dtype sub = array(sub,dtype='float64') sub = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0) sub = array(sub,dtype=dtype) return sub @checks(ARANK(2),True,pad=int,expand=int,_=GRAYSCALE) def extract_masked(image,linedesc,pad=5,expand=0): """Extract a subimage from the image using the line descriptor. A line descriptor consists of bounds and a mask.""" y0,x0,y1,x1 = [int(x) for x in [linedesc.bounds[0].start,linedesc.bounds[1].start, \ linedesc.bounds[0].stop,linedesc.bounds[1].stop]] if pad>0: mask = pad_image(linedesc.mask,pad,cval=0) else: mask = linedesc.mask line = extract(image,y0-pad,x0-pad,y1+pad,x1+pad) if expand>0: mask = filters.maximum_filter(mask,(expand,expand)) line = where(mask,line,amax(line)) return line def reading_order(lines,highlight=None,debug=0): """Given the list of lines (a list of 2D slices), computes the partial reading order. The output is a binary 2D array such that order[i,j] is true if line i comes before line j in reading order.""" order = zeros((len(lines),len(lines)),'B') def x_overlaps(u,v): return u[1].start<v[1].stop and u[1].stop>v[1].start def above(u,v): return u[0].start<v[0].start def left_of(u,v): return u[1].stop<v[1].start def separates(w,u,v): if w[0].stop<min(u[0].start,v[0].start): return 0 if w[0].start>max(u[0].stop,v[0].stop): return 0 if w[1].start<u[1].stop and w[1].stop>v[1].start: return 1 if highlight is not None: clf(); title("highlight"); imshow(binary); ginput(1,debug) for i,u in enumerate(lines): for j,v in enumerate(lines): if x_overlaps(u,v): if above(u,v): order[i,j] = 1 else: if [w for w in lines if separates(w,u,v)]==[]: if left_of(u,v): order[i,j] = 1 if j==highlight and order[i,j]: print((i, j), end=' ') y0,x0 = sl.center(lines[i]) y1,x1 = sl.center(lines[j]) plot([x0,x1+200],[y0,y1]) if highlight is not None: print() ginput(1,debug) return order def topsort(order): """Given a binary array defining a partial order (o[i,j]==True means i<j), compute a topological sort. This is a quick and dirty implementation that works for up to a few thousand elements.""" n = len(order) visited = zeros(n) L = [] def visit(k): if visited[k]: return visited[k] = 1 for l in find(order[:,k]): visit(l) L.append(k) for k in range(n): visit(k) return L #[::-1] def show_lines(image,lines,lsort): """Overlays the computed lines on top of the image, for debugging purposes.""" ys,xs = [],[] clf(); cla() imshow(image) for i in range(len(lines)): l = lines[lsort[i]] y,x = sl.center(l.bounds) xs.append(x) ys.append(y) o = l.bounds r = matplotlib.patches.Rectangle((o[1].start,o[0].start),edgecolor='r',fill=0,width=sl.dim1(o),height=sl.dim0(o)) gca().add_patch(r) h,w = image.shape ylim(h,0); xlim(0,w) plot(xs,ys) @obsolete def read_gray(fname): image = imread(fname) if image.ndim==3: image = mean(image,2) return image @obsolete def read_binary(fname): image = imread(fname) if image.ndim==3: image = mean(image,2) image -= amin(image) image /= amax(image) assert sum(image<0.01)+sum(image>0.99)>0.99*prod(image.shape),"input image is not binary" binary = 1.0*(image<0.5) return binary @obsolete def rgbshow(r,g,b=None,gn=1,cn=0,ab=0,**kw): """Small function to display 2 or 3 images as RGB channels.""" if b is None: b = zeros(r.shape) combo = transpose(array([r,g,b]),axes=[1,2,0]) if cn: for i in range(3): combo[:,:,i] /= max(abs(amin(combo[:,:,i])),abs(amax(combo[:,:,i]))) elif gn: combo /= max(abs(amin(combo)),abs(amax(combo))) if ab: combo = abs(combo) if amin(combo)<0: print("warning: values less than zero") imshow(clip(combo,0,1),**kw)
apache-2.0
HKUST-SING/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io_test.py
111
7865
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
piti118/probfit
probfit/test/testfunctor.py
1
6784
import matplotlib matplotlib.use('Agg', warn=False) from nose.tools import assert_equal, assert_almost_equal import numpy as np from probfit import (describe, rename, Convolve, Normalized, Extended, AddPdf, AddPdfNorm, BlindFunc) from probfit.pdf import gaussian, ugaussian from probfit._libstat import integrate1d from probfit.decorator import extended, normalized def test_describe_normal_function(): def f(x, y, z): return x + y + z d = describe(f) assert_equal(list(d), ['x', 'y', 'z']) def test_Normalized(): f = ugaussian g = Normalized(f, (-1, 1)) norm = integrate1d(f, (-1., 1.), 1000, (0., 1.)) assert_almost_equal(g(1., 0., 1.), f(1., 0., 1.) / norm) def test_normalized_decorator(): @normalized((-1, 1)) def f(x, mean, sigma): return ugaussian(x, mean, sigma) g = Normalized(ugaussian, (-1, 1)) assert_equal(describe(f), ['x', 'mean', 'sigma']) assert_almost_equal(g(1, 0, 1), f(1, 0, 1)) def test_Normalized_cache_hit(): def f(x, y, z) : return 1.*(x + y + z) def g(x, y, z) : return 1.*(x + y + 2 * z) nf = Normalized(f, (-10., 10.)) ng = Normalized(g, (-10., 10.)) assert_equal(nf.hit, 0) nf(1., 2., 3.) ng(1., 2., 3.) assert_equal(nf.hit, 0) nf(3., 2., 3.) assert_equal(nf.hit, 1) ng(1., 2., 3.) assert_equal(ng.hit, 1) def test_add_pdf(): def f(x, y, z): return x + y + z def g(x, a, b): return 2 * (x + a + b) def h(x, c, a): return 3 * (x + c + a) A = AddPdf(f, g, h) assert_equal(tuple(describe(A)), ('x', 'y', 'z', 'a', 'b', 'c')) ret = A(1, 2, 3, 4, 5, 6, 7) expected = f(1, 2, 3) + g(1, 4, 5) + h(1, 6, 4) assert_almost_equal(ret, expected) # wrong integral on purpose f.integrate = lambda bound, nint, y, z : 1. # unbound method works too g.integrate = lambda bound, nint, a, b : 2. h.integrate = lambda bound, nint, c, a : 3. assert_equal(integrate1d(A, (-10., 10.), 100, (1., 2., 3., 4., 5.)), 6.) def test_add_pdf_factor(): def f(x, y, z): return x + y + z def g(x, a, b): return 2 * (x + a + b) def k1(n1, n2): return 3 * (n1 + n2) def k2(n1, y): return 4 * (n1 + y) A = AddPdf(f, g, prefix=['f', 'g'], factors=[k1, k2]) assert_equal(tuple(describe(A)), ('x', 'fy', 'fz', 'ga', 'gb', 'fn1', 'fn2', 'gn1', 'gy')) ret = A(1, 2, 3, 4, 5, 6, 7, 8, 9) expected = k1(6, 7) * f(1, 2, 3) + k2(8, 9) * g(1, 4, 5) assert_almost_equal(ret, expected) parts = A.eval_parts(1, 2, 3, 4, 5, 6, 7, 8, 9) assert_almost_equal(parts[0], k1(6, 7) * f(1, 2, 3)) assert_almost_equal(parts[1], k2(8, 9) * g(1, 4, 5)) def test_add_pdf_cache(): def f(x, y, z): return x + y + z def g(x, a, b): return 2 * (x + a + b) def h(x, c, a): return 3 * (x + c + a) A = AddPdf(f, g, h) assert_equal(tuple(describe(A)), ('x', 'y', 'z', 'a', 'b', 'c')) ret = A(1, 2, 3, 4, 5, 6, 7) assert_equal(A.hit, 0) expected = f(1, 2, 3) + g(1, 4, 5) + h(1, 6, 4) assert_almost_equal(ret, expected) ret = A(1, 2, 3, 6, 7, 8, 9) assert_equal(A.hit, 1) expected = f(1, 2, 3) + g(1, 6, 7) + h(1, 8, 6) assert_almost_equal(ret, expected) def test_extended(): def f(x, y, z): return x + 2 * y + 3 * z g = Extended(f) assert_equal(tuple(describe(g)), ('x', 'y', 'z', 'N')) assert_equal(g(1, 2, 3, 4), 4 * (f(1, 2, 3))) # extended should use analytical when available def ana_int(x, y): return y * x ** 2 ana_int_int = lambda b, n, y: 999. # wrong on purpose ana_int.integrate = ana_int_int g = Extended(ana_int) assert_almost_equal(g.integrate((0, 1), 100, 5., 2.), 999.*2.) # and not fail when it's not available def no_ana_int(x, y): return y * x ** 2 g = Extended(no_ana_int) assert_almost_equal(g.integrate((0, 1), 100, 5., 2.), (1.**3) / 3.*5.*2.) def test_extended_decorator(): def f(x, y, z): return x + 2 * y + 3 * z @extended() def g(x, y, z): return x + 2 * y + 3 * z assert_equal(tuple(describe(g)), ('x', 'y', 'z', 'N')) assert_equal(g(1, 2, 3, 4), 4 * (f(1, 2, 3))) def test_addpdfnorm(): def f(x, y, z): return x + 2 * y + 3 * z def g(x, z, p): return 4 * x + 5 * z + 6 * z def p(x, y, q): return 7 * x + 8 * y + 9 * q h = AddPdfNorm(f, g) assert_equal(describe(h), ['x', 'y', 'z', 'p', 'f_0']) q = AddPdfNorm(f, g, p) assert_equal(describe(q), ['x', 'y', 'z', 'p', 'q', 'f_0', 'f_1']) assert_almost_equal(h(1, 2, 3, 4, 0.1), 0.1 * f(1, 2, 3) + 0.9 * g(1, 3, 4)) assert_almost_equal(q(1, 2, 3, 4, 5, 0.1, 0.2), 0.1 * f(1, 2, 3) + 0.2 * g(1, 3, 4) + 0.7 * p(1, 2, 5)) def test_addpdfnorm_analytical_integrate(): def f(x, y, z): return x + 2 * y + 3 * z def g(x, z, p): return 4 * x + 5 * z + 6 * z def p(x, y, q): return 7 * x + 8 * y + 9 * q f.integrate = lambda bound, nint, y, z: 1. g.integrate = lambda bound, nint, z, p: 2. p.integrate = lambda bound, nint, y, q: 3. q = AddPdfNorm(f, g, p) assert_equal(describe(q), ['x', 'y', 'z', 'p', 'q', 'f_0', 'f_1']) integral = integrate1d(q, (-10., 10.), 100, (1., 2., 3., 4., 0.1, 0.2)) assert_almost_equal(integral, 0.1 * 1. + 0.2 * 2. + 0.7 * 3.) def test_convolution(): f = gaussian g = lambda x, mu1, sigma1 : gaussian(x, mu1, sigma1) h = Convolve(f, g, (-10, 10), nbins=10000) assert_equal(describe(h), ['x', 'mean', 'sigma', 'mu1', 'sigma1']) assert_almost_equal(h(1, 0, 1, 1, 2), 0.17839457037411527) # center assert_almost_equal(h(-1, 0, 1, 1, 2), 0.119581456625684) # left assert_almost_equal(h(0, 0, 1, 1, 2), 0.1614180824489487) # left assert_almost_equal(h(2, 0, 1, 1, 2), 0.1614180824489487) # right assert_almost_equal(h(3, 0, 1, 1, 2), 0.119581456625684) # right def test_rename(): def f(x, y, z): return None assert_equal(describe(f), ['x', 'y', 'z']) g = rename(f, ['x', 'a', 'b']) assert_equal(describe(g), ['x', 'a', 'b']) def test_blindfunc(): np.random.seed(0) f = BlindFunc(gaussian, 'mean', 'abcd', width=1.5, signflip=True) arg = f.__shift_arg__((1, 1, 1)) totest = [1., -1.1665264284482637, 1.] assert_almost_equal(arg[0], totest[0]) assert_almost_equal(arg[1], totest[1]) assert_almost_equal(arg[2], totest[2]) assert_almost_equal(f.__call__(0.5, 1., 1.), 0.0995003913596) np.random.seed(575345) f = BlindFunc(gaussian, 'mean', 'abcd', width=1.5, signflip=True) arg = f.__shift_arg__((1, 1, 1)) assert_almost_equal(arg[0], totest[0]) assert_almost_equal(arg[1], totest[1]) assert_almost_equal(arg[2], totest[2]) assert_almost_equal(f.__call__(0.5, 1., 1.), 0.0995003913596)
mit