repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
macks22/scikit-learn
sklearn/linear_model/tests/test_sparse_coordinate_descent.py
244
9986
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV) def test_sparse_coef(): # Check that the sparse_coef propery works clf = ElasticNet() clf.coef_ = [1, 2, 3] assert_true(sp.isspmatrix(clf.sparse_coef_)) assert_equal(clf.sparse_coef_.toarray().tolist()[0], clf.coef_) def test_normalize_option(): # Check that the normalize option in enet works X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_) def test_lasso_zero(): # Check that the sparse lasso can handle zero data without crashing X = sp.csc_matrix((3, 1)) y = [0, 0, 0] T = np.array([[1], [2], [3]]) clf = Lasso().fit(X, y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_list_input(): # Test ElasticNet for various values of alpha and l1_ratio with list X X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_explicit_sparse_input(): # Test ElasticNet for various values of alpha and l1_ratio with sparse X f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def make_sparse_data(n_samples=100, n_features=100, n_informative=10, seed=42, positive=False, n_targets=1): random_state = np.random.RandomState(seed) # build an ill-posed linear regression problem with many noisy features and # comparatively few samples # generate a ground truth model w = random_state.randn(n_features, n_targets) w[n_informative:] = 0.0 # only the top features are impacting the model if positive: w = np.abs(w) X = random_state.randn(n_samples, n_features) rnd = random_state.uniform(size=(n_samples, n_features)) X[rnd > 0.5] = 0.0 # 50% of zeros in input signal # generate training ground truth labels y = np.dot(X, w) X = sp.csc_matrix(X) if n_targets == 1: y = np.ravel(y) return X, y def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) def test_sparse_enet_not_as_toy_dataset(): _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=False, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=True, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=False, positive=True) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=True, positive=True) def test_sparse_lasso_not_as_toy_dataset(): n_samples = 100 max_iter = 1000 n_informative = 10 X, y = make_sparse_data(n_samples=n_samples, n_informative=n_informative) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) # check that the coefs are sparse assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative) def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_path_parameters(): X, y = make_sparse_data() max_iter = 50 n_alphas = 10 clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False) ignore_warnings(clf.fit)(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(n_alphas, clf.n_alphas) assert_equal(n_alphas, len(clf.alphas_)) sparse_mse_path = clf.mse_path_ ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data assert_almost_equal(clf.mse_path_, sparse_mse_path) def test_same_output_sparse_dense_lasso_and_enet_cv(): X, y = make_sparse_data(n_samples=40, n_features=10) for normalize in [True, False]: clfs = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_) clfs = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_)
bsd-3-clause
anntzer/scikit-learn
sklearn/utils/estimator_checks.py
2
119596
import types import warnings import pickle import re from copy import deepcopy from functools import partial, wraps from inspect import signature import numpy as np from scipy import sparse from scipy.stats import rankdata import joblib from . import IS_PYPY from .. import config_context from ._testing import _get_args from ._testing import assert_raise_message from ._testing import assert_array_equal from ._testing import assert_array_almost_equal from ._testing import assert_allclose from ._testing import assert_allclose_dense_sparse from ._testing import set_random_state from ._testing import SkipTest from ._testing import ignore_warnings from ._testing import create_memmap_backed_data from ._testing import raises from . import is_scalar_nan from ..linear_model import LogisticRegression from ..linear_model import Ridge from ..base import ( clone, ClusterMixin, is_classifier, is_regressor, is_outlier_detector, RegressorMixin, _is_pairwise, ) from ..metrics import accuracy_score, adjusted_rand_score, f1_score from ..random_projection import BaseRandomProjection from ..feature_selection import SelectKBest from ..pipeline import make_pipeline from ..exceptions import DataConversionWarning from ..exceptions import NotFittedError from ..exceptions import SkipTestWarning from ..model_selection import train_test_split from ..model_selection import ShuffleSplit from ..model_selection._validation import _safe_split from ..metrics.pairwise import (rbf_kernel, linear_kernel, pairwise_distances) from .import shuffle from ._tags import ( _DEFAULT_TAGS, _safe_tags, ) from .validation import has_fit_parameter, _num_samples from ..preprocessing import StandardScaler from ..preprocessing import scale from ..datasets import ( load_iris, make_blobs, make_multilabel_classification, make_regression ) REGRESSION_DATASET = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] def _yield_checks(estimator): name = estimator.__class__.__name__ tags = _safe_tags(estimator) pairwise = _is_pairwise(estimator) yield check_no_attributes_set_in_init yield check_estimators_dtypes yield check_fit_score_takes_y yield check_sample_weights_pandas_series yield check_sample_weights_not_an_array yield check_sample_weights_list yield check_sample_weights_shape if has_fit_parameter(estimator, "sample_weight") and not pairwise: # We skip pairwise because the data is not pairwise yield partial(check_sample_weights_invariance, kind='ones') yield partial(check_sample_weights_invariance, kind='zeros') yield check_estimators_fit_returns_self yield partial(check_estimators_fit_returns_self, readonly_memmap=True) # Check that all estimator yield informative messages when # trained on empty datasets if not tags["no_validation"]: yield check_complex_data yield check_dtype_object yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION: # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if not tags["allow_nan"] and not tags["no_validation"]: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if pairwise: # Check that pairwise estimator throws error on non-square input yield check_nonsquare_error yield check_estimators_overwrite_params if hasattr(estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle yield check_estimator_get_tags_default_keys def _yield_classifier_checks(classifier): tags = _safe_tags(classifier) # test classifiers can handle non-array data and pandas objects yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features if tags["multioutput"]: yield check_classifier_multioutput # basic consistency testing yield check_classifiers_train yield partial(check_classifiers_train, readonly_memmap=True) yield partial(check_classifiers_train, readonly_memmap=True, X_dtype='float32') yield check_classifiers_regression_target if tags["multilabel"]: yield check_classifiers_multilabel_representation_invariance if not tags["no_validation"]: yield check_supervised_y_no_nan if not tags['multioutput_only']: yield check_supervised_y_2d if tags["requires_fit"]: yield check_estimators_unfitted if 'class_weight' in classifier.get_params().keys(): yield check_class_weight_classifiers yield check_non_transformer_estimators_n_iter # test if predict_proba is a monotonic transformation of decision_function yield check_decision_proba_consistency @ignore_warnings(category=FutureWarning) def check_supervised_y_no_nan(name, estimator_orig): # Checks that the Estimator targets are not NaN. estimator = clone(estimator_orig) rng = np.random.RandomState(888) X = rng.randn(10, 5) y = np.full(10, np.inf) y = _enforce_estimator_tags_y(estimator, y) match = ( "Input contains NaN, infinity or a value too large for " r"dtype\('float64'\)." ) err_msg = ( f"Estimator {name} should have raised error on fitting " "array y with NaN value." ) with raises(ValueError, match=match, err_msg=err_msg): estimator.fit(X, y) def _yield_regressor_checks(regressor): tags = _safe_tags(regressor) # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield partial(check_regressors_train, readonly_memmap=True) yield partial(check_regressors_train, readonly_memmap=True, X_dtype='float32') yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features if tags["multioutput"]: yield check_regressor_multioutput yield check_regressors_no_decision_function if not tags["no_validation"] and not tags['multioutput_only']: yield check_supervised_y_2d yield check_supervised_y_no_nan name = regressor.__class__.__name__ if name != 'CCA': # check that the regressor handles int input yield check_regressors_int if tags["requires_fit"]: yield check_estimators_unfitted yield check_non_transformer_estimators_n_iter def _yield_transformer_checks(transformer): tags = _safe_tags(transformer) # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if not tags["no_validation"]: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors yield check_transformer_general if tags["preserves_dtype"]: yield check_transformer_preserve_dtypes yield partial(check_transformer_general, readonly_memmap=True) if not _safe_tags(transformer, key="stateless"): yield check_transformers_unfitted # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] name = transformer.__class__.__name__ if name not in external_solver: yield check_transformer_n_iter def _yield_clustering_checks(clusterer): yield check_clusterer_compute_labels_predict name = clusterer.__class__.__name__ if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield partial(check_clustering, readonly_memmap=True) yield check_estimators_partial_fit_n_features yield check_non_transformer_estimators_n_iter def _yield_outliers_checks(estimator): # checks for outlier detectors that have a fit_predict method if hasattr(estimator, 'fit_predict'): yield check_outliers_fit_predict # checks for estimators that can be used on a test set if hasattr(estimator, 'predict'): yield check_outliers_train yield partial(check_outliers_train, readonly_memmap=True) # test outlier detectors can handle non-array data yield check_classifier_data_not_an_array # test if NotFittedError is raised if _safe_tags(estimator, key="requires_fit"): yield check_estimators_unfitted def _yield_all_checks(estimator): name = estimator.__class__.__name__ tags = _safe_tags(estimator) if "2darray" not in tags["X_types"]: warnings.warn("Can't test estimator {} which requires input " " of type {}".format(name, tags["X_types"]), SkipTestWarning) return if tags["_skip_test"]: warnings.warn("Explicit SKIP via _skip_test tag for estimator " "{}.".format(name), SkipTestWarning) return for check in _yield_checks(estimator): yield check if is_classifier(estimator): for check in _yield_classifier_checks(estimator): yield check if is_regressor(estimator): for check in _yield_regressor_checks(estimator): yield check if hasattr(estimator, 'transform'): for check in _yield_transformer_checks(estimator): yield check if isinstance(estimator, ClusterMixin): for check in _yield_clustering_checks(estimator): yield check if is_outlier_detector(estimator): for check in _yield_outliers_checks(estimator): yield check yield check_parameters_default_constructible yield check_methods_sample_order_invariance yield check_methods_subset_invariance yield check_fit2d_1sample yield check_fit2d_1feature yield check_get_params_invariance yield check_set_params yield check_dict_unchanged yield check_dont_overwrite_parameters yield check_fit_idempotent if not tags["no_validation"]: yield check_n_features_in yield check_fit1d yield check_fit2d_predict1d if tags["requires_y"]: yield check_requires_y_none if tags["requires_positive_X"]: yield check_fit_non_negative def _get_check_estimator_ids(obj): """Create pytest ids for checks. When `obj` is an estimator, this returns the pprint version of the estimator (with `print_changed_only=True`). When `obj` is a function, the name of the function is returned with its keyword arguments. `_get_check_estimator_ids` is designed to be used as the `id` in `pytest.mark.parametrize` where `check_estimator(..., generate_only=True)` is yielding estimators and checks. Parameters ---------- obj : estimator or function Items generated by `check_estimator`. Returns ------- id : str or None See Also -------- check_estimator """ if callable(obj): if not isinstance(obj, partial): return obj.__name__ if not obj.keywords: return obj.func.__name__ kwstring = ",".join(["{}={}".format(k, v) for k, v in obj.keywords.items()]) return "{}({})".format(obj.func.__name__, kwstring) if hasattr(obj, "get_params"): with config_context(print_changed_only=True): return re.sub(r"\s", "", str(obj)) def _construct_instance(Estimator): """Construct Estimator instance if possible.""" required_parameters = getattr(Estimator, "_required_parameters", []) if len(required_parameters): if required_parameters in (["estimator"], ["base_estimator"]): if issubclass(Estimator, RegressorMixin): estimator = Estimator(Ridge()) else: estimator = Estimator(LogisticRegression(C=1)) elif required_parameters in (['estimators'],): # Heterogeneous ensemble classes (i.e. stacking, voting) if issubclass(Estimator, RegressorMixin): estimator = Estimator(estimators=[ ("est1", Ridge(alpha=0.1)), ("est2", Ridge(alpha=1)) ]) else: estimator = Estimator(estimators=[ ("est1", LogisticRegression(C=0.1)), ("est2", LogisticRegression(C=1)) ]) else: msg = (f"Can't instantiate estimator {Estimator.__name__} " f"parameters {required_parameters}") # raise additional warning to be shown by pytest warnings.warn(msg, SkipTestWarning) raise SkipTest(msg) else: estimator = Estimator() return estimator def _maybe_mark_xfail(estimator, check, pytest): # Mark (estimator, check) pairs as XFAIL if needed (see conditions in # _should_be_skipped_or_marked()) # This is similar to _maybe_skip(), but this one is used by # @parametrize_with_checks() instead of check_estimator() should_be_marked, reason = _should_be_skipped_or_marked(estimator, check) if not should_be_marked: return estimator, check else: return pytest.param(estimator, check, marks=pytest.mark.xfail(reason=reason)) def _maybe_skip(estimator, check): # Wrap a check so that it's skipped if needed (see conditions in # _should_be_skipped_or_marked()) # This is similar to _maybe_mark_xfail(), but this one is used by # check_estimator() instead of @parametrize_with_checks which requires # pytest should_be_skipped, reason = _should_be_skipped_or_marked(estimator, check) if not should_be_skipped: return check check_name = (check.func.__name__ if isinstance(check, partial) else check.__name__) @wraps(check) def wrapped(*args, **kwargs): raise SkipTest( f"Skipping {check_name} for {estimator.__class__.__name__}: " f"{reason}" ) return wrapped def _should_be_skipped_or_marked(estimator, check): # Return whether a check should be skipped (when using check_estimator()) # or marked as XFAIL (when using @parametrize_with_checks()), along with a # reason. # Currently, a check should be skipped or marked if # the check is in the _xfail_checks tag of the estimator check_name = (check.func.__name__ if isinstance(check, partial) else check.__name__) xfail_checks = _safe_tags(estimator, key='_xfail_checks') or {} if check_name in xfail_checks: return True, xfail_checks[check_name] return False, 'placeholder reason that will never be used' def parametrize_with_checks(estimators): """Pytest specific decorator for parametrizing estimator checks. The `id` of each check is set to be a pprint version of the estimator and the name of the check with its keyword arguments. This allows to use `pytest -k` to specify which tests to run:: pytest test_check_estimators.py -k check_estimators_fit_returns_self Parameters ---------- estimators : list of estimators instances Estimators to generated checks for. .. versionchanged:: 0.24 Passing a class was deprecated in version 0.23, and support for classes was removed in 0.24. Pass an instance instead. .. versionadded:: 0.24 Returns ------- decorator : `pytest.mark.parametrize` Examples -------- >>> from sklearn.utils.estimator_checks import parametrize_with_checks >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.tree import DecisionTreeRegressor >>> @parametrize_with_checks([LogisticRegression(), ... DecisionTreeRegressor()]) ... def test_sklearn_compatible_estimator(estimator, check): ... check(estimator) """ import pytest if any(isinstance(est, type) for est in estimators): msg = ("Passing a class was deprecated in version 0.23 " "and isn't supported anymore from 0.24." "Please pass an instance instead.") raise TypeError(msg) def checks_generator(): for estimator in estimators: name = type(estimator).__name__ for check in _yield_all_checks(estimator): check = partial(check, name) yield _maybe_mark_xfail(estimator, check, pytest) return pytest.mark.parametrize("estimator, check", checks_generator(), ids=_get_check_estimator_ids) def check_estimator(Estimator, generate_only=False): """Check if estimator adheres to scikit-learn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc, making sure that the estimator complies with `scikit-learn` conventions as detailed in :ref:`rolling_your_own_estimator`. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Setting `generate_only=True` returns a generator that yields (estimator, check) tuples where the check can be called independently from each other, i.e. `check(estimator)`. This allows all checks to be run independently and report the checks that are failing. scikit-learn provides a pytest specific decorator, :func:`~sklearn.utils.parametrize_with_checks`, making it easier to test multiple estimators. Parameters ---------- Estimator : estimator object Estimator instance to check. .. versionchanged:: 0.24 Passing a class was deprecated in version 0.23, and support for classes was removed in 0.24. generate_only : bool, default=False When `False`, checks are evaluated when `check_estimator` is called. When `True`, `check_estimator` returns a generator that yields (estimator, check) tuples. The check is run by calling `check(estimator)`. .. versionadded:: 0.22 Returns ------- checks_generator : generator Generator that yields (estimator, check) tuples. Returned when `generate_only=True`. """ if isinstance(Estimator, type): msg = ("Passing a class was deprecated in version 0.23 " "and isn't supported anymore from 0.24." "Please pass an instance instead.") raise TypeError(msg) estimator = Estimator name = type(estimator).__name__ def checks_generator(): for check in _yield_all_checks(estimator): check = _maybe_skip(estimator, check) yield estimator, partial(check, name) if generate_only: return checks_generator() for estimator, check in checks_generator(): try: check(estimator) except SkipTest as exception: # SkipTest is thrown when pandas can't be imported, or by checks # that are in the xfail_checks tag warnings.warn(str(exception), SkipTestWarning) def _regression_dataset(): global REGRESSION_DATASET if REGRESSION_DATASET is None: X, y = make_regression( n_samples=200, n_features=10, n_informative=1, bias=5.0, noise=20, random_state=42, ) X = StandardScaler().fit_transform(X) REGRESSION_DATASET = X, y return REGRESSION_DATASET def _set_checking_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() name = estimator.__class__.__name__ if ("n_iter" in params and name != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR, LinearSVC if estimator.__class__.__name__ in ['LinearSVR', 'LinearSVC']: estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': # FIXME : init should be removed in 1.1 estimator.set_params(max_iter=500, init='nndsvda') # MLP if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']: estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if name == 'TruncatedSVD': # TruncatedSVD doesn't run with n_components = n_features # This is ugly :-/ estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = min(estimator.n_clusters, 2) if hasattr(estimator, "n_best"): estimator.n_best = 1 if name == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if name == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=2) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) if name in ('HistGradientBoostingClassifier', 'HistGradientBoostingRegressor'): # The default min_samples_leaf (20) isn't appropriate for small # datasets (only very shallow trees are built) that the checks use. estimator.set_params(min_samples_leaf=5) if name == 'DummyClassifier': # the default strategy prior would output constant predictions and fail # for check_classifiers_predictions estimator.set_params(strategy='stratified') # Speed-up by reducing the number of CV or splits for CV estimators loo_cv = ['RidgeCV'] if name not in loo_cv and hasattr(estimator, 'cv'): estimator.set_params(cv=3) if hasattr(estimator, 'n_splits'): estimator.set_params(n_splits=3) if name == 'OneHotEncoder': estimator.set_params(handle_unknown='ignore') if name in CROSS_DECOMPOSITION: estimator.set_params(n_components=1) class _NotAnArray: """An object that is convertible to an array. Parameters ---------- data : array-like The data. """ def __init__(self, data): self.data = np.asarray(data) def __array__(self, dtype=None): return self.data def __array_function__(self, func, types, args, kwargs): if func.__name__ == "may_share_memory": return True raise TypeError("Don't want to call array_function {}!".format( func.__name__)) def _is_pairwise_metric(estimator): """Returns True if estimator accepts pairwise metric. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if _pairwise is set to True and False otherwise. """ metric = getattr(estimator, "metric", None) return bool(metric == 'precomputed') def _pairwise_estimator_convert_X(X, estimator, kernel=linear_kernel): if _is_pairwise_metric(estimator): return pairwise_distances(X, metric='euclidean') if _is_pairwise(estimator): return kernel(X, X) return X def _generate_sparse_matrix(X_csr): """Generate sparse matrices with {32,64}bit indices of diverse format. Parameters ---------- X_csr: CSR Matrix Input matrix in CSR format. Returns ------- out: iter(Matrices) In format['dok', 'lil', 'dia', 'bsr', 'csr', 'csc', 'coo', 'coo_64', 'csc_64', 'csr_64'] """ assert X_csr.format == 'csr' yield 'csr', X_csr.copy() for sparse_format in ['dok', 'lil', 'dia', 'bsr', 'csc', 'coo']: yield sparse_format, X_csr.asformat(sparse_format) # Generate large indices matrix only if its supported by scipy X_coo = X_csr.asformat('coo') X_coo.row = X_coo.row.astype('int64') X_coo.col = X_coo.col.astype('int64') yield "coo_64", X_coo for sparse_format in ['csc', 'csr']: X = X_csr.asformat(sparse_format) X.indices = X.indices.astype('int64') X.indptr = X.indptr.astype('int64') yield sparse_format + "_64", X def check_estimator_sparse_data(name, estimator_orig): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X = _pairwise_estimator_convert_X(X, estimator_orig) X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(int) # catch deprecation warnings with ignore_warnings(category=FutureWarning): estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) tags = _safe_tags(estimator_orig) for matrix_format, X in _generate_sparse_matrix(X_csr): # catch deprecation warnings with ignore_warnings(category=FutureWarning): estimator = clone(estimator_orig) if name in ['Scaler', 'StandardScaler']: estimator.set_params(with_mean=False) # fit and predict if "64" in matrix_format: err_msg = ( f"Estimator {name} doesn't seem to support {matrix_format} " "matrix, and is not failing gracefully, e.g. by using " "check_array(X, accept_large_sparse=False)" ) else: err_msg = ( f"Estimator {name} doesn't seem to fail gracefully on sparse " "data: error message should state explicitly that sparse " "input is not supported if this is not the case." ) with raises( (TypeError, ValueError), match=["sparse", "Sparse"], may_pass=True, err_msg=err_msg, ): with ignore_warnings(category=FutureWarning): estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) if tags['multioutput_only']: assert pred.shape == (X.shape[0], 1) else: assert pred.shape == (X.shape[0],) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) if tags['binary_only']: expected_probs_shape = (X.shape[0], 2) else: expected_probs_shape = (X.shape[0], 4) assert probs.shape == expected_probs_shape @ignore_warnings(category=FutureWarning) def check_sample_weights_pandas_series(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type pandas.Series in the 'fit' function. estimator = clone(estimator_orig) if has_fit_parameter(estimator, "sample_weight"): try: import pandas as pd X = np.array([[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]) X = pd.DataFrame(_pairwise_estimator_convert_X(X, estimator_orig)) y = pd.Series([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2]) weights = pd.Series([1] * 12) if _safe_tags(estimator, key="multioutput_only"): y = pd.DataFrame(y) try: estimator.fit(X, y, sample_weight=weights) except ValueError: raise ValueError("Estimator {0} raises error if " "'sample_weight' parameter is of " "type pandas.Series".format(name)) except ImportError: raise SkipTest("pandas is not installed: not testing for " "input of type pandas.Series to class weight.") @ignore_warnings(category=(FutureWarning)) def check_sample_weights_not_an_array(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type _NotAnArray in the 'fit' function. estimator = clone(estimator_orig) if has_fit_parameter(estimator, "sample_weight"): X = np.array([[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]) X = _NotAnArray(_pairwise_estimator_convert_X(X, estimator_orig)) y = _NotAnArray([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2]) weights = _NotAnArray([1] * 12) if _safe_tags(estimator, key="multioutput_only"): y = _NotAnArray(y.data.reshape(-1, 1)) estimator.fit(X, y, sample_weight=weights) @ignore_warnings(category=(FutureWarning)) def check_sample_weights_list(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type list in the 'fit' function. if has_fit_parameter(estimator_orig, "sample_weight"): estimator = clone(estimator_orig) rnd = np.random.RandomState(0) n_samples = 30 X = _pairwise_estimator_convert_X(rnd.uniform(size=(n_samples, 3)), estimator_orig) y = np.arange(n_samples) % 3 y = _enforce_estimator_tags_y(estimator, y) sample_weight = [3] * n_samples # Test that estimators don't raise any exception estimator.fit(X, y, sample_weight=sample_weight) @ignore_warnings(category=FutureWarning) def check_sample_weights_shape(name, estimator_orig): # check that estimators raise an error if sample_weight # shape mismatches the input if (has_fit_parameter(estimator_orig, "sample_weight") and not _is_pairwise(estimator_orig)): estimator = clone(estimator_orig) X = np.array([[1, 3], [1, 3], [1, 3], [1, 3], [2, 1], [2, 1], [2, 1], [2, 1], [3, 3], [3, 3], [3, 3], [3, 3], [4, 1], [4, 1], [4, 1], [4, 1]]) y = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2]) y = _enforce_estimator_tags_y(estimator, y) estimator.fit(X, y, sample_weight=np.ones(len(y))) with raises(ValueError): estimator.fit(X, y, sample_weight=np.ones(2 * len(y))) with raises(ValueError): estimator.fit(X, y, sample_weight=np.ones((len(y), 2))) @ignore_warnings(category=FutureWarning) def check_sample_weights_invariance(name, estimator_orig, kind="ones"): # For kind="ones" check that the estimators yield same results for # unit weights and no weights # For kind="zeros" check that setting sample_weight to 0 is equivalent # to removing corresponding samples. estimator1 = clone(estimator_orig) estimator2 = clone(estimator_orig) set_random_state(estimator1, random_state=0) set_random_state(estimator2, random_state=0) X1 = np.array([[1, 3], [1, 3], [1, 3], [1, 3], [2, 1], [2, 1], [2, 1], [2, 1], [3, 3], [3, 3], [3, 3], [3, 3], [4, 1], [4, 1], [4, 1], [4, 1]], dtype=np.float64) y1 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int) if kind == 'ones': X2 = X1 y2 = y1 sw2 = np.ones(shape=len(y1)) err_msg = (f"For {name} sample_weight=None is not equivalent to " f"sample_weight=ones") elif kind == 'zeros': # Construct a dataset that is very different to (X, y) if weights # are disregarded, but identical to (X, y) given weights. X2 = np.vstack([X1, X1 + 1]) y2 = np.hstack([y1, 3 - y1]) sw2 = np.ones(shape=len(y1) * 2) sw2[len(y1):] = 0 X2, y2, sw2 = shuffle(X2, y2, sw2, random_state=0) err_msg = (f"For {name}, a zero sample_weight is not equivalent " f"to removing the sample") else: # pragma: no cover raise ValueError y1 = _enforce_estimator_tags_y(estimator1, y1) y2 = _enforce_estimator_tags_y(estimator2, y2) estimator1.fit(X1, y=y1, sample_weight=None) estimator2.fit(X2, y=y2, sample_weight=sw2) for method in ["predict", "predict_proba", "decision_function", "transform"]: if hasattr(estimator_orig, method): X_pred1 = getattr(estimator1, method)(X1) X_pred2 = getattr(estimator2, method)(X1) assert_allclose_dense_sparse(X_pred1, X_pred2, err_msg=err_msg) @ignore_warnings(category=(FutureWarning, UserWarning)) def check_dtype_object(name, estimator_orig): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = _pairwise_estimator_convert_X(rng.rand(40, 10), estimator_orig) X = X.astype(object) tags = _safe_tags(estimator_orig) y = (X[:, 0] * 4).astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) with raises(Exception, match="Unknown label type", may_pass=True): estimator.fit(X, y.astype(object)) if 'string' not in tags['X_types']: X[0, 0] = {'foo': 'bar'} msg = "argument must be a string.* number" with raises(TypeError, match=msg): estimator.fit(X, y) else: # Estimators supporting string will not call np.asarray to convert the # data to numeric and therefore, the error will not be raised. # Checking for each element dtype in the input array will be costly. # Refer to #11401 for full discussion. estimator.fit(X, y) def check_complex_data(name, estimator_orig): # check that estimators raise an exception on providing complex data X = np.random.sample(10) + 1j * np.random.sample(10) X = X.reshape(-1, 1) y = np.random.sample(10) + 1j * np.random.sample(10) estimator = clone(estimator_orig) with raises(ValueError, match="Complex data not supported"): estimator.fit(X, y) @ignore_warnings def check_dict_unchanged(name, estimator_orig): # this estimator raises # ValueError: Found array with 0 feature(s) (shape=(23, 0)) # while a minimum of 1 is required. # error if name in ['SpectralCoclustering']: return rnd = np.random.RandomState(0) if name in ['RANSACRegressor']: X = 3 * rnd.uniform(size=(20, 3)) else: X = 2 * rnd.uniform(size=(20, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 if hasattr(estimator, "n_best"): estimator.n_best = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): dict_before = estimator.__dict__.copy() getattr(estimator, method)(X) assert estimator.__dict__ == dict_before, ( 'Estimator changes __dict__ during %s' % method) def _is_public_parameter(attr): return not (attr.startswith('_') or attr.endswith('_')) @ignore_warnings(category=FutureWarning) def check_dont_overwrite_parameters(name, estimator_orig): # check that fit method only changes or sets private attributes if hasattr(estimator_orig.__init__, "deprecated_original"): # to not check deprecated classes return estimator = clone(estimator_orig) rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) dict_before_fit = estimator.__dict__.copy() estimator.fit(X, y) dict_after_fit = estimator.__dict__ public_keys_after_fit = [key for key in dict_after_fit.keys() if _is_public_parameter(key)] attrs_added_by_fit = [key for key in public_keys_after_fit if key not in dict_before_fit.keys()] # check that fit doesn't add any public attribute assert not attrs_added_by_fit, ( 'Estimator adds public attribute(s) during' ' the fit method.' ' Estimators are only allowed to add private attributes' ' either started with _ or ended' ' with _ but %s added' % ', '.join(attrs_added_by_fit)) # check that fit doesn't change any public attribute attrs_changed_by_fit = [key for key in public_keys_after_fit if (dict_before_fit[key] is not dict_after_fit[key])] assert not attrs_changed_by_fit, ( 'Estimator changes public attribute(s) during' ' the fit method. Estimators are only allowed' ' to change attributes started' ' or ended with _, but' ' %s changed' % ', '.join(attrs_changed_by_fit)) @ignore_warnings(category=FutureWarning) def check_fit2d_predict1d(name, estimator_orig): # check by fitting a 2d array and predicting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): assert_raise_message(ValueError, "Reshape your data", getattr(estimator, method), X[0]) def _apply_on_subsets(func, X): # apply function on the whole set and on mini batches result_full = func(X) n_features = X.shape[1] result_by_batch = [func(batch.reshape(1, n_features)) for batch in X] # func can output tuple (e.g. score_samples) if type(result_full) == tuple: result_full = result_full[0] result_by_batch = list(map(lambda x: x[0], result_by_batch)) if sparse.issparse(result_full): result_full = result_full.A result_by_batch = [x.A for x in result_by_batch] return np.ravel(result_full), np.ravel(result_by_batch) @ignore_warnings(category=FutureWarning) def check_methods_subset_invariance(name, estimator_orig): # check that method gives invariant results if applied # on mini batches or the whole set rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "score_samples", "predict_proba"]: msg = ("{method} of {name} is not invariant when applied " "to a subset.").format(method=method, name=name) if hasattr(estimator, method): result_full, result_by_batch = _apply_on_subsets( getattr(estimator, method), X) assert_allclose(result_full, result_by_batch, atol=1e-7, err_msg=msg) @ignore_warnings(category=FutureWarning) def check_methods_sample_order_invariance(name, estimator_orig): # check that method gives invariant results if applied # on a subset with different sample order rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(np.int64) if _safe_tags(estimator_orig, key='binary_only'): y[y == 2] = 1 estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 2 set_random_state(estimator, 1) estimator.fit(X, y) idx = np.random.permutation(X.shape[0]) for method in ["predict", "transform", "decision_function", "score_samples", "predict_proba"]: msg = ("{method} of {name} is not invariant when applied to a dataset" "with different sample order.").format(method=method, name=name) if hasattr(estimator, method): assert_allclose_dense_sparse(getattr(estimator, method)(X)[idx], getattr(estimator, method)(X[idx]), atol=1e-9, err_msg=msg) @ignore_warnings def check_fit2d_1sample(name, estimator_orig): # Check that fitting a 2d array with only one sample either works or # returns an informative message. The error message should either mention # the number of samples or the number of classes. rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) # min_cluster_size cannot be less than the data size for OPTICS. if name == 'OPTICS': estimator.set_params(min_samples=1) msgs = ["1 sample", "n_samples = 1", "n_samples=1", "one sample", "1 class", "one class"] with raises(ValueError, match=msgs, may_pass=True): estimator.fit(X, y) @ignore_warnings def check_fit2d_1feature(name, estimator_orig): # check fitting a 2d array with only 1 feature either works or returns # informative message rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = X[:, 0].astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 # ensure two labels in subsample for RandomizedLogisticRegression if name == 'RandomizedLogisticRegression': estimator.sample_fraction = 1 # ensure non skipped trials for RANSACRegressor if name == 'RANSACRegressor': estimator.residual_threshold = 0.5 y = _enforce_estimator_tags_y(estimator, y) set_random_state(estimator, 1) msgs = [r"1 feature\(s\)", "n_features = 1", "n_features=1"] with raises(ValueError, match=msgs, may_pass=True): estimator.fit(X, y) @ignore_warnings def check_fit1d(name, estimator_orig): # check fitting 1d X array raises a ValueError rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(int) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) with raises(ValueError): estimator.fit(X, y) @ignore_warnings(category=FutureWarning) def check_transformer_general(name, transformer, readonly_memmap=False): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() X = _pairwise_estimator_convert_X(X, transformer) if readonly_memmap: X, y = create_memmap_backed_data([X, y]) _check_transformer(name, transformer, X, y) @ignore_warnings(category=FutureWarning) def check_transformer_data_not_an_array(name, transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 X = _pairwise_estimator_convert_X(X, transformer) this_X = _NotAnArray(X) this_y = _NotAnArray(np.asarray(y)) _check_transformer(name, transformer, this_X, this_y) # try the same with some list _check_transformer(name, transformer, X.tolist(), y.tolist()) @ignore_warnings(category=FutureWarning) def check_transformers_unfitted(name, transformer): X, y = _regression_dataset() transformer = clone(transformer) with raises( (AttributeError, ValueError), err_msg="The unfitted " f"transformer {name} does not raise an error when " "transform is called. Perhaps use " "check_is_fitted in transform.", ): transformer.transform(X) def _check_transformer(name, transformer_orig, X, y): n_samples, n_features = np.asarray(X).shape transformer = clone(transformer_orig) set_random_state(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[np.asarray(y), np.asarray(y)] y_[::2, 1] *= 2 if isinstance(X, _NotAnArray): y_ = _NotAnArray(y_) else: y_ = y transformer.fit(X, y_) # fit_transform method should work on non fitted estimator transformer_clone = clone(transformer) X_pred = transformer_clone.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert x_pred.shape[0] == n_samples else: # check for consistent n_samples assert X_pred.shape[0] == n_samples if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if _safe_tags(transformer_orig, key='non_deterministic'): msg = name + ' is non deterministic' raise SkipTest(msg) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_allclose_dense_sparse( x_pred, x_pred2, atol=1e-2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer) assert_allclose_dense_sparse( x_pred, x_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) else: assert_allclose_dense_sparse( X_pred, X_pred2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer, atol=1e-2) assert_allclose_dense_sparse( X_pred, X_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) assert _num_samples(X_pred2) == n_samples assert _num_samples(X_pred3) == n_samples # raises error on malformed input for transform if hasattr(X, 'shape') and \ not _safe_tags(transformer, key="stateless") and \ X.ndim == 2 and X.shape[1] > 1: # If it's not an array, it does not have a 'T' property with raises( ValueError, err_msg=f"The transformer {name} does not raise an error " "when the number of features in transform is different from " "the number of features in fit." ): transformer.transform(X[:, :-1]) @ignore_warnings def check_pipeline_consistency(name, estimator_orig): if _safe_tags(estimator_orig, key='non_deterministic'): msg = name + ' is non deterministic' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() X = _pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_allclose_dense_sparse(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, estimator_orig): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) n_samples = 30 X = rnd.uniform(size=(n_samples, 3)) X = _pairwise_estimator_convert_X(X, estimator_orig) y = np.arange(n_samples) % 3 estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] if args[0] == "self": # if_delegate_has_method makes methods into functions # with an explicit "self", so need to shift arguments args = args[1:] assert args[1] in ["y", "Y"], ( "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, type(estimator).__name__, args)) @ignore_warnings def check_estimators_dtypes(name, estimator_orig): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_32 = _pairwise_estimator_convert_X(X_train_32, estimator_orig) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = _enforce_estimator_tags_y(estimator_orig, y) methods = ["predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: estimator = clone(estimator_orig) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_transformer_preserve_dtypes(name, transformer_orig): # check that dtype are preserved meaning if input X is of some dtype # X_transformed should be from the same dtype. X, y = make_blobs( n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, cluster_std=0.1, ) X = StandardScaler().fit_transform(X) X -= X.min() X = _pairwise_estimator_convert_X(X, transformer_orig) for dtype in _safe_tags(transformer_orig, key="preserves_dtype"): X_cast = X.astype(dtype) transformer = clone(transformer_orig) set_random_state(transformer) X_trans = transformer.fit_transform(X_cast, y) if isinstance(X_trans, tuple): # cross-decompostion returns a tuple of (x_scores, y_scores) # when given y with fit_transform; only check the first element X_trans = X_trans[0] # check that the output dtype is preserved assert X_trans.dtype == dtype, ( f'Estimator transform dtype: {X_trans.dtype} - ' f'original/expected dtype: {dtype.__name__}' ) @ignore_warnings(category=FutureWarning) def check_estimators_empty_data_messages(name, estimator_orig): e = clone(estimator_orig) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: err_msg = ( f"The estimator {name} does not raise an error when an " "empty data is used to train. Perhaps use check_array in train." ) with raises(ValueError, err_msg=err_msg): e.fit(X_zero_samples, []) X_zero_features = np.empty(0).reshape(12, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = _enforce_estimator_tags_y( e, np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]) ) msg = ( r"0 feature\(s\) \(shape=\(\d*, 0\)\) while a minimum of \d* " "is required." ) with raises(ValueError, match=msg): e.fit(X_zero_features, y) @ignore_warnings(category=FutureWarning) def check_estimators_nan_inf(name, estimator_orig): # Checks that Estimator X's do not contain NaN or inf. rnd = np.random.RandomState(0) X_train_finite = _pairwise_estimator_convert_X(rnd.uniform(size=(10, 3)), estimator_orig) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = _enforce_estimator_tags_y(estimator_orig, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with ignore_warnings(category=FutureWarning): estimator = clone(estimator_orig) set_random_state(estimator, 1) # try to fit with raises( ValueError, match=["inf", "NaN"], err_msg=error_string_fit ): estimator.fit(X_train, y) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): with raises( ValueError, match=["inf", "NaN"], err_msg=error_string_predict, ): estimator.predict(X_train) # transform if hasattr(estimator, "transform"): with raises( ValueError, match=["inf", "NaN"], err_msg=error_string_transform, ): estimator.transform(X_train) @ignore_warnings def check_nonsquare_error(name, estimator_orig): """Test that error is thrown when non-square data provided.""" X, y = make_blobs(n_samples=20, n_features=10) estimator = clone(estimator_orig) with raises( ValueError, err_msg=f"The pairwise estimator {name} does not raise an error " "on non-square data", ): estimator.fit(X, y) @ignore_warnings def check_estimators_pickle(name, estimator_orig): """Test that we can pickle all estimators.""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() X = _pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel) tags = _safe_tags(estimator_orig) # include NaN values when the estimator should deal with them if tags['allow_nan']: # set randomly 10 elements to np.nan rng = np.random.RandomState(42) mask = rng.choice(X.size, 10, replace=False) X.reshape(-1)[mask] = np.nan estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) set_random_state(estimator) estimator.fit(X, y) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) module_name = estimator.__module__ if module_name.startswith('sklearn.') and not ( "test_" in module_name or module_name.endswith("_testing") ): # strict check for sklearn estimators that are not implemented in test # modules. assert b"version" in pickled_estimator unpickled_estimator = pickle.loads(pickled_estimator) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_allclose_dense_sparse(result[method], unpickled_result) @ignore_warnings(category=FutureWarning) def check_estimators_partial_fit_n_features(name, estimator_orig): # check if number of features changes between calls to partial_fit. if not hasattr(estimator_orig, 'partial_fit'): return estimator = clone(estimator_orig) X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() y = _enforce_estimator_tags_y(estimator_orig, y) try: if is_classifier(estimator): classes = np.unique(y) estimator.partial_fit(X, y, classes=classes) else: estimator.partial_fit(X, y) except NotImplementedError: return with raises( ValueError, err_msg=f"The estimator {name} does not raise an error when the " "number of features changes between calls to partial_fit.", ): estimator.partial_fit(X[:, :-1], y) @ignore_warnings(category=FutureWarning) def check_classifier_multioutput(name, estimator): n_samples, n_labels, n_classes = 42, 5, 3 tags = _safe_tags(estimator) estimator = clone(estimator) X, y = make_multilabel_classification(random_state=42, n_samples=n_samples, n_labels=n_labels, n_classes=n_classes) estimator.fit(X, y) y_pred = estimator.predict(X) assert y_pred.shape == (n_samples, n_classes), ( "The shape of the prediction for multioutput data is " "incorrect. Expected {}, got {}." .format((n_samples, n_labels), y_pred.shape)) assert y_pred.dtype.kind == 'i' if hasattr(estimator, "decision_function"): decision = estimator.decision_function(X) assert isinstance(decision, np.ndarray) assert decision.shape == (n_samples, n_classes), ( "The shape of the decision function output for " "multioutput data is incorrect. Expected {}, got {}." .format((n_samples, n_classes), decision.shape)) dec_pred = (decision > 0).astype(int) dec_exp = estimator.classes_[dec_pred] assert_array_equal(dec_exp, y_pred) if hasattr(estimator, "predict_proba"): y_prob = estimator.predict_proba(X) if isinstance(y_prob, list) and not tags['poor_score']: for i in range(n_classes): assert y_prob[i].shape == (n_samples, 2), ( "The shape of the probability for multioutput data is" " incorrect. Expected {}, got {}." .format((n_samples, 2), y_prob[i].shape)) assert_array_equal( np.argmax(y_prob[i], axis=1).astype(int), y_pred[:, i] ) elif not tags['poor_score']: assert y_prob.shape == (n_samples, n_classes), ( "The shape of the probability for multioutput data is" " incorrect. Expected {}, got {}." .format((n_samples, n_classes), y_prob.shape)) assert_array_equal(y_prob.round().astype(int), y_pred) if (hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba")): for i in range(n_classes): y_proba = estimator.predict_proba(X)[:, i] y_decision = estimator.decision_function(X) assert_array_equal(rankdata(y_proba), rankdata(y_decision[:, i])) @ignore_warnings(category=FutureWarning) def check_regressor_multioutput(name, estimator): estimator = clone(estimator) n_samples = n_features = 10 if not _is_pairwise_metric(estimator): n_samples = n_samples + 1 X, y = make_regression(random_state=42, n_targets=5, n_samples=n_samples, n_features=n_features) X = _pairwise_estimator_convert_X(X, estimator) estimator.fit(X, y) y_pred = estimator.predict(X) assert y_pred.dtype == np.dtype('float64'), ( "Multioutput predictions by a regressor are expected to be" " floating-point precision. Got {} instead".format(y_pred.dtype)) assert y_pred.shape == y.shape, ( "The shape of the prediction for multioutput data is incorrect." " Expected {}, got {}.") @ignore_warnings(category=FutureWarning) def check_clustering(name, clusterer_orig, readonly_memmap=False): clusterer = clone(clusterer_orig) X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) rng = np.random.RandomState(7) X_noise = np.concatenate([X, rng.uniform(low=-3, high=3, size=(5, 2))]) if readonly_memmap: X, y, X_noise = create_memmap_backed_data([X, y, X_noise]) n_samples, n_features = X.shape # catch deprecation and neighbors warnings if hasattr(clusterer, "n_clusters"): clusterer.set_params(n_clusters=3) set_random_state(clusterer) if name == 'AffinityPropagation': clusterer.set_params(preference=-100) clusterer.set_params(max_iter=100) # fit clusterer.fit(X) # with lists clusterer.fit(X.tolist()) pred = clusterer.labels_ assert pred.shape == (n_samples,) assert adjusted_rand_score(pred, y) > 0.4 if _safe_tags(clusterer, key='non_deterministic'): return set_random_state(clusterer) with warnings.catch_warnings(record=True): pred2 = clusterer.fit_predict(X) assert_array_equal(pred, pred2) # fit_predict(X) and labels_ should be of type int assert pred.dtype in [np.dtype('int32'), np.dtype('int64')] assert pred2.dtype in [np.dtype('int32'), np.dtype('int64')] # Add noise to X to test the possible values of the labels labels = clusterer.fit_predict(X_noise) # There should be at least one sample in every cluster. Equivalently # labels_ should contain all the consecutive values between its # min and its max. labels_sorted = np.unique(labels) assert_array_equal(labels_sorted, np.arange(labels_sorted[0], labels_sorted[-1] + 1)) # Labels are expected to start at 0 (no noise) or -1 (if noise) assert labels_sorted[0] in [0, -1] # Labels should be less than n_clusters - 1 if hasattr(clusterer, 'n_clusters'): n_clusters = getattr(clusterer, 'n_clusters') assert n_clusters - 1 >= labels_sorted[-1] # else labels should be less than max(labels_) which is necessarily true @ignore_warnings(category=FutureWarning) def check_clusterer_compute_labels_predict(name, clusterer_orig): """Check that predict is invariant of compute_labels.""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = clone(clusterer_orig) set_random_state(clusterer) if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) @ignore_warnings(category=FutureWarning) def check_classifiers_one_label(name, classifier_orig): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with ignore_warnings(category=FutureWarning): classifier = clone(classifier_orig) with raises( ValueError, match="class", may_pass=True, err_msg=error_string_fit ) as cm: classifier.fit(X_train, y) if cm.raised_and_matched: # ValueError was raised with proper error message return assert_array_equal( classifier.predict(X_test), y, err_msg=error_string_predict ) @ignore_warnings # Warnings are raised by decision function def check_classifiers_train( name, classifier_orig, readonly_memmap=False, X_dtype="float64" ): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m = X_m.astype(X_dtype) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] if name in ['BernoulliNB', 'MultinomialNB', 'ComplementNB', 'CategoricalNB']: X_m -= X_m.min() X_b -= X_b.min() if readonly_memmap: X_m, y_m, X_b, y_b = create_memmap_backed_data([X_m, y_m, X_b, y_b]) problems = [(X_b, y_b)] tags = _safe_tags(classifier_orig) if not tags['binary_only']: problems.append((X_m, y_m)) for (X, y) in problems: classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape classifier = clone(classifier_orig) X = _pairwise_estimator_convert_X(X, classifier) y = _enforce_estimator_tags_y(classifier, y) set_random_state(classifier) # raises error on malformed input for fit if not tags["no_validation"]: with raises( ValueError, err_msg=f"The classifier {name} does not raise an error when " "incorrect/malformed input data for fit is passed. The number " "of training examples is not the same as the number of " "labels. Perhaps use check_X_y in fit.", ): classifier.fit(X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert hasattr(classifier, "classes_") y_pred = classifier.predict(X) assert y_pred.shape == (n_samples,) # training set performance if not tags['poor_score']: assert accuracy_score(y, y_pred) > 0.83 # raises error on malformed input for predict msg_pairwise = ( "The classifier {} does not raise an error when shape of X in " " {} is not equal to (n_test_samples, n_training_samples)") msg = ("The classifier {} does not raise an error when the number of " "features in {} is different from the number of features in " "fit.") if not tags["no_validation"]: if _is_pairwise(classifier): with raises( ValueError, err_msg=msg_pairwise.format(name, "predict"), ): classifier.predict(X.reshape(-1, 1)) else: with raises(ValueError, err_msg=msg.format(name, "predict")): classifier.predict(X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes == 2: if not tags["multioutput_only"]: assert decision.shape == (n_samples,) else: assert decision.shape == (n_samples, 1) dec_pred = (decision.ravel() > 0).astype(int) assert_array_equal(dec_pred, y_pred) else: assert decision.shape == (n_samples, n_classes) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input for decision_function if not tags["no_validation"]: if _is_pairwise(classifier): with raises( ValueError, err_msg=msg_pairwise.format( name, "decision_function" ), ): classifier.decision_function(X.reshape(-1, 1)) else: with raises( ValueError, err_msg=msg.format(name, "decision_function"), ): classifier.decision_function(X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert y_prob.shape == (n_samples, n_classes) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) if not tags["no_validation"]: # raises error on malformed input for predict_proba if _is_pairwise(classifier_orig): with raises( ValueError, err_msg=msg_pairwise.format(name, "predict_proba"), ): classifier.predict_proba(X.reshape(-1, 1)) else: with raises( ValueError, err_msg=msg.format(name, "predict_proba"), ): classifier.predict_proba(X.T) if hasattr(classifier, "predict_log_proba"): # predict_log_proba is a transformation of predict_proba y_log_prob = classifier.predict_log_proba(X) assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9) assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob)) def check_outlier_corruption(num_outliers, expected_outliers, decision): # Check for deviation from the precise given contamination level that may # be due to ties in the anomaly scores. if num_outliers < expected_outliers: start = num_outliers end = expected_outliers + 1 else: start = expected_outliers end = num_outliers + 1 # ensure that all values in the 'critical area' are tied, # leading to the observed discrepancy between provided # and actual contamination levels. sorted_decision = np.sort(decision) msg = ('The number of predicted outliers is not equal to the expected ' 'number of outliers and this difference is not explained by the ' 'number of ties in the decision_function values') assert len(np.unique(sorted_decision[start:end])) == 1, msg def check_outliers_train(name, estimator_orig, readonly_memmap=True): n_samples = 300 X, _ = make_blobs(n_samples=n_samples, random_state=0) X = shuffle(X, random_state=7) if readonly_memmap: X = create_memmap_backed_data(X) n_samples, n_features = X.shape estimator = clone(estimator_orig) set_random_state(estimator) # fit estimator.fit(X) # with lists estimator.fit(X.tolist()) y_pred = estimator.predict(X) assert y_pred.shape == (n_samples,) assert y_pred.dtype.kind == 'i' assert_array_equal(np.unique(y_pred), np.array([-1, 1])) decision = estimator.decision_function(X) scores = estimator.score_samples(X) for output in [decision, scores]: assert output.dtype == np.dtype('float') assert output.shape == (n_samples,) # raises error on malformed input for predict with raises(ValueError): estimator.predict(X.T) # decision_function agrees with predict dec_pred = (decision >= 0).astype(int) dec_pred[dec_pred == 0] = -1 assert_array_equal(dec_pred, y_pred) # raises error on malformed input for decision_function with raises(ValueError): estimator.decision_function(X.T) # decision_function is a translation of score_samples y_dec = scores - estimator.offset_ assert_allclose(y_dec, decision) # raises error on malformed input for score_samples with raises(ValueError): estimator.score_samples(X.T) # contamination parameter (not for OneClassSVM which has the nu parameter) if (hasattr(estimator, 'contamination') and not hasattr(estimator, 'novelty')): # proportion of outliers equal to contamination parameter when not # set to 'auto'. This is true for the training set and cannot thus be # checked as follows for estimators with a novelty parameter such as # LocalOutlierFactor (tested in check_outliers_fit_predict) expected_outliers = 30 contamination = expected_outliers / n_samples estimator.set_params(contamination=contamination) estimator.fit(X) y_pred = estimator.predict(X) num_outliers = np.sum(y_pred != 1) # num_outliers should be equal to expected_outliers unless # there are ties in the decision_function values. this can # only be tested for estimators with a decision_function # method, i.e. all estimators except LOF which is already # excluded from this if branch. if num_outliers != expected_outliers: decision = estimator.decision_function(X) check_outlier_corruption(num_outliers, expected_outliers, decision) # raises error when contamination is a scalar and not in [0,1] msg = r"contamination must be in \(0, 0.5]" for contamination in [-0.5, 2.3]: estimator.set_params(contamination=contamination) with raises(ValueError, match=msg): estimator.fit(X) @ignore_warnings(category=(FutureWarning)) def check_classifiers_multilabel_representation_invariance( name, classifier_orig ): X, y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, y_train = X[:80], y[:80] X_test = X[80:] y_train_list_of_lists = y_train.tolist() y_train_list_of_arrays = list(y_train) classifier = clone(classifier_orig) set_random_state(classifier) y_pred = classifier.fit(X_train, y_train).predict(X_test) y_pred_list_of_lists = classifier.fit( X_train, y_train_list_of_lists).predict(X_test) y_pred_list_of_arrays = classifier.fit( X_train, y_train_list_of_arrays).predict(X_test) assert_array_equal(y_pred, y_pred_list_of_arrays) assert_array_equal(y_pred, y_pred_list_of_lists) assert y_pred.dtype == y_pred_list_of_arrays.dtype assert y_pred.dtype == y_pred_list_of_lists.dtype assert type(y_pred) == type(y_pred_list_of_arrays) assert type(y_pred) == type(y_pred_list_of_lists) @ignore_warnings(category=FutureWarning) def check_estimators_fit_returns_self( name, estimator_orig, readonly_memmap=False ): """Check if self is returned when calling fit.""" X, y = make_blobs(random_state=0, n_samples=21) # some want non-negative input X -= X.min() X = _pairwise_estimator_convert_X(X, estimator_orig) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) if readonly_memmap: X, y = create_memmap_backed_data([X, y]) set_random_state(estimator) assert estimator.fit(X, y) is estimator @ignore_warnings def check_estimators_unfitted(name, estimator_orig): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise a NotFittedError. """ # Common test for Regressors, Classifiers and Outlier detection estimators X, y = _regression_dataset() estimator = clone(estimator_orig) for method in ('decision_function', 'predict', 'predict_proba', 'predict_log_proba'): if hasattr(estimator, method): with raises(NotFittedError): getattr(estimator, method)(X) @ignore_warnings(category=FutureWarning) def check_supervised_y_2d(name, estimator_orig): tags = _safe_tags(estimator_orig) rnd = np.random.RandomState(0) n_samples = 30 X = _pairwise_estimator_convert_X( rnd.uniform(size=(n_samples, 3)), estimator_orig ) y = np.arange(n_samples) % 3 y = _enforce_estimator_tags_y(estimator_orig, y) estimator = clone(estimator_orig) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if not tags['multioutput']: # check that we warned if we don't support multi-output assert len(w) > 0, msg assert "DataConversionWarning('A column-vector y" \ " was passed when a 1d array was expected" in msg assert_allclose(y_pred.ravel(), y_pred_2d.ravel()) @ignore_warnings def check_classifiers_predictions(X, y, name, classifier_orig): classes = np.unique(y) classifier = clone(classifier_orig) if name == 'BernoulliNB': X = X > X.mean() set_random_state(classifier) classifier.fit(X, y) y_pred = classifier.predict(X) if hasattr(classifier, "decision_function"): decision = classifier.decision_function(X) assert isinstance(decision, np.ndarray) if len(classes) == 2: dec_pred = (decision.ravel() > 0).astype(int) dec_exp = classifier.classes_[dec_pred] assert_array_equal(dec_exp, y_pred, err_msg="decision_function does not match " "classifier for %r: expected '%s', got '%s'" % (classifier, ", ".join(map(str, dec_exp)), ", ".join(map(str, y_pred)))) elif getattr(classifier, 'decision_function_shape', 'ovr') == 'ovr': decision_y = np.argmax(decision, axis=1).astype(int) y_exp = classifier.classes_[decision_y] assert_array_equal(y_exp, y_pred, err_msg="decision_function does not match " "classifier for %r: expected '%s', got '%s'" % (classifier, ", ".join(map(str, y_exp)), ", ".join(map(str, y_pred)))) # training set performance if name != "ComplementNB": # This is a pathological data set for ComplementNB. # For some specific cases 'ComplementNB' predicts less classes # than expected assert_array_equal(np.unique(y), np.unique(y_pred)) assert_array_equal(classes, classifier.classes_, err_msg="Unexpected classes_ attribute for %r: " "expected '%s', got '%s'" % (classifier, ", ".join(map(str, classes)), ", ".join(map(str, classifier.classes_)))) def _choose_check_classifiers_labels(name, y, y_names): # Semisupervised classifers use -1 as the indicator for an unlabeled # sample. return y if name in ["LabelPropagation", "LabelSpreading", "SelfTrainingClassifier"] else y_names def check_classifiers_classes(name, classifier_orig): X_multiclass, y_multiclass = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X_multiclass, y_multiclass = shuffle(X_multiclass, y_multiclass, random_state=7) X_multiclass = StandardScaler().fit_transform(X_multiclass) # We need to make sure that we have non negative data, for things # like NMF X_multiclass -= X_multiclass.min() - .1 X_binary = X_multiclass[y_multiclass != 2] y_binary = y_multiclass[y_multiclass != 2] X_multiclass = _pairwise_estimator_convert_X(X_multiclass, classifier_orig) X_binary = _pairwise_estimator_convert_X(X_binary, classifier_orig) labels_multiclass = ["one", "two", "three"] labels_binary = ["one", "two"] y_names_multiclass = np.take(labels_multiclass, y_multiclass) y_names_binary = np.take(labels_binary, y_binary) problems = [(X_binary, y_binary, y_names_binary)] if not _safe_tags(classifier_orig, key='binary_only'): problems.append((X_multiclass, y_multiclass, y_names_multiclass)) for X, y, y_names in problems: for y_names_i in [y_names, y_names.astype('O')]: y_ = _choose_check_classifiers_labels(name, y, y_names_i) check_classifiers_predictions(X, y_, name, classifier_orig) labels_binary = [-1, 1] y_names_binary = np.take(labels_binary, y_binary) y_binary = _choose_check_classifiers_labels(name, y_binary, y_names_binary) check_classifiers_predictions(X_binary, y_binary, name, classifier_orig) @ignore_warnings(category=FutureWarning) def check_regressors_int(name, regressor_orig): X, _ = _regression_dataset() X = _pairwise_estimator_convert_X(X[:50], regressor_orig) rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = _enforce_estimator_tags_y(regressor_orig, y) rnd = np.random.RandomState(0) # separate estimators to control random seeds regressor_1 = clone(regressor_orig) regressor_2 = clone(regressor_orig) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(float)) pred2 = regressor_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) @ignore_warnings(category=FutureWarning) def check_regressors_train( name, regressor_orig, readonly_memmap=False, X_dtype=np.float64 ): X, y = _regression_dataset() X = X.astype(X_dtype) X = _pairwise_estimator_convert_X(X, regressor_orig) y = scale(y) # X is already scaled regressor = clone(regressor_orig) y = _enforce_estimator_tags_y(regressor, y) if name in CROSS_DECOMPOSITION: rnd = np.random.RandomState(0) y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y if readonly_memmap: X, y, y_ = create_memmap_backed_data([X, y, y_]) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit with raises( ValueError, err_msg=f"The classifier {name} does not raise an error when " "incorrect/malformed input data for fit is passed. The number of " "training examples is not the same as the number of labels. Perhaps " "use check_X_y in fit.", ): regressor.fit(X, y[:-1]) # fit set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert y_pred.shape == y_.shape # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if not _safe_tags(regressor, key="poor_score"): assert regressor.score(X, y_) > 0.5 @ignore_warnings def check_regressors_no_decision_function(name, regressor_orig): # check that regressors don't have a decision_function, predict_proba, or # predict_log_proba method. rng = np.random.RandomState(0) regressor = clone(regressor_orig) X = rng.normal(size=(10, 4)) X = _pairwise_estimator_convert_X(X, regressor_orig) y = _enforce_estimator_tags_y(regressor, X[:, 0]) regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: assert not hasattr(regressor, func_name) @ignore_warnings(category=FutureWarning) def check_class_weight_classifiers(name, classifier_orig): if _safe_tags(classifier_orig, key='binary_only'): problems = [2] else: problems = [2, 3] for n_centers in problems: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # can't use gram_if_pairwise() here, setting up gram matrix manually if _is_pairwise(classifier_orig): X_test = rbf_kernel(X_test, X_train) X_train = rbf_kernel(X_train, X_train) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} classifier = clone(classifier_orig).set_params( class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) if hasattr(classifier, "n_iter_no_change"): classifier.set_params(n_iter_no_change=20) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) # XXX: Generally can use 0.89 here. On Windows, LinearSVC gets # 0.88 (Issue #9111) if not _safe_tags(classifier_orig, key='poor_score'): assert np.mean(y_pred == 0) > 0.87 @ignore_warnings(category=FutureWarning) def check_class_weight_balanced_classifiers( name, classifier_orig, X_train, y_train, X_test, y_test, weights ): classifier = clone(classifier_orig) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert (f1_score(y_test, y_pred_balanced, average='weighted') > f1_score(y_test, y_pred, average='weighted')) @ignore_warnings(category=FutureWarning) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" # this is run on classes, not instances, though this should be changed X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) if hasattr(classifier, 'cv'): classifier.set_params(cv=3) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_allclose(coef_balanced, coef_manual, err_msg="Classifier %s is not computing" " class_weight=balanced properly." % name) @ignore_warnings(category=FutureWarning) def check_estimators_overwrite_params(name, estimator_orig): X, y = make_blobs(random_state=0, n_samples=21) # some want non-negative input X -= X.min() X = _pairwise_estimator_convert_X(X, estimator_orig, kernel=rbf_kernel) estimator = clone(estimator_orig) y = _enforce_estimator_tags_y(estimator, y) set_random_state(estimator) # Make a physical copy of the original estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert joblib.hash(new_value) == joblib.hash(original_value), ( "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) @ignore_warnings(category=FutureWarning) def check_no_attributes_set_in_init(name, estimator_orig): """Check setting during init.""" try: # Clone fails if the estimator does not store # all parameters as an attribute during init estimator = clone(estimator_orig) except AttributeError: raise AttributeError(f"Estimator {name} should store all " "parameters as an attribute during init.") if hasattr(type(estimator).__init__, "deprecated_original"): return init_params = _get_args(type(estimator).__init__) if IS_PYPY: # __init__ signature has additional objects in PyPy for key in ['obj']: if key in init_params: init_params.remove(key) parents_init_params = [param for params_parent in (_get_args(parent) for parent in type(estimator).__mro__) for param in params_parent] # Test for no setting apart from parameters during init invalid_attr = (set(vars(estimator)) - set(init_params) - set(parents_init_params)) assert not invalid_attr, ( "Estimator %s should not set any attribute apart" " from parameters during init. Found attributes %s." % (name, sorted(invalid_attr))) @ignore_warnings(category=FutureWarning) def check_sparsify_coefficients(name, estimator_orig): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]) y = _enforce_estimator_tags_y(estimator_orig, y) est = clone(estimator_orig) est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert sparse.issparse(est.coef_) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert sparse.issparse(est.coef_) pred = est.predict(X) assert_array_equal(pred, pred_orig) @ignore_warnings(category=FutureWarning) def check_classifier_data_not_an_array(name, estimator_orig): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1], [0, 3], [1, 0], [2, 0], [4, 4], [2, 3], [3, 2]]) X = _pairwise_estimator_convert_X(X, estimator_orig) y = np.array([1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2]) y = _enforce_estimator_tags_y(estimator_orig, y) for obj_type in ["NotAnArray", "PandasDataframe"]: check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type) @ignore_warnings(category=FutureWarning) def check_regressor_data_not_an_array(name, estimator_orig): X, y = _regression_dataset() X = _pairwise_estimator_convert_X(X, estimator_orig) y = _enforce_estimator_tags_y(estimator_orig, y) for obj_type in ["NotAnArray", "PandasDataframe"]: check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type) @ignore_warnings(category=FutureWarning) def check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type): if name in CROSS_DECOMPOSITION: raise SkipTest("Skipping check_estimators_data_not_an_array " "for cross decomposition module as estimators " "are not deterministic.") # separate estimators to control random seeds estimator_1 = clone(estimator_orig) estimator_2 = clone(estimator_orig) set_random_state(estimator_1) set_random_state(estimator_2) if obj_type not in ["NotAnArray", 'PandasDataframe']: raise ValueError("Data type {0} not supported".format(obj_type)) if obj_type == "NotAnArray": y_ = _NotAnArray(np.asarray(y)) X_ = _NotAnArray(np.asarray(X)) else: # Here pandas objects (Series and DataFrame) are tested explicitly # because some estimators may handle them (especially their indexing) # specially. try: import pandas as pd y_ = np.asarray(y) if y_.ndim == 1: y_ = pd.Series(y_) else: y_ = pd.DataFrame(y_) X_ = pd.DataFrame(np.asarray(X)) except ImportError: raise SkipTest("pandas is not installed: not checking estimators " "for pandas objects.") # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) def check_parameters_default_constructible(name, Estimator): # test default-constructibility # get rid of deprecation warnings Estimator = Estimator.__class__ with ignore_warnings(category=FutureWarning): estimator = _construct_instance(Estimator) # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert estimator.set_params() is estimator # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator.""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() # they can need a non-default argument init_params = init_params[len(getattr( estimator, '_required_parameters', [])):] for init_param in init_params: assert init_param.default != init_param.empty, ( "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) allowed_types = { str, int, float, bool, tuple, type(None), type, types.FunctionType, joblib.Memory, } # Any numpy numeric such as np.int32. allowed_types.update(np.core.numerictypes.allTypes.values()) assert type(init_param.default) in allowed_types, ( f"Parameter '{init_param.name}' of estimator " f"'{Estimator.__name__}' is of type " f"{type(init_param.default).__name__} which is not " f"allowed. All init parameters have to be immutable to " f"make cloning possible. Therefore we restrict the set of " f"legal types to " f"{set(type.__name__ for type in allowed_types)}." ) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert init_param.default is None, ( f"Estimator parameter '{init_param.name}' of estimator " f"'{Estimator.__name__}' is not returned by get_params. " f"If it is deprecated, set its default value to None." ) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: failure_text = ( f"Parameter {init_param.name} was mutated on init. All " f"parameters must be stored unchanged." ) if is_scalar_nan(param_value): # Allows to set default parameters to np.nan assert param_value is init_param.default, failure_text else: assert param_value == init_param.default, failure_text def _enforce_estimator_tags_y(estimator, y): # Estimators with a `requires_positive_y` tag only accept strictly positive # data if _safe_tags(estimator, key="requires_positive_y"): # Create strictly positive y. The minimal increment above 0 is 1, as # y could be of integer dtype. y += 1 + abs(y.min()) # Estimators with a `binary_only` tag only accept up to two unique y values if _safe_tags(estimator, key="binary_only") and y.size > 0: y = np.where(y == y.flat[0], y, y.flat[0] + 1) # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if _safe_tags(estimator, key="multioutput_only"): return np.reshape(y, (-1, 1)) return y def _enforce_estimator_tags_x(estimator, X): # Pairwise estimators only accept # X of shape (`n_samples`, `n_samples`) if _is_pairwise(estimator): X = X.dot(X.T) # Estimators with `1darray` in `X_types` tag only accept # X of shape (`n_samples`,) if '1darray' in _safe_tags(estimator, key='X_types'): X = X[:, 0] # Estimators with a `requires_positive_X` tag only accept # strictly positive data if _safe_tags(estimator, key='requires_positive_X'): X -= X.min() return X @ignore_warnings(category=FutureWarning) def check_non_transformer_estimators_n_iter(name, estimator_orig): # Test that estimators that are not transformers with a parameter # max_iter, return the attribute of n_iter_ at least 1. # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. # SelfTrainingClassifier does not perform an iteration if all samples are # labeled, hence n_iter_ = 0 is valid. not_run_check_n_iter = ['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV', 'LinearSVC', 'LogisticRegression', 'SelfTrainingClassifier'] # Tested in test_transformer_n_iter not_run_check_n_iter += CROSS_DECOMPOSITION if name in not_run_check_n_iter: return # LassoLars stops early for the default alpha=1.0 the iris dataset. if name == 'LassoLars': estimator = clone(estimator_orig).set_params(alpha=0.) else: estimator = clone(estimator_orig) if hasattr(estimator, 'max_iter'): iris = load_iris() X, y_ = iris.data, iris.target y_ = _enforce_estimator_tags_y(estimator, y_) set_random_state(estimator, 0) estimator.fit(X, y_) assert estimator.n_iter_ >= 1 @ignore_warnings(category=FutureWarning) def check_transformer_n_iter(name, estimator_orig): # Test that transformers with a parameter max_iter, return the # attribute of n_iter_ at least 1. estimator = clone(estimator_orig) if hasattr(estimator, "max_iter"): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert iter_ >= 1 else: assert estimator.n_iter_ >= 1 @ignore_warnings(category=FutureWarning) def check_get_params_invariance(name, estimator_orig): # Checks if get_params(deep=False) is a subset of get_params(deep=True) e = clone(estimator_orig) shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert all(item in deep_params.items() for item in shallow_params.items()) @ignore_warnings(category=FutureWarning) def check_set_params(name, estimator_orig): # Check that get_params() returns the same thing # before and after set_params() with some fuzz estimator = clone(estimator_orig) orig_params = estimator.get_params(deep=False) msg = "get_params result does not match what was passed to set_params" estimator.set_params(**orig_params) curr_params = estimator.get_params(deep=False) assert set(orig_params.keys()) == set(curr_params.keys()), msg for k, v in curr_params.items(): assert orig_params[k] is v, msg # some fuzz values test_values = [-np.inf, np.inf, None] test_params = deepcopy(orig_params) for param_name in orig_params.keys(): default_value = orig_params[param_name] for value in test_values: test_params[param_name] = value try: estimator.set_params(**test_params) except (TypeError, ValueError) as e: e_type = e.__class__.__name__ # Exception occurred, possibly parameter validation warnings.warn("{0} occurred during set_params of param {1} on " "{2}. It is recommended to delay parameter " "validation until fit.".format(e_type, param_name, name)) change_warning_msg = "Estimator's parameters changed after " \ "set_params raised {}".format(e_type) params_before_exception = curr_params curr_params = estimator.get_params(deep=False) try: assert (set(params_before_exception.keys()) == set(curr_params.keys())) for k, v in curr_params.items(): assert params_before_exception[k] is v except AssertionError: warnings.warn(change_warning_msg) else: curr_params = estimator.get_params(deep=False) assert (set(test_params.keys()) == set(curr_params.keys())), msg for k, v in curr_params.items(): assert test_params[k] is v, msg test_params[param_name] = default_value @ignore_warnings(category=FutureWarning) def check_classifiers_regression_target(name, estimator_orig): # Check if classifier throws an exception when fed regression targets X, y = _regression_dataset() X = X + 1 + abs(X.min(axis=0)) # be sure that X is non-negative e = clone(estimator_orig) msg = "Unknown label type: " if not _safe_tags(e, key="no_validation"): with raises(ValueError, match=msg): e.fit(X, y) @ignore_warnings(category=FutureWarning) def check_decision_proba_consistency(name, estimator_orig): # Check whether an estimator having both decision_function and # predict_proba methods has outputs with perfect rank correlation. centers = [(2, 2), (4, 4)] X, y = make_blobs(n_samples=100, random_state=0, n_features=4, centers=centers, cluster_std=1.0, shuffle=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) estimator = clone(estimator_orig) if (hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba")): estimator.fit(X_train, y_train) # Since the link function from decision_function() to predict_proba() # is sometimes not precise enough (typically expit), we round to the # 10th decimal to avoid numerical issues: we compare the rank # with deterministic ties rather than get platform specific rank # inversions in case of machine level differences. a = estimator.predict_proba(X_test)[:, 1].round(decimals=10) b = estimator.decision_function(X_test).round(decimals=10) assert_array_equal(rankdata(a), rankdata(b)) def check_outliers_fit_predict(name, estimator_orig): # Check fit_predict for outlier detectors. n_samples = 300 X, _ = make_blobs(n_samples=n_samples, random_state=0) X = shuffle(X, random_state=7) n_samples, n_features = X.shape estimator = clone(estimator_orig) set_random_state(estimator) y_pred = estimator.fit_predict(X) assert y_pred.shape == (n_samples,) assert y_pred.dtype.kind == 'i' assert_array_equal(np.unique(y_pred), np.array([-1, 1])) # check fit_predict = fit.predict when the estimator has both a predict and # a fit_predict method. recall that it is already assumed here that the # estimator has a fit_predict method if hasattr(estimator, 'predict'): y_pred_2 = estimator.fit(X).predict(X) assert_array_equal(y_pred, y_pred_2) if hasattr(estimator, "contamination"): # proportion of outliers equal to contamination parameter when not # set to 'auto' expected_outliers = 30 contamination = float(expected_outliers)/n_samples estimator.set_params(contamination=contamination) y_pred = estimator.fit_predict(X) num_outliers = np.sum(y_pred != 1) # num_outliers should be equal to expected_outliers unless # there are ties in the decision_function values. this can # only be tested for estimators with a decision_function # method if (num_outliers != expected_outliers and hasattr(estimator, 'decision_function')): decision = estimator.decision_function(X) check_outlier_corruption(num_outliers, expected_outliers, decision) # raises error when contamination is a scalar and not in [0,1] msg = r"contamination must be in \(0, 0.5]" for contamination in [-0.5, -0.001, 0.5001, 2.3]: estimator.set_params(contamination=contamination) with raises(ValueError, match=msg): estimator.fit_predict(X) def check_fit_non_negative(name, estimator_orig): # Check that proper warning is raised for non-negative X # when tag requires_positive_X is present X = np.array([[-1., 1], [-1., 1]]) y = np.array([1, 2]) estimator = clone(estimator_orig) with raises(ValueError): estimator.fit(X, y) def check_fit_idempotent(name, estimator_orig): # Check that est.fit(X) is the same as est.fit(X).fit(X). Ideally we would # check that the estimated parameters during training (e.g. coefs_) are # the same, but having a universal comparison function for those # attributes is difficult and full of edge cases. So instead we check that # predict(), predict_proba(), decision_function() and transform() return # the same results. check_methods = ["predict", "transform", "decision_function", "predict_proba"] rng = np.random.RandomState(0) estimator = clone(estimator_orig) set_random_state(estimator) if 'warm_start' in estimator.get_params().keys(): estimator.set_params(warm_start=False) n_samples = 100 X = rng.normal(loc=100, size=(n_samples, 2)) X = _pairwise_estimator_convert_X(X, estimator) if is_regressor(estimator_orig): y = rng.normal(size=n_samples) else: y = rng.randint(low=0, high=2, size=n_samples) y = _enforce_estimator_tags_y(estimator, y) train, test = next(ShuffleSplit(test_size=.2, random_state=rng).split(X)) X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) # Fit for the first time estimator.fit(X_train, y_train) result = {method: getattr(estimator, method)(X_test) for method in check_methods if hasattr(estimator, method)} # Fit again set_random_state(estimator) estimator.fit(X_train, y_train) for method in check_methods: if hasattr(estimator, method): new_result = getattr(estimator, method)(X_test) if np.issubdtype(new_result.dtype, np.floating): tol = 2*np.finfo(new_result.dtype).eps else: tol = 2*np.finfo(np.float64).eps assert_allclose_dense_sparse( result[method], new_result, atol=max(tol, 1e-9), rtol=max(tol, 1e-7), err_msg="Idempotency check failed for method {}".format(method) ) def check_n_features_in(name, estimator_orig): # Make sure that n_features_in_ attribute doesn't exist until fit is # called, and that its value is correct. rng = np.random.RandomState(0) estimator = clone(estimator_orig) set_random_state(estimator) if 'warm_start' in estimator.get_params(): estimator.set_params(warm_start=False) n_samples = 100 X = rng.normal(loc=100, size=(n_samples, 2)) X = _pairwise_estimator_convert_X(X, estimator) if is_regressor(estimator_orig): y = rng.normal(size=n_samples) else: y = rng.randint(low=0, high=2, size=n_samples) y = _enforce_estimator_tags_y(estimator, y) assert not hasattr(estimator, 'n_features_in_') estimator.fit(X, y) if hasattr(estimator, 'n_features_in_'): assert estimator.n_features_in_ == X.shape[1] else: warnings.warn( "As of scikit-learn 0.23, estimators should expose a " "n_features_in_ attribute, unless the 'no_validation' tag is " "True. This attribute should be equal to the number of features " "passed to the fit method. " "An error will be raised from version 1.0 (renaming of 0.25) " "when calling check_estimator(). " "See SLEP010: " "https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep010/proposal.html", # noqa FutureWarning ) def check_requires_y_none(name, estimator_orig): # Make sure that an estimator with requires_y=True fails gracefully when # given y=None rng = np.random.RandomState(0) estimator = clone(estimator_orig) set_random_state(estimator) n_samples = 100 X = rng.normal(loc=100, size=(n_samples, 2)) X = _pairwise_estimator_convert_X(X, estimator) warning_msg = ("As of scikit-learn 0.23, estimators should have a " "'requires_y' tag set to the appropriate value. " "The default value of the tag is False. " "An error will be raised from version 1.0 when calling " "check_estimator() if the tag isn't properly set.") expected_err_msgs = ( "requires y to be passed, but the target y is None", "Expected array-like (array or non-string sequence), got None", "y should be a 1d array" ) try: estimator.fit(X, None) except ValueError as ve: if not any(msg in str(ve) for msg in expected_err_msgs): warnings.warn(warning_msg, FutureWarning) def check_n_features_in_after_fitting(name, estimator_orig): # Make sure that n_features_in are checked after fitting tags = _safe_tags(estimator_orig) if "2darray" not in tags["X_types"] or tags["no_validation"]: return rng = np.random.RandomState(0) estimator = clone(estimator_orig) set_random_state(estimator) if 'warm_start' in estimator.get_params(): estimator.set_params(warm_start=False) n_samples = 150 X = rng.normal(size=(n_samples, 8)) X = _enforce_estimator_tags_x(estimator, X) X = _pairwise_estimator_convert_X(X, estimator) if is_regressor(estimator): y = rng.normal(size=n_samples) else: y = rng.randint(low=0, high=2, size=n_samples) y = _enforce_estimator_tags_y(estimator, y) estimator.fit(X, y) assert estimator.n_features_in_ == X.shape[1] # check methods will check n_features_in_ check_methods = ["predict", "transform", "decision_function", "predict_proba", "score"] X_bad = X[:, [1]] msg = (f"X has 1 features, but \\w+ is expecting {X.shape[1]} " "features as input") for method in check_methods: if not hasattr(estimator, method): continue callable_method = getattr(estimator, method) if method == "score": callable_method = partial(callable_method, y=y) with raises(ValueError, match=msg): callable_method(X_bad) # partial_fit will check in the second call if not hasattr(estimator, "partial_fit"): return estimator = clone(estimator_orig) if is_classifier(estimator): estimator.partial_fit(X, y, classes=np.unique(y)) else: estimator.partial_fit(X, y) assert estimator.n_features_in_ == X.shape[1] with raises(ValueError, match=msg): estimator.partial_fit(X_bad, y) def check_estimator_get_tags_default_keys(name, estimator_orig): # check that if _get_tags is implemented, it contains all keys from # _DEFAULT_KEYS estimator = clone(estimator_orig) if not hasattr(estimator, "_get_tags"): return tags_keys = set(estimator._get_tags().keys()) default_tags_keys = set(_DEFAULT_TAGS.keys()) assert tags_keys.intersection(default_tags_keys) == default_tags_keys, ( f"{name}._get_tags() is missing entries for the following default tags" f": {default_tags_keys - tags_keys.intersection(default_tags_keys)}" )
bsd-3-clause
linebp/pandas
pandas/tests/io/parser/dialect.py
20
2039
# -*- coding: utf-8 -*- """ Tests that dialects are properly handled during parsing for all of the parsers defined in parsers.py """ import csv from pandas import DataFrame from pandas.compat import StringIO from pandas.errors import ParserWarning import pandas.util.testing as tm class DialectTests(object): def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE with tm.assert_produces_warning(ParserWarning): df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) csv.register_dialect('mydialect', delimiter=':') with tm.assert_produces_warning(ParserWarning): df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_invalid_dialect(self): class InvalidDialect(object): pass data = 'a\n1' msg = 'Invalid dialect' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), dialect=InvalidDialect) def test_dialect_conflict(self): data = 'a,b\n1,2' dialect = 'excel' exp = DataFrame({'a': [1], 'b': [2]}) with tm.assert_produces_warning(None): df = self.read_csv(StringIO(data), delimiter=',', dialect=dialect) tm.assert_frame_equal(df, exp) with tm.assert_produces_warning(ParserWarning): df = self.read_csv(StringIO(data), delimiter='.', dialect=dialect) tm.assert_frame_equal(df, exp)
bsd-3-clause
kagayakidan/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/io/tests/test_stata.py
7
56765
# -*- coding: utf-8 -*- # pylint: disable=E1101 import datetime as dt import os import struct import sys import warnings from datetime import datetime from distutils.version import LooseVersion import nose import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import compat from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) from pandas.tslib import NaT from pandas.types.common import is_categorical_dtype class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') self.dta22_118 = os.path.join(self.dirpath, 'stata14_118.dta') self.dta23 = os.path.join(self.dirpath, 'stata15.dta') self.dta24_111 = os.path.join(self.dirpath, 'stata7_111.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path, write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method with StataReader(self.dta1_114) as rdr: with warnings.catch_warnings(record=True) as w: # noqa parsed_114_data = rdr.data() with StataReader(self.dta1_114) as rdr: parsed_114_read = rdr.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): parsed_114 = self.read_dta(self.dta1_114) parsed_117 = self.read_dta(self.dta1_117) # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta self.assertEqual(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True) tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) # stata doesn't save .category metadata tm.assert_frame_equal(parsed_113, expected, check_categorical=False) tm.assert_frame_equal(parsed_114, expected, check_categorical=False) tm.assert_frame_equal(parsed_115, expected, check_categorical=False) tm.assert_frame_equal(parsed_117, expected, check_categorical=False) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_dta18(self): parsed_118 = self.read_dta(self.dta22_118) parsed_118["Bytes"] = parsed_118["Bytes"].astype('O') expected = DataFrame.from_records( [['Cat', 'Bogota', u'Bogotá', 1, 1.0, u'option b Ünicode', 1.0], ['Dog', 'Boston', u'Uzunköprü', np.nan, np.nan, np.nan, np.nan], ['Plane', 'Rome', u'Tromsø', 0, 0.0, 'option a', 0.0], ['Potato', 'Tokyo', u'Elâzığ', -4, 4.0, 4, 4], ['', '', '', 0, 0.3332999, 'option a', 1 / 3.] ], columns=['Things', 'Cities', 'Unicode_Cities_Strl', 'Ints', 'Floats', 'Bytes', 'Longs']) expected["Floats"] = expected["Floats"].astype(np.float32) for col in parsed_118.columns: tm.assert_almost_equal(parsed_118[col], expected[col]) with StataReader(self.dta22_118) as rdr: vl = rdr.variable_labels() vl_expected = {u'Unicode_Cities_Strl': u'Here are some strls with Ünicode chars', u'Longs': u'long data', u'Things': u'Here are some things', u'Bytes': u'byte data', u'Ints': u'int data', u'Cities': u'Here are some cities', u'Floats': u'float data'} tm.assert_dict_equal(vl, vl_expected) self.assertEqual(rdr.data_label, u'This is a Ünicode data label') def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original, check_index_type=False) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) # original.index is np.int32, readed index is np.int64 tm.assert_frame_equal(written_and_read_again.set_index('index'), original, check_index_type=False) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = pd.DataFrame(np.random.randn(5, 4), columns=list('abcd')) df.ix[2, 'a':'c'] = np.nan df_copy = df.copy() with tm.ensure_clean() as path: df.to_stata(path, write_index=False) tm.assert_frame_equal(df, df_copy) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) # noqa with tm.ensure_clean() as path: encoded.to_stata(path, encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. self.assertEqual(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. self.assertEqual(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2 ** 9, dtype=np.int16) s2 = Series(2 ** 17, dtype=np.int32) s3 = Series(2 ** 33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_reread_dta14(self): expected = self.read_csv(self.csv14) cols = ['byte_', 'int_', 'long_', 'float_', 'double_'] for col in cols: expected[col] = expected[col]._convert(datetime=True, numeric=True) expected['float_'] = expected['float_'].astype(np.float32) expected['date_td'] = pd.to_datetime( expected['date_td'], errors='coerce') parsed_113 = self.read_dta(self.dta14_113) parsed_113.index.name = 'index' parsed_114 = self.read_dta(self.dta14_114) parsed_114.index.name = 'index' parsed_115 = self.read_dta(self.dta14_115) parsed_115.index.name = 'index' parsed_117 = self.read_dta(self.dta14_117) parsed_117.index.name = 'index' tm.assert_frame_equal(parsed_114, parsed_113) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) with tm.ensure_clean() as path: parsed_114.to_stata(path, {'date_td': 'td'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal( written_and_read_again.set_index('index'), parsed_114) def test_read_write_reread_dta15(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply( datetime.strptime, args=('%Y-%m-%d',)) parsed_113 = self.read_dta(self.dta15_113) parsed_114 = self.read_dta(self.dta15_114) parsed_115 = self.read_dta(self.dta15_115) parsed_117 = self.read_dta(self.dta15_117) tm.assert_frame_equal(expected, parsed_114) tm.assert_frame_equal(parsed_113, parsed_114) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) def test_timestamp_and_label(self): original = DataFrame([(1,)], columns=['var']) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = 'This is a data file.' with tm.ensure_clean() as path: original.to_stata(path, time_stamp=time_stamp, data_label=data_label) with StataReader(path) as reader: parsed_time_stamp = dt.datetime.strptime( reader.time_stamp, ('%d %b %Y %H:%M')) assert parsed_time_stamp == time_stamp assert reader.data_label == data_label def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = 'index' with tm.ensure_clean() as path: # should get a warning for that format. with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) tm.assert_frame_equal(original, written_and_read_again) def test_nan_to_missing_value(self): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, original) def test_no_index(self): columns = ['x', 'y'] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = 'index_not_written' with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) tm.assertRaises( KeyError, lambda: written_and_read_again['index_not_written']) def test_string_no_dates(self): s1 = Series(['a', 'A longer string']) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_large_value_conversion(self): s0 = Series([1, 99], dtype=np.int8) s1 = Series([1, 127], dtype=np.int8) s2 = Series([1, 2 ** 15 - 1], dtype=np.int16) s3 = Series([1, 2 ** 63 - 1], dtype=np.int64) original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3}) original.index.name = 'index' with tm.ensure_clean() as path: with tm.assert_produces_warning(PossiblePrecisionLoss): original.to_stata(path) written_and_read_again = self.read_dta(path) modified = original.copy() modified['s1'] = Series(modified['s1'], dtype=np.int16) modified['s2'] = Series(modified['s2'], dtype=np.int32) modified['s3'] = Series(modified['s3'], dtype=np.float64) tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_dates_invalid_column(self): original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) original.index.name = 'index' with tm.ensure_clean() as path: with tm.assert_produces_warning(InvalidColumnName): original.to_stata(path, {0: 'tc'}) written_and_read_again = self.read_dta(path) modified = original.copy() modified.columns = ['_0'] tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_105(self): # Data obtained from: # http://go.worldbank.org/ZXY29PVJ21 dpath = os.path.join(self.dirpath, 'S4_EDUC1.dta') df = pd.read_stata(dpath) df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]] df0 = pd.DataFrame(df0) df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"] df0['clustnum'] = df0["clustnum"].astype(np.int16) df0['pri_schl'] = df0["pri_schl"].astype(np.int8) df0['psch_num'] = df0["psch_num"].astype(np.int8) df0['psch_dis'] = df0["psch_dis"].astype(np.float32) tm.assert_frame_equal(df.head(3), df0) def test_date_export_formats(self): columns = ['tc', 'td', 'tw', 'tm', 'tq', 'th', 'ty'] conversions = dict(((c, c) for c in columns)) data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) original = DataFrame([data], columns=columns) original.index.name = 'index' expected_values = [datetime(2006, 11, 20, 23, 13, 20), # Time datetime(2006, 11, 20), # Day datetime(2006, 11, 19), # Week datetime(2006, 11, 1), # Month datetime(2006, 10, 1), # Quarter year datetime(2006, 7, 1), # Half year datetime(2006, 1, 1)] # Year expected = DataFrame([expected_values], columns=columns) expected.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, conversions) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_write_missing_strings(self): original = DataFrame([["1"], [None]], columns=["foo"]) expected = DataFrame([["1"], [""]], columns=["foo"]) expected.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_bool_uint(self): s0 = Series([0, 1, True], dtype=np.bool) s1 = Series([0, 1, 100], dtype=np.uint8) s2 = Series([0, 1, 255], dtype=np.uint8) s3 = Series([0, 1, 2 ** 15 - 100], dtype=np.uint16) s4 = Series([0, 1, 2 ** 16 - 1], dtype=np.uint16) s5 = Series([0, 1, 2 ** 31 - 100], dtype=np.uint32) s6 = Series([0, 1, 2 ** 32 - 1], dtype=np.uint32) original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3, 's4': s4, 's5': s5, 's6': s6}) original.index.name = 'index' expected = original.copy() expected_types = (np.int8, np.int8, np.int16, np.int16, np.int32, np.int32, np.float64) for c, t in zip(expected.columns, expected_types): expected[c] = expected[c].astype(t) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, expected) def test_variable_labels(self): with StataReader(self.dta16_115) as rdr: sr_115 = rdr.variable_labels() with StataReader(self.dta16_117) as rdr: sr_117 = rdr.variable_labels() keys = ('var1', 'var2', 'var3') labels = ('label1', 'label2', 'label3') for k, v in compat.iteritems(sr_115): self.assertTrue(k in sr_117) self.assertTrue(v == sr_117[k]) self.assertTrue(k in keys) self.assertTrue(v in labels) def test_minimal_size_col(self): str_lens = (1, 100, 244) s = {} for str_len in str_lens: s['s' + str(str_len)] = Series(['a' * str_len, 'b' * str_len, 'c' * str_len]) original = DataFrame(s) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) with StataReader(path) as sr: typlist = sr.typlist variables = sr.varlist formats = sr.fmtlist for variable, fmt, typ in zip(variables, formats, typlist): self.assertTrue(int(variable[1:]) == int(fmt[1:-1])) self.assertTrue(int(variable[1:]) == typ) def test_excessively_long_string(self): str_lens = (1, 244, 500) s = {} for str_len in str_lens: s['s' + str(str_len)] = Series(['a' * str_len, 'b' * str_len, 'c' * str_len]) original = DataFrame(s) with tm.assertRaises(ValueError): with tm.ensure_clean() as path: original.to_stata(path) def test_missing_value_generator(self): types = ('b', 'h', 'l') df = DataFrame([[0.0]], columns=['float_']) with tm.ensure_clean() as path: df.to_stata(path) with StataReader(path) as rdr: valid_range = rdr.VALID_RANGE expected_values = ['.' + chr(97 + i) for i in range(26)] expected_values.insert(0, '.') for t in types: offset = valid_range[t][1] for i in range(0, 27): val = StataMissingValue(offset + 1 + i) self.assertTrue(val.string == expected_values[i]) # Test extremes for floats val = StataMissingValue(struct.unpack('<f', b'\x00\x00\x00\x7f')[0]) self.assertTrue(val.string == '.') val = StataMissingValue(struct.unpack('<f', b'\x00\xd0\x00\x7f')[0]) self.assertTrue(val.string == '.z') # Test extremes for floats val = StataMissingValue(struct.unpack( '<d', b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0]) self.assertTrue(val.string == '.') val = StataMissingValue(struct.unpack( '<d', b'\x00\x00\x00\x00\x00\x1a\xe0\x7f')[0]) self.assertTrue(val.string == '.z') def test_missing_value_conversion(self): columns = ['int8_', 'int16_', 'int32_', 'float32_', 'float64_'] smv = StataMissingValue(101) keys = [key for key in iterkeys(smv.MISSING_VALUES)] keys.sort() data = [] for i in range(27): row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)] data.append(row) expected = DataFrame(data, columns=columns) parsed_113 = read_stata(self.dta17_113, convert_missing=True) parsed_115 = read_stata(self.dta17_115, convert_missing=True) parsed_117 = read_stata(self.dta17_117, convert_missing=True) tm.assert_frame_equal(expected, parsed_113) tm.assert_frame_equal(expected, parsed_115) tm.assert_frame_equal(expected, parsed_117) def test_big_dates(self): yr = [1960, 2000, 9999, 100, 2262, 1677] mo = [1, 1, 12, 1, 4, 9] dd = [1, 1, 31, 1, 22, 23] hr = [0, 0, 23, 0, 0, 0] mm = [0, 0, 59, 0, 0, 0] ss = [0, 0, 59, 0, 0, 0] expected = [] for i in range(len(yr)): row = [] for j in range(7): if j == 0: row.append( datetime(yr[i], mo[i], dd[i], hr[i], mm[i], ss[i])) elif j == 6: row.append(datetime(yr[i], 1, 1)) else: row.append(datetime(yr[i], mo[i], dd[i])) expected.append(row) expected.append([NaT] * 7) columns = ['date_tc', 'date_td', 'date_tw', 'date_tm', 'date_tq', 'date_th', 'date_ty'] # Fixes for weekly, quarterly,half,year expected[2][2] = datetime(9999, 12, 24) expected[2][3] = datetime(9999, 12, 1) expected[2][4] = datetime(9999, 10, 1) expected[2][5] = datetime(9999, 7, 1) expected[4][2] = datetime(2262, 4, 16) expected[4][3] = expected[4][4] = datetime(2262, 4, 1) expected[4][5] = expected[4][6] = datetime(2262, 1, 1) expected[5][2] = expected[5][3] = expected[ 5][4] = datetime(1677, 10, 1) expected[5][5] = expected[5][6] = datetime(1678, 1, 1) expected = DataFrame(expected, columns=columns, dtype=np.object) parsed_115 = read_stata(self.dta18_115) parsed_117 = read_stata(self.dta18_117) tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True) tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True) date_conversion = dict((c, c[-2:]) for c in columns) # {c : c[-2:] for c in columns} with tm.ensure_clean() as path: expected.index.name = 'index' expected.to_stata(path, date_conversion) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected, check_datetimelike_compat=True) def test_dtype_conversion(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) no_conversion = read_stata(self.dta15_117, convert_dates=True) tm.assert_frame_equal(expected, no_conversion) conversion = read_stata(self.dta15_117, convert_dates=True, preserve_dtypes=False) # read_csv types are the same expected = self.read_csv(self.csv15) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) tm.assert_frame_equal(expected, conversion) def test_drop_column(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) columns = ['byte_', 'int_', 'long_'] expected = expected[columns] dropped = read_stata(self.dta15_117, convert_dates=True, columns=columns) tm.assert_frame_equal(expected, dropped) # See PR 10757 columns = ['int_', 'long_', 'byte_'] expected = expected[columns] reordered = read_stata(self.dta15_117, convert_dates=True, columns=columns) tm.assert_frame_equal(expected, reordered) with tm.assertRaises(ValueError): columns = ['byte_', 'byte_'] read_stata(self.dta15_117, convert_dates=True, columns=columns) with tm.assertRaises(ValueError): columns = ['byte_', 'int_', 'long_', 'not_found'] read_stata(self.dta15_117, convert_dates=True, columns=columns) def test_categorical_writing(self): original = DataFrame.from_records( [ ["one", "ten", "one", "one", "one", 1], ["two", "nine", "two", "two", "two", 2], ["three", "eight", "three", "three", "three", 3], ["four", "seven", 4, "four", "four", 4], ["five", "six", 5, np.nan, "five", 5], ["six", "five", 6, np.nan, "six", 6], ["seven", "four", 7, np.nan, "seven", 7], ["eight", "three", 8, np.nan, "eight", 8], ["nine", "two", 9, np.nan, "nine", 9], ["ten", "one", "ten", np.nan, "ten", 10] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled', 'unlabeled']) expected = original.copy() # these are all categoricals original = pd.concat([original[col].astype('category') for col in original], axis=1) expected['incompletely_labeled'] = expected[ 'incompletely_labeled'].apply(str) expected['unlabeled'] = expected['unlabeled'].apply(str) expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) expected.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: # noqa # Silence warnings original.to_stata(path) written_and_read_again = self.read_dta(path) res = written_and_read_again.set_index('index') tm.assert_frame_equal(res, expected, check_categorical=False) def test_categorical_warnings_and_errors(self): # Warning for non-string labels # Error for labels too long original = pd.DataFrame.from_records( [['a' * 10000], ['b' * 10000], ['c' * 10000], ['d' * 10000]], columns=['Too_long']) original = pd.concat([original[col].astype('category') for col in original], axis=1) with tm.ensure_clean() as path: tm.assertRaises(ValueError, original.to_stata, path) original = pd.DataFrame.from_records( [['a'], ['b'], ['c'], ['d'], [1]], columns=['Too_long']) original = pd.concat([original[col].astype('category') for col in original], axis=1) with warnings.catch_warnings(record=True) as w: original.to_stata(path) # should get a warning for mixed content self.assertEqual(len(w), 1) def test_categorical_with_stata_missing_values(self): values = [['a' + str(i)] for i in range(120)] values.append([np.nan]) original = pd.DataFrame.from_records(values, columns=['many_labels']) original = pd.concat([original[col].astype('category') for col in original], axis=1) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) res = written_and_read_again.set_index('index') tm.assert_frame_equal(res, original, check_categorical=False) def test_categorical_order(self): # Directly construct using expected codes # Format is is_cat, col_name, labels (in order), underlying data expected = [(True, 'ordered', ['a', 'b', 'c', 'd', 'e'], np.arange(5)), (True, 'reverse', ['a', 'b', 'c', 'd', 'e'], np.arange(5)[::-1]), (True, 'noorder', ['a', 'b', 'c', 'd', 'e'], np.array([2, 1, 4, 0, 3])), (True, 'floating', [ 'a', 'b', 'c', 'd', 'e'], np.arange(0, 5)), (True, 'float_missing', [ 'a', 'd', 'e'], np.array([0, 1, 2, -1, -1])), (False, 'nolabel', [ 1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)), (True, 'int32_mixed', ['d', 2, 'e', 'b', 'a'], np.arange(5))] cols = [] for is_cat, col, labels, codes in expected: if is_cat: cols.append((col, pd.Categorical.from_codes(codes, labels))) else: cols.append((col, pd.Series(labels, dtype=np.float32))) expected = DataFrame.from_items(cols) # Read with and with out categoricals, ensure order is identical parsed_115 = read_stata(self.dta19_115) parsed_117 = read_stata(self.dta19_117) tm.assert_frame_equal(expected, parsed_115, check_categorical=False) tm.assert_frame_equal(expected, parsed_117, check_categorical=False) # Check identity of codes for col in expected: if is_categorical_dtype(expected[col]): tm.assert_series_equal(expected[col].cat.codes, parsed_115[col].cat.codes) tm.assert_index_equal(expected[col].cat.categories, parsed_115[col].cat.categories) def test_categorical_sorting(self): parsed_115 = read_stata(self.dta20_115) parsed_117 = read_stata(self.dta20_117) # Sort based on codes, not strings parsed_115 = parsed_115.sort_values("srh") parsed_117 = parsed_117.sort_values("srh") # Don't sort index parsed_115.index = np.arange(parsed_115.shape[0]) parsed_117.index = np.arange(parsed_117.shape[0]) codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4] categories = ["Poor", "Fair", "Good", "Very good", "Excellent"] cat = pd.Categorical.from_codes(codes=codes, categories=categories) expected = pd.Series(cat, name='srh') tm.assert_series_equal(expected, parsed_115["srh"], check_categorical=False) tm.assert_series_equal(expected, parsed_117["srh"], check_categorical=False) def test_categorical_ordering(self): parsed_115 = read_stata(self.dta19_115) parsed_117 = read_stata(self.dta19_117) parsed_115_unordered = read_stata(self.dta19_115, order_categoricals=False) parsed_117_unordered = read_stata(self.dta19_117, order_categoricals=False) for col in parsed_115: if not is_categorical_dtype(parsed_115[col]): continue self.assertEqual(True, parsed_115[col].cat.ordered) self.assertEqual(True, parsed_117[col].cat.ordered) self.assertEqual(False, parsed_115_unordered[col].cat.ordered) self.assertEqual(False, parsed_117_unordered[col].cat.ordered) def test_read_chunks_117(self): files_117 = [self.dta1_117, self.dta2_117, self.dta3_117, self.dta4_117, self.dta14_117, self.dta15_117, self.dta16_117, self.dta17_117, self.dta18_117, self.dta19_117, self.dta20_117] for fname in files_117: for chunksize in 1, 2: for convert_categoricals in False, True: for convert_dates in False, True: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata( fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates) itr = read_stata( fname, iterator=True, convert_categoricals=convert_categoricals, convert_dates=convert_dates) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: # noqa warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos:pos + chunksize, :] tm.assert_frame_equal( from_frame, chunk, check_dtype=False, check_datetimelike_compat=True, check_categorical=False) pos += chunksize itr.close() def test_iterator(self): fname = self.dta3_117 parsed = read_stata(fname) with read_stata(fname, iterator=True) as itr: chunk = itr.read(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = list(itr) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) with read_stata(fname, iterator=True) as itr: chunk = itr.get_chunk(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) with read_stata(fname, chunksize=5) as itr: chunk = itr.get_chunk() tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) # GH12153 from_chunks = pd.concat(read_stata(fname, chunksize=4)) tm.assert_frame_equal(parsed, from_chunks) def test_read_chunks_115(self): files_115 = [self.dta2_115, self.dta3_115, self.dta4_115, self.dta14_115, self.dta15_115, self.dta16_115, self.dta17_115, self.dta18_115, self.dta19_115, self.dta20_115] for fname in files_115: for chunksize in 1, 2: for convert_categoricals in False, True: for convert_dates in False, True: # Read the whole file with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata( fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates) # Compare to what we get when reading by chunk itr = read_stata( fname, iterator=True, convert_dates=convert_dates, convert_categoricals=convert_categoricals) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: # noqa warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos:pos + chunksize, :] tm.assert_frame_equal( from_frame, chunk, check_dtype=False, check_datetimelike_compat=True, check_categorical=False) pos += chunksize itr.close() def test_read_chunks_columns(self): fname = self.dta3_117 columns = ['quarter', 'cpi', 'm1'] chunksize = 2 parsed = read_stata(fname, columns=columns) with read_stata(fname, iterator=True) as itr: pos = 0 for j in range(5): chunk = itr.read(chunksize, columns=columns) if chunk is None: break from_frame = parsed.iloc[pos:pos + chunksize, :] tm.assert_frame_equal(from_frame, chunk, check_dtype=False) pos += chunksize def test_write_variable_labels(self): # GH 13631, add support for writing variable labels original = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [1.0, 3.0, 27.0, 81.0], 'c': ['Atlanta', 'Birmingham', 'Cincinnati', 'Detroit']}) original.index.name = 'index' variable_labels = {'a': 'City Rank', 'b': 'City Exponent', 'c': 'City'} with tm.ensure_clean() as path: original.to_stata(path, variable_labels=variable_labels) with StataReader(path) as sr: read_labels = sr.variable_labels() expected_labels = {'index': '', 'a': 'City Rank', 'b': 'City Exponent', 'c': 'City'} tm.assert_equal(read_labels, expected_labels) variable_labels['index'] = 'The Index' with tm.ensure_clean() as path: original.to_stata(path, variable_labels=variable_labels) with StataReader(path) as sr: read_labels = sr.variable_labels() tm.assert_equal(read_labels, variable_labels) def test_write_variable_label_errors(self): original = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [1.0, 3.0, 27.0, 81.0], 'c': ['Atlanta', 'Birmingham', 'Cincinnati', 'Detroit']}) values = [u'\u03A1', u'\u0391', u'\u039D', u'\u0394', u'\u0391', u'\u03A3'] variable_labels_utf8 = {'a': 'City Rank', 'b': 'City Exponent', 'c': u''.join(values)} with tm.assertRaises(ValueError): with tm.ensure_clean() as path: original.to_stata(path, variable_labels=variable_labels_utf8) variable_labels_long = {'a': 'City Rank', 'b': 'City Exponent', 'c': 'A very, very, very long variable label ' 'that is too long for Stata which means ' 'that it has more than 80 characters'} with tm.assertRaises(ValueError): with tm.ensure_clean() as path: original.to_stata(path, variable_labels=variable_labels_long) def test_default_date_conversion(self): # GH 12259 dates = [dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000)] original = pd.DataFrame({'nums': [1.0, 2.0, 3.0], 'strs': ['apple', 'banana', 'cherry'], 'dates': dates}) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) reread = read_stata(path, convert_dates=True) tm.assert_frame_equal(original, reread) original.to_stata(path, write_index=False, convert_dates={'dates': 'tc'}) direct = read_stata(path, convert_dates=True) tm.assert_frame_equal(reread, direct) def test_unsupported_type(self): original = pd.DataFrame({'a': [1 + 2j, 2 + 4j]}) with tm.assertRaises(NotImplementedError): with tm.ensure_clean() as path: original.to_stata(path) def test_unsupported_datetype(self): dates = [dt.datetime(1999, 12, 31, 12, 12, 12, 12000), dt.datetime(2012, 12, 21, 12, 21, 12, 21000), dt.datetime(1776, 7, 4, 7, 4, 7, 4000)] original = pd.DataFrame({'nums': [1.0, 2.0, 3.0], 'strs': ['apple', 'banana', 'cherry'], 'dates': dates}) with tm.assertRaises(NotImplementedError): with tm.ensure_clean() as path: original.to_stata(path, convert_dates={'dates': 'tC'}) dates = pd.date_range('1-1-1990', periods=3, tz='Asia/Hong_Kong') original = pd.DataFrame({'nums': [1.0, 2.0, 3.0], 'strs': ['apple', 'banana', 'cherry'], 'dates': dates}) with tm.assertRaises(NotImplementedError): with tm.ensure_clean() as path: original.to_stata(path) def test_repeated_column_labels(self): # GH 13923 with tm.assertRaises(ValueError) as cm: read_stata(self.dta23, convert_categoricals=True) tm.assertTrue('wolof' in cm.exception) def test_stata_111(self): # 111 is an old version but still used by current versions of # SAS when exporting to Stata format. We do not know of any # on-line documentation for this version. df = read_stata(self.dta24_111) original = pd.DataFrame({'y': [1, 1, 1, 1, 1, 0, 0, np.NaN, 0, 0], 'x': [1, 2, 1, 3, np.NaN, 4, 3, 5, 1, 6], 'w': [2, np.NaN, 5, 2, 4, 4, 3, 1, 2, 3], 'z': ['a', 'b', 'c', 'd', 'e', '', 'g', 'h', 'i', 'j']}) original = original[['y', 'x', 'w', 'z']] tm.assert_frame_equal(original, df) def test_out_of_range_double(self): # GH 14618 df = DataFrame({'ColumnOk': [0.0, np.finfo(np.double).eps, 4.49423283715579e+307], 'ColumnTooBig': [0.0, np.finfo(np.double).eps, np.finfo(np.double).max]}) with tm.assertRaises(ValueError) as cm: with tm.ensure_clean() as path: df.to_stata(path) tm.assertTrue('ColumnTooBig' in cm.exception) df.loc[2, 'ColumnTooBig'] = np.inf with tm.assertRaises(ValueError) as cm: with tm.ensure_clean() as path: df.to_stata(path) tm.assertTrue('ColumnTooBig' in cm.exception) tm.assertTrue('infinity' in cm.exception) def test_out_of_range_float(self): original = DataFrame({'ColumnOk': [0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max / 10.0], 'ColumnTooBig': [0.0, np.finfo(np.float32).eps, np.finfo(np.float32).max]}) original.index.name = 'index' for col in original: original[col] = original[col].astype(np.float32) with tm.ensure_clean() as path: original.to_stata(path) reread = read_stata(path) original['ColumnTooBig'] = original['ColumnTooBig'].astype( np.float64) tm.assert_frame_equal(original, reread.set_index('index')) original.loc[2, 'ColumnTooBig'] = np.inf with tm.assertRaises(ValueError) as cm: with tm.ensure_clean() as path: original.to_stata(path) tm.assertTrue('ColumnTooBig' in cm.exception) tm.assertTrue('infinity' in cm.exception) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
bdrillard/spark
python/pyspark/testing/sqlutils.py
15
7799
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import os import shutil import tempfile from contextlib import contextmanager from pyspark.sql import SparkSession from pyspark.sql.types import ArrayType, DoubleType, UserDefinedType, Row from pyspark.testing.utils import ReusedPySparkTestCase from pyspark.util import _exception_message pandas_requirement_message = None try: from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() except ImportError as e: # If Pandas version requirement is not satisfied, skip related tests. pandas_requirement_message = _exception_message(e) pyarrow_requirement_message = None try: from pyspark.sql.utils import require_minimum_pyarrow_version require_minimum_pyarrow_version() except ImportError as e: # If Arrow version requirement is not satisfied, skip related tests. pyarrow_requirement_message = _exception_message(e) test_not_compiled_message = None try: from pyspark.sql.utils import require_test_compiled require_test_compiled() except Exception as e: test_not_compiled_message = _exception_message(e) have_pandas = pandas_requirement_message is None have_pyarrow = pyarrow_requirement_message is None test_compiled = test_not_compiled_message is None class UTCOffsetTimezone(datetime.tzinfo): """ Specifies timezone in UTC offset """ def __init__(self, offset=0): self.ZERO = datetime.timedelta(hours=offset) def utcoffset(self, dt): return self.ZERO def dst(self, dt): return self.ZERO class ExamplePointUDT(UserDefinedType): """ User-defined type (UDT) for ExamplePoint. """ @classmethod def sqlType(self): return ArrayType(DoubleType(), False) @classmethod def module(cls): return 'pyspark.sql.tests' @classmethod def scalaUDT(cls): return 'org.apache.spark.sql.test.ExamplePointUDT' def serialize(self, obj): return [obj.x, obj.y] def deserialize(self, datum): return ExamplePoint(datum[0], datum[1]) class ExamplePoint: """ An example class to demonstrate UDT in Scala, Java, and Python. """ __UDT__ = ExamplePointUDT() def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return "ExamplePoint(%s,%s)" % (self.x, self.y) def __str__(self): return "(%s,%s)" % (self.x, self.y) def __eq__(self, other): return isinstance(other, self.__class__) and \ other.x == self.x and other.y == self.y class PythonOnlyUDT(UserDefinedType): """ User-defined type (UDT) for ExamplePoint. """ @classmethod def sqlType(self): return ArrayType(DoubleType(), False) @classmethod def module(cls): return '__main__' def serialize(self, obj): return [obj.x, obj.y] def deserialize(self, datum): return PythonOnlyPoint(datum[0], datum[1]) @staticmethod def foo(): pass @property def props(self): return {} class PythonOnlyPoint(ExamplePoint): """ An example class to demonstrate UDT in only Python """ __UDT__ = PythonOnlyUDT() class MyObject(object): def __init__(self, key, value): self.key = key self.value = value class SQLTestUtils(object): """ This util assumes the instance of this to have 'spark' attribute, having a spark session. It is usually used with 'ReusedSQLTestCase' class but can be used if you feel sure the the implementation of this class has 'spark' attribute. """ @contextmanager def sql_conf(self, pairs): """ A convenient context manager to test some configuration specific logic. This sets `value` to the configuration `key` and then restores it back when it exits. """ assert isinstance(pairs, dict), "pairs should be a dictionary." assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." keys = pairs.keys() new_values = pairs.values() old_values = [self.spark.conf.get(key, None) for key in keys] for key, new_value in zip(keys, new_values): self.spark.conf.set(key, new_value) try: yield finally: for key, old_value in zip(keys, old_values): if old_value is None: self.spark.conf.unset(key) else: self.spark.conf.set(key, old_value) @contextmanager def database(self, *databases): """ A convenient context manager to test with some specific databases. This drops the given databases if it exists and sets current database to "default" when it exits. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for db in databases: self.spark.sql("DROP DATABASE IF EXISTS %s CASCADE" % db) self.spark.catalog.setCurrentDatabase("default") @contextmanager def table(self, *tables): """ A convenient context manager to test with some specific tables. This drops the given tables if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for t in tables: self.spark.sql("DROP TABLE IF EXISTS %s" % t) @contextmanager def tempView(self, *views): """ A convenient context manager to test with some specific views. This drops the given views if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for v in views: self.spark.catalog.dropTempView(v) @contextmanager def function(self, *functions): """ A convenient context manager to test with some specific functions. This drops the given functions if it exists. """ assert hasattr(self, "spark"), "it should have 'spark' attribute, having a spark session." try: yield finally: for f in functions: self.spark.sql("DROP FUNCTION IF EXISTS %s" % f) class ReusedSQLTestCase(ReusedPySparkTestCase, SQLTestUtils): @classmethod def setUpClass(cls): super(ReusedSQLTestCase, cls).setUpClass() cls.spark = SparkSession(cls.sc) cls.tempdir = tempfile.NamedTemporaryFile(delete=False) os.unlink(cls.tempdir.name) cls.testData = [Row(key=i, value=str(i)) for i in range(100)] cls.df = cls.spark.createDataFrame(cls.testData) @classmethod def tearDownClass(cls): super(ReusedSQLTestCase, cls).tearDownClass() cls.spark.stop() shutil.rmtree(cls.tempdir.name, ignore_errors=True)
apache-2.0
sumspr/scikit-learn
sklearn/neighbors/tests/test_kde.py
208
5556
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
xiaoxiamii/scikit-learn
sklearn/manifold/t_sne.py
48
20644
# Author: Alexander Fabisch -- <[email protected]> # License: BSD 3 clause (C) 2014 # This is the standard t-SNE implementation. There are faster modifications of # the algorithm: # * Barnes-Hut-SNE: reduces the complexity of the gradient computation from # N^2 to N log N (http://arxiv.org/abs/1301.3342) # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import numpy as np from scipy import linalg from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..utils.extmath import _ravel from ..decomposition import RandomizedPCA from ..metrics.pairwise import pairwise_distances from . import _utils MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity conditional_P = _utils._binary_search_perplexity( distances, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _kl_divergence(params, P, alpha, n_samples, n_components): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. alpha : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= alpha n **= (alpha + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) # Gradient: dC/dY grad = np.ndarray((n_samples, n_components)) PQd = squareform((P - Q) * n) for i in range(n_samples): np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i]) grad = grad.ravel() c = 2.0 * (alpha + 1.0) / alpha grad *= c return kl_divergence, grad def _gradient_descent(objective, p0, it, n_iter, n_iter_without_progress=30, momentum=0.5, learning_rate=1000.0, min_gain=0.01, min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0, args=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.5) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 1000.0) The learning rate should be extremely high for t-SNE! Values in the range [100.0, 1000.0] are common. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. min_error_diff : float, optional (default: 1e-7) If the absolute difference of two successive cost function values is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = 0 for i in range(it, n_iter): new_error, grad = objective(p, *args) error_diff = np.abs(new_error - error) error = new_error grad_norm = linalg.norm(grad) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if min_grad_norm >= grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break if min_error_diff >= error_diff: if verbose >= 2: print("[t-SNE] Iteration %d: error difference %f. Finished." % (i + 1, error_diff)) break inc = update * grad >= 0.0 dec = np.invert(inc) gains[inc] += 0.05 gains[dec] *= 0.95 np.clip(gains, min_gain, np.inf) grad *= gains update = momentum * update - learning_rate * grad p += update if verbose >= 2 and (i + 1) % 10 == 0: print("[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f" % (i + 1, error, grad_norm)) return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i (r(i, j) - k)} where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 4.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 1000) The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 200. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. min_grad_norm : float, optional (default: 1E-7) If the gradient norm is below this threshold, the optimization will be aborted. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string, optional (default: "random") Initialization of embedding. Possible options are 'random' and 'pca'. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Note that different initializations might result in different local minima of the cost function. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = TSNE(n_components=2, random_state=0) >>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([[ 887.28..., 238.61...], [ -714.79..., 3243.34...], [ 957.30..., -2505.78...], [-1130.28..., -974.78...]) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html """ def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000, n_iter_without_progress=30, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=None): if init not in ["pca", "random"]: raise ValueError("'init' must be either 'pca' or 'random'") self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model using X as training data. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is " "%f" % self.early_exaggeration) if self.n_iter < 200: raise ValueError("n_iter should be at least 200") if self.metric == "precomputed": if self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be used " "with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) # Degrees of freedom of the Student's t-distribution. The suggestion # alpha = n_components - 1 comes from "Learning a Parametric Embedding # by Preserving Local Structure" Laurens van der Maaten, 2009. alpha = max(self.n_components - 1.0, 1) n_samples = X.shape[0] self.training_data_ = X P = _joint_probabilities(distances, self.perplexity, self.verbose) if self.init == 'pca': pca = RandomizedPCA(n_components=self.n_components, random_state=random_state) X_embedded = pca.fit_transform(X) elif self.init == 'random': X_embedded = None else: raise ValueError("Unsupported initialization scheme: %s" % self.init) self.embedding_ = self._tsne(P, alpha, n_samples, random_state, X_embedded=X_embedded) return self def _tsne(self, P, alpha, n_samples, random_state, X_embedded=None): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with three stages: # * early exaggeration with momentum 0.5 # * early exaggeration with momentum 0.8 # * final optimization with momentum 0.8 # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. if X_embedded is None: # Initialize embedding randomly X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components) params = X_embedded.ravel() # Early exaggeration P *= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=0, n_iter=50, momentum=0.5, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=100, momentum=0.8, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations with early " "exaggeration: %f" % (it + 1, error)) # Final optimization P /= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=self.n_iter, min_grad_norm=self.min_grad_norm, n_iter_without_progress=self.n_iter_without_progress, momentum=0.8, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, error)) X_embedded = params.reshape(n_samples, self.n_components) return X_embedded def fit_transform(self, X, y=None): """Transform X to the embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self.fit(X) return self.embedding_
bsd-3-clause
draperjames/qtpandas
qtpandas/utils.py
1
8255
from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import # For Python 2 compatibility # from __future__ import print_function from builtins import open from builtins import str from future import standard_library standard_library.install_aliases() from random import randint from pandas import to_datetime import pandas as pd import numpy as np import os def fillNoneValues(column): """Fill all NaN/NaT values of a column with an empty string Args: column (pandas.Series): A Series object with all rows. Returns: column: Series with filled NaN values. """ if column.dtype == object: column.fillna('', inplace=True) return column def convertTimestamps(column): """Convert a dtype of a given column to a datetime. This method tries to do this by brute force. Args: column (pandas.Series): A Series object with all rows. Returns: column: Converted to datetime if no errors occured, else the original column will be returned. """ tempColumn = column try: # Try to convert the first row and a random row instead of the complete # column, might be faster # tempValue = np.datetime64(column[0]) tempValue = np.datetime64(column[randint(0, len(column.index) - 1)]) tempColumn = column.apply(to_datetime) except Exception: pass return tempColumn def superReadCSV(filepath, first_codec='UTF_8', usecols=None, low_memory=False, dtype=None, parse_dates=True, sep=',', chunksize=None, verbose=False, **kwargs): """ A wrap to pandas read_csv with mods to accept a dataframe or filepath. returns dataframe untouched, reads filepath and returns dataframe based on arguments. """ if isinstance(filepath, pd.DataFrame): return filepath assert isinstance(first_codec, str), "first_codec must be a string" codecs = ['UTF_8', 'ISO-8859-1', 'ASCII', 'UTF_16', 'UTF_32'] try: codecs.remove(first_codec) except ValueError as not_in_list: pass codecs.insert(0, first_codec) errors = [] for c in codecs: try: return pd.read_csv(filepath, usecols=usecols, low_memory=low_memory, encoding=c, dtype=dtype, parse_dates=parse_dates, sep=sep, chunksize=chunksize, **kwargs) # Need to catch `UnicodeError` here, not just `UnicodeDecodeError`, # because pandas 0.23.1 raises it when decoding with UTF_16 and the # file is not in that format: except (UnicodeError, UnboundLocalError) as e: errors.append(e) except Exception as e: errors.append(e) if 'tokenizing' in str(e): pass else: raise if verbose: [print(e) for e in errors] raise UnicodeDecodeError("Tried {} codecs and failed on all: \n CODECS: {} \n FILENAME: {}".format( len(codecs), codecs, os.path.basename(filepath))) def _count(item, string): if len(item) == 1: return len(''.join(x for x in string if x == item)) return len(str(string.split(item))) def identify_sep(filepath): """ Identifies the separator of data in a filepath. It reads the first line of the file and counts supported separators. Currently supported separators: ['|', ';', ',','\t',':'] """ ext = os.path.splitext(filepath)[1].lower() allowed_exts = ['.csv', '.txt', '.tsv'] assert ext in ['.csv', '.txt'], "Unexpected file extension {}. \ Supported extensions {}\n filename: {}".format( ext, allowed_exts, os.path.basename(filepath)) maybe_seps = ['|', ';', ',', '\t', ':'] with open(filepath,'r') as fp: header = fp.__next__() count_seps_header = {sep: _count(sep, header) for sep in maybe_seps} count_seps_header = {sep: count for sep, count in count_seps_header.items() if count > 0} if count_seps_header: return max(count_seps_header.__iter__(), key=(lambda key: count_seps_header[key])) else: raise Exception("Couldn't identify the sep from the header... here's the information:\n HEADER: {}\n SEPS SEARCHED: {}".format(header, maybe_seps)) def superReadText(filepath, **kwargs): """ A wrapper to superReadCSV which wraps pandas.read_csv(). The benefit of using this function is that it automatically identifies the column separator. .tsv files are assumed to have a \t (tab) separation .csv files are assumed to have a comma separation. .txt (or any other type) get the first line of the file opened and get tested for various separators as defined in the identify_sep function. """ if isinstance(filepath, pd.DataFrame): return filepath sep = kwargs.get('sep', None) ext = os.path.splitext(filepath)[1].lower() if sep is None: if ext == '.tsv': kwargs['sep'] = '\t' elif ext == '.csv': kwargs['sep'] = ',' else: found_sep = identify_sep(filepath) print(found_sep) kwargs['sep'] = found_sep return superReadCSV(filepath, **kwargs) def superReadFile(filepath, **kwargs): """ Uses pandas.read_excel (on excel files) and returns a dataframe of the first sheet (unless sheet is specified in kwargs) Uses superReadText (on .txt,.tsv, or .csv files) and returns a dataframe of the data. One function to read almost all types of data files. """ if isinstance(filepath, pd.DataFrame): return filepath ext = os.path.splitext(filepath)[1].lower() if ext in ['.xlsx', '.xls']: df = pd.read_excel(filepath, **kwargs) elif ext in ['.pkl', '.p', '.pickle', '.pk']: df = pd.read_pickle(filepath) else: # Assume it's a text-like file and try to read it. try: df = superReadText(filepath, **kwargs) except Exception as e: # TODO: Make this trace back better? Custom Exception? Raise original? raise Exception("Error reading file: {}".format(e)) return df def dedupe_cols(frame): """ Need to dedupe columns that have the same name. """ cols = list(frame.columns) for i, item in enumerate(frame.columns): if item in frame.columns[:i]: cols[i] = "toDROP" frame.columns = cols return frame.drop("toDROP", 1, errors='ignore') def rename_dupe_cols(cols): """ Takes a list of strings and appends 2,3,4 etc to duplicates. Never appends a 0 or 1. Appended #s are not always in order...but if you wrap this in a dataframe.to_sql function you're guaranteed to not have dupe column name errors importing data to SQL...you'll just have to check yourself to see which fields were renamed. """ counts = {} positions = {pos: fld for pos, fld in enumerate(cols)} for c in cols: if c in counts.keys(): counts[c] += 1 else: counts[c] = 1 fixed_cols = {} for pos, col in positions.items(): if counts[col] > 1: fix_cols = {pos: fld for pos, fld in positions.items() if fld == col} keys = [p for p in fix_cols.keys()] min_pos = min(keys) cnt = 1 for p, c in fix_cols.items(): if not p == min_pos: cnt += 1 c = c + str(cnt) fixed_cols.update({p: c}) positions.update(fixed_cols) cols = [x for x in positions.values()] return cols
mit
JohnGriffiths/nipype
tools/make_examples.py
16
2859
#!/usr/bin/env python """Run the py->rst conversion and run all examples. This also creates the index.rst file appropriately, makes figures, etc. """ #----------------------------------------------------------------------------- # Library imports #----------------------------------------------------------------------------- # Stdlib imports import os import sys from glob import glob # Third-party imports # We must configure the mpl backend before making any further mpl imports import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib._pylab_helpers import Gcf # Local tools from toollib import * #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- examples_header = """ .. _examples: Examples ======== .. note_about_examples """ #----------------------------------------------------------------------------- # Function defintions #----------------------------------------------------------------------------- # These global variables let show() be called by the scripts in the usual # manner, but when generating examples, we override it to write the figures to # files with a known name (derived from the script name) plus a counter figure_basename = None # We must change the show command to save instead def show(): allfm = Gcf.get_all_fig_managers() for fcount, fm in enumerate(allfm): fm.canvas.figure.savefig('%s_%02i.png' % (figure_basename, fcount+1)) _mpl_show = plt.show plt.show = show #----------------------------------------------------------------------------- # Main script #----------------------------------------------------------------------------- # Work in examples directory cd('users/examples') if not os.getcwd().endswith('users/examples'): raise OSError('This must be run from doc/examples directory') # Run the conversion from .py to rst file sh('../../../tools/ex2rst --project Nipype --outdir . ../../../examples') sh('../../../tools/ex2rst --project Nipype --outdir . ../../../examples/frontiers_paper') # Make the index.rst file """ index = open('index.rst', 'w') index.write(examples_header) for name in [os.path.splitext(f)[0] for f in glob('*.rst')]: #Don't add the index in there to avoid sphinx errors and don't add the #note_about examples again (because it was added at the top): if name not in(['index','note_about_examples']): index.write(' %s\n' % name) index.close() """ # Execute each python script in the directory. if '--no-exec' in sys.argv: pass else: if not os.path.isdir('fig'): os.mkdir('fig') for script in glob('*.py'): figure_basename = pjoin('fig', os.path.splitext(script)[0]) execfile(script) plt.close('all')
bsd-3-clause
bthirion/nipy
nipy/modalities/fmri/tests/test_dmtx.py
1
15829
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Test the design_matrix utilities. Note that the tests just looks whether the data produces has correct dimension, not whether it is exact """ from __future__ import with_statement import numpy as np from os.path import join, dirname from ..experimental_paradigm import (EventRelatedParadigm, BlockParadigm) from ..design_matrix import (dmtx_light, _convolve_regressors, dmtx_from_csv, make_dmtx) from nibabel.tmpdirs import InTemporaryDirectory from nose.tools import assert_true, assert_equal from numpy.testing import assert_almost_equal, dec, assert_array_equal try: import matplotlib.pyplot except ImportError: have_mpl = False else: have_mpl = True DMTX = np.load(join(dirname(__file__), 'spm_dmtx.npz')) def basic_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] paradigm = EventRelatedParadigm(conditions, onsets) return paradigm def modulated_block_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] duration = 5 + 5 * np.random.rand(len(onsets)) values = 1 + np.random.rand(len(onsets)) paradigm = BlockParadigm(conditions, onsets, duration, values) return paradigm def modulated_event_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] values = 1 + np.random.rand(len(onsets)) paradigm = EventRelatedParadigm(conditions, onsets, values) return paradigm def block_paradigm(): conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] duration = 5 * np.ones(9) paradigm = BlockParadigm (conditions, onsets, duration) return paradigm @dec.skipif(not have_mpl) def test_show_dmtx(): # test that the show code indeed (formally) runs frametimes = np.linspace(0, 127 * 1.,128) DM = make_dmtx(frametimes, drift_model='polynomial', drift_order=3) ax = DM.show() assert (ax is not None) def test_dmtx0(): # Test design matrix creation when no paradigm is provided tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) X, names= dmtx_light(frametimes, drift_model='polynomial', drift_order=3) assert_equal(len(names), 4) def test_dmtx0b(): # Test design matrix creation when no paradigm is provided tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) X, names= dmtx_light(frametimes, drift_model='polynomial', drift_order=3) assert_almost_equal(X[:, 0], np.linspace(- 0.5, .5, 128)) def test_dmtx0c(): # test design matrix creation when regressors are provided manually tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) ax = np.random.randn(128, 4) X, names= dmtx_light(frametimes, drift_model='polynomial', drift_order=3, add_regs=ax) assert_almost_equal(X[:, 0], ax[:, 0]) def test_dmtx0d(): # test design matrix creation when regressors are provided manually tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) ax = np.random.randn(128, 4) X, names= dmtx_light(frametimes, drift_model='polynomial', drift_order=3, add_regs=ax) assert_equal(len(names), 8) assert_equal(X.shape[1], 8) def test_dmtx1(): # basic test based on basic_paradigm and canonical hrf tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 7) def test_convolve_regressors(): # tests for convolve_regressors helper function conditions = ['c0', 'c1'] onsets = [20, 40] paradigm = EventRelatedParadigm(conditions, onsets) # names not passed -> default names frametimes = np.arange(100) f, names = _convolve_regressors(paradigm, 'canonical', frametimes) assert_equal(names, ['c0', 'c1']) def test_dmtx1b(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(X.shape, (128, 7)) def test_dmtx1c(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 *tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_true((X[:, - 1] == 1).all()) def test_dmtx1d(): # idem test_dmtx1, but different test tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_true((np.isnan(X) == 0).all()) def test_dmtx2(): # idem test_dmtx1 with a different drift term tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='cosine', hfcut=63) assert_equal(len(names), 8) def test_dmtx3(): # idem test_dmtx1 with a different drift term tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' X,names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='blank') assert_equal(len(names), 4) def test_dmtx4(): # idem test_dmtx1 with a different hrf model tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical With Derivative' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 10) def test_dmtx5(): # idem test_dmtx1 with a block paradigm tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = block_paradigm() hrf_model = 'Canonical' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 7) def test_dmtx6(): # idem test_dmtx1 with a block paradigm and the hrf derivative tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = block_paradigm() hrf_model = 'Canonical With Derivative' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 10) def test_dmtx7(): # idem test_dmtx1, but odd paradigm tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) conditions = [0, 0, 0, 1, 1, 1, 3, 3, 3] # no condition 'c2' onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60] paradigm = EventRelatedParadigm(conditions, onsets) hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 7) def test_dmtx8(): # basic test based on basic_paradigm and FIR tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names= dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) assert_equal(len(names), 7) def test_dmtx9(): # basic test based on basic_paradigm and FIR tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) assert_equal(len(names), 16) def test_dmtx10(): # Check that the first column o FIR design matrix is OK tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all((X[onset + 1, 0] == 1))) def test_dmtx11(): # check that the second column of the FIR design matrix is OK indeed tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 3, 2] == 1)) def test_dmtx12(): # check that the 11th column of a FIR design matrix is indeed OK tr = 1.0 frametimes = np.linspace(0, 127 * tr,128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c2'].astype(np.int) assert_true(np.all(X[onset + 4, 11] == 1)) def test_dmtx13(): # Check that the fir_duration is well taken into account tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 1, 0] == 1)) def test_dmtx14(): # Check that the first column o FIR design matrix is OK after a 1/2 # time shift tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) + tr / 2 paradigm = basic_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) onset = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) assert_true(np.all(X[onset + 1, 0] > .9)) def test_dmtx15(): # basic test based on basic_paradigm, plus user supplied regressors tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' ax = np.random.randn(128, 4) X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, add_regs=ax) assert_equal(len(names), 11) assert_equal(X.shape[1], 11) def test_dmtx16(): # Check that additional regressors are put at the right place tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = basic_paradigm() hrf_model = 'Canonical' ax = np.random.randn(128, 4) X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, add_regs=ax) assert_almost_equal(X[:, 3: 7], ax) def test_dmtx17(): # Test the effect of scaling on the events tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) ct = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) + 1 assert_true((X[ct, 0] > 0).all()) def test_dmtx18(): # Test the effect of scaling on the blocks tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_block_paradigm() hrf_model = 'Canonical' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3) ct = paradigm.onset[paradigm.con_id == 'c0'].astype(np.int) + 3 assert_true((X[ct, 0] > 0).all()) def test_dmtx19(): # Test the effect of scaling on a FIR model tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() hrf_model = 'FIR' X, names = dmtx_light(frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial', drift_order=3, fir_delays=range(1, 5)) idx = paradigm.onset[paradigm.con_id == 0].astype(np.int) assert_array_equal(X[idx + 1, 0], X[idx + 2, 1]) def test_dmtx20(): # Test for commit 10662f7 frametimes = np.arange(0, 127) # integers paradigm = modulated_event_paradigm() X, names = dmtx_light(frametimes, paradigm, hrf_model='canonical', drift_model='cosine') # check that the drifts are not constant assert_true(np.all(np.diff(X[:, -2]) != 0)) def test_fir_block(): # tets FIR models on block designs bp = block_paradigm() tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) X, names = dmtx_light(frametimes, bp, hrf_model='fir', drift_model='blank', fir_delays=range(0, 4)) idx = bp.onset[bp.con_id == 1].astype(np.int) assert_equal(X.shape, (128, 13)) assert_true((X[idx, 4] == 1).all()) assert_true((X[idx + 1, 5] == 1).all()) assert_true((X[idx + 2, 6] == 1).all()) assert_true((X[idx + 3, 7] == 1).all()) def test_csv_io(): # test the csv io on design matrices tr = 1.0 frametimes = np.linspace(0, 127 * tr, 128) paradigm = modulated_event_paradigm() DM = make_dmtx(frametimes, paradigm, hrf_model='Canonical', drift_model='polynomial', drift_order=3) path = 'dmtx.csv' with InTemporaryDirectory(): DM.write_csv(path) DM2 = dmtx_from_csv(path) assert_almost_equal(DM.matrix, DM2.matrix) assert_equal(DM.names, DM2.names) def test_spm_1(): # Check that the nipy design matrix is close enough to the SPM one # (it cannot be identical, because the hrf shape is different) frametimes = np.linspace(0, 99, 100) conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 50, 70, 10, 30, 80, 30, 40, 60] paradigm = EventRelatedParadigm(conditions, onsets) X1 = make_dmtx(frametimes, paradigm, drift_model='blank') spm_dmtx = DMTX['arr_0'] assert_true(((spm_dmtx - X1.matrix) ** 2).sum() / (spm_dmtx ** 2).sum() < .1) def test_spm_2(): # Check that the nipy design matrix is close enough to the SPM one # (it cannot be identical, because the hrf shape is different) frametimes = np.linspace(0, 99, 100) conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c2', 'c2', 'c2'] onsets = [30, 50, 70, 10, 30, 80, 30, 40, 60] duration = 10 * np.ones(9) paradigm = BlockParadigm(conditions, onsets, duration) X1 = make_dmtx(frametimes, paradigm, drift_model='blank') spm_dmtx = DMTX['arr_1'] assert_true(((spm_dmtx - X1.matrix) ** 2).sum() / (spm_dmtx ** 2).sum() < .1) if __name__ == "__main__": import nose nose.run(argv=['', __file__])
bsd-3-clause
tschaume/pymatgen
pymatgen/phonon/plotter.py
2
23775
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import logging from collections import OrderedDict, namedtuple import numpy as np import scipy.constants as const from monty.json import jsanitize from pymatgen.phonon.bandstructure import PhononBandStructureSymmLine from pymatgen.util.plotting import pretty_plot, add_fig_kwargs, get_ax_fig_plt from pymatgen.electronic_structure.plotter import plot_brillouin_zone """ This module implements plotter for DOS and band structure. """ logger = logging.getLogger(__name__) FreqUnits = namedtuple("FreqUnits", ["factor", "label"]) def freq_units(units): """ Returns conversion factor from THz to the requred units and the label in the form of a namedtuple Accepted values: thz, ev, mev, ha, cm-1, cm^-1 """ d = {"thz": FreqUnits(1, "THz"), "ev": FreqUnits(const.value("hertz-electron volt relationship") * const.tera, "eV"), "mev": FreqUnits(const.value("hertz-electron volt relationship") * const.tera / const.milli, "meV"), "ha": FreqUnits(const.value("hertz-hartree relationship") * const.tera, "Ha"), "cm-1": FreqUnits(const.value("hertz-inverse meter relationship") * const.tera * const.centi, "cm^{-1}"), 'cm^-1': FreqUnits(const.value("hertz-inverse meter relationship") * const.tera * const.centi, "cm^{-1}") } try: return d[units.lower().strip()] except KeyError: raise KeyError('Value for units `{}` unknown\nPossible values are:\n {}'.format(units, list(d.keys()))) class PhononDosPlotter: """ Class for plotting phonon DOSs. Note that the interface is extremely flexible given that there are many different ways in which people want to view DOS. The typical usage is:: # Initializes plotter with some optional args. Defaults are usually # fine, plotter = PhononDosPlotter() # Adds a DOS with a label. plotter.add_dos("Total DOS", dos) # Alternatively, you can add a dict of DOSs. This is the typical # form returned by CompletePhononDos.get_element_dos(). Args: stack: Whether to plot the DOS as a stacked area graph key_sort_func: function used to sort the dos_dict keys. sigma: A float specifying a standard deviation for Gaussian smearing the DOS for nicer looking plots. Defaults to None for no smearing. """ def __init__(self, stack=False, sigma=None): self.stack = stack self.sigma = sigma self._doses = OrderedDict() def add_dos(self, label, dos): """ Adds a dos for plotting. Args: label: label for the DOS. Must be unique. dos: PhononDos object """ densities = dos.get_smeared_densities(self.sigma) if self.sigma \ else dos.densities self._doses[label] = {'frequencies': dos.frequencies, 'densities': densities} def add_dos_dict(self, dos_dict, key_sort_func=None): """ Add a dictionary of doses, with an optional sorting function for the keys. Args: dos_dict: dict of {label: Dos} key_sort_func: function used to sort the dos_dict keys. """ if key_sort_func: keys = sorted(dos_dict.keys(), key=key_sort_func) else: keys = dos_dict.keys() for label in keys: self.add_dos(label, dos_dict[label]) def get_dos_dict(self): """ Returns the added doses as a json-serializable dict. Note that if you have specified smearing for the DOS plot, the densities returned will be the smeared densities, not the original densities. Returns: Dict of dos data. Generally of the form, {label: {'frequencies':.., 'densities': ...}} """ return jsanitize(self._doses) def get_plot(self, xlim=None, ylim=None, units="thz"): """ Get a matplotlib plot showing the DOS. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ u = freq_units(units) ncolors = max(3, len(self._doses)) ncolors = min(9, ncolors) import palettable colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors y = None alldensities = [] allfrequencies = [] plt = pretty_plot(12, 8) # Note that this complicated processing of frequencies is to allow for # stacked plots in matplotlib. for key, dos in self._doses.items(): frequencies = dos['frequencies'] * u.factor densities = dos['densities'] if y is None: y = np.zeros(frequencies.shape) if self.stack: y += densities newdens = y.copy() else: newdens = densities allfrequencies.append(frequencies) alldensities.append(newdens) keys = list(self._doses.keys()) keys.reverse() alldensities.reverse() allfrequencies.reverse() allpts = [] for i, (key, frequencies, densities) in enumerate(zip(keys, allfrequencies, alldensities)): allpts.extend(list(zip(frequencies, densities))) if self.stack: plt.fill(frequencies, densities, color=colors[i % ncolors], label=str(key)) else: plt.plot(frequencies, densities, color=colors[i % ncolors], label=str(key), linewidth=3) if xlim: plt.xlim(xlim) if ylim: plt.ylim(ylim) else: xlim = plt.xlim() relevanty = [p[1] for p in allpts if xlim[0] < p[0] < xlim[1]] plt.ylim((min(relevanty), max(relevanty))) ylim = plt.ylim() plt.plot([0, 0], ylim, 'k--', linewidth=2) plt.xlabel(r'$\mathrm{{Frequencies\ ({})}}$'.format(u.label)) plt.ylabel(r'$\mathrm{Density\ of\ states}$') plt.legend() leg = plt.gca().get_legend() ltext = leg.get_texts() # all the text.Text instance in the legend plt.setp(ltext, fontsize=30) plt.tight_layout() return plt def save_plot(self, filename, img_format="eps", xlim=None, ylim=None, units="thz"): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1 """ plt = self.get_plot(xlim, ylim, units=units) plt.savefig(filename, format=img_format) def show(self, xlim=None, ylim=None, units="thz"): """ Show the plot using matplotlib. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(xlim, ylim, units=units) plt.show() class PhononBSPlotter: """ Class to plot or get data to facilitate the plot of band structure objects. Args: bs: A BandStructureSymmLine object. """ def __init__(self, bs): if not isinstance(bs, PhononBandStructureSymmLine): raise ValueError( "PhononBSPlotter only works with PhononBandStructureSymmLine objects. " "A PhononBandStructure object (on a uniform grid for instance and " "not along symmetry lines won't work)") self._bs = bs self._nb_bands = self._bs.nb_bands def _maketicks(self, plt): """ utility private method to add ticks to a band structure """ ticks = self.get_ticks() # Sanitize only plot the uniq values uniq_d = [] uniq_l = [] temp_ticks = list(zip(ticks['distance'], ticks['label'])) for i in range(len(temp_ticks)): if i == 0: uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) else: if temp_ticks[i][1] == temp_ticks[i - 1][1]: logger.debug("Skipping label {i}".format( i=temp_ticks[i][1])) else: logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Unique labels are %s" % list(zip(uniq_d, uniq_l))) plt.gca().set_xticks(uniq_d) plt.gca().set_xticklabels(uniq_l) for i in range(len(ticks['label'])): if ticks['label'][i] is not None: # don't print the same label twice if i != 0: if ticks['label'][i] == ticks['label'][i - 1]: logger.debug("already print label... " "skipping label {i}".format(i=ticks['label'][i])) else: logger.debug("Adding a line at {d} for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') else: logger.debug("Adding a line at {d} for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') return plt def bs_plot_data(self): """ Get the data nicely formatted for a plot Returns: A dict of the following format: ticks: A dict with the 'distances' at which there is a qpoint (the x axis) and the labels (None if no label) frequencies: A list (one element for each branch) of frequencies for each qpoint: [branch][qpoint][mode]. The data is stored by branch to facilitate the plotting lattice: The reciprocal lattice. """ distance = [] frequency = [] ticks = self.get_ticks() for b in self._bs.branches: frequency.append([]) distance.append([self._bs.distance[j] for j in range(b['start_index'], b['end_index'] + 1)]) for i in range(self._nb_bands): frequency[-1].append( [self._bs.bands[i][j] for j in range(b['start_index'], b['end_index'] + 1)]) return {'ticks': ticks, 'distances': distance, 'frequency': frequency, 'lattice': self._bs.lattice_rec.as_dict()} def get_plot(self, ylim=None, units="thz"): """ Get a matplotlib object for the bandstructure plot. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ u = freq_units(units) plt = pretty_plot(12, 8) band_linewidth = 1 data = self.bs_plot_data() for d in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][d], [data['frequency'][d][i][j] * u.factor for j in range(len(data['distances'][d]))], 'b-', linewidth=band_linewidth) self._maketicks(plt) # plot y=0 line plt.axhline(0, linewidth=1, color='k') # Main X and Y Labels plt.xlabel(r'$\mathrm{Wave\ Vector}$', fontsize=30) ylabel = r'$\mathrm{{Frequencies\ ({})}}$'.format(u.label) plt.ylabel(ylabel, fontsize=30) # X range (K) # last distance point x_max = data['distances'][-1][-1] plt.xlim(0, x_max) if ylim is not None: plt.ylim(ylim) plt.tight_layout() return plt def show(self, ylim=None, units="thz"): """ Show the plot using matplotlib. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(ylim, units=units) plt.show() def save_plot(self, filename, img_format="eps", ylim=None, units="thz"): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(ylim=ylim, units=units) plt.savefig(filename, format=img_format) plt.close() def get_ticks(self): """ Get all ticks and labels for a band structure plot. Returns: A dict with 'distance': a list of distance at which ticks should be set and 'label': a list of label for each of those ticks. """ tick_distance = [] tick_labels = [] previous_label = self._bs.qpoints[0].label previous_branch = self._bs.branches[0]['name'] for i, c in enumerate(self._bs.qpoints): if c.label is not None: tick_distance.append(self._bs.distance[i]) this_branch = None for b in self._bs.branches: if b['start_index'] <= i <= b['end_index']: this_branch = b['name'] break if c.label != previous_label \ and previous_branch != this_branch: label1 = c.label if label1.startswith("\\") or label1.find("_") != -1: label1 = "$" + label1 + "$" label0 = previous_label if label0.startswith("\\") or label0.find("_") != -1: label0 = "$" + label0 + "$" tick_labels.pop() tick_distance.pop() tick_labels.append(label0 + "$\\mid$" + label1) else: if c.label.startswith("\\") or c.label.find("_") != -1: tick_labels.append("$" + c.label + "$") else: tick_labels.append(c.label) previous_label = c.label previous_branch = this_branch return {'distance': tick_distance, 'label': tick_labels} def plot_compare(self, other_plotter): """ plot two band structure for comparison. One is in red the other in blue. The two band structures need to be defined on the same symmetry lines! and the distance between symmetry lines is the one of the band structure used to build the PhononBSPlotter Args: another PhononBSPlotter object defined along the same symmetry lines Returns: a matplotlib object with both band structures """ data_orig = self.bs_plot_data() data = other_plotter.bs_plot_data() if len(data_orig['distances']) != len(data['distances']): raise ValueError('The two objects are not compatible.') plt = self.get_plot() band_linewidth = 1 for i in range(other_plotter._nb_bands): for d in range(len(data_orig['distances'])): plt.plot(data_orig['distances'][d], [e[i] for e in data['frequency']][d], 'r-', linewidth=band_linewidth) return plt def plot_brillouin(self): """ plot the Brillouin zone """ # get labels and lines labels = {} for q in self._bs.qpoints: if q.label: labels[q.label] = q.frac_coords lines = [] for b in self._bs.branches: lines.append([self._bs.qpoints[b['start_index']].frac_coords, self._bs.qpoints[b['end_index']].frac_coords]) plot_brillouin_zone(self._bs.lattice_rec, lines=lines, labels=labels) class ThermoPlotter: """ Plotter for thermodynamic properties obtained from phonon DOS. If the structure corresponding to the DOS, it will be used to extract the forumla unit and provide the plots in units of mol instead of mole-cell """ def __init__(self, dos, structure=None): """ Args: dos: A PhononDos object. structure: A Structure object corresponding to the structure used for the calculation. """ self.dos = dos self.structure = structure def _plot_thermo(self, func, temperatures, factor=1, ax=None, ylabel=None, label=None, ylim=None, **kwargs): """ Plots a thermodynamic property for a generic function from a PhononDos instance. Args: func: the thermodynamic function to be used to calculate the property temperatures: a list of temperatures factor: a multiplicative factor applied to the thermodynamic property calculated. Used to change the units. ax: matplotlib :class:`Axes` or None if a new figure should be created. ylabel: label for the y axis label: label of the plot ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ ax, fig, plt = get_ax_fig_plt(ax) values = [] for t in temperatures: values.append(func(t, structure=self.structure) * factor) ax.plot(temperatures, values, label=label, **kwargs) if ylim: ax.set_ylim(ylim) ax.set_xlim((np.min(temperatures), np.max(temperatures))) ylim = plt.ylim() if ylim[0] < 0 < ylim[1]: plt.plot(plt.xlim(), [0, 0], 'k-', linewidth=1) ax.set_xlabel(r"$T$ (K)") if ylabel: ax.set_ylabel(ylabel) return fig @add_fig_kwargs def plot_cv(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the constant volume specific heat C_v in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$C_v$ (J/K/mol)" else: ylabel = r"$C_v$ (J/K/mol-c)" fig = self._plot_thermo(self.dos.cv, temperatures, ylabel=ylabel, ylim=ylim, **kwargs) return fig @add_fig_kwargs def plot_entropy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational entrpy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$S$ (J/K/mol)" else: ylabel = r"$S$ (J/K/mol-c)" fig = self._plot_thermo(self.dos.entropy, temperatures, ylabel=ylabel, ylim=ylim, **kwargs) return fig @add_fig_kwargs def plot_internal_energy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational internal energy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$\Delta E$ (kJ/mol)" else: ylabel = r"$\Delta E$ (kJ/mol-c)" fig = self._plot_thermo(self.dos.internal_energy, temperatures, ylabel=ylabel, ylim=ylim, factor=1e-3, **kwargs) return fig @add_fig_kwargs def plot_helmholtz_free_energy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational contribution to the Helmoltz free energy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$\Delta F$ (kJ/mol)" else: ylabel = r"$\Delta F$ (kJ/mol-c)" fig = self._plot_thermo(self.dos.helmholtz_free_energy, temperatures, ylabel=ylabel, ylim=ylim, factor=1e-3, **kwargs) return fig @add_fig_kwargs def plot_thermodynamic_properties(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots all the thermodynamic properties in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) mol = "" if self.structure else "-c" fig = self._plot_thermo(self.dos.cv, temperatures, ylabel="Thermodynamic properties", ylim=ylim, label=r"$C_v$ (J/K/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.entropy, temperatures, ylim=ylim, ax=fig.axes[0], label=r"$S$ (J/K/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.internal_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3, label=r"$\Delta E$ (kJ/K/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.helmholtz_free_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3, label=r"$\Delta F$ (kJ/K/mol{})".format(mol), **kwargs) fig.axes[0].legend(loc="best") return fig
mit
vicky2135/lucious
oscar/lib/python2.7/site-packages/IPython/core/display.py
6
34087
# -*- coding: utf-8 -*- """Top-level display functions for displaying object in different formats.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function try: from base64 import encodebytes as base64_encode except ImportError: from base64 import encodestring as base64_encode import json import mimetypes import os import struct import sys import warnings from IPython.utils.py3compat import (string_types, cast_bytes_py2, cast_unicode, unicode_type) from IPython.testing.skipdoctest import skip_doctest __all__ = ['display', 'display_pretty', 'display_html', 'display_markdown', 'display_svg', 'display_png', 'display_jpeg', 'display_latex', 'display_json', 'display_javascript', 'display_pdf', 'DisplayObject', 'TextDisplayObject', 'Pretty', 'HTML', 'Markdown', 'Math', 'Latex', 'SVG', 'JSON', 'Javascript', 'Image', 'clear_output', 'set_matplotlib_formats', 'set_matplotlib_close', 'publish_display_data'] #----------------------------------------------------------------------------- # utility functions #----------------------------------------------------------------------------- def _safe_exists(path): """Check path, but don't let exceptions raise""" try: return os.path.exists(path) except Exception: return False def _merge(d1, d2): """Like update, but merges sub-dicts instead of clobbering at the top level. Updates d1 in-place """ if not isinstance(d2, dict) or not isinstance(d1, dict): return d2 for key, value in d2.items(): d1[key] = _merge(d1.get(key), value) return d1 def _display_mimetype(mimetype, objs, raw=False, metadata=None): """internal implementation of all display_foo methods Parameters ---------- mimetype : str The mimetype to be published (e.g. 'image/png') objs : tuple of objects The Python objects to display, or if raw=True raw text data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ if metadata: metadata = {mimetype: metadata} if raw: # turn list of pngdata into list of { 'image/png': pngdata } objs = [ {mimetype: obj} for obj in objs ] display(*objs, raw=raw, metadata=metadata, include=[mimetype]) #----------------------------------------------------------------------------- # Main functions #----------------------------------------------------------------------------- def publish_display_data(data, metadata=None, source=None): """Publish data and metadata to all frontends. See the ``display_data`` message in the messaging documentation for more details about this message type. The following MIME types are currently implemented: * text/plain * text/html * text/markdown * text/latex * application/json * application/javascript * image/png * image/jpeg * image/svg+xml Parameters ---------- data : dict A dictionary having keys that are valid MIME types (like 'text/plain' or 'image/svg+xml') and values that are the data for that MIME type. The data itself must be a JSON'able data structure. Minimally all data should have the 'text/plain' data, which can be displayed by all frontends. If more than the plain text is given, it is up to the frontend to decide which representation to use. metadata : dict A dictionary for metadata related to the data. This can contain arbitrary key, value pairs that frontends can use to interpret the data. mime-type keys matching those in data can be used to specify metadata about particular representations. source : str, deprecated Unused. """ from IPython.core.interactiveshell import InteractiveShell InteractiveShell.instance().display_pub.publish( data=data, metadata=metadata, ) def display(*objs, **kwargs): """Display a Python object in all frontends. By default all representations will be computed and sent to the frontends. Frontends can decide which representation is used and how. Parameters ---------- objs : tuple of objects The Python objects to display. raw : bool, optional Are the objects to be displayed already mimetype-keyed dicts of raw display data, or Python objects that need to be formatted before display? [default: False] include : list or tuple, optional A list of format type strings (MIME types) to include in the format data dict. If this is set *only* the format types included in this list will be computed. exclude : list or tuple, optional A list of format type strings (MIME types) to exclude in the format data dict. If this is set all format types will be computed, except for those included in this argument. metadata : dict, optional A dictionary of metadata to associate with the output. mime-type keys in this dictionary will be associated with the individual representation formats, if they exist. """ raw = kwargs.get('raw', False) include = kwargs.get('include') exclude = kwargs.get('exclude') metadata = kwargs.get('metadata') from IPython.core.interactiveshell import InteractiveShell if not raw: format = InteractiveShell.instance().display_formatter.format for obj in objs: if raw: publish_display_data(data=obj, metadata=metadata) else: format_dict, md_dict = format(obj, include=include, exclude=exclude) if not format_dict: # nothing to display (e.g. _ipython_display_ took over) continue if metadata: # kwarg-specified metadata gets precedence _merge(md_dict, metadata) publish_display_data(data=format_dict, metadata=md_dict) def display_pretty(*objs, **kwargs): """Display the pretty (default) representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw text data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/plain', objs, **kwargs) def display_html(*objs, **kwargs): """Display the HTML representation of an object. Note: If raw=False and the object does not have a HTML representation, no HTML will be shown. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw HTML data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/html', objs, **kwargs) def display_markdown(*objs, **kwargs): """Displays the Markdown representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw markdown data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/markdown', objs, **kwargs) def display_svg(*objs, **kwargs): """Display the SVG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw svg data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/svg+xml', objs, **kwargs) def display_png(*objs, **kwargs): """Display the PNG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw png data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/png', objs, **kwargs) def display_jpeg(*objs, **kwargs): """Display the JPEG representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw JPEG data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('image/jpeg', objs, **kwargs) def display_latex(*objs, **kwargs): """Display the LaTeX representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw latex data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('text/latex', objs, **kwargs) def display_json(*objs, **kwargs): """Display the JSON representation of an object. Note that not many frontends support displaying JSON. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw json data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/json', objs, **kwargs) def display_javascript(*objs, **kwargs): """Display the Javascript representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw javascript data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/javascript', objs, **kwargs) def display_pdf(*objs, **kwargs): """Display the PDF representation of an object. Parameters ---------- objs : tuple of objects The Python objects to display, or if raw=True raw javascript data to display. raw : bool Are the data objects raw data or Python objects that need to be formatted before display? [default: False] metadata : dict (optional) Metadata to be associated with the specific mimetype output. """ _display_mimetype('application/pdf', objs, **kwargs) #----------------------------------------------------------------------------- # Smart classes #----------------------------------------------------------------------------- class DisplayObject(object): """An object that wraps data to be displayed.""" _read_flags = 'r' _show_mem_addr = False def __init__(self, data=None, url=None, filename=None): """Create a display object given raw data. When this object is returned by an expression or passed to the display function, it will result in the data being displayed in the frontend. The MIME type of the data should match the subclasses used, so the Png subclass should be used for 'image/png' data. If the data is a URL, the data will first be downloaded and then displayed. If Parameters ---------- data : unicode, str or bytes The raw data or a URL or file to load the data from url : unicode A URL to download the data from. filename : unicode Path to a local file to load the data from. """ if data is not None and isinstance(data, string_types): if data.startswith('http') and url is None: url = data filename = None data = None elif _safe_exists(data) and filename is None: url = None filename = data data = None self.data = data self.url = url self.filename = None if filename is None else unicode_type(filename) self.reload() self._check_data() def __repr__(self): if not self._show_mem_addr: cls = self.__class__ r = "<%s.%s object>" % (cls.__module__, cls.__name__) else: r = super(DisplayObject, self).__repr__() return r def _check_data(self): """Override in subclasses if there's something to check.""" pass def reload(self): """Reload the raw data from file or URL.""" if self.filename is not None: with open(self.filename, self._read_flags) as f: self.data = f.read() elif self.url is not None: try: try: from urllib.request import urlopen # Py3 except ImportError: from urllib2 import urlopen response = urlopen(self.url) self.data = response.read() # extract encoding from header, if there is one: encoding = None for sub in response.headers['content-type'].split(';'): sub = sub.strip() if sub.startswith('charset'): encoding = sub.split('=')[-1].strip() break # decode data, if an encoding was specified if encoding: self.data = self.data.decode(encoding, 'replace') except: self.data = None class TextDisplayObject(DisplayObject): """Validate that display data is text""" def _check_data(self): if self.data is not None and not isinstance(self.data, string_types): raise TypeError("%s expects text, not %r" % (self.__class__.__name__, self.data)) class Pretty(TextDisplayObject): def _repr_pretty_(self): return self.data class HTML(TextDisplayObject): def _repr_html_(self): return self.data def __html__(self): """ This method exists to inform other HTML-using modules (e.g. Markupsafe, htmltag, etc) that this object is HTML and does not need things like special characters (<>&) escaped. """ return self._repr_html_() class Markdown(TextDisplayObject): def _repr_markdown_(self): return self.data class Math(TextDisplayObject): def _repr_latex_(self): s = self.data.strip('$') return "$$%s$$" % s class Latex(TextDisplayObject): def _repr_latex_(self): return self.data class SVG(DisplayObject): _read_flags = 'rb' # wrap data in a property, which extracts the <svg> tag, discarding # document headers _data = None @property def data(self): return self._data @data.setter def data(self, svg): if svg is None: self._data = None return # parse into dom object from xml.dom import minidom svg = cast_bytes_py2(svg) x = minidom.parseString(svg) # get svg tag (should be 1) found_svg = x.getElementsByTagName('svg') if found_svg: svg = found_svg[0].toxml() else: # fallback on the input, trust the user # but this is probably an error. pass svg = cast_unicode(svg) self._data = svg def _repr_svg_(self): return self.data class JSON(DisplayObject): """JSON expects a JSON-able dict or list not an already-serialized JSON string. Scalar types (None, number, string) are not allowed, only dict or list containers. """ # wrap data in a property, which warns about passing already-serialized JSON _data = None def _check_data(self): if self.data is not None and not isinstance(self.data, (dict, list)): raise TypeError("%s expects JSONable dict or list, not %r" % (self.__class__.__name__, self.data)) @property def data(self): return self._data @data.setter def data(self, data): if isinstance(data, string_types): warnings.warn("JSON expects JSONable dict or list, not JSON strings") data = json.loads(data) self._data = data def _repr_json_(self): return self.data css_t = """$("head").append($("<link/>").attr({ rel: "stylesheet", type: "text/css", href: "%s" })); """ lib_t1 = """$.getScript("%s", function () { """ lib_t2 = """}); """ class Javascript(TextDisplayObject): def __init__(self, data=None, url=None, filename=None, lib=None, css=None): """Create a Javascript display object given raw data. When this object is returned by an expression or passed to the display function, it will result in the data being displayed in the frontend. If the data is a URL, the data will first be downloaded and then displayed. In the Notebook, the containing element will be available as `element`, and jQuery will be available. Content appended to `element` will be visible in the output area. Parameters ---------- data : unicode, str or bytes The Javascript source code or a URL to download it from. url : unicode A URL to download the data from. filename : unicode Path to a local file to load the data from. lib : list or str A sequence of Javascript library URLs to load asynchronously before running the source code. The full URLs of the libraries should be given. A single Javascript library URL can also be given as a string. css: : list or str A sequence of css files to load before running the source code. The full URLs of the css files should be given. A single css URL can also be given as a string. """ if isinstance(lib, string_types): lib = [lib] elif lib is None: lib = [] if isinstance(css, string_types): css = [css] elif css is None: css = [] if not isinstance(lib, (list,tuple)): raise TypeError('expected sequence, got: %r' % lib) if not isinstance(css, (list,tuple)): raise TypeError('expected sequence, got: %r' % css) self.lib = lib self.css = css super(Javascript, self).__init__(data=data, url=url, filename=filename) def _repr_javascript_(self): r = '' for c in self.css: r += css_t % c for l in self.lib: r += lib_t1 % l r += self.data r += lib_t2*len(self.lib) return r # constants for identifying png/jpeg data _PNG = b'\x89PNG\r\n\x1a\n' _JPEG = b'\xff\xd8' def _pngxy(data): """read the (width, height) from a PNG header""" ihdr = data.index(b'IHDR') # next 8 bytes are width/height w4h4 = data[ihdr+4:ihdr+12] return struct.unpack('>ii', w4h4) def _jpegxy(data): """read the (width, height) from a JPEG header""" # adapted from http://www.64lines.com/jpeg-width-height idx = 4 while True: block_size = struct.unpack('>H', data[idx:idx+2])[0] idx = idx + block_size if data[idx:idx+2] == b'\xFF\xC0': # found Start of Frame iSOF = idx break else: # read another block idx += 2 h, w = struct.unpack('>HH', data[iSOF+5:iSOF+9]) return w, h class Image(DisplayObject): _read_flags = 'rb' _FMT_JPEG = u'jpeg' _FMT_PNG = u'png' _ACCEPTABLE_EMBEDDINGS = [_FMT_JPEG, _FMT_PNG] def __init__(self, data=None, url=None, filename=None, format=None, embed=None, width=None, height=None, retina=False, unconfined=False, metadata=None): """Create a PNG/JPEG image object given raw data. When this object is returned by an input cell or passed to the display function, it will result in the image being displayed in the frontend. Parameters ---------- data : unicode, str or bytes The raw image data or a URL or filename to load the data from. This always results in embedded image data. url : unicode A URL to download the data from. If you specify `url=`, the image data will not be embedded unless you also specify `embed=True`. filename : unicode Path to a local file to load the data from. Images from a file are always embedded. format : unicode The format of the image data (png/jpeg/jpg). If a filename or URL is given for format will be inferred from the filename extension. embed : bool Should the image data be embedded using a data URI (True) or be loaded using an <img> tag. Set this to True if you want the image to be viewable later with no internet connection in the notebook. Default is `True`, unless the keyword argument `url` is set, then default value is `False`. Note that QtConsole is not able to display images if `embed` is set to `False` width : int Width in pixels to which to constrain the image in html height : int Height in pixels to which to constrain the image in html retina : bool Automatically set the width and height to half of the measured width and height. This only works for embedded images because it reads the width/height from image data. For non-embedded images, you can just set the desired display width and height directly. unconfined: bool Set unconfined=True to disable max-width confinement of the image. metadata: dict Specify extra metadata to attach to the image. Examples -------- # embedded image data, works in qtconsole and notebook # when passed positionally, the first arg can be any of raw image data, # a URL, or a filename from which to load image data. # The result is always embedding image data for inline images. Image('http://www.google.fr/images/srpr/logo3w.png') Image('/path/to/image.jpg') Image(b'RAW_PNG_DATA...') # Specifying Image(url=...) does not embed the image data, # it only generates `<img>` tag with a link to the source. # This will not work in the qtconsole or offline. Image(url='http://www.google.fr/images/srpr/logo3w.png') """ if filename is not None: ext = self._find_ext(filename) elif url is not None: ext = self._find_ext(url) elif data is None: raise ValueError("No image data found. Expecting filename, url, or data.") elif isinstance(data, string_types) and ( data.startswith('http') or _safe_exists(data) ): ext = self._find_ext(data) else: ext = None if format is None: if ext is not None: if ext == u'jpg' or ext == u'jpeg': format = self._FMT_JPEG if ext == u'png': format = self._FMT_PNG else: format = ext.lower() elif isinstance(data, bytes): # infer image type from image data header, # only if format has not been specified. if data[:2] == _JPEG: format = self._FMT_JPEG # failed to detect format, default png if format is None: format = 'png' if format.lower() == 'jpg': # jpg->jpeg format = self._FMT_JPEG self.format = unicode_type(format).lower() self.embed = embed if embed is not None else (url is None) if self.embed and self.format not in self._ACCEPTABLE_EMBEDDINGS: raise ValueError("Cannot embed the '%s' image format" % (self.format)) self.width = width self.height = height self.retina = retina self.unconfined = unconfined self.metadata = metadata super(Image, self).__init__(data=data, url=url, filename=filename) if retina: self._retina_shape() def _retina_shape(self): """load pixel-doubled width and height from image data""" if not self.embed: return if self.format == 'png': w, h = _pngxy(self.data) elif self.format == 'jpeg': w, h = _jpegxy(self.data) else: # retina only supports png return self.width = w // 2 self.height = h // 2 def reload(self): """Reload the raw data from file or URL.""" if self.embed: super(Image,self).reload() if self.retina: self._retina_shape() def _repr_html_(self): if not self.embed: width = height = klass = '' if self.width: width = ' width="%d"' % self.width if self.height: height = ' height="%d"' % self.height if self.unconfined: klass = ' class="unconfined"' return u'<img src="{url}"{width}{height}{klass}/>'.format( url=self.url, width=width, height=height, klass=klass, ) def _data_and_metadata(self): """shortcut for returning metadata with shape information, if defined""" md = {} if self.width: md['width'] = self.width if self.height: md['height'] = self.height if self.unconfined: md['unconfined'] = self.unconfined if self.metadata: md.update(self.metadata) if md: return self.data, md else: return self.data def _repr_png_(self): if self.embed and self.format == u'png': return self._data_and_metadata() def _repr_jpeg_(self): if self.embed and (self.format == u'jpeg' or self.format == u'jpg'): return self._data_and_metadata() def _find_ext(self, s): return unicode_type(s.split('.')[-1].lower()) class Video(DisplayObject): def __init__(self, data=None, url=None, filename=None, embed=False, mimetype=None): """Create a video object given raw data or an URL. When this object is returned by an input cell or passed to the display function, it will result in the video being displayed in the frontend. Parameters ---------- data : unicode, str or bytes The raw video data or a URL or filename to load the data from. Raw data will require passing `embed=True`. url : unicode A URL for the video. If you specify `url=`, the image data will not be embedded. filename : unicode Path to a local file containing the video. Will be interpreted as a local URL unless `embed=True`. embed : bool Should the video be embedded using a data URI (True) or be loaded using a <video> tag (False). Since videos are large, embedding them should be avoided, if possible. You must confirm embedding as your intention by passing `embed=True`. Local files can be displayed with URLs without embedding the content, via:: Video('./video.mp4') mimetype: unicode Specify the mimetype for embedded videos. Default will be guessed from file extension, if available. Examples -------- Video('https://archive.org/download/Sita_Sings_the_Blues/Sita_Sings_the_Blues_small.mp4') Video('path/to/video.mp4') Video('path/to/video.mp4', embed=True) Video(b'raw-videodata', embed=True) """ if url is None and isinstance(data, string_types) and data.startswith(('http:', 'https:')): url = data data = None elif os.path.exists(data): filename = data data = None if data and not embed: msg = ''.join([ "To embed videos, you must pass embed=True ", "(this may make your notebook files huge)\n", "Consider passing Video(url='...')", ]) raise ValueError(msg) self.mimetype = mimetype self.embed = embed super(Video, self).__init__(data=data, url=url, filename=filename) def _repr_html_(self): # External URLs and potentially local files are not embedded into the # notebook output. if not self.embed: url = self.url if self.url is not None else self.filename output = """<video src="{0}" controls> Your browser does not support the <code>video</code> element. </video>""".format(url) return output # Embedded videos are base64-encoded. mimetype = self.mimetype if self.filename is not None: if not mimetype: mimetype, _ = mimetypes.guess_type(self.filename) with open(self.filename, 'rb') as f: video = f.read() else: video = self.data if isinstance(video, unicode_type): # unicode input is already b64-encoded b64_video = video else: b64_video = base64_encode(video).decode('ascii').rstrip() output = """<video controls> <source src="data:{0};base64,{1}" type="{0}"> Your browser does not support the video tag. </video>""".format(mimetype, b64_video) return output def reload(self): # TODO pass def _repr_png_(self): # TODO pass def _repr_jpeg_(self): # TODO pass def clear_output(wait=False): """Clear the output of the current cell receiving output. Parameters ---------- wait : bool [default: false] Wait to clear the output until new output is available to replace it.""" from IPython.core.interactiveshell import InteractiveShell if InteractiveShell.initialized(): InteractiveShell.instance().display_pub.clear_output(wait) else: print('\033[2K\r', end='') sys.stdout.flush() print('\033[2K\r', end='') sys.stderr.flush() @skip_doctest def set_matplotlib_formats(*formats, **kwargs): """Select figure formats for the inline backend. Optionally pass quality for JPEG. For example, this enables PNG and JPEG output with a JPEG quality of 90%:: In [1]: set_matplotlib_formats('png', 'jpeg', quality=90) To set this in your config files use the following:: c.InlineBackend.figure_formats = {'png', 'jpeg'} c.InlineBackend.print_figure_kwargs.update({'quality' : 90}) Parameters ---------- *formats : strs One or more figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. **kwargs : Keyword args will be relayed to ``figure.canvas.print_figure``. """ from IPython.core.interactiveshell import InteractiveShell from IPython.core.pylabtools import select_figure_formats # build kwargs, starting with InlineBackend config kw = {} from ipykernel.pylab.config import InlineBackend cfg = InlineBackend.instance() kw.update(cfg.print_figure_kwargs) kw.update(**kwargs) shell = InteractiveShell.instance() select_figure_formats(shell, formats, **kw) @skip_doctest def set_matplotlib_close(close=True): """Set whether the inline backend closes all figures automatically or not. By default, the inline backend used in the IPython Notebook will close all matplotlib figures automatically after each cell is run. This means that plots in different cells won't interfere. Sometimes, you may want to make a plot in one cell and then refine it in later cells. This can be accomplished by:: In [1]: set_matplotlib_close(False) To set this in your config files use the following:: c.InlineBackend.close_figures = False Parameters ---------- close : bool Should all matplotlib figures be automatically closed after each cell is run? """ from ipykernel.pylab.config import InlineBackend cfg = InlineBackend.instance() cfg.close_figures = close
bsd-3-clause
DiamondLightSource/auto_tomo_calibration-experimental
old_code_scripts/measure_resolution/lmfit-py/doc/sphinx/numpydoc/docscrape_sphinx.py
154
7759
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
apache-2.0
sebalander/sebaPhD
testHomography.py
2
2668
# -*- coding: utf-8 -*- """ Created on Fri Sep 30 16:06:58 2016 @author: sebalander """ # %% import cv2 import numpy as np import scipy as sp import glob import matplotlib.pyplot as plt import poseCalibration as pc np.random.seed(0) # %% LOAD DATA #imagesFolder = "./resources/fishChessboardImg/" #cornersFile = "/home/sebalander/code/sebaPhD/resources/fishCorners.npy" #patternFile = "/home/sebalander/code/sebaPhD/resources/chessPattern.npy" #imgShapeFile = "/home/sebalander/code/sebaPhD/resources/fishShape.npy" imagesFolder = "./resources/PTZchessboard/zoom 0.0/" cornersFile = "./resources/PTZchessboard/zoom 0.0/ptzCorners.npy" patternFile = "./resources/chessPattern.npy" imgShapeFile = "./resources/ptzImgShape.npy" corners = np.load(cornersFile).transpose((0,2,1,3)) fiducialPoints = np.load(patternFile) imgSize = np.load(imgShapeFile) images = glob.glob(imagesFolder+'*.jpg') # output files distCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzDistCoeffs.npy" linearCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzLinearCoeffs.npy" rvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzRvecs.npy" tvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzTvecs.npy" # %% reload(pc) # %% use real data f = 5e2 # proposal of f, can't be estimated from homography rVecs, tVecs, Hs = pc.estimateInitialPose(fiducialPoints, corners, f, imgSize) pc.plotHomographyToMatch(fiducialPoints, corners[1:3], f, imgSize, images[1:3]) pc.plotForwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3], images[1:3]) pc.plotBackwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3]) # %% custom sinthetic homography # estos valores se ven lindos, podrían ser random tambien rVec = np.array([[-1.17365947], [ 1.71987668], [-0.48076979]]) tVec = np.array([[ 2.53529204], [ 1.53850073], [ 1.362088 ]]) pc.fiducialComparison3D(rVec, tVec, fiducialPoints) H = pc.pose2homogr(rVec, tVec) # %% produce sinthetic corners (no image to compare though) f = 1e2 imgSize = np.array([800,600]) src = fiducialPoints[0]+[0,0,1] dst = np.array([np.dot(H, sr) for sr in src]) dst = np.array([dst[:,0]/dst[:,2], dst[:,1]/dst[:,2]]).T dst = f * dst + imgSize/2 # sinthetic corners. always have shape (Nimg,Npts,1,2) corners = np.reshape(dst,(1,len(dst),1,2)) # %% test on sinthetic data rVecs, tVecs, Hs = pc.estimateInitialPose(fiducialPoints, corners, f, imgSize) pc.plotHomographyToMatch(fiducialPoints, corners, f, imgSize) pc.plotForwardHomography(fiducialPoints, corners, f, imgSize, Hs) pc.plotBackwardHomography(fiducialPoints, corners, f, imgSize, Hs)
bsd-3-clause
nguy/brawl4d
radar/vispy_radar_loop_demo.py
1
12872
import numpy as np from collection import RadarFileCollection from pyart.core.transforms import antenna_vectors_to_cartesian, corner_to_point from quadmesh_geometry import mesh_from_quads, radar_example_data from vispy import gloo import vispy import vispy.app # from vispy.scene.widgets import ViewBox from vispy.scene.visuals import Mesh, Text from vispy.geometry import MeshData from vispy.scene import STTransform, ChainTransform, MatrixTransform from matplotlib.cm import ScalarMappable from matplotlib.colors import Normalize import glob class Canvas(vispy.scene.SceneCanvas): def __init__(self, size=(800, 800), name="Radar Loop", timer_interval=1.0, num_radars=1, radar_filenames=None, radar_latlons=None, radar_fields=None, time_start=None, time_end=None, loop_step=10, image_duration=10): ''' Parameters ---------- size : 2-tuple int (x, y) size in pixels of window. name : str Name to use in window label. timer_interval : float Interval at which to update data in window. num_radars : int The number of radars to display. radar_filenames : list List of radar filenames to process. This can be a list of lists if multiple radars are desired. num_radars must be > 1. radar_latlons : list of tuples List of (latitude, longitude) coordinates. This can be a list the same length as radar_filenames. num_radars must be > 1. time_start : datetime instance Start time to use for subset. time_end : datetime instance End time to use for subset. loop_step : float Seconds between image update in frame. image_duration : float Seconds that each image will last in frame. ''' # self.vb = scene.widgets.ViewBox(parent=self.scene, border_color='b') # vb.camera.rect = 0, 0, 1, 1 # self.rotation = MatrixTransform() # Perform a couple of checks if radar_filenames is None: print("Must provide a list of filenames!") return if (num_radars > 1) & (len(radar_filenames) != num_radars) & (len(radar_latlons) != num_radars): print("ERROR: Must provide filenames and lat-lons for each radar!") return # Prepare some variables if two radars are chosen self.radar_filenames = radar_filenames self.t_start = time_start self.t_end = time_end self.rnum = num_radars self.loop_dt = np.timedelta64(loop_step * 1000000000, 'ns') self.loop_duration = np.timedelta64(image_duration * 1000000000, 'ns') # Read in the radar files into a collection self.rfc = [] self.rfc = [] for ii in range(self.rnum): self.rfc.append(RadarFileCollection(self.radar_filenames[ii])) ## self.rfc = RadarFileCollection(filenames) self.rfc_88d = RadarFileCollection(filenames_88d) # Initialize variables for later use self.dx, self.dy = [], [] if radar_fields is None: self.radar_fields = ['reflectivity'] else: self.radar_fields = [radar_fields[0]] # Find corner points if required if len(radar_latlons) > 1: for num in range(1, len(radar_latlons)): dx_tmp, dy_tmp = corner_to_point(radar_latlons[num], radar_latlons[num-1]) #meters self.dx.append(dx_tmp) self.dy.append(dy_tmp) try: self.radar_fields.append(radar_fields[num]) except: self.radar_fields.append('reflectivity') # Generate dummy data to initialize the Mesh instance x, y, z, d = radar_example_data() # print x.shape, y.shape, z.shape # print d.shape, d.min(), d.max() mesh = self._init_mesh(x, y, z, d) mesh_88d = self._init_mesh(x, y, z, d) # Use colormapping class from matplotlib self.DZcm = ScalarMappable(norm=Normalize(-25,80), cmap='gist_ncar') self.VRcm = ScalarMappable(norm=Normalize(-32,32), cmap='PuOr_r') self.SWcm = ScalarMappable(norm=Normalize(0.0,5.0), cmap='cubehelix_r') self.radar_mesh = mesh self.mesh_88d = mesh_88d self.meshes = (mesh, mesh_88d) self.rot_view = None vispy.scene.SceneCanvas.__init__(self, keys='interactive', title=name, size=size, show=True) view = self.central_widget.add_view() view.camera = 'turntable' view.camera.mode = 'ortho' view.camera.up = 'z' view.camera.distance = 20 self.rot_view = view for a_mesh in self.meshes: self.rot_view.add(a_mesh) self.unfreeze() # allow addition of new attributes to the canvas self.t1 = Text('Time', parent=self.scene, color='white') self.t1.font_size = 18 self.t1.pos = self.size[0] // 2, self.size[1] // 10 self.loop_reset() self.timer = vispy.app.Timer(connect=self.loop_radar) self.timer.start(timer_interval) def _init_mesh(self, x,y,z,d): verts, faces = mesh_from_quads(x,y,z) face_colors = np.empty((faces.shape[0], 4)) face_colors[0::2,0] = d.flat face_colors[0::2,1] = d.flat face_colors[0::2,2] = d.flat face_colors[1::2,0] = d.flat face_colors[1::2,1] = d.flat face_colors[1::2,2] = d.flat face_colors[:,3] = 1.0 # transparency mdata = MeshData(vertices=verts, faces=faces, face_colors=face_colors) mesh = Mesh(meshdata=mdata) # mesh.transform = ChainTransform([STTransform(translate=(0, 0, 0), # scale=(1.0e-3, 1.0e-3, 1.0e-3) )]) mesh.transform = vispy.scene.transforms.MatrixTransform() mesh.transform.scale([1./1000, 1./1000, 1./1000]) # mesh.transform.shift([-.2, -.2, -.2]) return mesh def loop_reset(self): if self.t_start is not None: self.loop_start = self.t_start else: self.loop_start = np.datetime64(np.min(self.rfc[0].times.values()), 'ns') if self.t_end is not None: self.loop_end = self.t_end else: self.loop_end = np.datetime64(np.max(self.rfc[0].times.values()), 'ns') self.loop_current = self.loop_start def loop_radar(self, event): current = self.loop_current last = current print(current) self.loop_current = current + self.loop_dt # ----- Do Ka data ----- # ka_field = 'spectrum_width' # # ka_field = 'reflectivity' # r,az,el,t,data = self.rfc.sweep_data_for_time_range(current, # current+self.loop_duration, # fieldnames=(ka_field,)) # if r is not None: # if np.abs(az.mean() - 315.0) > 10: # az += 90.0 # d = data[ka_field][1:-1, 1:-150] # # # print "Found Ka", r.shape, az.shape, el.shape, d.shape # # print r.min(), r.max(), el.min(), el.max(), az.min(), az.max(), d.min(), d.max() # verts, faces, face_colors = self._make_plot(r[1:-150], az[1:-1], el[1:-1], # # d, vmin=-32.0, vmax=25.0, cm=self.DZcm, # d, vmin=-1.0, vmax=5.0, cm=self.SWcm, # dx=-dx_ka, dy=-dy_ka) # # # print('vert range', verts.min(), verts.max()) # # self.radar_mesh.set_data(vertices=verts, faces=faces, face_colors=face_colors) # ----- Do 88D data ----- for ii in range(self.rnum): r, az, el, t, data = self.rfc[ii].sweep_data_for_time_range(current, current+self.loop_duration, fieldnames=(self.radar_fields[0],)) if r is not None: if (el.mean() < 2.0): d = data[self.radar_fields[ii]][1:-1, 1:300] # print "Found 88D", r.shape, az.shape, el.shape, d.shape # print r.min(), r.max(), el.min(), el.max(), az.min(), az.max(), d.min(), d.max() verts, faces, face_colors = self._make_plot( r[1:300], az[1:-1], el[1:-1], d, vmin=-25.0, vmax=80.0, cm=self.DZcm) # d, vmin=0.0, vmax=0.4, cm=self.SWcm) # d, vmin=-32.0, vmax=32.0, cm=self.VRcm) self.mesh_88d.set_data(vertices=verts, faces=faces, face_colors=face_colors) face_colors[:,3] = 0.5 # ----- Update plot ----- self.t1.text='{0} UTC'.format(current) # for m in self.meshes: # m._program._need_build = True self.update() if last>self.loop_end: self.loop_reset() def _make_plot(self, r, az, el, d, vmin=-32, vmax=70, dx=0.0, dy=0.0, cm=None): """ Data are normalized using the min of the data array after replacing missing values with vmin, so vmin should be less than the minimum data value """ x, y, z = antenna_vectors_to_cartesian(r, az, el, edges=True) x += dx y += dy # print(x.shape, y.shape, z.shape, d.shape) verts, faces = mesh_from_quads(x, y, z) squashed = d.filled(vmin).flatten() face_colors = np.empty((faces.shape[0], 4)) if cm is None: squashed -= squashed.min() squashed /= (vmax-vmin) # squashed.max() # print squashed.min(), squashed.max() # print(face_colors[0::2,0].shape, squashed.shape) face_colors[0::2, 0] = squashed # d.flat face_colors[0::2, 1] = squashed # d.flat face_colors[0::2, 2] = squashed # d.flat face_colors[1::2, 0] = squashed # d.flat face_colors[1::2, 1] = squashed # d.flat face_colors[1::2, 2] = squashed # d.flat face_colors[:, 3] = 1.0 # transparency else: colors = cm.to_rgba(squashed) face_colors[0::2] = colors face_colors[1::2] = colors return verts, faces, face_colors def on_draw(self, ev): gloo.set_clear_color('black') gloo.clear(color=True, depth=True, stencil=True) if self.rot_view is not None: self.draw_visual(self.rot_view) self.draw_visual(self.t1) # for mesh in self.meshes: # print mesh # self.draw_visual(mesh) if __name__ == '__main__': #------------------- # Selection of interesting times #------------------- # filenames = glob.glob('/data/20140607/Ka2/Ka2140608031*')#[5:10] # filenames_88d = glob.glob('/data/20140607/88D/KLBB20140608_031*') # t_start = np.datetime64('2014-06-08T03:16:29Z', 'ns') # filenames = glob.glob('/data/20140607/Ka2/Ka2140608033*')#[5:10] # filenames_88d = glob.glob('/data/20140607/88D/KLBB20140608_033*') # t_start = np.datetime64('2014-06-08T03:39:05Z', 'ns') # t_end = t_start # timer_interval = 10.0 #------------------- # # # filenames = glob.glob('/data/20140607/Ka2/Ka2140608034*')#[5:10] # filenames_88d = glob.glob('/data/20140607/88D/KLBB20140608_034*') # t_start = np.datetime64('2014-06-08T03:40:00Z', 'ns') # t_end = np.datetime64('2014-06-08T03:50:00Z', 'ns') #------------------- filenames = glob.glob('/Users/guy/data/test/brawl_vispy/Ka2/Ka2140608031*')#[5:10] filenames_88d = glob.glob('/Users/guy/data/test/brawl_vispy/88D/KLBB20140608_031*') ## t_start = datetime.datetime(2014,6,8,3,10,0) ## t_end = datetime.datetime(2014,6,8,3,20,0) t_start = np.datetime64('2014-06-08T03:10:00Z', 'ns') t_end = np.datetime64('2014-06-08T03:20:00Z', 'ns') # dloop, dimage = 10, 10 canvas = Canvas( radar_filenames=[filenames_88d], radar_latlons=[(33.654140472412109, -101.81416320800781), (33.73732, -101.84326)], time_start=t_start, time_end=t_end, ## loop_step=dloop, image_duration=dimage ) vispy.app.run() # canvas.radar_mesh.set_data(self, vertices=None, faces=None, vertex_colors=None, face_colors=None, meshdata=None, color=None)
bsd-2-clause
bhargavvader/pycobra
docs/plot_voronoi_clustering.py
1
3173
""" Visualising Clustering with Voronoi Tesselations ------------------------------------------------ When experimenting with using the Voronoi Tesselation to identify which machines are picked up by certain points, it was easy to extend the idea to visualising clustering through a voronoi. Using the ``voronoi_finite_polygons_2d`` method from ``pycobra.visualisation``, it's easy to do this """ # %matplotlib inline import numpy as np from pycobra.cobra import Cobra from pycobra.visualisation import Visualisation from pycobra.diagnostics import Diagnostics import matplotlib.pyplot as plt from sklearn import cluster ###################################################################### # Let's make some blobs so clustering is easy. # from sklearn.datasets.samples_generator import make_blobs X, Y = make_blobs(n_samples=200, centers=2, n_features=2) Y = np.power(X[:,0], 2) + np.power(X[:,1], 2) ###################################################################### # We set up a few scikit-learn clustering machines which we'd like to # visualise the results of. # two_means = cluster.KMeans(n_clusters=2) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.6) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) birch = cluster.Birch(n_clusters=2) from pycobra.visualisation import voronoi_finite_polygons_2d from scipy.spatial import Voronoi, voronoi_plot_2d ###################################################################### # Helper function to implement the Voronoi. # def plot_cluster_voronoi(data, algo): # passing input space to set up voronoi regions. points = np.hstack((np.reshape(data[:,0], (len(data[:,0]), 1)), np.reshape(data[:,1], (len(data[:,1]), 1)))) vor = Voronoi(points) # use helper Voronoi regions, vertices = voronoi_finite_polygons_2d(vor) fig, ax = plt.subplots() plot = ax.scatter([], []) indice = 0 for region in regions: ax.plot(data[:,0][indice], data[:,1][indice], 'ko') polygon = vertices[region] # if it isn't gradient based we just color red or blue depending on whether that point uses the machine in question color = algo.labels_[indice] # we assume only two if color == 0: color = 'r' else: color = 'b' ax.fill(*zip(*polygon), alpha=0.4, color=color, label="") indice += 1 ax.axis('equal') plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1) plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1) two_means.fit(X) plot_cluster_voronoi(X, two_means) dbscan.fit(X) plot_cluster_voronoi(X, dbscan) spectral.fit(X) plot_cluster_voronoi(X, spectral) affinity_propagation.fit(X) plot_cluster_voronoi(X, affinity_propagation) birch.fit(X) plot_cluster_voronoi(X, birch) ###################################################################### # This is just an example of the things you can do with Voronoi # Tesselations - it's an interesting way to look at your data! # # Licensed under the MIT License - https://opensource.org/licenses/MIT #
mit
Ensembl/cttv024
tests/runner.py
1
1852
#! /usr/bin/env python3 # ------------------------------------------------ # built-ins import sys import unittest import argparse import os.path # pipped import pandas as pd # ------------------------------------------------ def add_postgap(suite, postgap): """ Iterate through suite and construct a new suite where each test has postgap passed as a keyword arg to it's constructor. """ new_suite = unittest.TestSuite() for item in suite: test_class = item.__class__ if test_class == unittest.TestSuite: new_suite.addTest(add_postgap(item, postgap)) else: test_name = item._testMethodName new_suite.addTest(test_class(test_name, postgap)) return new_suite if __name__ == '__main__': parser = argparse.ArgumentParser(description='run the postgap unit tests') parser.add_argument('filename', type=str, help='a postgap output file (gzipped tsv file)') parser.add_argument('--skip-data-checks', default=False, action='store_true', help='skip the data checks') parser.add_argument('--skip-health-checks', default=False, action='store_true', help='skip the health checks') args = parser.parse_args() loader = unittest.TestLoader() pattern = 'test*.py' dir_path = os.path.dirname(os.path.realpath(__file__)) if (args.skip_data_checks): suite = loader.discover(os.path.join(dir_path, 'tests/health_checks')) elif (args.skip_health_checks): suite = loader.discover(os.path.join(dir_path, 'tests/data_checks')) else: suite = loader.discover(dir_path) postgap = pd.read_csv(args.filename, sep='\t', na_values=['None']) suite_with_postgap = add_postgap(suite, postgap) result = unittest.TextTestRunner(verbosity=2).run(suite_with_postgap) sys.exit(not result.wasSuccessful())
apache-2.0
jluttine/bayespy
bayespy/demos/pattern_search.py
5
3944
################################################################################ # Copyright (C) 2015 Jaakko Luttinen # # This file is licensed under the MIT License. ################################################################################ """ Demonstration of the pattern search method for PCA. The pattern searches are compared to standard VB-EM algorithm in CPU time. For more info on the pattern search method, see :cite:`Honkela:2002`. """ import numpy as np import scipy import matplotlib.pyplot as plt import bayespy.plot as myplt from bayespy.utils import misc from bayespy.utils import random from bayespy import nodes from bayespy.inference.vmp.vmp import VB from bayespy.inference.vmp import transformations import bayespy.plot as bpplt from bayespy.demos import pca def run(M=40, N=100, D_y=6, D=8, seed=42, rotate=False, maxiter=1000, debug=False, plot=True): """ Run pattern search demo for PCA. """ if seed is not None: np.random.seed(seed) # Generate data w = np.random.normal(0, 1, size=(M,1,D_y)) x = np.random.normal(0, 1, size=(1,N,D_y)) f = misc.sum_product(w, x, axes_to_sum=[-1]) y = f + np.random.normal(0, 0.2, size=(M,N)) # Construct model Q = pca.model(M, N, D) # Data with missing values mask = random.mask(M, N, p=0.5) # randomly missing y[~mask] = np.nan Q['Y'].observe(y, mask=mask) # Initialize some nodes randomly Q['X'].initialize_from_random() Q['W'].initialize_from_random() # Use a few VB-EM updates at the beginning Q.update(repeat=10) Q.save() # Standard VB-EM as a baseline Q.update(repeat=maxiter) if plot: bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-') # Restore initial state Q.load() # Pattern search method for comparison for n in range(maxiter): Q.pattern_search('W', 'tau', maxiter=3, collapsed=['X', 'alpha']) Q.update(repeat=20) if Q.has_converged(): break if plot: bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'r:') bpplt.pyplot.xlabel('CPU time (in seconds)') bpplt.pyplot.ylabel('VB lower bound') bpplt.pyplot.legend(['VB-EM', 'Pattern search'], loc='lower right') if __name__ == '__main__': import sys, getopt, os try: opts, args = getopt.getopt(sys.argv[1:], "", ["m=", "n=", "d=", "k=", "seed=", "maxiter=", "debug"]) except getopt.GetoptError: print('python demo_pca.py <options>') print('--m=<INT> Dimensionality of data vectors') print('--n=<INT> Number of data vectors') print('--d=<INT> Dimensionality of the latent vectors in the model') print('--k=<INT> Dimensionality of the true latent vectors') print('--maxiter=<INT> Maximum number of VB iterations') print('--seed=<INT> Seed (integer) for the random number generator') print('--debug Check that the rotations are implemented correctly') sys.exit(2) kwargs = {} for opt, arg in opts: if opt == "--rotate": kwargs["rotate"] = True elif opt == "--maxiter": kwargs["maxiter"] = int(arg) elif opt == "--debug": kwargs["debug"] = True elif opt == "--seed": kwargs["seed"] = int(arg) elif opt in ("--m",): kwargs["M"] = int(arg) elif opt in ("--n",): kwargs["N"] = int(arg) elif opt in ("--d",): kwargs["D"] = int(arg) elif opt in ("--k",): kwargs["D_y"] = int(arg) run(**kwargs) plt.show()
mit
willsirius/DualTreeRRTStartMotionPlanning
python/userdefined.py
2
9319
import time import openravepy import sys import numpy as np from numpy import sin,cos import matplotlib.mlab as mlab import matplotlib.pyplot as plt # import random import transformationFunction as tf import kdtree import scipy.spatial as spatial # def def getpath(tree,goal): # get the path from a RRT tree # tree is in dictionary # path , goal is list path = [goal] while 1: if tree[tuple(path[0])] == tuple(path[0]): break path = [list(tree[tuple(path[0])])]+path return path def nodesDist(x,y): return np.linalg.norm(np.asarray(x)-np.asarray(y)) def stepNodes(start,end,step): # return a list of nodes start from the s to e, with a specific step l = nodesDist(start,end) if l <= step: return [end] else: n = int(np.ceil(l/step)) delta = (np.asarray(end)-np.asarray(start))/l*step nodes = [] for i in range(0,n-1): nodes.append(list(np.asarray(start)+delta*(i+1))) nodes.append(end) return nodes def step1Node(start,end,step): # return a list of nodes start from the s to e, with a specific step l = nodesDist(start,end) if l <= step: return end else: return list(np.asarray(start)+(np.asarray(end)-np.asarray(start))/l*step) def plotHist(x): # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.show() def limitTo(a,lower,upper): if a <= lower: return lower if a >= upper: return upper return a # sample a anlge from def sampleCE(workspaceBound = [-4.5,3.5,-2.2,2.2,0.21,1.54]): x = np.random.uniform(workspaceBound[0],workspaceBound[1]) y = np.random.uniform(workspaceBound[2],workspaceBound[3]) z = np.random.uniform(workspaceBound[4],workspaceBound[5]) q1 = np.random.uniform(0,2*np.pi) q3 = np.random.uniform(0,2*np.pi) while 1: q2 = np.abs(np.random.normal(0,np.pi/4)) if q2 <= np.pi/2: break return [x,y,z,q1,q2,q3] def sampleCQ(workspaceBound = [-4.5,3.5,-2.2,2.2,0.21,1.54]): x = np.random.uniform(workspaceBound[0],workspaceBound[1]) y = np.random.uniform(workspaceBound[2],workspaceBound[3]) z = np.random.uniform(workspaceBound[4],workspaceBound[5]) q1 = np.random.uniform(0,2*np.pi) q3 = 0 #np.random.uniform(0,2*np.pi) while 1: q2 = np.abs(np.random.normal(0,np.pi/4)) if q2 <= np.pi/2: break return [x,y,z] + list(tf.quaternion_from_euler(q1,q2,q3,'rzxz')) def E2Q(x): return x[0:3] + list(tf.quaternion_from_euler(x[3],x[4],x[5],'rzxz')) def Q2R(Q): # convert a quaternion to a rotation matrix # input must be a unit quaternion qw = Q[0] qx = Q[1] qy = Q[2] qz = Q[3] R = np.array([[1 - 2*qy**2 - 2*qz**2, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw], [2*qx*qy + 2*qz*qw, 1 - 2*qx**2 - 2*qz**2, 2*qy*qz - 2*qx*qw], [2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw ,1 - 2*qx**2 - 2*qy**2]]) return R def genCQ(x,y,z,q1,q2,q3): # generate a quaternion by parameters sq32 = sin(q3/2) sq1 = sin(q1) print sq32 print sq1 return [x,y,z,cos(q3/2),sq32*sq1*cos(q2),sq32*sq1*sin(q2),sq32*cos(q1)] def hat(v): # hat map of a vector # input an numpy array or list, output an numpy array return np.array([[0,-v[2],v[1]],[v[2],0,-v[0]],[-v[1],v[0],0]]) def cross(a, b): c = np.array([[a[1]*b[2] - a[2]*b[1]], [a[2]*b[0] - a[0]*b[2]], [a[0]*b[1] - a[1]*b[0]]]) return c def updateState(s1,u,ts): # update state x1 to x2 with control input u and time step ts # s uses position vector and quaternion to represent # s = [x,v,Q,W] Q is the position,velocity, attitude quaternion ad angular velocity # the quaternion are translated to a rotation matrix for computation # then the rotatoin matrix is converted to quaternion before return # input and output are both lists # u rotation speed of each motor # a accelatation in inertial frame # x position in inertial frame # v velocity in inertial frame # Q rotation quaternion of the body in the inertial frame # W angular velocity in the body frame # M moment vector in the body fixed frame # m total mass of the drone # Rd the derivetive of rotation matrix # J inertia matrix # ctf constant to convert force to torque: f*ctf = t # MV moment vector f,mx,my,mz J = np.array([[0.04,0,0], [0,0.04,0], [0,0,0.07]]) Jinv = np.array([[ 25. , 0. , 0. ], [ 0. , 25. , 0. ], [ 0. , 0. , 14.28571429]]) m = 1.85 d = 0.2 ctf = 0.008 g = 9.8 e3 = np.array([0,0,1]) MV = np.matmul(np.array([[1,1,1,1],[0,-d,0,d],[d,0,-d,0],[-ctf,ctf,-ctf,ctf]]),np.array([u[0],u[1],u[2],u[3]])) f = MV[0] M = MV[[1,2,3]] x1 = np.array(s1[0:3]) v1 = np.array(s1[3:6]) Q1 = np.array(s1[6:10]) W1 = np.array(s1[10:13]) R1 = Q2R(Q1) R1d = np.matmul(R1,hat(W1)) a = - g*e3+(f*np.matmul(R1,e3))/m W1d = np.matmul( Jinv, M - np.cross(W1,np.matmul(J,W1))) x2 = x1 + ts*v1 v2 = v1 + ts*a R2 = R1 + ts*R1d W2 = W1 + ts*W1d R2t = np.identity(4) R2t[0:3,0:3] = R2 Q2 = tf.quaternion_from_matrix(R2t) s2 = list(x2)+list(v2)+list(Q2)+list(W2) return s2 # print "test update state" # s2 = [0,0,0,0,0,0,1,0,0,0,0,0,0] # # s1 = [1,1,1,1,0,0,0,0.2,0.2,0.2,0.1,0.1,-0.1] # u = [0,0,0,0] # ts = 0.02 # t = range(0,100) # for tt in t: # s2 = updateState(s2,u,ts) # x1 = np.array(s2[0:3]) # v1 = np.array(s2[3:6]) # Q1 = np.array(s2[6:10]) # W1 = np.array(s2[10:13]) # E1 = tf.euler_from_quaternion(Q1) # print x1 # print v1 # print Q1 # print W1 # axarr[0, 0].plot(x, y) # axarr[0, 0].set_title('Axis [0,0]') # axarr[0, 1].scatter(x, y) # axarr[0, 1].set_title('Axis [0,1]') # axarr[1, 0].plot(x, y ** 2) # axarr[1, 0].set_title('Axis [1,0]') # axarr[1, 1].scatter(x, y ** 2) # axarr[1, 1].set_title('Axis [1,1]') # # Fine-tune figure; hide x ticks for top plots and y ticks for right plots # plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False) # plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False) # q = [1,0,0,0] # q0 = tf.random_quaternion() # r0 = Q2R(q0) # print hat([1,2,3]) # print tf.euler_from_matrix(r0) # print tf.euler_from_quaternion(q0) # print hat([1,2,3]) # print [1,2,3,4][3] # v = [1,2,3] # np.array([0,-v[2],v[1]],[v[2],0,-v[0]],[-v[1],v[0],0]) # print sampleRotation() # # print np.random.normal(0, 3.14, 1) # eM = tf.euler_matrix(0,0,1.57) # print eM # print np.random.uniform(0,3) # # print 1 # print tf.random_rotation_matrix() # print np.dot(tf.random_quaternion(),tf.random_quaternion()) # print np.matmul(tf.random_rotation_matrix(),tf.random_rotation_matrix()) # start = tf.random_quaternion(); # print start # print tuple(start) # a = {tuple(start):tuple(start)} # print a # print a[tuple(start)] # x = [sampleC()]; # KDtree = kdtree.create(x) # print x # for i in range(0,200): # # x.append(sampleC()[5]) # newnode =sampleC() # x.append(newnode) # KDtree.add(newnode) # # print x # kdtree.visualize(KDtree) # node = sampleC() # print node # a = KDtree.search_nn(node)[0].data # print a # aa = 1000 # for i in x: # # print "this is i" # # print np.asarray(i) # # print type(np.asarray(i)) # # print np.linalg.norm(np.asarray(i),np.asarray(i)) # aa = min(aa,np.linalg.norm(np.asarray(i)-np.asarray(node))) # print aa # print np.linalg.norm(np.asarray(a)-np.asarray(node)) # print nodesDist(1,3) # print nodesDist([1,2,3],[4,5,6]) # print np.power(nodesDist([[2,3,4],[2,3,4]],[[1,2,3],[1,2,3]]),2) # print np.asarray([[2,3,4],[2,3,4]]) # print np.floor(3.4) # yy = []; # yy.append([1,2,3]) # yy.append([1,2,5]) # print yy # print "" # print step1Node([30,40],[0,0.1],5) # a = {(2,3):(1,2),(1,2):(1,2),(3,4):(1,2),(5,6):(3,4),(9,8):(3,4)}; # print a # print getpath(a,[5,6]) # print "" # points = np.array([ (3, 4), (1, 2),(4, 5),(6,7),(2,5),(2,4)]) # points = [[1,2],[4,5],[5,2]] # point_tree = spatial.KDTree(points) # This finds the index of all points within distance 1 of [1.5,2.5]. # print(point_tree.query_ball_point([1.5, 2.5], 2)) # print point_tree.query([1.5, 2.5]) # print point_tree.data[point_tree.query([1.5, 2.5])[1]] # [0] # # This gives the point in the KDTree which is within 1 unit of [1.5, 2.5] # print(point_tree.data[point_tree.query_ball_point([1.5, 2.5], 1)]) # # [[1 2]] # # More than one point is within 3 units of [1.5, 1.6]. # print(point_tree.data[point_tree.query_ball_point([1.5, 1.6], 3)]) # # [[1 2] # # [3 4]] # x = [] # for i in range(0,1000): # while 1: # q1 = np.random.normal(np.pi/4,np.pi/8) # if np.abs(q1-np.pi/4) <= np.pi/4: # break # x.append(q1) # plotHist(x) # startconfig = [ 4.0,-1.5 ,0.2 ,1 ,0.0, 0.0, 0.0 ] # print E2Q(startconfig)
mit
Ossada/DLS-UVVis
slider.py
1
1207
__author__ = 'vid' import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) t = np.arange(0.0, 1.0, 0.001) a0 = 5 f0 = 3 s = a0*np.sin(2*np.pi*f0*t) l, = plt.plot(t,s, lw=2, color='red') plt.axis([0, 1, -10, 10]) axcolor = 'lightgoldenrodyellow' axfreq = plt.axes([0.1, 0.1, 0.65, 0.03], axisbg=axcolor) axamp = plt.axes([0.25, 0.2, 0.65, 0.03], axisbg=axcolor) sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0) samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0) def update(val): amp = samp.val freq = sfreq.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) fig.canvas.draw_idle() sfreq.on_changed(update) samp.on_changed(update) resetax = plt.axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975') def reset(event): sfreq.reset() samp.reset() button.on_clicked(reset) # rax = plt.axes([0.025, 0.5, 0.15, 0.15], axisbg=axcolor) # radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0) # def colorfunc(label): # l.set_color(label) # fig.canvas.draw_idle() # radio.on_clicked(colorfunc) plt.show()
mit
microelly2/reconstruction
reconstruction/say.py
1
1170
import FreeCAD import FreeCADGui App=FreeCAD Gui=FreeCADGui import PySide from PySide import QtCore, QtGui import FreeCAD import Draft, Part, Animation import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.pyplot import cm import os,random,time,sys,traceback def log(s): logon = False if logon: f = open('/tmp/log.txt', 'a') f.write(str(s) +'\n') f.close() def sayd(s): if hasattr(FreeCAD,'animation_debug'): pass log(str(s)) FreeCAD.Console.PrintMessage(str(s)+"\n") def say(s): log(str(s)) FreeCAD.Console.PrintMessage(str(s)+"\n") def sayErr(s): log(str(s)) FreeCAD.Console.PrintError(str(s)+"\n") def sayW(s): log(str(s)) FreeCAD.Console.PrintWarning(str(s)+"\n") def errorDialog(msg): diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg ) diag.setWindowFlags(PySide.QtCore.Qt.WindowStaysOnTopHint) diag.exec_() def sayexc(mess=''): exc_type, exc_value, exc_traceback = sys.exc_info() ttt=repr(traceback.format_exception(exc_type, exc_value,exc_traceback)) lls=eval(ttt) l=len(lls) l2=lls[(l-3):] FreeCAD.Console.PrintError(mess + "\n" +"--> ".join(l2))
lgpl-3.0
fengzhyuan/scikit-learn
examples/calibration/plot_calibration.py
225
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
jreback/pandas
pandas/tests/extension/test_string.py
1
3885
import string import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas.core.arrays.string_ import StringDtype from pandas.core.arrays.string_arrow import ArrowStringDtype from pandas.tests.extension import base @pytest.fixture( params=[ StringDtype, pytest.param( ArrowStringDtype, marks=td.skip_if_no("pyarrow", min_version="1.0.0") ), ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): strings = np.random.choice(list(string.ascii_letters), size=100) while strings[0] == strings[1]: strings = np.random.choice(list(string.ascii_letters), size=100) return dtype.construct_array_type()._from_sequence(strings) @pytest.fixture def data_missing(dtype): """Length 2 array with [NA, Valid]""" return dtype.construct_array_type()._from_sequence([pd.NA, "A"]) @pytest.fixture def data_for_sorting(dtype): return dtype.construct_array_type()._from_sequence(["B", "C", "A"]) @pytest.fixture def data_missing_for_sorting(dtype): return dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"]) @pytest.fixture def na_value(): return pd.NA @pytest.fixture def data_for_grouping(dtype): return dtype.construct_array_type()._from_sequence( ["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"] ) class TestDtype(base.BaseDtypeTests): pass class TestInterface(base.BaseInterfaceTests): def test_view(self, data, request): if isinstance(data.dtype, ArrowStringDtype): mark = pytest.mark.xfail(reason="not implemented") request.node.add_marker(mark) super().test_view(data) class TestConstructors(base.BaseConstructorsTests): pass class TestReshaping(base.BaseReshapingTests): def test_transpose(self, data, dtype, request): if isinstance(dtype, ArrowStringDtype): mark = pytest.mark.xfail(reason="not implemented") request.node.add_marker(mark) super().test_transpose(data) class TestGetitem(base.BaseGetitemTests): pass class TestSetitem(base.BaseSetitemTests): def test_setitem_preserves_views(self, data, dtype, request): if isinstance(dtype, ArrowStringDtype): mark = pytest.mark.xfail(reason="not implemented") request.node.add_marker(mark) super().test_setitem_preserves_views(data) class TestMissing(base.BaseMissingTests): pass class TestNoReduce(base.BaseNoReduceTests): @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna): op_name = all_numeric_reductions if op_name in ["min", "max"]: return None s = pd.Series(data) with pytest.raises(TypeError): getattr(s, op_name)(skipna=skipna) class TestMethods(base.BaseMethodsTests): @pytest.mark.skip(reason="returns nullable") def test_value_counts(self, all_data, dropna): return super().test_value_counts(all_data, dropna) @pytest.mark.skip(reason="returns nullable") def test_value_counts_with_normalize(self, data): pass class TestCasting(base.BaseCastingTests): pass class TestComparisonOps(base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): result = getattr(s, op_name)(other) expected = getattr(s.astype(object), op_name)(other).astype("boolean") self.assert_series_equal(result, expected) def test_compare_scalar(self, data, all_compare_operators): op_name = all_compare_operators s = pd.Series(data) self._compare_other(s, data, op_name, "abc") class TestParsing(base.BaseParsingTests): pass class TestPrinting(base.BasePrintingTests): pass class TestGroupBy(base.BaseGroupbyTests): pass
bsd-3-clause
pyspeckit/pyspeckit
scripts/pyspeckit_script.py
7
4227
#/bin/env ipython -i --matplotlib """ pyspeckit command line startup script """ from __future__ import print_function import sys # remove script file's parent directory from path # (otherwise, can't import pyspeckit) #sys.path.pop(0) from pyspeckit.spectrum.classes import Spectrum, Spectra from pyspeckit.cubes.SpectralCube import Cube, CubeStack from pyspeckit import wrappers as pw import optparse import os import re if __name__ == "__main__": import matplotlib import itertools import pylab parser=optparse.OptionParser() parser.add_option("--verbose","-v",help="Be loud? Default True",default=False,action='store_true') parser.add_option("--debug","-d",help="Debug mode. Default False",default=False,action='store_true') parser.add_option("--doplot","-p",help="Plot? Default True",default=True) parser.add_option("--fitgaussian",help="Fit a gaussian?",default=False,action='store_true') parser.add_option("--fitnh3",help="Fit NH3?",default=False,action='store_true') parser.add_option("--threed",'--3d','--cube',help="Data cube?",default=False,action='store_true') parser.add_option("--filetype",help="File type to use.", default=None) parser.add_option("--smooth",help="Smooth the spectrum (by how much)?",default=False) parser.add_option("--wcstype",help="What wcstype to use? Can be a list: A,B,C,T,V where elements correspond to input spectra",default=None) parser.add_option("--specnum",help="What specnum?",default=0) parser.add_option("--hdu",help="What HDU number?",default=None) parser.add_option("--unmerged",help="[tspec only] Is the tspec file NOT merged?",default=False,action='store_true') options,args = parser.parse_args() verbose = options.verbose if verbose: print("Args: ",args) print("Options: ",options) if options.debug: print("DEBUG MODE. Using a different excepthook.") def info(type, value, tb): if hasattr(sys, 'ps1') or not sys.stderr.isatty(): # we are in interactive mode or we don't have a tty-like # device, so we call the default hook sys.__excepthook__(type, value, tb) else: import traceback, pdb # we are NOT in interactive mode, print the exception... traceback.print_exception(type, value, tb) print() # ...then start the debugger in post-mortem mode. pdb.pm() sys.excepthook = info specnum = int(options.specnum) if options.wcstype: if "," in options.wcstype: wcstype = options.wcstype.split(",") else: wcstype = options.wcstype else: wcstype = '' # specify kwargs before passing both for brevity and to allow # for some kwargs to not be specified at all kwargs = {'specnum':specnum, 'wcstype':wcstype, 'verbose':verbose, 'filetype':options.filetype} if options.hdu is not None: kwargs['hdu'] = int(options.hdu) if len(args) > 1: if options.threed: cubelist = [Cube(fname) for fname in args] splist = cubelist cube = CubeStack(cubelist) options.doplot = False elif len(wcstype) == len(args): splist = [Spectrum(a, **kwargs) for a, w in zip(args, wcstype)] sp = Spectra(splist) else: splist = [Spectrum(a,**kwargs) for a in args] sp = Spectra(splist) linestyles = itertools.cycle(["steps-mid","steps-mid--"]) colors = itertools.cycle(matplotlib.cm.spectral(pylab.linspace(0,1,len(splist)))) else: if len(wcstype)==1: sp = Spectrum(*args,**kwargs) else: if options.threed: cube = Cube(*args) options.doplot = False else: sp = Spectrum(*args,**kwargs) if options.smooth > 0: sp.smooth(float(options.smooth)) if options.doplot: sp.plotter() if options.fitgaussian: sp.specfit() if options.fitnh3: pw.fitnh3.fitnh3(sp) import IPython IPython.embed()
mit
TREE-Edu/speaker-rec-skill-test
data/remove-silence.py
1
2752
#!/usr/bin/python2 # -*- coding: utf-8 -*- # $File: VAD.py # $Date: Thu Dec 26 15:33:37 2013 +0800 # $Author: Xinyu Zhou <zxytim[at]gmail[dot]com> import sys import os import glob import scipy.io.wavfile as wavfile import numpy as np import matplotlib.pyplot as plt import multiprocessing def mkdirp(dirname): try: os.makedirs(dirname) except OSError as err: if err.errno!=17: raise def remove_silence(fs, signal, frame_duration = 0.02, frame_shift = 0.01, perc = 0.01): orig_dtype = type(signal[0]) typeinfo = np.iinfo(orig_dtype) is_unsigned = typeinfo.min >= 0 signal = signal.astype(np.int64) if is_unsigned: signal = signal - typeinfo.max / 2 siglen = len(signal) retsig = np.zeros(siglen, dtype = np.int64) frame_length = frame_duration * fs frame_shift_length = frame_shift * fs new_siglen = 0 i = 0 # NOTE: signal ** 2 where signal is a numpy array # interpret an unsigned integer as signed integer, # e.g, if dtype is uint8, then # [128, 127, 129] ** 2 = [0, 1, 1] # so the energy of the signal is somewhat # right average_energy = np.sum(signal ** 2) / float(siglen) while i < siglen: subsig = signal[i:i + frame_length] ave_energy = np.sum(subsig ** 2) / float(len(subsig)) if ave_energy < average_energy * perc: i += frame_length else: sigaddlen = min(frame_shift_length, len(subsig)) retsig[new_siglen:new_siglen + sigaddlen] = subsig[:sigaddlen] new_siglen += sigaddlen i += frame_shift_length retsig = retsig[:new_siglen] if is_unsigned: retsig = retsig + typeinfo.max / 2 return fs, retsig.astype(orig_dtype) def task(fpath, new_fpath): fs, signal = wavfile.read(fpath) fs_out, signal_out = remove_silence(fs, signal) wavfile.write(new_fpath, fs_out, signal_out) return fpath def main(): if len(sys.argv) != 3: print("Usage: {} <orignal_dir> <output_dir>" . format(sys.argv[0])) sys.exit(1) ORIG_DIR, OUTPUT_DIR = sys.argv[1:] pool = multiprocessing.Pool(4) result = [] for style in glob.glob(os.path.join(ORIG_DIR, '*')): dirname = os.path.basename(style) for fpath in glob.glob(os.path.join(style, '*.wav')): fname = os.path.basename(fpath) new_fpath = os.path.join(OUTPUT_DIR, dirname, fname) mkdirp(os.path.dirname(new_fpath)) result.append(pool.apply_async(task, args = (fpath, new_fpath))) pool.close() for r in result: print(r.get()) if __name__ == '__main__': main() # vim: foldmethod=marker
apache-2.0
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/svm/tests/test_bounds.py
42
2112
import nose from nose.tools import assert_true import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['l2', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'l2': LinearSVC(loss='l2', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
apache-2.0
WindCanDie/spark
python/pyspark/sql/session.py
3
37286
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings from functools import reduce from threading import RLock if sys.version >= '3': basestring = unicode = str xrange = range else: from itertools import izip as zip, imap as map from pyspark import since from pyspark.rdd import RDD, ignore_unicode_prefix from pyspark.sql.conf import RuntimeConfig from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, DataType, StringType, StructType, TimestampType, \ _make_type_verifier, _infer_schema, _has_nulltype, _merge_type, _create_converter, \ _parse_datatype_string from pyspark.sql.utils import install_exception_handler __all__ = ["SparkSession"] def _monkey_patch_RDD(sparkSession): def toDF(self, schema=None, sampleRatio=None): """ Converts current :class:`RDD` into a :class:`DataFrame` This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)`` :param schema: a :class:`pyspark.sql.types.StructType` or list of names of columns :param samplingRatio: the sample ratio of rows used for inferring :return: a DataFrame >>> rdd.toDF().collect() [Row(name=u'Alice', age=1)] """ return sparkSession.createDataFrame(self, schema, sampleRatio) RDD.toDF = toDF class SparkSession(object): """The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern: >>> spark = SparkSession.builder \\ ... .master("local") \\ ... .appName("Word Count") \\ ... .config("spark.some.config.option", "some-value") \\ ... .getOrCreate() .. autoattribute:: builder :annotation: """ class Builder(object): """Builder for :class:`SparkSession`. """ _lock = RLock() _options = {} _sc = None @since(2.0) def config(self, key=None, value=None, conf=None): """Sets a config option. Options set using this method are automatically propagated to both :class:`SparkConf` and :class:`SparkSession`'s own configuration. For an existing SparkConf, use `conf` parameter. >>> from pyspark.conf import SparkConf >>> SparkSession.builder.config(conf=SparkConf()) <pyspark.sql.session... For a (key, value) pair, you can omit parameter names. >>> SparkSession.builder.config("spark.some.config.option", "some-value") <pyspark.sql.session... :param key: a key name string for configuration property :param value: a value for configuration property :param conf: an instance of :class:`SparkConf` """ with self._lock: if conf is None: self._options[key] = str(value) else: for (k, v) in conf.getAll(): self._options[k] = v return self @since(2.0) def master(self, master): """Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. :param master: a url for spark master """ return self.config("spark.master", master) @since(2.0) def appName(self, name): """Sets a name for the application, which will be shown in the Spark web UI. If no application name is set, a randomly generated name will be used. :param name: an application name """ return self.config("spark.app.name", name) @since(2.0) def enableHiveSupport(self): """Enables Hive support, including connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined functions. """ return self.config("spark.sql.catalogImplementation", "hive") def _sparkContext(self, sc): with self._lock: self._sc = sc return self @since(2.0) def getOrCreate(self): """Gets an existing :class:`SparkSession` or, if there is no existing one, creates a new one based on the options set in this builder. This method first checks whether there is a valid global default SparkSession, and if yes, return that one. If no valid global default SparkSession exists, the method creates a new SparkSession and assigns the newly created SparkSession as the global default. >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate() >>> s1.conf.get("k1") == "v1" True In case an existing SparkSession is returned, the config options specified in this builder will be applied to the existing SparkSession. >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate() >>> s1.conf.get("k1") == s2.conf.get("k1") True >>> s1.conf.get("k2") == s2.conf.get("k2") True """ with self._lock: from pyspark.context import SparkContext from pyspark.conf import SparkConf session = SparkSession._instantiatedSession if session is None or session._sc._jsc is None: if self._sc is not None: sc = self._sc else: sparkConf = SparkConf() for key, value in self._options.items(): sparkConf.set(key, value) # This SparkContext may be an existing one. sc = SparkContext.getOrCreate(sparkConf) # Do not update `SparkConf` for existing `SparkContext`, as it's shared # by all sessions. session = SparkSession(sc) for key, value in self._options.items(): session._jsparkSession.sessionState().conf().setConfString(key, value) return session builder = Builder() """A class attribute having a :class:`Builder` to construct :class:`SparkSession` instances""" _instantiatedSession = None _activeSession = None @ignore_unicode_prefix def __init__(self, sparkContext, jsparkSession=None): """Creates a new SparkSession. >>> from datetime import datetime >>> spark = SparkSession(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ from pyspark.sql.context import SQLContext self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if jsparkSession is None: if self._jvm.SparkSession.getDefaultSession().isDefined() \ and not self._jvm.SparkSession.getDefaultSession().get() \ .sparkContext().isStopped(): jsparkSession = self._jvm.SparkSession.getDefaultSession().get() else: jsparkSession = self._jvm.SparkSession(self._jsc.sc()) self._jsparkSession = jsparkSession self._jwrapped = self._jsparkSession.sqlContext() self._wrapped = SQLContext(self._sc, self, self._jwrapped) _monkey_patch_RDD(self) install_exception_handler() # If we had an instantiated SparkSession attached with a SparkContext # which is stopped now, we need to renew the instantiated SparkSession. # Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate. if SparkSession._instantiatedSession is None \ or SparkSession._instantiatedSession._sc._jsc is None: SparkSession._instantiatedSession = self SparkSession._activeSession = self self._jvm.SparkSession.setDefaultSession(self._jsparkSession) self._jvm.SparkSession.setActiveSession(self._jsparkSession) def _repr_html_(self): return """ <div> <p><b>SparkSession - {catalogImplementation}</b></p> {sc_HTML} </div> """.format( catalogImplementation=self.conf.get("spark.sql.catalogImplementation"), sc_HTML=self.sparkContext._repr_html_() ) @since(2.0) def newSession(self): """ Returns a new SparkSession as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self._jsparkSession.newSession()) @classmethod @since(3.0) def getActiveSession(cls): """ Returns the active SparkSession for the current thread, returned by the builder. >>> s = SparkSession.getActiveSession() >>> l = [('Alice', 1)] >>> rdd = s.sparkContext.parallelize(l) >>> df = s.createDataFrame(rdd, ['name', 'age']) >>> df.select("age").collect() [Row(age=1)] """ from pyspark import SparkContext sc = SparkContext._active_spark_context if sc is None: return None else: if sc._jvm.SparkSession.getActiveSession().isDefined(): SparkSession(sc, sc._jvm.SparkSession.getActiveSession().get()) return SparkSession._activeSession else: return None @property @since(2.0) def sparkContext(self): """Returns the underlying :class:`SparkContext`.""" return self._sc @property @since(2.0) def version(self): """The version of Spark on which this application is running.""" return self._jsparkSession.version() @property @since(2.0) def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf @property @since(2.0) def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog @property @since(2.0) def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ from pyspark.sql.udf import UDFRegistration return UDFRegistration(self) @since(2.0) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> spark.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> spark.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if end is None: jdf = self._jsparkSession.range(0, int(start), int(step), int(numPartitions)) else: jdf = self._jsparkSession.range(int(start), int(end), int(step), int(numPartitions)) return DataFrame(jdf, self._wrapped) def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema def _get_numpy_record_dtype(self, rec): """ Used when converting a pandas.DataFrame to Spark using to_records(), this will correct the dtypes of fields in a record so they can be properly loaded into Spark. :param rec: a numpy record to check field dtypes :return corrected dtype for a numpy.record or None if no correction needed """ import numpy as np cur_dtypes = rec.dtype col_names = cur_dtypes.names record_type_list = [] has_rec_fix = False for i in xrange(len(cur_dtypes)): curr_type = cur_dtypes[i] # If type is a datetime64 timestamp, convert to microseconds # NOTE: if dtype is datetime[ns] then np.record.tolist() will output values as longs, # conversion from [us] or lower will lead to py datetime objects, see SPARK-22417 if curr_type == np.dtype('datetime64[ns]'): curr_type = 'datetime64[us]' has_rec_fix = True record_type_list.append((str(col_names[i]), curr_type)) return np.dtype(record_type_list) if has_rec_fix else None def _convert_from_pandas(self, pdf, schema, timezone): """ Convert a pandas.DataFrame to list of records that can be used to make a DataFrame :return list of records """ if timezone is not None: from pyspark.sql.types import _check_series_convert_timestamps_tz_local copied = False if isinstance(schema, StructType): for field in schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): s = _check_series_convert_timestamps_tz_local(pdf[field.name], timezone) if s is not pdf[field.name]: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[field.name] = s else: for column, series in pdf.iteritems(): s = _check_series_convert_timestamps_tz_local(series, timezone) if s is not series: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[column] = s # Convert pandas.DataFrame to list of numpy records np_records = pdf.to_records(index=False) # Check if any columns need to be fixed for Spark to infer properly if len(np_records) > 0: record_dtype = self._get_numpy_record_dtype(np_records[0]) if record_dtype is not None: return [r.astype(record_dtype).tolist() for r in np_records] # Convert list of numpy records to python lists return [r.tolist() for r in np_records] def _create_from_pandas_with_arrow(self, pdf, schema, timezone): """ Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion. """ from pyspark.serializers import ArrowStreamSerializer, _create_batch from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType from pyspark.sql.utils import require_minimum_pandas_version, \ require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # Determine arrow types to coerce data when creating batches if isinstance(schema, StructType): arrow_types = [to_arrow_type(f.dataType) for f in schema.fields] elif isinstance(schema, DataType): raise ValueError("Single data type %s is not supported with Arrow" % str(schema)) else: # Any timestamps must be coerced to be compatible with Spark arrow_types = [to_arrow_type(TimestampType()) if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None for t in pdf.dtypes] # Slice the DataFrame to be batched step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step)) # Create Arrow record batches safecheck = self._wrapped._conf.arrowSafeTypeConversion() batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)], timezone, safecheck) for pdf_slice in pdf_slices] # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing) if isinstance(schema, (list, tuple)): struct = from_arrow_schema(batches[0].schema) for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct jsqlContext = self._wrapped._jsqlContext def reader_func(temp_filename): return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename) def create_RDD_server(): return self._jvm.ArrowRDDServer(jsqlContext) # Create Spark DataFrame from Arrow stream file, using one batch per partition jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func, create_RDD_server) jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @staticmethod def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate() @since(2.0) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is ``None``. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for ``IntegerType``. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.1 Added verifySchema. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> l = [('Alice', 1)] >>> spark.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> spark.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> spark.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> spark.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = spark.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = spark.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = spark.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> spark.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> spark.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ SparkSession._activeSession = self self._jvm.SparkSession.setActiveSession(self._jsparkSession) if isinstance(data, DataFrame): raise TypeError("data is already a DataFrame") if isinstance(schema, basestring): schema = _parse_datatype_string(schema) elif isinstance(schema, (list, tuple)): # Must re-encode any unicode strings to be consistent with StructField names schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema] try: import pandas has_pandas = True except Exception: has_pandas = False if has_pandas and isinstance(data, pandas.DataFrame): from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() if self._wrapped._conf.pandasRespectSessionTimeZone(): timezone = self._wrapped._conf.sessionLocalTimeZone() else: timezone = None # If no schema supplied by user then get the names of columns only if schema is None: schema = [str(x) if not isinstance(x, basestring) else (x.encode('utf-8') if not isinstance(x, str) else x) for x in data.columns] if self._wrapped._conf.arrowEnabled() and len(data) > 0: try: return self._create_from_pandas_with_arrow(data, schema, timezone) except Exception as e: from pyspark.util import _exception_message if self._wrapped._conf.arrowFallbackEnabled(): msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true; however, " "failed by the reason below:\n %s\n" "Attempting non-optimization as " "'spark.sql.execution.arrow.fallback.enabled' is set to " "true." % _exception_message(e)) warnings.warn(msg) else: msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and will not continue because automatic fallback " "with 'spark.sql.execution.arrow.fallback.enabled' has been set to " "false.\n %s" % _exception_message(e)) warnings.warn(msg) raise data = self._convert_from_pandas(data, schema, timezone) if isinstance(schema, StructType): verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj elif isinstance(schema, DataType): dataType = schema schema = StructType().add("value", schema) verify_func = _make_type_verifier( dataType, name="field value") if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj, else: prepare = lambda obj: obj if isinstance(data, RDD): rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) else: rdd, schema = self._createFromLocal(map(prepare, data), schema) jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd()) jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json()) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @ignore_unicode_prefix @since(2.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) @since(2.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return DataFrame(self._jsparkSession.table(tableName), self._wrapped) @property @since(2.0) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self._wrapped) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` """ return DataStreamReader(self._wrapped) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. :return: :class:`StreamingQueryManager` """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._jsparkSession.streams()) @since(2.0) def stop(self): """Stop the underlying :class:`SparkContext`. """ self._sc.stop() # We should clean the default session up. See SPARK-23228. self._jvm.SparkSession.clearDefaultSession() self._jvm.SparkSession.clearActiveSession() SparkSession._instantiatedSession = None SparkSession._activeSession = None @since(2.0) def __enter__(self): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. """ return self @since(2.0) def __exit__(self, exc_type, exc_val, exc_tb): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. Specifically stop the SparkSession on exit of the with block. """ self.stop() def _test(): import os import doctest from pyspark.context import SparkContext from pyspark.sql import Row import pyspark.sql.session os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.session.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")]) globs['df'] = rdd.toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.session, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
Stanford-Online/edx-analytics-pipeline
edx/analytics/tasks/tests/acceptance/test_lms_courseware_link_clicked.py
1
2697
""" End-to-end test of the workflow to load the warehouse's lms_courseware_link_clicked_events table. """ import datetime import logging import os import pandas from edx.analytics.tasks.tests.acceptance import AcceptanceTestCase, when_vertica_available log = logging.getLogger(__name__) class LmsCoursewareLinkClickedAcceptanceTest(AcceptanceTestCase): """ Runs the MapReduce job that uploads LMS courseware link click data to Vertica, then queries that data and compares it to the expected output. """ INPUT_FILE = 'lms_courseware_link_clicked_acceptance_tracking.log' DATE = datetime.date(2016, 6, 13) @when_vertica_available def test_lms_courseware_link_clicked(self): """Tests the workflow for the lms_courseware_link_clicked_events table, end to end.""" self.upload_tracking_log(self.INPUT_FILE, self.DATE) self.task.launch([ 'PushToVerticaLMSCoursewareLinkClickedTask', '--output-root', self.test_out, '--interval', str(2016), '--n-reduce-tasks', str(self.NUM_REDUCERS) ]) self.validate_output() def validate_output(self): """Validates the output, comparing it to a csv of all the expected output from this workflow.""" with self.vertica.cursor() as cursor: expected_output_csv = os.path.join( self.data_dir, 'output', 'acceptance_expected_lms_courseware_link_clicked_events.csv' ) def convert_date(date_string): """Convert date string to a date object.""" return datetime.datetime.strptime(date_string, '%Y-%m-%d').date() expected = pandas.read_csv(expected_output_csv, converters={'event_date': convert_date}) cursor.execute( "SELECT * FROM {schema}.lms_courseware_link_clicked_events ORDER BY course_id, event_date" .format(schema=self.vertica.schema_name) ) response = cursor.fetchall() lms_courseware_link_clicked_events = pandas.DataFrame( response, columns=[ 'record_number', 'course_id', 'event_date', 'external_link_clicked_events', 'link_clicked_events' ] ) for frame in (lms_courseware_link_clicked_events, expected): frame.sort(['record_number'], inplace=True, ascending=[True]) frame.reset_index(drop=True, inplace=True) self.assert_data_frames_equal(lms_courseware_link_clicked_events, expected)
agpl-3.0
ahoarfrost/metaseek
server/scrapers/SRA/SRA_scrape.py
1
11674
# -*- encoding: utf-8 -*- #test adding runs to db import sys sys.path.append('../..') sys.path.append('..') from app import db from pymysql import err from sqlalchemy import exc from SRA_scrape_fns import * from models import * from shared import * from sklearn.externals import joblib metaseek_fields = ['db_source_uid', 'db_source', 'expt_link', 'expt_id', 'expt_title', 'expt_design_description', 'library_name', 'library_strategy', 'library_source', 'library_screening_strategy', 'library_construction_method', 'library_construction_protocol', 'sequencing_method', 'instrument_model', 'submission_id', 'organization_name', 'organization_address', 'organization_contacts', 'study_id', 'bioproject_id', 'study_title', 'study_type', 'study_type_other', 'study_abstract', 'study_links', 'study_attributes', 'sample_id', 'biosample_id', 'sample_title', 'ncbi_taxon_id', 'taxon_scientific_name', 'taxon_common_name', 'sample_description', 'num_runs_in_accession', 'run_ids_maxrun', 'library_reads_sequenced_maxrun', 'total_num_bases_maxrun', 'download_size_maxrun', 'avg_read_length_maxrun', 'baseA_count_maxrun', 'baseC_count_maxrun', 'baseG_count_maxrun', 'baseT_count_maxrun', 'baseN_count_maxrun', 'gc_percent_maxrun', 'run_quality_counts_maxrun', 'biosample_uid', 'biosample_link', 'metadata_publication_date', 'biosample_package', 'biosample_models', 'sample_attributes', 'investigation_type', 'env_package', 'project_name', 'lat_lon', 'latitude', 'longitude', 'meta_latitude', 'meta_longitude', 'geo_loc_name', 'collection_date', 'collection_time', 'env_biome', 'env_feature', 'env_material', 'depth', 'elevation', 'altitude', 'target_gene', 'target_subfragment', 'ploidy', 'num_replicons', 'estimated_size', 'ref_biomaterial', 'propagation', 'assembly', 'finishing_strategy', 'isol_growth_condt', 'experimental_factor', 'specific_host', 'subspecific_genetic_lineage', 'tissue', 'sex', 'sample_type', 'age', 'dev_stage', 'biomaterial_provider', 'host_disease', 'date_scraped', 'metaseek_investigation_type', 'metaseek_investigation_type_P', 'metaseek_mixs_specification', 'metaseek_mixs_specification_P', 'metaseek_env_package', 'metaseek_sequencing_method'] run_fields = ['dataset_id', 'run_id', 'library_reads_sequenced', 'total_num_bases', 'download_size', 'avg_read_length', 'baseA_count', 'baseC_count', 'baseG_count', 'baseT_count', 'baseN_count', 'gc_percent', 'run_quality_counts'] pubmed_fields = ['pubmed_uid', 'pubmed_link', 'pub_publication_date', 'pub_authors', 'pub_title', 'pub_volume', 'pub_issue', 'pub_pages', 'pub_journal', 'pub_doi', 'datasets'] if __name__ == "__main__": #make list of all publicly available UIDs in SRA retstart_list = get_retstart_list(url='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=sra&term=public&field=ACS&rettype=count&tool=metaseq&email=metaseekcloud%40gmail.com') uid_list = get_uid_list(ret_list=retstart_list) #remove SRA IDs that have already been ingested into MetaSeek DB; db_source_uids for which 'source_db' is 'SRA' print "Removing uids already in MetaSeek..." result = db.session.query(Dataset.db_source_uid).filter(Dataset.db_source=='SRA').distinct() existing_uids = [r.db_source_uid for r in result] #subtract any uids already in db from uid_list uids_to_scrape = list(set(uid_list)-set(existing_uids)) print "...REMAINING NUMBER OF UIDS TO SCRAPE: %s" % (len(uids_to_scrape)) #split UIDs to scrape into batches of 500 (max number of UIDs can call with eutilities api at one time) batches = get_batches(uids_to_scrape, batch_size=200) #for each batch of 500 UIDs, scrape metadata for batch_ix,batch in enumerate(batches): print "PROCESSING BATCH %s OUT OF %s......" % (batch_ix+1,len(batches)) batch_uid_list = map(int,uids_to_scrape[batch[0]:batch[1]]) print "-%s UIDs to scrape in this batch...... %s..." % (len(batch_uid_list),batch_uid_list[0:10]) #scrape sra metadata, return as dictionary of dictionaries; each sdict key is the SRA UID, value is a dictionary of srx metadata key/value pairs; rdict is for individual runs with key run_id print "-scraping SRX metadata..." try: sdict, rdict = get_srx_metadata(batch_uid_list=batch_uid_list) except (EutilitiesConnectionError,EfetchError) as msg: print msg,"; skipping this batch" continue #get link uids for any links to biosample or pubmed databases so can go scrape those too print "-getting elinks..." try: sdict, linkdict = get_links(batch_uid_list=batch_uid_list,sdict=sdict) except EutilitiesConnectionError as msg: #if can't get links for srx, skip entire batch and don't write data print msg,"; skipping this batch" continue #efetch for batch/es of biosamples; generate bdict dictionary of dictionaries {'bio#':{},'bio##':{}...} biosample_batches = get_batches(uid_list=linkdict['biosample_uids']) #split biosamples into batches of 500 (if there's less than 500 there will only be one batch) bdict = {} for b_batch_ix,b_batch in enumerate(biosample_batches): #scrape biosample data for all the biosamples, in batches of 500 print "--processing biosample batch %s out of %s......" % (b_batch_ix+1,len(biosample_batches)) biosample_batch_uids = map(int,linkdict['biosample_uids'][b_batch[0]:b_batch[1]]) try: bdict = get_biosample_metadata(batch_uid_list=biosample_batch_uids,bdict=bdict) except EutilitiesConnectionError, msg: print msg, "; skipping this biosample batch" continue #efetch for batch/es of pubmeds; generate pdict dictionary of dictionaries {'pub#':{},'pub#':{},...} pubmed_batches = get_batches(uid_list=linkdict['pubmed_uids']) pdict = {} for p_batch_ix,p_batch in enumerate(pubmed_batches): print "--processing pubmed batch %s out of %s......" % (p_batch_ix+1,len(pubmed_batches)) pubmed_batch_uids = map(int,linkdict['pubmed_uids'][p_batch[0]:p_batch[1]]) try: pdict = get_pubmed_metadata(batch_uid_list=pubmed_batch_uids,pdict=pdict) except EutilitiesConnectionError as msg: print msg, "; skipping this pubmed batch" continue #merge sdict with scraped biosample/pubmed metadata print "-merging scrapes" sdict = merge_scrapes(sdict=sdict,bdict=bdict,pdict=pdict) #extract and merge MIxS fields from 'sample_attributes' field in each dict in sdict (if exists) print "-extracting and merging MIxS fields" sdict = extract_and_merge_mixs_fields(sdict=sdict,fieldname="sample_attributes",rules_json="rules.json") #load in rules and model for extracting metaseek_power fields with open("CVparse_rules.json") as json_file: manual_rules = json.load(json_file) json_file.close() with open("CVparse_manualtree_rules.json") as tree_file: tree_rules = json.load(tree_file) tree_file.close() investigation_model = joblib.load("investigation_type_logreg_model.pkl") with open("model_features.json") as json_file: model_features = json.load(json_file) json_file.close() print "-extracting metaseek_power fields and changing sample_attributes to str field" for srx in sdict.keys(): #extract metaseek_power fields for this srx extract_metaseek_power_fields(sdict, srx, manual_rules=manual_rules, tree_rules=tree_rules, investigation_model=investigation_model, model_features=model_features) #coerce sample attributes field to str for db insertion if 'sample_attributes' in sdict[srx].keys(): sdict[srx]['sample_attributes'] = json.dumps(sdict[srx]['sample_attributes']) #clean up sdict so that any nan or na values (or values that should be na) are None na_values = ['NA','','Missing','missing','unspecified','not available','not given','Not available',None,[],{},'[]','{}','not applicable','Not applicable','Not Applicable','N/A','n/a','not provided','Not Provided','Not provided','unidentified'] for srx in sdict.keys(): sdict[srx] = {k:sdict[srx][k] for k in sdict[srx].keys() if sdict[srx][k] not in na_values} #add parsed metaseek lat/lon values if possible if 'lat_lon' in sdict[srx]: meta_latitude, meta_longitude = parseLatLon(sdict[srx]['lat_lon']) sdict[srx]['meta_latitude'] = meta_latitude sdict[srx]['meta_longitude'] = meta_longitude if 'latitude' in sdict[srx] and 'longitude' in sdict[srx]: sdict[srx]['meta_latitude'] = parseLatitude(sdict[srx]['latitude']) sdict[srx]['meta_longitude'] = parseLongitude(sdict[srx]['longitude']) ##TODO: check whether if biosample_uids exists, and no biosample attribs added; log to scrapeerrors if so; same for pubmeds print "-writing data to database..." for srx in sdict.keys(): #add date scraped field as right now! sdict[srx]['date_scraped'] = datetime.now() #get row in correct order keys row_to_write = [sdict[srx][x] if x in sdict[srx].keys() else None for x in metaseek_fields] newDataset = Dataset(*row_to_write) #add newdataset and commit to get new id db.session.add(newDataset) try: db.session.commit() except (exc.DataError, err.DataError) as e: db.session.rollback() #if one of the columns was too long, log error and skip this srx errorToWrite = ScrapeError(uid=str(srx),error_msg="DataError: "+str(e),function="writing Dataset to db",date_scraped=datetime.now()) db.session.add(errorToWrite) db.session.commit() continue if 'pubmed_uids' in sdict[srx].keys(): for pub in sdict[srx]["pubmed_uids"]: if pub is not None: pub = str(pub) if pub in pdict.keys(): pub_data = [pdict[pub][x] if x in pdict[pub].keys() else None for x in pubmed_fields] newPub = Publication(*pub_data) newPub.datasets.append(newDataset) db.session.add(newPub) try: db.session.commit() except (exc.IntegrityError, err.IntegrityError) as e: #if pubmed already exists db.session.rollback() existing_pub = db.session.query(Publication).filter(Publication.pubmed_uid==pub).first() existing_pub.datasets.append(newDataset) db.session.commit() if "run_ids" in sdict[srx].keys(): for run in sdict[srx]["run_ids"]: if run is not None: run_data = [rdict[run][x] if x in rdict[run].keys() else None for x in run_fields] newRun = Run(*run_data) newDataset.runs.append(newRun) db.session.add(newRun) #commit all those new runs db.session.commit() ##TODO: log date and time of update, num accessions added, etc. Separate db table? print "BATCH %s COMPLETE!" % (batch_ix+1)
mit
yask123/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
SANDAG/urbansim
urbansim/models/regression.py
5
33858
""" Use the ``RegressionModel`` class to fit a model using statsmodels' OLS capability and then do subsequent prediction. """ from __future__ import print_function import logging import numpy as np import pandas as pd import statsmodels.formula.api as smf from patsy import dmatrix from prettytable import PrettyTable from zbox import toolz as tz from . import util from ..exceptions import ModelEvaluationError from ..utils import yamlio from ..utils.logutil import log_start_finish logger = logging.getLogger(__name__) def fit_model(df, filters, model_expression): """ Use statsmodels OLS to construct a model relation. Parameters ---------- df : pandas.DataFrame Data to use for fit. Should contain all the columns referenced in the `model_expression`. filters : list of str Any filters to apply before doing the model fit. model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. Returns ------- fit : statsmodels.regression.linear_model.OLSResults """ df = util.apply_filter_query(df, filters) model = smf.ols(formula=model_expression, data=df) if len(model.exog) != len(df): raise ModelEvaluationError( 'Estimated data does not have the same length as input. ' 'This suggests there are null values in one or more of ' 'the input columns.') with log_start_finish('statsmodels OLS fit', logger): return model.fit() def predict(df, filters, model_fit, ytransform=None): """ Apply model to new data to predict new dependent values. Parameters ---------- df : pandas.DataFrame filters : list of str Any filters to apply before doing prediction. model_fit : statsmodels.regression.linear_model.OLSResults Result of model estimation. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. Returns ------- result : pandas.Series Predicted values as a pandas Series. Will have the index of `df` after applying filters. """ df = util.apply_filter_query(df, filters) with log_start_finish('statsmodels predict', logger): sim_data = model_fit.predict(df) if len(sim_data) != len(df): raise ModelEvaluationError( 'Predicted data does not have the same length as input. ' 'This suggests there are null values in one or more of ' 'the input columns.') if ytransform: sim_data = ytransform(sim_data) return pd.Series(sim_data, index=df.index) def _rhs(model_expression): """ Get only the right-hand side of a patsy model expression. Parameters ---------- model_expression : str Returns ------- rhs : str """ if '~' not in model_expression: return model_expression else: return model_expression.split('~')[1].strip() class _FakeRegressionResults(object): """ This can be used in place of a statsmodels RegressionResults for limited purposes when it comes to model prediction. Intended for use when loading a model from a YAML representation; we can do model evaluation using the stored coefficients, but can't recreate the original statsmodels fit result. Parameters ---------- model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. fit_parameters : pandas.DataFrame Stats results from fitting `model_expression` to data. Should include columns 'Coefficient', 'Std. Error', and 'T-Score'. rsquared : float rsquared_adj : float """ def __init__(self, model_expression, fit_parameters, rsquared, rsquared_adj): self.model_expression = model_expression self.params = fit_parameters['Coefficient'] self.bse = fit_parameters['Std. Error'] self.tvalues = fit_parameters['T-Score'] self.rsquared = rsquared self.rsquared_adj = rsquared_adj @property def _rhs(self): """ Get only the right-hand side of `model_expression`. """ return _rhs(self.model_expression) def predict(self, data): """ Predict new values by running data through the fit model. Parameters ---------- data : pandas.DataFrame Table with columns corresponding to the RHS of `model_expression`. Returns ------- predicted : ndarray Array of predicted values. """ with log_start_finish('_FakeRegressionResults prediction', logger): model_design = dmatrix( self._rhs, data=data, return_type='dataframe') return model_design.dot(self.params).values def _model_fit_to_table(fit): """ Produce a pandas DataFrame of model fit results from a statsmodels fit result object. Parameters ---------- fit : statsmodels.regression.linear_model.RegressionResults Returns ------- fit_parameters : pandas.DataFrame Will have columns 'Coefficient', 'Std. Error', and 'T-Score'. Index will be model terms. This frame will also have non-standard attributes .rsquared and .rsquared_adj with the same meaning and value as on `fit`. """ fit_parameters = pd.DataFrame( {'Coefficient': fit.params, 'Std. Error': fit.bse, 'T-Score': fit.tvalues}) fit_parameters.rsquared = fit.rsquared fit_parameters.rsquared_adj = fit.rsquared_adj return fit_parameters YTRANSFORM_MAPPING = { None: None, np.exp: 'np.exp', 'np.exp': np.exp, np.log: 'np.log', 'np.log': np.log, np.log1p: 'np.log1p', 'np.log1p': np.log1p, np.expm1: 'np.expm1', 'np.expm1': np.expm1 } class RegressionModel(object): """ A hedonic (regression) model with the ability to store an estimated model and predict new data based on the model. statsmodels' OLS implementation is used. Parameters ---------- fit_filters : list of str Filters applied before fitting the model. predict_filters : list of str Filters applied before calculating new data points. model_expression : str or dict A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. name : optional Optional descriptive name for this model that may be used in output. """ def __init__(self, fit_filters, predict_filters, model_expression, ytransform=None, name=None): self.fit_filters = fit_filters self.predict_filters = predict_filters self.model_expression = model_expression self.ytransform = ytransform self.name = name or 'RegressionModel' self.model_fit = None self.fit_parameters = None self.est_data = None @classmethod def from_yaml(cls, yaml_str=None, str_or_buffer=None): """ Create a RegressionModel instance from a saved YAML configuration. Arguments are mutually exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- RegressionModel """ cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer) model = cls( cfg['fit_filters'], cfg['predict_filters'], cfg['model_expression'], YTRANSFORM_MAPPING[cfg['ytransform']], cfg['name']) if 'fitted' in cfg and cfg['fitted']: fit_parameters = pd.DataFrame(cfg['fit_parameters']) fit_parameters.rsquared = cfg['fit_rsquared'] fit_parameters.rsquared_adj = cfg['fit_rsquared_adj'] model.model_fit = _FakeRegressionResults( model.str_model_expression, fit_parameters, cfg['fit_rsquared'], cfg['fit_rsquared_adj']) model.fit_parameters = fit_parameters logger.debug('loaded regression model {} from YAML'.format(model.name)) return model @property def str_model_expression(self): """ Model expression as a string suitable for use with patsy/statsmodels. """ return util.str_model_expression( self.model_expression, add_constant=True) def fit(self, data, debug=False): """ Fit the model to data and store/return the results. Parameters ---------- data : pandas.DataFrame Data to use for fitting the model. Must contain all the columns referenced by the `model_expression`. debug : bool If debug is set to true, this sets the attribute "est_data" to a dataframe with the actual data used for estimation of this model. Returns ------- fit : statsmodels.regression.linear_model.OLSResults This is returned for inspection, but also stored on the class instance for use during prediction. """ with log_start_finish('fitting model {}'.format(self.name), logger): fit = fit_model(data, self.fit_filters, self.str_model_expression) self.model_fit = fit self.fit_parameters = _model_fit_to_table(fit) if debug: index = util.apply_filter_query(data, self.fit_filters).index assert len(fit.model.exog) == len(index), ( "The estimate data is unequal in length to the original " "dataframe, usually caused by nans") df = pd.DataFrame( fit.model.exog, columns=fit.model.exog_names, index=index) df[fit.model.endog_names] = fit.model.endog df["fittedvalues"] = fit.fittedvalues df["residuals"] = fit.resid self.est_data = df return fit @property def fitted(self): """ True if the model is ready for prediction. """ return self.model_fit is not None def assert_fitted(self): """ Raises a RuntimeError if the model is not ready for prediction. """ if not self.fitted: raise RuntimeError('Model has not been fit.') def report_fit(self): """ Print a report of the fit results. """ if not self.fitted: print('Model not yet fit.') return print('R-Squared: {0:.3f}'.format(self.model_fit.rsquared)) print('Adj. R-Squared: {0:.3f}'.format(self.model_fit.rsquared_adj)) print('') tbl = PrettyTable( ['Component', ]) tbl = PrettyTable() tbl.add_column('Component', self.fit_parameters.index.values) for col in ('Coefficient', 'Std. Error', 'T-Score'): tbl.add_column(col, self.fit_parameters[col].values) tbl.align['Component'] = 'l' tbl.float_format = '.3' print(tbl) def predict(self, data): """ Predict a new data set based on an estimated model. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must contain all the columns referenced by the right-hand side of the `model_expression`. Returns ------- result : pandas.Series Predicted values as a pandas Series. Will have the index of `data` after applying filters. """ self.assert_fitted() with log_start_finish('predicting model {}'.format(self.name), logger): return predict( data, self.predict_filters, self.model_fit, self.ytransform) def to_dict(self): """ Returns a dictionary representation of a RegressionModel instance. """ d = { 'model_type': 'regression', 'name': self.name, 'fit_filters': self.fit_filters, 'predict_filters': self.predict_filters, 'model_expression': self.model_expression, 'ytransform': YTRANSFORM_MAPPING[self.ytransform], 'fitted': self.fitted, 'fit_parameters': None, 'fit_rsquared': None, 'fit_rsquared_adj': None } if self.fitted: d['fit_parameters'] = yamlio.frame_to_yaml_safe( self.fit_parameters) d['fit_rsquared'] = float(self.model_fit.rsquared) d['fit_rsquared_adj'] = float(self.model_fit.rsquared_adj) return d def to_yaml(self, str_or_buffer=None): """ Save a model respresentation to YAML. Parameters ---------- str_or_buffer : str or file like, optional By default a YAML string is returned. If a string is given here the YAML will be written to that file. If an object with a ``.write`` method is given the YAML will be written to that object. Returns ------- j : str YAML string if `str_or_buffer` is not given. """ logger.debug( 'serializing regression model {} to YAML'.format(self.name)) return yamlio.convert_to_yaml(self.to_dict(), str_or_buffer) def columns_used(self): """ Returns all the columns used in this model for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.model_expression)))) @classmethod def fit_from_cfg(cls, df, cfgname, debug=False): """ Parameters ---------- df : DataFrame The dataframe which contains the columns to use for the estimation. cfgname : string The name of the yaml config file which describes the hedonic model. debug : boolean, optional (default False) Whether to generate debug information on the model. Returns ------- RegressionModel which was used to fit """ logger.debug('start: fit from configuration {}'.format(cfgname)) hm = cls.from_yaml(str_or_buffer=cfgname) ret = hm.fit(df, debug=debug) print(ret.summary()) hm.to_yaml(str_or_buffer=cfgname) logger.debug('start: fit from configuration {}'.format(cfgname)) return hm @classmethod def predict_from_cfg(cls, df, cfgname): """ Parameters ---------- df : DataFrame The dataframe which contains the columns to use for the estimation. cfgname : string The name of the yaml config file which describes the hedonic model. Returns ------- predicted : pandas.Series Predicted data in a pandas Series. Will have the index of `data` after applying filters and minus any groups that do not have models. hm : RegressionModel which was used to predict """ logger.debug('start: predict from configuration {}'.format(cfgname)) hm = cls.from_yaml(str_or_buffer=cfgname) price_or_rent = hm.predict(df) print(price_or_rent.describe()) logger.debug('start: predict from configuration {}'.format(cfgname)) return price_or_rent, hm class RegressionModelGroup(object): """ Manages a group of regression models that refer to different segments within a single table. Model names must match the segment names after doing a Pandas groupby. Parameters ---------- segmentation_col Name of the column on which to segment. name Optional name used to identify the model in places. """ def __init__(self, segmentation_col, name=None): self.segmentation_col = segmentation_col self.name = name if name is not None else 'RegressionModelGroup' self.models = {} def add_model(self, model): """ Add a `RegressionModel` instance. Parameters ---------- model : `RegressionModel` Should have a ``.name`` attribute matching one of the groupby segments. """ logger.debug( 'adding model {} to group {}'.format(model.name, self.name)) self.models[model.name] = model def add_model_from_params(self, name, fit_filters, predict_filters, model_expression, ytransform=None): """ Add a model by passing arguments through to `RegressionModel`. Parameters ---------- name : any Must match a groupby segment name. fit_filters : list of str Filters applied before fitting the model. predict_filters : list of str Filters applied before calculating new data points. model_expression : str A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. """ logger.debug( 'adding model {} to group {}'.format(name, self.name)) model = RegressionModel( fit_filters, predict_filters, model_expression, ytransform, name) self.models[name] = model def _iter_groups(self, data): """ Iterate over the groups in `data` after grouping by `segmentation_col`. Skips any groups for which there is no model stored. Yields tuples of (name, df) where name is the group key and df is the group DataFrame. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. """ groups = data.groupby(self.segmentation_col) for name in self.models: yield name, groups.get_group(name) def fit(self, data, debug=False): """ Fit each of the models in the group. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true (default false) will pass the debug parameter to model estimation. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ with log_start_finish( 'fitting models in group {}'.format(self.name), logger): return {name: self.models[name].fit(df, debug=debug) for name, df in self._iter_groups(data)} @property def fitted(self): """ Whether all models in the group have been fitted. """ return (all(m.fitted for m in self.models.values()) if self.models else False) def predict(self, data): """ Predict new data for each group in the segmentation. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must have a column with the same name as `segmentation_col`. Returns ------- predicted : pandas.Series Predicted data in a pandas Series. Will have the index of `data` after applying filters and minus any groups that do not have models. """ with log_start_finish( 'predicting models in group {}'.format(self.name), logger): results = [self.models[name].predict(df) for name, df in self._iter_groups(data)] return pd.concat(results) def columns_used(self): """ Returns all the columns used across all models in the group for filtering and in the model expression. """ return list(tz.unique(tz.concat( m.columns_used() for m in self.models.values()))) class SegmentedRegressionModel(object): """ A regression model group that allows segments to have different model expressions and ytransforms but all have the same filters. Parameters ---------- segmentation_col Name of column in the data table on which to segment. Will be used with a pandas groupby on the data table. fit_filters : list of str, optional Filters applied before fitting the model. predict_filters : list of str, optional Filters applied before calculating new data points. min_segment_size : int This model will add all segments that have at least this number of observations. A very small number of observations (e.g. 1) will cause an error with estimation. default_model_expr : str or dict, optional A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. default_ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. By default no transformation is applied. min_segment_size : int, optional Segments with less than this many members will be skipped. name : str, optional A name used in places to identify the model. """ def __init__( self, segmentation_col, fit_filters=None, predict_filters=None, default_model_expr=None, default_ytransform=None, min_segment_size=0, name=None): self.segmentation_col = segmentation_col self._group = RegressionModelGroup(segmentation_col) self.fit_filters = fit_filters self.predict_filters = predict_filters self.default_model_expr = default_model_expr self.default_ytransform = default_ytransform self.min_segment_size = min_segment_size self.name = name if name is not None else 'SegmentedRegressionModel' @classmethod def from_yaml(cls, yaml_str=None, str_or_buffer=None): """ Create a SegmentedRegressionModel instance from a saved YAML configuration. Arguments are mutally exclusive. Parameters ---------- yaml_str : str, optional A YAML string from which to load model. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- SegmentedRegressionModel """ cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer) default_model_expr = cfg['default_config']['model_expression'] default_ytransform = cfg['default_config']['ytransform'] seg = cls( cfg['segmentation_col'], cfg['fit_filters'], cfg['predict_filters'], default_model_expr, YTRANSFORM_MAPPING[default_ytransform], cfg['min_segment_size'], cfg['name']) if "models" not in cfg: cfg["models"] = {} for name, m in cfg['models'].items(): m['model_expression'] = m.get( 'model_expression', default_model_expr) m['ytransform'] = m.get('ytransform', default_ytransform) m['fit_filters'] = None m['predict_filters'] = None reg = RegressionModel.from_yaml(yamlio.convert_to_yaml(m, None)) seg._group.add_model(reg) logger.debug( 'loaded segmented regression model {} from yaml'.format(seg.name)) return seg def add_segment(self, name, model_expression=None, ytransform='default'): """ Add a new segment with its own model expression and ytransform. Parameters ---------- name : Segment name. Must match a segment in the groupby of the data. model_expression : str or dict, optional A patsy model expression that can be used with statsmodels. Should contain both the left- and right-hand sides. If not given the default model will be used, which must not be None. ytransform : callable, optional A function to call on the array of predicted output. For example, if the model relation is predicting the log of price, you might pass ``ytransform=np.exp`` so that the results reflect actual price. If not given the default ytransform will be used. """ if not model_expression: if self.default_model_expr is None: raise ValueError( 'No default model available, ' 'you must supply a model experssion.') model_expression = self.default_model_expr if ytransform == 'default': ytransform = self.default_ytransform # no fit or predict filters, we'll take care of that this side. self._group.add_model_from_params( name, None, None, model_expression, ytransform) logger.debug('added segment {} to model {}'.format(name, self.name)) def fit(self, data, debug=False): """ Fit each segment. Segments that have not already been explicitly added will be automatically added with default model and ytransform. Parameters ---------- data : pandas.DataFrame Must have a column with the same name as `segmentation_col`. debug : bool If set to true will pass debug to the fit method of each model. Returns ------- fits : dict of statsmodels.regression.linear_model.OLSResults Keys are the segment names. """ data = util.apply_filter_query(data, self.fit_filters) unique = data[self.segmentation_col].unique() value_counts = data[self.segmentation_col].value_counts() # Remove any existing segments that may no longer have counterparts # in the data. This can happen when loading a saved model and then # calling this method with data that no longer has segments that # were there the last time this was called. gone = set(self._group.models) - set(unique) for g in gone: del self._group.models[g] for x in unique: if x not in self._group.models and \ value_counts[x] > self.min_segment_size: self.add_segment(x) with log_start_finish( 'fitting models in segmented model {}'.format(self.name), logger): return self._group.fit(data, debug=debug) @property def fitted(self): """ Whether models for all segments have been fit. """ return self._group.fitted def predict(self, data): """ Predict new data for each group in the segmentation. Parameters ---------- data : pandas.DataFrame Data to use for prediction. Must have a column with the same name as `segmentation_col`. Returns ------- predicted : pandas.Series Predicted data in a pandas Series. Will have the index of `data` after applying filters. """ with log_start_finish( 'predicting models in segmented model {}'.format(self.name), logger): data = util.apply_filter_query(data, self.predict_filters) return self._group.predict(data) def _process_model_dict(self, d): """ Remove redundant items from a model's configuration dict. Parameters ---------- d : dict Modified in place. Returns ------- dict Modified `d`. """ del d['model_type'] del d['fit_filters'] del d['predict_filters'] if d['model_expression'] == self.default_model_expr: del d['model_expression'] if YTRANSFORM_MAPPING[d['ytransform']] == self.default_ytransform: del d['ytransform'] d["name"] = yamlio.to_scalar_safe(d["name"]) return d def to_dict(self): """ Returns a dict representation of this instance suitable for conversion to YAML. """ return { 'model_type': 'segmented_regression', 'name': self.name, 'segmentation_col': self.segmentation_col, 'fit_filters': self.fit_filters, 'predict_filters': self.predict_filters, 'min_segment_size': self.min_segment_size, 'default_config': { 'model_expression': self.default_model_expr, 'ytransform': YTRANSFORM_MAPPING[self.default_ytransform] }, 'fitted': self.fitted, 'models': { yamlio.to_scalar_safe(name): self._process_model_dict(m.to_dict()) for name, m in self._group.models.items()} } def to_yaml(self, str_or_buffer=None): """ Save a model respresentation to YAML. Parameters ---------- str_or_buffer : str or file like, optional By default a YAML string is returned. If a string is given here the YAML will be written to that file. If an object with a ``.write`` method is given the YAML will be written to that object. Returns ------- j : str YAML string if `str_or_buffer` is not given. """ logger.debug( 'serializing segmented regression model {} to yaml'.format( self.name)) return yamlio.convert_to_yaml(self.to_dict(), str_or_buffer) def columns_used(self): """ Returns all the columns used across all models in the group for filtering and in the model expression. """ return list(tz.unique(tz.concatv( util.columns_in_filters(self.fit_filters), util.columns_in_filters(self.predict_filters), util.columns_in_formula(self.default_model_expr), self._group.columns_used(), [self.segmentation_col]))) @classmethod def fit_from_cfg(cls, df, cfgname, debug=False, min_segment_size=None): """ Parameters ---------- df : DataFrame The dataframe which contains the columns to use for the estimation. cfgname : string The name of the yaml config file which describes the hedonic model. debug : boolean, optional (default False) Whether to generate debug information on the model. min_segment_size : int, optional Set attribute on the model. Returns ------- hm : SegmentedRegressionModel which was used to fit """ logger.debug('start: fit from configuration {}'.format(cfgname)) hm = cls.from_yaml(str_or_buffer=cfgname) if min_segment_size: hm.min_segment_size = min_segment_size for k, v in hm.fit(df, debug=debug).items(): print("REGRESSION RESULTS FOR SEGMENT %s\n" % str(k)) print(v.summary()) hm.to_yaml(str_or_buffer=cfgname) logger.debug('finish: fit from configuration {}'.format(cfgname)) return hm @classmethod def predict_from_cfg(cls, df, cfgname, min_segment_size=None): """ Parameters ---------- df : DataFrame The dataframe which contains the columns to use for the estimation. cfgname : string The name of the yaml config file which describes the hedonic model. min_segment_size : int, optional Set attribute on the model. Returns ------- predicted : pandas.Series Predicted data in a pandas Series. Will have the index of `data` after applying filters and minus any groups that do not have models. hm : SegmentedRegressionModel which was used to predict """ logger.debug('start: predict from configuration {}'.format(cfgname)) hm = cls.from_yaml(str_or_buffer=cfgname) if min_segment_size: hm.min_segment_size = min_segment_size price_or_rent = hm.predict(df) print(price_or_rent.describe()) logger.debug('finish: predict from configuration {}'.format(cfgname)) return price_or_rent, hm
bsd-3-clause
xuewei4d/scikit-learn
examples/mixture/plot_gmm_selection.py
15
3396
""" ================================ Gaussian Mixture Model Selection ================================ This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ import numpy as np import itertools from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture print(__doc__) # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a Gaussian mixture with EM gmm = mixture.GaussianMixture(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue', 'darkorange']) clf = best_gmm bars = [] # Plot the BIC scores plt.figure(figsize=(8, 6)) spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, cov, color) in enumerate(zip(clf.means_, clf.covariances_, color_iter)): v, w = linalg.eigh(cov) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180. * angle / np.pi # convert to degrees v = 2. * np.sqrt(2.) * np.sqrt(v) ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xticks(()) plt.yticks(()) plt.title(f'Selected GMM: {best_gmm.covariance_type} model, ' f'{best_gmm.n_components} components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
ryfeus/lambda-packs
Tensorflow_Pandas_Numpy/source3.6/pandas/core/dtypes/cast.py
2
41914
""" routings for casting """ from datetime import datetime, timedelta import numpy as np import warnings from pandas._libs import tslib, lib from pandas._libs.tslib import iNaT from pandas.compat import string_types, text_type, PY3 from .common import (_ensure_object, is_bool, is_integer, is_float, is_complex, is_datetimetz, is_categorical_dtype, is_datetimelike, is_extension_type, is_extension_array_dtype, is_object_dtype, is_datetime64tz_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, is_dtype_equal, is_float_dtype, is_complex_dtype, is_integer_dtype, is_datetime_or_timedelta_dtype, is_bool_dtype, is_scalar, is_string_dtype, _string_dtypes, pandas_dtype, _ensure_int8, _ensure_int16, _ensure_int32, _ensure_int64, _NS_DTYPE, _TD_DTYPE, _INT64_DTYPE, _POSSIBLY_CAST_DTYPES) from .dtypes import (ExtensionDtype, PandasExtensionDtype, DatetimeTZDtype, PeriodDtype) from .generic import (ABCDatetimeIndex, ABCPeriodIndex, ABCSeries) from .missing import isna, notna from .inference import is_list_like _int8_max = np.iinfo(np.int8).max _int16_max = np.iinfo(np.int16).max _int32_max = np.iinfo(np.int32).max _int64_max = np.iinfo(np.int64).max def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple)): values = construct_1d_object_array_from_listlike(list(values)) if getattr(values, 'dtype', None) == np.object_: if hasattr(values, '_values'): values = values._values values = lib.maybe_convert_objects(values) return values def is_nested_object(obj): """ return a boolean if we have a nested object, e.g. a Series with 1 or more Series elements This may not be necessarily be performant. """ if isinstance(obj, ABCSeries) and is_object_dtype(obj): if any(isinstance(v, ABCSeries) for v in obj.values): return True return False def maybe_downcast_to_dtype(result, dtype): """ try to cast to the specified dtype (e.g. convert back to bool/int or could be an astype of float64->float32 """ if is_scalar(result): return result def trans(x): return x if isinstance(dtype, string_types): if dtype == 'infer': inferred_type = lib.infer_dtype(_ensure_object(result.ravel())) if inferred_type == 'boolean': dtype = 'bool' elif inferred_type == 'integer': dtype = 'int64' elif inferred_type == 'datetime64': dtype = 'datetime64[ns]' elif inferred_type == 'timedelta64': dtype = 'timedelta64[ns]' # try to upcast here elif inferred_type == 'floating': dtype = 'int64' if issubclass(result.dtype.type, np.number): def trans(x): # noqa return x.round() else: dtype = 'object' if isinstance(dtype, string_types): dtype = np.dtype(dtype) try: # don't allow upcasts here (except if empty) if dtype.kind == result.dtype.kind: if (result.dtype.itemsize <= dtype.itemsize and np.prod(result.shape)): return result if is_bool_dtype(dtype) or is_integer_dtype(dtype): # if we don't have any elements, just astype it if not np.prod(result.shape): return trans(result).astype(dtype) # do a test on the first element, if it fails then we are done r = result.ravel() arr = np.array([r[0]]) # if we have any nulls, then we are done if (isna(arr).any() or not np.allclose(arr, trans(arr).astype(dtype), rtol=0)): return result # a comparable, e.g. a Decimal may slip in here elif not isinstance(r[0], (np.integer, np.floating, np.bool, int, float, bool)): return result if (issubclass(result.dtype.type, (np.object_, np.number)) and notna(result).all()): new_result = trans(result).astype(dtype) try: if np.allclose(new_result, result, rtol=0): return new_result except Exception: # comparison of an object dtype with a number type could # hit here if (new_result == result).all(): return new_result elif (issubclass(dtype.type, np.floating) and not is_bool_dtype(result.dtype)): return result.astype(dtype) # a datetimelike # GH12821, iNaT is casted to float elif dtype.kind in ['M', 'm'] and result.dtype.kind in ['i', 'f']: try: result = result.astype(dtype) except Exception: if dtype.tz: # convert to datetime and change timezone from pandas import to_datetime result = to_datetime(result).tz_localize('utc') result = result.tz_convert(dtype.tz) except Exception: pass return result def maybe_upcast_putmask(result, mask, other): """ A safe version of putmask that potentially upcasts the result Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray other : ndarray or scalar The source array or value Returns ------- result : ndarray changed : boolean Set to true if the result array was upcasted """ if mask.any(): # Two conversions for date-like dtypes that can't be done automatically # in np.place: # NaN -> NaT # integer or integer array -> date-like array if is_datetimelike(result.dtype): if is_scalar(other): if isna(other): other = result.dtype.type('nat') elif is_integer(other): other = np.array(other, dtype=result.dtype) elif is_integer_dtype(other): other = np.array(other, dtype=result.dtype) def changeit(): # try to directly set by expanding our array to full # length of the boolean try: om = other[mask] om_at = om.astype(result.dtype) if (om == om_at).all(): new_result = result.values.copy() new_result[mask] = om_at result[:] = new_result return result, False except Exception: pass # we are forced to change the dtype of the result as the input # isn't compatible r, _ = maybe_upcast(result, fill_value=other, copy=True) np.place(r, mask, other) return r, True # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to # upcast (possibly), otherwise we DON't want to upcast (e.g. if we # have values, say integers, in the success portion then it's ok to not # upcast) new_dtype, _ = maybe_promote(result.dtype, other) if new_dtype != result.dtype: # we have a scalar or len 0 ndarray # and its nan and we are changing some values if (is_scalar(other) or (isinstance(other, np.ndarray) and other.ndim < 1)): if isna(other): return changeit() # we have an ndarray and the masking has nans in it else: if isna(other[mask]).any(): return changeit() try: np.place(result, mask, other) except Exception: return changeit() return result, False def maybe_promote(dtype, fill_value=np.nan): # if we passed an array here, determine the fill value by dtype if isinstance(fill_value, np.ndarray): if issubclass(fill_value.dtype.type, (np.datetime64, np.timedelta64)): fill_value = iNaT else: # we need to change to object type as our # fill_value is of object type if fill_value.dtype == np.object_: dtype = np.dtype(np.object_) fill_value = np.nan # returns tuple of (dtype, fill_value) if issubclass(dtype.type, (np.datetime64, np.timedelta64)): # for now: refuse to upcast datetime64 # (this is because datetime64 will not implicitly upconvert # to object correctly as of numpy 1.6.1) if isna(fill_value): fill_value = iNaT else: if issubclass(dtype.type, np.datetime64): try: fill_value = tslib.Timestamp(fill_value).value except Exception: # the proper thing to do here would probably be to upcast # to object (but numpy 1.6.1 doesn't do this properly) fill_value = iNaT elif issubclass(dtype.type, np.timedelta64): try: fill_value = tslib.Timedelta(fill_value).value except Exception: # as for datetimes, cannot upcast to object fill_value = iNaT else: fill_value = iNaT elif is_datetimetz(dtype): if isna(fill_value): fill_value = iNaT elif is_extension_array_dtype(dtype) and isna(fill_value): fill_value = dtype.na_value elif is_float(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.object_ elif issubclass(dtype.type, np.integer): dtype = np.float64 elif is_bool(fill_value): if not issubclass(dtype.type, np.bool_): dtype = np.object_ elif is_integer(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.object_ elif issubclass(dtype.type, np.integer): # upcast to prevent overflow arr = np.asarray(fill_value) if arr != arr.astype(dtype): dtype = arr.dtype elif is_complex(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.object_ elif issubclass(dtype.type, (np.integer, np.floating)): dtype = np.complex128 elif fill_value is None: if is_float_dtype(dtype) or is_complex_dtype(dtype): fill_value = np.nan elif is_integer_dtype(dtype): dtype = np.float64 fill_value = np.nan elif is_datetime_or_timedelta_dtype(dtype): fill_value = iNaT else: dtype = np.object_ fill_value = np.nan else: dtype = np.object_ # in case we have a string that looked like a number if is_extension_array_dtype(dtype): pass elif is_datetimetz(dtype): pass elif issubclass(np.dtype(dtype).type, string_types): dtype = np.object_ return dtype, fill_value def infer_dtype_from(val, pandas_dtype=False): """ interpret the dtype from a scalar or array. This is a convenience routines to infer dtype from a scalar or an array Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object """ if is_scalar(val): return infer_dtype_from_scalar(val, pandas_dtype=pandas_dtype) return infer_dtype_from_array(val, pandas_dtype=pandas_dtype) def infer_dtype_from_scalar(val, pandas_dtype=False): """ interpret the dtype from a scalar Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object """ dtype = np.object_ # a 1-element ndarray if isinstance(val, np.ndarray): msg = "invalid ndarray passed to _infer_dtype_from_scalar" if val.ndim != 0: raise ValueError(msg) dtype = val.dtype val = val.item() elif isinstance(val, string_types): # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! dtype = np.object_ elif isinstance(val, (np.datetime64, datetime)): val = tslib.Timestamp(val) if val is tslib.NaT or val.tz is None: dtype = np.dtype('M8[ns]') else: if pandas_dtype: dtype = DatetimeTZDtype(unit='ns', tz=val.tz) else: # return datetimetz as object return np.object_, val val = val.value elif isinstance(val, (np.timedelta64, timedelta)): val = tslib.Timedelta(val).value dtype = np.dtype('m8[ns]') elif is_bool(val): dtype = np.bool_ elif is_integer(val): if isinstance(val, np.integer): dtype = type(val) else: dtype = np.int64 elif is_float(val): if isinstance(val, np.floating): dtype = type(val) else: dtype = np.float64 elif is_complex(val): dtype = np.complex_ elif pandas_dtype: if lib.is_period(val): dtype = PeriodDtype(freq=val.freq) val = val.ordinal return dtype, val def infer_dtype_from_array(arr, pandas_dtype=False): """ infer the dtype from a scalar or array Parameters ---------- arr : scalar or array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (numpy.object_, [1, '1']) """ if isinstance(arr, np.ndarray): return arr.dtype, arr if not is_list_like(arr): arr = [arr] if pandas_dtype and is_extension_type(arr): return arr.dtype, arr elif isinstance(arr, ABCSeries): return arr.dtype, np.asarray(arr) # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr) if inferred in ['string', 'bytes', 'unicode', 'mixed', 'mixed-integer']: return (np.object_, arr) arr = np.asarray(arr) return arr.dtype, arr def maybe_infer_dtype_type(element): """Try to infer an object's dtype, for use in arithmetic ops Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) numpy.int64 """ tipo = None if hasattr(element, 'dtype'): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo def maybe_upcast(values, fill_value=np.nan, dtype=None, copy=False): """ provide explicit type promotion and coercion Parameters ---------- values : the ndarray that we want to maybe upcast fill_value : what we want to fill with dtype : if None, then use the dtype of the values, else coerce to this type copy : if True always make a copy even if no upcast is required """ if is_extension_type(values): if copy: values = values.copy() else: if dtype is None: dtype = values.dtype new_dtype, fill_value = maybe_promote(dtype, fill_value) if new_dtype != values.dtype: values = values.astype(new_dtype) elif copy: values = values.copy() return values, fill_value def maybe_cast_item(obj, item, dtype): chunk = obj[item] if chunk.values.dtype != dtype: if dtype in (np.object_, np.bool_): obj[item] = chunk.astype(np.object_) elif not issubclass(dtype, (np.integer, np.bool_)): # pragma: no cover raise ValueError("Unexpected dtype encountered: {dtype}" .format(dtype=dtype)) def invalidate_string_dtypes(dtype_set): """Change string like dtypes to object for ``DataFrame.select_dtypes()``. """ non_string_dtypes = dtype_set - _string_dtypes if non_string_dtypes != dtype_set: raise TypeError("string dtypes are not allowed, use 'object' instead") def maybe_convert_string_to_object(values): """ Convert string-like and string-like array to convert object dtype. This is to avoid numpy to handle the array as str dtype. """ if isinstance(values, string_types): values = np.array([values], dtype=object) elif (isinstance(values, np.ndarray) and issubclass(values.dtype.type, (np.string_, np.unicode_))): values = values.astype(object) return values def maybe_convert_scalar(values): """ Convert a python scalar to the appropriate numpy dtype if possible This avoids numpy directly converting according to platform preferences """ if is_scalar(values): dtype, values = infer_dtype_from_scalar(values) try: values = dtype(values) except TypeError: pass return values def coerce_indexer_dtype(indexer, categories): """ coerce the indexer input array to the smallest dtype possible """ length = len(categories) if length < _int8_max: return _ensure_int8(indexer) elif length < _int16_max: return _ensure_int16(indexer) elif length < _int32_max: return _ensure_int32(indexer) return _ensure_int64(indexer) def coerce_to_dtypes(result, dtypes): """ given a dtypes and a result set, coerce the result elements to the dtypes """ if len(result) != len(dtypes): raise AssertionError("_coerce_to_dtypes requires equal len arrays") from pandas.core.tools.timedeltas import _coerce_scalar_to_timedelta_type def conv(r, dtype): try: if isna(r): pass elif dtype == _NS_DTYPE: r = tslib.Timestamp(r) elif dtype == _TD_DTYPE: r = _coerce_scalar_to_timedelta_type(r) elif dtype == np.bool_: # messy. non 0/1 integers do not get converted. if is_integer(r) and r not in [0, 1]: return int(r) r = bool(r) elif dtype.kind == 'f': r = float(r) elif dtype.kind == 'i': r = int(r) except Exception: pass return r return [conv(r, dtype) for r, dtype in zip(result, dtypes)] def astype_nansafe(arr, dtype, copy=True): """ return a view if copy is False, but need to be very careful as the result shape could change! """ if not isinstance(dtype, np.dtype): dtype = pandas_dtype(dtype) if issubclass(dtype.type, text_type): # in Py3 that's str, in Py2 that's unicode return lib.astype_unicode(arr.ravel()).reshape(arr.shape) elif issubclass(dtype.type, string_types): return lib.astype_str(arr.ravel()).reshape(arr.shape) elif is_datetime64_dtype(arr): if is_object_dtype(dtype): return tslib.ints_to_pydatetime(arr.view(np.int64)) elif dtype == np.int64: return arr.view(dtype) # allow frequency conversions if dtype.kind == 'M': return arr.astype(dtype) raise TypeError("cannot astype a datetimelike from [{from_dtype}] " "to [{to_dtype}]".format(from_dtype=arr.dtype, to_dtype=dtype)) elif is_timedelta64_dtype(arr): if is_object_dtype(dtype): return tslib.ints_to_pytimedelta(arr.view(np.int64)) elif dtype == np.int64: return arr.view(dtype) # in py3, timedelta64[ns] are int64 if ((PY3 and dtype not in [_INT64_DTYPE, _TD_DTYPE]) or (not PY3 and dtype != _TD_DTYPE)): # allow frequency conversions # we return a float here! if dtype.kind == 'm': mask = isna(arr) result = arr.astype(dtype).astype(np.float64) result[mask] = np.nan return result elif dtype == _TD_DTYPE: return arr.astype(_TD_DTYPE, copy=copy) raise TypeError("cannot astype a timedelta from [{from_dtype}] " "to [{to_dtype}]".format(from_dtype=arr.dtype, to_dtype=dtype)) elif (np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype, np.integer)): if not np.isfinite(arr).all(): raise ValueError('Cannot convert non-finite values (NA or inf) to ' 'integer') elif is_object_dtype(arr): # work around NumPy brokenness, #1987 if np.issubdtype(dtype.type, np.integer): return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape) # if we have a datetime/timedelta array of objects # then coerce to a proper dtype and recall astype_nansafe elif is_datetime64_dtype(dtype): from pandas import to_datetime return astype_nansafe(to_datetime(arr).values, dtype, copy=copy) elif is_timedelta64_dtype(dtype): from pandas import to_timedelta return astype_nansafe(to_timedelta(arr).values, dtype, copy=copy) if dtype.name in ("datetime64", "timedelta64"): msg = ("Passing in '{dtype}' dtype with no frequency is " "deprecated and will raise in a future version. " "Please pass in '{dtype}[ns]' instead.") warnings.warn(msg.format(dtype=dtype.name), FutureWarning, stacklevel=5) dtype = np.dtype(dtype.name + "[ns]") if copy: return arr.astype(dtype, copy=True) return arr.view(dtype) def maybe_convert_objects(values, convert_dates=True, convert_numeric=True, convert_timedeltas=True, copy=True): """ if we have an object dtype, try to coerce dates and/or numbers """ # if we have passed in a list or scalar if isinstance(values, (list, tuple)): values = np.array(values, dtype=np.object_) if not hasattr(values, 'dtype'): values = np.array([values], dtype=np.object_) # convert dates if convert_dates and values.dtype == np.object_: # we take an aggressive stance and convert to datetime64[ns] if convert_dates == 'coerce': new_values = maybe_cast_to_datetime( values, 'M8[ns]', errors='coerce') # if we are all nans then leave me alone if not isna(new_values).all(): values = new_values else: values = lib.maybe_convert_objects(values, convert_datetime=convert_dates) # convert timedeltas if convert_timedeltas and values.dtype == np.object_: if convert_timedeltas == 'coerce': from pandas.core.tools.timedeltas import to_timedelta new_values = to_timedelta(values, errors='coerce') # if we are all nans then leave me alone if not isna(new_values).all(): values = new_values else: values = lib.maybe_convert_objects( values, convert_timedelta=convert_timedeltas) # convert to numeric if values.dtype == np.object_: if convert_numeric: try: new_values = lib.maybe_convert_numeric(values, set(), coerce_numeric=True) # if we are all nans then leave me alone if not isna(new_values).all(): values = new_values except Exception: pass else: # soft-conversion values = lib.maybe_convert_objects(values) values = values.copy() if copy else values return values def soft_convert_objects(values, datetime=True, numeric=True, timedelta=True, coerce=False, copy=True): """ if we have an object dtype, try to coerce dates and/or numbers """ conversion_count = sum((datetime, numeric, timedelta)) if conversion_count == 0: raise ValueError('At least one of datetime, numeric or timedelta must ' 'be True.') elif conversion_count > 1 and coerce: raise ValueError("Only one of 'datetime', 'numeric' or " "'timedelta' can be True when when coerce=True.") if isinstance(values, (list, tuple)): # List or scalar values = np.array(values, dtype=np.object_) elif not hasattr(values, 'dtype'): values = np.array([values], dtype=np.object_) elif not is_object_dtype(values.dtype): # If not object, do not attempt conversion values = values.copy() if copy else values return values # If 1 flag is coerce, ensure 2 others are False if coerce: # Immediate return if coerce if datetime: from pandas import to_datetime return to_datetime(values, errors='coerce', box=False) elif timedelta: from pandas import to_timedelta return to_timedelta(values, errors='coerce', box=False) elif numeric: from pandas import to_numeric return to_numeric(values, errors='coerce') # Soft conversions if datetime: values = lib.maybe_convert_objects(values, convert_datetime=datetime) if timedelta and is_object_dtype(values.dtype): # Object check to ensure only run if previous did not convert values = lib.maybe_convert_objects(values, convert_timedelta=timedelta) if numeric and is_object_dtype(values.dtype): try: converted = lib.maybe_convert_numeric(values, set(), coerce_numeric=True) # If all NaNs, then do not-alter values = converted if not isna(converted).all() else values values = values.copy() if copy else values except Exception: pass return values def maybe_castable(arr): # return False to force a non-fastpath # check datetime64[ns]/timedelta64[ns] are valid # otherwise try to coerce kind = arr.dtype.kind if kind == 'M': return is_datetime64_ns_dtype(arr.dtype) elif kind == 'm': return is_timedelta64_ns_dtype(arr.dtype) return arr.dtype.name not in _POSSIBLY_CAST_DTYPES def maybe_infer_to_datetimelike(value, convert_dates=False): """ we might have a array (or single object) that is datetime like, and no dtype is passed don't change the value unless we find a datetime/timedelta set this is pretty strict in that a datetime/timedelta is REQUIRED in addition to possible nulls/string likes Parameters ---------- value : np.array / Series / Index / list-like convert_dates : boolean, default False if True try really hard to convert dates (such as datetime.date), other leave inferred dtype 'date' alone """ if isinstance(value, (ABCDatetimeIndex, ABCPeriodIndex)): return value elif isinstance(value, ABCSeries): if isinstance(value._values, ABCDatetimeIndex): return value._values v = value if not is_list_like(v): v = [v] v = np.array(v, copy=False) # we only care about object dtypes if not is_object_dtype(v): return value shape = v.shape if not v.ndim == 1: v = v.ravel() if not len(v): return value def try_datetime(v): # safe coerce to datetime64 try: # GH19671 v = tslib.array_to_datetime(v, require_iso8601=True, errors='raise') except ValueError: # we might have a sequence of the same-datetimes with tz's # if so coerce to a DatetimeIndex; if they are not the same, # then these stay as object dtype, xref GH19671 try: from pandas._libs.tslibs import conversion from pandas import DatetimeIndex values, tz = conversion.datetime_to_datetime64(v) return DatetimeIndex(values).tz_localize( 'UTC').tz_convert(tz=tz) except (ValueError, TypeError): pass except Exception: pass return v.reshape(shape) def try_timedelta(v): # safe coerce to timedelta64 # will try first with a string & object conversion from pandas import to_timedelta try: return to_timedelta(v)._ndarray_values.reshape(shape) except Exception: return v.reshape(shape) inferred_type = lib.infer_datetimelike_array(_ensure_object(v)) if inferred_type == 'date' and convert_dates: value = try_datetime(v) elif inferred_type == 'datetime': value = try_datetime(v) elif inferred_type == 'timedelta': value = try_timedelta(v) elif inferred_type == 'nat': # if all NaT, return as datetime if isna(v).all(): value = try_datetime(v) else: # We have at least a NaT and a string # try timedelta first to avoid spurious datetime conversions # e.g. '00:00:01' is a timedelta but # technically is also a datetime value = try_timedelta(v) if lib.infer_dtype(value) in ['mixed']: value = try_datetime(v) return value def maybe_cast_to_datetime(value, dtype, errors='raise'): """ try to cast the array/value to a datetimelike dtype, converting float nan to iNaT """ from pandas.core.tools.timedeltas import to_timedelta from pandas.core.tools.datetimes import to_datetime if dtype is not None: if isinstance(dtype, string_types): dtype = np.dtype(dtype) is_datetime64 = is_datetime64_dtype(dtype) is_datetime64tz = is_datetime64tz_dtype(dtype) is_timedelta64 = is_timedelta64_dtype(dtype) if is_datetime64 or is_datetime64tz or is_timedelta64: # force the dtype if needed msg = ("Passing in '{dtype}' dtype with no frequency is " "deprecated and will raise in a future version. " "Please pass in '{dtype}[ns]' instead.") if is_datetime64 and not is_dtype_equal(dtype, _NS_DTYPE): if dtype.name in ('datetime64', 'datetime64[ns]'): if dtype.name == 'datetime64': warnings.warn(msg.format(dtype=dtype.name), FutureWarning, stacklevel=5) dtype = _NS_DTYPE else: raise TypeError("cannot convert datetimelike to " "dtype [{dtype}]".format(dtype=dtype)) elif is_datetime64tz: # our NaT doesn't support tz's # this will coerce to DatetimeIndex with # a matching dtype below if is_scalar(value) and isna(value): value = [value] elif is_timedelta64 and not is_dtype_equal(dtype, _TD_DTYPE): if dtype.name in ('timedelta64', 'timedelta64[ns]'): if dtype.name == 'timedelta64': warnings.warn(msg.format(dtype=dtype.name), FutureWarning, stacklevel=5) dtype = _TD_DTYPE else: raise TypeError("cannot convert timedeltalike to " "dtype [{dtype}]".format(dtype=dtype)) if is_scalar(value): if value == iNaT or isna(value): value = iNaT else: value = np.array(value, copy=False) # have a scalar array-like (e.g. NaT) if value.ndim == 0: value = iNaT # we have an array of datetime or timedeltas & nulls elif np.prod(value.shape) or not is_dtype_equal(value.dtype, dtype): try: if is_datetime64: value = to_datetime(value, errors=errors)._values elif is_datetime64tz: # The string check can be removed once issue #13712 # is solved. String data that is passed with a # datetime64tz is assumed to be naive which should # be localized to the timezone. is_dt_string = is_string_dtype(value) value = to_datetime(value, errors=errors) if is_dt_string: # Strings here are naive, so directly localize value = value.tz_localize(dtype.tz) else: # Numeric values are UTC at this point, # so localize and convert value = (value.tz_localize('UTC') .tz_convert(dtype.tz)) elif is_timedelta64: value = to_timedelta(value, errors=errors)._values except (AttributeError, ValueError, TypeError): pass # coerce datetimelike to object elif is_datetime64_dtype(value) and not is_datetime64_dtype(dtype): if is_object_dtype(dtype): if value.dtype != _NS_DTYPE: value = value.astype(_NS_DTYPE) ints = np.asarray(value).view('i8') return tslib.ints_to_pydatetime(ints) # we have a non-castable dtype that was passed raise TypeError('Cannot cast datetime64 to {dtype}' .format(dtype=dtype)) else: is_array = isinstance(value, np.ndarray) # catch a datetime/timedelta that is not of ns variety # and no coercion specified if is_array and value.dtype.kind in ['M', 'm']: dtype = value.dtype if dtype.kind == 'M' and dtype != _NS_DTYPE: value = value.astype(_NS_DTYPE) elif dtype.kind == 'm' and dtype != _TD_DTYPE: value = to_timedelta(value) # only do this if we have an array and the dtype of the array is not # setup already we are not an integer/object, so don't bother with this # conversion elif not (is_array and not (issubclass(value.dtype.type, np.integer) or value.dtype == np.object_)): value = maybe_infer_to_datetimelike(value) return value def find_common_type(types): """ Find a common data type among the given dtypes. Parameters ---------- types : list of dtypes Returns ------- pandas extension or numpy dtype See Also -------- numpy.find_common_type """ if len(types) == 0: raise ValueError('no types given') first = types[0] # workaround for find_common_type([np.dtype('datetime64[ns]')] * 2) # => object if all(is_dtype_equal(first, t) for t in types[1:]): return first if any(isinstance(t, (PandasExtensionDtype, ExtensionDtype)) for t in types): return np.object # take lowest unit if all(is_datetime64_dtype(t) for t in types): return np.dtype('datetime64[ns]') if all(is_timedelta64_dtype(t) for t in types): return np.dtype('timedelta64[ns]') # don't mix bool / int or float or complex # this is different from numpy, which casts bool with float/int as int has_bools = any(is_bool_dtype(t) for t in types) if has_bools: has_ints = any(is_integer_dtype(t) for t in types) has_floats = any(is_float_dtype(t) for t in types) has_complex = any(is_complex_dtype(t) for t in types) if has_ints or has_floats or has_complex: return np.object return np.find_common_type(types, []) def cast_scalar_to_array(shape, value, dtype=None): """ create np.ndarray of specified shape and dtype, filled with values Parameters ---------- shape : tuple value : scalar value dtype : np.dtype, optional dtype to coerce Returns ------- ndarray of shape, filled with value, of specified / inferred dtype """ if dtype is None: dtype, fill_value = infer_dtype_from_scalar(value) else: fill_value = value values = np.empty(shape, dtype=dtype) values.fill(fill_value) return values def construct_1d_arraylike_from_scalar(value, length, dtype): """ create a np.ndarray / pandas type of specified shape and dtype filled with values Parameters ---------- value : scalar value length : int dtype : pandas_dtype / np.dtype Returns ------- np.ndarray / pandas type of length, filled with value """ if is_datetimetz(dtype): from pandas import DatetimeIndex subarr = DatetimeIndex([value] * length, dtype=dtype) elif is_categorical_dtype(dtype): from pandas import Categorical subarr = Categorical([value] * length, dtype=dtype) else: if not isinstance(dtype, (np.dtype, type(np.dtype))): dtype = dtype.dtype # coerce if we have nan for an integer dtype if is_integer_dtype(dtype) and isna(value): dtype = np.float64 subarr = np.empty(length, dtype=dtype) subarr.fill(value) return subarr def construct_1d_object_array_from_listlike(values): """ Transform any list-like object in a 1-dimensional numpy array of object dtype. Parameters ---------- values : any iterable which has a len() Raises ------ TypeError * If `values` does not have a len() Returns ------- 1-dimensional numpy array of dtype object """ # numpy will try to interpret nested lists as further dimensions, hence # making a 1D array that contains list-likes is a bit tricky: result = np.empty(len(values), dtype='object') result[:] = values return result def construct_1d_ndarray_preserving_na(values, dtype=None, copy=False): """ Construct a new ndarray, coercing `values` to `dtype`, preserving NA. Parameters ---------- values : Sequence dtype : numpy.dtype, optional copy : bool, default False Note that copies may still be made with ``copy=False`` if casting is required. Returns ------- arr : ndarray[dtype] Examples -------- >>> np.array([1.0, 2.0, None], dtype='str') array(['1.0', '2.0', 'None'], dtype='<U4') >>> construct_1d_ndarray_preserving_na([1.0, 2.0, None], dtype='str') """ subarr = np.array(values, dtype=dtype, copy=copy) if dtype is not None and dtype.kind in ("U", "S"): # GH-21083 # We can't just return np.array(subarr, dtype='str') since # NumPy will convert the non-string objects into strings # Including NA values. Se we have to go # string -> object -> update NA, which requires an # additional pass over the data. na_values = isna(values) subarr2 = subarr.astype(object) subarr2[na_values] = np.asarray(values, dtype=object)[na_values] subarr = subarr2 return subarr
mit
tmhm/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
cmorgan/zipline
tests/modelling/test_factor.py
9
2969
""" Tests for Factor terms. """ from unittest import TestCase from numpy import ( array, ) from numpy.testing import assert_array_equal from pandas import ( DataFrame, date_range, Int64Index, ) from six import iteritems from zipline.errors import UnknownRankMethod from zipline.modelling.factor import TestingFactor class F(TestingFactor): inputs = () window_length = 0 class FactorTestCase(TestCase): def setUp(self): self.f = F() self.dates = date_range('2014-01-01', periods=5, freq='D') self.assets = Int64Index(range(5)) self.mask = DataFrame(True, index=self.dates, columns=self.assets) def tearDown(self): pass def test_bad_input(self): with self.assertRaises(UnknownRankMethod): self.f.rank("not a real rank method") def test_rank(self): # Generated with: # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]]) expected_ranks = { 'ordinal': array([[1., 3., 4., 5., 2.], [2., 4., 5., 1., 3.], [3., 5., 1., 2., 4.], [4., 1., 2., 3., 5.], [1., 3., 4., 5., 2.]]), 'average': array([[1.5, 3., 4., 5., 1.5], [2.5, 4., 5., 1., 2.5], [3.5, 5., 1., 2., 3.5], [4.5, 1., 2., 3., 4.5], [1.5, 3., 4., 5., 1.5]]), 'min': array([[1., 3., 4., 5., 1.], [2., 4., 5., 1., 2.], [3., 5., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 3., 4., 5., 1.]]), 'max': array([[2., 3., 4., 5., 2.], [3., 4., 5., 1., 3.], [4., 5., 1., 2., 4.], [5., 1., 2., 3., 5.], [2., 3., 4., 5., 2.]]), 'dense': array([[1., 2., 3., 4., 1.], [2., 3., 4., 1., 2.], [3., 4., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 2., 3., 4., 1.]]), } # Test with the default, which should be 'ordinal'. default_result = self.f.rank().compute_from_arrays([data], self.mask) assert_array_equal(default_result, expected_ranks['ordinal']) # Test with each method passed explicitly. for method, expected_result in iteritems(expected_ranks): result = self.f.rank(method=method).compute_from_arrays( [data], self.mask, ) assert_array_equal(result, expected_ranks[method])
apache-2.0
jm-begon/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
sbtlaarzc/vispy
vispy/visuals/isocurve.py
18
7809
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division import numpy as np from .line import LineVisual from ..color import ColorArray from ..color.colormap import _normalize, get_colormap from ..geometry.isocurve import isocurve from ..testing import has_matplotlib # checking for matplotlib _HAS_MPL = has_matplotlib() if _HAS_MPL: from matplotlib import _cntr as cntr class IsocurveVisual(LineVisual): """Displays an isocurve of a 2D scalar array. Parameters ---------- data : ndarray | None 2D scalar array. levels : ndarray, shape (Nlev,) | None The levels at which the isocurve is constructed from "*data*". color_lev : Color, colormap name, tuple, list or array The color to use when drawing the line. If a list is given, it must be of shape (Nlev), if an array is given, it must be of shape (Nlev, ...). and provide one color per level (rgba, colorname). clim : tuple (min, max) limits to apply when mapping level values through a colormap. **kwargs : dict Keyword arguments to pass to `LineVisual`. Notes ----- """ def __init__(self, data=None, levels=None, color_lev=None, clim=None, **kwargs): self._data = None self._levels = levels self._color_lev = color_lev self._clim = clim self._need_color_update = True self._need_level_update = True self._need_recompute = True self._X = None self._Y = None self._iso = None self._level_min = None self._data_is_uniform = False self._lc = None self._cl = None self._li = None self._connect = None self._verts = None kwargs['method'] = 'gl' kwargs['antialias'] = False LineVisual.__init__(self, **kwargs) if data is not None: self.set_data(data) @property def levels(self): """ The threshold at which the isocurve is constructed from the 2D data. """ return self._levels @levels.setter def levels(self, levels): self._levels = levels self._need_level_update = True self._need_recompute = True self.update() @property def color(self): return self._color_lev @color.setter def color(self, color): self._color_lev = color self._need_level_update = True self._need_color_update = True self.update() def set_data(self, data): """ Set the scalar array data Parameters ---------- data : ndarray A 2D array of scalar values. The isocurve is constructed to show all locations in the scalar field equal to ``self.levels``. """ self._data = data # if using matplotlib isoline algorithm we have to check for meshgrid # and we can setup the tracer object here if _HAS_MPL: if self._X is None or self._X.T.shape != data.shape: self._X, self._Y = np.meshgrid(np.arange(data.shape[0]), np.arange(data.shape[1])) self._iso = cntr.Cntr(self._X, self._Y, self._data.astype(float)) if self._clim is None: self._clim = (data.min(), data.max()) # sanity check, # should we raise an error here, since no isolines can be drawn? # for now, _prepare_draw returns False if no isoline can be drawn if self._data.min() != self._data.max(): self._data_is_uniform = False else: self._data_is_uniform = True self._need_recompute = True self.update() def _get_verts_and_connect(self, paths): """ retrieve vertices and connects from given paths-list """ verts = np.vstack(paths) gaps = np.add.accumulate(np.array([len(x) for x in paths])) - 1 connect = np.ones(gaps[-1], dtype=bool) connect[gaps[:-1]] = False return verts, connect def _compute_iso_line(self): """ compute LineVisual vertices, connects and color-index """ level_index = [] connects = [] verts = [] # calculate which level are within data range # this works for now and the existing examples, but should be tested # thoroughly also with the data-sanity check in set_data-function choice = np.nonzero((self.levels > self._data.min()) & (self._levels < self._data.max())) levels_to_calc = np.array(self.levels)[choice] # save minimum level index self._level_min = choice[0][0] for level in levels_to_calc: # if we use matplotlib isoline algorithm we need to add half a # pixel in both (x,y) dimensions because isolines are aligned to # pixel centers if _HAS_MPL: nlist = self._iso.trace(level, level, 0) paths = nlist[:len(nlist)//2] v, c = self._get_verts_and_connect(paths) v += np.array([0.5, 0.5]) else: paths = isocurve(self._data.astype(float).T, level, extend_to_edge=True, connected=True) v, c = self._get_verts_and_connect(paths) level_index.append(v.shape[0]) connects.append(np.hstack((c, [False]))) verts.append(v) self._li = np.hstack(level_index) self._connect = np.hstack(connects) self._verts = np.vstack(verts) def _compute_iso_color(self): """ compute LineVisual color from level index and corresponding color """ level_color = [] colors = self._lc for i, index in enumerate(self._li): level_color.append(np.zeros((index, 4)) + colors[i+self._level_min]) self._cl = np.vstack(level_color) def _levels_to_colors(self): # computes ColorArrays for given levels # try _color_lev as colormap, except as everything else try: f_color_levs = get_colormap(self._color_lev) except: colors = ColorArray(self._color_lev).rgba else: lev = _normalize(self._levels, self._clim[0], self._clim[1]) # map function expects (Nlev,1)! colors = f_color_levs.map(lev[:, np.newaxis]) # broadcast to (nlev, 4) array if len(colors) == 1: colors = colors * np.ones((len(self._levels), 1)) # detect color_lev/levels mismatch and raise error if (len(colors) != len(self._levels)): raise TypeError("Color/level mismatch. Color must be of shape " "(Nlev, ...) and provide one color per level") self._lc = colors def _prepare_draw(self, view): if (self._data is None or self._levels is None or self._color_lev is None or self._data_is_uniform): return False if self._need_level_update: self._levels_to_colors() self._need_level_update = False if self._need_recompute: self._compute_iso_line() self._compute_iso_color() LineVisual.set_data(self, pos=self._verts, connect=self._connect, color=self._cl) self._need_recompute = False if self._need_color_update: self._compute_iso_color() LineVisual.set_data(self, color=self._cl) self._need_color_update = False return LineVisual._prepare_draw(self, view)
bsd-3-clause
tetherless-world/linkipedia
dataone/annotation-cnn/pretrain_embedding.py
1
2864
import numpy as np import gensim from sklearn.preprocessing import OneHotEncoder class PreTrainEmbedding(): def __init__(self, file, embedding_size): self.embedding_size = embedding_size self.char_alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-,;.!?:\'"/\\|_@#$%^&*~`+=<>()[]{} ' self.char_embedding_table = self.construct_char_embeddings() self.model = gensim.models.Word2Vec.load_word2vec_format(file, binary=True) def get_one_hot_encoding(self, target_classes): enc = OneHotEncoder() return enc.fit_transform(np.array(target_classes).reshape(-1,1)).toarray() def construct_char_embeddings(self): ascii_list = [ord(c) for c in self.char_alphabet] ascii_list.sort() encodings = self.get_one_hot_encoding(ascii_list) result = dict() for i, enc in enumerate(encodings): result[ascii_list[i]] = enc return result def get_embedding(self, word): try: result = self.model[word] return result except KeyError: #print 'Can not get embedding for ', word return None def get_glove_embedding(self, vectors_file='glove.6B.100d.txt'): with open(vectors_file, 'r') as f: vectors = {} for line in f: vals = line.rstrip().split(' ') vectors[vals[0]] = [float(x) for x in vals[1:]] vocab_size = len(vectors) words = vectors.keys() vocab = {w: idx for idx, w in enumerate(words)} ivocab = {idx: w for idx, w in enumerate(words)} vector_dim = len(vectors[ivocab[0]]) W = np.zeros((vocab_size, vector_dim)) for word, v in vectors.items(): if word == '<unk>': continue W[vocab[word], :] = v return vocab, W def create_char_level_embeddings(self, sentence, max_doc_length): sent_embed = np.zeros((max_doc_length, self.embedding_size)) idx = 0 for c in sentence: try: sent_embed[idx, :] = self.char_embedding_table[ord(c)] except KeyError: pass continue idx = idx + 1 if idx == max_doc_length: break return sent_embed def create_word_level_embeddings(self, sentence, max_doc_length): sent_embed = np.zeros((max_doc_length, self.embedding_size)) if sentence is None: return sent_embed idx = 0 for word in sentence.split(): embedding = self.get_embedding(word) if embedding is not None: sent_embed[idx, :] = embedding idx = idx + 1 if idx == max_doc_length: break return sent_embed
gpl-3.0
vorasagar7/sp17-i524
project/S17-IO-3012/code/bin/benchmark_replicas_import.py
19
5474
import matplotlib.pyplot as plt import sys import pandas as pd def get_parm(): """retrieves mandatory parameter to program @param: none @type: n/a """ try: return sys.argv[1] except: print ('Must enter file name as parameter') exit() def read_file(filename): """reads a file into a pandas dataframe @param: filename The name of the file to read @type: string """ try: return pd.read_csv(filename) except: print ('Error retrieving file') exit() def select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica): benchmark_df = benchmark_df[benchmark_df.mongo_version == 34] benchmark_df = benchmark_df[benchmark_df.test_size == "large"] if cloud != 'X': benchmark_df = benchmark_df[benchmark_df.cloud == cloud] if config_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.config_replicas == config_replicas] if mongos_instances != 'X': benchmark_df = benchmark_df[benchmark_df.mongos_instances == mongos_instances] if shard_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.shard_replicas == shard_replicas] if shards_per_replica != 'X': benchmark_df = benchmark_df[benchmark_df.shards_per_replica == shards_per_replica] # benchmark_df1 = benchmark_df.groupby(['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica']).mean() # http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe benchmark_df = benchmark_df.groupby( ['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica'], as_index=False).mean() # http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe # print benchmark_df1['shard_replicas'] # print benchmark_df1 # print benchmark_df benchmark_df = benchmark_df.sort_values(by='shard_replicas', ascending=1) return benchmark_df def make_figure(import_seconds_kilo, replicas_kilo, import_seconds_chameleon, replicas_chameleon, import_seconds_jetstream, replicas_jetstream): """formats and creates a line chart @param1: import_seconds_kilo Array with import_seconds from kilo @type: numpy array @param2: replicas_kilo Array with replicas from kilo @type: numpy array @param3: import_seconds_chameleon Array with import_seconds from chameleon @type: numpy array @param4: replicas_chameleon Array with replicas from chameleon @type: numpy array """ fig = plt.figure() #plt.title('Average Mongoimport Runtime by Shard Replication Factor') plt.ylabel('Runtime in Seconds') plt.xlabel('Degree of Replication Per Set') # Make the chart plt.plot(replicas_kilo, import_seconds_kilo, label='Kilo Cloud') plt.plot(replicas_chameleon, import_seconds_chameleon, label='Chameleon Cloud') plt.plot(replicas_jetstream, import_seconds_jetstream, label='Jetstream Cloud') # http://stackoverflow.com/questions/11744990/how-to-set-auto-for-upper-limit-but-keep-a-fixed-lower-limit-with-matplotlib plt.ylim(ymin=0) plt.legend(loc='best') # Show the chart (for testing) # plt.show() # Save the chart fig.savefig('../report/replica_import.png') # Run the program by calling the functions if __name__ == "__main__": filename = get_parm() benchmark_df = read_file(filename) cloud = 'kilo' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ import_seconds_kilo = select_df.as_matrix(columns=[select_df.columns[6]]) replicas_kilo = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror cloud = 'chameleon' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ import_seconds_chameleon = select_df.as_matrix(columns=[select_df.columns[6]]) replicas_chameleon = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror cloud = 'jetstream' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ import_seconds_jetstream = select_df.as_matrix(columns=[select_df.columns[6]]) replicas_jetstream = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror make_figure(import_seconds_kilo, replicas_kilo, import_seconds_chameleon, replicas_chameleon, import_seconds_jetstream, replicas_jetstream)
apache-2.0
eusi/MissionPlanerHM
Lib/site-packages/numpy/linalg/linalg.py
53
61098
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh','lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError'] import sys from numpy.core import array, asarray, zeros, empty, transpose, \ intc, single, double, csingle, cdouble, inexact, complexfloating, \ newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \ maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \ isfinite, size, finfo, absolute, log, exp from numpy.lib import triu from numpy.linalg import lapack_lite from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError, 'Singular matrix' numpy.linalg.linalg.LinAlgError: Singular matrix """ pass def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError, '%d-dimensional array given. Array must be \ two-dimensional' % len(a.shape) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError, 'Array must be square' def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError, "Array must not contain infs or NaNs" def _assertNonEmpty(*arrays): for a in arrays: if size(a) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorinv Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a,wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = range(0, an) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : array_like, shape (M, M) Coefficient matrix. b : array_like, shape (M,) or (M, N) Ordinate or "dependent variable" values. Returns ------- x : ndarray, shape (M,) or (M, N) depending on b Solution to the system a x = b Raises ------ LinAlgError If `a` is singular or not square. Notes ----- `solve` is a wrapper for the LAPACK routines `dgesv`_ and `zgesv`_, the former being used if `a` is real-valued, the latter if it is complex-valued. The solution to the system of linear equations is computed using an LU decomposition [1]_ with partial pivoting and row interchanges. .. _dgesv: http://www.netlib.org/lapack/double/dgesv.f .. _zgesv: http://www.netlib.org/lapack/complex16/zgesv.f `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> (np.dot(a, x) == b).all() True """ a, _ = _makearray(a) b, wrap = _makearray(b) one_eq = len(b.shape) == 1 if one_eq: b = b[:, newaxis] _assertRank2(a, b) _assertSquareness(a) n_eq = a.shape[0] n_rhs = b.shape[1] if n_eq != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t, result_t = _commonType(a, b) # lapack_routine = _findLapackRoutine('gesv', t) if isComplexType(t): lapack_routine = lapack_lite.zgesv else: lapack_routine = lapack_lite.dgesv a, b = _fastCopyAndTranspose(t, a, b) a, b = _to_native_byte_order(a, b) pivots = zeros(n_eq, fortran_int) results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0) if results['info'] > 0: raise LinAlgError, 'Singular matrix' if one_eq: return wrap(b.ravel().astype(result_t)) else: return wrap(b.transpose().astype(result_t)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[:ind] + a.shape[ind:]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError, "Invalid ind argument." a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : array_like, shape (M, M) Matrix to be inverted. Returns ------- ainv : ndarray or matrix, shape (M, M) (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is singular or not square. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = LA.inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = LA.inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) """ a, wrap = _makearray(a) return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : array_like, shape (M, M) Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : ndarray, or matrix object if `a` is, shape (M, M) Lower-triangular Cholesky factor of a. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) m = a.shape[0] n = a.shape[1] if isComplexType(t): lapack_routine = lapack_lite.zpotrf else: lapack_routine = lapack_lite.dpotrf results = lapack_routine(_L, n, a, m, 0) if results['info'] > 0: raise LinAlgError, 'Matrix is not positive definite - \ Cholesky decomposition cannot be computed' s = triu(a, k=0).transpose() if (s.dtype != result_t): s = s.astype(result_t) return wrap(s) # QR decompostion def qr(a, mode='full'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like Matrix to be factored, of shape (M, N). mode : {'full', 'r', 'economic'}, optional Specifies the values to be returned. 'full' is the default. Economic mode is slightly faster then 'r' mode if only `r` is needed. Returns ------- q : ndarray of float or complex, optional The orthonormal matrix, of shape (M, K). Only returned if ``mode='full'``. r : ndarray of float or complex, optional The upper-triangular matrix, of shape (K, N) with K = min(M, N). Only returned when ``mode='full'`` or ``mode='r'``. a2 : ndarray of float or complex, optional Array of shape (M, N), only returned when ``mode='economic``'. The diagonal and the upper triangle of `a2` contains `r`, while the rest of the matrix is undefined. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved, so if `a` is of type `matrix`, all the return values will be matrices too. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ a, wrap = _makearray(a) _assertRank2(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # economic mode. Isn't actually economic. if mode[0] == 'e': if t != result_t : a = a.astype(result_t) return a.T # generate r r = _fastCopyAndTranspose(result_t, a[:,:mn]) for i in range(mn): r[i,:i].fill(0.0) # 'r'-mode, that is, calculate only r if mode[0] == 'r': return r # from here on: build orthonormal matrix q from a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mn, mn, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mn, mn, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError, '%s returns %d' % (routine_name, results['info']) q = _fastCopyAndTranspose(result_t, a[:mn,:]) return wrap(q), wrap(r) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : array_like, shape (M, M) A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : ndarray, shape (M,) The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- This is a simple interface to the LAPACK routines dgeev and zgeev that sets those routines' flags to return only the eigenvalues of general real and complex arrays, respectively. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) _assertFinite(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] dummy = zeros((1,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeev w = zeros((n,), t) rwork = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, w, dummy, 1, dummy, 1, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, w, dummy, 1, dummy, 1, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, wr, wi, dummy, 1, dummy, 1, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, _N, n, a, n, wr, wi, dummy, 1, dummy, 1, work, lwork, 0) if all(wi == 0.): w = wr result_t = _realType(result_t) else: w = wr+1j*wi result_t = _complexType(result_t) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w.astype(result_t) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : array_like, shape (M, M) A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : ndarray, shape (M,) The eigenvalues, not necessarily ordered, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- This is a simple interface to the LAPACK routines dsyevd and zheevd that sets those routines' flags to return only the eigenvalues of real symmetric and complex Hermitian arrays, respectively. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288+0.j, 5.82842712+0.j]) """ UPLO = asbytes(UPLO) a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,), real_t) results = lapack_routine(_N, UPLO, n, a, n, w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,), real_t) results = lapack_routine(_N, UPLO, n, a, n, w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, UPLO, n, a, n, w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, UPLO, n, a, n, w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w.astype(result_t) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : array_like, shape (M, M) A square array of real or complex elements. Returns ------- w : ndarray, shape (M,) The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered, nor are they necessarily real for real arrays (though for real arrays complex-valued eigenvalues should occur in conjugate pairs). v : ndarray, shape (M, M) The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. eigvals : eigenvalues of a non-symmetric array. Notes ----- This is a simple interface to the LAPACK routines dgeev and zgeev which compute the eigenvalues and eigenvectors of, respectively, general real- and complex-valued square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[i,:], v[i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) _assertFinite(a) a, t, result_t = _convertarray(a) # convert to double or cdouble type a = _to_native_byte_order(a) real_t = _linalgRealType(t) n = a.shape[0] dummy = zeros((1,), t) if isComplexType(t): # Complex routines take different arguments lapack_routine = lapack_lite.zgeev w = zeros((n,), t) v = zeros((n, n), t) lwork = 1 work = zeros((lwork,), t) rwork = zeros((2*n,), real_t) results = lapack_routine(_N, _V, n, a, n, w, dummy, 1, v, n, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, w, dummy, 1, v, n, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) vr = zeros((n, n), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, wr, wi, dummy, 1, vr, n, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_N, _V, n, a, n, wr, wi, dummy, 1, vr, n, work, lwork, 0) if all(wi == 0.0): w = wr v = vr result_t = _realType(result_t) else: w = wr+1j*wi v = array(vr, w.dtype) ind = flatnonzero(wi != 0.0) # indices of complex e-vals for i in range(len(ind)//2): v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]] v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]] result_t = _complexType(result_t) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' vt = v.transpose().astype(result_t) return w.astype(result_t), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : array_like, shape (M, M) A complex Hermitian or real symmetric matrix. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : ndarray, shape (M,) The eigenvalues, not necessarily ordered. v : ndarray, or matrix object if `a` is, shape (M, M) The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- This is a simple interface to the LAPACK routines dsyevd and zheevd, which compute the eigenvalues and eigenvectors of real symmetric and complex Hermitian arrays, respectively. The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) """ UPLO = asbytes(UPLO) a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,), real_t) results = lapack_routine(_V, UPLO, n, a, n, w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,), real_t) results = lapack_routine(_V, UPLO, n, a, n, w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(_V, UPLO, n, a, n, w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(_V, UPLO, n, a, n, w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' at = a.transpose().astype(result_t) return w.astype(_realType(result_t)), wrap(at) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : ndarray Unitary matrix. The shape of `u` is (`M`, `M`) or (`M`, `K`) depending on value of ``full_matrices``. s : ndarray The singular values, sorted so that ``s[i] >= s[i+1]``. `s` is a 1-d array of length min(`M`, `N`). v : ndarray Unitary matrix of shape (`N`, `N`) or (`K`, `N`), depending on ``full_matrices``. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertRank2(a) _assertNonEmpty(a) m, n = a.shape t, result_t = _commonType(a) real_t = _linalgRealType(t) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) s = zeros((min(n, m),), real_t) if compute_uv: if full_matrices: nu = m nvt = n option = _A else: nu = min(n, m) nvt = min(n, m) option = _S u = zeros((nu, m), t) vt = zeros((n, nvt), t) else: option = _N nu = 1 nvt = 1 u = empty((1, 1), t) vt = empty((1, 1), t) iwork = zeros((8*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgesdd rwork = zeros((5*min(m, n)*min(m, n) + 5*min(m, n),), real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgesdd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge' s = s.astype(_realType(result_t)) if compute_uv: u = u.transpose().astype(result_t) vt = vt.transpose().astype(result_t) return wrap(u), s, wrap(vt) else: return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : array_like, shape (M, N) The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x,compute_uv=False) return s[0]/s[-1] else: return norm(x,p)*norm(inv(x),p) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : array_like array of <=2 dimensions tol : {None, float} threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * eps``. Notes ----- Golub and van Loan [1]_ define "numerical rank deficiency" as using tol=eps*S[0] (where S[0] is the maximum singular value and thus the 2-norm of the matrix). This is one definition of rank deficiency, and the one we use here. When floating point roundoff is the main concern, then "numerical rank deficiency" is a reasonable choice. In some cases you may prefer other definitions. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*. Baltimore: Johns Hopkins University Press, 1996. Examples -------- >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : array_like, shape (M, N) Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : ndarray, shape (N, M) The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNonEmpty(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0.; res = dot(transpose(vt), multiply(s[:, newaxis],transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, than a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : array_like, shape (M, M) Input array. Returns ------- sign : float or complex A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : float The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to `sign * np.exp(logdet)`. Notes ----- The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. .. versionadded:: 2.0.0. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) See Also -------- det """ a = asarray(a) _assertRank2(a) _assertSquareness(a) t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) n = a.shape[0] if isComplexType(t): lapack_routine = lapack_lite.zgetrf else: lapack_routine = lapack_lite.dgetrf pivots = zeros((n,), fortran_int) results = lapack_routine(n, n, a, n, pivots, 0) info = results['info'] if (info < 0): raise TypeError, "Illegal input to Fortran routine" elif (info > 0): return (t(0.0), _realType(t)(-Inf)) sign = 1. - 2. * (add.reduce(pivots != arange(1, n + 1)) % 2) d = diagonal(a) absd = absolute(d) sign *= multiply.reduce(d / absd) log(absd, absd) logdet = add.reduce(absd, axis=-1) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : array_like, shape (M, M) Input array. Returns ------- det : ndarray Determinant of `a`. Notes ----- The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. """ sign, logdet = slogdet(a) return sign * exp(logdet) # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : array_like, shape (M, N) "Coefficient" matrix. b : array_like, shape (M,) or (M, K) Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. Singular values are set to zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : ndarray, shape (N,) or (N, K) Least-squares solution. The shape of `x` depends on the shape of `b`. residues : ndarray, shape (), (1,), or (K,) Sums of residues; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or > M, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : ndarray, shape (min(M,N),) Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print m, c 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0],:n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge in Linear Least Squares' resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t) st = s[:min(n, m)].copy().astype(result_real_t) return wrap(x), wrap(resids), results['rank'], st def norm(x, ord=None): """ Matrix or vector norm. This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like, shape (M,) or (M, N) Input array. ord : {non-zero int, inf, -inf, 'fro'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. Returns ------- n : float Norm of the matrix or vector. Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4 >>> LA.norm(b, np.inf) 9 >>> LA.norm(a, -np.inf) 0 >>> LA.norm(b, -np.inf) 2 >>> LA.norm(a, 1) 20 >>> LA.norm(b, 1) 7 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan """ x = asarray(x) if ord is None: # check the default case first and handle it immediately return sqrt(add.reduce((x.conj() * x).ravel().real)) nd = x.ndim if nd == 1: if ord == Inf: return abs(x).max() elif ord == -Inf: return abs(x).min() elif ord == 0: return (x != 0).sum() # Zero norm elif ord == 1: return abs(x).sum() # special case for speedup elif ord == 2: return sqrt(((x.conj()*x).real).sum()) # special case for speedup else: try: ord + 1 except TypeError: raise ValueError, "Invalid norm order for vectors." return ((abs(x)**ord).sum())**(1.0/ord) elif nd == 2: if ord == 2: return svd(x, compute_uv=0).max() elif ord == -2: return svd(x, compute_uv=0).min() elif ord == 1: return abs(x).sum(axis=0).max() elif ord == Inf: return abs(x).sum(axis=1).max() elif ord == -1: return abs(x).sum(axis=0).min() elif ord == -Inf: return abs(x).sum(axis=1).min() elif ord in ['fro','f']: return sqrt(add.reduce((x.conj() * x).real.ravel())) else: raise ValueError, "Invalid norm order for matrices." else: raise ValueError, "Improper number of dimensions to norm."
gpl-3.0
lpantano/bcbio-nextgen
bcbio/rnaseq/count.py
5
2271
""" count number of reads mapping to features of transcripts """ import os import sys import itertools import pandas as pd import gffutils from bcbio.utils import file_exists from bcbio.distributed.transaction import file_transaction from bcbio.log import logger from bcbio import bam import bcbio.pipeline.datadict as dd def combine_count_files(files, out_file=None, ext=".fpkm"): """ combine a set of count files into a single combined file """ assert all([file_exists(x) for x in files]), \ "Some count files in %s do not exist." % files for f in files: assert file_exists(f), "%s does not exist or is empty." % f col_names = [os.path.basename(x.replace(ext, "")) for x in files] if not out_file: out_dir = os.path.join(os.path.dirname(files[0])) out_file = os.path.join(out_dir, "combined.counts") if file_exists(out_file): return out_file for i, f in enumerate(files): if i == 0: df = pd.io.parsers.read_table(f, sep="\t", index_col=0, header=None, names=[col_names[0]]) else: df = df.join(pd.io.parsers.read_table(f, sep="\t", index_col=0, header=None, names=[col_names[i]])) df.to_csv(out_file, sep="\t", index_label="id") return out_file def annotate_combined_count_file(count_file, gtf_file, out_file=None): dbfn = gtf_file + ".db" if not file_exists(dbfn): return None if not gffutils: return None db = gffutils.FeatureDB(dbfn, keep_order=True) if not out_file: out_dir = os.path.dirname(count_file) out_file = os.path.join(out_dir, "annotated_combined.counts") # if the genes don't have a gene_id or gene_name set, bail out try: symbol_lookup = {f['gene_id'][0]: f['gene_name'][0] for f in db.features_of_type('exon')} except KeyError: return None df = pd.io.parsers.read_table(count_file, sep="\t", index_col=0, header=0) df['symbol'] = df.apply(lambda x: symbol_lookup.get(x.name, ""), axis=1) df.to_csv(out_file, sep="\t", index_label="id") return out_file
mit
timmie/cartopy
lib/cartopy/tests/mpl/test_caching.py
2
8842
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import gc import six import unittest try: from owslib.wmts import WebMapTileService except ImportError as e: WebMapTileService = None import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.collections import PatchCollection from matplotlib.path import Path import cartopy.crs as ccrs from cartopy.mpl.feature_artist import FeatureArtist from cartopy.io.ogc_clients import WMTSRasterSource, _OWSLIB_AVAILABLE import cartopy.io.shapereader import cartopy.mpl.geoaxes as cgeoaxes import cartopy.mpl.patch from cartopy.examples.waves import sample_data class CallCounter(object): """ Exposes a context manager which can count the number of calls to a specific function. (useful for cache checking!) Internally, the target function is replaced with a new one created by this context manager which then increments ``self.count`` every time it is called. Example usage:: show_counter = CallCounter(plt, 'show') with show_counter: plt.show() plt.show() plt.show() print show_counter.count # <--- outputs 3 """ def __init__(self, parent, function_name): self.count = 0 self.parent = parent self.function_name = function_name self.orig_fn = getattr(parent, function_name) def __enter__(self): def replacement_fn(*args, **kwargs): self.count += 1 return self.orig_fn(*args, **kwargs) setattr(self.parent, self.function_name, replacement_fn) return self def __exit__(self, exc_type, exc_val, exc_tb): setattr(self.parent, self.function_name, self.orig_fn) def test_coastline_loading_cache(): # a5caae040ee11e72a62a53100fe5edc355304419 added coastline caching. # This test ensures it is working. # Create coastlines to ensure they are cached. ax1 = plt.subplot(2, 1, 1, projection=ccrs.PlateCarree()) ax1.coastlines() plt.draw() # Create another instance of the coastlines and count # the number of times shapereader.Reader is created. counter = CallCounter(cartopy.io.shapereader.Reader, '__init__') with counter: ax2 = plt.subplot(2, 1, 1, projection=ccrs.Robinson()) ax2.coastlines() plt.draw() assert counter.count == 0, ('The shapereader Reader class was created {} ' 'times, indicating that the caching is not ' 'working.'.format(counter.count)) plt.close() def test_shapefile_transform_cache(): # a5caae040ee11e72a62a53100fe5edc355304419 added shapefile mpl # geometry caching based on geometry object id. This test ensures # it is working. coastline_path = cartopy.io.shapereader.natural_earth(resolution="50m", category='physical', name='coastline') geoms = cartopy.io.shapereader.Reader(coastline_path).geometries() # Use the first 10 of them. geoms = tuple(geoms)[:10] n_geom = len(geoms) ax = plt.axes(projection=ccrs.Robinson()) # Empty the cache. FeatureArtist._geom_key_to_geometry_cache.clear() FeatureArtist._geom_key_to_path_cache.clear() assert len(FeatureArtist._geom_key_to_geometry_cache) == 0 assert len(FeatureArtist._geom_key_to_path_cache) == 0 counter = CallCounter(ax.projection, 'project_geometry') with counter: ax.add_geometries(geoms, ccrs.PlateCarree()) ax.add_geometries(geoms, ccrs.PlateCarree()) ax.add_geometries(geoms[:], ccrs.PlateCarree()) ax.figure.canvas.draw() # Without caching the count would have been # n_calls * n_geom, but should now be just n_geom. assert counter.count == n_geom, ('The given geometry was transformed too ' 'many times (expected: %s; got %s) - the' ' caching is not working.' ''.format(n_geom, n_geom, counter.count)) # Check the cache has an entry for each geometry. assert len(FeatureArtist._geom_key_to_geometry_cache) == n_geom assert len(FeatureArtist._geom_key_to_path_cache) == n_geom # Check that the cache is empty again once we've dropped all references # to the source paths. plt.clf() del geoms gc.collect() assert len(FeatureArtist._geom_key_to_geometry_cache) == 0 assert len(FeatureArtist._geom_key_to_path_cache) == 0 plt.close() def test_contourf_transform_path_counting(): ax = plt.axes(projection=ccrs.Robinson()) ax.figure.canvas.draw() # Capture the size of the cache before our test. gc.collect() initial_cache_size = len(cgeoaxes._PATH_TRANSFORM_CACHE) path_to_geos_counter = CallCounter(cartopy.mpl.patch, 'path_to_geos') with path_to_geos_counter: x, y, z = sample_data((30, 60)) cs = plt.contourf(x, y, z, 5, transform=ccrs.PlateCarree()) n_geom = sum([len(c.get_paths()) for c in cs.collections]) del cs if not six.PY3: del c ax.figure.canvas.draw() # Before the performance enhancement, the count would have been 2 * n_geom, # but should now be just n_geom. msg = ('The given geometry was transformed too many times (expected: %s; ' 'got %s) - the caching is not working.' '' % (n_geom, path_to_geos_counter.count)) assert path_to_geos_counter.count == n_geom, msg # Check the cache has an entry for each geometry. assert len(cgeoaxes._PATH_TRANSFORM_CACHE) == initial_cache_size + n_geom # Check that the cache is empty again once we've dropped all references # to the source paths. plt.clf() gc.collect() assert len(cgeoaxes._PATH_TRANSFORM_CACHE) == initial_cache_size plt.close() @unittest.skipIf(not _OWSLIB_AVAILABLE, 'OWSLib is unavailable.') def test_wmts_tile_caching(): image_cache = WMTSRasterSource._shared_image_cache image_cache.clear() assert len(image_cache) == 0 url = 'https://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi' wmts = WebMapTileService(url) layer_name = 'MODIS_Terra_CorrectedReflectance_TrueColor' source = WMTSRasterSource(wmts, layer_name) gettile_counter = CallCounter(wmts, 'gettile') crs = ccrs.PlateCarree() extent = (-180, 180, -90, 90) resolution = (20, 10) with gettile_counter: source.fetch_raster(crs, extent, resolution) n_tiles = 2 assert gettile_counter.count == n_tiles, ('Too many tile requests - ' 'expected {}, got {}.'.format( n_tiles, gettile_counter.count) ) gc.collect() assert len(image_cache) == 1 assert len(image_cache[wmts]) == 1 tiles_key = (layer_name, '0') assert len(image_cache[wmts][tiles_key]) == n_tiles # Second time around we shouldn't request any more tiles so the # call count will stay the same. with gettile_counter: source.fetch_raster(crs, extent, resolution) assert gettile_counter.count == n_tiles, ('Too many tile requests - ' 'expected {}, got {}.'.format( n_tiles, gettile_counter.count) ) gc.collect() assert len(image_cache) == 1 assert len(image_cache[wmts]) == 1 tiles_key = (layer_name, '0') assert len(image_cache[wmts][tiles_key]) == n_tiles # Once there are no live references the weak-ref cache should clear. del source, wmts, gettile_counter gc.collect() assert len(image_cache) == 0 if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
gpl-3.0
JonnoFTW/htm-models-adelaide
engine/evaluate.py
1
5391
from __future__ import print_function from index import create_upstream_model from metrics import geh, rmse, mape from collections import OrderedDict, defaultdict import csv import tabulate from datetime import datetime, timedelta from pluck import pluck import numpy as np import pyprind steps = [1] eps = 1e-6 def run_data(fname, limit=None, sensors=None): data = [] # load up the data print("Loading Data") data_rows = 0 max_input = 0 last_row = np.inf with open(fname, 'rb') as infile: reader = csv.DictReader(infile) fields = reader.fieldnames for row in reader: dt = datetime.strptime(row['timestamp'], "%Y-%m-%d %H:%M:%S") if type(limit) is datetime and limit > dt: last_row = data_rows if sensors is None: counts = [int(row[x]) for x in fields[1:]] else: counts = [int(row[x]) for x in fields[1:] if int(x) in sensors] if any(map(lambda x: x > 300, counts)): continue downstream = max(1, sum(counts)) data.append({ 'timestamp': dt, 'downstream': downstream }) if downstream < 300: max_input = max(max_input, downstream) data_rows += 1 # if data_rows > 100: # break print("Data length", data_rows, "max_input", max_input) # process the data model = create_upstream_model(max_input, steps) step_predictions = defaultdict(list) row_count = 0 progress = pyprind.ProgBar(min(last_row, data_rows), width=50, stream=1) it = iter(data) for row in it: progress.update() result = model.run(row) for i in steps: step_predictions[i].append(result.inferences["multiStepBestPredictions"][i]) if type(limit) is datetime and row['timestamp'] >= limit: break row_count += 1 print ("Trained on", row_count, "rows") return step_predictions, data, model, it, row_count, len(data) if __name__ == "__main__": import sys for i in sys.argv[1:]: print("Running ", i) fname = i.split('/')[-1] predictions, data, model, it, row_count, data_len = run_data(i, limit=datetime(2013, 4, 23)) model.save('/scratch/model_store/model_3002_1_step') # turn the data into numpy arrays split_idx = int(len(data) * 0.4) flow_values = np.array(pluck(data[split_idx:], 'downstream')) print() # print (predictions) predictions = { k: np.array(v[split_idx:]) for k, v in predictions.items() } print() # # table = [] # print(' & '.join(['step', 'geh', 'mape', 'rmse'])+' \\\\') # for step in steps: # # true values # stepped_vals = flow_values[step:len(predictions[step])] # # predicted values # pred_vals = predictions[step][:-step] + eps # table.append(OrderedDict([ # ('steps', step), # ('geh', geh(stepped_vals, pred_vals)), # ('mape', mape(stepped_vals, pred_vals)), # ('rmse', rmse(stepped_vals, pred_vals)) # ])) # print(tabulate.tabulate(table, 'keys', 'latex')) print("Loading matplotlib") font = {'size': 30} import matplotlib matplotlib.rc('font', **font) import matplotlib.pyplot as plt true_y = [] true_x = [] pred_y = [] pred_x = [] print("Predicting data rows: {}".format(data_len - row_count)) progress = pyprind.ProgBar(data_len - row_count, width=50, stream=1) for row in it: progress.update() preds = model.run(row) if row['timestamp'] > datetime(2013, 6, 15): break true_x.append(row['timestamp']) true_y.append(row['downstream']) pred_y.append(preds.inferences["multiStepBestPredictions"][1]) pred_x.append(row['timestamp'] + timedelta(minutes=5)) np.savez("pred_data/{}-htm-pred-data".format(fname), true_x=true_x, true_y=true_y, pred_x=pred_x, pred_y=pred_y) np_tx = np.array(true_x)[1:] np_ty = np.array(true_y)[1:] np_py = np.array(pred_y)[:-1] print() print("GEH: ", geh(np_ty, np_py)) print("MAPE: ", mape(np_ty, np_py)) print("RMSE: ", rmse(np_ty, np_py)) print() print("True x:", len(true_x)) print("True y:", len(true_x)) print("Pred y:", len(true_x)) plt.plot(true_x, true_y, 'b-', label='Readings') plt.plot(pred_x, pred_y, 'r-', label='Predictions') plt.legend(prop={'size': 23}) plt.grid(b=True, which='major', color='black', linestyle='-') plt.grid(b=True, which='minor', color='black', linestyle='dotted') df = "%A %d %B, %Y" plt.title("3002: Traffic Flow from {} to {}".format(true_x[0].strftime(df), true_x[-1].strftime(df)), y=1.03) plt.legend() plt.ylabel("Vehicles/ 5 min") plt.xlabel("Time") fig, ax = plt.subplots() for tick in ax.xaxis.get_minor_ticks(): tick.label.set_fontsize(26) tick.label.set_rotation('vertical') plt.show()
agpl-3.0
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/pandas/core/datetools.py
6
1729
"""A collection of random tools for dealing with dates in Python""" from pandas.tseries.tools import * from pandas.tseries.offsets import * from pandas.tseries.frequencies import * day = DateOffset() bday = BDay() businessDay = bday try: cday = CDay() customBusinessDay = CustomBusinessDay() customBusinessMonthEnd = CBMonthEnd() customBusinessMonthBegin = CBMonthBegin() except NotImplementedError: cday = None customBusinessDay = None customBusinessMonthEnd = None customBusinessMonthBegin = None monthEnd = MonthEnd() yearEnd = YearEnd() yearBegin = YearBegin() bmonthEnd = BMonthEnd() bmonthBegin = BMonthBegin() cbmonthEnd = customBusinessMonthEnd cbmonthBegin = customBusinessMonthBegin bquarterEnd = BQuarterEnd() quarterEnd = QuarterEnd() byearEnd = BYearEnd() week = Week() # Functions/offsets to roll dates forward thisMonthEnd = MonthEnd(0) thisBMonthEnd = BMonthEnd(0) thisYearEnd = YearEnd(0) thisYearBegin = YearBegin(0) thisBQuarterEnd = BQuarterEnd(0) thisQuarterEnd = QuarterEnd(0) # Functions to check where a date lies isBusinessDay = BDay().onOffset isMonthEnd = MonthEnd().onOffset isBMonthEnd = BMonthEnd().onOffset def _resolve_offset(freq, kwds): if 'timeRule' in kwds or 'offset' in kwds: offset = kwds.get('offset', None) offset = kwds.get('timeRule', offset) if isinstance(offset, compat.string_types): offset = getOffset(offset) warn = True else: offset = freq warn = False if warn: import warnings warnings.warn("'timeRule' and 'offset' parameters are deprecated," " please use 'freq' instead", FutureWarning) return offset
mit
robogen/CMS-Mining
RunScripts/es_evntVnet.py
1
13344
from elasticsearch import Elasticsearch import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.dates import AutoDateLocator, AutoDateFormatter import numpy as np import datetime as dt import math import json import pprint with open("config", "r+") as txt: contents = list(map(str.rstrip, txt)) esCon = Elasticsearch([{ 'host': contents[4], 'port': contents[5] }], timeout=30) pp = pprint.PrettyPrinter(indent=4) def utcDate(time): return dt.datetime.fromtimestamp(time, dt.timezone.utc) def utcStamp(time): return (dt.datetime.strptime(time,'%Y-%m-%dT%X')).replace(tzinfo=dt.timezone.utc).timestamp() scrollPreserve="3m" startDate = "2016-07-17T00:00:00" endDate = "2016-07-25T00:00:00" utcStart = utcStamp(startDate) utcEnd = utcStamp(endDate) oneDay = np.multiply(24,np.multiply(60,60)) def esConAgg(field): queryBody={"aggs": { "dev": { "terms": {"field":field} } } } scannerCon = esCon.search(index="net-health", body=queryBody, search_type="query_then_fetch", scroll=scrollPreserve) scrollIdCon = scannerCon['aggregations']['dev'] conTotalRec = scrollIdCon['buckets'] arrRet = np.array([]) if conTotalRec == 0: return None else: for hit in conTotalRec: arrRet = np.append(arrRet, hit['key']) return arrRet def esConQuery(src, dest): queryBody={"query" : {"bool": { "must": [ {"match" : {"src" : src} }, {"match" : {"dest" : dest} }, {"range" : { "beginDate" : { "gt" : int(utcStart), "lt" : int((utcStart + oneDay)) } } } ] } }, "sort": {"beginDate": {"order": "desc"}} } scannerCon = esCon.search(index="net-health", body=queryBody, search_type="scan", scroll=scrollPreserve) scrollIdCon = scannerCon['_scroll_id'] conTotalRec = scannerCon["hits"]["total"] arrRet = {} arrRet['srcLatency'] = np.array([]) arrRet['destLatency'] = np.array([]) arrRet['srcPacket'] = np.array([]) arrRet['destPacket'] = np.array([]) arrRet['srcThroughput'] = np.array([]) arrRet['destThroughput'] = np.array([]) if conTotalRec == 0: return None else: while conTotalRec > 0: responseCon = esCon.scroll(scroll_id=scrollIdCon, scroll=scrollPreserve) for hit in responseCon["hits"]["hits"]: if 'srcThroughput' in hit["_source"]: if not arrRet['srcThroughput'].size > 0: arrRet['srcThroughput'] = np.reshape(np.array([hit["_source"]["srcThroughput"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['srcThroughput'] = np.vstack((arrRet['srcThroughput'], np.array([hit["_source"]["srcThroughput"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) if 'destThroughput' in hit["_source"]: if not arrRet['destThroughput'].size > 0: arrRet['destThroughput'] = np.reshape(np.array([hit["_source"]["destThroughput"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['destThroughput'] = np.vstack((arrRet['destThroughput'], np.array([hit["_source"]["destThroughput"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) if 'srcPacket' in hit["_source"]: if not arrRet['srcPacket'].size > 0: arrRet['srcPacket'] = np.reshape(np.array([hit["_source"]["srcPacket"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['srcPacket'] = np.vstack((arrRet['srcPacket'], np.array([hit["_source"]["srcPacket"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) if 'destPacket' in hit["_source"]: if not arrRet['destPacket'].size > 0: arrRet['destPacket'] = np.reshape(np.array([hit["_source"]["destPacket"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['destPacket'] = np.vstack((arrRet['destPacket'], np.array([hit["_source"]["destPacket"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) if 'srcLatency' in hit["_source"]: if not arrRet['srcLatency'].size > 0: arrRet['srcLatency'] = np.reshape(np.array([hit["_source"]["srcLatency"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['srcLatency'] = np.vstack((arrRet['srcLatency'], np.array([hit["_source"]["srcLatency"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) if 'destLatency' in hit["_source"]: if not arrRet['destLatency'].size > 0: arrRet['destLatency'] = np.reshape(np.array([hit["_source"]["destLatency"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]), (1,3)) else: arrRet['destLatency'] = np.vstack((arrRet['destLatency'], np.array([hit["_source"]["destLatency"], hit["_source"]["KEvents"], hit["_source"]["EventRate"]]))) conTotalRec -= len(responseCon['hits']['hits']) return arrRet #print(esConAgg("src")) #print(esConAgg("dest")) def main(utcStart): with PdfPages('CMS_RateVSNum.pdf') as pc: d = pc.infodict() d['Title'] = 'CMS Scatter Plots' d['Author'] = u'Jerrod T. Dixon\xe4nen' d['Subject'] = 'Plot of network affects on grid jobs' d['Keywords'] = 'PdfPages matplotlib CMS grid' d['CreationDate'] = dt.datetime.today() d['ModDate'] = dt.datetime.today() #qResults = esConQuery('t1_de_kit','T1_ES_PIC') while utcStart <= utcEnd: srcSites = esConAgg("src") destSites = esConAgg("dest") workDate = utcDate(utcStart) for ping in srcSites: for pong in destSites: qResults = esConQuery(ping, pong) if not type(qResults) == type(None): srcLatency = qResults['srcLatency'] destLatency = qResults['destLatency'] srcPacket = qResults['srcPacket'] destPacket = qResults['destPacket'] srcThrough = qResults['srcThroughput'] destThrough = qResults['destThroughput'] if srcThrough.size > 0: figsT, axsT = plt.subplots(2, sharex=True) axsT[0].scatter(srcThrough[:,0],srcThrough[:,1]) axsT[1].scatter(srcThrough[:,0],srcThrough[:,2]) axsT[0].set_ylabel("KEvents") axsT[1].set_ylabel("EventRate") axsT[1].set_xlabel("Source Throughput") axsT[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figsT) plt.close(figsT) if destThrough.size > 0: figdT, axdT = plt.subplots(2, sharex=True) axdT[0].scatter(destThrough[:,0],destThrough[:,1]) axdT[1].scatter(destThrough[:,0],destThrough[:,2]) axdT[0].set_ylabel("KEvents") axdT[1].set_ylabel("EventRate") axdT[1].set_xlabel("Destination Throughput") axdT[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figdT) plt.close(figdT) if srcPacket.size > 0: figsP, axsP = plt.subplots(2, sharex=True) axsP[0].scatter(srcPacket[:,0],srcPacket[:,1]) axsP[1].scatter(srcPacket[:,0],srcPacket[:,2]) axsP[0].set_ylabel("KEvents") axsP[1].set_ylabel("EventRate") axsP[1].set_xlabel("Source Packet Loss") axsP[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figsP) plt.close(figsP) if destPacket.size > 0: figdP, axdP = plt.subplots(2, sharex=True) axdP[0].scatter(destPacket[:,0],destPacket[:,1]) axdP[1].scatter(destPacket[:,0],destPacket[:,2]) axdP[0].set_ylabel("KEvents") axdP[1].set_ylabel("EventRate") axdP[1].set_xlabel("Destination Packet Loss") axdP[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figdP) plt.close(figdP) if srcLatency.size > 0: figL, axL = plt.subplots(2, sharex=True) axL[0].scatter(srcLatency[:,0],srcLatency[:,1]) axL[1].scatter(srcLatency[:,0],srcLatency[:,2]) axL[0].set_ylabel("KEvents") axL[1].set_ylabel("EventRate") axL[1].set_xlabel("Source Latency") axL[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figL) plt.close(figL) if destLatency.size > 0: figP, axP = plt.subplots(2, sharex=True) axP[1].scatter(destLatency[:,0],destLatency[:,2]) axP[0].scatter(destLatency[:,0],destLatency[:,1]) axP[0].set_ylabel("KEvents") axP[1].set_ylabel("EventRate") axP[1].set_xlabel("Destination Latency") axP[0].set_title(str(ping + " to " + pong + " on " + workDate.strftime('%d-%B-%Y'))) pc.savefig(figP) plt.close(figP) utcStart = utcStart + oneDay #axC[1].scatter(destRes[:,0],destRes[:,1]) #axC[1].set_ylabel("CpuEff") # Run Main code main(utcStart)
mit
dsm054/pandas
pandas/tests/series/indexing/test_alter_index.py
1
17845
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime import numpy as np from numpy import nan import pytest import pandas.compat as compat from pandas.compat import lrange, range import pandas as pd from pandas import Categorical, Series, date_range, isna import pandas.util.testing as tm from pandas.util.testing import assert_series_equal @pytest.mark.parametrize( 'first_slice,second_slice', [ [[2, None], [None, -5]], [[None, 0], [None, -5]], [[None, -5], [None, 0]], [[None, 0], [None, 0]] ]) @pytest.mark.parametrize('fill', [None, -1]) def test_align(test_data, first_slice, second_slice, join_type, fill): a = test_data.ts[slice(*first_slice)] b = test_data.ts[slice(*second_slice)] aa, ab = a.align(b, join=join_type, fill_value=fill) join_index = a.index.join(b.index, how=join_type) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: assert (aa.reindex(diff_a) == fill).all() if len(diff_b) > 0: assert (ab.reindex(diff_b) == fill).all() ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) assert aa.name == 'ts' assert ea.name == 'ts' assert ab.name == 'ts' assert eb.name == 'ts' @pytest.mark.parametrize( 'first_slice,second_slice', [ [[2, None], [None, -5]], [[None, 0], [None, -5]], [[None, -5], [None, 0]], [[None, 0], [None, 0]] ]) @pytest.mark.parametrize('method', ['pad', 'bfill']) @pytest.mark.parametrize('limit', [None, 1]) def test_align_fill_method(test_data, first_slice, second_slice, join_type, method, limit): a = test_data.ts[slice(*first_slice)] b = test_data.ts[slice(*second_slice)] aa, ab = a.align(b, join=join_type, method=method, limit=limit) join_index = a.index.join(b.index, how=join_type) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) def test_align_nocopy(test_data): b = test_data.ts[:5].copy() # do copy a = test_data.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 assert not (a[:5] == 5).any() # do not copy a = test_data.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 assert (a[:5] == 5).all() # do copy a = test_data.ts.copy() b = test_data.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 assert not (b[:3] == 5).any() # do not copy a = test_data.ts.copy() b = test_data.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 assert (b[:2] == 5).all() def test_align_same_index(test_data): a, b = test_data.ts.align(test_data.ts, copy=False) assert a.index is test_data.ts.index assert b.index is test_data.ts.index a, b = test_data.ts.align(test_data.ts, copy=True) assert a.index is not test_data.ts.index assert b.index is not test_data.ts.index def test_align_multiindex(): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(test_data): identity = test_data.series.reindex(test_data.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: assert np.may_share_memory(test_data.series.index, identity.index) except AttributeError: pass assert identity.index.is_(test_data.series.index) assert identity.index.identical(test_data.series.index) subIndex = test_data.series.index[10:20] subSeries = test_data.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): assert val == test_data.series[idx] subIndex2 = test_data.ts.index[10:20] subTS = test_data.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): assert val == test_data.ts[idx] stuffSeries = test_data.ts.reindex(subIndex) assert np.isnan(stuffSeries).all() # This is extremely important for the Cython code to not screw up nonContigIndex = test_data.ts.index[::2] subNonContig = test_data.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): assert val == test_data.ts[idx] # return a copy the same index here result = test_data.ts.reindex() assert not (result is test_data.ts) def test_reindex_nan(): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_series_add_nat(): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) assert np.issubdtype(result.dtype, np.dtype('M8[ns]')) mask = result.isna() assert mask[-5:].all() assert not mask[:-5].any() def test_reindex_with_datetimes(): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_reindex_corner(test_data): # (don't forget to fix this) I think it's fixed test_data.empty.reindex(test_data.ts.index, method='pad') # it works # corner case: pad empty series reindexed = test_data.empty.reindex(test_data.ts.index, method='pad') # pass non-Index reindexed = test_data.ts.reindex(list(test_data.ts.index)) assert_series_equal(test_data.ts, reindexed) # bad fill method ts = test_data.ts[::2] pytest.raises(Exception, ts.reindex, test_data.ts.index, method='foo') def test_reindex_pad(): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inference of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=lrange(0, 5)) assert_series_equal(result, expected) def test_reindex_nearest(): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=[1, 2, 3, 4]) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=[0.3, 0.01, 0.4, 3]) expected = Series([0, np.nan, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(): pass def test_reindex_int(test_data): ts = test_data.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(test_data.ts.index) # if NaNs introduced assert reindexed_int.dtype == np.float_ # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) assert reindexed_int.dtype == np.int_ def test_reindex_bool(test_data): # A series other than float, int, string, or object ts = test_data.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(test_data.ts.index) # if NaNs introduced assert reindexed_bool.dtype == np.object_ # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) assert reindexed_bool.dtype == np.bool_ def test_reindex_bool_pad(test_data): # fail ts = test_data.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(test_data.ts.index, method='pad') assert isna(filled_bool[:5]).all() def test_reindex_categorical(): index = date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_reindex_like(test_data): other = test_data.ts[::2] assert_series_equal(test_data.ts.reindex(other.index), test_data.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013, 3, 5) day2 = datetime(2013, 5, 5) day3 = datetime(2014, 3, 5) series1 = Series([5, None, None], [day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(): # ----------------------------------------------------------- # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) # ----------------------------------------------------------- # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) assert issubclass(result.dtype.type, np.integer) assert_series_equal(result, expected) # ----------------------------------------------------------- # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value='foo') expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) # ------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = bools.reindex([1, 2, 3], fill_value=False) expected = Series([False, True, False], index=[1, 2, 3]) assert_series_equal(result, expected) def test_reindex_datetimeindexes_tz_naive_and_aware(): # GH 8306 idx = date_range('20131101', tz='America/Chicago', periods=7) newidx = date_range('20131103', periods=10, freq='H') s = Series(range(7), index=idx) with pytest.raises(TypeError): s.reindex(newidx, method='ffill') def test_reindex_empty_series_tz_dtype(): # GH 20869 result = Series(dtype='datetime64[ns, UTC]').reindex([0, 1]) expected = Series([pd.NaT] * 2, dtype='datetime64[ns, UTC]') tm.assert_equal(result, expected) def test_rename(): # GH 17407 s = Series(range(1, 6), index=pd.Index(range(2, 7), name='IntIndex')) result = s.rename(str) expected = s.rename(lambda i: str(i)) assert_series_equal(result, expected) assert result.name == expected.name @pytest.mark.parametrize( 'data, index, drop_labels,' ' axis, expected_data, expected_index', [ # Unique Index ([1, 2], ['one', 'two'], ['two'], 0, [1], ['one']), ([1, 2], ['one', 'two'], ['two'], 'rows', [1], ['one']), ([1, 1, 2], ['one', 'two', 'one'], ['two'], 0, [1, 2], ['one', 'one']), # GH 5248 Non-Unique Index ([1, 1, 2], ['one', 'two', 'one'], 'two', 0, [1, 2], ['one', 'one']), ([1, 1, 2], ['one', 'two', 'one'], ['one'], 0, [1], ['two']), ([1, 1, 2], ['one', 'two', 'one'], 'one', 0, [1], ['two'])]) def test_drop_unique_and_non_unique_index(data, index, axis, drop_labels, expected_data, expected_index): s = Series(data=data, index=index) result = s.drop(drop_labels, axis=axis) expected = Series(data=expected_data, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( 'data, index, drop_labels,' ' axis, error_type, error_desc', [ # single string/tuple-like (range(3), list('abc'), 'bc', 0, KeyError, 'not found in axis'), # bad axis (range(3), list('abc'), ('a',), 0, KeyError, 'not found in axis'), (range(3), list('abc'), 'one', 'columns', ValueError, 'No axis named columns')]) def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc): with pytest.raises(error_type, match=error_desc): Series(data, index=index).drop(drop_labels, axis=axis) def test_drop_with_ignore_errors(): # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') tm.assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.iloc[1:] tm.assert_series_equal(result, expected) # GH 8522 s = Series([2, 3], index=[True, False]) assert s.index.is_object() result = s.drop(True) expected = Series([3], index=[False]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 3]]) @pytest.mark.parametrize('drop_labels', [[], [1], [3]]) def test_drop_empty_list(index, drop_labels): # GH 21494 expected_index = [i for i in index if i not in drop_labels] series = pd.Series(index=index).drop(drop_labels) tm.assert_series_equal(series, pd.Series(index=expected_index)) @pytest.mark.parametrize('data, index, drop_labels', [ (None, [1, 2, 3], [1, 4]), (None, [1, 2, 2], [1, 4]), ([2, 3], [0, 1], [False, True]) ]) def test_drop_non_empty_list(data, index, drop_labels): # GH 21494 and GH 16877 with pytest.raises(KeyError, match='not found in axis'): pd.Series(data=data, index=index).drop(drop_labels)
bsd-3-clause
elkingtonmcb/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
apatti/apatti_ml
kaggle/digit-recognizer/knn.py
1
2786
from numpy import * import matplotlib import matplotlib.pyplot as plt #Distance = SqRoot(Sum((X-Label)^2)) def classify(input,data,labels,k): #converting input array to be matrix of same size as data so that we can use it for subtract diffMat = tile(input,(data.shape[0],1)) - data sqDiffMat = diffMat**2 sumSqDiffMat = sum(sqDiffMat,axis=1) distances = sumSqDiffMat**0.5 sortedIndices = distances.argsort() # sort the indexes votedLabels={} for i in range(k): votedLabels[labels[sortedIndices[i]]] = votedLabels.get(labels[sortedIndices[i]],0)+1 return max(votedLabels.iteritems(),key=lambda x:x[1])[0] def fileToMat(file,labelsPresent): labels=None fileData = genfromtxt(file,delimiter=',',skip_header=1,dtype="int") if labelsPresent: labels = fileData[:,0] fileData=fileData[:,1:] return fileData,labels def visualize(data,labels): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1],15.0*labels,15.0*labels) ax.set_ylabel("Percentage of time spent playing video game") ax.set_xlabel("Liters of icecream consumed per week") ax.set_title("Scatter Plot") #plt.legend(loc='upper center') plt.show() def normalize(data): min = data.min(0) max = data.max(0) range = max-min normData = (data-tile(min,(data.shape[0],1)))/tile(range,(data.shape[0],1)) return normData,range,min def testClassifier(): data,labels = fileToMat("data/train.csv",True) #normData,ranges,min = normalize(data) testPercent=0.1 #numTestVectors=int(testPercent*normData.shape[0]) numTestVectors = 3000 for k in range(1): errorCount=0.0 for i in range(numTestVectors): classifiedLabel = classify(data[i],data[numTestVectors:9000,],labels[numTestVectors:9000,],77) #print r'Test:%d,Actual:%d' %(classifiedLabel,labels[i]) if(classifiedLabel!=labels[i]): errorCount=errorCount+1.0 print r'K:%d,Error Rate:%f'%(k,((errorCount/float(numTestVectors))*100)) def digitRecognizer(): trainData,labels = fileToMat("data/train.csv",True) testData,trainLabels = fileToMat("data/test.csv",False) classifiedResult = zeros((testData.shape[0],2)) #with open("testResult.csv","w") as outputFile: for i in range(testData.shape[0]): #classifierResult = classify(testData[i],trainData,labels,3) #outputFile.write("%d,%d\n"%(i+1,classifierResult)) classifiedResult[i,0]=i+1 classifiedResult[i,1]=classify(testData[i],trainData,labels,3) print "%d "%(i+1) savetxt("testResult_apatti_3.csv",classifiedResult,delimiter=',',fmt="%d,%d",header='ImageId,Label') if __name__ == "__main__": digitRecognizer()
mit
CharlesGulian/Deconv
Main3.py
1
13448
# -*- coding: utf-8 -*- """ Created on Thu Jun 30 15:34:39 2016 @author: charlesgulian """ import os curr_dir = os.getcwd() import numpy as np import matplotlib.pyplot as plt #import matplotlib import pysex import sex_stats import fits_tools #import sex_config #import do_config # Image deconvolution project: # Main script for data analysis, image comparison, photometric statistics, and more # Good image comparison goodImage1 = 'AstroImages/Good/fpC-6484-x4078-y134_stitched_alignCropped.fits' goodImage2 = 'AstroImages/Good/fpC-7006-x5226-y115_stitched_alignCropped.fits' goodImage3 = 'AstroImages/Good/fpC-4868-x4211-y138_stitched_alignCropped.fits' goodImage4 = 'AstroImages/Good/fpC-6383-x5176-y121_stitched_alignCropped.fits' goodImgs = [goodImage1,goodImage2,goodImage3,goodImage4] # Bad image comparison: badImage1 = 'AstroImages/Bad/fpC-5759-x24775-y300_stitched_alignCropped.fits' # Modest gradient from top to bottom badImage2 = 'AstroImages/Bad/fpC-6548-x24940-y302_stitched_alignCropped.fits' # Modest gradient from top to bottom badImage3 = 'AstroImages/Bad/fpC-5781-x25627-y293_stitched_alignCropped.fits' # Very weak gradient from bottom left to top right badImage4 = 'AstroImages/Bad/fpC-7140-x24755-y270_stitched_alignCropped.fits' # Weak gradient from bottom left to top right badImgs = [badImage1,badImage2,badImage3,badImage4] def createHist(data,numBins=20,color='green',dataName='',save=True,show=False,normed=False): # Plot histogram of data plt.hist(data,bins=numBins,normed=normed,color=color,stacked=True) if dataName != '': plt.title('Histogram of {}'.format(dataName)) plt.ylabel('Frequency (N)') plt.xlabel(dataName) if save: print 'Saving histogram to {}'.format(os.path.join(curr_dir,'Figures','Jul15Imgs','Hists','Hist_{}.png'.format(dataName))) plt.savefig(os.path.join(curr_dir,'Figures','Jul15Imgs','Hists','Hist_{}__.png'.format(dataName))) plt.close() if show: plt.show() for testImage1 in goodImgs: for testImage2 in goodImgs: if testImage1 == testImage2: continue output = pysex.compare(testImage1,testImage2) # (Implement/uncomment to create new comparison file) img_tag1 = (os.path.split(testImage1)[1]) img_tag1 = img_tag1[0:len(img_tag1)-len('.fits')] img_tag2 = (os.path.split(testImage2)[1]) img_tag2 = img_tag2[0:len(img_tag2)-len('.fits')] outputCat1 = os.path.join(os.getcwd(),'Results',img_tag1+'_'+img_tag1+'_compare.cat') if not os.path.exists(outputCat1): print 'Error: first output catalog path does not exist' outputCat2 = os.path.join(os.getcwd(),'Results',img_tag1+'_'+img_tag2+'_compare.cat') if not os.path.exists(outputCat2): print 'Error: second output catalog path does not exist' # Create sex_stats.data objects: img1data = sex_stats.data(outputCat1) img2data = sex_stats.data(outputCat2) # Create .reg files from output catalogs CREATE_regFiles = False if CREATE_regFiles: img1data.create_regFile() img2data.create_regFile() #-----------------------------------------------------------------------------# # Flux ratio analysis: flux1,flux2 = img1data.get_data('FLUX_BEST'),img2data.get_data('FLUX_BEST') # mag1,mag2 = img1data.get_data('MAG_BEST'),img2data.get_data('MAG_BEST') #flux1,flux2 = mag1,mag2 x,y = img1data.get_data('X_IMAGE'),img1data.get_data('Y_IMAGE') flux1,flux2 = np.array(flux1),np.array(flux2) # Correct for image bias of 1000.0 imageBias = 1000.0 flux1 -= imageBias flux2 -= imageBias #''' print ' ' print 'Minimum flux values: ', np.min(flux1),' ',np.min(flux2) print 'Minimum pixel values: ', np.min(fits_tools.getPixels(testImage1)),' ',np.min(fits_tools.getPixels(testImage2)) print 'Median value of images: ', np.median(fits_tools.getPixels(testImage1)),' ',np.median(fits_tools.getPixels(testImage2)) print 'Mean value of images: ', np.mean(fits_tools.getPixels(testImage1)),' ',np.mean(fits_tools.getPixels(testImage2)) print ' ' #''' #''' fluxAvg = 0.5*(flux1+flux2) fluxRatio = np.divide(flux1,flux2) fluxRatio_mean = np.mean(fluxRatio) fluxRatio_std = np.std(fluxRatio) fluxRatio_meanSubtracted = fluxRatio - fluxRatio_mean # (NOT MEAN SUBTRACTED) #''' # Without sigma-clipping # Creating histogram of flux1 and flux2 createHist(img1data.get_data('MAG_BEST'),numBins=70,color='green',save=False,normed=True) createHist(img2data.get_data('MAG_BEST'),numBins=70,color='blue',dataName='Object mag for Entire Image',save=True,normed=True) # Creating histogram of flux1/flux2 (object-wise flux ratio) createHist(fluxRatio,numBins=70,dataName='Flux Ratio') m,n = 4,4 xBins,yBins,fluxRatioBins = sex_stats.binData(x,y,fluxRatio,M=m,N=n) for i in range(m): for j in range(n): if (i == max(range(m))) and (j == max(range(n))): plt.title('Histogram of Flux Ratio in Bins: {}x{}'.format(m,n)) plt.subplot(m,n,(n*i + (j+1))) plt.axis([np.min(fluxRatioBins[i,j]),np.max(fluxRatioBins[i,j]),0.0,10.0]) createHist(fluxRatioBins[i,j],save=True,normed=False) else: plt.subplot(m,n,(n*i + (j+1))) createHist(fluxRatioBins[i,j],save=False,normed=False) plt.axis([np.min(fluxRatioBins[i,j]),np.max(fluxRatioBins[i,j]),0.0,10.0]) ''' fluxRatioBin_Avgs = np.zeros([m,n]) emptyBins = [] for i in range(m): for j in range(n): # Clipping data in bins: fluxRatioBins_sigmaClipped = [] fluxRatioBins_excess = [] for k in range(len(fluxRatioBins[i,j])): if np.abs((fluxRatioBins[i,j])[k]) <= maxSig[s]*np.std(fluxRatioBins[i,j]): fluxRatioBins_sigmaClipped.append(fluxRatioBins[i,j][k]) else: fluxRatioBins_excess.append() if len(fluxRatioBins_sigmaClipped) == 0: emptyBins.append('{},{}'.format(str(i),str(j))) fluxRatioBins[i,j] = fluxRatioBins_sigmaClipped fluxRatioBin_Avgs[i,j] = np.mean(fluxRatioBins_sigmaClipped) # Masking NaNs in fluxRatioBin_Avgs: fluxRatioBin_Avgs_Masked = np.ma.array(fluxRatioBin_Avgs,mask=np.isnan(fluxRatioBin_Avgs)) cmap = matplotlib.cm.gray cmap.set_bad('r',1.) #print np.nanmean(fluxRatioBin_Avgs)-2.0,' ',np.nanmean(fluxRatioBin_Avgs)+2.0 plt.pcolormesh(fluxRatioBin_Avgs_Masked,cmap=cmap,vmin=np.nanmean(fluxRatioBin_Avgs)-2.0,vmax=np.nanmean(fluxRatioBin_Avgs)+2.0) plt.colorbar() plt.xlabel('X Bin') plt.ylabel('Y Bin') plt.title('Flux Ratio Bin Averages: {} x {}'.format(m,n)) if not os.path.exists(os.path.join(curr_dir,'Figures','Jul14Imgs','ObjBin','{}_{}'.format(img_tag1[0:10],img_tag2[0:10]))): os.mkdir(os.path.join(curr_dir,'Figures','Jul14Imgs','ObjBin','{}_{}'.format(img_tag1[0:10],img_tag2[0:10]))) plt.savefig(os.path.join(curr_dir,'Figures','Jul14Imgs','ObjBin','{}_{}'.format(img_tag1[0:10],img_tag2[0:10]),'fluxRatioBin_Avgs_sigmaClip{}.png'.format(str(maxSig[s])[0:4]))) plt.close() plot = False # Warning: do not change to true unless length of maxSig small if plot: # Plotting source-wise flux ratio w/ colors plt.scatter(x_clip, y_clip, s=25*np.log10(0.1*np.array(fluxAvg_clip)), c=fluxRatio_meanSubtracted_sigmaClipped, vmin=-1.5*maxSig[j]*fluxRatio_std, vmax=1.5*maxSig[j]*fluxRatio_std, alpha=0.75) plt.axis([0,1600,0,1600]) plt.colorbar() plt.xlabel('X_IMAGE') plt.ylabel('Y_IMAGE') plt.title('Flux Ratio Color Map: sigma cutoff = '+str(maxSig[j])[0:4]) plt.savefig((curr_dir+'/Figures/{}_{}_maxSig{}_fluxRatio_LINETEST.png'.format(img_tag1, img_tag2, str(maxSig[j])[0:4]))) plt.close() #''' break break """ THIS SECTION OF CODE WAS COMMENTED OUT ON July 12th, 2016; uncomment to do statistical analysis chiSqNorm_linear = [] chiSqNorm_flat = [] rSqAdj = [] numPoints = [] for j in range(len(maxSig)): # Clipping data fluxRatio_meanSubtracted_sigmaClipped = [] fluxRatio_excess = [] fluxAvg_clip = [] x_clip,y_clip = [],[] x_exc,y_exc = [],[] for i in range(len(fluxRatio_meanSubtracted)): if np.abs(fluxRatio_meanSubtracted[i]) < maxSig[j]*fluxRatio_std: fluxRatio_meanSubtracted_sigmaClipped.append(fluxRatio_meanSubtracted[i]) x_clip.append(x[i]) y_clip.append(y[i]) fluxAvg_clip.append(fluxAvg[i]) else: fluxRatio_excess.append(fluxRatio_meanSubtracted[i]) x_exc.append(x[i]) y_exc.append(y[i]) fluxRatio_meanSubtracted_sigmaClipped,fluxRatio_excess = np.array(fluxRatio_meanSubtracted_sigmaClipped),np.array(fluxRatio_excess) x_clip,y_clip,x_exc,y_exc = np.array(x_clip),np.array(y_clip),np.array(x_exc),np.array(y_exc) numPoints.append(float(len(x_clip))) # Analyzing goodness-of-fit of 3D linear model fitted to data: coeffs = sex_stats.linReg3D(x_clip,y_clip,fluxRatio_meanSubtracted_sigmaClipped)[0] linearModelPoints = coeffs[0] + coeffs[1]*x_clip + coeffs[2]*y_clip flatModelPoints = np.ones(np.shape(fluxRatio_meanSubtracted_sigmaClipped))*fluxRatio_mean # SciPy: scipy.stats.chisquare #CSN_lin = spst.chisquare() CSN_lin = sex_stats.chiSquareNormalized(fluxRatio_meanSubtracted_sigmaClipped,linearModelPoints,3) CSN_flat = sex_stats.chiSquareNormalized(fluxRatio_meanSubtracted_sigmaClipped,flatModelPoints,1) RSA = sex_stats.rSquaredAdjusted(fluxRatio_meanSubtracted_sigmaClipped,linearModelPoints,3) chiSqNorm_linear.append(CSN_lin) chiSqNorm_flat.append(CSN_flat) rSqAdj.append(RSA) plot = True # Warning: do not change to true unless length of maxSig small if plot: # Plotting source-wise flux ratio w/ colors plt.scatter(x_clip, y_clip, s=25*np.log10(0.1*np.array(fluxAvg_clip)), c=fluxRatio_meanSubtracted_sigmaClipped, vmin=-1.5*maxSig[j]*fluxRatio_std, vmax=1.5*maxSig[j]*fluxRatio_std, alpha=0.75) plt.axis([0,1600,0,1600]) plt.colorbar() plt.xlabel('X_IMAGE') plt.ylabel('Y_IMAGE') plt.title('Flux Ratio Color Map: sigma cutoff = '+str(maxSig[j])[0:4]) plt.savefig((curr_dir+'/Figures/{}_{}_maxSig{}_fluxRatio_LINETEST.png'.format(img_tag1, img_tag2, str(maxSig[j])[0:4]))) plt.close() hist = False # Warning: do not change to true unless length of maxSig small if hist: # Plotting histogram of flux ratio plt.hist(fluxRatio_meanSubtracted_sigmaClipped,bins=20,color='green') plt.title('Histogram of Flux Ratio') plt.ylabel(('Mean subtracted + clipped @ {} sigma').format(str(maxSig[j])[0:4])) plt.xlabel('Flux ratio') plt.savefig((curr_dir+'/Figures/Hist_{}_{}_maxSig{}_fluxRatio.png'.format(img_tag1, img_tag2, str(maxSig[j])[0:4]))) plt.close() # Changing lists to NumPy arrays: # chiSqNorm_linear,chiSqNorm_flat,rSqAdj = np.array(chiSqNorm_linear),np.array(chiSqNorm_flat),np.array(rSqAdj) # Number of data points analyzed: numPoints = np.array(numPoints) numPoints = numPoints*(1.0/float(len(fluxRatio))) # Plotting reduced chi-square statistic plt.close() plt.plot(maxSig,chiSqNorm_linear,'r-',label='Linear model') plt.plot(maxSig,chiSqNorm_flat,'b-',label='Flat model') plt.plot(maxSig,numPoints,'0.35',label='Frac. of data points') plt.legend() plt.axis([-0.1,1.0,0.0,3.0]) plt.title('Normalized Chi-square vs. Sigma Cutoff: 3D Linear Eq. + Gaussian Noise Test') plt.ylabel('Normalized Chi-square: Linear') plt.xlabel('Sigma Cutoff (# standard deviations from mean)') plt.ylabel('Normalized Chi-square') #plt.savefig(os.path.join(os.getcwd(),'Figures','StatAnalysis','Linear_eq_test_6')) plt.show() ''' # Plotting adjusted r-squared statistic plt.plot(maxSig,rSqAdj,'k-') plt.axis([0.0,1.0,-1.1,1.1]) plt.title('Adjusted r-Squared vs. Sigma Cutoff') plt.xlabel('Sigma Cutoff (# standard deviations from mean)') plt.ylabel('Adjusted r-Squared') plt.show() ''' """ ''' # Testing with artificial data: random noise and linear equations with noise # TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING: #temp = np.std(flux1)*np.random.randn(flux1.size) + np.mean(flux1) #flux1 = temp #flux1 = np.mean(flux1)*np.ones(flux1.size) + np.random.randn(flux1.size) #temp = (np.mean(flux2)/np.mean(flux1))*flux1 + np.std(flux2)*np.random.randn(flux2.size) #flux2 = temp #flux2 += 10.0*(x + y - np.mean(x) - np.mean(y)) # TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING:# TESTING: #'''
gpl-3.0
wenzheli/python_new
com/uva/graph.py
1
4731
import matplotlib.pyplot as plt import math from pylab import * import numpy as np from numpy import convolve def movingaverage (values, window): weights = np.repeat(1.0, window)/window sma = np.convolve(values, weights, 'valid') return sma mcmc= open("/home/liwenzhe/workspace/SGRLDForMMSB/results/Netscience_k100_400/result_mcmc.txt", 'r') svi = open("/home/liwenzhe/workspace/SGRLDForMMSB/results/Netscience_k100_400/result_svi.txt", 'r') lines_mcmc = mcmc.readlines() lines_svi = svi.readlines() n = len(lines_mcmc) m = len(lines_svi) ppx_mcmc = np.zeros(n) ppx_svi = np.zeros(n) for i in range(0,n): strs_mcmc = lines_mcmc[i].split() ppx_mcmc[i] = float(strs_mcmc[0]) if i >= m: ppx_svi[i] = ppx_svi[m-1] else: strs_svi = lines_svi[i].split() ppx_svi[i] = float(strs_svi[0]) t =arange(0.0, n, 1) print n print(len(t)) """ p1, =plot(t/12, ppx_svi) p2, =plot(t/12,ppx_mcmc) legend([p1,p2], ["Stochastic variational inference", "Mini-batch MCMC Sampling"]) xlabel('time (m)') ylabel('perplexity') title('Perplexity for relativity data set(using stratified random node sampling ') grid(True) savefig("relativity.png") show() """ ############################################################## ###### Figure 1 # ############################################################## gibbs= open("results/testdata_k10/ppx_gibbs_sampler.txt", 'r') svi = open("results/testdata_k10/ppx_variational_sampler.txt", 'r') mcmc_online = open("results/testdata_k10/ppx_mcmc_stochastic.txt", 'r') mcmc_batch=open("results/testdata_k10/ppx_mcmc_batch.txt", 'r') lines_gibbs = gibbs.readlines() lines_svi = svi.readlines() lines_mcmc_online = mcmc_online.readlines() lines_mcmc_batch = mcmc_batch.readlines() n1 = len(lines_gibbs) n2 = len(lines_svi) n3 = len(lines_mcmc_batch) n4 = len(lines_mcmc_online) # plot the gibbs sampler ppx_gibbs =[] times_gibbs = np.zeros(n1) ppx_svi = [] times_svi = np.zeros(n2) ppx_mcmc_batch = [] times_mcmc_batch=np.zeros(n3) ppx_mcmc_online = [] times_mcmc_online=np.zeros(n4) avg_mcmc = [] avg_svi = [] avg_gibbs = [] avg_batch = [] for i in range(0, n1): strs = lines_gibbs[i].split() ppx_gibbs.append(float(strs[0])) avg_gibbs.append(np.mean(ppx_gibbs)) times_gibbs[i] = float(strs[1]) for i in range(0, n2): strs = lines_svi[i].split() ppx_svi.append(float(strs[0])) times_svi[i] = float(strs[1]) avg_svi.append(np.mean(ppx_svi)) for i in range(0, n3): strs = lines_mcmc_batch[i].split() ppx_mcmc_batch.append(float(strs[0])) times_mcmc_batch[i] = float(strs[1]) avg_batch.append(np.mean(ppx_mcmc_batch)) for i in range(0, n4): strs = lines_mcmc_online[i].split() ppx_mcmc_online.append(float(strs[0])) times_mcmc_online[i] = float(strs[1]) avg_mcmc.append(np.mean(ppx_mcmc_online)) figure(1) p1, =plot(times_gibbs, avg_gibbs) p2, =plot(times_svi,avg_svi) p3, =plot(times_mcmc_batch, avg_batch) p4, =plot(times_mcmc_online, avg_mcmc) legend([p1,p2,p3,p4], ["Collapsed Gibbs Sampler", "Stochastic Variational Inference","Batch MCMC", "Mini-batch MCMC"]) xlabel('time (s)') ylabel('perplexity') title('Perplexity for testing data set') xlim([1,1000]) grid(True) savefig("small_data_4_methods_k10.png") show() ##################################################### ### Figure 2 # ##################################################### svi = open("ppx_gibbs_sampler.txt", 'r') mcmc_online = open("ppx_mcmc_stochastic.txt", 'r') lines_svi = svi.readlines() lines_mcmc_online = mcmc_online.readlines() n2 = len(lines_svi) n4 = len(lines_mcmc_online) ppx_svi = [] times_svi = np.zeros(n2) ppx_mcmc_online = [] times_mcmc_online=np.zeros(n4) avg_mcmc = [] avg_svi = [] for i in range(0, n2): strs = lines_svi[i].split() ppx_svi.append(float(strs[0])+1.3) times_svi[i] = i*10; avg_svi.append(np.mean(ppx_svi)) for i in range(0, n4): strs = lines_mcmc_online[i].split() ppx_mcmc_online.append(float(strs[0])+1.3) times_mcmc_online[i] = float(strs[1]); avg_mcmc.append(np.mean(ppx_mcmc_online)) axis_font = {'size':'18'} params = {'legend.fontsize': 18, 'legend.linewidth': 2} plt.figure() plt.rcParams.update(params) p2, =plot(times_svi ,avg_svi,'r',linewidth=3.0) p4, =plot(times_mcmc_online, avg_mcmc,'b',linewidth=3.0) plt.legend(loc=2,prop={'fontsize':18}) legend([p4,p2], ["Stochastic mini-batch MCMC","Collapsed Gibbs Sampler"]) xlabel('time (seconds)',**axis_font) ylabel('perplexity',**axis_font) plt.title('US-air Data (K=15)',**axis_font) xlim([0,1600]) ylim([2,10]) grid(True) savefig("us_air_mcmc_gibbs.png") show()
gpl-3.0
Diviyan-Kalainathan/causal-humans
Preprocessing/plot_gen.py
1
4388
''' Generate plots from var info 24/05/2016 ''' import csv, numpy import matplotlib.pyplot as plt num_bool = [] spec_note = [] type_var = [] color_type = [] category = [] obj_subj=[] category_type = [] obj_subj_type =[] mode=2 flags=False if mode==1: with open('input/Variables_info.csv', 'rb') as datafile: var_reader = csv.reader(datafile, delimiter=',') header_var = next(var_reader) for var_row in var_reader: type_var += [var_row[1]] num_bool += [var_row[3]] spec_note += [var_row[4]] category += [int(var_row[5])] obj_subj += [var_row[6]] row_len=0 percent_obj=numpy.zeros((8)) percent_subj=numpy.zeros((8)) for num_col in range(0, 541): if spec_note[num_col] != 'I': if type_var[num_col] == 'C' or (type_var[num_col] == 'D' and spec_note[num_col] == 'T'): row_len += 2 # color_type += ['C'] color_type += ['FC'] category_type += [category[num_col], category[num_col]] obj_subj_type += [obj_subj[num_col], [obj_subj[num_col]]] elif type_var[num_col] == 'D' and spec_note[num_col] != '-2' and spec_note[num_col] != 'T': # print(num_col) row_len += int(num_bool[num_col]) + 1 for i in range(0, int(num_bool[num_col])): color_type += ['D'] category_type += [category[num_col]] obj_subj_type += [obj_subj[num_col]] color_type += ['FD'] category_type += [category[num_col]] obj_subj_type += [obj_subj[num_col]] total = len(category) print 'Objectives :' , obj_subj.count('O') print 'Subjectives :' , obj_subj.count('S') ''' total = len(category_type) for i in range(8): sum_obj=0 sum_subj=0 for j in [j for j, x in enumerate(category_type) if x == i]: if obj_subj_type[j]=='O': sum_obj+=1 elif obj_subj_type[j]=='S': sum_subj+=1 percent_obj[i]= (float(sum_obj)/total)*100 percent_subj[i]=(float(sum_subj)/total)*100 if not flags: percent_obj=percent_obj[1:] percent_subj=percent_subj[1:] ''' for i in range(8): sum_obj=0 sum_subj=0 for j in [j for j, x in enumerate(category) if x == i]: if obj_subj[j]=='O': sum_obj+=1 elif obj_subj[j]=='S': sum_subj+=1 percent_obj[i]= (float(sum_obj)/total)*100 percent_subj[i]=(float(sum_subj)/total)*100 if not flags: percent_obj=percent_obj[1:] percent_subj=percent_subj[1:] N=7 ind = numpy.arange(N) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(ind, percent_obj, width, color='b') rects2 = ax.bar(ind + width, percent_subj, width, color='r') # add some text for labels, title and axes ticks ax.set_ylabel('Proportion des types de questions (%)') ax.set_title('Proportion des types de questions en fonction des categories') ax.set_xticks(ind + width) ax.set_xticklabels(['Activite\n professionnelle/ \n statut', 'Organisation du \ntemps de travail' , 'Contraintes \nphysiques, \nprevention et accidents', 'Organisation du travail' , 'Sante', 'Parcours familial \net professionnel', 'Risques \n pyschosociaux'])#'Drapeaux', ax.legend((rects1[0], rects2[0]), ('Objectives', 'Subjectives')) elif mode==2: with open('input/datacsv.csv','rb') as inputfile: reader=csv.reader(inputfile,delimiter=';') header=next(reader) print(len(header)) dataind=[] count=0 for row in reader: count+=1 for data in row: if data==''or data=='NA': dataind+=[0] else: dataind+=[1] print(numpy.mean(dataind)) def autolabel(rects): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.05*height, '%d' % int(height), ha='center', va='bottom') #autolabel(rects1) #autolabel(rects2) plt.show()
mit
antiface/mne-python
examples/time_frequency/plot_time_frequency_sensors.py
7
2482
""" ============================================================== Time-frequency representations on topographies for MEG sensors ============================================================== Both average power and intertrial coherence are displayed. """ # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.time_frequency import tfr_morlet from mne.datasets import somato print(__doc__) ############################################################################### # Set parameters data_path = somato.data_path() raw_fname = data_path + '/MEG/somato/sef_raw_sss.fif' event_id, tmin, tmax = 1, -1., 3. # Setup for reading the raw data raw = io.Raw(raw_fname) baseline = (None, 0) events = mne.find_events(raw, stim_channel='STI 014') # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=baseline, reject=dict(grad=4000e-13, eog=350e-6)) ############################################################################### # Calculate power and intertrial coherence freqs = np.arange(6, 30, 3) # define frequencies of interest n_cycles = freqs / 2. # different number of cycle per frequency power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=True, decim=3, n_jobs=1) # Baseline correction can be applied to power or done in plots # To illustrate the baseline correction in plots the next line is commented # power.apply_baseline(baseline=(-0.5, 0), mode='logratio') # Inspect power power.plot_topo(baseline=(-0.5, 0), mode='logratio', title='Average power') power.plot([82], baseline=(-0.5, 0), mode='logratio') fig, axis = plt.subplots(1, 2, figsize=(7, 4)) power.plot_topomap(ch_type='grad', tmin=0.5, tmax=1.5, fmin=8, fmax=12, baseline=(-0.5, 0), mode='logratio', axes=axis[0], title='Alpha', vmin=-0.45, vmax=0.45) power.plot_topomap(ch_type='grad', tmin=0.5, tmax=1.5, fmin=13, fmax=25, baseline=(-0.5, 0), mode='logratio', axes=axis[1], title='Beta', vmin=-0.45, vmax=0.45) mne.viz.tight_layout() # Inspect ITC itc.plot_topo(title='Inter-Trial coherence', vmin=0., vmax=1., cmap='Reds')
bsd-3-clause
Erotemic/hotspotter
_scripts/robust_functions.py
2
1500
from __future__ import division import numpy as np import matplotlib.pyplot as plt def L2(x): return x**2 def L1(x): return np.abs(x) def Geman_McClure(x, a=1.0): 'a = outlier threshold' return (x**2) / (1 + (x**2 / a**2)) def Cauchy(x): pass def Beaton_Tukey(x, a=4.0): return (a**2)/6 * (1.0 - (1.0 - (x/a)**2)**3)**(np.array(np.abs(x) <= a, dtype=np.float)) #np.array[(a**2)/6 * (1 - (1 - (u/a)**2)**3) if np.abs(u) <= a else (a**2)/6 for u in x] def Beaton_Tukey_weight(x, a=4.0): return np.array(np.abs(x) <= a, dtype=np.float) * (1 - (x/a)**2)**2 def visualize_func(func): x_radius = 42 x_data = np.linspace(-x_radius,x_radius, 1000) print(func) func_name = func.func_name func_vars = func.func_code.co_varnames print(func_name) fig = plt.figure() ax = plt.subplot(111) ax.set_title(func_name) if len(func_vars) == 1 or True: y_data = func(x_data) plt.plot(x_data, y_data) else: pmax = 1 num = 10 for a in np.linspace(-pmax,pmax,num): color = plt.get_cmap('jet')((a+pmax)/(pmax*2)) y_data = func(x_data, a) plt.plot(x_data, y_data, color=color, label=('a=%r' % a)) plt.legend() fig.show() if __name__ == '__main__': robust_functions = [L1,L2,Geman_McClure, Beaton_Tukey, Beaton_Tukey_weight] for func in iter(robust_functions): visualize_func(func) try: __IPYTHON__ except: plt.show() pass
apache-2.0
AllenDowney/ThinkStats2
code/regression.py
1
10016
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import math import pandas import patsy import random import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf import re import chap01soln import first import linear import thinkplot import thinkstats2 def QuickLeastSquares(xs, ys): """Estimates linear least squares fit and returns MSE. xs: sequence of values ys: sequence of values returns: inter, slope, mse """ n = float(len(xs)) meanx = xs.mean() dxs = xs - meanx varx = np.dot(dxs, dxs) / n meany = ys.mean() dys = ys - meany cov = np.dot(dxs, dys) / n slope = cov / varx inter = meany - slope * meanx res = ys - (inter + slope * xs) mse = np.dot(res, res) / n return inter, slope, mse def ReadVariables(): """Reads Stata dictionary files for NSFG data. returns: DataFrame that maps variables names to descriptions """ vars1 = thinkstats2.ReadStataDct('2002FemPreg.dct').variables vars2 = thinkstats2.ReadStataDct('2002FemResp.dct').variables all_vars = vars1.append(vars2) all_vars.index = all_vars.name return all_vars def JoinFemResp(df): """Reads the female respondent file and joins on caseid. df: DataFrame """ resp = chap01soln.ReadFemResp() resp.index = resp.caseid join = df.join(resp, on='caseid', rsuffix='_r') # convert from colon-separated time strings to datetimes join.screentime = pandas.to_datetime(join.screentime) return join MESSAGE = """If you get this error, it's probably because you are running Python 3 and the nice people who maintain Patsy have not fixed this problem: https://github.com/pydata/patsy/issues/34 While we wait, I suggest running this example in Python 2, or skipping this example.""" def GoMining(df): """Searches for variables that predict birth weight. df: DataFrame of pregnancy records returns: list of (rsquared, variable name) pairs """ variables = [] for name in df.columns: try: if df[name].var() < 1e-7: continue formula = 'totalwgt_lb ~ agepreg + ' + name formula = formula.encode('ascii') model = smf.ols(formula, data=df) if model.nobs < len(df)/2: continue results = model.fit() except (ValueError, TypeError): continue except patsy.PatsyError: raise ValueError(MESSAGE) variables.append((results.rsquared, name)) return variables def MiningReport(variables, n=30): """Prints variables with the highest R^2. t: list of (R^2, variable name) pairs n: number of pairs to print """ all_vars = ReadVariables() variables.sort(reverse=True) for mse, name in variables[:n]: key = re.sub('_r$', '', name) try: desc = all_vars.loc[key].desc if isinstance(desc, pandas.Series): desc = desc[0] print(name, mse, desc) except KeyError: print(name, mse) def PredictBirthWeight(live): """Predicts birth weight of a baby at 30 weeks. live: DataFrame of live births """ live = live[live.prglngth>30] join = JoinFemResp(live) t = GoMining(join) MiningReport(t) formula = ('totalwgt_lb ~ agepreg + C(race) + babysex==1 + ' 'nbrnaliv>1 + paydu==1 + totincr') results = smf.ols(formula, data=join).fit() SummarizeResults(results) def SummarizeResults(results): """Prints the most important parts of linear regression results: results: RegressionResults object """ for name, param in results.params.items(): pvalue = results.pvalues[name] print('%s %0.3g (%.3g)' % (name, param, pvalue)) try: print('R^2 %.4g' % results.rsquared) ys = results.model.endog print('Std(ys) %.4g' % ys.std()) print('Std(res) %.4g' % results.resid.std()) except AttributeError: print('R^2 %.4g' % results.prsquared) def RunSimpleRegression(live): """Runs a simple regression and compare results to thinkstats2 functions. live: DataFrame of live births """ # run the regression with thinkstats2 functions live_dropna = live.dropna(subset=['agepreg', 'totalwgt_lb']) ages = live_dropna.agepreg weights = live_dropna.totalwgt_lb inter, slope = thinkstats2.LeastSquares(ages, weights) res = thinkstats2.Residuals(ages, weights, inter, slope) r2 = thinkstats2.CoefDetermination(weights, res) # run the regression with statsmodels formula = 'totalwgt_lb ~ agepreg' model = smf.ols(formula, data=live) results = model.fit() SummarizeResults(results) def AlmostEquals(x, y, tol=1e-6): return abs(x-y) < tol assert(AlmostEquals(results.params['Intercept'], inter)) assert(AlmostEquals(results.params['agepreg'], slope)) assert(AlmostEquals(results.rsquared, r2)) def PivotTables(live): """Prints a pivot table comparing first babies to others. live: DataFrame of live births """ table = pandas.pivot_table(live, rows='isfirst', values=['totalwgt_lb', 'agepreg']) print(table) def FormatRow(results, columns): """Converts regression results to a string. results: RegressionResults object returns: string """ t = [] for col in columns: coef = results.params.get(col, np.nan) pval = results.pvalues.get(col, np.nan) if np.isnan(coef): s = '--' elif pval < 0.001: s = '%0.3g (*)' % (coef) else: s = '%0.3g (%0.2g)' % (coef, pval) t.append(s) try: t.append('%.2g' % results.rsquared) except AttributeError: t.append('%.2g' % results.prsquared) return t def RunModels(live): """Runs regressions that predict birth weight. live: DataFrame of pregnancy records """ columns = ['isfirst[T.True]', 'agepreg', 'agepreg2'] header = ['isfirst', 'agepreg', 'agepreg2'] rows = [] formula = 'totalwgt_lb ~ isfirst' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ isfirst + agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) live['agepreg2'] = live.agepreg**2 formula = 'totalwgt_lb ~ isfirst + agepreg + agepreg2' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) PrintTabular(rows, header) def PrintTabular(rows, header): """Prints results in LaTeX tabular format. rows: list of rows header: list of strings """ s = r'\hline ' + ' & '.join(header) + r' \\ \hline' print(s) for row in rows: s = ' & '.join(row) + r' \\' print(s) print(r'\hline') def LogisticRegressionExample(): """Runs a simple example of logistic regression and prints results. """ y = np.array([0, 1, 0, 1]) x1 = np.array([0, 0, 0, 1]) x2 = np.array([0, 1, 1, 1]) beta = [-1.5, 2.8, 1.1] log_o = beta[0] + beta[1] * x1 + beta[2] * x2 print(log_o) o = np.exp(log_o) print(o) p = o / (o+1) print(p) like = y * p + (1-y) * (1-p) print(like) print(np.prod(like)) df = pandas.DataFrame(dict(y=y, x1=x1, x2=x2)) results = smf.logit('y ~ x1 + x2', data=df).fit() print(results.summary()) def RunLogisticModels(live): """Runs regressions that predict sex. live: DataFrame of pregnancy records """ #live = linear.ResampleRowsWeighted(live) df = live[live.prglngth>30] df['boy'] = (df.babysex==1).astype(int) df['isyoung'] = (df.agepreg<20).astype(int) df['isold'] = (df.agepreg<35).astype(int) df['season'] = (((df.datend+1) % 12) / 3).astype(int) # run the simple model model = smf.logit('boy ~ agepreg', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # run the complex model model = smf.logit('boy ~ agepreg + hpagelb + birthord + C(race)', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # make the scatter plot exog = pandas.DataFrame(model.exog, columns=model.exog_names) endog = pandas.DataFrame(model.endog, columns=[model.endog_names]) xs = exog['agepreg'] lo = results.fittedvalues o = np.exp(lo) p = o / (o+1) #thinkplot.Scatter(xs, p, alpha=0.1) #thinkplot.Show() # compute accuracy actual = endog['boy'] baseline = actual.mean() predict = (results.predict() >= 0.5) true_pos = predict * actual true_neg = (1 - predict) * (1 - actual) acc = (sum(true_pos) + sum(true_neg)) / len(actual) print(acc, baseline) columns = ['agepreg', 'hpagelb', 'birthord', 'race'] new = pandas.DataFrame([[35, 39, 3, 1]], columns=columns) y = results.predict(new) print(y) def main(name, data_dir='.'): thinkstats2.RandomSeed(17) LogisticRegressionExample() live, firsts, others = first.MakeFrames() live['isfirst'] = (live.birthord == 1) RunLogisticModels(live) RunSimpleRegression(live) RunModels(live) PredictBirthWeight(live) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
boland1992/SeisSuite
build/lib.linux-x86_64-2.7/seissuite/response/FDSN_resp.py
8
14082
# -*- coding: utf-8 -*- """ Created on Fri Jul 17 15:38:50 2015 @author: boland """ from obspy.fdsn import Client from obspy import UTCDateTime import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.basemap import Basemap import pickle import os from scipy.optimize import fsolve import pylab # set range of periods that seismic noise gives a resolveable signal: period_range = [1.,40.] global freq_range freq_range = [1./max(period_range), 1./min(period_range)] global acceptible_channels acceptible_channels = ['BHZ', 'MHZ', 'LHZ', 'VHZ', 'UHZ'] #'BNZ', 'MNZ', 'LNZ', 'VNZ', 'UNZ'] outfolder = '/storage/ANT/NZ Station Responses' # create list of all possible FDSN clients that work under obspy. client_list = (u'BGR', u'ETH', u'GEONET', u'GFZ', u'INGV', u'IPGP', u'IRIS', u'KOERI', u'LMU', u'NCEDC', u'NEIP', u'NERIES', u'ODC', u'ORFEUS', u'RESIF', u'SCEDC', u'USGS', u'USP') client = Client("GEONET") starttime = UTCDateTime("2014-01-01") endtime = UTCDateTime("2015-01-01") inventory = client.get_stations(network="*", station="*", loc='*', channel="*Z", starttime=starttime, endtime=endtime, level="response") for net in inventory: print net for sta in net: print sta quit() # save all response plots #inventory[0].plot_response(min_freq=1E-4, # channel="BHZ", # location="10", # outfile=None) #help(inventory[0][0]) # goal: to populate a list of stations with appropriate seismic noise frequency # response ranges. def find_sample(reponse): """ Function that can find the sampling rate for a given station. """ for stage in reponse.response_stages[::-1]: if (stage.decimation_input_sample_rate is not None and stage.decimation_factor is not None): sampling_rate = (stage.decimation_input_sample_rate / stage.decimation_factor) break else: msg = ("Failed to autodetect sampling rate of channel from " "response stages. Please manually specify parameter " "`sampling_rate`") raise Exception(msg) return sampling_rate def get_response(min_freq, response, sampling_rate): t_samp = 1.0 / sampling_rate nyquist = sampling_rate / 2.0 nfft = sampling_rate / min_freq cpx_response, freq = response.get_evalresp_response( t_samp=t_samp, nfft=nfft) return cpx_response, freq def response_window(cpx_response, freq, tolerance=0.7): """ Function that can evaluate the response of a given seismic instrument and return a frequency "window" for which the instrument is most effective. The lower the tolerance value (must be float between 0 and 1), the larger but less accurate the frequency window will be. """ #make sure that the gain response array is a numpy array cpx_response = np.asarray(cpx_response) # first find maximum gain response in cpx_reponse max_gain = np.max(cpx_response) gain_tol = max_gain * tolerance arr2 = np.column_stack((freq, abs(cpx_response))) # find indices of cpx_reponse where the grain is above the tolerance gain_above = np.argwhere(cpx_response >= gain_tol) lower_index, upper_index = gain_above[0], gain_above[-1] arr3 = arr2[lower_index:upper_index] window = np.vstack((arr3[0], arr3[-1])) #plt.figure() #plt.plot(freq, abs(cpx_response)) #plt.plot(arr3[:,0], arr3[:,1], c='r') #plt.scatter(window[:,0], window[:,1], c='g', s=30) #plt.show() return window def freq_check(freq_range, freq_window): """ Function to return True if any of frequencies in the frequency range found using the response_window function are contained within the freq_range set in the initial variables of this programme. """ boolean = False if any(np.min(freq_range) < freq < np.max(freq_range) \ for freq in freq_window): boolean = True return boolean def response_plots(inventory, outfolder, acceptible_channels): min_freq = 1e-4 for net in inventory: for sta in net: #print sta.code channels = sta.channels for channel in channels: if str(channel.code) in acceptible_channels: resp = channel.response sample_rate = find_sample(resp) cpx_response, freq = get_response(min_freq, resp, sample_rate) window = response_window(cpx_response, freq) #plt.figure() #plt.loglog(freq, abs(cpx_response)) #plt.plot(window[:,0], window[:,1],'r') #plt.scatter(freq_range, [ np.max(cpx_response), # np.max(cpx_response)], c='g', s=35) #plt.show() outname = '{}.{}.{}.{}.svg'.format(str(net.code), str(sta.code), str(channel.location_code), str(channel.code)) print outname outfile = os.path.join(outfolder,outname) resp.plot(min_freq, outfile = outfile) freq_window = window[:,0] print freq_check(freq_range, freq_window) def resp_in_window(inventory, freq_range, acceptible_channels): """ Function to return a list of all station codes that whose frequency response window contains any frequencies in the frequency range specified for the given study e.g. 0.025-1Hz for current ambient noise studies (2015). """ min_freq = 1e-4 chan_codes = [] for net in inventory: for sta in net: #print sta.code channels = sta.channels for channel in channels: if str(channel.code) in acceptible_channels: resp = channel.response sample_rate = find_sample(resp) cpx_response, freq = get_response(min_freq, resp, sample_rate) window = response_window(cpx_response, freq) #plt.figure() #plt.loglog(freq, abs(cpx_response)) #plt.plot(window[:,0], window[:,1],'r') #plt.scatter(freq_range, [ np.max(cpx_response), # np.max(cpx_response)], c='g', s=35) #plt.show() freq_window = window[:,0] check = freq_check(freq_range, freq_window) chan_code = '{}.{}.{}.{}'.format(str(net.code), str(sta.code), str(channel.location_code), str(channel.code)) if chan_code not in chan_codes and check: chan_codes.append(chan_code) return chan_codes #help(inventory[0][0]) #resp = inventory[0][0][0].response #print resp # list of acceptible channels for ambient noise studies #print inventory.get_contents()['channels'] #print inventory.get_contents().keys() #for inv in inventory: # try: # inv.plot_response(min_freq=1E-4, # channel="BHZ", # location="10", # outfile=None) def get_latlon(inv, check_channels=False, check_codes=False): """ Function to return latitude and longitude coordinates of all stations in an obspy inventory class object. """ lats = [] lons = [] for net in inv: for sta in net: label_ = " " + ".".join((net.code, sta.code)) if sta.latitude is None or sta.longitude is None: msg = ("Station '%s' does not have latitude/longitude " "information and will not be plotted." % label_) print msg continue for channel in sta.channels: # perform another loop to check if the channels for the station contain # any of the acceptible channels for ambient noise tomography. if check_channels: channels = sta.channels channel_list = [] for channel in channels: channel_list.append(channel.code) if any(item in acceptible_channels for item in channel_list): lats.append(sta.latitude) lons.append(sta.longitude) elif check_codes: chan_codes = resp_in_window(inv, freq_range, acceptible_channels) chan_code = '{}.{}.{}.{}'.format(str(net.code), str(sta.code), str(channel.location_code), str(channel.code)) if chan_code in chan_codes: lats.append(sta.latitude) lons.append(sta.longitude) elif check_codes and check_channels: chan_codes = resp_in_window(inv, freq_range, acceptible_channels) chan_code = '{}.{}.{}.{}'.format(str(net.code), str(sta.code), str(channel.location_code), str(channel.code)) channels = sta.channels channel_list = [] for channel in channels: channel_list.append(channel.code) if chan_code in chan_codes and \ any(item in acceptible_channels for item in channel_list): lats.append(sta.latitude) lons.append(sta.longitude) else: lats.append(sta.latitude) lons.append(sta.longitude) return np.column_stack((lons, lats)) coords_original = get_latlon(inventory, check_channels=False) coords_checkchannels = get_latlon(inventory, check_channels=True) coords_checkfreq = get_latlon(inventory, check_codes=True) coords_combcheck = get_latlon(inventory, check_channels=True, check_codes=True) # set boundaries bbox = [100, 179, -50, -30] def remove_coords(coordinates, bbox): """ Function that removes coordinates from outside of a specified bbox. coordinates: (2,N) numpy array, or python array or list bbox: [xmin, xmax, ymin, ymax] """ xmin, xmax, ymin, ymax = bbox[0], bbox[1], bbox[2], bbox[3] #convert to python list coords = list(coordinates) for i, coord in enumerate(coords): if coord[0] < xmin or coord[0] > xmax or \ coord[1] < ymin or coord[1] > ymax: del coords[i] return np.asarray(coords) coords_original = remove_coords(coords_original, bbox) fig1 = plt.figure(figsize=(15,15)) plt.title('Locations of All Available NZ Geonet Seismic Stations') plt.ylabel('Latitude (Degrees)') plt.xlabel('Longitude (Degrees)') plt.scatter(coords_original[:,0], coords_original[:,1]) fig1.savefig('NZ_Geonet_Stations.svg', format='SVG') plt.clf coords_checkchannels = remove_coords(coords_checkchannels, bbox) fig2 = plt.figure(figsize=(15,15)) plt.title('Locations of All NZ Geonet Seismic Stations \n \ with Chosen List of Channel Names') plt.ylabel('Latitude (Degrees)') plt.xlabel('Longitude (Degrees)') plt.scatter(coords_checkchannels[:,0], coords_checkchannels[:,1]) fig2.savefig('NZ_coords_checkchannels_Geonet_Stations.svg', format='SVG') plt.clf coords_checkfreq = remove_coords(coords_checkfreq, bbox) fig3 = plt.figure(figsize=(15,15)) plt.title('Locations of All NZ Geonet Seismic Stations \n \ within Top 30% of Instrument Frequency Response Range') plt.ylabel('Latitude (Degrees)') plt.xlabel('Longitude (Degrees)') plt.scatter(coords_checkfreq[:,0], coords_checkfreq[:,1]) fig3.savefig('NZ_coords_checkfreq_Geonet_Stations.svg', format='SVG') plt.clf coords_combcheck = remove_coords(coords_combcheck, bbox) fig4 = plt.figure(figsize=(15,15)) plt.title('Locations of All NZ Geonet Seismic Stations \n \ with Combined Channel List and Frequency Response Range Checks') plt.ylabel('Latitude (Degrees)') plt.xlabel('Longitude (Degrees)') plt.scatter(coords_combcheck[:,0], coords_combcheck[:,1]) fig4.savefig('NZ_coords_combcheck_Geonet_Stations.svg', format='SVG') plt.clf # mainland New Zealand Geonet 2014 operational station locations NZ_COORDS = coords_combcheck with open(u'NZ_COORDS.pickle', 'wb') as f: pickle.dump(NZ_COORDS, f, protocol=2)
gpl-3.0
saifrahmed/bokeh
bokeh/tests/test_protocol.py
42
3959
from __future__ import absolute_import import unittest from unittest import skipIf import numpy as np try: import pandas as pd is_pandas = True except ImportError as e: is_pandas = False class TestBokehJSONEncoder(unittest.TestCase): def setUp(self): from bokeh.protocol import BokehJSONEncoder self.encoder = BokehJSONEncoder() def test_fail(self): self.assertRaises(TypeError, self.encoder.default, {'testing': 1}) @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_panda_series(self): s = pd.Series([1, 3, 5, 6, 8]) self.assertEqual(self.encoder.default(s), [1, 3, 5, 6, 8]) def test_numpyarray(self): a = np.arange(5) self.assertEqual(self.encoder.default(a), [0, 1, 2, 3, 4]) def test_numpyint(self): npint = np.asscalar(np.int64(1)) self.assertEqual(self.encoder.default(npint), 1) self.assertIsInstance(self.encoder.default(npint), int) def test_numpyfloat(self): npfloat = np.float64(1.33) self.assertEqual(self.encoder.default(npfloat), 1.33) self.assertIsInstance(self.encoder.default(npfloat), float) def test_numpybool_(self): nptrue = np.bool_(True) self.assertEqual(self.encoder.default(nptrue), True) self.assertIsInstance(self.encoder.default(nptrue), bool) @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_pd_timestamp(self): ts = pd.tslib.Timestamp('April 28, 1948') self.assertEqual(self.encoder.default(ts), -684115200000) class TestSerializeJson(unittest.TestCase): def setUp(self): from bokeh.protocol import serialize_json, deserialize_json self.serialize = serialize_json self.deserialize = deserialize_json def test_with_basic(self): self.assertEqual(self.serialize({'test': [1, 2, 3]}), '{"test": [1, 2, 3]}') def test_with_np_array(self): a = np.arange(5) self.assertEqual(self.serialize(a), '[0, 1, 2, 3, 4]') @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_with_pd_series(self): s = pd.Series([0, 1, 2, 3, 4]) self.assertEqual(self.serialize(s), '[0, 1, 2, 3, 4]') def test_nans_and_infs(self): arr = np.array([np.nan, np.inf, -np.inf, 0]) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_nans_and_infs_pandas(self): arr = pd.Series(np.array([np.nan, np.inf, -np.inf, 0])) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_datetime_types(self): """should convert to millis """ idx = pd.date_range('2001-1-1', '2001-1-5') df = pd.DataFrame({'vals' :idx}, index=idx) serialized = self.serialize({'vals' : df.vals, 'idx' : df.index}) deserialized = self.deserialize(serialized) baseline = {u'vals': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000], u'idx': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000] } assert deserialized == baseline if __name__ == "__main__": unittest.main()
bsd-3-clause
shoyer/xray
xarray/tests/test_concat.py
1
13577
from copy import deepcopy import numpy as np import pandas as pd import pytest from xarray import DataArray, Dataset, Variable, concat from xarray.core import dtypes from . import ( InaccessibleArray, assert_array_equal, assert_equal, assert_identical, raises_regex, requires_dask) from .test_dataset import create_test_data class TestConcatDataset(object): def test_concat(self): # TODO: simplify and split this test case # drop the third dimension to keep things relatively understandable data = create_test_data() for k in list(data.variables): if 'dim3' in data[k].dims: del data[k] split_data = [data.isel(dim1=slice(3)), data.isel(dim1=slice(3, None))] assert_identical(data, concat(split_data, 'dim1')) def rectify_dim_order(dataset): # return a new dataset with all variable dimensions transposed into # the order in which they are found in `data` return Dataset(dict((k, v.transpose(*data[k].dims)) for k, v in dataset.data_vars.items()), dataset.coords, attrs=dataset.attrs) for dim in ['dim1', 'dim2']: datasets = [g for _, g in data.groupby(dim, squeeze=False)] assert_identical(data, concat(datasets, dim)) dim = 'dim2' assert_identical( data, concat(datasets, data[dim])) assert_identical( data, concat(datasets, data[dim], coords='minimal')) datasets = [g for _, g in data.groupby(dim, squeeze=True)] concat_over = [k for k, v in data.coords.items() if dim in v.dims and k != dim] actual = concat(datasets, data[dim], coords=concat_over) assert_identical(data, rectify_dim_order(actual)) actual = concat(datasets, data[dim], coords='different') assert_identical(data, rectify_dim_order(actual)) # make sure the coords argument behaves as expected data.coords['extra'] = ('dim4', np.arange(3)) for dim in ['dim1', 'dim2']: datasets = [g for _, g in data.groupby(dim, squeeze=True)] actual = concat(datasets, data[dim], coords='all') expected = np.array([data['extra'].values for _ in range(data.dims[dim])]) assert_array_equal(actual['extra'].values, expected) actual = concat(datasets, data[dim], coords='different') assert_equal(data['extra'], actual['extra']) actual = concat(datasets, data[dim], coords='minimal') assert_equal(data['extra'], actual['extra']) # verify that the dim argument takes precedence over # concatenating dataset variables of the same name dim = (2 * data['dim1']).rename('dim1') datasets = [g for _, g in data.groupby('dim1', squeeze=False)] expected = data.copy() expected['dim1'] = dim assert_identical(expected, concat(datasets, dim)) def test_concat_data_vars(self): data = Dataset({'foo': ('x', np.random.randn(10))}) objs = [data.isel(x=slice(5)), data.isel(x=slice(5, None))] for data_vars in ['minimal', 'different', 'all', [], ['foo']]: actual = concat(objs, dim='x', data_vars=data_vars) assert_identical(data, actual) def test_concat_coords(self): data = Dataset({'foo': ('x', np.random.randn(10))}) expected = data.assign_coords(c=('x', [0] * 5 + [1] * 5)) objs = [data.isel(x=slice(5)).assign_coords(c=0), data.isel(x=slice(5, None)).assign_coords(c=1)] for coords in ['different', 'all', ['c']]: actual = concat(objs, dim='x', coords=coords) assert_identical(expected, actual) for coords in ['minimal', []]: with raises_regex(ValueError, 'not equal across'): concat(objs, dim='x', coords=coords) def test_concat_constant_index(self): # GH425 ds1 = Dataset({'foo': 1.5}, {'y': 1}) ds2 = Dataset({'foo': 2.5}, {'y': 1}) expected = Dataset({'foo': ('y', [1.5, 2.5]), 'y': [1, 1]}) for mode in ['different', 'all', ['foo']]: actual = concat([ds1, ds2], 'y', data_vars=mode) assert_identical(expected, actual) with raises_regex(ValueError, 'not equal across datasets'): concat([ds1, ds2], 'y', data_vars='minimal') def test_concat_size0(self): data = create_test_data() split_data = [data.isel(dim1=slice(0, 0)), data] actual = concat(split_data, 'dim1') assert_identical(data, actual) actual = concat(split_data[::-1], 'dim1') assert_identical(data, actual) def test_concat_autoalign(self): ds1 = Dataset({'foo': DataArray([1, 2], coords=[('x', [1, 2])])}) ds2 = Dataset({'foo': DataArray([1, 2], coords=[('x', [1, 3])])}) actual = concat([ds1, ds2], 'y') expected = Dataset({'foo': DataArray([[1, 2, np.nan], [1, np.nan, 2]], dims=['y', 'x'], coords={'x': [1, 2, 3]})}) assert_identical(expected, actual) def test_concat_errors(self): data = create_test_data() split_data = [data.isel(dim1=slice(3)), data.isel(dim1=slice(3, None))] with raises_regex(ValueError, 'must supply at least one'): concat([], 'dim1') with raises_regex(ValueError, 'are not coordinates'): concat([data, data], 'new_dim', coords=['not_found']) with raises_regex(ValueError, 'global attributes not'): data0, data1 = deepcopy(split_data) data1.attrs['foo'] = 'bar' concat([data0, data1], 'dim1', compat='identical') assert_identical( data, concat([data0, data1], 'dim1', compat='equals')) with raises_regex(ValueError, 'encountered unexpected'): data0, data1 = deepcopy(split_data) data1['foo'] = ('bar', np.random.randn(10)) concat([data0, data1], 'dim1') with raises_regex(ValueError, 'compat.* invalid'): concat(split_data, 'dim1', compat='foobar') with raises_regex(ValueError, 'unexpected value for'): concat([data, data], 'new_dim', coords='foobar') with raises_regex( ValueError, 'coordinate in some datasets but not others'): concat([Dataset({'x': 0}), Dataset({'x': [1]})], dim='z') with raises_regex( ValueError, 'coordinate in some datasets but not others'): concat([Dataset({'x': 0}), Dataset({}, {'x': 1})], dim='z') with raises_regex(ValueError, 'no longer a valid'): concat([data, data], 'new_dim', mode='different') with raises_regex(ValueError, 'no longer a valid'): concat([data, data], 'new_dim', concat_over='different') def test_concat_promote_shape(self): # mixed dims within variables objs = [Dataset({}, {'x': 0}), Dataset({'x': [1]})] actual = concat(objs, 'x') expected = Dataset({'x': [0, 1]}) assert_identical(actual, expected) objs = [Dataset({'x': [0]}), Dataset({}, {'x': 1})] actual = concat(objs, 'x') assert_identical(actual, expected) # mixed dims between variables objs = [Dataset({'x': [2], 'y': 3}), Dataset({'x': [4], 'y': 5})] actual = concat(objs, 'x') expected = Dataset({'x': [2, 4], 'y': ('x', [3, 5])}) assert_identical(actual, expected) # mixed dims in coord variable objs = [Dataset({'x': [0]}, {'y': -1}), Dataset({'x': [1]}, {'y': ('x', [-2])})] actual = concat(objs, 'x') expected = Dataset({'x': [0, 1]}, {'y': ('x', [-1, -2])}) assert_identical(actual, expected) # scalars with mixed lengths along concat dim -- values should repeat objs = [Dataset({'x': [0]}, {'y': -1}), Dataset({'x': [1, 2]}, {'y': -2})] actual = concat(objs, 'x') expected = Dataset({'x': [0, 1, 2]}, {'y': ('x', [-1, -2, -2])}) assert_identical(actual, expected) # broadcast 1d x 1d -> 2d objs = [Dataset({'z': ('x', [-1])}, {'x': [0], 'y': [0]}), Dataset({'z': ('y', [1])}, {'x': [1], 'y': [0]})] actual = concat(objs, 'x') expected = Dataset({'z': (('x', 'y'), [[-1], [1]])}, {'x': [0, 1], 'y': [0]}) assert_identical(actual, expected) def test_concat_do_not_promote(self): # GH438 objs = [Dataset({'y': ('t', [1])}, {'x': 1, 't': [0]}), Dataset({'y': ('t', [2])}, {'x': 1, 't': [0]})] expected = Dataset({'y': ('t', [1, 2])}, {'x': 1, 't': [0, 0]}) actual = concat(objs, 't') assert_identical(expected, actual) objs = [Dataset({'y': ('t', [1])}, {'x': 1, 't': [0]}), Dataset({'y': ('t', [2])}, {'x': 2, 't': [0]})] with pytest.raises(ValueError): concat(objs, 't', coords='minimal') def test_concat_dim_is_variable(self): objs = [Dataset({'x': 0}), Dataset({'x': 1})] coord = Variable('y', [3, 4]) expected = Dataset({'x': ('y', [0, 1]), 'y': [3, 4]}) actual = concat(objs, coord) assert_identical(actual, expected) def test_concat_multiindex(self): x = pd.MultiIndex.from_product([[1, 2, 3], ['a', 'b']]) expected = Dataset({'x': x}) actual = concat([expected.isel(x=slice(2)), expected.isel(x=slice(2, None))], 'x') assert expected.equals(actual) assert isinstance(actual.x.to_index(), pd.MultiIndex) @pytest.mark.parametrize('fill_value', [dtypes.NA, 2, 2.0]) def test_concat_fill_value(self, fill_value): datasets = [Dataset({'a': ('x', [2, 3]), 'x': [1, 2]}), Dataset({'a': ('x', [1, 2]), 'x': [0, 1]})] if fill_value == dtypes.NA: # if we supply the default, we expect the missing value for a # float array fill_value = np.nan expected = Dataset({'a': (('t', 'x'), [[fill_value, 2, 3], [1, 2, fill_value]])}, {'x': [0, 1, 2]}) actual = concat(datasets, dim='t', fill_value=fill_value) assert_identical(actual, expected) class TestConcatDataArray(object): def test_concat(self): ds = Dataset({'foo': (['x', 'y'], np.random.random((2, 3))), 'bar': (['x', 'y'], np.random.random((2, 3)))}, {'x': [0, 1]}) foo = ds['foo'] bar = ds['bar'] # from dataset array: expected = DataArray(np.array([foo.values, bar.values]), dims=['w', 'x', 'y'], coords={'x': [0, 1]}) actual = concat([foo, bar], 'w') assert_equal(expected, actual) # from iteration: grouped = [g for _, g in foo.groupby('x')] stacked = concat(grouped, ds['x']) assert_identical(foo, stacked) # with an index as the 'dim' argument stacked = concat(grouped, ds.indexes['x']) assert_identical(foo, stacked) actual = concat([foo[0], foo[1]], pd.Index([0, 1]) ).reset_coords(drop=True) expected = foo[:2].rename({'x': 'concat_dim'}) assert_identical(expected, actual) actual = concat([foo[0], foo[1]], [0, 1]).reset_coords(drop=True) expected = foo[:2].rename({'x': 'concat_dim'}) assert_identical(expected, actual) with raises_regex(ValueError, 'not identical'): concat([foo, bar], dim='w', compat='identical') with raises_regex(ValueError, 'not a valid argument'): concat([foo, bar], dim='w', data_vars='minimal') def test_concat_encoding(self): # Regression test for GH1297 ds = Dataset({'foo': (['x', 'y'], np.random.random((2, 3))), 'bar': (['x', 'y'], np.random.random((2, 3)))}, {'x': [0, 1]}) foo = ds['foo'] foo.encoding = {"complevel": 5} ds.encoding = {"unlimited_dims": 'x'} assert concat([foo, foo], dim="x").encoding == foo.encoding assert concat([ds, ds], dim="x").encoding == ds.encoding @requires_dask def test_concat_lazy(self): import dask.array as da arrays = [DataArray( da.from_array(InaccessibleArray(np.zeros((3, 3))), 3), dims=['x', 'y']) for _ in range(2)] # should not raise combined = concat(arrays, dim='z') assert combined.shape == (2, 3, 3) assert combined.dims == ('z', 'x', 'y') @pytest.mark.parametrize('fill_value', [dtypes.NA, 2, 2.0]) def test_concat_fill_value(self, fill_value): foo = DataArray([1, 2], coords=[('x', [1, 2])]) bar = DataArray([1, 2], coords=[('x', [1, 3])]) if fill_value == dtypes.NA: # if we supply the default, we expect the missing value for a # float array fill_value = np.nan expected = DataArray([[1, 2, fill_value], [1, fill_value, 2]], dims=['y', 'x'], coords={'x': [1, 2, 3]}) actual = concat((foo, bar), dim='y', fill_value=fill_value) assert_identical(actual, expected)
apache-2.0
AnasGhrab/scikit-learn
sklearn/pipeline.py
162
21103
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .utils.metaestimators import if_delegate_has_method from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Read more in the :ref:`User Guide <pipeline>`. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Attributes ---------- named_steps : dict Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... >>> # getting the selected features chosen by anova_filter >>> anova_svm.named_steps['anova'].get_support() ... # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, False, False, True, False, True, True, True, False, False, True, False, True, False, False, False, False, True], dtype=bool) """ # BaseEstimator interface def __init__(self, steps): names, estimators = zip(*steps) if len(dict(steps)) != len(steps): raise ValueError("Provided step names are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(steps) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps of the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) @property def _estimator_type(self): return self.steps[-1][1]._estimator_type def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(Pipeline, self).get_params(deep=False)) return out @property def named_steps(self): return dict(self.steps) @property def _final_estimator(self): return self.steps[-1][1] # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) @if_delegate_has_method(delegate='_final_estimator') def fit_predict(self, X, y=None, **fit_params): """Applies fit_predict of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) return self.steps[-1][-1].fit_predict(Xt, y, **fit_params) @if_delegate_has_method(delegate='_final_estimator') def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict_log_proba(self, X): """Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the final estimator implements predict_log_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def inverse_transform(self, X): """Applies inverse transform to the data. Starts with the last step of the pipeline and applies ``inverse_transform`` in inverse order of the pipeline steps. Valid only if all steps of the pipeline implement inverse_transform. Parameters ---------- X : iterable Data to inverse transform. Must fulfill output requirements of the last step of the pipeline. """ if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score. Parameters ---------- X : iterable Data to score. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Targets used for scoring. Must fulfill label requirements for all steps of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Read more in the :ref:`User Guide <feature_union>`. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(FeatureUnion, self).get_params(deep=False)) return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
boisvert42/baseball-for-fun
on_pace/on_pace.py
1
1487
#%% import pandas as pd import matplotlib.pyplot as plt from scipy.stats import beta import numpy as np #%% # Read in the CSV # From https://github.com/chadwickbureau/baseballdatabank/blob/master/core/Teams.csv r = pd.read_csv(r'Teams.csv') # Restrict to just post 1961 (162-game schedule) r = r.loc[r.yearID>=1961] # Add a column for win percentage r['WinPct']=r['W']/(r['W']+r['L']) # Make histogram ydata,xdata,_ = plt.hist(r['WinPct'],bins=75) plt.title('Historical Winning Percentages') plt.xlabel('Win Percentage') plt.ylabel('Number of Teams') plt.savefig('winpct.png',dpi=300) #%% # Mean and variance of win percentages mu = r['WinPct'].mean() v = r['WinPct'].var() # Estimate alpha and beta from these # Thanks https://stats.stackexchange.com/a/12239 alpha = mu**2 * ((1-mu)/v - 1/mu) b = alpha * (1/mu - 1) # Plot the beta distribution along with the normalized histogram plt.hist(r['WinPct'],bins=75,normed=True) x = np.linspace(0.2,0.8,num=100) y = beta.pdf(x,alpha,b) plt.plot(x,y,color='red',linewidth=3) plt.savefig('beta.png',dpi=300) #%% # Update the prior and plot alpha2 = alpha + 10 beta2 = b y2 = beta.pdf(x,alpha2,beta2) plt.plot(x,y,color='red',label='Prior') plt.plot(x,y2,color='green',label='Posterior') plt.legend(loc='upper left') plt.savefig('posterior.png',dpi=300) # New mean? mean2 = alpha2/(alpha2+beta2) print mean2 print mean2*162 # Apply to rest of season only print mean2*152+10 # New mode mymode = (alpha2-1)/(alpha2+beta2-2) print mymode*162
mit
flightgong/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/matplotlib/tests/test_png.py
5
1351
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import glob import os import numpy as np from matplotlib.testing.decorators import image_comparison from matplotlib import pyplot as plt import matplotlib.cm as cm import sys on_win = (sys.platform == 'win32') @image_comparison(baseline_images=['pngsuite'], extensions=['png'], tol=0.01 if on_win else 0) def test_pngsuite(): dirname = os.path.join( os.path.dirname(__file__), 'baseline_images', 'pngsuite') files = glob.glob(os.path.join(dirname, 'basn*.png')) files.sort() fig = plt.figure(figsize=(len(files), 2)) for i, fname in enumerate(files): data = plt.imread(fname) cmap = None # use default colormap if data.ndim == 2: # keep grayscale images gray cmap = cm.gray plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap) plt.gca().patch.set_facecolor("#ddffff") plt.gca().set_xlim(0, len(files)) def test_imread_png_uint16(): from matplotlib import _png img = _png.read_png_int(os.path.join(os.path.dirname(__file__), 'baseline_images/test_png/uint16.png')) assert (img.dtype == np.uint16) assert np.sum(img.flatten()) == 134184960
apache-2.0
ngoix/OCRF
sklearn/tests/test_cross_validation.py
24
47465
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 3] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Check that errors are raised if all n_labels for individual # classes are less than n_folds. y = [3, 3, -1, -1, 2] assert_raises(ValueError, cval.StratifiedKFold, y, 3) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) error_string = ("k-fold cross validation requires at least one" " train / test split") assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 0) assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_stratified_shuffle_split_overlap_train_test_bug(): # See https://github.com/scikit-learn/scikit-learn/issues/6121 for # the original bug report labels = [0, 1, 2, 3] * 3 + [4, 5] * 5 splits = cval.StratifiedShuffleSplit(labels, n_iter=1, test_size=0.5, random_state=0) train, test = next(iter(splits)) assert_array_equal(np.intersect1d(train, test), []) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
demorest/rtpipe
rtpipe/reproduce.py
1
13178
import numpy as np import rtpipe.RT as rt import rtpipe.parseparams as pp import rtpipe.parsecands as pc import pickle, logging, os import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def plot_cand(candsfile, candloc=[], candnum=-1, threshold=0, savefile=True, returndata=False, outname='', **kwargs): """ Reproduce detection of a single candidate for plotting or inspection. candsfile can be merge or single-scan cands pkl file. Difference defined by presence of scan in d['featureind']. candloc reproduces candidate at given location (scan, segment, integration, dmind, dtind, beamnum). candnum selects one to reproduce from ordered list threshold is min of sbs(SNR) used to filter candidates to select with candnum. savefile/outname define if/how to save png of candidate if returndata, (im, data) returned. kwargs passed to rt.set_pipeline """ # get candidate info loc, prop = pc.read_candidates(candsfile) # define state dict and overload with user prefs d0 = pickle.load(open(candsfile, 'r')) for key in kwargs: logger.info('Setting %s to %s' % (key, kwargs[key])) d0[key] = kwargs[key] d0['logfile'] = False # no need to save log # feature columns if 'snr2' in d0['features']: snrcol = d0['features'].index('snr2') elif 'snr1' in d0['features']: snrcol = d0['features'].index('snr1') if 'l2' in d0['features']: lcol = d0['features'].index('l2') elif 'l1' in d0['features']: lcol = d0['features'].index('l1') if 'm2' in d0['features']: mcol = d0['features'].index('m2') elif 'm1' in d0['features']: mcol = d0['features'].index('m1') try: scancol = d0['featureind'].index('scan') # if merged pkl except ValueError: scancol = -1 # if single-scan pkl segmentcol = d0['featureind'].index('segment') intcol = d0['featureind'].index('int') dtindcol = d0['featureind'].index('dtind') dmindcol = d0['featureind'].index('dmind') # sort and prep candidate list snrs = prop[:, snrcol] select = np.where(np.abs(snrs) > threshold)[0] loc = loc[select] prop = prop[select] times = pc.int2mjd(d0, loc) times = times - times[0] # default case will print cand info if (candnum < 0) and (not len(candloc)): logger.info('Getting candidates...') logger.info('candnum: loc, SNR, DM (pc/cm3), time (s; rel)') for i in range(len(loc)): logger.info("%d: %s, %.1f, %.1f, %.1f" % (i, str(loc[i]), prop[i, snrcol], np.array(d0['dmarr'])[loc[i,dmindcol]], times[i])) else: # if candnum or candloc provided, try to reproduce if (candnum >= 0) and not len(candloc): logger.info('Reproducing and visualizing candidate %d at %s with properties %s.' % (candnum, loc[candnum], prop[candnum])) dmarrorig = d0['dmarr'] dtarrorig = d0['dtarr'] if scancol >= 0: # here we have a merge pkl scan = loc[candnum, scancol] else: # a scan-based cands pkl scan = d0['scan'] segment = loc[candnum, segmentcol] candint = loc[candnum, intcol] dmind = loc[candnum, dmindcol] dtind = loc[candnum, dtindcol] beamnum = 0 candloc = (scan, segment, candint, dmind, dtind, beamnum) elif len(candloc) and (candnum < 0): assert len(candloc) == 6, 'candloc should be length 6 ( scan, segment, candint, dmind, dtind, beamnum ).' logger.info('Reproducing and visualizing candidate %d at %s' % (candnum, candloc)) dmarrorig = d0['dmarr'] dtarrorig = d0['dtarr'] scan, segment, candint, dmind, dtind, beamnum = candloc else: raise Exception, 'Provide candnum or candloc, not both' # if working locally, set workdir appropriately. Can also be used in queue system with full path given. if not os.path.dirname(candsfile): d0['workdir'] = os.getcwd() else: d0['workdir'] = os.path.dirname(candsfile) filename = os.path.join(d0['workdir'], os.path.basename(d0['filename'])) # clean up d0 of superfluous keys params = pp.Params() # will be used as input to rt.set_pipeline for key in d0.keys(): if not hasattr(params, key) and 'memory_limit' not in key: _ = d0.pop(key) d0['npix'] = 0 d0['uvres'] = 0 d0['nsegments'] = 0 d0['logfile'] = False # get cand data d = rt.set_pipeline(filename, scan, **d0) im, data = rt.pipeline_reproduce(d, candloc, product='imdata') # removed loc[candnum] # optionally plot if savefile: loclabel = scan, segment, candint, dmind, dtind, beamnum make_cand_plot(d, im, data, loclabel, outname=outname) # optionally return data if returndata: return (im, data) def refine_cand(candsfile, candloc=[], threshold=0): """ Helper function to interact with merged cands file and refine analysis candsfile is merged pkl file candloc (scan, segment, candint, dmind, dtind, beamnum) is as above. if no candloc, then it prints out cands above threshold. """ if not candloc: plot_cand(candsfile, candloc=[], candnum=-1, threshold=threshold, savefile=False, returndata=False) else: d = pickle.load(open(candsfile, 'r')) cands = rt.pipeline_refine(d, candloc) return cands def make_cand_plot(d, im, data, loclabel, outname=''): """ Builds candidate plot. Expects phased, dedispersed data (cut out in time, dual-pol), image, and metadata loclabel is used to label the plot with (scan, segment, candint, dmind, dtind, beamnum). """ # given d, im, data, make plot logger.info('Plotting...') logger.debug('(image, data) shape: (%s, %s)' % (str(im.shape), str(data.shape))) assert len(loclabel) == 6, 'loclabel should have (scan, segment, candint, dmind, dtind, beamnum)' scan, segment, candint, dmind, dtind, beamnum = loclabel # calc source location snrmin = im.min()/im.std() snrmax = im.max()/im.std() if snrmax > -1*snrmin: l1, m1 = rt.calc_lm(d, im, minmax='max') snrobs = snrmax else: l1, m1 = rt.calc_lm(d, im, minmax='min') snrobs = snrmin pt_ra, pt_dec = d['radec'] src_ra, src_dec = source_location(pt_ra, pt_dec, l1, m1) logger.info('Peak (RA, Dec): %s, %s' % (src_ra, src_dec)) # build plot fig = plt.Figure(figsize=(8.5,8)) ax = fig.add_subplot(221, axisbg='white') # add annotating info ax.text(0.1, 0.9, d['fileroot'], fontname='sans-serif', transform = ax.transAxes) ax.text(0.1, 0.8, 'sc %d, seg %d, int %d, DM %.1f, dt %d' % (scan, segment, candint, d['dmarr'][dmind], d['dtarr'][dtind]), fontname='sans-serif', transform = ax.transAxes) ax.text(0.1, 0.7, 'Peak: (' + str(np.round(l1, 3)) + ' ,' + str(np.round(m1, 3)) + '), SNR: ' + str(np.round(snrobs, 1)), fontname='sans-serif', transform = ax.transAxes) # plot dynamic spectra left, width = 0.6, 0.2 bottom, height = 0.2, 0.7 rect_dynsp = [left, bottom, width, height] rect_lc = [left, bottom-0.1, width, 0.1] rect_sp = [left+width, bottom, 0.1, height] ax_dynsp = fig.add_axes(rect_dynsp) ax_lc = fig.add_axes(rect_lc) ax_sp = fig.add_axes(rect_sp) spectra = np.swapaxes(data.real,0,1) # seems that latest pickle actually contains complex values in spectra... dd = np.concatenate( (spectra[...,0], np.zeros_like(spectra[...,0]), spectra[...,1]), axis=1) # make array for display with white space between two pols impl = ax_dynsp.imshow(dd, origin='lower', interpolation='nearest', aspect='auto', cmap=plt.get_cmap('Greys')) ax_dynsp.text(0.5, 0.95, 'RR LL', horizontalalignment='center', verticalalignment='center', fontsize=16, color='w', transform = ax_dynsp.transAxes) ax_dynsp.set_yticks(range(0,len(d['freq']),30)) ax_dynsp.set_yticklabels(d['freq'][::30]) ax_dynsp.set_ylabel('Freq (GHz)') ax_dynsp.set_xlabel('Integration (rel)') spectrum = spectra[:,len(spectra[0])/2].mean(axis=1) # assume pulse in middle bin. get stokes I spectrum. **this is wrong in a minority of cases.** ax_sp.plot(spectrum, range(len(spectrum)), 'k.') ax_sp.plot(np.zeros(len(spectrum)), range(len(spectrum)), 'k:') ax_sp.set_ylim(0, len(spectrum)) ax_sp.set_yticklabels([]) xmin,xmax = ax_sp.get_xlim() ax_sp.set_xticks(np.linspace(xmin,xmax,3).round(2)) ax_sp.set_xlabel('Flux (Jy)') lc = dd.mean(axis=0) lenlc = len(data) # old (stupid) way: lenlc = np.where(lc == 0)[0][0] ax_lc.plot(range(0,lenlc)+range(2*lenlc,3*lenlc), list(lc)[:lenlc] + list(lc)[-lenlc:], 'k.') ax_lc.plot(range(0,lenlc)+range(2*lenlc,3*lenlc), list(np.zeros(lenlc)) + list(np.zeros(lenlc)), 'k:') ax_lc.set_xlabel('Integration') ax_lc.set_ylabel('Flux (Jy)') ax_lc.set_xticks([0,0.5*lenlc,lenlc,1.5*lenlc,2*lenlc,2.5*lenlc,3*lenlc]) ax_lc.set_xticklabels(['0',str(lenlc/2),str(lenlc),'','0',str(lenlc/2),str(lenlc)]) ymin,ymax = ax_lc.get_ylim() ax_lc.set_yticks(np.linspace(ymin,ymax,3).round(2)) # image ax = fig.add_subplot(223) fov = np.degrees(1./d['uvres'])*60. impl = ax.imshow(im.transpose(), aspect='equal', origin='upper', interpolation='nearest', extent=[fov/2, -fov/2, -fov/2, fov/2], cmap=plt.get_cmap('Greys'), vmin=0, vmax=0.5*im.max()) ax.set_xlabel('RA Offset (arcmin)') ax.set_ylabel('Dec Offset (arcmin)') if not outname: outname = os.path.join(d['workdir'], 'cands_{}_sc{}-seg{}-i{}-dm{}-dt{}.png'.format(d['fileroot'], scan, segment, candint, dmind, dtind)) try: canvas = FigureCanvasAgg(fig) canvas.print_figure(outname) except ValueError: logger.warn('Could not write figure to %s' % outname) def convertloc(candsfile, candloc, memory_limit): """ For given state and location that are too bulky, calculate new location given memory_limit. """ scan, segment, candint, dmind, dtind, beamnum = candloc # set up state and find absolute integration of candidate d0 = pickle.load(open(candsfile, 'r')) filename = os.path.basename(d0['filename']) readints0 = d0['readints'] nskip0 = (24*3600*(d0['segmenttimes'][segment, 0] - d0['starttime_mjd']) / d0['inttime']).astype(int) candint_abs = nskip0 + candint logger.debug('readints0 {} nskip0 {}, candint_abs {}'.format(readints0, nskip0, candint_abs)) # clean up d0 and resubmit to set_pipeline params = pp.Params() for key in d0.keys(): if not hasattr(params, key): _ = d0.pop(key) d0['logfile'] = False d0['npix'] = 0 d0['uvres'] = 0 d0['nsegments'] = 0 d0['memory_limit'] = memory_limit d = rt.set_pipeline(os.path.basename(filename), scan, **d0) # find best segment for new state readints = d['readints'] nskips = [(24*3600*(d['segmenttimes'][segment, 0] - d['starttime_mjd']) / d['inttime']).astype(int) for segment in range(d['nsegments'])] posind = [i for i in range(len(nskips)) if candint_abs - nskips[i] > 0] segment_new = [seg for seg in posind if candint_abs - nskips[seg] == min([candint_abs - nskips[i] for i in posind])][0] candint_new = candint_abs - nskips[segment_new] logger.debug('nskips {}, segment_new {}'.format(nskips, segment_new)) return [scan, segment_new, candint_new, dmind, dtind, beamnum] def source_location(pt_ra, pt_dec, l1, m1): """ Takes phase center and src l,m in radians to get ra,dec of source. Returns string ('hh mm ss', 'dd mm ss') """ import math srcra = np.degrees(pt_ra + l1/math.cos(pt_dec)) srcdec = np.degrees(pt_dec + m1) return deg2HMS(srcra, srcdec) def deg2HMS(ra='', dec='', round=False): """ quick and dirty coord conversion. googled to find bdnyc.org. """ RA, DEC, rs, ds = '', '', '', '' if dec: if str(dec)[0] == '-': ds, dec = '-', abs(dec) deg = int(dec) decM = abs(int((dec-deg)*60)) if round: decS = int((abs((dec-deg)*60)-decM)*60) else: decS = (abs((dec-deg)*60)-decM)*60 DEC = '{0}{1} {2} {3}'.format(ds, deg, decM, decS) if ra: if str(ra)[0] == '-': rs, ra = '-', abs(ra) raH = int(ra/15) raM = int(((ra/15)-raH)*60) if round: raS = int(((((ra/15)-raH)*60)-raM)*60) else: raS = ((((ra/15)-raH)*60)-raM)*60 RA = '{0}{1} {2} {3}'.format(rs, raH, raM, raS) if ra and dec: return (RA, DEC) else: return RA or DEC
bsd-3-clause
pxzhang94/GAN
GAN/auxiliary_classifier_gan/ac_gan_pytorch.py
1
3659
import torch import torch.nn.functional as nn import torch.autograd as autograd import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os from torch.autograd import Variable from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) mb_size = 32 z_dim = 16 X_dim = mnist.train.images.shape[1] y_dim = mnist.train.labels.shape[1] h_dim = 128 cnt = 0 lr = 1e-3 eps = 1e-8 G_ = torch.nn.Sequential( torch.nn.Linear(z_dim + y_dim, h_dim), torch.nn.PReLU(), torch.nn.Linear(h_dim, X_dim), torch.nn.Sigmoid() ) def G(z, c): inputs = torch.cat([z, c], 1) return G_(inputs) D_shared = torch.nn.Sequential( torch.nn.Linear(X_dim, h_dim), torch.nn.PReLU() ) D_gan = torch.nn.Sequential( torch.nn.Linear(h_dim, 1), torch.nn.Sigmoid() ) D_aux = torch.nn.Sequential( torch.nn.Linear(h_dim, y_dim), torch.nn.Softmax() ) def D(X): h = D_shared(X) return D_gan(h), D_aux(h) nets = [G_, D_shared, D_gan, D_aux] G_params = G_.parameters() D_params = (list(D_shared.parameters()) + list(D_gan.parameters()) + list(D_aux.parameters())) def reset_grad(): for net in nets: net.zero_grad() G_solver = optim.Adam(G_params, lr=lr) D_solver = optim.Adam(D_params, lr=lr) for it in range(100000): # Sample data X, y = mnist.train.next_batch(mb_size) X = Variable(torch.from_numpy(X)) # c is one-hot c = Variable(torch.from_numpy(y.astype('float32'))) # y_true is not one-hot (requirement from nn.cross_entropy) y_true = Variable(torch.from_numpy(y.argmax(axis=1).astype('int'))) # z noise z = Variable(torch.randn(mb_size, z_dim)) """ Discriminator """ G_sample = G(z, c) D_real, C_real = D(X) D_fake, C_fake = D(G_sample) # GAN's D loss D_loss = torch.mean(torch.log(D_real + eps) + torch.log(1 - D_fake + eps)) # Cross entropy aux loss C_loss = -nn.cross_entropy(C_real, y_true) - nn.cross_entropy(C_fake, y_true) # Maximize DC_loss = -(D_loss + C_loss) DC_loss.backward() D_solver.step() reset_grad() """ Generator """ G_sample = G(z, c) D_fake, C_fake = D(G_sample) _, C_real = D(X) # GAN's G loss G_loss = torch.mean(torch.log(D_fake + eps)) # Cross entropy aux loss C_loss = -nn.cross_entropy(C_real, y_true) - nn.cross_entropy(C_fake, y_true) # Maximize GC_loss = -(G_loss + C_loss) GC_loss.backward() G_solver.step() reset_grad() # Print and plot every now and then if it % 1000 == 0: idx = np.random.randint(0, 10) c = np.zeros([16, y_dim]) c[range(16), idx] = 1 c = Variable(torch.from_numpy(c.astype('float32'))) z = Variable(torch.randn(16, z_dim)) samples = G(z, c).data.numpy() print('Iter-{}; D_loss: {:.4}; G_loss: {:.4}; Idx: {}' .format(it, -D_loss.data[0], -G_loss.data[0], idx)) fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(28, 28), cmap='Greys_r') if not os.path.exists('out/'): os.makedirs('out/') plt.savefig('out/{}.png' .format(str(cnt).zfill(3)), bbox_inches='tight') cnt += 1 plt.close(fig)
apache-2.0
ksluckow/log2model
tools/animator_multi.py
2
1550
import numpy as np from matplotlib import pyplot as plt from matplotlib import animation import sys array = [] totalargs = len(sys.argv) for i in xrange(1,totalargs): print sys.argv[i] array.append(np.genfromtxt(sys.argv[i], delimiter=',')) plotlays, plotcols = [2,5], ["black","red"] # First set up the figure, the axis, and the plot element we want to animate fig = plt.figure() xmin = 0 xmax = 0 ymin = 0 ymax = 0 for data in array: currxmax = max(data[:,0]) currxmin = min(data[:,0]) if currxmax > xmax: xmax = currxmax if currxmin < xmin: xmin = currxmin currymax = max(data[:,1]) currymin = min(data[:,1]) if currymax > ymax: ymax = currymax if currymin < ymin: ymin = currymin xdelta = 1000 ydelta = 1000 ax = plt.axes(xlim=(xmin - xdelta,xmax + xdelta), ylim=(ymin - ydelta ,ymax + ydelta)) line, = ax.plot([], [], lw=2) # initialization function: plot the background of each frame lines = [] for i in array: lobj = ax.plot([],[],lw=2)[0] lines.append(lobj) def init(): for line in lines: line.set_data([],[]) return lines, # animation function. This is called sequentially def animate(i): for s, data in enumerate(array): x = data[0:i,0] y = data[0:i,1] lines[s].set_data(x, y) return lines, # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func=init, frames=10000, interval=10, blit=False) plt.grid() plt.show()
apache-2.0
SitiBanc/1061_NCTU_IOMDS
1025/Homework 5/HW5_3.py
1
7022
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 25 23:33:46 2017 @author: sitibanc """ import pandas as pd import numpy as np import matplotlib.pyplot as plt # ============================================================================= # Read CSV # ============================================================================= df = pd.read_csv('TXF20112015.csv', sep=',', header = None) # dataframe (time, close, open, high, low, volume) TAIEX = df.values # ndarray tradeday = list(set(TAIEX[:, 0] // 10000)) # 交易日(YYYYMMDD) tradeday.sort() # ============================================================================= # Strategy 3.0: 開盤買進一口,n點停損,m點停利,收盤平倉,m >= n # ============================================================================= profit0 = np.zeros((len(tradeday), 1)) tmp_profit0 = np.zeros((len(tradeday), 1)) best0 = [0] * 3 # [n, m, profit] count = 0 for n in range(10, 110, 10): for m in range(n , 110, 10): for i in range(len(tradeday)): date = tradeday[i] idx = np.nonzero(TAIEX[:, 0] // 10000 == date)[0] idx.sort() p1 = TAIEX[idx[0], 2] # 設定停損點 idx2 = np.nonzero(TAIEX[idx, 4] <= p1 - n)[0] # 最低價跌破停損點 # 設定停利點 idx3 = np.nonzero(TAIEX[idx, 3] >= p1 + m)[0] # 最高價衝破停利點 if len(idx2) == 0 and len(idx3) == 0: # 當日沒有觸及平損停利點 p2 = TAIEX[idx[-1], 1] # 當日收盤價賣出 elif len(idx3) == 0: # 當日沒有停利但停損 p2 = TAIEX[idx[idx2[0]], 1] # 停損點收盤價賣出 elif len(idx2) == 0: # 當日沒有停損但停利 p2 = TAIEX[idx[idx3[0]], 1] # 停利點收盤價賣出 elif idx2[0] > idx3[0]: # 當日停利點先出現 p2 = TAIEX[idx[idx3[0]], 1] # 停利點收盤價賣出 else: # 當日停損點先出現 p2 = TAIEX[idx[idx2[0]], 1] # 停損點收盤價賣出 tmp_profit0[i] = p2 - p1 # 選擇最好的m, n if best0[2] < np.sum(tmp_profit0): profit0 = np.hstack((profit0, tmp_profit0)) best0[0] = n best0[1] = m best0[2] = np.sum(tmp_profit0) profit0 = profit0[:, -1] print('Strategy 3.0: 當日以開盤價買進一口,', best0[0], '點停損,', best0[1], '點停利,當日收盤價平倉\n逐日損益折線圖') profit02 = np.cumsum(profit0) # 逐日損益獲利 plt.plot(profit02) # 逐日損益折線圖 plt.show() print('每日損益分佈圖') plt.hist(profit0, bins = 100) # 每日損益的分佈圖(直方圖) plt.show() # 計算數據 ans1 = len(profit0) # 進場次數 ans2 = profit02[-1] # 總損益點數 ans3 = np.sum(profit0 > 0) / ans1 * 100 # 勝率 ans4 = np.mean(profit0[profit0 > 0]) # 獲利時的平均獲利點數 ans5 = np.mean(profit0[profit0 <= 0]) # 虧損時的平均虧損點數 print('進場次數:', ans1, '\n總損益點數:', ans2, '\n勝率:', ans3, '%') print('賺錢時平均每次獲利點數', ans4, '\n輸錢時平均每次損失點數:', ans5, '\n') # ============================================================================= # Strategy 3.1: 開盤賣出一口,n點停損,m點停利,收盤平倉,m >= n # ============================================================================= profit1 = np.zeros((len(tradeday),1)) tmp_profit1 = np.zeros((len(tradeday), 1)) best1 = [0] * 3 for n in range(10, 110, 10): for m in range(n , 110, 10): for i in range(len(tradeday)): date = tradeday[i] idx = np.nonzero(TAIEX[:, 0] // 10000 == date)[0] idx.sort() p1 = TAIEX[idx[0], 2] # 設定停損點 idx2 = np.nonzero(TAIEX[idx, 3] >= p1 + n)[0] # 最高價衝破停損點 # 設定停利點 idx3 = np.nonzero(TAIEX[idx, 4] <= p1 - m)[0] # 最低價跌破停利點 if len(idx2) == 0 and len(idx3) == 0: # 當日沒有觸及平損停利點 p2 = TAIEX[idx[-1], 1] # 當日收盤價買回 elif len(idx3) == 0: # 當日沒有停利但停損 p2 = TAIEX[idx[idx2[0]], 1] # 停損點收盤價買回 elif len(idx2) == 0: # 當日沒有停損但停利 p2 = TAIEX[idx[idx3[0]], 1] # 停利點收盤價買回 elif idx2[0] > idx3[0]: # 當日停利點先出現 p2 = TAIEX[idx[idx3[0]], 1] # 停利點收盤價買回 else: # 當日停損點先出現 p2 = TAIEX[idx[idx2[0]], 1] # 停損點收盤價買回 tmp_profit1[i] = p1 - p2 # 選擇最好的m, n if best1[2] < np.sum(tmp_profit1): best1[0] = n best1[1] = m best1[2] = np.sum(tmp_profit1) profit1 = np.hstack((profit1, tmp_profit1)) profit1 = profit1[:, -1] print('Strategy 3.1: 當日以開盤價賣出一口,', best1[0], '點停損,', best1[1], '點停利,當日收盤價平倉\n逐利損益折線圖') profit12 = np.cumsum(profit1) # 逐日累積損益 plt.plot(profit12) # 逐日損益折線圖 plt.show() print('每日損益分佈圖') plt.hist(profit1, bins = 100) # 每日損益的分佈圖 plt.show() # 計算數據 ans1 = len(profit1) # 進場次數 ans2 = profit12[-1] # 總損益點數 ans3 = np.sum(profit1 > 0) / ans1 * 100 # 勝率 ans4 = np.mean(profit1[profit1 > 0]) # 獲利時的平均獲利點數 ans5 = np.mean(profit1[profit1 <= 0]) # 虧損時的平均虧損點數 print('進場次數:', ans1, '\n總損益點數:', ans2, '\n勝率:', ans3, '%') print('賺錢時平均每次獲利點數', ans4, '\n輸錢時平均每次損失點數:', ans5)
apache-2.0
spennihana/h2o-3
h2o-docs/src/booklets/v2_2015/source/python/python_scikit_learn_pipeline.py
4
4072
In [41]: from h2o.transforms.preprocessing import H2OScaler In [42]: from sklearn.pipeline import Pipeline In [44]: # Turn off h2o progress bars In [45]: h2o.__PROGRESS_BAR__=False In [46]: h2o.no_progress() In [47]: # build transformation pipeline using sklearn's Pipeline and H2O transforms In [48]: pipeline = Pipeline([("standardize", H2OScaler()), ....: ("pca", H2OPrincipalComponentAnalysisEstimator(k=2)), ....: ("gbm", H2OGradientBoostingEstimator(distribution="multinomial"))]) In [49]: pipeline.fit(iris_df[:4],iris_df[4]) Out[49]: Model Details ============= H2OPCA : Principal Component Analysis Model Key: PCA_model_python_1446220160417_32 Importance of components: pc1 pc2 ---------------------- -------- --------- Standard deviation 3.22082 0.34891 Proportion of Variance 0.984534 0.0115538 Cumulative Proportion 0.984534 0.996088 ModelMetricsPCA: pca ** Reported on train data. ** MSE: NaN RMSE: NaN Model Details ============= H2OGradientBoostingEstimator : Gradient Boosting Machine Model Key: GBM_model_python_1446220160417_34 Model Summary: number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves -- ----------------- ------------------------- --------------------- ----------- ----------- ------------ ------------ ------------ ------------- 50 150 28170 1 5 4.84 2 13 9.97333 ModelMetricsMultinomial: gbm ** Reported on train data. ** MSE: 0.00162796447355 RMSE: 0.0403480417561 LogLoss: 0.0152718656454 Mean Per-Class Error: 0.0 Confusion Matrix: vertical: actual; across: predicted Iris-setosa Iris-versicolor Iris-virginica Error Rate ------------- ----------------- ---------------- ------- ------- 50 0 0 0 0 / 50 0 50 0 0 0 / 50 0 0 50 0 0 / 50 50 50 50 0 0 / 150 Top-3 Hit Ratios: k hit_ratio --- ----------- 1 1 2 1 3 1 Scoring History: timestamp duration number_of_trees training_rmse training_logloss training_classification_error --- ------------------- ---------- ----------------- ---------------- ------------------ ------------------------------- 2016-08-25 13:50:21 0.006 sec 0.0 0.666666666667 1.09861228867 0.66 2016-08-25 13:50:21 0.077 sec 1.0 0.603019288754 0.924249463924 0.04 2016-08-25 13:50:21 0.096 sec 2.0 0.545137025745 0.788619346614 0.04 2016-08-25 13:50:21 0.110 sec 3.0 0.492902188607 0.679995476522 0.04 2016-08-25 13:50:21 0.123 sec 4.0 0.446151758168 0.591313596193 0.04 --- --- --- --- --- --- --- 2016-08-25 13:50:21 0.419 sec 46.0 0.0489303232171 0.0192767805328 0.0 2016-08-25 13:50:21 0.424 sec 47.0 0.0462779490149 0.0180720396825 0.0 2016-08-25 13:50:21 0.429 sec 48.0 0.0444689238255 0.0171428314531 0.0 2016-08-25 13:50:21 0.434 sec 49.0 0.0423442541538 0.0161938230172 0.0 2016-08-25 13:50:21 0.438 sec 50.0 0.0403480417561 0.0152718656454 0.0 Variable Importances: variable relative_importance scaled_importance percentage ---------- --------------------- ------------------- ------------ PC1 448.958 1 0.982184 PC2 8.1438 0.0181393 0.0178162 Pipeline(steps=[('standardize', <h2o.transforms.preprocessing.H2OScaler object at 0x1088c6a50>), ('pca', ), ('gbm', )])
apache-2.0
AlexRobson/scikit-learn
sklearn/metrics/ranking.py
75
25426
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from .base import _average_binary_score from .base import UndefinedMetricWarning def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds := len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.all(classes == [0, 1]) or np.all(classes == [-1, 1]) or np.all(classes == [0]) or np.all(classes == [-1]) or np.all(classes == [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds := len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
Unidata/pyCWT
cwt.py
1
26078
import numpy as np from scipy.fftpack import fft, ifft, fftshift __all__ = ['cwt', 'ccwt', 'icwt', 'SDG', 'Morlet'] class MotherWavelet(object): """Class for MotherWavelets. Contains methods related to mother wavelets. Also used to ensure that new mother wavelet objects contain the minimum requirements to be used in the cwt related functions. """ @staticmethod def get_coefs(self): """Raise error if method for calculating mother wavelet coefficients is missing! """ raise NotImplementedError('get_coefs needs to be implemented for the mother wavelet') @staticmethod def get_coi_coef(sampf): """Raise error if Cone of Influence coefficient is not set in subclass wavelet. To follow the convention in the literature, please define your COI coef as a function of period, not scale - this will ensure compatibility with the scalogram method. """ raise NotImplementedError('coi_coef needs to be implemented in subclass wavelet') #add methods for computing cone of influence and mask def get_coi(self): """Compute cone of influence.""" y1 = self.coi_coef * np.arange(0, self.len_signal / 2) y2 = -self.coi_coef * np.arange(0, self.len_signal / 2) + y1[-1] coi = np.r_[y1, y2] self.coi = coi return coi def get_mask(self): """Get mask for cone of influence. Sets self.mask as an array of bools for use in np.ma.array('', mask=mask) """ mask = np.ones(self.coefs.shape) masks = self.coi_coef * self.scales for s in range(0, len(self.scales)): if (s != 0) and (int(np.ceil(masks[s])) < mask.shape[1]): mask[s,np.ceil(int(masks[s])):-np.ceil(int(masks[s]))] = 0 self.mask = mask.astype(bool) return self.mask class SDG(MotherWavelet): """Class for the SDG MotherWavelet (a subclass of MotherWavelet). SDG(self, len_signal = None, pad_to = None, scales = None, sampf = 1, normalize = True, fc = 'bandpass') Parameters ---------- len_signal : int Length of time series to be decomposed. pad_to : int Pad time series to a total length `pad_to` using zero padding (note, the signal will be zero padded automatically during continuous wavelet transform if pad_to is set). This is used in the fft function when performing the convolution of the wavelet and mother wavelet in Fourier space. scales : array Array of scales used to initialize the mother wavelet. sampf : float Sample frequency of the time series to be decomposed. normalize : bool If True, the normalized version of the mother wavelet will be used (i.e. the mother wavelet will have unit energy). fc : string Characteristic frequency - use the 'bandpass' or 'center' frequency of the Fourier spectrum of the mother wavelet to relate scale to period (default is 'bandpass'). Returns ------- Returns an instance of the MotherWavelet class which is used in the cwt and icwt functions. Examples -------- Create instance of SDG mother wavelet, normalized, using 10 scales and the center frequency of the Fourier transform as the characteristic frequency. Then, perform the continuous wavelet transform and plot the scalogram. # x = numpy.arange(0,2*numpy.pi,numpy.pi/8.) # data = numpy.sin(x**2) # scales = numpy.arange(10) # # mother_wavelet = SDG(len_signal = len(data), scales = np.arange(10),normalize = True, fc = 'center') # wavelet = cwt(data, mother_wavelet) # wave_coefs.scalogram() Notes ----- None References ---------- Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook. Taylor and Francis Group, New York/London. 353 pp. """ def __init__(self,len_signal=None,pad_to=None,scales=None,sampf=1,normalize=True, fc = 'bandpass'): """Initilize SDG mother wavelet""" self.name='second degree of a Gaussian (mexican hat)' self.sampf = sampf self.scales = scales self.len_signal = len_signal self.normalize = normalize #set total length of wavelet to account for zero padding if pad_to is None: self.len_wavelet = len_signal else: self.len_wavelet = pad_to #set admissibility constant if normalize: self.cg = 4 * np.sqrt(np.pi) / 3. else: self.cg = np.pi #define characteristic frequency if fc is 'bandpass': self.fc = np.sqrt(5./2.) * self.sampf/(2 * np.pi) elif fc is 'center': self.fc = np.sqrt(2.) * self.sampf / (2 * np.pi) else: raise CharacteristicFrequencyError("fc = %s not defined"%(fc,)) # coi_coef defined under the assumption that period is used, not scale self.coi_coef = 2 * np.pi * np.sqrt(2. / 5.) * self.fc # Torrence and # Compo 1998 # compute coefficients for the dilated mother wavelet self.coefs = self.get_coefs() def get_coefs(self): """Calculate the coefficients for the SDG mother wavelet""" # Create array containing values used to evaluate the wavelet function xi=np.arange(-self.len_wavelet / 2., self.len_wavelet / 2.) # find mother wavelet coefficients at each scale xsd = -xi * xi / (self.scales[:,np.newaxis] * self.scales[:,np.newaxis]) if self.normalize is True: c=2. / (np.sqrt(3) * np.power(np.pi, 0.25)) else: c=1. mw = c * (1. + xsd) * np.exp(xsd / 2.) self.coefs = mw return mw class Morlet(MotherWavelet): """Class for the Morlet MotherWavelet (a subclass of MotherWavelet). Morlet(self, len_signal = None, pad_to = None, scales = None, sampf = 1, f0 = 0.849) Parameters ---------- len_signal : int Length of time series to be decomposed. pad_to : int Pad time series to a total length `pad_to` using zero padding (note, the signal will be zero padded automatically during continuous wavelet transform if pad_to is set). This is used in the fft function when performing the convolution of the wavelet and mother wavelet in Fourier space. scales : array Array of scales used to initialize the mother wavelet. sampf : float Sample frequency of the time series to be decomposed. f0 : float Central frequency of the Morlet mother wavelet. The Fourier spectrum of the Morlet wavelet appears as a Gaussian centered on f0. f0 defaults to a value of 0.849 (the angular frequency would be ~5.336). Returns ------- Returns an instance of the MotherWavelet class which is used in the cwt and icwt functions. Examples -------- Create instance of Morlet mother wavelet using 10 scales, perform the continuous wavelet transform, and plot the resulting scalogram. # x = numpy.arange(0,2*numpy.pi,numpy.pi/8.) # data = numpy.sin(x**2) # scales = numpy.arange(10) # # mother_wavelet = Morlet(len_signal=len(data), scales = np.arange(10)) # wavelet = cwt(data, mother_wavelet) # wave_coefs.scalogram() Notes ----- * Morlet wavelet is defined as having unit energy, so the `normalize` flag will always be set to True. * The Morlet wavelet will always use f0 as it's characteristic frequency, so fc is set as f0. References ---------- Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook. Taylor and Francis Group, New York/London. 353 pp. """ def __init__(self, len_signal=None, pad_to=None, scales=None, sampf=1, normalize=True, f0=0.849): """Initilize Morlet mother wavelet.""" from scipy.integrate import trapz from scipy.integrate import quad, Inf self.sampf = sampf self.scales = scales self.len_signal = len_signal self.normalize = True self.name = 'Morlet' # set total length of wavelet to account for zero padding if pad_to is None: self.len_wavelet = len_signal else: self.len_wavelet = pad_to # define characteristic frequency self.fc = f0 # Cone of influence coefficient self.coi_coef = 2. * self.sampf / (self.fc + np.sqrt(2. + self.fc**2) * np.sqrt(2)); #Torrence and Compo 1998 (in code) # set admissibility constant # based on the simplified Morlet wavelet energy spectrum # in Addison (2002), eqn (2.39) - should be ok for f0 >0.84 # FIXED using quad 04/01/2011 #f = np.arange(0.001, 50, 0.001) #y = 2. * np.sqrt(np.pi) * np.exp(-np.power((2. * np.pi * f - # 2. * np.pi * self.fc), 2)) #self.cg = trapz(y[1:] / f[1:]) * (f[1]-f[0]) self.cg = quad(lambda x : 2. * np.sqrt(np.pi) * np.exp(-np.power((2. * np.pi * x - 2. * np.pi * f0), 2)), -Inf, Inf)[0] # compute coefficients for the dilated mother wavelet self.coefs = self.get_coefs() def get_coefs(self): """Calculate the coefficients for the Morlet mother wavelet.""" # Create array containing values used to evaluate the wavelet function xi=np.arange(-self.len_wavelet / 2., self.len_wavelet / 2.) # find mother wavelet coefficients at each scale xsd = xi / (self.scales[:,np.newaxis]) mw = np.power(np.pi,-0.25) * \ (np.exp(np.complex(1j) * 2. * np.pi * self.fc * xsd) - \ np.exp(-np.power((2. * np.pi * self.fc), 2) / 2.)) * \ np.exp(-np.power(xsd, 2) / 2.) self.coefs = mw return mw class Wavelet(object): """Class for Wavelet object. The Wavelet object holds the wavelet coefficients as well as information on how they were obtained. """ def __init__(self, wt, wavelet, weighting_function, signal_dtype, deep_copy=True): """Initialization of Wavelet object. Parameters ---------- wt : array Array of wavelet coefficients. wavelet : object Mother wavelet object used in the creation of `wt`. weighting_function : function Function used in the creation of `wt`. signal_dtype : dtype dtype of signal used in the creation of `wt`. deep_copy : bool If true (default), the mother wavelet object used in the creation of the wavelet object will be fully copied and accessible through wavelet.motherwavelet; if false, wavelet.motherwavelet will be a reference to the motherwavelet object (that is, if you change the mother wavelet object, you will see the changes when accessing the mother wavelet through the wavelet object - this is NOT good for tracking how the wavelet transform was computed, but setting deep_copy to False will save memory). Returns ------- Returns an instance of the Wavelet class. """ from copy import deepcopy self.coefs = wt[:,0:wavelet.len_signal] if wavelet.len_signal != wavelet.len_wavelet: self._pad_coefs = wt[:,wavelet.len_signal:] else: self._pad_coefs = None if deep_copy: self.motherwavelet = deepcopy(wavelet) else: self.motherwavelet = wavelet self.weighting_function = weighting_function self._signal_dtype = signal_dtype def get_gws(self): """Calculate Global Wavelet Spectrum. References ---------- Torrence, C., and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 1, pp. 61-78. """ gws = self.get_wavelet_var() return gws def get_wes(self): """Calculate Wavelet Energy Spectrum. References ---------- Torrence, C., and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 1, pp. 61-78. """ from scipy.integrate import trapz coef = 1. / (self.motherwavelet.fc * self.motherwavelet.cg) wes = coef * trapz(np.power(np.abs(self.coefs), 2), axis = 1); return wes def get_wps(self): """Calculate Wavelet Power Spectrum. References ---------- Torrence, C., and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 1, pp. 61-78. """ wps = (1./ self.motherwavelet.len_signal) * self.get_wes() return wps def get_wavelet_var(self): """Calculate Wavelet Variance (a.k.a. the Global Wavelet Spectrum of Torrence and Compo (1998)). References ---------- Torrence, C., and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 1, pp. 61-78. """ coef = self.motherwavelet.cg * self.motherwavelet.fc wvar = (coef / self.motherwavelet.len_signal) * self.get_wes() return wvar def scalogram(self, show_coi=False, show_wps=False, ts=None, time=None, use_period=True, ylog_base=None, xlog_base=None, origin='top', figname=None): """ Scalogram plotting routine. Creates a simple scalogram, with optional wavelet power spectrum and time series plots of the transformed signal. Parameters ---------- show_coi : bool Set to True to see Cone of Influence show_wps : bool Set to True to see the Wavelet Power Spectrum ts : array 1D array containing time series data used in wavelet transform. If set, time series will be plotted. time : array of datetime objects 1D array containing time information use_period : bool Set to True to see figures use period instead of scale ylog_base : float If a log scale is desired, set `ylog_base` as float. (for log 10, set ylog_base = 10) xlog_base : float If a log scale is desired, set `xlog_base` as float. (for log 10, set xlog_base = 10) *note that this option is only valid for the wavelet power spectrum figure. origin : 'top' or 'bottom' Set origin of scale axis to top or bottom of figure Returns ------- None Examples -------- Create instance of SDG mother wavelet, normalized, using 10 scales and the center frequency of the Fourier transform as the characteristic frequency. Then, perform the continuous wavelet transform and plot the scalogram. # x = numpy.arange(0,2*numpy.pi,numpy.pi/8.) # data = numpy.sin(x**2) # scales = numpy.arange(10) # # mother_wavelet = SDG(len_signal = len(data), scales = np.arange(10), normalize = True, fc = 'center') # wavelet = cwt(data, mother_wavelet) # wave_coefs.scalogram(origin = 'bottom') """ import matplotlib.pyplot as plt import matplotlib.cm as cm from pylab import poly_between if ts is not None: show_ts = True else: show_ts = False if not show_wps and not show_ts: # only show scalogram figrow = 1 figcol = 1 elif show_wps and not show_ts: # show scalogram and wps figrow = 1 figcol = 4 elif not show_wps and show_ts: # show scalogram and ts figrow = 2 figcol = 1 else: # show scalogram, wps, and ts figrow = 2 figcol = 4 if time is None: x = np.arange(self.motherwavelet.len_signal) else: x = time if use_period: y = self.motherwavelet.scales / self.motherwavelet.fc else: y = self.motherwavelet.scales fig = plt.figure(figsize=(16, 12), dpi=160) ax1 = fig.add_subplot(figrow, figcol, 1) # if show wps, give 3/4 space to scalogram, 1/4 to wps if show_wps: # create temp axis at 3 or 4 col of row 1 axt = fig.add_subplot(figrow, figcol, 3) # get location of axtmp and ax1 axt_pos = axt.get_position() ax1_pos = ax1.get_position() axt_points = axt_pos.get_points() ax1_points = ax1_pos.get_points() # set axt_pos left bound to that of ax1 axt_points[0][0] = ax1_points[0][0] ax1.set_position(axt_pos) fig.delaxes(axt) if show_coi: # coi_coef is defined using the assumption that you are using # period, not scale, in plotting - this handles that behavior if use_period: coi = self.motherwavelet.get_coi() / self.motherwavelet.fc / self.motherwavelet.sampf else: coi = self.motherwavelet.get_coi() coi[coi == 0] = y.min() - 0.1 * y.min() xs, ys = poly_between(np.arange(0, len(coi)), np.max(y), coi) ax1.fill(xs, ys, 'k', alpha=0.4, zorder = 2) contf=ax1.contourf(x,y,np.abs(self.coefs)**2) fig.colorbar(contf, ax=ax1, orientation='vertical', format='%2.1f') if ylog_base is not None: ax1.axes.set_yscale('log', basey=ylog_base) if origin is 'top': ax1.set_ylim((y[-1], y[0])) elif origin is 'bottom': ax1.set_ylim((y[0], y[-1])) else: raise OriginError('`origin` must be set to "top" or "bottom"') ax1.set_xlim((x[0], x[-1])) ax1.set_title('scalogram') ax1.set_ylabel('time') if use_period: ax1.set_ylabel('period') ax1.set_xlabel('time') else: ax1.set_ylabel('scales') if time is not None: ax1.set_xlabel('time') else: ax1.set_xlabel('sample') if show_wps: ax2 = fig.add_subplot(figrow,figcol,4,sharey=ax1) if use_period: ax2.plot(self.get_wps(), y, 'k') else: ax2.plot(self.motherwavelet.fc * self.get_wps(), y, 'k') if ylog_base is not None: ax2.axes.set_yscale('log', basey=ylog_base) if xlog_base is not None: ax2.axes.set_xscale('log', basey=xlog_base) if origin is 'top': ax2.set_ylim((y[-1], y[0])) else: ax2.set_ylim((y[0], y[-1])) if use_period: ax2.set_ylabel('period') else: ax2.set_ylabel('scales') ax2.grid() ax2.set_title('wavelet power spectrum') if show_ts: ax3 = fig.add_subplot(figrow, 2, 3, sharex=ax1) ax3.plot(x, ts) ax3.set_xlim((x[0], x[-1])) ax3.legend(['time series']) ax3.grid() # align time series fig with scalogram fig t = ax3.get_position() ax3pos=t.get_points() ax3pos[1][0]=ax1.get_position().get_points()[1][0] t.set_points(ax3pos) ax3.set_position(t) if (time is not None) or use_period: ax3.set_xlabel('time') else: ax3.set_xlabel('sample') if figname is None: plt.show() else: plt.savefig(figname) plt.close('all') def cwt(x, wavelet, weighting_function=lambda x: x**(-0.5), deep_copy=True): """Computes the continuous wavelet transform of x using the mother wavelet `wavelet`. This function computes the continuous wavelet transform of x using an instance a mother wavelet object. The cwt is defined as: T(a,b) = w(a) integral(-inf,inf)(x(t) * psi*{(t-b)/a} dt which is a convolution. In this algorithm, the convolution in the time domain is implemented as a multiplication in the Fourier domain. Parameters ---------- x : 1D array Time series to be transformed by the cwt wavelet : Instance of the MotherWavelet class Instance of the MotherWavelet class for a particular wavelet family weighting_function: Function used to weight Typically w(a) = a^(-0.5) is chosen as it ensures that the wavelets at every scale have the same energy. deep_copy : bool If true (default), the mother wavelet object used in the creation of the wavelet object will be fully copied and accessible through wavelet.motherwavelet; if false, wavelet.motherwavelet will be a reference to the motherwavelet object (that is, if you change the mother wavelet object, you will see the changes when accessing the mother wavelet through the wavelet object - this is NOT good for tracking how the wavelet transform was computed, but setting deep_copy to False will save memory). Returns ------- Returns an instance of the Wavelet class. The coefficients of the transform can be obtain by the coefs() method (i.e. wavelet.coefs() ) Examples -------- Create instance of SDG mother wavelet, normalized, using 10 scales and the center frequency of the Fourier transform as the characteristic frequency. Then, perform the continuous wavelet transform and plot the scalogram. # x = numpy.arange(0,2*numpy.pi,numpy.pi/8.) # data = numpy.sin(x**2) # scales = numpy.arange(10) # # mother_wavelet = SDG(len_signal = len(data), scales = np.arange(10), normalize = True, fc = 'center') # wavelet = cwt(data, mother_wavelet) # wave_coefs.scalogram() References ---------- Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook. Taylor and Francis Group, New York/London. 353 pp. """ signal_dtype = x.dtype if len(x) < wavelet.len_wavelet: n = len(x) x = np.resize(x, (wavelet.len_wavelet,)) x[n:] = 0 # Transform the signal and mother wavelet into the Fourier domain xf=fft(x) mwf=fft(wavelet.coefs.conj(), axis=1) # Convolve (multiply in Fourier space) wt_tmp=ifft(mwf*xf[np.newaxis,:], axis=1) # shift output from ifft and multiply by weighting function wt = fftshift(wt_tmp,axes=[1]) * weighting_function(wavelet.scales[:, np.newaxis]) # if mother wavelet and signal are real, only keep real part of transform wt=wt.astype(np.lib.common_type(wavelet.coefs, x)) return Wavelet(wt,wavelet,weighting_function,signal_dtype,deep_copy) def ccwt(x1, x2, wavelet): """Compute the continuous cross-wavelet transform of 'x1' and 'x2' using the mother wavelet 'wavelet', which is an instance of the MotherWavelet class. Parameters ---------- x1,x2 : 1D array Time series used to compute cross-wavelet transform wavelet : Instance of the MotherWavelet class Instance of the MotherWavelet class for a particular wavelet family Returns ------- Returns an instance of the Wavelet class. """ xwt = cwt(x1,wavelet) * np.conjugate(cwt(x2, wavelet)) return xwt def icwt(wavelet): """Compute the inverse continuous wavelet transform. Parameters ---------- wavelet : Instance of the MotherWavelet class instance of the MotherWavelet class for a particular wavelet family Examples -------- Use the Morlet mother wavelet to perform wavelet transform on 'data', then use icwt to compute the inverse wavelet transform to come up with an estimate of data ('data2'). Note that data2 is not exactly equal data. # import matplotlib.pyplot as plt # from scipy.signal import SDG, Morlet, cwt, icwt, fft, ifft # import numpy as np # # x = np.arange(0,2*np.pi,np.pi/64) # data = np.sin(8*x) # scales=np.arange(0.5,17) # # mother_wavelet = Morlet(len_signal = len(data), scales = scales) # wave_coefs=cwt(data, mother_wavelet) # data2 = icwt(wave_coefs) # # plt.plot(data) # plt.plot(data2) # plt.show() References ---------- Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook. Taylor and Francis Group, New York/London. 353 pp. """ from scipy.integrate import trapz # if original wavelet was created using padding, make sure to include # information that is missing after truncation (see self.coefs under __init__ # in class Wavelet. if wavelet.motherwavelet.len_signal != wavelet.motherwavelet.len_wavelet: full_wc = np.c_[wavelet.coefs,wavelet._pad_coefs] else: full_wc = wavelet.coefs # get wavelet coefficients and take fft wcf = fft(full_wc,axis=1) # get mother wavelet coefficients and take fft mwf = fft(wavelet.motherwavelet.coefs,axis=1) # perform inverse continuous wavelet transform and make sure the result is the same type # (real or complex) as the original data used in the transform x = (1. / wavelet.motherwavelet.cg) * trapz( fftshift(ifft(wcf * mwf,axis=1),axes=[1]) / (wavelet.motherwavelet.scales[:,np.newaxis]**2), dx = 1. / wavelet.motherwavelet.sampf, axis=0) return x[0:wavelet.motherwavelet.len_signal].astype(wavelet._signal_dtype)
bsd-3-clause
IshankGulati/scikit-learn
examples/applications/face_recognition.py
44
5706
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ Expected results for the top 5 most represented people in the dataset: ================== ============ ======= ========== ======= precision recall f1-score support ================== ============ ======= ========== ======= Ariel Sharon 0.67 0.92 0.77 13 Colin Powell 0.75 0.78 0.76 60 Donald Rumsfeld 0.78 0.67 0.72 27 George W Bush 0.86 0.86 0.86 146 Gerhard Schroeder 0.76 0.76 0.76 25 Hugo Chavez 0.67 0.67 0.67 15 Tony Blair 0.81 0.69 0.75 36 avg / total 0.80 0.80 0.80 322 ================== ============ ======= ========== ======= """ from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_lfw_people from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import PCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
bsd-3-clause
wzmao/mbio
mbio/Application/plotting.py
1
1051
# -*- coding: utf-8 -*- """This module contains some setting functions. """ __author__ = 'Wenzhi Mao' __all__ = ['setAxesEqual'] def setAxesEqual(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' from numpy import mean x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = x_limits[1] - x_limits[0] x_mean = mean(x_limits) y_range = y_limits[1] - y_limits[0] y_mean = mean(y_limits) z_range = z_limits[1] - z_limits[0] z_mean = mean(z_limits) plot_radius = 0.5 * max([x_range, y_range, z_range]) ax.set_xlim3d([x_mean - plot_radius, x_mean + plot_radius]) ax.set_ylim3d([y_mean - plot_radius, y_mean + plot_radius]) ax.set_zlim3d([z_mean - plot_radius, z_mean + plot_radius]) return None
mit
mlyundin/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
AtlasMaxima/unearthedSydney
mesh.py
1
4385
from scipy.spatial import cKDTree import numpy as np import csv import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.spatial import ConvexHull, Delaunay import folium from folium import plugins from folium.plugins import HeatMap def read_data(input_filename): """Read in a file, returning an array and a kdtree""" with open(input_filename) as input_file: input_reader = csv.reader(input_file) data_points = np.array([tuple(map(float,line)) for line in input_reader]) kdtree = cKDTree(data_points[:,[0,1]]) return (data_points, kdtree) def create_kdtree(data_points): return (data_points, cKDTree(data_points[:,[0,1]])) def bounds(kdtree): """Return the bounds of a kdtree""" return (tuple(kdtree.mins), tuple(kdtree.maxes)) def query(data_points, kdtree, queries, resolution): """Given the data, a kdtree, a list of points and a radius to search in, return a value for each point""" return [point_value(data_points[x][:,[2]],data_points,queries[n],kdtree) for n,x in enumerate(kdtree.query_ball_point(queries,r=resolution))] def point_value(arr,data_points,x,kdtree): """Get the mean value of a set of points returned from a ball query on the kdtree. If there are no points in the radius, just return the closest""" if len(arr) == 0: return data_points[kdtree.query(x)[1]][2] return np.mean(arr) def grid(data_points, kdtree, xbounds, ybounds, num_xsteps=300, num_ysteps=300): """Return a grid of z value between the bounds given. It'll work for things that aren't square, but please try and make it a square""" (minx, maxx) = xbounds (miny, maxy) = ybounds res = np.zeros((num_xsteps,num_ysteps)) xsteps = np.linspace(minx,maxx,num_xsteps) ysteps = np.linspace(miny,maxy,num_ysteps) for (i,x) in enumerate(xsteps): for (j,y) in enumerate(ysteps): res[(i,j)] = query(data_points, kdtree, [(x,y)], max((maxx-minx)/num_xsteps,(maxy-miny)/num_ysteps))[0] return (xsteps,ysteps,res) def draw(xs,ys,zs): """Draw a mesh from a grid of points :param xs: A 1-D array of x-coordinates :param ys: A 1-D array of y-cooridinates :param zs: A 2-D array of heights""" fig = plt.figure() ax = fig.add_subplot(111, projection='3d') xs,ys = np.meshgrid(xs,ys) ax.plot_surface(xs,ys,zs) plt.show() def downscale(data_points, kdtree, xbounds, ybounds, num_xsteps=300, num_ysteps=300): """Make a new dataset at a lower resolution. This won't interpolate to create new points, so it can't be used to increase resolution :param data_points: An array of x,y,z values :param kdtree: The matching tree """ (xs,ys,data) = grid(data_points, kdtree, xbounds, ybounds, num_xsteps, num_ysteps) (xs,ys) = np.meshgrid(xs,ys) xs = xs.flatten() ys = ys.flatten() data = data.flatten() new_data = np.array(xs,ys,data).T return (new_data, cKDTree(new_data[:,[0,1]])) def merge(old_data_points, new_data_points): """Merge two sets of data. The first one must be larger :param old_data_points: The "base" dataset :param new_data_points: The new data :returns: A pair containing an array for all the data, and the corresponding kd-tree""" hull = Delaunay(new_data_points[:,[1,2]]) smaller = np.array(old_data_points[hull.find_simplex(old_data_points[:,[0,1]]) < 0]) merged_data = np.concatenate((new_data_points, smaller)) return create_kdtree(merged_data) def read_tiered_data(filenames): """Given a list of files partially ordered by resolution (low to high) return a kdtree and dataset :param filenames: A list of filenames :returns: A pair containing an array for all the data, and the corresponding kd-tree """ initial = None kdtree = None for f in filenames: if kdtree is None: initial,kdtree = read_data(f) else: (d,t) = read_data(f) (initial,kdtree) = merge(initial,d) return (initial, kdtree) def draw_heatmap(x,y,z): """Draw a heatmap using folium. Not really that useful""" x,y = np.meshgrid(x,y) terrain_map = folium.Map(location=[x[0,0], y[0,0]], tiles='Stamen Terrain', zoom_start=12) HeatMap(zip(x.flatten(),y.flatten(),z.flatten()), radius=10).add_to(terrain_map) terrain_map.save('map.html')
mit
azogue/esiosdata
esiosdata/__main__.py
1
4429
# -*- coding: utf-8 -*- """ Created on Fri Jun 5 18:16:24 2015 DataBase de datos de consumo eléctrico @author: Eugenio Panadero """ import argparse import pandas as pd from esiosdata.classdataesios import PVPC, DatosREE from prettyprinting import print_secc, print_info, print_cyan, print_red __author__ = 'Eugenio Panadero' __copyright__ = "Copyright 2015, AzogueLabs" __credits__ = ["Eugenio Panadero"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Eugenio Panadero" # Columnas base de los datos de PVPC # DEFAULT_COLUMNS_PVPC = ['GEN', 'NOC', 'VHC'] # ------------------------------------ # MAIN CLI # ------------------------------------ def main_cli(): """ Actualiza la base de datos de PVPC/DEMANDA almacenados como dataframe en local, creando una nueva si no existe o hubiere algún problema. Los datos registrados se guardan en HDF5 """ def _get_parser_args(): p = argparse.ArgumentParser(description='Gestor de DB de PVPC/DEMANDA (esios.ree.es)') p.add_argument('-d', '--dem', action='store_true', help='Selecciona BD de demanda (BD de PVPC por defecto)') p.add_argument('-i', '--info', action='store', nargs='*', help="Muestra información de la BD seleccionada. " "* Puede usar intervalos temporales y nombres de columnas, " "como '-i gen noc 2017-01-24 2017-01-26'") p.add_argument('-fu', '-FU', '--forceupdate', action='store_true', help="Fuerza la reconstrucción total de la BD seleccionada") p.add_argument('-u', '-U', '--update', action='store_true', help="Actualiza la información de la BD seleccionada hasta el instante actual") p.add_argument('-p', '--plot', action='store_true', help="Genera plots de la información filtrada de la BD") p.add_argument('-v', '--verbose', action='store_true', help='Muestra información extra') arguments = p.parse_args() return arguments, p def _parse_date(string, columns): try: ts = pd.Timestamp(string) print_cyan('{} es timestamp: {:%c} --> {}'.format(string, ts, ts.date())) columns.remove(string) return ts.date().isoformat() except ValueError: pass args, parser = _get_parser_args() print_secc('ESIOS PVPC/DEMANDA') if args.dem: db_web = DatosREE(update=args.update, force_update=args.forceupdate, verbose=args.verbose) else: db_web = PVPC(update=args.update, force_update=args.forceupdate, verbose=args.verbose) data = db_web.data['data'] if args.info is not None: if len(args.info) > 0: cols = args.info.copy() dates = [d for d in [_parse_date(s, cols) for s in args.info] if d] if len(dates) == 2: data = data.loc[dates[0]:dates[1]] elif len(dates) == 1: data = data.loc[dates[0]] if len(cols) > 0: try: data = data[[c.upper() for c in cols]] except KeyError as e: print_red('NO SE PUEDE FILTRAR LA COLUMNA (Exception: {})\nLAS COLUMNAS DISPONIBLES SON:\n{}' .format(e, data.columns)) print_info(data) else: print_secc('LAST 24h in DB:') print_info(data.iloc[-24:]) print_cyan(data.columns) if args.plot: if args.dem: from esiosdata.pvpcplot import pvpcplot_tarifas_hora, pvpcplot_grid_hora print_red('IMPLEMENTAR PLOTS DEM') else: from esiosdata.pvpcplot import pvpcplot_tarifas_hora, pvpcplot_grid_hora if len(data) < 750: pvpcplot_grid_hora(data) # pvpcplot_tarifas_hora(data) else: print_red('La selección para plot es excesiva: {} samples de {} a {}\nSe hace plot de las últimas 24h'. format(len(data), data.index[0], data.index[-1])) pvpcplot_grid_hora(db_web.data['data'].iloc[-24:]) pvpcplot_tarifas_hora(db_web.data['data'].iloc[-24:]) # , ax=None, show=True, ymax=None, plot_perdidas=True, fs=FIGSIZE) # return db_web, db_web.data['data'] if __name__ == '__main__': # datos_web, _data_dem = main_cli() main_cli()
mit
Jul13/wepy
wepy/io/wiki_store.py
1
2279
# Author: Gheorghe Postelnicu # import glob import os from datetime import datetime import pandas as pd from functools import lru_cache from pandas import HDFStore from topyc.util.file import latest_filename class WikiStore(object): """ WikiStore is a HDFStore storage for a Quandl WIKI dataset. The Quandl WIKI dataset can be retrieved from: https://www.quandl.com/data/WIKI-Wiki-EOD-Stock-Prices. """ def __init__(self, base_dir, date_index=True): self.base_dir = base_dir assert os.path.exists(self.base_dir) self.date_index = date_index self._init() def keys(self): return self.tickers @lru_cache(maxsize=100) def __getitem__(self, item): df = self.store[item] if self.date_index: df.set_index('date', inplace=True) return df @staticmethod def store_snapshot(base_dir, snapshot_file): w_df = pd.read_csv(snapshot_file, parse_dates=[1]) w_df.columns = [c.replace('-', '_') for c in w_df.columns] w_df.set_index('ticker', inplace=True) w_df.sort_index(inplace=True) snapshot_file = datetime.today().strftime('%Y%m%d') with HDFStore(os.path.join(base_dir, '{}.h5'.format(snapshot_file)), 'w', complevel=6, complib='blosc') as store: tickers = set(w_df.index) for ticker in tickers: df = w_df.loc[ticker, :] df.reset_index(inplace=True) df = df.drop('ticker', 1) store[ticker] = df def _init(self): self.store = HDFStore(latest_filename('{}/*.h5'.format(self.base_dir))) self.tickers = [t[1:] for t in self.store.keys()] def close(self): self.store.close() def tickers_column(self, tickers, col='adj_close', fun_filter=None): if not tickers: return None def fetch_column(ticker): ticker_dat = self[ticker] df = ticker_dat[[col]] df.columns = [ticker] if fun_filter: df = fun_filter(df) return df buf = [fetch_column(ticker) for ticker in tickers] if len(tickers) == 1: return buf[0] return buf[0].join(buf[1:])
apache-2.0
herberthamaral/mestrado
CE/segunda_lista/evolution_strategy.py
1
2262
# encoding: utf-8 import time import math from random import random, randint import numpy as np def es(fitness, bounds_min, bounds_max, mu, lambda_, dimension, sigma_init=1, sigma_min=float('-inf'), tau=None, maxiter=float('inf'), max_execution_time=float('inf')): if not tau: tau = 1/math.sqrt(2*dimension) population_x = np.random.uniform(bounds_min, bounds_max, size=(1, mu, dimension))[0] population = [(xi, sigma_init, fitness(xi)) for xi in population_x] iterations = 0 start_time = time.time() fitness_evolution = [] while True: for l in range(lambda_): recombinant = recombine(population, mu, fitness) offspring_individual_sigma = recombinant[1] * math.exp(tau*random()) mutation = offspring_individual_sigma*np.random.randn(1,dimension)[0] offspring_individual_x = recombinant[0]+mutation #print mutation offspring_individual_fitness = fitness(offspring_individual_x) population.append((offspring_individual_x, offspring_individual_sigma, offspring_individual_fitness)) population = sort_poulation(population, mu) iterations += 1 fitness_evolution.append(population[0][2]) if population[0][1] < sigma_min or maxiter < iterations or start_time+max_execution_time < time.time(): return population[0], fitness_evolution def recombine(population, mu, fitness): population = sort_poulation(population, mu) dimension = len(population[0][0]) x = [] sigma = 0 for i in range(dimension): individual = population[randint(0, mu-1)] x.append(individual[0][i]) sigma += individual[1] return (x, sigma/mu, fitness(x)) def sort_poulation(population, mu): return sorted(population, key=lambda x: x[2])[:mu] if __name__ == '__main__': def rastrigin(x): n = len(x) value = 10*n + sum([x[i]**2 - 10*math.cos(2*math.pi*x[i]) for i in range(n)]) return value result = es(fitness=rastrigin, bounds_min=-5.12, bounds_max=5.12, mu=20, lambda_=5, dimension=5, maxiter=200, sigma_init=20) import matplotlib.pyplot as plt plt.plot(range(len(result[1])), result[1]) print result[0] plt.savefig('es.png')
apache-2.0
procoder317/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
chanceraine/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/dviread.py
69
29920
""" An experimental module for reading dvi files output by TeX. Several limitations make this not (currently) useful as a general-purpose dvi preprocessor. Interface:: dvi = Dvi(filename, 72) for page in dvi: # iterate over pages w, h, d = page.width, page.height, page.descent for x,y,font,glyph,width in page.text: fontname = font.texname pointsize = font.size ... for x,y,height,width in page.boxes: ... """ import errno import matplotlib import matplotlib.cbook as mpl_cbook import numpy as np import struct import subprocess _dvistate = mpl_cbook.Bunch(pre=0, outer=1, inpage=2, post_post=3, finale=4) class Dvi(object): """ A dvi ("device-independent") file, as produced by TeX. The current implementation only reads the first page and does not even attempt to verify the postamble. """ def __init__(self, filename, dpi): """ Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file. """ matplotlib.verbose.report('Dvi: ' + filename, 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre def __iter__(self): """ Iterate through the pages of the file. Returns (text, pages) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers. """ while True: have_page = self._read() if have_page: yield self._output() else: break def close(self): """ Close the underlying file if it is open. """ if not self.file.closed: self.file.close() def _output(self): """ Output the text and boxes belonging to the most recent page. page = dvi._output() """ minx, miny, maxx, maxy = np.inf, np.inf, -np.inf, -np.inf maxy_pure = -np.inf for elt in self.text + self.boxes: if len(elt) == 4: # box x,y,h,w = elt e = 0 # zero depth else: # glyph x,y,font,g,w = elt h = _mul2012(font._scale, font._tfm.height[g]) e = _mul2012(font._scale, font._tfm.depth[g]) minx = min(minx, x) miny = min(miny, y - h) maxx = max(maxx, x + w) maxy = max(maxy, y + e) maxy_pure = max(maxy_pure, y) if self.dpi is None: # special case for ease of debugging: output raw dvi coordinates return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=maxx-minx, height=maxy_pure-miny, descent=maxy-maxy_pure) d = self.dpi / (72.27 * 2**16) # from TeX's "scaled points" to dpi units text = [ ((x-minx)*d, (maxy-y)*d, f, g, w*d) for (x,y,f,g,w) in self.text ] boxes = [ ((x-minx)*d, (maxy-y)*d, h*d, w*d) for (x,y,h,w) in self.boxes ] return mpl_cbook.Bunch(text=text, boxes=boxes, width=(maxx-minx)*d, height=(maxy_pure-miny)*d, descent=(maxy-maxy_pure)*d) def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ while True: byte = ord(self.file.read(1)) self._dispatch(byte) # if self.state == _dvistate.inpage: # matplotlib.verbose.report( # 'Dvi._read: after %d at %f,%f' % # (byte, self.h, self.v), # 'debug-annoying') if byte == 140: # end of page return True if self.state == _dvistate.post_post: # end of file self.close() return False def _arg(self, nbytes, signed=False): """ Read and return an integer argument "nbytes" long. Signedness is determined by the "signed" keyword. """ str = self.file.read(nbytes) value = ord(str[0]) if signed and value >= 0x80: value = value - 0x100 for i in range(1, nbytes): value = 0x100*value + ord(str[i]) return value def _dispatch(self, byte): """ Based on the opcode "byte", read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments. """ if 0 <= byte <= 127: self._set_char(byte) elif byte == 128: self._set_char(self._arg(1)) elif byte == 129: self._set_char(self._arg(2)) elif byte == 130: self._set_char(self._arg(3)) elif byte == 131: self._set_char(self._arg(4, True)) elif byte == 132: self._set_rule(self._arg(4, True), self._arg(4, True)) elif byte == 133: self._put_char(self._arg(1)) elif byte == 134: self._put_char(self._arg(2)) elif byte == 135: self._put_char(self._arg(3)) elif byte == 136: self._put_char(self._arg(4, True)) elif byte == 137: self._put_rule(self._arg(4, True), self._arg(4, True)) elif byte == 138: self._nop() elif byte == 139: self._bop(*[self._arg(4, True) for i in range(11)]) elif byte == 140: self._eop() elif byte == 141: self._push() elif byte == 142: self._pop() elif byte == 143: self._right(self._arg(1, True)) elif byte == 144: self._right(self._arg(2, True)) elif byte == 145: self._right(self._arg(3, True)) elif byte == 146: self._right(self._arg(4, True)) elif byte == 147: self._right_w(None) elif byte == 148: self._right_w(self._arg(1, True)) elif byte == 149: self._right_w(self._arg(2, True)) elif byte == 150: self._right_w(self._arg(3, True)) elif byte == 151: self._right_w(self._arg(4, True)) elif byte == 152: self._right_x(None) elif byte == 153: self._right_x(self._arg(1, True)) elif byte == 154: self._right_x(self._arg(2, True)) elif byte == 155: self._right_x(self._arg(3, True)) elif byte == 156: self._right_x(self._arg(4, True)) elif byte == 157: self._down(self._arg(1, True)) elif byte == 158: self._down(self._arg(2, True)) elif byte == 159: self._down(self._arg(3, True)) elif byte == 160: self._down(self._arg(4, True)) elif byte == 161: self._down_y(None) elif byte == 162: self._down_y(self._arg(1, True)) elif byte == 163: self._down_y(self._arg(2, True)) elif byte == 164: self._down_y(self._arg(3, True)) elif byte == 165: self._down_y(self._arg(4, True)) elif byte == 166: self._down_z(None) elif byte == 167: self._down_z(self._arg(1, True)) elif byte == 168: self._down_z(self._arg(2, True)) elif byte == 169: self._down_z(self._arg(3, True)) elif byte == 170: self._down_z(self._arg(4, True)) elif 171 <= byte <= 234: self._fnt_num(byte-171) elif byte == 235: self._fnt_num(self._arg(1)) elif byte == 236: self._fnt_num(self._arg(2)) elif byte == 237: self._fnt_num(self._arg(3)) elif byte == 238: self._fnt_num(self._arg(4, True)) elif 239 <= byte <= 242: len = self._arg(byte-238) special = self.file.read(len) self._xxx(special) elif 243 <= byte <= 246: k = self._arg(byte-242, byte==246) c, s, d, a, l = [ self._arg(x) for x in (4, 4, 4, 1, 1) ] n = self.file.read(a+l) self._fnt_def(k, c, s, d, a, l, n) elif byte == 247: i, num, den, mag, k = [ self._arg(x) for x in (1, 4, 4, 4, 1) ] x = self.file.read(k) self._pre(i, num, den, mag, x) elif byte == 248: self._post() elif byte == 249: self._post_post() else: raise ValueError, "unknown command: byte %d"%byte def _pre(self, i, num, den, mag, comment): if self.state != _dvistate.pre: raise ValueError, "pre command in middle of dvi file" if i != 2: raise ValueError, "Unknown dvi format %d"%i if num != 25400000 or den != 7227 * 2**16: raise ValueError, "nonstandard units in dvi file" # meaning: TeX always uses those exact values, so it # should be enough for us to support those # (There are 72.27 pt to an inch so 7227 pt = # 7227 * 2**16 sp to 100 in. The numerator is multiplied # by 10^5 to get units of 10**-7 meters.) if mag != 1000: raise ValueError, "nonstandard magnification in dvi file" # meaning: LaTeX seems to frown on setting \mag, so # I think we can assume this is constant self.state = _dvistate.outer def _set_char(self, char): if self.state != _dvistate.inpage: raise ValueError, "misplaced set_char in dvi file" self._put_char(char) self.h += self.fonts[self.f]._width_of(char) def _set_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced set_rule in dvi file" self._put_rule(a, b) self.h += b def _put_char(self, char): if self.state != _dvistate.inpage: raise ValueError, "misplaced put_char in dvi file" font = self.fonts[self.f] if font._vf is None: self.text.append((self.h, self.v, font, char, font._width_of(char))) # matplotlib.verbose.report( # 'Dvi._put_char: %d,%d %d' %(self.h, self.v, char), # 'debug-annoying') else: scale = font._scale for x, y, f, g, w in font._vf[char].text: newf = DviFont(scale=_mul2012(scale, f._scale), tfm=f._tfm, texname=f.texname, vf=f._vf) self.text.append((self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), newf, g, newf._width_of(g))) self.boxes.extend([(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), _mul2012(a, scale), _mul2012(b, scale)) for x, y, a, b in font._vf[char].boxes]) def _put_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced put_rule in dvi file" if a > 0 and b > 0: self.boxes.append((self.h, self.v, a, b)) # matplotlib.verbose.report( # 'Dvi._put_rule: %d,%d %d,%d' % (self.h, self.v, a, b), # 'debug-annoying') def _nop(self): pass def _bop(self, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, p): if self.state != _dvistate.outer: raise ValueError, \ "misplaced bop in dvi file (state %d)" % self.state self.state = _dvistate.inpage self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack = [] self.text = [] # list of (x,y,fontnum,glyphnum) self.boxes = [] # list of (x,y,width,height) def _eop(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced eop in dvi file" self.state = _dvistate.outer del self.h, self.v, self.w, self.x, self.y, self.z, self.stack def _push(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced push in dvi file" self.stack.append((self.h, self.v, self.w, self.x, self.y, self.z)) def _pop(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced pop in dvi file" self.h, self.v, self.w, self.x, self.y, self.z = self.stack.pop() def _right(self, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced right in dvi file" self.h += b def _right_w(self, new_w): if self.state != _dvistate.inpage: raise ValueError, "misplaced w in dvi file" if new_w is not None: self.w = new_w self.h += self.w def _right_x(self, new_x): if self.state != _dvistate.inpage: raise ValueError, "misplaced x in dvi file" if new_x is not None: self.x = new_x self.h += self.x def _down(self, a): if self.state != _dvistate.inpage: raise ValueError, "misplaced down in dvi file" self.v += a def _down_y(self, new_y): if self.state != _dvistate.inpage: raise ValueError, "misplaced y in dvi file" if new_y is not None: self.y = new_y self.v += self.y def _down_z(self, new_z): if self.state != _dvistate.inpage: raise ValueError, "misplaced z in dvi file" if new_z is not None: self.z = new_z self.v += self.z def _fnt_num(self, k): if self.state != _dvistate.inpage: raise ValueError, "misplaced fnt_num in dvi file" self.f = k def _xxx(self, special): matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and ch or '<%02x>' % ord(ch) for ch in special]), 'debug') def _fnt_def(self, k, c, s, d, a, l, n): tfm = _tfmfile(n[-l:]) if c != 0 and tfm.checksum != 0 and c != tfm.checksum: raise ValueError, 'tfm checksum mismatch: %s'%n # It seems that the assumption behind the following check is incorrect: #if d != tfm.design_size: # raise ValueError, 'tfm design size mismatch: %d in dvi, %d in %s'%\ # (d, tfm.design_size, n) vf = _vffile(n[-l:]) self.fonts[k] = DviFont(scale=s, tfm=tfm, texname=n, vf=vf) def _post(self): if self.state != _dvistate.outer: raise ValueError, "misplaced post in dvi file" self.state = _dvistate.post_post # TODO: actually read the postamble and finale? # currently post_post just triggers closing the file def _post_post(self): raise NotImplementedError class DviFont(object): """ Object that holds a font's texname and size, supports comparison, and knows the widths of glyphs in the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are _not_ used for comparison. The size is in Adobe points (converted from TeX points). """ __slots__ = ('texname', 'size', 'widths', '_scale', '_vf', '_tfm') def __init__(self, scale, tfm, texname, vf): self._scale, self._tfm, self.texname, self._vf = \ scale, tfm, texname, vf self.size = scale * (72.0 / (72.27 * 2**16)) try: nchars = max(tfm.width.iterkeys()) except ValueError: nchars = 0 self.widths = [ (1000*tfm.width.get(char, 0)) >> 20 for char in range(nchars) ] def __eq__(self, other): return self.__class__ == other.__class__ and \ self.texname == other.texname and self.size == other.size def __ne__(self, other): return not self.__eq__(other) def _width_of(self, char): """ Width of char in dvi units. For internal use by dviread.py. """ width = self._tfm.width.get(char, None) if width is not None: return _mul2012(width, self._scale) matplotlib.verbose.report( 'No width for char %d in font %s' % (char, self.texname), 'debug') return 0 class Vf(Dvi): """ A virtual font (\*.vf file) containing subroutines for dvi files. Usage:: vf = Vf(filename) glyph = vf[code] glyph.text, glyph.boxes, glyph.width """ def __init__(self, filename): Dvi.__init__(self, filename, 0) self._first_font = None self._chars = {} self._packet_ends = None self._read() self.close() def __getitem__(self, code): return self._chars[code] def _dispatch(self, byte): # If we are in a packet, execute the dvi instructions if self.state == _dvistate.inpage: byte_at = self.file.tell()-1 if byte_at == self._packet_ends: self._finalize_packet() # fall through elif byte_at > self._packet_ends: raise ValueError, "Packet length mismatch in vf file" else: if byte in (139, 140) or byte >= 243: raise ValueError, "Inappropriate opcode %d in vf file" % byte Dvi._dispatch(self, byte) return # We are outside a packet if byte < 242: # a short packet (length given by byte) cc, tfm = self._arg(1), self._arg(3) self._init_packet(byte, cc, tfm) elif byte == 242: # a long packet pl, cc, tfm = [ self._arg(x) for x in (4, 4, 4) ] self._init_packet(pl, cc, tfm) elif 243 <= byte <= 246: Dvi._dispatch(self, byte) elif byte == 247: # preamble i, k = self._arg(1), self._arg(1) x = self.file.read(k) cs, ds = self._arg(4), self._arg(4) self._pre(i, x, cs, ds) elif byte == 248: # postamble (just some number of 248s) self.state = _dvistate.post_post else: raise ValueError, "unknown vf opcode %d" % byte def _init_packet(self, pl, cc, tfm): if self.state != _dvistate.outer: raise ValueError, "Misplaced packet in vf file" self.state = _dvistate.inpage self._packet_ends = self.file.tell() + pl self._packet_char = cc self._packet_width = tfm self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack, self.text, self.boxes = [], [], [] self.f = self._first_font def _finalize_packet(self): self._chars[self._packet_char] = mpl_cbook.Bunch( text=self.text, boxes=self.boxes, width = self._packet_width) self.state = _dvistate.outer def _pre(self, i, x, cs, ds): if self.state != _dvistate.pre: raise ValueError, "pre command in middle of vf file" if i != 202: raise ValueError, "Unknown vf format %d" % i if len(x): matplotlib.verbose.report('vf file comment: ' + x, 'debug') self.state = _dvistate.outer # cs = checksum, ds = design size def _fnt_def(self, k, *args): Dvi._fnt_def(self, k, *args) if self._first_font is None: self._first_font = k def _fix2comp(num): """ Convert from two's complement to negative. """ assert 0 <= num < 2**32 if num & 2**31: return num - 2**32 else: return num def _mul2012(num1, num2): """ Multiply two numbers in 20.12 fixed point format. """ # Separated into a function because >> has surprising precedence return (num1*num2) >> 20 class Tfm(object): """ A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class. Attributes: checksum: for verifying against dvi file design_size: design size of the font (in what units?) width[i]: width of character \#i, needs to be scaled by the factor specified in the dvi file (this is a dict because indexing may not start from 0) height[i], depth[i]: height and depth of character \#i """ __slots__ = ('checksum', 'design_size', 'width', 'height', 'depth') def __init__(self, filename): matplotlib.verbose.report('opening tfm file ' + filename, 'debug') file = open(filename, 'rb') try: header1 = file.read(24) lh, bc, ec, nw, nh, nd = \ struct.unpack('!6H', header1[2:14]) matplotlib.verbose.report( 'lh=%d, bc=%d, ec=%d, nw=%d, nh=%d, nd=%d' % ( lh, bc, ec, nw, nh, nd), 'debug') header2 = file.read(4*lh) self.checksum, self.design_size = \ struct.unpack('!2I', header2[:8]) # there is also encoding information etc. char_info = file.read(4*(ec-bc+1)) widths = file.read(4*nw) heights = file.read(4*nh) depths = file.read(4*nd) finally: file.close() self.width, self.height, self.depth = {}, {}, {} widths, heights, depths = \ [ struct.unpack('!%dI' % (len(x)/4), x) for x in (widths, heights, depths) ] for i in range(ec-bc): self.width[bc+i] = _fix2comp(widths[ord(char_info[4*i])]) self.height[bc+i] = _fix2comp(heights[ord(char_info[4*i+1]) >> 4]) self.depth[bc+i] = _fix2comp(depths[ord(char_info[4*i+1]) & 0xf]) class PsfontsMap(object): """ A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage: map = PsfontsMap('.../psfonts.map'); map['cmr10'] For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal font names to font file names. A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map. psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map might avoid embedding the 35 PostScript fonts, while the pdf-related files perhaps only avoid the "Base 14" pdf fonts. But the user may have configured these files differently. """ __slots__ = ('_font',) def __init__(self, filename): self._font = {} file = open(filename, 'rt') try: self._parse(file) finally: file.close() def __getitem__(self, texname): result = self._font[texname] fn, enc = result.filename, result.encoding if fn is not None and not fn.startswith('/'): result.filename = find_tex_file(fn) if enc is not None and not enc.startswith('/'): result.encoding = find_tex_file(result.encoding) return result def _parse(self, file): """Parse each line into words.""" for line in file: line = line.strip() if line == '' or line.startswith('%'): continue words, pos = [], 0 while pos < len(line): if line[pos] == '"': # double quoted word pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = end + 1 else: # ordinary word end = line.find(' ', pos+1) if end == -1: end = len(line) words.append(line[pos:end]) pos = end while pos < len(line) and line[pos] == ' ': pos += 1 self._register(words) def _register(self, words): """Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation. """ texname, psname = words[:2] effects, encoding, filename = [], None, None for word in words[2:]: if not word.startswith('<'): effects.append(word) else: word = word.lstrip('<') if word.startswith('['): assert encoding is None encoding = word[1:] elif word.endswith('.enc'): assert encoding is None encoding = word else: assert filename is None filename = word self._font[texname] = mpl_cbook.Bunch( texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename) class Encoding(object): """ Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Usage (subject to change):: for name in Encoding(filename): whatever(name) """ __slots__ = ('encoding',) def __init__(self, filename): file = open(filename, 'rt') try: matplotlib.verbose.report('Parsing TeX encoding ' + filename, 'debug-annoying') self.encoding = self._parse(file) matplotlib.verbose.report('Result: ' + `self.encoding`, 'debug-annoying') finally: file.close() def __iter__(self): for name in self.encoding: yield name def _parse(self, file): result = [] state = 0 for line in file: comment_start = line.find('%') if comment_start > -1: line = line[:comment_start] line = line.strip() if state == 0: # Expecting something like /FooEncoding [ if '[' in line: state = 1 line = line[line.index('[')+1:].strip() if state == 1: if ']' in line: # ] def line = line[:line.index(']')] state = 2 words = line.split() for w in words: if w.startswith('/'): # Allow for /abc/def/ghi subwords = w.split('/') result.extend(subwords[1:]) else: raise ValueError, "Broken name in encoding file: " + w return result def find_tex_file(filename, format=None): """ Call kpsewhich to find a file in the texmf tree. If format is not None, it is used as the value for the --format option. See the kpathsea documentation for more information. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) """ cmd = ['kpsewhich'] if format is not None: cmd += ['--format=' + format] cmd += [filename] matplotlib.verbose.report('find_tex_file(%s): %s' \ % (filename,cmd), 'debug') pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report('find_tex_file result: %s' % result, 'debug') return result def _read_nointr(pipe, bufsize=-1): while True: try: return pipe.read(bufsize) except OSError, e: if e.errno == errno.EINTR: continue else: raise # With multiple text objects per figure (e.g. tick labels) we may end # up reading the same tfm and vf files many times, so we implement a # simple cache. TODO: is this worth making persistent? _tfmcache = {} _vfcache = {} def _fontfile(texname, class_, suffix, cache): try: return cache[texname] except KeyError: pass filename = find_tex_file(texname + suffix) if filename: result = class_(filename) else: result = None cache[texname] = result return result def _tfmfile(texname): return _fontfile(texname, Tfm, '.tfm', _tfmcache) def _vffile(texname): return _fontfile(texname, Vf, '.vf', _vfcache) if __name__ == '__main__': import sys matplotlib.verbose.set_level('debug-annoying') fname = sys.argv[1] try: dpi = float(sys.argv[2]) except IndexError: dpi = None dvi = Dvi(fname, dpi) fontmap = PsfontsMap(find_tex_file('pdftex.map')) for page in dvi: print '=== new page ===' fPrev = None for x,y,f,c,w in page.text: if f != fPrev: print 'font', f.texname, 'scaled', f._scale/pow(2.0,20) fPrev = f print x,y,c, 32 <= c < 128 and chr(c) or '.', w for x,y,w,h in page.boxes: print x,y,'BOX',w,h
agpl-3.0
hrjn/scikit-learn
examples/ensemble/plot_ensemble_oob.py
58
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <[email protected]> # Gilles Louppe <[email protected]> # Andreas Mueller <[email protected]> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for parallelized ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
jairideout/scikit-bio
skbio/stats/distance/_mantel.py
8
19197
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from future.builtins import zip from itertools import combinations import six import numpy as np import pandas as pd import scipy.misc from scipy.stats import pearsonr, spearmanr from skbio.stats.distance import DistanceMatrix from skbio.util._decorator import experimental @experimental(as_of="0.4.0") def mantel(x, y, method='pearson', permutations=999, alternative='two-sided', strict=True, lookup=None): """Compute correlation between distance matrices using the Mantel test. The Mantel test compares two distance matrices by computing the correlation between the distances in the lower (or upper) triangular portions of the symmetric distance matrices. Correlation can be computed using Pearson's product-moment correlation coefficient or Spearman's rank correlation coefficient. As defined in [1]_, the Mantel test computes a test statistic :math:`r_M` given two symmetric distance matrices :math:`D_X` and :math:`D_Y`. :math:`r_M` is defined as .. math:: r_M=\\frac{1}{d-1}\\sum_{i=1}^{n-1}\\sum_{j=i+1}^{n} stand(D_X)_{ij}stand(D_Y)_{ij} where .. math:: d=\\frac{n(n-1)}{2} and :math:`n` is the number of rows/columns in each of the distance matrices. :math:`stand(D_X)` and :math:`stand(D_Y)` are distance matrices with their upper triangles containing standardized distances. Note that since :math:`D_X` and :math:`D_Y` are symmetric, the lower triangular portions of the matrices could equivalently have been used instead of the upper triangular portions (the current function behaves in this manner). If ``method='spearman'``, the above equation operates on ranked distances instead of the original distances. Statistical significance is assessed via a permutation test. The rows and columns of the first distance matrix (`x`) are randomly permuted a number of times (controlled via `permutations`). A correlation coefficient is computed for each permutation and the p-value is the proportion of permuted correlation coefficients that are equal to or more extreme than the original (unpermuted) correlation coefficient. Whether a permuted correlation coefficient is "more extreme" than the original correlation coefficient depends on the alternative hypothesis (controlled via `alternative`). Parameters ---------- x, y : DistanceMatrix or array_like Input distance matrices to compare. If `x` and `y` are both ``DistanceMatrix`` instances, they will be reordered based on matching IDs (see `strict` and `lookup` below for handling matching/mismatching IDs); thus they are not required to be in the same ID order. If `x` and `y` are ``array_like``, no reordering is applied and both matrices must have the same shape. In either case, `x` and `y` must be at least 3x3 in size *after* reordering and matching of IDs. method : {'pearson', 'spearman'} Method used to compute the correlation between distance matrices. permutations : int, optional Number of times to randomly permute `x` when assessing statistical significance. Must be greater than or equal to zero. If zero, statistical significance calculations will be skipped and the p-value will be ``np.nan``. alternative : {'two-sided', 'greater', 'less'} Alternative hypothesis to use when calculating statistical significance. The default ``'two-sided'`` alternative hypothesis calculates the proportion of permuted correlation coefficients whose magnitude (i.e. after taking the absolute value) is greater than or equal to the absolute value of the original correlation coefficient. ``'greater'`` calculates the proportion of permuted coefficients that are greater than or equal to the original coefficient. ``'less'`` calculates the proportion of permuted coefficients that are less than or equal to the original coefficient. strict : bool, optional If ``True``, raises a ``ValueError`` if IDs are found that do not exist in both distance matrices. If ``False``, any nonmatching IDs are discarded before running the test. See `n` (in Returns section below) for the number of matching IDs that were used in the test. This parameter is ignored if `x` and `y` are ``array_like``. lookup : dict, optional Maps each ID in the distance matrices to a new ID. Used to match up IDs across distance matrices prior to running the Mantel test. If the IDs already match between the distance matrices, this parameter is not necessary. This parameter is disallowed if `x` and `y` are ``array_like``. Returns ------- corr_coeff : float Correlation coefficient of the test (depends on `method`). p_value : float p-value of the test. n : int Number of rows/columns in each of the distance matrices, after any reordering/matching of IDs. If ``strict=False``, nonmatching IDs may have been discarded from one or both of the distance matrices prior to running the Mantel test, so this value may be important as it indicates the *actual* size of the matrices that were compared. Raises ------ ValueError If `x` and `y` are not at least 3x3 in size after reordering/matching of IDs, or an invalid `method`, number of `permutations`, or `alternative` are provided. TypeError If `x` and `y` are not both ``DistanceMatrix`` instances or ``array_like``. See Also -------- DistanceMatrix scipy.stats.pearsonr scipy.stats.spearmanr pwmantel Notes ----- The Mantel test was first described in [2]_. The general algorithm and interface are similar to ``vegan::mantel``, available in R's vegan package [3]_. ``np.nan`` will be returned for the p-value if `permutations` is zero or if the correlation coefficient is ``np.nan``. The correlation coefficient will be ``np.nan`` if one or both of the inputs does not have any variation (i.e. the distances are all constant) and ``method='spearman'``. References ---------- .. [1] Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English Edition. Elsevier. .. [2] Mantel, N. (1967). "The detection of disease clustering and a generalized regression approach". Cancer Research 27 (2): 209-220. PMID 6018555. .. [3] http://cran.r-project.org/web/packages/vegan/index.html Examples -------- Import the functionality we'll use in the following examples: >>> from skbio import DistanceMatrix >>> from skbio.stats.distance import mantel Define two 3x3 distance matrices: >>> x = DistanceMatrix([[0, 1, 2], ... [1, 0, 3], ... [2, 3, 0]]) >>> y = DistanceMatrix([[0, 2, 7], ... [2, 0, 6], ... [7, 6, 0]]) Compute the Pearson correlation between them and assess significance using a two-sided test with 999 permutations: >>> coeff, p_value, n = mantel(x, y) >>> print(round(coeff, 4)) 0.7559 Thus, we see a moderate-to-strong positive correlation (:math:`r_M=0.7559`) between the two matrices. In the previous example, the distance matrices (``x`` and ``y``) have the same IDs, in the same order: >>> x.ids ('0', '1', '2') >>> y.ids ('0', '1', '2') If necessary, ``mantel`` will reorder the distance matrices prior to running the test. The function also supports a ``lookup`` dictionary that maps distance matrix IDs to new IDs, providing a way to match IDs between distance matrices prior to running the Mantel test. For example, let's reassign the distance matrices' IDs so that there are no matching IDs between them: >>> x.ids = ('a', 'b', 'c') >>> y.ids = ('d', 'e', 'f') If we rerun ``mantel``, we get the following error notifying us that there are nonmatching IDs (this is the default behavior with ``strict=True``): >>> mantel(x, y) Traceback (most recent call last): ... ValueError: IDs exist that are not in both distance matrices. If we pass ``strict=False`` to ignore/discard nonmatching IDs, we see that no matches exist between `x` and `y`, so the Mantel test still cannot be run: >>> mantel(x, y, strict=False) Traceback (most recent call last): ... ValueError: No matching IDs exist between the distance matrices. To work around this, we can define a ``lookup`` dictionary to specify how the IDs should be matched between distance matrices: >>> lookup = {'a': 'A', 'b': 'B', 'c': 'C', ... 'd': 'A', 'e': 'B', 'f': 'C'} ``lookup`` maps each ID to ``'A'``, ``'B'``, or ``'C'``. If we rerun ``mantel`` with ``lookup``, we get the same results as the original example where all distance matrix IDs matched: >>> coeff, p_value, n = mantel(x, y, lookup=lookup) >>> print(round(coeff, 4)) 0.7559 ``mantel`` also accepts input that is ``array_like``. For example, if we redefine `x` and `y` as nested Python lists instead of ``DistanceMatrix`` instances, we obtain the same result: >>> x = [[0, 1, 2], ... [1, 0, 3], ... [2, 3, 0]] >>> y = [[0, 2, 7], ... [2, 0, 6], ... [7, 6, 0]] >>> coeff, p_value, n = mantel(x, y) >>> print(round(coeff, 4)) 0.7559 It is import to note that reordering/matching of IDs (and hence the ``strict`` and ``lookup`` parameters) do not apply when input is ``array_like`` because there is no notion of IDs. """ if method == 'pearson': corr_func = pearsonr elif method == 'spearman': corr_func = spearmanr else: raise ValueError("Invalid correlation method '%s'." % method) if permutations < 0: raise ValueError("Number of permutations must be greater than or " "equal to zero.") if alternative not in ('two-sided', 'greater', 'less'): raise ValueError("Invalid alternative hypothesis '%s'." % alternative) x, y = _order_dms(x, y, strict=strict, lookup=lookup) n = x.shape[0] if n < 3: raise ValueError("Distance matrices must have at least 3 matching IDs " "between them (i.e., minimum 3x3 in size).") x_flat = x.condensed_form() y_flat = y.condensed_form() orig_stat = corr_func(x_flat, y_flat)[0] if permutations == 0 or np.isnan(orig_stat): p_value = np.nan else: perm_gen = (corr_func(x.permute(condensed=True), y_flat)[0] for _ in range(permutations)) permuted_stats = np.fromiter(perm_gen, np.float, count=permutations) if alternative == 'two-sided': count_better = (np.absolute(permuted_stats) >= np.absolute(orig_stat)).sum() elif alternative == 'greater': count_better = (permuted_stats >= orig_stat).sum() else: count_better = (permuted_stats <= orig_stat).sum() p_value = (count_better + 1) / (permutations + 1) return orig_stat, p_value, n @experimental(as_of="0.4.0") def pwmantel(dms, labels=None, method='pearson', permutations=999, alternative='two-sided', strict=True, lookup=None): """Run Mantel tests for every pair of given distance matrices. Runs a Mantel test for each pair of distance matrices and collates the results in a ``DataFrame``. Distance matrices do not need to be in the same ID order if they are ``DistanceMatrix`` instances. Distance matrices will be re-ordered prior to running each pairwise test, and if ``strict=False``, IDs that don't match between a pair of distance matrices will be dropped prior to running the test (otherwise a ``ValueError`` will be raised if there are nonmatching IDs between any pair of distance matrices). Parameters ---------- dms : iterable of DistanceMatrix objects, array_like objects, or filepaths to distance matrices. If they are ``array_like``, no reordering or matching of IDs will be performed. labels : iterable of str or int, optional Labels for each distance matrix in `dms`. These are used in the results ``DataFrame`` to identify the pair of distance matrices used in a pairwise Mantel test. If ``None``, defaults to monotonically-increasing integers starting at zero. method : {'pearson', 'spearman'} Correlation method. See ``mantel`` function for more details. permutations : int, optional Number of permutations. See ``mantel`` function for more details. alternative : {'two-sided', 'greater', 'less'} Alternative hypothesis. See ``mantel`` function for more details. strict : bool, optional Handling of nonmatching IDs. See ``mantel`` function for more details. lookup : dict, optional Map existing IDs to new IDs. See ``mantel`` function for more details. Returns ------- pandas.DataFrame ``DataFrame`` containing the results of each pairwise test (one per row). Includes the number of objects considered in each test as column ``n`` (after applying `lookup` and filtering nonmatching IDs if ``strict=False``). Column ``p-value`` will display p-values as ``NaN`` if p-values could not be computed (they are stored as ``np.nan`` within the ``DataFrame``; see ``mantel`` for more details). See Also -------- mantel DistanceMatrix.read Notes -------- Passing a list of filepaths can be useful as it allows for a smaller amount of memory consumption as it only loads two matrices at a time as opposed to loading all distance matrices into memory. Examples -------- Import the functionality we'll use in the following examples: >>> from skbio import DistanceMatrix >>> from skbio.stats.distance import pwmantel Define three 3x3 distance matrices: >>> x = DistanceMatrix([[0, 1, 2], ... [1, 0, 3], ... [2, 3, 0]]) >>> y = DistanceMatrix([[0, 2, 7], ... [2, 0, 6], ... [7, 6, 0]]) >>> z = DistanceMatrix([[0, 5, 6], ... [5, 0, 1], ... [6, 1, 0]]) Run Mantel tests for each pair of distance matrices (there are 3 possible pairs): >>> pwmantel((x, y, z), labels=('x', 'y', 'z'), ... permutations=0) # doctest: +NORMALIZE_WHITESPACE statistic p-value n method permutations alternative dm1 dm2 x y 0.755929 NaN 3 pearson 0 two-sided z -0.755929 NaN 3 pearson 0 two-sided y z -0.142857 NaN 3 pearson 0 two-sided Note that we passed ``permutations=0`` to suppress significance tests; the p-values in the output are labelled ``NaN``. """ num_dms = len(dms) if num_dms < 2: raise ValueError("Must provide at least two distance matrices.") if labels is None: labels = range(num_dms) else: if num_dms != len(labels): raise ValueError("Number of labels must match the number of " "distance matrices.") if len(set(labels)) != len(labels): raise ValueError("Labels must be unique.") num_combs = scipy.misc.comb(num_dms, 2, exact=True) results_dtype = [('dm1', object), ('dm2', object), ('statistic', float), ('p-value', float), ('n', int), ('method', object), ('permutations', int), ('alternative', object)] results = np.empty(num_combs, dtype=results_dtype) for i, pair in enumerate(combinations(zip(labels, dms), 2)): (xlabel, x), (ylabel, y) = pair if isinstance(x, six.string_types): x = DistanceMatrix.read(x) if isinstance(y, six.string_types): y = DistanceMatrix.read(y) stat, p_val, n = mantel(x, y, method=method, permutations=permutations, alternative=alternative, strict=strict, lookup=lookup) results[i] = (xlabel, ylabel, stat, p_val, n, method, permutations, alternative) return pd.DataFrame.from_records(results, index=('dm1', 'dm2')) def _order_dms(x, y, strict=True, lookup=None): """Intersect distance matrices and put them in the same order.""" x_is_dm = isinstance(x, DistanceMatrix) y_is_dm = isinstance(y, DistanceMatrix) if (x_is_dm and not y_is_dm) or (y_is_dm and not x_is_dm): raise TypeError( "Mixing DistanceMatrix and array_like input types is not " "supported. Both x and y must either be DistanceMatrix instances " "or array_like, but not mixed.") elif x_is_dm and y_is_dm: if lookup is not None: x = _remap_ids(x, lookup, 'x', 'first') y = _remap_ids(y, lookup, 'y', 'second') id_order = [id_ for id_ in x.ids if id_ in y] num_matches = len(id_order) if (strict and ((num_matches != len(x.ids)) or (num_matches != len(y.ids)))): raise ValueError("IDs exist that are not in both distance " "matrices.") if num_matches < 1: raise ValueError("No matching IDs exist between the distance " "matrices.") return x.filter(id_order), y.filter(id_order) else: # Both x and y aren't DistanceMatrix instances. if lookup is not None: raise ValueError("ID lookup can only be provided if inputs are " "DistanceMatrix instances.") x = DistanceMatrix(x) y = DistanceMatrix(y) if x.shape != y.shape: raise ValueError("Distance matrices must have the same shape.") return x, y def _remap_ids(dm, lookup, label, order): "Return a copy of `dm` with its IDs remapped based on `lookup`.""" try: remapped_ids = [lookup[id_] for id_ in dm.ids] except KeyError as e: raise KeyError("All IDs in the %s distance matrix (%s) must be in " "the lookup. Missing ID: %s" % (order, label, str(e))) # Create a copy as we'll be modifying the IDs in place. dm_copy = dm.copy() dm_copy.ids = remapped_ids return dm_copy
bsd-3-clause
gotomypc/scikit-learn
examples/svm/plot_svm_scale_c.py
223
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <[email protected]> # Jaques Grobler <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
mfjb/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
Chandlercjy/OnePy
OnePy/builtin_module/optimizer.py
1
3297
import multiprocessing import os import time from collections import defaultdict from itertools import count, product from typing import Iterable, Tuple import pandas as pd import OnePy as op from OnePy.sys_module.metabase_env import OnePyEnvBase from OnePy.utils.awesome_func import run_multiprocessing class Optimizer(OnePyEnvBase): def __init__(self): self.workers = os.cpu_count() self.initial_params = defaultdict(dict) self.mid_params = defaultdict(list) self.final_params = None self.strategy_names = [] self.total_iter_times = None def refresh(self): self.initial_params = defaultdict(dict) self.mid_params = defaultdict(list) self.final_params = None self.strategy_names = [] self.total_iter_times = None def _tuple_to_dict(self, tuple_list: Tuple[dict]): value = {} for i in tuple_list: value.update(i) return value def _optimize_func(self, params: dict, cache: list, index: int): t1 = time.time() op.CleanerBase.counter = count(1) # 清空cleaner缓存,避免初始化多次 go = op.OnePiece() for strategy_name, strategy in go.env.strategies.items(): strategy.set_params(params[strategy_name]) go.sunny(False) summary = go.output.analysis.general_summary() summary.update(params) cache.append(summary) t2 = time.time() self._compute_running_time(t1, t2, len(cache)) def _compute_running_time(self, start: float, end: float, finished_times: int): diff = end - start left = diff*(self.total_iter_times-finished_times)/60/self.workers print(f'当前是第 {finished_times} 次, 剩余 {left:.2f} mins') def _combine_all_params(self): for name in self.strategy_names: strategy_params = product(*self.initial_params[name].values()) for i in strategy_params: self.mid_params[name].append({name: self._tuple_to_dict(i)}) result = product(*self.mid_params.values()) result = [self._tuple_to_dict(i) for i in result] unique = [] for i in range(len(result)): new = result.pop() if new in unique: pass else: unique.append(new) self.final_params = unique def set_params(self, strategy_name: str, param: str, param_range: Iterable): if strategy_name not in self.strategy_names: self.strategy_names.append(strategy_name) self.initial_params[strategy_name][param] = [ {param: i} for i in param_range] def run(self, filename: str = 'optimize_result.pkl'): self._combine_all_params() self.total_iter_times = len(self.final_params) print(f'一共优化 {(self.total_iter_times)} 次') cache_list: list = multiprocessing.Manager().list() params = [(param, cache_list, index) for index, param in enumerate(self.final_params)] run_multiprocessing(self._optimize_func, params, self.workers) print('参数优化完成!') if filename: pd.to_pickle([i for i in cache_list], filename) return [i for i in cache_list]
mit
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/metrics/scorer.py
211
13141
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
mit
ndingwall/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
17
3420
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import make_swiss_roll # ############################################################################# # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise=noise) # Make it thinner X[:, 1] *= .5 # ############################################################################# # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) # ############################################################################# # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], color=plt.cm.jet(float(l) / np.max(label + 1)), s=20, edgecolor='k') plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) # ############################################################################# # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # ############################################################################# # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) # ############################################################################# # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], color=plt.cm.jet(float(l) / np.max(label + 1)), s=20, edgecolor='k') plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
yanchen036/tensorflow
tensorflow/python/estimator/canned/dnn_linear_combined_test.py
11
33691
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn_linear_combined.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator import estimator from tensorflow.python.estimator.canned import dnn_linear_combined from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import linear_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import gradient_descent from tensorflow.python.training import input as input_lib from tensorflow.python.training import optimizer as optimizer_lib try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class DNNOnlyModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, self._dnn_only_model_fn) def _dnn_only_model_fn(self, features, labels, mode, head, hidden_units, feature_columns, optimizer='Adagrad', activation_fn=nn.relu, dropout=None, input_layer_partitioner=None, config=None): return dnn_linear_combined._dnn_linear_combined_model_fn( features=features, labels=labels, mode=mode, head=head, linear_feature_columns=[], dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_activation_fn=activation_fn, dnn_dropout=dropout, input_layer_partitioner=input_layer_partitioner, config=config) # A function to mimic linear-regressor init reuse same tests. def _linear_regressor_fn(feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=partitioner, config=config) class LinearOnlyRegressorPartitionerTest( linear_testing_utils.BaseLinearRegressorPartitionerTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPartitionerTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorEvaluationTest( linear_testing_utils.BaseLinearRegressorEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorEvaluationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorPredictTest( linear_testing_utils.BaseLinearRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPredictTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorIntegrationTest( linear_testing_utils.BaseLinearRegressorIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorIntegrationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorTrainingTest( linear_testing_utils.BaseLinearRegressorTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorTrainingTest.__init__( self, _linear_regressor_fn) def _linear_classifier_fn(feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=partitioner, config=config) class LinearOnlyClassifierTrainingTest( linear_testing_utils.BaseLinearClassifierTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierTrainingTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierClassesEvaluationTest( linear_testing_utils.BaseLinearClassifierEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierEvaluationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierPredictTest( linear_testing_utils.BaseLinearClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierPredictTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierIntegrationTest( linear_testing_utils.BaseLinearClassifierIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierIntegrationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class DNNLinearCombinedRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) # A function to mimic dnn-classifier init reuse same tests. def _dnn_classifier_fn(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) # A function to mimic dnn-regressor init reuse same tests. def _dnn_regressor_fn(hidden_units, feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) class DNNLinearCombinedClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = self._as_label(np.reshape(data[:batch_size], (batch_size, 1))) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 2 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes-1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) class DNNLinearCombinedTests(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _mock_optimizer(self, real_optimizer, var_name_prefix): """Verifies global_step is None and var_names start with given prefix.""" def _minimize(loss, global_step=None, var_list=None): self.assertIsNone(global_step) trainable_vars = var_list or ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) var_names = [var.name for var in trainable_vars] self.assertTrue( all([name.startswith(var_name_prefix) for name in var_names])) # var is used to check this op called by training. with ops.name_scope(''): var = variables_lib.Variable(0., name=(var_name_prefix + '_called')) with ops.control_dependencies([var.assign(100.)]): return real_optimizer.minimize(loss, global_step, var_list) optimizer_mock = test.mock.NonCallableMagicMock( spec=optimizer_lib.Optimizer, wraps=real_optimizer) optimizer_mock.minimize = test.mock.MagicMock(wraps=_minimize) return optimizer_mock def test_train_op_calls_both_dnn_and_linear(self): opt = gradient_descent.GradientDescentOptimizer(1.) x_column = feature_column.numeric_column('x') input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[0.], [1.]])}, y=np.array([[0.], [1.]]), batch_size=1, shuffle=False) est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[x_column], # verifies linear_optimizer is used only for linear part. linear_optimizer=self._mock_optimizer(opt, 'linear'), dnn_hidden_units=(2, 2), dnn_feature_columns=[x_column], # verifies dnn_optimizer is used only for linear part. dnn_optimizer=self._mock_optimizer(opt, 'dnn'), model_dir=self._model_dir) est.train(input_fn, steps=1) # verifies train_op fires linear minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'linear_called')) # verifies train_op fires dnn minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'dnn_called')) def test_dnn_and_linear_logits_are_added(self): with ops.Graph().as_default(): variables_lib.Variable([[1.0]], name='linear/linear_model/x/weights') variables_lib.Variable([2.0], name='linear/linear_model/bias_weights') variables_lib.Variable([[3.0]], name='dnn/hiddenlayer_0/kernel') variables_lib.Variable([4.0], name='dnn/hiddenlayer_0/bias') variables_lib.Variable([[5.0]], name='dnn/logits/kernel') variables_lib.Variable([6.0], name='dnn/logits/bias') variables_lib.Variable(1, name='global_step', dtype=dtypes.int64) linear_testing_utils.save_variables_to_ckpt(self._model_dir) x_column = feature_column.numeric_column('x') est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[x_column], dnn_hidden_units=[1], dnn_feature_columns=[x_column], model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[10.]])}, batch_size=1, shuffle=False) # linear logits = 10*1 + 2 = 12 # dnn logits = (10*3 + 4)*5 + 6 = 176 # logits = dnn + linear = 176 + 12 = 188 self.assertAllClose( { prediction_keys.PredictionKeys.PREDICTIONS: [188.], }, next(est.predict(input_fn=input_fn))) class DNNLinearCombinedWarmStartingTest(test.TestCase): def setUp(self): # Create a directory to save our old checkpoint and vocabularies to. self._ckpt_and_vocab_dir = tempfile.mkdtemp() # Make a dummy input_fn. def _input_fn(): features = { 'age': [[23.], [31.]], 'city': [['Palo Alto'], ['Mountain View']], } return features, [0, 1] self._input_fn = _input_fn def tearDown(self): # Clean up checkpoint / vocab dir. writer_cache.FileWriterCache.clear() shutil.rmtree(self._ckpt_and_vocab_dir) def test_classifier_basic_warm_starting(self): """Tests correctness of DNNLinearCombinedClassifier default warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedClassifier and train to save a checkpoint. dnn_lc_classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, n_classes=4, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedClassifier, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_classifier = ( dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], n_classes=4, linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), warm_start_from=dnn_lc_classifier.model_dir)) warm_started_dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_classifier.get_variable_names(): self.assertAllClose( dnn_lc_classifier.get_variable_value(variable_name), warm_started_dnn_lc_classifier.get_variable_value(variable_name)) def test_regressor_basic_warm_starting(self): """Tests correctness of DNNLinearCombinedRegressor default warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedRegressor and train to save a checkpoint. dnn_lc_regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_regressor.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedRegressor, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_regressor = ( dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), warm_start_from=dnn_lc_regressor.model_dir)) warm_started_dnn_lc_regressor.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_regressor.get_variable_names(): self.assertAllClose( dnn_lc_regressor.get_variable_value(variable_name), warm_started_dnn_lc_regressor.get_variable_value(variable_name)) def test_warm_starting_selective_variables(self): """Tests selecting variables to warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedClassifier and train to save a checkpoint. dnn_lc_classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, n_classes=4, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedClassifier, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_classifier = ( dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], n_classes=4, linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), # The provided regular expression will only warm-start the deep # portion of the model. warm_start_from=estimator.WarmStartSettings( ckpt_to_initialize_from=dnn_lc_classifier.model_dir, vars_to_warm_start='.*(dnn).*'))) warm_started_dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_classifier.get_variable_names(): if 'dnn' in variable_name: self.assertAllClose( dnn_lc_classifier.get_variable_value(variable_name), warm_started_dnn_lc_classifier.get_variable_value(variable_name)) elif 'linear' in variable_name: linear_values = warm_started_dnn_lc_classifier.get_variable_value( variable_name) # Since they're not warm-started, the linear weights will be # zero-initialized. self.assertAllClose(np.zeros_like(linear_values), linear_values) if __name__ == '__main__': test.main()
apache-2.0
rkmaddox/mne-python
mne/externals/tqdm/_tqdm/__init__.py
14
1663
from .std import tqdm, trange from .gui import tqdm as tqdm_gui # TODO: remove in v5.0.0 from .gui import trange as tgrange # TODO: remove in v5.0.0 from ._tqdm_pandas import tqdm_pandas from .cli import main # TODO: remove in v5.0.0 from ._monitor import TMonitor, TqdmSynchronisationWarning from ._version import __version__ # NOQA from .std import TqdmTypeError, TqdmKeyError, TqdmWarning, \ TqdmDeprecationWarning, TqdmExperimentalWarning, \ TqdmMonitorWarning __all__ = ['tqdm', 'tqdm_gui', 'trange', 'tgrange', 'tqdm_pandas', 'tqdm_notebook', 'tnrange', 'main', 'TMonitor', 'TqdmTypeError', 'TqdmKeyError', 'TqdmWarning', 'TqdmDeprecationWarning', 'TqdmExperimentalWarning', 'TqdmMonitorWarning', 'TqdmSynchronisationWarning', '__version__'] def tqdm_notebook(*args, **kwargs): # pragma: no cover """See tqdm.notebook.tqdm for full documentation""" from .notebook import tqdm as _tqdm_notebook from warnings import warn warn("This function will be removed in tqdm==5.0.0\n" "Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`", TqdmDeprecationWarning, stacklevel=2) return _tqdm_notebook(*args, **kwargs) def tnrange(*args, **kwargs): # pragma: no cover """ A shortcut for `tqdm.notebook.tqdm(xrange(*args), **kwargs)`. On Python3+, `range` is used instead of `xrange`. """ from .notebook import trange as _tnrange from warnings import warn warn("Please use `tqdm.notebook.trange` instead of `tqdm.tnrange`", TqdmDeprecationWarning, stacklevel=2) return _tnrange(*args, **kwargs)
bsd-3-clause
ankurankan/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
HBPNeurorobotics/nest-simulator
pynest/examples/intrinsic_currents_subthreshold.py
4
7182
# -*- coding: utf-8 -*- # # intrinsic_currents_subthreshold.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' Intrinsic currents subthreshold ------------------------------- This example illustrates how to record from a model with multiple intrinsic currents and visualize the results. This is illustrated using the `ht_neuron` which has four intrinsic currents: I_NaP, I_KNa, I_T, and I_h. It is a slightly simplified implementation of neuron model proposed in Hill and Tononi (2005) **Modeling Sleep and Wakefulness in the Thalamocortical System** *J Neurophysiol* 93:1671 http://dx.doi.org/10.1152/jn.00915.2004 . The neuron is driven by DC current, which is alternated between depolarizing and hyperpolarizing. Hyperpolarization intervals become increasingly longer. See also: intrinsic_currents_spiking.py ''' ''' We imported all necessary modules for simulation, analysis and plotting. ''' import nest import numpy as np import matplotlib.pyplot as plt ''' Additionally, we set the verbosity using `set_verbosity` to suppress info messages. We also reset the kernel to be sure to start with a clean NEST. ''' nest.set_verbosity("M_WARNING") nest.ResetKernel() ''' We define simulation parameters: - The length of depolarization intervals - The length of hyperpolarization intervals - The amplitude for de- and hyperpolarizing currents - The end of the time window to plot ''' n_blocks = 5 t_block = 20. t_dep = [t_block] * n_blocks t_hyp = [t_block * 2 ** n for n in range(n_blocks)] I_dep = 10. I_hyp = -5. t_end = 500. ''' We create the one neuron instance and the DC current generator and store the returned handles. ''' nrn = nest.Create('ht_neuron') dc = nest.Create('dc_generator') ''' We create a multimeter to record - membrane potential `V_m` - threshold value `Theta` - intrinsic currents `I_NaP`, `I_KNa`, `I_T`, `I_h` by passing these names in the `record_from` list. To find out which quantities can be recorded from a given neuron, run:: nest.GetDefaults('ht_neuron')['recordables'] The result will contain an entry like:: <SLILiteral: V_m> for each recordable quantity. You need to pass the value of the `SLILiteral`, in this case `V_m` in the `record_from` list. We want to record values with 0.1 ms resolution, so we set the recording interval as well; the default recording resolution is 1 ms. ''' # create multimeter and configure it to record all information # we want at 0.1ms resolution mm = nest.Create('multimeter', params={'interval': 0.1, 'record_from': ['V_m', 'Theta', 'I_NaP', 'I_KNa', 'I_T', 'I_h']} ) ''' We connect the DC generator and the multimeter to the neuron. Note that the multimeter, just like the voltmeter is connected to the neuron, not the neuron to the multimeter. ''' nest.Connect(dc, nrn) nest.Connect(mm, nrn) ''' We are ready to simulate. We alternate between driving the neuron with depolarizing and hyperpolarizing currents. Before each simulation interval, we set the amplitude of the DC generator to the correct value. ''' for t_sim_dep, t_sim_hyp in zip(t_dep, t_hyp): nest.SetStatus(dc, {'amplitude': I_dep}) nest.Simulate(t_sim_dep) nest.SetStatus(dc, {'amplitude': I_hyp}) nest.Simulate(t_sim_hyp) ''' We now fetch the data recorded by the multimeter. The data are returned as a dictionary with entry ``'times'`` containing timestamps for all recorded data, plus one entry per recorded quantity. All data is contained in the ``'events'`` entry of the status dictionary returned by the multimeter. Because all NEST function return arrays, we need to pick out element ``0`` from the result of `GetStatus`. ''' data = nest.GetStatus(mm)[0]['events'] t = data['times'] ''' The next step is to plot the results. We create a new figure, add a single subplot and plot at first membrane potential and threshold. ''' fig = plt.figure() Vax = fig.add_subplot(111) Vax.plot(t, data['V_m'], 'b-', lw=2, label=r'$V_m$') Vax.plot(t, data['Theta'], 'g-', lw=2, label=r'$\Theta$') Vax.set_ylim(-80., 0.) Vax.set_ylabel('Voltageinf [mV]') Vax.set_xlabel('Time [ms]') ''' To plot the input current, we need to create an input current trace. We construct it from the durations of the de- and hyperpolarizing inputs and add the delay in the connection between DC generator and neuron: 1. We find the delay by checking the status of the dc->nrn connection. 1. We find the resolution of the simulation from the kernel status. 1. Each current interval begins one time step after the previous interval, is delayed by the delay and effective for the given duration. 1. We build the time axis incrementally. We only add the delay when adding the first time point after t=0. All subsequent points are then automatically shifted by the delay. ''' delay = nest.GetStatus(nest.GetConnections(dc, nrn))[0]['delay'] dt = nest.GetKernelStatus('resolution') t_dc, I_dc = [0], [0] for td, th in zip(t_dep, t_hyp): t_prev = t_dc[-1] t_start_dep = t_prev + dt if t_prev > 0 else t_prev + dt + delay t_end_dep = t_start_dep + td t_start_hyp = t_end_dep + dt t_end_hyp = t_start_hyp + th t_dc.extend([t_start_dep, t_end_dep, t_start_hyp, t_end_hyp]) I_dc.extend([I_dep, I_dep, I_hyp, I_hyp]) ''' The following function turns a name such as I_NaP into proper TeX code $I_{\mathrm{NaP}}$ for a pretty label. ''' def texify_name(name): return r'${}_{{\mathrm{{{}}}}}$'.format(*name.split('_')) ''' Next, we add a right vertical axis and plot the currents with respect to that axis. ''' Iax = Vax.twinx() Iax.plot(t_dc, I_dc, 'k-', lw=2, label=texify_name('I_DC')) for iname, color in (('I_h', 'maroon'), ('I_T', 'orange'), ('I_NaP', 'crimson'), ('I_KNa', 'aqua')): Iax.plot(t, data[iname], color=color, lw=2, label=texify_name(iname)) Iax.set_xlim(0, t_end) Iax.set_ylim(-10., 15.) Iax.set_ylabel('Current [pA]') Iax.set_title('ht_neuron driven by DC current') ''' We need to make a little extra effort to combine lines from the two axis into one legend. ''' lines_V, labels_V = Vax.get_legend_handles_labels() lines_I, labels_I = Iax.get_legend_handles_labels() try: Iax.legend(lines_V + lines_I, labels_V + labels_I, fontsize='small') except TypeError: # work-around for older Matplotlib versions Iax.legend(lines_V + lines_I, labels_V + labels_I) ''' Note that I_KNa is not activated in this example because the neuron does not spike. I_T has only a very small amplitude. '''
gpl-2.0
simon-pepin/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
alekz112/statsmodels
statsmodels/tsa/statespace/tests/test_representation.py
6
19651
""" Tests for representation module Author: Chad Fulton License: Simplified-BSD References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os from statsmodels.tsa.statespace.representation import Representation from statsmodels.tsa.statespace.model import Model from .results import results_kalman_filter from numpy.testing import assert_equal, assert_almost_equal, assert_raises, assert_allclose from nose.exc import SkipTest current_path = os.path.dirname(os.path.abspath(__file__)) class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'] ) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[self.true['start']:].sum(), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:], self.true_states.iloc[:, 2], 4 ) class TestClark1987Single(Clark1987): """ Basic single precision test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987Single, self).__init__( dtype=np.float32, conserve_memory=0 ) self.run_filter() class TestClark1987Double(Clark1987): """ Basic double precision test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Double, self).__init__( dtype=float, conserve_memory=0 ) self.run_filter() class TestClark1987SingleComplex(Clark1987): """ Basic single precision complex test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987SingleComplex, self).__init__( dtype=np.complex64, conserve_memory=0 ) self.run_filter() class TestClark1987DoubleComplex(Clark1987): """ Basic double precision complex test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987DoubleComplex, self).__init__( dtype=complex, conserve_memory=0 ) self.run_filter() class TestClark1987Conserve(Clark1987): """ Memory conservation test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1987Forecast(Clark1987): """ Forecasting test for the loglikelihood and filtered states. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1987Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.r_[self.model.endog[0, :], [np.nan]*nforecast], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) class TestClark1987ForecastDouble(Clark1987Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDouble, self).__init__() self.run_filter() class TestClark1987ForecastDoubleComplex(Clark1987Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1987ForecastConserve(Clark1987Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1987ConserveAll(Clark1987): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) self.model.loglikelihood_burn = self.true['start'] self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 5 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[ ([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0]) ] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: self.modelification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( # self.results.llf_obs[self.true['start']:].sum(), self.results.llf_obs[0:].sum(), self.true['loglike'], 2 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:], self.true_states.iloc[:, 3], 4 ) class TestClark1989(Clark1989): """ Basic double precision test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989, self).__init__(dtype=float, conserve_memory=0) self.run_filter() class TestClark1989Conserve(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1989Forecast(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.c_[ self.model.endog, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] self.run_filter() def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:-self.nforecast], self.true_states.iloc[:, 3], 4 ) class TestClark1989ForecastDouble(Clark1989Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDouble, self).__init__() self.run_filter() class TestClark1989ForecastDoubleComplex(Clark1989Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1989ForecastConserve(Clark1989Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1989ConserveAll(Clark1989): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) # self.model.loglikelihood_burn = self.true['start'] self.model.loglikelihood_burn = 0 self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 2 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][-1], self.true_states.iloc[end-1, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][-1], self.true_states.iloc[end-1, 3], 4 ) # Miscellaneous coverage-related tests def test_slice_notation(): endog = np.arange(10)*1.0 mod = Model(endog, k_states=2) # Test invalid __setitem__ def set_designs(): mod['designs'] = 1 def set_designs2(): mod['designs',0,0] = 1 def set_designs3(): mod[0] = 1 assert_raises(IndexError, set_designs) assert_raises(IndexError, set_designs2) assert_raises(IndexError, set_designs3) # Test invalid __getitem__ assert_raises(IndexError, lambda: mod['designs']) assert_raises(IndexError, lambda: mod['designs',0,0,0]) assert_raises(IndexError, lambda: mod[0]) # Test valid __setitem__, __getitem__ assert_equal(mod.design[0,0,0], 0) mod['design',0,0,0] = 1 assert_equal(mod['design'].sum(), 1) assert_equal(mod.design[0,0,0], 1) assert_equal(mod['design',0,0,0], 1) # Test valid __setitem__, __getitem__ with unspecified time index mod['design'] = np.zeros(mod['design'].shape) assert_equal(mod.design[0,0], 0) mod['design',0,0] = 1 assert_equal(mod.design[0,0], 1) assert_equal(mod['design',0,0], 1) def test_representation(): # Test an invalid number of states def zero_kstates(): mod = Representation(1, 0) assert_raises(ValueError, zero_kstates) # Test an invalid endogenous array def empty_endog(): endog = np.zeros((0,0)) mod = Representation(endog, k_states=2) assert_raises(ValueError, empty_endog) # Test a Fortran-ordered endogenous array (which will be assumed to be in # wide format: k_endog x nobs) nobs = 10 k_endog = 2 endog = np.asfortranarray(np.arange(nobs*k_endog).reshape(k_endog,nobs)*1.) mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test a C-ordered endogenous array (which will be assumed to be in # tall format: nobs x k_endog) nobs = 10 k_endog = 2 endog = np.arange(nobs*k_endog).reshape(nobs,k_endog)*1. mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test getting the statespace representation assert_equal(mod._statespace, None) mod._initialize_representation() assert(mod._statespace is not None) def test_bind(): mod = Representation(1, k_states=2) # Test invalid endogenous array (it must be ndarray) assert_raises(ValueError, lambda: mod.bind([1,2,3,4])) # Test valid (nobs x 1) endogenous array mod.bind(np.arange(10)*1.) assert_equal(mod.nobs, 10) # Test valid (k_endog x 0) endogenous array mod.bind(np.zeros(0,dtype=np.float64)) # Test invalid (3-dim) endogenous array assert_raises(ValueError, lambda: mod.bind(np.arange(12).reshape(2,2,3)*1.)) # Test valid F-contiguous mod.bind(np.asfortranarray(np.arange(10).reshape(1,10))) assert_equal(mod.nobs, 10) # Test valid C-contiguous mod.bind(np.arange(10).reshape(10,1)) assert_equal(mod.nobs, 10) # Test invalid F-contiguous assert_raises(ValueError, lambda: mod.bind(np.asfortranarray(np.arange(10).reshape(10,1)))) # Test invalid C-contiguous assert_raises(ValueError, lambda: mod.bind(np.arange(10).reshape(1,10))) def test_initialization(): mod = Representation(1, k_states=2) # Test invalid state initialization assert_raises(RuntimeError, lambda: mod._initialize_state()) # Test valid initialization initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(2) * 3. mod.initialize_known(initial_state, initial_state_cov) assert_equal(mod._initial_state.sum(), 3) assert_equal(mod._initial_state_cov.diagonal().sum(), 6) # Test invalid initial_state initial_state = np.zeros(10,) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) initial_state = np.zeros((10,10)) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) # Test invalid initial_state_cov initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(3) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov))
bsd-3-clause
AIML/scikit-learn
sklearn/tests/test_grid_search.py
83
28713
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
philouc/pyhrf
python/pyhrf/validation/test_rndm_field.py
1
12934
import os import unittest import numpy as _np from pyhrf.jde.beta import * from pyhrf.boldsynth.field import * from pyhrf.graph import * from pyhrf.tools import montecarlo from pyhrf.validation import config from pyhrf.validation.config import figfn class field_energy_calculator: def __init__(self, graph): self.graph = graph def __call__(self, labels): hc = count_homo_cliques(self.graph, labels) return -float(hc)/len(self.graph) class PottsTest(unittest.TestCase): def setUp(self): self.plot = config.savePlots self.outDir = os.path.join(config.plotSaveDir, './PottsPrior') if self.plot and not os.path.exists(self.outDir): os.makedirs(self.outDir) self.verbose = False def test_sw_nrj(self): size = 100 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n) nc = 2 betas = _np.arange(0, 1.4, .2) mU = _np.zeros(len(betas)) vU = _np.zeros(len(betas)) nrjCalc = field_energy_calculator(g) for ib, b in enumerate(betas): #print 'MC for beta ', b pottsGen = potts_generator(graph=g, beta=b, nbLabels=nc, method='SW') mU[ib], vU[ib] = montecarlo(pottsGen, nrjCalc, nbit=40) if config.savePlots: import matplotlib.pyplot as plt plt.plot(betas, mU) plt.errorbar(betas, mU, vU**.5) plt.xlabel('beta') plt.ylabel('mean U per site') plt.show() #print mU #print vU # assert max (d U(beta)) == 0.88 def test_SW_nrj(self): size = 100 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n) nc = 2 betas = _np.arange(0, 2.5, .2) mU = _np.zeros(len(betas)) vU = _np.zeros(len(betas)) nrjCalc = field_energy_calculator(g) for ib, b in enumerate(betas): #print 'MC for beta ', b pottsGen = potts_generator(graph=g, beta=b, nbLabels=nc, method='SW') mU[ib], vU[ib] = montecarlo(pottsGen, nrjCalc, nbit=5) import matplotlib as plt plt.plot(betas, mU,'b-') plt.errorbar(betas, mU, vU**.5,fmt=None,ecolor='b') for ib, b in enumerate(betas): #print 'MC for beta ', b pottsGen = potts_generator(graph=g, beta=b, nbLabels=3, method='SW') mU[ib], vU[ib] = montecarlo(pottsGen, nrjCalc, nbit=5) if config.savePlots: plt.plot(betas, mU,'r-') plt.errorbar(betas, mU, vU**.5,fmt=None,ecolor='r') plt.xlabel('beta') plt.ylabel('mean U per site') plt.xlim(betas[0]-.1,betas[-1]*1.05) plt.show() #print mU #print vU # assert max (d U(beta)) == 0.88 def test_SW_nrj_2C_3C(self): size = 400 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n) betas = _np.arange(0, 2.7, .2) nitMC = 100 mU2C = _np.zeros(len(betas)) vU2C = _np.zeros(len(betas)) mU3C = _np.zeros(len(betas)) vU3C = _np.zeros(len(betas)) nrjCalc = field_energy_calculator(g) #print "nbClasses = 2" for ib, b in enumerate(betas): #print ' MC for beta ', b pottsGen = potts_generator(graph=g, beta=b, nbLabels=2, method='SW') mU2C[ib], vU2C[ib] = montecarlo(pottsGen, nrjCalc, nbit=nitMC) #print ' mu2C=',mU2C #print ' vU2C=',vU2C #print "nbClasses = 3" for ib, b in enumerate(betas): #print ' MC for beta ', b pottsGen = potts_generator(graph=g, beta=b, nbLabels=3, method='SW') mU3C[ib], vU3C[ib] = montecarlo(pottsGen, nrjCalc, nbit=nitMC) #print ' mu3C=',mU3C #print ' vU3C=',vU3C if config.savePlots: import matplotlib.pyplot as plt plt.plot(betas, mU2C,'b-',label="2C") plt.errorbar(betas, mU2C, vU2C**.5,fmt=None,ecolor='b') plt.plot(betas, mU3C,'r-',label="3C") plt.errorbar(betas, mU3C, vU3C**.5,fmt=None,ecolor='r') plt.legend(loc='upper right') plt.title('Mean energy in terms of beta \n for 2-color and 3-color Potts (SW sampling)') plt.xlabel('beta') plt.ylabel('mean U per site') plt.xlim(betas[0]-.1,betas[-1]*1.05) figFn = os.path.join(self.outDir, figfn('potts_energy_2C_3C')) #print figFn plt.savefig(figFn) #plt.show() # assert max (d U2C(beta)) == 0.88 def test_sw_sampling(self): # assert proba(site) = 1/2 pass def test_gibbs(self): # plot nrj(beta) # assert max (d U(beta)) == 0.88 pass class PartitionFunctionTest(unittest.TestCase): def setUp(self): self.plot = config.savePlots self.outDir = os.path.join(config.plotSaveDir, './PottsPartitionFunction') if self.plot and not os.path.exists(self.outDir): os.makedirs(self.outDir) self.verbose = True def test_onsager1(self): size = 10000 beta = .3 pf = logpf_ising_onsager(size, beta) assert _np.allclose(logpf_ising_onsager(size, 0.), _np.log(2)*size) def test_onsager(self): size = 900 dbeta = 0.001 beta = _np.arange(0., 2., dbeta) pf = logpf_ising_onsager(size, beta) dpf = _np.diff(pf)/dbeta d1beta = beta[1:] d2pf = _np.diff(dpf)/dbeta d2beta = beta[2:] if self.plot: import matplotlib.pyplot as plt plt.figure() plt.plot(beta, pf/size, label='logZ') plt.plot(beta[1:], dpf/size, label='dlogZ') plt.plot(beta[2:], d2pf/size, label='d2logZ') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('Log partition function per site and its derivatives' \ '.\nObtained with Onsager equations') figFn = os.path.join(self.outDir, figfn('logPF_onsager')) plt.savefig(figFn) #plt.show() #critical value: if self.verbose: #print 'critical beta:', d2beta[_np.argmax(d2pf)] #print 'beta grid precision:', dbeta assert _np.abs(d2beta[_np.argmax(d2pf)] - 0.88) <= 0.005 def test_path_sampling(self): size = 900 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n) pf, beta = Cpt_Vec_Estim_lnZ_Graph(g,2) dbeta = beta[1]-beta[0] dpf = _np.diff(pf)/dbeta d1beta = beta[1:] d2pf = _np.diff(dpf)/dbeta d2beta = beta[2:] if self.plot: import matplotlib.pyplot as plt plt.figure() plt.plot(beta, pf/size, label='logZ') plt.plot(beta[1:], dpf/size, label='dlogZ') plt.plot(beta[2:], d2pf/size, label='d2logZ') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('Log partition function per site and its derivatives' \ '.\nDiscretized using Path Sampling') #print '##### ', figFn = os.path.join(self.outDir, figfn('logPF_PS')) plt.savefig(figFn) #plt.show() #critical value: if self.verbose: print 'critical beta:', d2beta[_np.argmax(d2pf)] print 'beta grid precision:', dbeta assert _np.abs(d2beta[_np.argmax(d2pf)] - 0.88) <= dbeta def test_extrapolation(self): size = 900 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n) pf, beta = Cpt_Vec_Estim_lnZ_Graph_fast(g,2) dbeta = beta[1]-beta[0] dpf = _np.diff(pf)/dbeta d1beta = beta[1:] d2pf = _np.diff(dpf)/dbeta d2beta = beta[2:] if self.plot: import matplotlib.pyplot as plt plt.figure() plt.plot(beta, pf/size, label='logZ') plt.plot(beta[1:], dpf/size, label='dlogZ') plt.plot(beta[2:], d2pf/size, label='d2logZ') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('Log partition function per site and its derivatives' \ '.\nDiscretized using the Extrapolation Scheme.') figFn = os.path.join(self.outDir, figfn('logPF_ES')) plt.savefig(figFn) #plt.show() #critical value: if self.verbose: print 'critical beta:', d2beta[_np.argmax(d2pf)] print 'beta grid precision:', dbeta assert _np.abs(d2beta[_np.argmax(d2pf)] - 0.88) <= dbeta def test_comparison(self): size = 1000 shape = (int(size**.5), int(size**.5)) mask = _np.ones(shape, dtype=int) #full mask g = graph_from_lattice(mask, kerMask=kerMask2D_4n,toroidal=True) dbeta = 0.05 # ES pfES, betaES = Cpt_Vec_Estim_lnZ_Graph_fast3(g,2,BetaStep=dbeta) if self.verbose: print 'betaES:', betaES pfES = pfES[:-1] if self.verbose: print 'pfES:', len(pfES) #print pfES dpfES = _np.diff(pfES)/dbeta #print 'dpfES:' #print _np.diff(pfES) d2pfES = _np.diff(dpfES)/dbeta # Path Sampling pfPS, beta = Cpt_Vec_Estim_lnZ_Graph(g,2,BetaStep=dbeta,SamplesNb=30) if self.verbose: print 'beta grid from PS:', beta dpfPS = _np.diff(pfPS)/dbeta d1beta = beta[1:] d2pfPS = _np.diff(dpfPS)/dbeta d2beta = beta[2:] # Onsager if self.verbose: print 'Onsager ...' pfOns = logpf_ising_onsager(size, beta)*.96 dpfOns = _np.diff(pfOns)/dbeta d2pfOns = _np.diff(dpfOns)/dbeta if self.plot: if self.verbose: print 'Plots ...' import matplotlib.pyplot as plt # PF plots plt.figure() plt.plot(beta, pfES, 'r-+', label='logZ-ES') plt.plot(beta, pfPS, 'b', label='logZ-PS') plt.plot(beta, pfOns,'g', label='logZ-Onsager') #plt.xlabel('beta') #plt.legend(loc='upper left') #plt.title('Log partition function per site - comparison') figFn = os.path.join(self.outDir, figfn('logPF_ES_PS_Ons')) print 'saved:', figFn plt.savefig(figFn) plt.figure() plt.plot(d1beta, dpfES/size, 'r-+', label='dlogZ-ES') plt.plot(d1beta, dpfPS/size, 'b', label='dlogZ-PS') plt.plot(d1beta, dpfOns/size,'g', label='dlogZ-Onsager') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('dLog partition function per site - comparison') figFn = os.path.join(self.outDir, figfn('dlogPF_ES_PS_Ons')) print 'saved:', figFn plt.savefig(figFn) plt.figure() plt.plot(d2beta, d2pfES/size, 'r-+', label='d2logZ-ES') plt.plot(d2beta, d2pfPS/size, 'b', label='d2logZ-PS') plt.plot(d2beta, d2pfOns/size,'g', label='d2logZ-Onsager') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('d2Log partition function per site - comparison') figFn = os.path.join(self.outDir, figfn('d2logPF_ES_PS_Ons')) print 'saved:', figFn plt.savefig(figFn) plt.figure() plt.plot(beta, _np.abs(pfES-pfOns)/size, 'r-+', label='|logZ_ES-logZ-Ons|') plt.plot(beta, _np.abs(pfPS-pfOns)/size, 'b', label='|logZ_PS-logZ-Ons|') plt.xlabel('beta') plt.legend(loc='upper left') plt.title('Error of Log partition function per site') figFn = os.path.join(self.outDir, figfn('logPF_error_ES_PS')) print 'saved:', figFn plt.savefig(figFn) #plt.show()
gpl-3.0
gfyoung/pandas
pandas/tests/indexes/timedeltas/methods/test_astype.py
3
4365
from datetime import timedelta import numpy as np import pytest import pandas as pd from pandas import ( Float64Index, Index, Int64Index, NaT, Timedelta, TimedeltaIndex, timedelta_range, ) import pandas._testing as tm class TestTimedeltaIndex: def test_astype_object(self): idx = timedelta_range(start="1 days", periods=4, freq="D", name="idx") expected_list = [ Timedelta("1 days"), Timedelta("2 days"), Timedelta("3 days"), Timedelta("4 days"), ] result = idx.astype(object) expected = Index(expected_list, dtype=object, name="idx") tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype_object_with_nat(self): idx = TimedeltaIndex( [timedelta(days=1), timedelta(days=2), NaT, timedelta(days=4)], name="idx" ) expected_list = [ Timedelta("1 days"), Timedelta("2 days"), NaT, Timedelta("4 days"), ] result = idx.astype(object) expected = Index(expected_list, dtype=object, name="idx") tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype(self): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN], name="idx") result = idx.astype(object) expected = Index( [Timedelta("1 days 03:46:40")] + [NaT] * 3, dtype=object, name="idx" ) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = idx.astype(int) expected = Int64Index( [100000000000000] + [-9223372036854775808] * 3, dtype=np.int64, name="idx" ) tm.assert_index_equal(result, expected) result = idx.astype(str) expected = Index([str(x) for x in idx], name="idx") tm.assert_index_equal(result, expected) rng = timedelta_range("1 days", periods=10) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = rng.astype("i8") tm.assert_index_equal(result, Index(rng.asi8)) tm.assert_numpy_array_equal(rng.asi8, result.values) def test_astype_uint(self): arr = timedelta_range("1H", periods=2) expected = pd.UInt64Index( np.array([3600000000000, 90000000000000], dtype="uint64") ) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): tm.assert_index_equal(arr.astype("uint64"), expected) tm.assert_index_equal(arr.astype("uint32"), expected) def test_astype_timedelta64(self): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN]) result = idx.astype("timedelta64") expected = Float64Index([1e14] + [np.NaN] * 3, dtype="float64") tm.assert_index_equal(result, expected) result = idx.astype("timedelta64[ns]") tm.assert_index_equal(result, idx) assert result is not idx result = idx.astype("timedelta64[ns]", copy=False) tm.assert_index_equal(result, idx) assert result is idx @pytest.mark.parametrize("dtype", [float, "datetime64", "datetime64[ns]"]) def test_astype_raises(self, dtype): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, "NaT", NaT, np.NaN]) msg = "Cannot cast TimedeltaArray to dtype" with pytest.raises(TypeError, match=msg): idx.astype(dtype) def test_astype_category(self): obj = timedelta_range("1H", periods=2, freq="H") result = obj.astype("category") expected = pd.CategoricalIndex([Timedelta("1H"), Timedelta("2H")]) tm.assert_index_equal(result, expected) result = obj._data.astype("category") expected = expected.values tm.assert_categorical_equal(result, expected) def test_astype_array_fallback(self): obj = timedelta_range("1H", periods=2) result = obj.astype(bool) expected = Index(np.array([True, True])) tm.assert_index_equal(result, expected) result = obj._data.astype(bool) expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected)
bsd-3-clause
miltondp/ukbrest
tests/utils.py
1
1724
import unittest from os.path import dirname, abspath, join import pandas as pd from sqlalchemy import create_engine from tests.settings import POSTGRESQL_ENGINE def get_repository_path(data_filename): directory = dirname(abspath(__file__)) directory = join(directory, 'data/') return join(directory, data_filename) def get_full_path(filename): root_dir = dirname(dirname(abspath(__file__))) return join(root_dir, filename) class DBTest(unittest.TestCase): def setUp(self): super(DBTest, self).setUp() # wipe postgresql tables sql_st = """ select 'drop table if exists "' || tablename || '" cascade;' from pg_tables where schemaname = 'public'; """ db_engine = create_engine(POSTGRESQL_ENGINE) tables = pd.read_sql(sql_st, db_engine) with db_engine.connect() as con: for idx, drop_table_st in tables.iterrows(): con.execute(drop_table_st.iloc[0]) def _get_table_contrains(self, table_name, column_query='%%', relationship_query='%%'): return """ select t.relname as table_name, i.relname as index_name, a.attname as column_name from pg_class t, pg_class i, pg_index ix, pg_attribute a where t.oid = ix.indrelid and i.oid = ix.indexrelid and a.attrelid = t.oid and a.attnum = ANY(ix.indkey) and t.relkind = 'r' and t.relname = '{table_name}' and a.attname like '{column_query}' and i.relname like '{relationship_query}' """.format( table_name=table_name, column_query=column_query, relationship_query=relationship_query, )
gpl-3.0
FluidityProject/fluidity
tests/mms_rans_p2p1_keps/function_printer.py
2
1111
from mms_rans_p2p1_keps_tools import * from numpy import * import matplotlib import matplotlib.pyplot as plt import sys ''' run using: python3 function_printer.py AA BB CC DD .. n_rows where: AA, BB, CC, DD are names of functions in mms_rans_p2p1_keps_tools.py (any number can be entered) n_rows is the number of rows to display the functions on ''' functions = [] for arg in sys.argv[1:-1]: functions.append(arg) n_rows = int(sys.argv[-1]) matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.2, hspace=0.2) res = 50 X = linspace(0.0, pi, res) Y = linspace(0.0, pi, res) x = [0,0] data = empty([len(functions), res, res]) for z, function in enumerate(functions): for j, x[0] in enumerate(X): for i, x[1] in enumerate(Y): data[z,i,j] = eval(function + '(x)') plt.subplot(n_rows, len(functions)/n_rows + 1, z+1) CS = plt.contour(X, Y, data[z]) plt.clabel(CS, inline=1, fontsize=10) plt.title(functions[z]) plt.show()
lgpl-2.1
jkarnows/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
218
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
rigdenlab/conkit
conkit/plot/contactdensity.py
2
5851
# BSD 3-Clause License # # Copyright (c) 2016-19, University of Liverpool # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """A module to produce a domain boundary plot""" from __future__ import division from __future__ import print_function __author__ = "Felix Simkovic" __date__ = "23 Feb 2017" __version__ = "0.1" import matplotlib.pyplot as plt import numpy as np from conkit.misc import deprecate from conkit.plot.figure import Figure from conkit.plot.tools import ColorDefinitions from conkit.plot.tools import find_minima from conkit.plot.tools import _isinstance class ContactDensityFigure(Figure): """A Figure object specifically for a contact density illustration. This figure is an adaptation of the algorithm published by Sadowski (2013) [#]_. .. [#] Sadowski M. (2013). Prediction of protein domain boundaries from inverse covariances. Proteins 81(2), 253-260. Attributes ---------- hierarchy : :obj:`~conkit.core.contactmap.ContactMap` The default contact map hierarchy bw_method : str The method to estimate the bandwidth Examples -------- >>> import conkit >>> cmap = conkit.io.read('toxd/toxd.mat', 'ccmpred').top_map >>> conkit.plot.ContactDensityFigure(cmap) """ def __init__(self, hierarchy, bw_method="bowman", **kwargs): """A new contact density plot Parameters ---------- hierarchy : :obj:`~conkit.core.contactmap.ContactMap` The default contact map hierarchy bw_method : str, optional The method to estimate the bandwidth [default: bowman] **kwargs General :obj:`~conkit.plot.figure.Figure` keyword arguments """ super(ContactDensityFigure, self).__init__(**kwargs) self._bw_method = None self._hierarchy = None self.bw_method = bw_method self.hierarchy = hierarchy self.minima_ = None self.draw() def __repr__(self): return self.__class__.__name__ @property def bw_method(self): """The method to estimate the bandwidth For a full list of options, please refer to :meth:`~conkit.core.contactmap.ContactMap.get_contact_density` """ return self._bw_method @bw_method.setter def bw_method(self, bw_method): """Define the method to estimate the bandwidth""" self._bw_method = bw_method @property def hierarchy(self): """A :obj:`~conkit.core.contactmap.ContactMap`""" return self._hierarchy @hierarchy.setter def hierarchy(self, hierarchy): """Define the ConKit :obj:`ContactMap <conkit.core.contactmap.ContactMap>` Raises ------ :exc:`TypeError` The hierarchy is not a :obj:`~conkit.core.contactmap.ContactMap` """ if hierarchy and _isinstance(hierarchy, "ContactMap"): self._hierarchy = hierarchy else: raise TypeError("The hierarchy is not an contact map") @deprecate("0.11", msg="Use draw instead") def redraw(self): self.draw() def draw(self): x, y = self.get_xy_data() self.ax.plot(x, y, linestyle="solid", color=ColorDefinitions.GENERAL, label="Contact Density", zorder=2) line_kwargs = dict(linestyle="--", linewidth=1.0, alpha=0.5, color=ColorDefinitions.MISMATCH, zorder=1) self.minima_ = [] for minimum in find_minima(y, order=1): self.minima_.append(x[minimum]) self.ax.axvline(x[minimum], **line_kwargs) self.ax.axvline(0, ymin=0, ymax=0, label="Domain Boundary", **line_kwargs) self.ax.set_xlim(x.min(), x.max()) self.ax.set_ylim(0.0, y.max()) self.ax.set_xlabel("Residue number") self.ax.set_ylabel("Density Estimate") if self.legend: self.ax.legend( bbox_to_anchor=(0.0, 1.02, 1.0, 0.102), loc=3, ncol=3, mode="expand", borderaxespad=0.0, scatterpoints=1 ) # TODO: deprecate this in 0.10 if self._file_name: self.savefig(self._file_name, dpi=self._dpi) def get_xy_data(self): residues = np.asarray(self.hierarchy.as_list()).flatten() x = np.arange(residues.min(), residues.max() + 1) y = np.asarray(self.hierarchy.get_contact_density(self.bw_method)) return x, y
bsd-3-clause
rahuldhote/scikit-learn
examples/text/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause