repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
Fireblend/scikit-learn
sklearn/preprocessing/label.py
137
27165
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Joel Nothman <[email protected]> # Hamzeh Alsalhi <[email protected]> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import np_version from ..utils.fixes import sparse_min_max from ..utils.fixes import astype from ..utils.fixes import in1d from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] def _check_numpy_unicode_bug(labels): """Check that user is not subject to an old numpy bug Fixed in master before 1.7.0: https://github.com/numpy/numpy/pull/243 """ if np_version[:3] < (1, 7, 0) and labels.dtype.kind == 'U': raise RuntimeError("NumPy < 1.7.0 does not implement searchsorted" " on unicode data correctly. Please upgrade" " NumPy to use LabelEncoder with unicode inputs.") class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') classes = np.unique(y) _check_numpy_unicode_bug(classes) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError("y contains new labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'mutliclass-multioutput', 'multilabel-indicator', and 'unknown'. multilabel_ : boolean True if the transformer was fitted on a multilabel rather than a multiclass set of labels. The ``multilabel_`` attribute is deprecated and will be removed in 0.18 sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. indicator_matrix_ : str 'sparse' when the input data to tansform is a multilable-indicator and is sparse, None otherwise. The ``indicator_matrix_`` attribute is deprecated as of version 0.16 and will be removed in 0.18 Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : numpy array of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : numpy array or sparse matrix of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if len(classes) == 1: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = astype(Y, int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = astype(Y.data, int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: y = np.empty(len(y), dtype=classes.dtype) y.fill(classes[0]) return y else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) yt.indices = np.take(inverse, yt.indices) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
davidparks21/qso_lya_detection_pipeline
dla_cnn/vette_results.py
1
17576
""" Module to vette results against Human catalogs SDSS-DR5 (JXP) and BOSS (Notredaeme) """ from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import pdb import matplotlib as mpl mpl.rcParams['font.family'] = 'stixgeneral' from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from astropy.table import Table from astropy.coordinates import SkyCoord, match_coordinates_sky from astropy import units as u from linetools import utils as ltu from pyigm.surveys.llssurvey import LLSSurvey from pyigm.surveys.dlasurvey import DLASurvey def json_to_sdss_dlasurvey(json_file, sdss_survey, add_pf=True, debug=False): """ Convert JSON output file to a DLASurvey object Assumes SDSS bookkeeping for sightlines (i.e. PLATE, FIBER) Parameters ---------- json_file : str Full path to the JSON results file sdss_survey : DLASurvey SDSS survey, usually human (e.g. JXP for DR5) add_pf : bool, optional Add plate/fiber to DLAs in sdss_survey Returns ------- ml_survey : LLSSurvey Survey object for the LLS """ print("Loading SDSS Survey from JSON file {:s}".format(json_file)) # imports from pyigm.abssys.dla import DLASystem from pyigm.abssys.lls import LLSSystem # Fiber key for fkey in ['FIBER', 'FIBER_ID', 'FIB']: if fkey in sdss_survey.sightlines.keys(): break # Read ml_results = ltu.loadjson(json_file) use_platef = False if 'plate' in ml_results[0].keys(): use_platef = True else: if 'id' in ml_results[0].keys(): use_id = True # Init #idict = dict(plate=[], fiber=[], classification_confidence=[], # FOR v2 # classification=[], ra=[], dec=[]) idict = dict(ra=[], dec=[]) if use_platef: for key in ['plate', 'fiber', 'mjd']: idict[key] = [] ml_tbl = Table() ml_survey = LLSSurvey() systems = [] in_ml = np.array([False]*len(sdss_survey.sightlines)) # Loop for obj in ml_results: # Sightline for key in idict.keys(): idict[key].append(obj[key]) # DLAs #if debug: # if (obj['plate'] == 1366) & (obj['fiber'] == 614): # sv_coord = SkyCoord(ra=obj['ra'], dec=obj['dec'], unit='deg') # print("GOT A MATCH IN RESULTS FILE") for idla in obj['dlas']: """ dla = DLASystem((sdss_survey.sightlines['RA'][mt[0]], sdss_survey.sightlines['DEC'][mt[0]]), idla['spectrum']/(1215.6701)-1., None, idla['column_density']) """ if idla['z_dla'] < 1.8: continue isys = LLSSystem((obj['ra'],obj['dec']), idla['z_dla'], None, NHI=idla['column_density'], zem=obj['z_qso']) isys.confidence = idla['dla_confidence'] if use_platef: isys.plate = obj['plate'] isys.fiber = obj['fiber'] elif use_id: plate, fiber = [int(spl) for spl in obj['id'].split('-')] isys.plate = plate isys.fiber = fiber # Save systems.append(isys) # Connect to sightlines ml_coord = SkyCoord(ra=idict['ra'], dec=idict['dec'], unit='deg') s_coord = SkyCoord(ra=sdss_survey.sightlines['RA'], dec=sdss_survey.sightlines['DEC'], unit='deg') idx, d2d, d3d = match_coordinates_sky(s_coord, ml_coord, nthneighbor=1) used = d2d < 1.*u.arcsec for iidx in np.where(~used)[0]: print("Sightline RA={:g}, DEC={:g} was not used".format(sdss_survey.sightlines['RA'][iidx], sdss_survey.sightlines['DEC'][iidx])) # Add plate/fiber to statistical DLAs if add_pf: dla_coord = sdss_survey.coord idx2, d2d, d3d = match_coordinates_sky(dla_coord, s_coord, nthneighbor=1) if np.min(d2d.to('arcsec').value) > 1.: raise ValueError("Bad match to sightlines") for jj,igd in enumerate(np.where(sdss_survey.mask)[0]): dla = sdss_survey._abs_sys[igd] try: dla.plate = sdss_survey.sightlines['PLATE'][idx2[jj]] except IndexError: pdb.set_trace() dla.fiber = sdss_survey.sightlines[fkey][idx2[jj]] # Finish ml_survey._abs_sys = systems if debug: ml2_coord = ml_survey.coord minsep = np.min(sv_coord.separation(ml2_coord)) minsep2 = np.min(sv_coord.separation(s_coord)) tmp = sdss_survey.sightlines[used] t_coord = SkyCoord(ra=tmp['RA'], dec=tmp['DEC'], unit='deg') minsep3 = np.min(sv_coord.separation(t_coord)) pdb.set_trace() ml_survey.sightlines = sdss_survey.sightlines[used] for key in idict.keys(): ml_tbl[key] = idict[key] ml_survey.ml_tbl = ml_tbl # Return return ml_survey def vette_dlasurvey(ml_survey, sdss_survey, fig_root='tmp', lyb_cut=True, dz_toler=0.03, debug=False): """ Parameters ---------- ml_survey : IGMSurvey Survey describing the Machine Learning results sdss_survey : DLASurvey SDSS survey, usually human (e.g. JXP for DR5) fig_root : str, optional Root string for figures generated lyb_cut : bool, optional Cut surveys at Lyb in QSO rest-frame. Recommended until LLS, Lyb and OVI is dealt with dz_toler : float, optional Tolerance for matching in redshift Returns ------- false_neg : list List of systems that are false negatives from SDSS -> ML midx : list List of indices matching SDSS -> ML """ from pyigm.surveys import dlasurvey as pyis_ds reload(pyis_ds) # Cut at Lyb if lyb_cut: for survey in [ml_survey, sdss_survey]: # Alter Z_START zlyb = (1+survey.sightlines['ZEM']).data*1026./1215.6701 - 1. survey.sightlines['Z_START'] = np.maximum(survey.sightlines['Z_START'], zlyb) # Mask mask = pyis_ds.dla_stat(survey, survey.sightlines, zem_tol=0.2) # Errors in zem! survey.mask = mask print("Done cutting on Lyb") # Setup coords ml_coords = ml_survey.coord ml_z = ml_survey.zabs s_coords = sdss_survey.coord s_z = sdss_survey.zabs # if debug: # miss_coord = SkyCoord(ra=174.35545833333333,dec=44.585,unit='deg') # minsep = np.min(miss_coord.separation(ml_coords)) # s_coord = SkyCoord(ra=ml_survey.sightlines['RA'], dec=ml_survey.sightlines['DEC'], unit='deg') # isl = np.argmin(miss_coord.separation(s_coord)) # Match from SDSS and record false negatives false_neg = [] midx = [] for igd in np.where(sdss_survey.mask)[0]: isys = sdss_survey._abs_sys[igd] # Match? gd_radec = np.where(isys.coord.separation(ml_coords) < 1*u.arcsec)[0] sep = isys.coord.separation(ml_coords) if len(gd_radec) == 0: false_neg.append(isys) midx.append(-1) else: gdz = np.abs(ml_z[gd_radec] - isys.zabs) < dz_toler # Only require one match if np.sum(gdz) > 0: iz = np.argmin(np.abs(ml_z[gd_radec] - isys.zabs)) midx.append(gd_radec[iz]) else: false_neg.append(isys) midx.append(-1) if debug: if (isys.plate == 1366) & (isys.fiber == 614): pdb.set_trace() # Match from ML and record false positives false_pos = [] pidx = [] for igd in np.where(ml_survey.mask)[0]: isys = ml_survey._abs_sys[igd] # Match? gd_radec = np.where(isys.coord.separation(s_coords) < 1*u.arcsec)[0] sep = isys.coord.separation(s_coords) if len(gd_radec) == 0: false_pos.append(isys) pidx.append(-1) else: gdz = np.abs(s_z[gd_radec] - isys.zabs) < dz_toler # Only require one match if np.sum(gdz) > 0: iz = np.argmin(np.abs(s_z[gd_radec] - isys.zabs)) pidx.append(gd_radec[iz]) else: false_pos.append(isys) pidx.append(-1) # Return return false_neg, np.array(midx), false_pos def mk_false_neg_table(false_neg, outfil): """ Generate a simple CSV file of false negatives Parameters ---------- false_neg : list List of false negative systems outfil : str Returns ------- """ # Parse ra, dec = [], [] zabs, zem = [], [] NHI = [] plate, fiber = [], [] for ifneg in false_neg: ra.append(ifneg.coord.ra.value) dec.append(ifneg.coord.dec.value) zabs.append(ifneg.zabs) zem.append(ifneg.zem) NHI.append(ifneg.NHI) plate.append(ifneg.plate) fiber.append(ifneg.fiber) # Generate a Table fneg_tbl = Table() fneg_tbl['RA'] = ra fneg_tbl['DEC'] = dec fneg_tbl['zabs'] = zabs fneg_tbl['zem'] = zem fneg_tbl['NHI'] = NHI fneg_tbl['plate'] = plate fneg_tbl['fiber'] = fiber # Write print("Writing false negative file: {:s}".format(outfil)) fneg_tbl.write(outfil, format='ascii.csv')#, overwrite=True) def fig_dzdnhi(ml_survey, sdss_survey, midx, outfil='fig_dzdnhi.pdf'): """ Compare zabs and NHI between SDSS and ML Parameters ---------- ml_survey : IGMSurvey Survey describing the Machine Learning results This should be masked according to the vetting sdss_survey : DLASurvey SDSS survey, usually human (e.g. JXP for DR5) This should be masked according to the vetting midx : list List of indices matching SDSS -> ML outfil : str, optional Input None to plot to screen Returns ------- """ # z, NHI z_sdss = sdss_survey.zabs z_ml = ml_survey.zabs NHI_sdss = sdss_survey.NHI NHI_ml = ml_survey.NHI # deltas dz = [] dNHI = [] for qq,idx in enumerate(midx): if idx < 0: continue # Match dz.append(z_sdss[qq]-z_ml[idx]) dNHI.append(NHI_sdss[qq]-NHI_ml[idx]) # Figure if outfil is not None: pp = PdfPages(outfil) fig = plt.figure(figsize=(8, 5)) plt.clf() gs = gridspec.GridSpec(1, 2) # dz ax = plt.subplot(gs[0]) ax.hist(dz, color='green', bins=20)#, normed=True)#, bins=20 , zorder=1) #ax.text(0.05, 0.74, lbl3, transform=ax.transAxes, color=wcolor, size=csz, ha='left') ax.set_xlim(-0.03, 0.03) ax.set_xlabel(r'$\delta z$ [SDSS-ML]') # NHI ax = plt.subplot(gs[1]) ax.hist(dNHI, color='blue', bins=20)#, normed=True)#, bins=20 , zorder=1) #ax.text(0.05, 0.74, lbl3, transform=ax.transAxes, color=wcolor, size=csz, ha='left') #ax.set_xlim(-0.03, 0.03) ax.set_xlabel(r'$\Delta \log N_{\rm HI}$ [SDSS-ML]') # # End plt.tight_layout(pad=0.2,h_pad=0.,w_pad=0.1) if outfil is not None: print('Writing {:s}'.format(outfil)) pp.savefig() pp.close() plt.close() else: plt.show() def fig_falseneg(ml_survey, sdss_survey, false_neg, outfil='fig_falseneg.pdf'): """ Figure on false negatives Parameters ---------- ml_survey : IGMSurvey Survey describing the Machine Learning results This should be masked according to the vetting sdss_survey : DLASurvey SDSS survey, usually human (e.g. JXP for DR5) This should be masked according to the vetting midx : list List of indices matching SDSS -> ML false_neg : list List of false negatives outfil : str, optional Input None to plot to screen Returns ------- """ # Generate some lists zabs_false = [isys.zabs for isys in false_neg] zem_false = [isys.zem for isys in false_neg] NHI_false = [isys.NHI for isys in false_neg] # Figure if outfil is not None: pp = PdfPages(outfil) fig = plt.figure(figsize=(8, 5)) plt.clf() gs = gridspec.GridSpec(2, 2) # zabs ax = plt.subplot(gs[0]) ax.hist(zabs_false, color='green', bins=20)#, normed=True)#, bins=20 , zorder=1) ax.set_xlabel(r'$z_{\rm abs}$') # zem ax = plt.subplot(gs[1]) ax.hist(zem_false, color='red', bins=20)#, normed=True)#, bins=20 , zorder=1) ax.set_xlabel(r'$z_{\rm qso}$') # NHI ax = plt.subplot(gs[2]) ax.hist(NHI_false, color='blue', bins=20)#, normed=True)#, bins=20 , zorder=1) ax.set_xlabel(r'$\log \, N_{\rm HI}$') # End plt.tight_layout(pad=0.2,h_pad=0.,w_pad=0.1) if outfil is not None: print('Writing {:s}'.format(outfil)) pp.savefig() pp.close() plt.close() else: plt.show() def dr5_for_david(): """ Generate a Table for David """ # imports from pyigm.abssys.dla import DLASystem from pyigm.abssys.lls import LLSSystem sdss_survey = DLASurvey.load_SDSS_DR5() # Fiber key for fkey in ['FIBER', 'FIBER_ID', 'FIB']: if fkey in sdss_survey.sightlines.keys(): break # Init #idict = dict(plate=[], fiber=[], classification_confidence=[], # FOR v2 # classification=[], ra=[], dec=[]) # Connect to sightlines s_coord = SkyCoord(ra=sdss_survey.sightlines['RA'], dec=sdss_survey.sightlines['DEC'], unit='deg') # Add plate/fiber to statistical DLAs dla_coord = sdss_survey.coord idx2, d2d, d3d = match_coordinates_sky(dla_coord, s_coord, nthneighbor=1) if np.min(d2d.to('arcsec').value) > 1.: raise ValueError("Bad match to sightlines") plates, fibers = [], [] for jj,igd in enumerate(np.where(sdss_survey.mask)[0]): dla = sdss_survey._abs_sys[igd] try: dla.plate = sdss_survey.sightlines['PLATE'][idx2[jj]] except IndexError: pdb.set_trace() dla.fiber = sdss_survey.sightlines[fkey][idx2[jj]] plates.append(sdss_survey.sightlines['PLATE'][idx2[jj]]) fibers.append(sdss_survey.sightlines[fkey][idx2[jj]]) # Write dtbl = Table() dtbl['plate'] = plates dtbl['fiber'] = fibers dtbl['zabs'] = sdss_survey.zabs dtbl['NHI'] = sdss_survey.NHI dtbl.write('results/dr5_for_david.ascii', format='ascii') # Write sightline info stbl = sdss_survey.sightlines[['PLATE', 'FIB', 'Z_START', 'Z_END', 'RA', 'DEC']] gdsl = stbl['Z_END'] > stbl['Z_START'] stbl[gdsl].write('results/dr5_sightlines_for_david.ascii', format='ascii') def main(flg_tst, sdss=None, ml_survey=None): # Load JSON for DR5 if (flg_tst % 2**1) >= 2**0: if sdss is None: sdss = DLASurvey.load_SDSS_DR5() #ml_survey = json_to_sdss_dlasurvey('../results/dr5_v1_predictions.json', sdss) ml_survey = json_to_sdss_dlasurvey('../results/dr5_v2_results.json', sdss) # Vette if (flg_tst % 2**2) >= 2**1: if ml_survey is None: sdss = DLASurvey.load_SDSS_DR5() ml_survey = json_to_sdss_dlasurvey('../results/dr5_v2_results.json', sdss) vette_dlasurvey(ml_survey, sdss) # Vette v5 and generate CSV if (flg_tst % 2**3) >= 2**2: if ml_survey is None: sdss = DLASurvey.load_SDSS_DR5() ml_survey = json_to_sdss_dlasurvey('../results/dr5_v5_predictions.json', sdss) false_neg, midx, _ = vette_dlasurvey(ml_survey, sdss) # CSV of false negatives mk_false_neg_table(false_neg, '../results/false_negative_DR5_v5.csv') # Vette v6 and generate CSV if (flg_tst % 2**4) >= 2**3: if ml_survey is None: sdss = DLASurvey.load_SDSS_DR5() ml_survey = json_to_sdss_dlasurvey('../results/dr5_v6.1_results.json', sdss) false_neg, midx, _ = vette_dlasurvey(ml_survey, sdss) # CSV of false negatives mk_false_neg_table(false_neg, '../results/false_negative_DR5_v6.1.csv') # Vette gensample v2 if (flg_tst % 2**5) >= 2**4: if ml_survey is None: sdss = DLASurvey.load_SDSS_DR5() ml_survey = json_to_sdss_dlasurvey('../results/results_catalog_dr7_model_gensample_v2.json',sdss) false_neg, midx, false_pos = vette_dlasurvey(ml_survey, sdss) # CSV of false negatives mk_false_neg_table(false_neg, '../results/false_negative_DR5_v2_gen.csv') mk_false_neg_table(false_pos, '../results/false_positives_DR5_v2_gen.csv') # Vette gensample v4.3.1 if flg_tst & (2**5): if ml_survey is None: sdss = DLASurvey.load_SDSS_DR5() ml_survey = json_to_sdss_dlasurvey('../results/results_model_4.3.1_data_dr5.json',sdss) false_neg, midx, false_pos = vette_dlasurvey(ml_survey, sdss) # CSV of false negatives mk_false_neg_table(false_neg, '../results/false_negative_DR5_v4.3.1_gen.csv') mk_false_neg_table(false_pos, '../results/false_positives_DR5_v4.3.1_gen.csv') if flg_tst & (2**6): dr5_for_david() # Test if __name__ == '__main__': flg_tst = 0 #flg_tst += 2**0 # Load JSON for DR5 #flg_tst += 2**1 # Vette #flg_tst += 2**2 # v5 #flg_tst += 2**3 # v6.1 #flg_tst += 2**4 # v2 of gensample #flg_tst += 2**5 # v4.3.1 of gensample flg_tst += 2**6 # Generate DR5 table for David main(flg_tst)
mit
RecipeML/Recipe
recipe/classifiers/qda.py
1
1502
# -*- coding: utf-8 -*- """ Copyright 2016 Walter Josรฉ and Alex de Sรก This file is part of the RECIPE Algorithm. The RECIPE is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RECIPE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. See http://www.gnu.org/licenses/. """ from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis def qda(args): """Uses scikit-learn's QuadraticDiscriminantAnalysis, a classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayesโ€™ rule. Parameters ---------- store_covariances : boolean If True the covariance matrices are computed and stored in the self.covariances_ attribute. tol : float Threshold used for rank estimation. reg_param : float Regularizes the covariance estimate as (1-reg_param)*Sigma + reg_param*np.eye(n_features) """ rp = float(args[1]) t = float(args[2]) store_cov = False if(args[3].find("True")!=-1): store_cov = True return QuadraticDiscriminantAnalysis(priors=None, reg_param=rp, store_covariances=store_cov, tol=t)
gpl-3.0
ndingwall/scikit-learn
examples/miscellaneous/plot_display_object_visualization.py
17
3676
""" =================================== Visualizations with Display Objects =================================== .. currentmodule:: sklearn.metrics In this example, we will construct display objects, :class:`ConfusionMatrixDisplay`, :class:`RocCurveDisplay`, and :class:`PrecisionRecallDisplay` directly from their respective metrics. This is an alternative to using their corresponding plot functions when a model's predictions are already computed or expensive to compute. Note that this is advanced usage, and in general we recommend using their respective plot functions. """ print(__doc__) # %% # Load Data and train model # ------------------------- # For this example, we load a blood transfusion service center data set from # `OpenML <https://www.openml.org/d/1464>`. This is a binary classification # problem where the target is whether an individual donated blood. Then the # data is split into a train and test dataset and a logistic regression is # fitted wtih the train dataset. from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split X, y = fetch_openml(data_id=1464, return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0)) clf.fit(X_train, y_train) # %% # Create :class:`ConfusionMatrixDisplay` ############################################################################## # With the fitted model, we compute the predictions of the model on the test # dataset. These predictions are used to compute the confustion matrix which # is plotted with the :class:`ConfusionMatrixDisplay` from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) cm_display = ConfusionMatrixDisplay(cm).plot() # %% # Create :class:`RocCurveDisplay` ############################################################################## # The roc curve requires either the probabilities or the non-thresholded # decision values from the estimator. Since the logistic regression provides # a decision function, we will use it to plot the roc curve: from sklearn.metrics import roc_curve from sklearn.metrics import RocCurveDisplay y_score = clf.decision_function(X_test) fpr, tpr, _ = roc_curve(y_test, y_score, pos_label=clf.classes_[1]) roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot() # %% # Create :class:`PrecisionRecallDisplay` ############################################################################## # Similarly, the precision recall curve can be plotted using `y_score` from # the prevision sections. from sklearn.metrics import precision_recall_curve from sklearn.metrics import PrecisionRecallDisplay prec, recall, _ = precision_recall_curve(y_test, y_score, pos_label=clf.classes_[1]) pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot() # %% # Combining the display objects into a single plot ############################################################################## # The display objects store the computed values that were passed as arguments. # This allows for the visualizations to be easliy combined using matplotlib's # API. In the following example, we place the displays next to each other in a # row. # sphinx_gallery_thumbnail_number = 4 import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8)) roc_display.plot(ax=ax1) pr_display.plot(ax=ax2) plt.show()
bsd-3-clause
magne-max/zipline-ja
tests/pipeline/test_us_equity_pricing_loader.py
1
20821
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for USEquityPricingLoader and related classes. """ from numpy import ( arange, datetime64, float64, ones, uint32, ) from numpy.testing import ( assert_allclose, assert_array_equal, ) from pandas import ( concat, DataFrame, Int64Index, Timestamp, ) from toolz.curried.operator import getitem from zipline.lib.adjustment import Float64Multiply from zipline.pipeline.loaders.synthetic import ( NullAdjustmentReader, make_bar_data, expected_bar_values_2d, ) from zipline.pipeline.loaders.equity_pricing_loader import ( USEquityPricingLoader, ) from zipline.errors import WindowLengthTooLong from zipline.pipeline.data import USEquityPricing from zipline.testing import ( seconds_to_timestamp, str_to_seconds, MockDailyBarReader, ) from zipline.testing.fixtures import ( WithAdjustmentReader, ZiplineTestCase, ) # Test calendar ranges over the month of June 2015 # June 2015 # Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 TEST_CALENDAR_START = Timestamp('2015-06-01', tz='UTC') TEST_CALENDAR_STOP = Timestamp('2015-06-30', tz='UTC') TEST_QUERY_START = Timestamp('2015-06-10', tz='UTC') TEST_QUERY_STOP = Timestamp('2015-06-19', tz='UTC') # One asset for each of the cases enumerated in load_raw_arrays_from_bcolz. EQUITY_INFO = DataFrame( [ # 1) The equity's trades start and end before query. {'start_date': '2015-06-01', 'end_date': '2015-06-05'}, # 2) The equity's trades start and end after query. {'start_date': '2015-06-22', 'end_date': '2015-06-30'}, # 3) The equity's data covers all dates in range. {'start_date': '2015-06-02', 'end_date': '2015-06-30'}, # 4) The equity's trades start before the query start, but stop # before the query end. {'start_date': '2015-06-01', 'end_date': '2015-06-15'}, # 5) The equity's trades start and end during the query. {'start_date': '2015-06-12', 'end_date': '2015-06-18'}, # 6) The equity's trades start during the query, but extend through # the whole query. {'start_date': '2015-06-15', 'end_date': '2015-06-25'}, ], index=arange(1, 7), columns=['start_date', 'end_date'], ).astype(datetime64) EQUITY_INFO['symbol'] = [chr(ord('A') + n) for n in range(len(EQUITY_INFO))] TEST_QUERY_ASSETS = EQUITY_INFO.index # ADJUSTMENTS use the following scheme to indicate information about the value # upon inspection. # # 1s place is the equity # # 0.1s place is the action type, with: # # splits, 1 # mergers, 2 # dividends, 3 # # 0.001s is the date SPLITS = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-03'), 'ratio': 1.103, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 3.110, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 3.112, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-21'), 'ratio': 6.121, 'sid': 6}, # Another action in query range, should have last_row of 1 {'effective_date': str_to_seconds('2015-06-11'), 'ratio': 3.111, 'sid': 3}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 3.119, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) MERGERS = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-03'), 'ratio': 1.203, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 3.210, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 3.212, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-25'), 'ratio': 6.225, 'sid': 6}, # Another action in query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 4.212, 'sid': 4}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 3.219, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) DIVIDENDS = DataFrame( [ # Before query range, should be excluded. {'declared_date': Timestamp('2015-05-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-03', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-05', tz='UTC').to_datetime64(), 'amount': 90.0, 'sid': 1}, # First day of query range, should be excluded. {'declared_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-10', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-15', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-17', tz='UTC').to_datetime64(), 'amount': 80.0, 'sid': 3}, # Third day of query range, should have last_row of 2 {'declared_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-12', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-15', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-17', tz='UTC').to_datetime64(), 'amount': 70.0, 'sid': 3}, # After query range, should be excluded. {'declared_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-25', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-28', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-30', tz='UTC').to_datetime64(), 'amount': 60.0, 'sid': 6}, # Another action in query range, should have last_row of 3 {'declared_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-15', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-18', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-20', tz='UTC').to_datetime64(), 'amount': 50.0, 'sid': 3}, # Last day of range. Should have last_row of 7 {'declared_date': Timestamp('2015-06-01', tz='UTC').to_datetime64(), 'ex_date': Timestamp('2015-06-19', tz='UTC').to_datetime64(), 'record_date': Timestamp('2015-06-22', tz='UTC').to_datetime64(), 'pay_date': Timestamp('2015-06-30', tz='UTC').to_datetime64(), 'amount': 40.0, 'sid': 3}, ], columns=['declared_date', 'ex_date', 'record_date', 'pay_date', 'amount', 'sid'], ) DIVIDENDS_EXPECTED = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-01'), 'ratio': 0.1, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 0.20, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 0.30, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-25'), 'ratio': 0.40, 'sid': 6}, # Another action in query range, should have last_row of 3 {'effective_date': str_to_seconds('2015-06-15'), 'ratio': 0.50, 'sid': 3}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 0.60, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) class USEquityPricingLoaderTestCase(WithAdjustmentReader, ZiplineTestCase): START_DATE = TEST_CALENDAR_START END_DATE = TEST_CALENDAR_STOP asset_ids = 1, 2, 3 @classmethod def make_equity_info(cls): return EQUITY_INFO @classmethod def make_splits_data(cls): return SPLITS @classmethod def make_mergers_data(cls): return MERGERS @classmethod def make_dividends_data(cls): return DIVIDENDS @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader() @classmethod def make_equity_daily_bar_data(cls): return make_bar_data( EQUITY_INFO, cls.equity_daily_bar_days, ) @classmethod def init_class_fixtures(cls): super(USEquityPricingLoaderTestCase, cls).init_class_fixtures() cls.assets = TEST_QUERY_ASSETS cls.asset_info = EQUITY_INFO def test_input_sanity(self): # Ensure that the input data doesn't contain adjustments during periods # where the corresponding asset didn't exist. for table in SPLITS, MERGERS: for eff_date_secs, _, sid in table.itertuples(index=False): eff_date = Timestamp(eff_date_secs, unit='s') asset_start, asset_end = EQUITY_INFO.ix[ sid, ['start_date', 'end_date'] ] self.assertGreaterEqual(eff_date, asset_start) self.assertLessEqual(eff_date, asset_end) def calendar_days_between(self, start_date, end_date, shift=0): slice_ = self.equity_daily_bar_days.slice_indexer(start_date, end_date) start = slice_.start + shift stop = slice_.stop + shift if start < 0: raise KeyError(start_date, shift) return self.equity_daily_bar_days[start:stop] def expected_adjustments(self, start_date, end_date): price_adjustments = {} volume_adjustments = {} query_days = self.calendar_days_between(start_date, end_date) start_loc = query_days.get_loc(start_date) for table in SPLITS, MERGERS, DIVIDENDS_EXPECTED: for eff_date_secs, ratio, sid in table.itertuples(index=False): eff_date = Timestamp(eff_date_secs, unit='s', tz='UTC') # Ignore adjustments outside the query bounds. if not (start_date <= eff_date <= end_date): continue eff_date_loc = query_days.get_loc(eff_date) delta = eff_date_loc - start_loc # Pricing adjustments should be applied on the date # corresponding to the effective date of the input data. They # should affect all rows **before** the effective date. price_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=ratio, ) ) # Volume is *inversely* affected by *splits only*. if table is SPLITS: volume_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=1.0 / ratio, ) ) return price_adjustments, volume_adjustments def test_load_adjustments_from_sqlite(self): columns = [USEquityPricing.close, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, ) adjustments = self.adjustment_reader.load_adjustments( [c.name for c in columns], query_days, self.assets, ) close_adjustments = adjustments[0] volume_adjustments = adjustments[1] expected_close_adjustments, expected_volume_adjustments = \ self.expected_adjustments(TEST_QUERY_START, TEST_QUERY_STOP) for key in expected_close_adjustments: close_adjustment = close_adjustments[key] for j, adj in enumerate(close_adjustment): expected = expected_close_adjustments[key][j] self.assertEqual(adj.first_row, expected.first_row) self.assertEqual(adj.last_row, expected.last_row) self.assertEqual(adj.first_col, expected.first_col) self.assertEqual(adj.last_col, expected.last_col) assert_allclose(adj.value, expected.value) for key in expected_volume_adjustments: volume_adjustment = volume_adjustments[key] for j, adj in enumerate(volume_adjustment): expected = expected_volume_adjustments[key][j] self.assertEqual(adj.first_row, expected.first_row) self.assertEqual(adj.last_row, expected.last_row) self.assertEqual(adj.first_col, expected.first_col) self.assertEqual(adj.last_col, expected.last_col) assert_allclose(adj.value, expected.value) def test_read_no_adjustments(self): adjustment_reader = NullAdjustmentReader() columns = [USEquityPricing.close, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP ) # Our expected results for each day are based on values from the # previous day. shifted_query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, shift=-1, ) adjustments = adjustment_reader.load_adjustments( [c.name for c in columns], query_days, self.assets, ) self.assertEqual(adjustments, [{}, {}]) pricing_loader = USEquityPricingLoader( self.bcolz_equity_daily_bar_reader, adjustment_reader, ) results = pricing_loader.load_adjusted_array( columns, dates=query_days, assets=self.assets, mask=ones((len(query_days), len(self.assets)), dtype=bool), ) closes, volumes = map(getitem(results), columns) expected_baseline_closes = expected_bar_values_2d( shifted_query_days, self.asset_info, 'close', ) expected_baseline_volumes = expected_bar_values_2d( shifted_query_days, self.asset_info, 'volume', ) # AdjustedArrays should yield the same data as the expected baseline. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(closes.traverse(windowlen)): assert_array_equal( expected_baseline_closes[offset:offset + windowlen], window, ) for offset, window in enumerate(volumes.traverse(windowlen)): assert_array_equal( expected_baseline_volumes[offset:offset + windowlen], window, ) # Verify that we checked up to the longest possible window. with self.assertRaises(WindowLengthTooLong): closes.traverse(windowlen + 1) with self.assertRaises(WindowLengthTooLong): volumes.traverse(windowlen + 1) def apply_adjustments(self, dates, assets, baseline_values, adjustments): min_date, max_date = dates[[0, -1]] # HACK: Simulate the coercion to float64 we do in adjusted_array. This # should be removed when AdjustedArray properly supports # non-floating-point types. orig_dtype = baseline_values.dtype values = baseline_values.astype(float64).copy() for eff_date_secs, ratio, sid in adjustments.itertuples(index=False): eff_date = seconds_to_timestamp(eff_date_secs) # Don't apply adjustments that aren't in the current date range. if eff_date not in dates: continue eff_date_loc = dates.get_loc(eff_date) asset_col = assets.get_loc(sid) # Apply ratio multiplicatively to the asset column on all rows less # than or equal adjustment effective date. values[:eff_date_loc + 1, asset_col] *= ratio return values.astype(orig_dtype) def test_read_with_adjustments(self): columns = [USEquityPricing.high, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP ) # Our expected results for each day are based on values from the # previous day. shifted_query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, shift=-1, ) pricing_loader = USEquityPricingLoader( self.bcolz_equity_daily_bar_reader, self.adjustment_reader, ) results = pricing_loader.load_adjusted_array( columns, dates=query_days, assets=Int64Index(arange(1, 7)), mask=ones((len(query_days), 6), dtype=bool), ) highs, volumes = map(getitem(results), columns) expected_baseline_highs = expected_bar_values_2d( shifted_query_days, self.asset_info, 'high', ) expected_baseline_volumes = expected_bar_values_2d( shifted_query_days, self.asset_info, 'volume', ) # At each point in time, the AdjustedArrays should yield the baseline # with all adjustments up to that date applied. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(highs.traverse(windowlen)): baseline = expected_baseline_highs[offset:offset + windowlen] baseline_dates = query_days[offset:offset + windowlen] expected_adjusted_highs = self.apply_adjustments( baseline_dates, self.assets, baseline, # Apply all adjustments. concat([SPLITS, MERGERS, DIVIDENDS_EXPECTED], ignore_index=True), ) assert_allclose(expected_adjusted_highs, window) for offset, window in enumerate(volumes.traverse(windowlen)): baseline = expected_baseline_volumes[offset:offset + windowlen] baseline_dates = query_days[offset:offset + windowlen] # Apply only splits and invert the ratio. adjustments = SPLITS.copy() adjustments.ratio = 1 / adjustments.ratio expected_adjusted_volumes = self.apply_adjustments( baseline_dates, self.assets, baseline, adjustments, ) # FIXME: Make AdjustedArray properly support integral types. assert_array_equal( expected_adjusted_volumes, window.astype(uint32), ) # Verify that we checked up to the longest possible window. with self.assertRaises(WindowLengthTooLong): highs.traverse(windowlen + 1) with self.assertRaises(WindowLengthTooLong): volumes.traverse(windowlen + 1)
apache-2.0
imperial-genomics-facility/data-management-python
igf_data/process/batch_effect/batch_effect_report.py
1
9733
from shlex import quote import pandas as pd from copy import copy import matplotlib from sklearn.decomposition import PCA import subprocess,re,os,json,base64 from igf_data.utils.fileutils import get_temp_dir,remove_dir,check_file_path,copy_local_file from jinja2 import Template,Environment, FileSystemLoader,select_autoescape matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns class Batch_effect_report: ''' A python class for checking lane level batch effect for RNA-Seq sample :param input_json_file: A json file containing the list of following info file flowcell lane :param template_file: A template file for writing the report :param rscript_path: Rscript exe path :param batch_effect_rscript_path: CPM conversion R-script file path :param strand_info: RNA-Seq strand information, default reverse_strand :param read_threshold: Threshold for low number of reads, default 5 :param allowed_strands: A list of allowed strands, reverse_strand forward_strand unstranded' ''' def __init__(self,input_json_file,template_file,rscript_path,batch_effect_rscript_path, allowed_strands=('reverse_strand','forward_strand','unstranded'), read_threshold=5,strand_info='reverse_strand'): self.input_json_file=input_json_file self.template_file=template_file self.batch_effect_rscript_path=batch_effect_rscript_path self.rscript_path=rscript_path self.strand_info=strand_info self.allowed_strands=list(allowed_strands) self.read_threshold=read_threshold @staticmethod def _encode_png_image(png_file): ''' A static method for encoding png files to string data :param png_file: A png filepath :returns: A string data ''' try: if not os.path.exists(png_file): raise ValueError('File not present') encoded=base64.b64encode(open(png_file, "rb").read()).decode() return encoded except: raise def check_lane_effect_and_log_report(self,project_name,sample_name,output_file): ''' A function for generating batch effect report for a sample and project :param project_name: A project name for the report file :param sample_name: A sample name for the report file :param output_file: Path of the output report file ''' try: if self.strand_info not in self.allowed_strands: raise ValueError('{0} is not a valid strand'.format(self.strand_info)) temp_dir=get_temp_dir(use_ephemeral_space=False) temp_merged_output=os.path.join(temp_dir,'merged.csv') temp_cpm_output=os.path.join(temp_dir,'merged_cpm.csv') temp_png_output=os.path.join(temp_dir,'plot.png') temp_clustermap=os.path.join(temp_dir,'clustermap.png') temp_corr=os.path.join(temp_dir,'corr.png') temp_pca_flowcell=os.path.join(temp_dir,'pca_flowcell.png') temp_pca_flowcell_lane=os.path.join(temp_dir,'pca_flowcell_lane.png') temp_html_report=os.path.join(temp_dir, os.path.basename(self.template_file)) check_file_path(self.input_json_file) check_file_path(self.rscript_path) check_file_path(self.batch_effect_rscript_path) with open(self.input_json_file,'r') as json_data: input_list=json.load(json_data) if len(input_list)<2: raise ValueError('Minimum two input files are required for lane level batch effect checking') gene_name_label='gene_name' final_df=pd.DataFrame() for entry in input_list: file=entry.get('file') flowcell=entry.get('flowcell') lane=entry.get('lane') if file is None or \ flowcell is None or \ lane is None: raise ValueError('Missing required info for batch effect check: {0}'.\ format(entry)) unstranded_label='unstranded_{0}_{1}'.format(flowcell,lane) reverse_strand_label='reverse_strand_{0}_{1}'.format(flowcell,lane) forward_strand_label='forward_strand_{0}_{1}'.format(flowcell,lane) data=pd.read_csv(\ file, sep='\t', header=None, skiprows=4, index_col=False, names=[gene_name_label, unstranded_label, forward_strand_label, reverse_strand_label]) if self.strand_info=='reverse_strand': data=data[[gene_name_label, reverse_strand_label ]] data=data[data[reverse_strand_label]>self.read_threshold] # filter series and remove any low value gene elif self.strand_info=='forward_strand': data=data[[gene_name_label, forward_strand_label ]] data=data[data[forward_strand_label]>self.read_threshold] # filter series and remove any low value gene elif self.strand_info=='unstranded': data=data[[gene_name_label, unstranded_label ]] data=data[data[unstranded_label]>self.read_threshold] # filter series and remove any low value gene if len(final_df.index)==0: final_df=copy(data) else: final_df=final_df.\ merge(data, how='outer', on=gene_name_label) final_df=final_df.dropna().set_index(gene_name_label) # remove any row with NA values from df final_df.\ applymap(lambda x: float(x)).\ to_csv(temp_merged_output,index=True) # dump raw counts as csv file rscript_cmd=[quote(self.rscript_path), quote(self.batch_effect_rscript_path), quote(temp_merged_output), quote(temp_cpm_output), quote(temp_png_output) ] subprocess.check_call(' '.join(rscript_cmd),shell=True) # run r script for cpm counts check_file_path(temp_cpm_output) # check output file mod_data=pd.read_csv(temp_cpm_output).\ rename(columns={'Unnamed: 0':gene_name_label}).\ set_index(gene_name_label) # read output file sns_fig=sns.clustermap(mod_data,figsize=(10,10)) sns_fig.fig.savefig(temp_clustermap) check_file_path(temp_clustermap) # plot clustermap corr_df=mod_data.corr() cmap=sns.diverging_palette(220, 10, as_cmap=True) fig,ax=plt.subplots(figsize=(7,7)) sns.heatmap(corr_df, cmap=cmap, square=True, linewidths=.5, cbar_kws={"shrink": .4}, ax=ax); plt.savefig(temp_corr) check_file_path(temp_corr) # plot correlation values pca = PCA(n_components=2) X_r = pca.fit(mod_data.T).transform(mod_data.T) pattern1=re.compile(r'(rev_strand|forward_strand|unstranded)_(\S+)_([1-8])') pattern2=re.compile(r'(rev_strand|forward_strand|unstranded)_(\S+_[1-8])') results_df=pd.DataFrame(\ {'PCA1':X_r[:,0], 'PCA2':X_r[:,1], 'flowcell':[re.match(pattern1,label).group(2) if re.match(pattern1,label) else label for label in mod_data.T.index], 'flowcell_lane':[re.match(pattern2,label).group(2) if re.match(pattern2,label) else label for label in mod_data.T.index] }) pca_plot=sns.lmplot('PCA1', 'PCA2', hue='flowcell', data=results_df, fit_reg=False); pca_plot.fig.savefig(temp_pca_flowcell) # plot flowcell level pca pca_plot=sns.lmplot('PCA1', 'PCA2', hue='flowcell_lane', data=results_df, fit_reg=False); pca_plot.fig.savefig(temp_pca_flowcell_lane) # plot flowcell-lane level pca template_env=Environment(\ loader=FileSystemLoader(\ searchpath=os.path.dirname(self.template_file)), autoescape=select_autoescape(['xml'])) template_file=template_env.\ get_template(os.path.basename(self.template_file)) template_file.\ stream(ProjectName=project_name, SampleName=sample_name, mdsPlot=self._encode_png_image(png_file=temp_png_output), clustermapPlot=self._encode_png_image(png_file=temp_clustermap), corrPlot=self._encode_png_image(png_file=temp_corr), pca1Plot=self._encode_png_image(png_file=temp_pca_flowcell), pca2Plot=self._encode_png_image(png_file=temp_pca_flowcell_lane), ).\ dump(temp_html_report) copy_local_file(temp_html_report, output_file, force=True) except: raise
apache-2.0
kidaa/crystal-1
crystal/utils.py
2
3815
from collections import defaultdict import toolshed as ts import numpy as np import pandas as pd from .crystal import Feature, CountFeature import os def example_random_cluster(n_samples=20, n_sites=4, seed=42): np.random.seed(seed) if n_samples % 2 != 0: n_samples += 1 covs = pd.DataFrame({'gender': ['F'] * (n_samples / 2) + ['M'] * (n_samples / 2), 'age': np.random.uniform(10, 25, size=n_samples) }) methylation = np.random.normal(0.15, 0.75, size=(n_sites, n_samples)) cluster = [Feature('chr1', (i + 1) * 10, m) for i, m in enumerate(methylation)] covs['id'] = ['id_%i' %i for i in range(len(covs))] return covs, cluster def real_cluster(): path = os.path.join(os.path.dirname(__file__), "tests") meth = pd.read_csv('%s/real_cluster.csv' % path, index_col=0) chroms = [x.split(":")[0] for x in meth.index] starts = [int(x.split(":")[1]) for x in meth.index] cluster = [Feature(chroms[i], starts[i], np.array(meth.ix[i, :])) for i in range(len(meth))] covs = pd.read_csv('%s/covs.csv' % path) return covs, cluster def real_count_cluster(): path = os.path.join(os.path.dirname(__file__), "tests") c = pd.read_csv('%s/m.counts.csv' % path, index_col=0) m = pd.read_csv('%s/m.methylated.csv' % path, index_col=0) chroms = [x.split(":")[0] for x in m.index] starts = [int(x.split(":")[1]) for x in c.index] cluster = [CountFeature(chroms[i], starts[i], np.array(m.ix[i, :]), np.array(c.ix[i, :])) for i in range(len(m))] covs = pd.read_table('%s/m.covs.txt' % path) return covs, cluster def write_cluster(cluster, fh, float_format="%.4f", count_fh=None): """ Write a cluster to file. Parameters ---------- cluster : cluster a cluster from aclust (or just a list of features) fh : filehandle count_fh : filehandle if cluster is of `CountFeature` then a count_fh must be specified so that the counts can be written to file as well. """ fmt = "{chrom}:{position}\t{values}\n" if isinstance(cluster[0], Feature): for f in cluster: values = "\t".join((float_format % v for v in f.values)) fh.write(fmt.format(chrom=f.chrom, position=f.position, values=values)) elif isinstance(cluster[0], CountFeature): assert count_fh is not None for f in cluster: fh.write(fmt.format(chrom=f.chrom, position=f.position, values="\t".join(f.methylated))) count_fh.write(fmt.format(chrom=f.chrom, position=f.position, values="\t".join(f.counts))) def roc_out(p_bed, p_col, truth_region_bed, exclude=('-1', 'NA', 'nan')): """Create ROC for a bed file of p-values given known truth regions. Parameters ---------- p_bed : file p_col : int column containing the p-value from `p_bed` truth_region_bed : file contains the true regions """ p_col -= 1 # 0-based regions = defaultdict(list) for toks in ts.reader(truth_region_bed, header=False): if not (toks[1] + toks[2]).isdigit(): continue regions[toks[0]].append((int(toks[1]), int(toks[2]))) truths = [] vals = [] for toks in ts.reader(p_bed, header=False): if not (toks[1] + toks[2]).isdigit(): continue reg = regions[toks[0]] s, e = int(toks[1]), int(toks[2]) p = toks[p_col] if p in exclude: continue vals.append(1.0 - float(p)) truth = any(rs <= s <= re or rs <= e <= re for rs, re in reg) truths.append(truth) return np.array(truths).astype(int), np.array(vals)
mit
Equitable/trump
trump/reporting/objects.py
2
8364
# -*- coding: utf-8 -*- """ Created on Mon May 04 06:49:37 2015 Creator: JMcLarty """ from __future__ import division import sys import traceback as trcbm import pandas as pd import datetime as dt from collections import OrderedDict as odict class HandlePointReport(object): def __init__(self, handlepoint, trace): self.hpoint = handlepoint self.trace = trace @property def df(self): return pd.DataFrame({'handlepoint' : self.hpoint, 'tracelineno' : i, 'file' : tr[0], 'traceline' : tr[1], 'tracefunc' : tr[2], 'tracecode' : tr[3]} for i, tr in enumerate(self.trace)) @property def html(self): return "{}\n{}".format(self.hpoint, self.trace[-3:]) class ReportPoint(object): def __init__(self, reportpoint, attribute, value, extended=None): self.rpoint = reportpoint self.attribute = attribute self.value = value self.extended = extended @property def df(self): return pd.DataFrame({'reportpoint' : self.rpoint, 'attribute' : self.attribute, 'value' : self.value, 'extended' : self.extended}) @property def html(self): return "{} {} {}\n{}".format(self.rpoint, self.attribute, self.value, self.extended) class FeedReport(object): def __init__(self, num): self.num = num self.tstamp = dt.datetime.now() self.handlepoints = [] self.reportpoints = [] @property def hpdf(self): dfs = [hp.df for hp in self.handlepoints] if len(dfs): df = pd.concat(dfs, axis=0) df['tstamp'] = [self.tstamp] * len(df) df['feednum'] = [self.num] * len(df) return df else: return pd.DataFrame() def add_handlepoint(self, hpreport): """Appends a HandlePointReport""" self.handlepoints.append(hpreport) def add_reportpoint(self, rpoint): """Appends a ReportPoint""" self.reportpoints.append(rpoint) def asodict(self, handlepoints=True, reportpoints=True): """Returns an ordered dictionary of handle/report points""" out = odict() if handlepoints: for hp in self.handlepoints: out[hp.hpoint] = hp.trace if reportpoints: for rp in self.reportpoints: if not (rp.rpoint in out): out[rp.rpoint] = odict() out[rp.rpoint][self.attribute] = {'value' : rp.value, 'extended': rp.extended} return out @property def html(self): thtml = [] thtml.append("<h3>{}</h3>".format(self.num)) thtml.append("<h5>{}</h5>".format(self.tstamp)) for hp in self.handlepoints: thtml.append(hp.html) thtml.append("<br>") for rp in self.reportpoints: thtml.append(rp.html) thtml.append("<br>") return "".join(thtml) class SymbolReport(object): def __init__(self, name): self.name = name self.freports = [] self.handlepoints = [] self.reportpoints = [] @property def hpdf(self): fddfs = [fd.hpdf for fd in self.freports] dfs = [hp.df for hp in self.handlepoints] if len(dfs): df = pd.concat(dfs, axis=0) df['tstamp'] = [0] * len(dfs) df['feednum'] = [-1] * len(dfs) fddfs.append(df) df = pd.concat(fddfs, axis=0) df['symbol'] = [self.name] * len(df) return df def add_feedreport(self, freport): """Appends a FeedReport""" self.freports.append(freport) def add_handlepoint(self, hpreport): """Appends a HandlePointReport""" self.handlepoints.append(hpreport) def add_reportpoint(self, rpoint): """Appends a ReportPoint""" self.reportpoints.append(rpoint) def asodict(self, freports=True, handlepoints=True, reportpoints=True): """Returns an ordered dictionary of feed, and handle/report points""" out = odict() if freports: for fr in self.freports: out[fr.num] = {'tstamp' : fr.tstamp, 'report' : fr.asodict(handlepoints, reportpoints)} if handlepoints: for hp in self.handlepoints: out[hp.hpoint] = hp.trace if reportpoints: for rp in self.reportpoints: if not (rp.rpoint in out): out[rp.rpoint] = odict() out[rp.rpoint][self.attribute] = {'value' : rp.value, 'extended': rp.extended} return out def all_handlepoints(self): out = odict() for fr in self.freports: for hp in fr.handlepoints: if not (hp.hpoint in out): out[hp.hpoint] = [] out[hp.hpoint].append((self.name, fr.num, hp.trace)) for hp in self.handlepoints: if not (hp.hpoint in out): out[hp.hpoint] = [] out[hp.hpoint].append((self.name, None, hp.trace)) return out @property def html(self): thtml = [] thtml.append("<h2>{}</h2>".format(self.name)) for fr in self.freports: thtml.append(fr.html) thtml.append("<br>") for hp in self.handlepoints: thtml.append(hp.html) thtml.append("<br>") for rp in self.reportpoints: thtml.append(rp.html) thtml.append("<br>") return "".join(thtml) class TrumpReport(object): def __init__(self, name): self.name = name self.sreports = [] def add_symbolreport(self, sreport): self.sreports.append(sreport) @property def hpdf(self): dfs = [sr.hpdf for sr in self.sreports] if len(dfs): dfs = pd.concat(dfs, axis=0) return dfs.reset_index(drop=True) else: return pd.DataFrame() @property def html(self): thtml = [] thtml.append("<h1>{}</h1>".format(self.name)) for sr in self.sreports: thtml.append(sr.html) thtml.append("<br>") return "".join(thtml) def all_handlepoints(self): out = {} for sr in self.sreports: sout = sr.all_handlepoints() for hp in sout.keys(): if not (hp in out): out[hp] = [] out[hp].append(sout[hp]) return out if __name__ == '__main__': tr = TrumpReport("Test Report") for fakesym in list('ABCDE'): sr = SymbolReport(fakesym) for fakefeed in list('123'): fr = FeedReport(fakefeed) rp = ReportPoint("fetched feed", "somecheck", True) fr.add_reportpoint(rp) rp = ReportPoint("fetched feed", "othercheck", 50) fr.add_reportpoint(rp) try: a = b + "a problem" except: typ, val, tback = sys.exc_info() tbextract = trcbm.extract_tb(tback) hp = HandlePointReport("a+b", tbextract) fr.add_handlepoint(hp) rp = ReportPoint("add a and b", "goodcheck", "ab") fr.add_reportpoint(rp) try: a = 4 + "a problem" except: typ, val, tback = sys.exc_info() tbextract = trcbm.extract_tb(tback) hp = HandlePointReport("4th problem", tbextract) fr.add_handlepoint(hp) sr.add_feedreport(fr) rp = ReportPoint("symbol done", "validwhat", True, pd.DataFrame([1,2,3,4])) sr.add_reportpoint(rp) tr.add_symbolreport(sr) f = open("C:\\jmclarty\\tr.html",'w+') f.write(tr.html) f.close()
bsd-3-clause
ahoyosid/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
jstoxrocky/statsmodels
statsmodels/graphics/tukeyplot.py
33
2473
from statsmodels.compat.python import range import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.lines as lines def tukeyplot(results, dim=None, yticklabels=None): npairs = len(results) fig = plt.figure() fsp = fig.add_subplot(111) fsp.axis([-50,50,0.5,10.5]) fsp.set_title('95 % family-wise confidence level') fsp.title.set_y(1.025) fsp.set_yticks(np.arange(1,11)) fsp.set_yticklabels(['V-T','V-S','T-S','V-P','T-P','S-P','V-M', 'T-M','S-M','P-M']) #fsp.yaxis.set_major_locator(mticker.MaxNLocator(npairs)) fsp.yaxis.grid(True, linestyle='-', color='gray') fsp.set_xlabel('Differences in mean levels of Var', labelpad=8) fsp.xaxis.tick_bottom() fsp.yaxis.tick_left() xticklines = fsp.get_xticklines() for xtickline in xticklines: xtickline.set_marker(lines.TICKDOWN) xtickline.set_markersize(10) xlabels = fsp.get_xticklabels() for xlabel in xlabels: xlabel.set_y(-.04) yticklines = fsp.get_yticklines() for ytickline in yticklines: ytickline.set_marker(lines.TICKLEFT) ytickline.set_markersize(10) ylabels = fsp.get_yticklabels() for ylabel in ylabels: ylabel.set_x(-.04) for pair in range(npairs): data = .5+results[pair]/100. #fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data[1], linewidth=1.25, fsp.axhline(y=npairs-pair, xmin=data.mean(), xmax=data[1], linewidth=1.25, color='blue', marker="|", markevery=1) fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data.mean(), linewidth=1.25, color='blue', marker="|", markevery=1) #for pair in range(npairs): # data = .5+results[pair]/100. # data = results[pair] # data = np.r_[data[0],data.mean(),data[1]] # l = plt.plot(data, [npairs-pair]*len(data), color='black', # linewidth=.5, marker="|", markevery=1) fsp.axvline(x=0, linestyle="--", color='black') fig.subplots_adjust(bottom=.125) results = np.array([[-10.04391794, 26.34391794], [-21.45225794, 14.93557794], [ 5.61441206, 42.00224794], [-13.40225794, 22.98557794], [-29.60225794, 6.78557794], [ -2.53558794, 33.85224794], [-21.55225794, 14.83557794], [ 8.87275206, 45.26058794], [-10.14391794, 26.24391794], [-37.21058794, -0.82275206]]) #plt.show()
bsd-3-clause
koldunovn/geopandas
geopandas/geoseries.py
8
10052
from functools import partial from warnings import warn import numpy as np from pandas import Series, DataFrame from pandas.core.indexing import _NDFrameIndexer from pandas.util.decorators import cache_readonly import pyproj from shapely.geometry import box, shape, Polygon, Point from shapely.geometry.collection import GeometryCollection from shapely.geometry.base import BaseGeometry from shapely.ops import transform from geopandas.plotting import plot_series from geopandas.base import GeoPandasBase OLD_PANDAS = issubclass(Series, np.ndarray) def _is_empty(x): try: return x.is_empty except: return False def _convert_array_args(args): if len(args) == 1 and isinstance(args[0], BaseGeometry): args = ([args[0]],) return args class _CoordinateIndexer(_NDFrameIndexer): """ Indexing by coordinate slices """ def _getitem_tuple(self, tup): obj = self.obj xs, ys = tup # handle numeric values as x and/or y coordinate index if type(xs) is not slice: xs = slice(xs, xs) if type(ys) is not slice: ys = slice(ys, ys) # don't know how to handle step; should this raise? if xs.step is not None or ys.step is not None: warn("Ignoring step - full interval is used.") xmin, ymin, xmax, ymax = obj.total_bounds bbox = box(xs.start or xmin, ys.start or ymin, xs.stop or xmax, ys.stop or ymax) idx = obj.intersects(bbox) return obj[idx] class GeoSeries(GeoPandasBase, Series): """A Series object designed to store shapely geometry objects.""" _metadata = ['name', 'crs'] def __new__(cls, *args, **kwargs): kwargs.pop('crs', None) if OLD_PANDAS: args = _convert_array_args(args) arr = Series.__new__(cls, *args, **kwargs) else: arr = Series.__new__(cls) if type(arr) is GeoSeries: return arr else: return arr.view(GeoSeries) def __init__(self, *args, **kwargs): if not OLD_PANDAS: args = _convert_array_args(args) crs = kwargs.pop('crs', None) super(GeoSeries, self).__init__(*args, **kwargs) self.crs = crs self._invalidate_sindex() def append(self, *args, **kwargs): return self._wrapped_pandas_method('append', *args, **kwargs) @property def geometry(self): return self @classmethod def from_file(cls, filename, **kwargs): """ Alternate constructor to create a GeoSeries from a file Parameters ---------- filename : str File path or file handle to read from. Depending on which kwargs are included, the content of filename may vary, see: http://toblerity.github.io/fiona/README.html#usage for usage details. kwargs : key-word arguments These arguments are passed to fiona.open, and can be used to access multi-layer data, data stored within archives (zip files), etc. """ import fiona geoms = [] with fiona.open(filename, **kwargs) as f: crs = f.crs for rec in f: geoms.append(shape(rec['geometry'])) g = GeoSeries(geoms) g.crs = crs return g @property def __geo_interface__(self): """Returns a GeoSeries as a python feature collection """ from geopandas import GeoDataFrame return GeoDataFrame({'geometry': self}).__geo_interface__ def to_file(self, filename, driver="ESRI Shapefile", **kwargs): from geopandas import GeoDataFrame data = GeoDataFrame({"geometry": self, "id":self.index.values}, index=self.index) data.crs = self.crs data.to_file(filename, driver, **kwargs) # # Implement pandas methods # @property def _constructor(self): return GeoSeries def _wrapped_pandas_method(self, mtd, *args, **kwargs): """Wrap a generic pandas method to ensure it returns a GeoSeries""" val = getattr(super(GeoSeries, self), mtd)(*args, **kwargs) if type(val) == Series: val.__class__ = GeoSeries val.crs = self.crs val._invalidate_sindex() return val def __getitem__(self, key): return self._wrapped_pandas_method('__getitem__', key) def sort_index(self, *args, **kwargs): return self._wrapped_pandas_method('sort_index', *args, **kwargs) def take(self, *args, **kwargs): return self._wrapped_pandas_method('take', *args, **kwargs) def select(self, *args, **kwargs): return self._wrapped_pandas_method('select', *args, **kwargs) @property def _can_hold_na(self): return False def __finalize__(self, other, method=None, **kwargs): """ propagate metadata from other to self """ # NOTE: backported from pandas master (upcoming v0.13) for name in self._metadata: object.__setattr__(self, name, getattr(other, name, None)) return self def copy(self, order='C'): """ Make a copy of this GeoSeries object Parameters ---------- deep : boolean, default True Make a deep copy, i.e. also copy data Returns ------- copy : GeoSeries """ # FIXME: this will likely be unnecessary in pandas >= 0.13 return GeoSeries(self.values.copy(order), index=self.index, name=self.name).__finalize__(self) def isnull(self): """Null values in a GeoSeries are represented by empty geometric objects""" non_geo_null = super(GeoSeries, self).isnull() val = self.apply(_is_empty) return np.logical_or(non_geo_null, val) def fillna(self, value=None, method=None, inplace=False, **kwargs): """Fill NA/NaN values with a geometry (empty polygon by default). "method" is currently not implemented for pandas <= 0.12. """ if value is None: value = Point() if not OLD_PANDAS: return super(GeoSeries, self).fillna(value=value, method=method, inplace=inplace, **kwargs) else: # FIXME: this is an ugly way to support pandas <= 0.12 if method is not None: raise NotImplementedError('Fill method is currently not implemented for GeoSeries') if isinstance(value, BaseGeometry): result = self.copy() if not inplace else self mask = self.isnull() result[mask] = value if not inplace: return GeoSeries(result) else: raise ValueError('Non-geometric fill values not allowed for GeoSeries') def align(self, other, join='outer', level=None, copy=True, fill_value=None, **kwargs): if fill_value is None: fill_value = Point() left, right = super(GeoSeries, self).align(other, join=join, level=level, copy=copy, fill_value=fill_value, **kwargs) if isinstance(other, GeoSeries): return GeoSeries(left), GeoSeries(right) else: # It is probably a Series, let's keep it that way return GeoSeries(left), right def __contains__(self, other): """Allow tests of the form "geom in s" Tests whether a GeoSeries contains a geometry. Note: This is not the same as the geometric method "contains". """ if isinstance(other, BaseGeometry): return np.any(self.geom_equals(other)) else: return False def plot(self, *args, **kwargs): return plot_series(self, *args, **kwargs) # # Additional methods # def to_crs(self, crs=None, epsg=None): """Transform geometries to a new coordinate reference system This method will transform all points in all objects. It has no notion or projecting entire geometries. All segments joining points are assumed to be lines in the current projection, not geodesics. Objects crossing the dateline (or other projection boundary) will have undesirable behavior. """ from fiona.crs import from_epsg if self.crs is None: raise ValueError('Cannot transform naive geometries. ' 'Please set a crs on the object first.') if crs is None: try: crs = from_epsg(epsg) except TypeError: raise TypeError('Must set either crs or epsg for output.') proj_in = pyproj.Proj(preserve_units=True, **self.crs) proj_out = pyproj.Proj(preserve_units=True, **crs) project = partial(pyproj.transform, proj_in, proj_out) result = self.apply(lambda geom: transform(project, geom)) result.__class__ = GeoSeries result.crs = crs result._invalidate_sindex() return result # # Implement standard operators for GeoSeries # def __xor__(self, other): """Implement ^ operator as for builtin set type""" return self.symmetric_difference(other) def __or__(self, other): """Implement | operator as for builtin set type""" return self.union(other) def __and__(self, other): """Implement & operator as for builtin set type""" return self.intersection(other) def __sub__(self, other): """Implement - operator as for builtin set type""" return self.difference(other) GeoSeries._create_indexer('cx', _CoordinateIndexer)
bsd-3-clause
OGGM/oggm
oggm/shop/histalp.py
2
6251
import logging import warnings # External libs import numpy as np import pandas as pd from scipy import stats # Optional libs try: import salem except ImportError: pass # Locals from oggm import cfg from oggm import utils from oggm import entity_task from oggm.exceptions import InvalidParamsError # Module logger log = logging.getLogger(__name__) HISTALP_SERVER = 'http://www.zamg.ac.at/histalp/download/grid5m/' def set_histalp_url(url): """If you want to use a different server for HISTALP (for testing, etc).""" global HISTALP_SERVER HISTALP_SERVER = url @utils.locked_func def get_histalp_file(var=None): """Returns a path to the desired HISTALP baseline climate file. If the file is not present, download it. Parameters ---------- var : str 'tmp' for temperature 'pre' for precipitation Returns ------- str path to the file """ # Be sure input makes sense if var not in ['tmp', 'pre']: raise InvalidParamsError('HISTALP variable {} ' 'does not exist!'.format(var)) # File to look for if var == 'tmp': bname = 'HISTALP_temperature_1780-2014.nc' else: bname = 'HISTALP_precipitation_all_abs_1801-2014.nc' h_url = HISTALP_SERVER + bname + '.bz2' return utils.file_extractor(utils.file_downloader(h_url)) @entity_task(log, writes=['climate_historical']) def process_histalp_data(gdir, y0=None, y1=None, output_filesuffix=None): """Processes and writes the HISTALP baseline climate data for this glacier. Extracts the nearest timeseries and writes everything to a NetCDF file. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process y0 : int the starting year of the timeseries to write. The default is to take 1850 (because the data is quite bad before that) y1 : int the starting year of the timeseries to write. The default is to take the entire time period available in the file, but with this kwarg you can shorten it (to save space or to crop bad data) output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) """ if cfg.PATHS.get('climate_file', None): warnings.warn("You seem to have set a custom climate file for this " "run, but are using the default HISTALP climate file " "instead.") if cfg.PARAMS['baseline_climate'] != 'HISTALP': raise InvalidParamsError("cfg.PARAMS['baseline_climate'] should be " "set to HISTALP.") # read the time out of the pure netcdf file ft = get_histalp_file('tmp') fp = get_histalp_file('pre') with utils.ncDataset(ft) as nc: vt = nc.variables['time'] assert vt[0] == 0 assert vt[-1] == vt.shape[0] - 1 t0 = vt.units.split(' since ')[1][:7] time_t = pd.date_range(start=t0, periods=vt.shape[0], freq='MS') with utils.ncDataset(fp) as nc: vt = nc.variables['time'] assert vt[0] == 0.5 assert vt[-1] == vt.shape[0] - .5 t0 = vt.units.split(' since ')[1][:7] time_p = pd.date_range(start=t0, periods=vt.shape[0], freq='MS') # Now open with salem nc_ts_tmp = salem.GeoNetcdf(ft, time=time_t) nc_ts_pre = salem.GeoNetcdf(fp, time=time_p) # Some default if y0 is None: y0 = 1850 # set temporal subset for the ts data (hydro years) # the reference time is given by precip, which is shorter sm = cfg.PARAMS['hydro_month_' + gdir.hemisphere] em = sm - 1 if (sm > 1) else 12 yrs = nc_ts_pre.time.year y0 = yrs[0] if y0 is None else y0 y1 = yrs[-1] if y1 is None else y1 nc_ts_tmp.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) nc_ts_pre.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) time = nc_ts_pre.time ny, r = divmod(len(time), 12) assert r == 0 # Units assert nc_ts_tmp._nc.variables['HSURF'].units.lower() in ['m', 'meters', 'meter', 'metres', 'metre'] assert nc_ts_tmp._nc.variables['T_2M'].units.lower() in ['degc', 'degrees', 'degrees celcius', 'degree', 'c'] assert nc_ts_pre._nc.variables['TOT_PREC'].units.lower() in ['kg m-2', 'l m-2', 'mm', 'millimeters', 'millimeter'] # geoloc lon = gdir.cenlon lat = gdir.cenlat nc_ts_tmp.set_subset(corners=((lon, lat), (lon, lat)), margin=1) nc_ts_pre.set_subset(corners=((lon, lat), (lon, lat)), margin=1) # read the data temp = nc_ts_tmp.get_vardata('T_2M') prcp = nc_ts_pre.get_vardata('TOT_PREC') hgt = nc_ts_tmp.get_vardata('HSURF') ref_lon = nc_ts_tmp.get_vardata('lon') ref_lat = nc_ts_tmp.get_vardata('lat') source = nc_ts_tmp._nc.title[:7] nc_ts_tmp._nc.close() nc_ts_pre._nc.close() # Should we compute the gradient? use_grad = cfg.PARAMS['temp_use_local_gradient'] igrad = None if use_grad: igrad = np.zeros(len(time)) * np.NaN for t, loct in enumerate(temp): slope, _, _, p_val, _ = stats.linregress(hgt.flatten(), loct.flatten()) igrad[t] = slope if (p_val < 0.01) else np.NaN gdir.write_monthly_climate_file(time, prcp[:, 1, 1], temp[:, 1, 1], hgt[1, 1], ref_lon[1], ref_lat[1], gradient=igrad, filesuffix=output_filesuffix, source=source)
bsd-3-clause
sorend/fylearn
fylearn/fpcga.py
1
14513
# -*- coding: utf-8 -*- """Fuzzy pattern classifier with genetic algorithm based methods The module structure is the following: - The "FuzzyPatternClassifierGA" is a FPC where the membership functions are learned using genetic algorithms in global scheme [1] - The "FuzzyPatternClassifierLGA" also learns mus using a GA, but in local scheme [1]. References: ----------- [1] S. A. Davidsen, E. Sreedevi, and M. Padmavathamma, "Local and global genetic fuzzy pattern classifiers," In Proc. Machine Learning and Data Mining in Pattern Recognition, pp. 55-69, 2015. url: https://link.springer.com/chapter/10.1007/978-3-319-21024-7_4 """ import logging import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_array from sklearn.metrics import accuracy_score, mean_squared_error import fylearn.fuzzylogic as fl from fylearn.ga import GeneticAlgorithm, helper_fitness, UniformCrossover, helper_n_generations from fylearn.ga import UnitIntervalGeneticAlgorithm # # Authors: Sรธren Atmakuri Davidsen <[email protected]> # # default aggregation rules to use AGGREGATION_RULES = (fl.prod, fl.mean) # requires 1 gene def build_aggregation(X, y, rules, chromosome, idx): i = int(chromosome[idx] * len(rules)) if i < 0: i = 0 if i >= len(rules): i = len(rules) - 1 return rules[i](X, y) # requires 3 genes def build_pi_membership(chromosome, idx): a, r, b = sorted(chromosome[idx:idx + 3]) return fl.PiSet(a=a, r=r, b=b) # requires 4 genes def build_trapezoidal_membership(chromosome, idx): a, b, c, d = sorted(chromosome[idx:idx + 4]) return fl.TrapezoidalSet(a, b, c, d) def build_t_membership(chromosome, idx): a, b, c = sorted(chromosome[idx:idx + 3]) return fl.TriangularSet(a, b, c) class StaticFunction: def __call__(self, X): return 0.5 def __str__(self): return "S(0.5)" # requires 0 genes def build_static_membership(chromosome, idx): return StaticFunction() # default definition of membership function factories MEMBERSHIP_FACTORIES = (build_pi_membership,) # requires 1 gene def build_membership(mu_factories, chromosome, idx): i = int(chromosome[idx] * len(mu_factories)) if i < 0: i = 0 if i >= len(mu_factories): i = len(mu_factories) - 1 return mu_factories[i](chromosome, idx + 1) # decodes aggregation and protos from chromosome def _decode(m, X, y, aggregation_rules, mu_factories, classes, chromosome): aggregation = build_aggregation(X, y, aggregation_rules, chromosome, 0) protos = {} for i in range(len(classes)): protos[i] = [ build_membership(mu_factories, chromosome, 2 + (i * m * 5) + (j * 4)) for j in range(m) ] return aggregation, protos def _predict_one(prototype, aggregation, X): Mus = np.zeros(X.shape) for i in range(X.shape[1]): Mus[:, i] = prototype[i](X[:, i]) return aggregation(Mus) def _predict(prototypes, aggregation, classes, X): Mus = np.zeros(X.shape) R = np.zeros((X.shape[0], len(classes))) # holds output for each class attribute_idxs = range(X.shape[1]) # class_idx has class_prototypes membership functions for class_idx, class_prototypes in prototypes.items(): for i in attribute_idxs: Mus[:, i] = class_prototypes[i](X[:, i]) R[:, class_idx] = aggregation(Mus) return classes.take(np.argmax(R, 1)) logger = logging.getLogger("fpcga") class AggregationRuleFactory: pass class DummyAggregationRuleFactory(AggregationRuleFactory): def __init__(self, aggregation_rule): self.aggregation_rule = aggregation_rule def __call__(self, X, y): return self.aggregation_rule class FuzzyPatternClassifierGA(BaseEstimator, ClassifierMixin): def get_params(self, deep=False): return {"iterations": self.iterations, "epsilon": self.epsilon, "mu_factories": self.mu_factories, "aggregation_rules": self.aggregation_rules, "random_state": self.random_state} def set_params(self, **kwargs): for key, value in kwargs.items(): self.setattr(key, value) return self def __init__(self, mu_factories=MEMBERSHIP_FACTORIES, aggregation_rules=AGGREGATION_RULES, iterations=10, epsilon=0.0001, random_state=None): if mu_factories is None or len(mu_factories) == 0: raise ValueError("no mu_factories specified") if aggregation_rules is None or len(aggregation_rules) == 0: raise ValueError("no aggregation_rules specified") if iterations <= 0: raise ValueError("iterations must be > 0") self.mu_factories = mu_factories self.iterations = iterations self.epsilon = epsilon self.aggregation_rules = aggregation_rules self.random_state = random_state def fit(self, X, y_orig): def as_factory(r): return r if isinstance(r, AggregationRuleFactory) else DummyAggregationRuleFactory(r) self.aggregation_rules__ = [ as_factory(r) for r in self.aggregation_rules ] X = check_array(X) self.classes_, _ = np.unique(y_orig, return_inverse=True) self.m = X.shape[1] if np.nan in self.classes_: raise Exception("nan not supported for class values") self.build_with_ga(X, y_orig) return self def predict(self, X): """ Predict outputs given examples. Parameters: ----------- X : the examples to predict (array or matrix) Returns: -------- y_pred : Predicted values for each row in matrix. """ if self.protos_ is None: raise Exception("Prototypes not initialized. Perform a fit first.") X = check_array(X) # predict return _predict(self.protos_, self.aggregation, self.classes_, X) def build_with_ga(self, X, y): # accuracy fitness function def accuracy_fitness_function(chromosome): # decode the class model from gene aggregation, mus = _decode(self.m, X, y, self.aggregation_rules__, self.mu_factories, self.classes_, chromosome) y_pred = _predict(mus, aggregation, self.classes_, X) return 1.0 - accuracy_score(y, y_pred) # number of genes (2 for the aggregation, 4 for each attribute) n_genes = 2 + (self.m * 5 * len(self.classes_)) logger.info("initializing GA %d iterations" % (self.iterations,)) # initialize ga = GeneticAlgorithm(fitness_function=helper_fitness(accuracy_fitness_function), scaling=1.0, crossover_function=UniformCrossover(0.5), # crossover_points=range(2, n_genes, 5), elitism=5, # no elitism n_chromosomes=100, n_genes=n_genes, p_mutation=0.3, random_state=self.random_state) last_fitness = None # for generation in range(self.iterations): ga.next() logger.info("GA iteration %d Fitness (top-4) %s" % (generation, str(np.sort(ga.fitness_)[:4]))) chromosomes, fitnesses = ga.best(10) aggregation, protos = _decode(self.m, X, y, self.aggregation_rules__, self.mu_factories, self.classes_, chromosomes[0]) self.aggregation = aggregation self.protos_ = protos # check stopping condition new_fitness = np.mean(fitnesses) if last_fitness is not None: d_fitness = last_fitness - new_fitness if self.epsilon is not None and d_fitness < self.epsilon: logger.info("Early stop d_fitness %f" % (d_fitness,)) break last_fitness = new_fitness # print learned. logger.info("+- Final: Aggregation %s" % (str(self.aggregation),)) for key, value in self.protos_.items(): logger.info("`- Class-%d" % (key,)) logger.info("`- Membership-fs %s" % (str([ x.__str__() for x in value ]),)) def __str__(self): if self.protos_ is None: return "Not trained" else: return str(self.aggregation) + str({ "class-" + str(k): v for k, v in self.protos_ }) class FuzzyPatternClassifierLGA(FuzzyPatternClassifierGA): def decode(self, chromosome): return [ build_membership(self.mu_factories, chromosome, i * 5) for i in range(self.m) ] def build_for_class(self, X, y, class_idx): y_target = np.zeros(y.shape) # create the target of 1 and 0. y_target[class_idx] = 1.0 n_genes = 5 * self.m def rmse_fitness_function(chromosome): proto = self.decode(chromosome) y_pred = _predict_one(proto, self.aggregation, X) return mean_squared_error(y_target, y_pred) logger.info("initializing GA %d iterations" % (self.iterations,)) # initialize ga = GeneticAlgorithm(fitness_function=helper_fitness(rmse_fitness_function), scaling=1.0, crossover_function=UniformCrossover(0.5), # crossover_points=range(0, n_genes, 5), elitism=5, # no elitism n_chromosomes=100, n_genes=n_genes, p_mutation=0.3) # print "population", ga.population_ # print "fitness", ga.fitness_ chromosomes, fitnesses = ga.best(10) last_fitness = np.mean(fitnesses) proto = None # for generation in range(self.iterations): ga.next() logger.info("GA iteration %d Fitness (top-4) %s" % (generation, str(ga.fitness_[:4]))) chromosomes, fitnesses = ga.best(10) proto = self.decode(chromosomes[0]) # check stopping condition new_fitness = np.mean(fitnesses) d_fitness = last_fitness - new_fitness if self.epsilon is not None and d_fitness < self.epsilon: logger.info("Early stop d_fitness %f" % (d_fitness,)) break last_fitness = new_fitness return proto def build_with_ga(self, X, y): self.aggregation = self.aggregation_rules__[0](X, y) self.protos_ = {} for class_no, class_value in enumerate(self.classes_): class_idx = np.array(y == class_value) proto = self.build_for_class(X, y, class_idx) self.protos_[class_no] = proto # print learned. logger.info("+- Final: Aggregation %s" % (str(self.aggregation),)) for key, value in self.protos_.items(): logger.info("`- Class-%d" % (key,)) logger.info("`- Membership-fs %s" % (str([ x.__str__() for x in value ]),)) class SEFuzzyPatternClassifier(FuzzyPatternClassifierGA): def get_params(self, deep=False): return {"iterations": self.iterations, "aggregation": self.aggregation, "adjust_center": self.adjust_center} def set_params(self, **kwargs): for key, value in kwargs.items(): self.setattr(key, value) return self def __init__(self, aggregation=fl.prod, iterations=25, adjust_center=False): """ Constructs classifier Parameters: ----------- aggregation : fuzzy aggregation to use. iterations : number of iterations for the GA. adjust_center : Allow to adjust center of the membership function. """ self.aggregation = aggregation self.iterations = iterations self.adjust_center = adjust_center assert iterations > 0 def build_for_class(self, X, y, class_idx): # take column-wise min/mean/max for class mins = np.nanmin(X[class_idx], 0) means = np.nanmean(X[class_idx], 0) maxs = np.nanmax(X[class_idx], 0) ds = (maxs - mins) / 2.0 n_genes = 2 * self.m # adjustment for r and shrinking/expanding value for p/q B = np.ones(n_genes) def decode_with_shrinking_expanding(C): def dcenter(j): return min(1.0, max(0.0, C[j])) - 0.5 if self.adjust_center else 1.0 return [ fl.PiSet(r=means[j] * dcenter(j), p=means[j] - (ds[j] * C[j + 1]), q=means[j] + (ds[j] * C[j + 1])) for j in range(self.m) ] y_target = np.zeros(y.shape) # create the target of 1 and 0. y_target[class_idx] = 1.0 def rmse_fitness_function(chromosome): proto = decode_with_shrinking_expanding(chromosome) y_pred = _predict_one(proto, self.aggregation, X) return mean_squared_error(y_target, y_pred) logger.info("initializing GA %d iterations" % (self.iterations,)) # initialize ga = UnitIntervalGeneticAlgorithm(fitness_function=helper_fitness(rmse_fitness_function), crossover_function=UniformCrossover(0.5), elitism=3, n_chromosomes=100, n_genes=n_genes, p_mutation=0.3) ga = helper_n_generations(ga, self.iterations) chromosomes, fitnesses = ga.best(1) return decode_with_shrinking_expanding(chromosomes[0]), decode_with_shrinking_expanding(B) def build_with_ga(self, X, y): self.protos_ = {} self.bases_ = {} for class_no, class_value in enumerate(self.classes_): class_idx = np.array(y == class_value) proto, base = self.build_for_class(X, y, class_idx) self.protos_[class_no] = proto self.bases_[class_no] = base def toggle_base(self): if hasattr(self, "backups_"): self.protos_ = self.backups_ del self.backups_ else: self.backups_ = self.protos_ self.protos_ = self.bases_ return self
mit
vamsirajendra/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/mathtext.py
69
101723
r""" :mod:`~matplotlib.mathtext` is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib backend. For a tutorial of its usage see :ref:`mathtext-tutorial`. This document is primarily concerned with implementation details. The module uses pyparsing_ to parse the TeX expression. .. _pyparsing: http://pyparsing.wikispaces.com/ The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for those fonts. If you find TeX expressions that don't parse or render properly, please email [email protected], but please check KNOWN ISSUES below first. """ from __future__ import division import os from cStringIO import StringIO from math import ceil try: set except NameError: from sets import Set as set import unicodedata from warnings import warn from numpy import inf, isinf import numpy as np from matplotlib.pyparsing import Combine, Group, Optional, Forward, \ Literal, OneOrMore, ZeroOrMore, ParseException, Empty, \ ParseResults, Suppress, oneOf, StringEnd, ParseFatalException, \ FollowedBy, Regex, ParserElement # Enable packrat parsing ParserElement.enablePackrat() from matplotlib.afm import AFM from matplotlib.cbook import Bunch, get_realpath_and_stat, \ is_string_like, maxdict from matplotlib.ft2font import FT2Font, FT2Image, KERNING_DEFAULT, LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties from matplotlib._mathtext_data import latex_to_bakoma, \ latex_to_standard, tex2uni, latex_to_cmex, stix_virtual_fonts from matplotlib import get_data_path, rcParams import matplotlib.colors as mcolors import matplotlib._png as _png #################### ############################################################################## # FONTS def get_unicode_index(symbol): """get_unicode_index(symbol) -> integer Return the integer index (from the Unicode table) of symbol. *symbol* can be a single unicode character, a TeX command (i.e. r'\pi'), or a Type1 symbol name (i.e. 'phi'). """ # From UTF #25: U+2212 minus sign is the preferred # representation of the unary and binary minus sign rather than # the ASCII-derived U+002D hyphen-minus, because minus sign is # unambiguous and because it is rendered with a more desirable # length, usually longer than a hyphen. if symbol == '-': return 0x2212 try:# This will succeed if symbol is a single unicode char return ord(symbol) except TypeError: pass try:# Is symbol a TeX symbol (i.e. \alpha) return tex2uni[symbol.strip("\\")] except KeyError: message = """'%(symbol)s' is not a valid Unicode character or TeX/Type1 symbol"""%locals() raise ValueError, message class MathtextBackend(object): """ The base class for the mathtext backend-specific code. The purpose of :class:`MathtextBackend` subclasses is to interface between mathtext and a specific matplotlib graphics backend. Subclasses need to override the following: - :meth:`render_glyph` - :meth:`render_filled_rect` - :meth:`get_results` And optionally, if you need to use a Freetype hinting style: - :meth:`get_hinting_type` """ def __init__(self): self.fonts_object = None def set_canvas_size(self, w, h, d): 'Dimension the drawing canvas' self.width = w self.height = h self.depth = d def render_glyph(self, ox, oy, info): """ Draw a glyph described by *info* to the reference point (*ox*, *oy*). """ raise NotImplementedError() def render_filled_rect(self, x1, y1, x2, y2): """ Draw a filled black rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ raise NotImplementedError() def get_results(self, box): """ Return a backend-specific tuple to return to the backend after all processing is done. """ raise NotImplementedError() def get_hinting_type(self): """ Get the Freetype hinting type to use with this particular backend. """ return LOAD_NO_HINTING class MathtextBackendBbox(MathtextBackend): """ A backend whose only purpose is to get a precise bounding box. Only required for the Agg backend. """ def __init__(self, real_backend): MathtextBackend.__init__(self) self.bbox = [0, 0, 0, 0] self.real_backend = real_backend def _update_bbox(self, x1, y1, x2, y2): self.bbox = [min(self.bbox[0], x1), min(self.bbox[1], y1), max(self.bbox[2], x2), max(self.bbox[3], y2)] def render_glyph(self, ox, oy, info): self._update_bbox(ox + info.metrics.xmin, oy - info.metrics.ymax, ox + info.metrics.xmax, oy - info.metrics.ymin) def render_rect_filled(self, x1, y1, x2, y2): self._update_bbox(x1, y1, x2, y2) def get_results(self, box): orig_height = box.height orig_depth = box.depth ship(0, 0, box) bbox = self.bbox bbox = [bbox[0] - 1, bbox[1] - 1, bbox[2] + 1, bbox[3] + 1] self._switch_to_real_backend() self.fonts_object.set_canvas_size( bbox[2] - bbox[0], (bbox[3] - bbox[1]) - orig_depth, (bbox[3] - bbox[1]) - orig_height) ship(-bbox[0], -bbox[1], box) return self.fonts_object.get_results(box) def get_hinting_type(self): return self.real_backend.get_hinting_type() def _switch_to_real_backend(self): self.fonts_object.mathtext_backend = self.real_backend self.real_backend.fonts_object = self.fonts_object self.real_backend.ox = self.bbox[0] self.real_backend.oy = self.bbox[1] class MathtextBackendAggRender(MathtextBackend): """ Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the Agg backend. """ def __init__(self): self.ox = 0 self.oy = 0 self.image = None MathtextBackend.__init__(self) def set_canvas_size(self, w, h, d): MathtextBackend.set_canvas_size(self, w, h, d) self.image = FT2Image(ceil(w), ceil(h + d)) def render_glyph(self, ox, oy, info): info.font.draw_glyph_to_bitmap( self.image, ox, oy - info.metrics.ymax, info.glyph) def render_rect_filled(self, x1, y1, x2, y2): height = max(int(y2 - y1) - 1, 0) if height == 0: center = (y2 + y1) / 2.0 y = int(center - (height + 1) / 2.0) else: y = int(y1) self.image.draw_rect_filled(int(x1), y, ceil(x2), y + height) def get_results(self, box): return (self.ox, self.oy, self.width, self.height + self.depth, self.depth, self.image, self.fonts_object.get_used_characters()) def get_hinting_type(self): return LOAD_FORCE_AUTOHINT def MathtextBackendAgg(): return MathtextBackendBbox(MathtextBackendAggRender()) class MathtextBackendBitmapRender(MathtextBackendAggRender): def get_results(self, box): return self.image, self.depth def MathtextBackendBitmap(): """ A backend to generate standalone mathtext images. No additional matplotlib backend is required. """ return MathtextBackendBbox(MathtextBackendBitmapRender()) class MathtextBackendPs(MathtextBackend): """ Store information to write a mathtext rendering to the PostScript backend. """ def __init__(self): self.pswriter = StringIO() self.lastfont = None def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset postscript_name = info.postscript_name fontsize = info.fontsize symbol_name = info.symbol_name if (postscript_name, fontsize) != self.lastfont: ps = """/%(postscript_name)s findfont %(fontsize)s scalefont setfont """ % locals() self.lastfont = postscript_name, fontsize self.pswriter.write(ps) ps = """%(ox)f %(oy)f moveto /%(symbol_name)s glyphshow\n """ % locals() self.pswriter.write(ps) def render_rect_filled(self, x1, y1, x2, y2): ps = "%f %f %f %f rectfill\n" % (x1, self.height - y2, x2 - x1, y2 - y1) self.pswriter.write(ps) def get_results(self, box): ship(0, -self.depth, box) #print self.depth return (self.width, self.height + self.depth, self.depth, self.pswriter, self.fonts_object.get_used_characters()) class MathtextBackendPdf(MathtextBackend): """ Store information to write a mathtext rendering to the PDF backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): filename = info.font.fname oy = self.height - oy + info.offset self.glyphs.append( (ox, oy, filename, info.fontsize, info.num, info.symbol_name)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects, self.fonts_object.get_used_characters()) class MathtextBackendSvg(MathtextBackend): """ Store information to write a mathtext rendering to the SVG backend. """ def __init__(self): self.svg_glyphs = [] self.svg_rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset thetext = unichr(info.num) self.svg_glyphs.append( (info.font, info.fontsize, thetext, ox, oy, info.metrics)) def render_rect_filled(self, x1, y1, x2, y2): self.svg_rects.append( (x1, self.height - y1 + 1, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) svg_elements = Bunch(svg_glyphs = self.svg_glyphs, svg_rects = self.svg_rects) return (self.width, self.height + self.depth, self.depth, svg_elements, self.fonts_object.get_used_characters()) class MathtextBackendCairo(MathtextBackend): """ Store information to write a mathtext rendering to the Cairo backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = oy - info.offset - self.height thetext = unichr(info.num) self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, y1 - self.height, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class Fonts(object): """ An abstract base class for a system of fonts to use for mathtext. The class must be able to take symbol keys and font file names and return the character metrics. It also delegates to a backend class to do the actual drawing. """ def __init__(self, default_font_prop, mathtext_backend): """ *default_font_prop*: A :class:`~matplotlib.font_manager.FontProperties` object to use for the default non-math font, or the base font for Unicode (generic) font rendering. *mathtext_backend*: A subclass of :class:`MathTextBackend` used to delegate the actual rendering. """ self.default_font_prop = default_font_prop self.mathtext_backend = mathtext_backend # Make these classes doubly-linked self.mathtext_backend.fonts_object = self self.used_characters = {} def destroy(self): """ Fix any cyclical references before the object is about to be destroyed. """ self.used_characters = None def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): """ Get the kerning distance for font between *sym1* and *sym2*. *fontX*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default (non-math) *fontclassX*: TODO *symX*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsizeX*: the fontsize in points *dpi*: the current dots-per-inch """ return 0. def get_metrics(self, font, font_class, sym, fontsize, dpi): """ *font*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default (non-math) *font_class*: TODO *sym*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsize*: font size in points *dpi*: current dots-per-inch Returns an object with the following attributes: - *advance*: The advance distance (in points) of the glyph. - *height*: The height of the glyph in points. - *width*: The width of the glyph in points. - *xmin*, *xmax*, *ymin*, *ymax* - the ink rectangle of the glyph - *iceberg* - the distance from the baseline to the top of the glyph. This corresponds to TeX's definition of "height". """ info = self._get_info(font, font_class, sym, fontsize, dpi) return info.metrics def set_canvas_size(self, w, h, d): """ Set the size of the buffer used to render the math expression. Only really necessary for the bitmap backends. """ self.width, self.height, self.depth = ceil(w), ceil(h), ceil(d) self.mathtext_backend.set_canvas_size(self.width, self.height, self.depth) def render_glyph(self, ox, oy, facename, font_class, sym, fontsize, dpi): """ Draw a glyph at - *ox*, *oy*: position - *facename*: One of the TeX face names - *font_class*: - *sym*: TeX symbol name or single character - *fontsize*: fontsize in points - *dpi*: The dpi to draw at. """ info = self._get_info(facename, font_class, sym, fontsize, dpi) realpath, stat_key = get_realpath_and_stat(info.font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].add(info.num) self.mathtext_backend.render_glyph(ox, oy, info) def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ self.mathtext_backend.render_rect_filled(x1, y1, x2, y2) def get_xheight(self, font, fontsize, dpi): """ Get the xheight for the given *font* and *fontsize*. """ raise NotImplementedError() def get_underline_thickness(self, font, fontsize, dpi): """ Get the line thickness that matches the given font. Used as a base unit for drawing lines such as in a fraction or radical. """ raise NotImplementedError() def get_used_characters(self): """ Get the set of characters that were used in the math expression. Used by backends that need to subset fonts so they know which glyphs to include. """ return self.used_characters def get_results(self, box): """ Get the data needed by the backend to render the math expression. The return value is backend-specific. """ return self.mathtext_backend.get_results(box) def get_sized_alternatives_for_symbol(self, fontname, sym): """ Override if your font provides multiple sizes of the same symbol. Should return a list of symbols matching *sym* in various sizes. The expression renderer will select the most appropriate size for a given situation from this list. """ return [(fontname, sym)] class TruetypeFonts(Fonts): """ A generic base class for all font setups that use Truetype fonts (through FT2Font). """ class CachedFont: def __init__(self, font): self.font = font self.charmap = font.get_charmap() self.glyphmap = dict( [(glyphind, ccode) for ccode, glyphind in self.charmap.iteritems()]) def __repr__(self): return repr(self.font) def __init__(self, default_font_prop, mathtext_backend): Fonts.__init__(self, default_font_prop, mathtext_backend) self.glyphd = {} self._fonts = {} filename = findfont(default_font_prop) default_font = self.CachedFont(FT2Font(str(filename))) self._fonts['default'] = default_font def destroy(self): self.glyphd = None Fonts.destroy(self) def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self._fonts.get(basename) if cached_font is None: font = FT2Font(basename) cached_font = self.CachedFont(font) self._fonts[basename] = cached_font self._fonts[font.postscript_name] = cached_font self._fonts[font.postscript_name.lower()] = cached_font return cached_font def _get_offset(self, cached_font, glyph, fontsize, dpi): if cached_font.font.postscript_name == 'Cmex10': return glyph.height/64.0/2.0 + 256.0/64.0 * dpi/72.0 return 0. def _get_info(self, fontname, font_class, sym, fontsize, dpi): key = fontname, font_class, sym, fontsize, dpi bunch = self.glyphd.get(key) if bunch is not None: return bunch cached_font, num, symbol_name, fontsize, slanted = \ self._get_glyph(fontname, font_class, sym, fontsize) font = cached_font.font font.set_size(fontsize, dpi) glyph = font.load_char( num, flags=self.mathtext_backend.get_hinting_type()) xmin, ymin, xmax, ymax = [val/64.0 for val in glyph.bbox] offset = self._get_offset(cached_font, glyph, fontsize, dpi) metrics = Bunch( advance = glyph.linearHoriAdvance/65536.0, height = glyph.height/64.0, width = glyph.width/64.0, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = glyph.horiBearingY/64.0 + offset, slanted = slanted ) result = self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.postscript_name, metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return result def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) cached_font.font.set_size(fontsize, dpi) pclt = cached_font.font.get_sfnt_table('pclt') if pclt is None: # Some fonts don't store the xHeight, so we do a poor man's xHeight metrics = self.get_metrics(font, 'it', 'x', fontsize, dpi) return metrics.iceberg xHeight = (pclt['xHeight'] / 64.0) * (fontsize / 12.0) * (dpi / 100.0) return xHeight def get_underline_thickness(self, font, fontsize, dpi): # This function used to grab underline thickness from the font # metrics, but that information is just too un-reliable, so it # is now hardcoded. return ((0.75 / 12.0) * fontsize * dpi) / 72.0 def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return font.get_kerning(info1.num, info2.num, KERNING_DEFAULT) / 64.0 return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) class BakomaFonts(TruetypeFonts): """ Use the Bakoma TrueType fonts for rendering. Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding. """ _fontmap = { 'cal' : 'cmsy10', 'rm' : 'cmr10', 'tt' : 'cmtt10', 'it' : 'cmmi10', 'bf' : 'cmb10', 'sf' : 'cmss10', 'ex' : 'cmex10' } fontmap = {} def __init__(self, *args, **kwargs): self._stix_fallback = StixFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) if not len(self.fontmap): for key, val in self._fontmap.iteritems(): fullpath = findfont(val) self.fontmap[key] = fullpath self.fontmap[val] = fullpath _slanted_symbols = set(r"\int \oint".split()) def _get_glyph(self, fontname, font_class, sym, fontsize): symbol_name = None if fontname in self.fontmap and sym in latex_to_bakoma: basename, num = latex_to_bakoma[sym] slanted = (basename == "cmmi10") or sym in self._slanted_symbols try: cached_font = self._get_font(basename) except RuntimeError: pass else: symbol_name = cached_font.font.get_glyph_name(num) num = cached_font.glyphmap[num] elif len(sym) == 1: slanted = (fontname == "it") try: cached_font = self._get_font(fontname) except RuntimeError: pass else: num = ord(sym) gid = cached_font.charmap.get(num) if gid is not None: symbol_name = cached_font.font.get_glyph_name( cached_font.charmap[num]) if symbol_name is None: return self._stix_fallback._get_glyph( fontname, font_class, sym, fontsize) return cached_font, num, symbol_name, fontsize, slanted # The Bakoma fonts contain many pre-sized alternatives for the # delimiters. The AutoSizedChar class will use these alternatives # and select the best (closest sized) glyph. _size_alternatives = { '(' : [('rm', '('), ('ex', '\xa1'), ('ex', '\xb3'), ('ex', '\xb5'), ('ex', '\xc3')], ')' : [('rm', ')'), ('ex', '\xa2'), ('ex', '\xb4'), ('ex', '\xb6'), ('ex', '\x21')], '{' : [('cal', '{'), ('ex', '\xa9'), ('ex', '\x6e'), ('ex', '\xbd'), ('ex', '\x28')], '}' : [('cal', '}'), ('ex', '\xaa'), ('ex', '\x6f'), ('ex', '\xbe'), ('ex', '\x29')], # The fourth size of '[' is mysteriously missing from the BaKoMa # font, so I've ommitted it for both '[' and ']' '[' : [('rm', '['), ('ex', '\xa3'), ('ex', '\x68'), ('ex', '\x22')], ']' : [('rm', ']'), ('ex', '\xa4'), ('ex', '\x69'), ('ex', '\x23')], r'\lfloor' : [('ex', '\xa5'), ('ex', '\x6a'), ('ex', '\xb9'), ('ex', '\x24')], r'\rfloor' : [('ex', '\xa6'), ('ex', '\x6b'), ('ex', '\xba'), ('ex', '\x25')], r'\lceil' : [('ex', '\xa7'), ('ex', '\x6c'), ('ex', '\xbb'), ('ex', '\x26')], r'\rceil' : [('ex', '\xa8'), ('ex', '\x6d'), ('ex', '\xbc'), ('ex', '\x27')], r'\langle' : [('ex', '\xad'), ('ex', '\x44'), ('ex', '\xbf'), ('ex', '\x2a')], r'\rangle' : [('ex', '\xae'), ('ex', '\x45'), ('ex', '\xc0'), ('ex', '\x2b')], r'\__sqrt__' : [('ex', '\x70'), ('ex', '\x71'), ('ex', '\x72'), ('ex', '\x73')], r'\backslash': [('ex', '\xb2'), ('ex', '\x2f'), ('ex', '\xc2'), ('ex', '\x2d')], r'/' : [('rm', '/'), ('ex', '\xb1'), ('ex', '\x2e'), ('ex', '\xcb'), ('ex', '\x2c')], r'\widehat' : [('rm', '\x5e'), ('ex', '\x62'), ('ex', '\x63'), ('ex', '\x64')], r'\widetilde': [('rm', '\x7e'), ('ex', '\x65'), ('ex', '\x66'), ('ex', '\x67')], r'<' : [('cal', 'h'), ('ex', 'D')], r'>' : [('cal', 'i'), ('ex', 'E')] } for alias, target in [('\leftparen', '('), ('\rightparent', ')'), ('\leftbrace', '{'), ('\rightbrace', '}'), ('\leftbracket', '['), ('\rightbracket', ']')]: _size_alternatives[alias] = _size_alternatives[target] def get_sized_alternatives_for_symbol(self, fontname, sym): return self._size_alternatives.get(sym, [(fontname, sym)]) class UnicodeFonts(TruetypeFonts): """ An abstract base class for handling Unicode fonts. While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the only Unicode font I'm aware of with a complete set of math symbols is STIX. This class will "fallback" on the Bakoma fonts when a required symbol can not be found in the font. """ fontmap = {} use_cmex = True def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if rcParams['mathtext.fallback_to_cm']: self.cm_fallback = BakomaFonts(*args, **kwargs) else: self.cm_fallback = None TruetypeFonts.__init__(self, *args, **kwargs) if not len(self.fontmap): for texfont in "cal rm tt it bf sf".split(): prop = rcParams['mathtext.' + texfont] font = findfont(prop) self.fontmap[texfont] = font prop = FontProperties('cmex10') font = findfont(prop) self.fontmap['ex'] = font _slanted_symbols = set(r"\int \oint".split()) def _map_virtual_font(self, fontname, font_class, uniindex): return fontname, uniindex def _get_glyph(self, fontname, font_class, sym, fontsize): found_symbol = False if self.use_cmex: uniindex = latex_to_cmex.get(sym) if uniindex is not None: fontname = 'ex' found_symbol = True if not found_symbol: try: uniindex = get_unicode_index(sym) found_symbol = True except ValueError: uniindex = ord('?') warn("No TeX to unicode mapping for '%s'" % sym.encode('ascii', 'backslashreplace'), MathTextWarning) fontname, uniindex = self._map_virtual_font( fontname, font_class, uniindex) # Only characters in the "Letter" class should be italicized in 'it' # mode. Greek capital letters should be Roman. if found_symbol: new_fontname = fontname if fontname == 'it': if uniindex < 0x10000: unistring = unichr(uniindex) if (not unicodedata.category(unistring)[0] == "L" or unicodedata.name(unistring).startswith("GREEK CAPITAL")): new_fontname = 'rm' slanted = (new_fontname == 'it') or sym in self._slanted_symbols found_symbol = False try: cached_font = self._get_font(new_fontname) except RuntimeError: pass else: try: glyphindex = cached_font.charmap[uniindex] found_symbol = True except KeyError: pass if not found_symbol: if self.cm_fallback: warn("Substituting with a symbol from Computer Modern.", MathTextWarning) return self.cm_fallback._get_glyph( fontname, 'it', sym, fontsize) else: if fontname == 'it' and isinstance(self, StixFonts): return self._get_glyph('rm', font_class, sym, fontsize) warn("Font '%s' does not have a glyph for '%s'" % (fontname, sym.encode('ascii', 'backslashreplace')), MathTextWarning) warn("Substituting with a dummy symbol.", MathTextWarning) fontname = 'rm' new_fontname = fontname cached_font = self._get_font(fontname) uniindex = 0xA4 # currency character, for lack of anything better glyphindex = cached_font.charmap[uniindex] slanted = False symbol_name = cached_font.font.get_glyph_name(glyphindex) return cached_font, uniindex, symbol_name, fontsize, slanted def get_sized_alternatives_for_symbol(self, fontname, sym): if self.cm_fallback: return self.cm_fallback.get_sized_alternatives_for_symbol( fontname, sym) return [(fontname, sym)] class StixFonts(UnicodeFonts): """ A font handling class for the STIX fonts. In addition to what UnicodeFonts provides, this class: - supports "virtual fonts" which are complete alpha numeric character sets with different font styles at special Unicode code points, such as "Blackboard". - handles sized alternative characters for the STIXSizeX fonts. """ _fontmap = { 'rm' : 'STIXGeneral', 'it' : 'STIXGeneral:italic', 'bf' : 'STIXGeneral:weight=bold', 'nonunirm' : 'STIXNonUnicode', 'nonuniit' : 'STIXNonUnicode:italic', 'nonunibf' : 'STIXNonUnicode:weight=bold', 0 : 'STIXGeneral', 1 : 'STIXSize1', 2 : 'STIXSize2', 3 : 'STIXSize3', 4 : 'STIXSize4', 5 : 'STIXSize5' } fontmap = {} use_cmex = False cm_fallback = False _sans = False def __init__(self, *args, **kwargs): TruetypeFonts.__init__(self, *args, **kwargs) if not len(self.fontmap): for key, name in self._fontmap.iteritems(): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _map_virtual_font(self, fontname, font_class, uniindex): # Handle these "fonts" that are actually embedded in # other fonts. mapping = stix_virtual_fonts.get(fontname) if self._sans and mapping is None: mapping = stix_virtual_fonts['sf'] doing_sans_conversion = True else: doing_sans_conversion = False if mapping is not None: if isinstance(mapping, dict): mapping = mapping[font_class] # Binary search for the source glyph lo = 0 hi = len(mapping) while lo < hi: mid = (lo+hi)//2 range = mapping[mid] if uniindex < range[0]: hi = mid elif uniindex <= range[1]: break else: lo = mid + 1 if uniindex >= range[0] and uniindex <= range[1]: uniindex = uniindex - range[0] + range[3] fontname = range[2] elif not doing_sans_conversion: # This will generate a dummy character uniindex = 0x1 fontname = 'it' # Handle private use area glyphs if (fontname in ('it', 'rm', 'bf') and uniindex >= 0xe000 and uniindex <= 0xf8ff): fontname = 'nonuni' + fontname return fontname, uniindex _size_alternatives = {} def get_sized_alternatives_for_symbol(self, fontname, sym): alternatives = self._size_alternatives.get(sym) if alternatives: return alternatives alternatives = [] try: uniindex = get_unicode_index(sym) except ValueError: return [(fontname, sym)] fix_ups = { ord('<'): 0x27e8, ord('>'): 0x27e9 } uniindex = fix_ups.get(uniindex, uniindex) for i in range(6): cached_font = self._get_font(i) glyphindex = cached_font.charmap.get(uniindex) if glyphindex is not None: alternatives.append((i, unichr(uniindex))) self._size_alternatives[sym] = alternatives return alternatives class StixSansFonts(StixFonts): """ A font handling class for the STIX fonts (that uses sans-serif characters by default). """ _sans = True class StandardPsFonts(Fonts): """ Use the standard postscript fonts for rendering to backend_ps Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend. """ basepath = os.path.join( get_data_path(), 'fonts', 'afm' ) fontmap = { 'cal' : 'pzcmi8a', # Zapf Chancery 'rm' : 'pncr8a', # New Century Schoolbook 'tt' : 'pcrr8a', # Courier 'it' : 'pncri8a', # New Century Schoolbook Italic 'sf' : 'phvr8a', # Helvetica 'bf' : 'pncb8a', # New Century Schoolbook Bold None : 'psyr' # Symbol } def __init__(self, default_font_prop): Fonts.__init__(self, default_font_prop, MathtextBackendPs()) self.glyphd = {} self.fonts = {} filename = findfont(default_font_prop, fontext='afm') default_font = AFM(file(filename, 'r')) default_font.fname = filename self.fonts['default'] = default_font self.pswriter = StringIO() def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self.fonts.get(basename) if cached_font is None: fname = os.path.join(self.basepath, basename + ".afm") cached_font = AFM(file(fname, 'r')) cached_font.fname = fname self.fonts[basename] = cached_font self.fonts[cached_font.get_fontname()] = cached_font return cached_font def _get_info (self, fontname, font_class, sym, fontsize, dpi): 'load the cmfont, metrics and glyph with caching' key = fontname, sym, fontsize, dpi tup = self.glyphd.get(key) if tup is not None: return tup # Only characters in the "Letter" class should really be italicized. # This class includes greek letters, so we're ok if (fontname == 'it' and (len(sym) > 1 or not unicodedata.category(unicode(sym)).startswith("L"))): fontname = 'rm' found_symbol = False if sym in latex_to_standard: fontname, num = latex_to_standard[sym] glyph = chr(num) found_symbol = True elif len(sym) == 1: glyph = sym num = ord(glyph) found_symbol = True else: warn("No TeX to built-in Postscript mapping for '%s'" % sym, MathTextWarning) slanted = (fontname == 'it') font = self._get_font(fontname) if found_symbol: try: symbol_name = font.get_name_char(glyph) except KeyError: warn("No glyph in standard Postscript font '%s' for '%s'" % (font.postscript_name, sym), MathTextWarning) found_symbol = False if not found_symbol: glyph = sym = '?' num = ord(glyph) symbol_name = font.get_name_char(glyph) offset = 0 scale = 0.001 * fontsize xmin, ymin, xmax, ymax = [val * scale for val in font.get_bbox_char(glyph)] metrics = Bunch( advance = font.get_width_char(glyph) * scale, width = font.get_width_char(glyph) * scale, height = font.get_height_char(glyph) * scale, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = ymax + offset, slanted = slanted ) self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.get_fontname(), metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return self.glyphd[key] def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return (font.get_kern_dist(info1.glyph, info2.glyph) * 0.001 * fontsize1) return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_xheight() * 0.001 * fontsize def get_underline_thickness(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_underline_thickness() * 0.001 * fontsize ############################################################################## # TeX-LIKE BOX MODEL # The following is based directly on the document 'woven' from the # TeX82 source code. This information is also available in printed # form: # # Knuth, Donald E.. 1986. Computers and Typesetting, Volume B: # TeX: The Program. Addison-Wesley Professional. # # The most relevant "chapters" are: # Data structures for boxes and their friends # Shipping pages out (Ship class) # Packaging (hpack and vpack) # Data structures for math mode # Subroutines for math mode # Typesetting math formulas # # Many of the docstrings below refer to a numbered "node" in that # book, e.g. node123 # # Note that (as TeX) y increases downward, unlike many other parts of # matplotlib. # How much text shrinks when going to the next-smallest level. GROW_FACTOR # must be the inverse of SHRINK_FACTOR. SHRINK_FACTOR = 0.7 GROW_FACTOR = 1.0 / SHRINK_FACTOR # The number of different sizes of chars to use, beyond which they will not # get any smaller NUM_SIZE_LEVELS = 4 # Percentage of x-height of additional horiz. space after sub/superscripts SCRIPT_SPACE = 0.2 # Percentage of x-height that sub/superscripts drop below the baseline SUBDROP = 0.3 # Percentage of x-height that superscripts drop below the baseline SUP1 = 0.5 # Percentage of x-height that subscripts drop below the baseline SUB1 = 0.0 # Percentage of x-height that superscripts are offset relative to the subscript DELTA = 0.18 class MathTextWarning(Warning): pass class Node(object): """ A node in the TeX box model """ def __init__(self): self.size = 0 def __repr__(self): return self.__internal_repr__() def __internal_repr__(self): return self.__class__.__name__ def get_kerning(self, next): return 0.0 def shrink(self): """ Shrinks one level smaller. There are only three levels of sizes, after which things will no longer get smaller. """ self.size += 1 def grow(self): """ Grows one level larger. There is no limit to how big something can get. """ self.size -= 1 def render(self, x, y): pass class Box(Node): """ Represents any node with a physical location. """ def __init__(self, width, height, depth): Node.__init__(self) self.width = width self.height = height self.depth = depth def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR def render(self, x1, y1, x2, y2): pass class Vbox(Box): """ A box with only height (zero width). """ def __init__(self, height, depth): Box.__init__(self, 0., height, depth) class Hbox(Box): """ A box with only width (zero height and depth). """ def __init__(self, width): Box.__init__(self, width, 0., 0.) class Char(Node): """ Represents a single character. Unlike TeX, the font information and metrics are stored with each :class:`Char` to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width, height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the x-direction. The metrics must be converted to the TeX way, and the advance (if different from width) must be converted into a :class:`Kern` node when the :class:`Char` is added to its parent :class:`Hlist`. """ def __init__(self, c, state): Node.__init__(self) self.c = c self.font_output = state.font_output assert isinstance(state.font, (str, unicode, int)) self.font = state.font self.font_class = state.font_class self.fontsize = state.fontsize self.dpi = state.dpi # The real width, height and depth will be set during the # pack phase, after we know the real fontsize self._update_metrics() def __internal_repr__(self): return '`%s`' % self.c def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) if self.c == ' ': self.width = metrics.advance else: self.width = metrics.width self.height = metrics.iceberg self.depth = -(metrics.iceberg - metrics.height) def is_slanted(self): return self._metrics.slanted def get_kerning(self, next): """ Return the amount of kerning between this and the given character. Called when characters are strung together into :class:`Hlist` to create :class:`Kern` nodes. """ advance = self._metrics.advance - self.width kern = 0. if isinstance(next, Char): kern = self.font_output.get_kern( self.font, self.font_class, self.c, self.fontsize, next.font, next.font_class, next.c, next.fontsize, self.dpi) return advance + kern def render(self, x, y): """ Render the character to the canvas """ self.font_output.render_glyph( x, y, self.font, self.font_class, self.c, self.fontsize, self.dpi) def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.fontsize *= SHRINK_FACTOR self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.fontsize *= GROW_FACTOR self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR class Accent(Char): """ The font metrics need to be dealt with differently for accents, since they are already offset correctly from the baseline in TrueType fonts. """ def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) self.width = metrics.xmax - metrics.xmin self.height = metrics.ymax - metrics.ymin self.depth = 0 def shrink(self): Char.shrink(self) self._update_metrics() def grow(self): Char.grow(self) self._update_metrics() def render(self, x, y): """ Render the character to the canvas. """ self.font_output.render_glyph( x - self._metrics.xmin, y + self._metrics.ymin, self.font, self.font_class, self.c, self.fontsize, self.dpi) class List(Box): """ A list of nodes (either horizontal or vertical). """ def __init__(self, elements): Box.__init__(self, 0., 0., 0.) self.shift_amount = 0. # An arbitrary offset self.children = elements # The child nodes of this list # The following parameters are set in the vpack and hpack functions self.glue_set = 0. # The glue setting of this list self.glue_sign = 0 # 0: normal, -1: shrinking, 1: stretching self.glue_order = 0 # The order of infinity (0 - 3) for the glue def __repr__(self): return '[%s <%.02f %.02f %.02f %.02f> %s]' % ( self.__internal_repr__(), self.width, self.height, self.depth, self.shift_amount, ' '.join([repr(x) for x in self.children])) def _determine_order(self, totals): """ A helper function to determine the highest order of glue used by the members of this list. Used by vpack and hpack. """ o = 0 for i in range(len(totals) - 1, 0, -1): if totals[i] != 0.0: o = i break return o def _set_glue(self, x, sign, totals, error_type): o = self._determine_order(totals) self.glue_order = o self.glue_sign = sign if totals[o] != 0.: self.glue_set = x / totals[o] else: self.glue_sign = 0 self.glue_ratio = 0. if o == 0: if len(self.children): warn("%s %s: %r" % (error_type, self.__class__.__name__, self), MathTextWarning) def shrink(self): for child in self.children: child.shrink() Box.shrink(self) if self.size < NUM_SIZE_LEVELS: self.shift_amount *= SHRINK_FACTOR self.glue_set *= SHRINK_FACTOR def grow(self): for child in self.children: child.grow() Box.grow(self) self.shift_amount *= GROW_FACTOR self.glue_set *= GROW_FACTOR class Hlist(List): """ A horizontal list of boxes. """ def __init__(self, elements, w=0., m='additional', do_kern=True): List.__init__(self, elements) if do_kern: self.kern() self.hpack() def kern(self): """ Insert :class:`Kern` nodes between :class:`Char` nodes to set kerning. The :class:`Char` nodes themselves determine the amount of kerning they need (in :meth:`~Char.get_kerning`), and this function just creates the linked list in the correct way. """ new_children = [] num_children = len(self.children) if num_children: for i in range(num_children): elem = self.children[i] if i < num_children - 1: next = self.children[i + 1] else: next = None new_children.append(elem) kerning_distance = elem.get_kerning(next) if kerning_distance != 0.: kern = Kern(kerning_distance) new_children.append(kern) self.children = new_children # This is a failed experiment to fake cross-font kerning. # def get_kerning(self, next): # if len(self.children) >= 2 and isinstance(self.children[-2], Char): # if isinstance(next, Char): # print "CASE A" # return self.children[-2].get_kerning(next) # elif isinstance(next, Hlist) and len(next.children) and isinstance(next.children[0], Char): # print "CASE B" # result = self.children[-2].get_kerning(next.children[0]) # print result # return result # return 0.0 def hpack(self, w=0., m='additional'): """ The main duty of :meth:`hpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a ``\\vbox`` includes other boxes that have been shifted left. - *w*: specifies a width - *m*: is either 'exactly' or 'additional'. Thus, ``hpack(w, 'exactly')`` produces a box whose width is exactly *w*, while ``hpack(w, 'additional')`` yields a box whose width is the natural width plus *w*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. #self.shift_amount = 0. h = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Char): x += p.width h = max(h, p.height) d = max(d, p.depth) elif isinstance(p, Box): x += p.width if not isinf(p.height) and not isinf(p.depth): s = getattr(p, 'shift_amount', 0.) h = max(h, p.height - s) d = max(d, p.depth + s) elif isinstance(p, Glue): glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += p.width self.height = h self.depth = d if m == 'additional': w += x self.width = w x = w - x if x == 0.: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Vlist(List): """ A vertical list of boxes. """ def __init__(self, elements, h=0., m='additional'): List.__init__(self, elements) self.vpack() def vpack(self, h=0., m='additional', l=float(inf)): """ The main duty of :meth:`vpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. - *h*: specifies a height - *m*: is either 'exactly' or 'additional'. - *l*: a maximum height Thus, ``vpack(h, 'exactly')`` produces a box whose height is exactly *h*, while ``vpack(h, 'additional')`` yields a box whose height is the natural height plus *h*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. w = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Box): x += d + p.height d = p.depth if not isinf(p.width): s = getattr(p, 'shift_amount', 0.) w = max(w, p.width + s) elif isinstance(p, Glue): x += d d = 0. glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += d + p.width d = 0. elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in Vlist.") self.width = w if d > l: x += d - l self.depth = l else: self.depth = d if m == 'additional': h += x self.height = h x = h - x if x == 0: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Rule(Box): """ A :class:`Rule` node stands for a solid black rectangle; it has *width*, *depth*, and *height* fields just as in an :class:`Hlist`. However, if any of these dimensions is inf, the actual value will be determined by running the rule up to the boundary of the innermost enclosing box. This is called a "running dimension." The width is never running in an :class:`Hlist`; the height and depth are never running in a :class:`Vlist`. """ def __init__(self, width, height, depth, state): Box.__init__(self, width, height, depth) self.font_output = state.font_output def render(self, x, y, w, h): self.font_output.render_rect_filled(x, y, x + w, y + h) class Hrule(Rule): """ Convenience class to create a horizontal rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = depth = thickness * 0.5 Rule.__init__(self, inf, height, depth, state) class Vrule(Rule): """ Convenience class to create a vertical rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) Rule.__init__(self, thickness, inf, inf, state) class Glue(Node): """ Most of the information in this object is stored in the underlying :class:`GlueSpec` class, which is shared between multiple glue objects. (This is a memory optimization which probably doesn't matter anymore, but it's easier to stick to what TeX does.) """ def __init__(self, glue_type, copy=False): Node.__init__(self) self.glue_subtype = 'normal' if is_string_like(glue_type): glue_spec = GlueSpec.factory(glue_type) elif isinstance(glue_type, GlueSpec): glue_spec = glue_type else: raise ArgumentError("glue_type must be a glue spec name or instance.") if copy: glue_spec = glue_spec.copy() self.glue_spec = glue_spec def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= SHRINK_FACTOR def grow(self): Node.grow(self) if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= GROW_FACTOR class GlueSpec(object): """ See :class:`Glue`. """ def __init__(self, width=0., stretch=0., stretch_order=0, shrink=0., shrink_order=0): self.width = width self.stretch = stretch self.stretch_order = stretch_order self.shrink = shrink self.shrink_order = shrink_order def copy(self): return GlueSpec( self.width, self.stretch, self.stretch_order, self.shrink, self.shrink_order) def factory(cls, glue_type): return cls._types[glue_type] factory = classmethod(factory) GlueSpec._types = { 'fil': GlueSpec(0., 1., 1, 0., 0), 'fill': GlueSpec(0., 1., 2, 0., 0), 'filll': GlueSpec(0., 1., 3, 0., 0), 'neg_fil': GlueSpec(0., 0., 0, 1., 1), 'neg_fill': GlueSpec(0., 0., 0, 1., 2), 'neg_filll': GlueSpec(0., 0., 0, 1., 3), 'empty': GlueSpec(0., 0., 0, 0., 0), 'ss': GlueSpec(0., 1., 1, -1., 1) } # Some convenient ways to get common kinds of glue class Fil(Glue): def __init__(self): Glue.__init__(self, 'fil') class Fill(Glue): def __init__(self): Glue.__init__(self, 'fill') class Filll(Glue): def __init__(self): Glue.__init__(self, 'filll') class NegFil(Glue): def __init__(self): Glue.__init__(self, 'neg_fil') class NegFill(Glue): def __init__(self): Glue.__init__(self, 'neg_fill') class NegFilll(Glue): def __init__(self): Glue.__init__(self, 'neg_filll') class SsGlue(Glue): def __init__(self): Glue.__init__(self, 'ss') class HCentered(Hlist): """ A convenience class to create an :class:`Hlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Hlist.__init__(self, [SsGlue()] + elements + [SsGlue()], do_kern=False) class VCentered(Hlist): """ A convenience class to create a :class:`Vlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Vlist.__init__(self, [SsGlue()] + elements + [SsGlue()]) class Kern(Node): """ A :class:`Kern` node has a width field to specify a (normally negative) amount of spacing. This spacing correction appears in horizontal lists between letters like A and V when the font designer said that it looks better to move them closer together or further apart. A kern node can also appear in a vertical list, when its *width* denotes additional spacing in the vertical direction. """ def __init__(self, width): Node.__init__(self) self.width = width def __repr__(self): return "k%.02f" % self.width def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR class SubSuperCluster(Hlist): """ :class:`SubSuperCluster` is a sort of hack to get around that fact that this code do a two-pass parse like TeX. This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such that if another script follows that needs to be attached, it can be reconfigured on the fly. """ def __init__(self): self.nucleus = None self.sub = None self.super = None Hlist.__init__(self, []) class AutoHeightChar(Hlist): """ :class:`AutoHeightChar` will create a character as close to the given height and depth as possible. When using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, height, depth, state, always=False): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() target_total = height + depth for fontname, sym in alternatives: state.font = fontname char = Char(sym, state) if char.height + char.depth >= target_total: break factor = target_total / (char.height + char.depth) state.fontsize *= factor char = Char(sym, state) shift = (depth - char.depth) Hlist.__init__(self, [char]) self.shift_amount = shift class AutoWidthChar(Hlist): """ :class:`AutoWidthChar` will create a character as close to the given width as possible. When using a font with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, width, state, always=False, char_class=Char): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() for fontname, sym in alternatives: state.font = fontname char = char_class(sym, state) if char.width >= width: break factor = width / char.width state.fontsize *= factor char = char_class(sym, state) Hlist.__init__(self, [char]) self.width = char.width class Ship(object): """ Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes inside of boxes, the main work of :class:`Ship` is done by two mutually recursive routines, :meth:`hlist_out` and :meth:`vlist_out`, which traverse the :class:`Hlist` nodes and :class:`Vlist` nodes inside of horizontal and vertical boxes. The global variables used in TeX to store state as it processes have become member variables here. """ def __call__(self, ox, oy, box): self.max_push = 0 # Deepest nesting of push commands so far self.cur_s = 0 self.cur_v = 0. self.cur_h = 0. self.off_h = ox self.off_v = oy + box.height self.hlist_out(box) def clamp(value): if value < -1000000000.: return -1000000000. if value > 1000000000.: return 1000000000. return value clamp = staticmethod(clamp) def hlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign base_line = self.cur_v left_edge = self.cur_h self.cur_s += 1 self.max_push = max(self.cur_s, self.max_push) clamp = self.clamp for p in box.children: if isinstance(p, Char): p.render(self.cur_h + self.off_h, self.cur_v + self.off_v) self.cur_h += p.width elif isinstance(p, Kern): self.cur_h += p.width elif isinstance(p, List): # node623 if len(p.children) == 0: self.cur_h += p.width else: edge = self.cur_h self.cur_v = base_line + p.shift_amount if isinstance(p, Hlist): self.hlist_out(p) else: # p.vpack(box.height + box.depth, 'exactly') self.vlist_out(p) self.cur_h = edge + p.width self.cur_v = base_line elif isinstance(p, Box): # node624 rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_height): rule_height = box.height if isinf(rule_depth): rule_depth = box.depth if rule_height > 0 and rule_width > 0: self.cur_v = baseline + rule_depth p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) self.cur_v = baseline self.cur_h += rule_width elif isinstance(p, Glue): # node625 glue_spec = p.glue_spec rule_width = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_width += cur_g self.cur_h += rule_width self.cur_s -= 1 def vlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign self.cur_s += 1 self.max_push = max(self.max_push, self.cur_s) left_edge = self.cur_h self.cur_v -= box.height top_edge = self.cur_v clamp = self.clamp for p in box.children: if isinstance(p, Kern): self.cur_v += p.width elif isinstance(p, List): if len(p.children) == 0: self.cur_v += p.height + p.depth else: self.cur_v += p.height self.cur_h = left_edge + p.shift_amount save_v = self.cur_v p.width = box.width if isinstance(p, Hlist): self.hlist_out(p) else: self.vlist_out(p) self.cur_v = save_v + p.depth self.cur_h = left_edge elif isinstance(p, Box): rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_width): rule_width = box.width rule_height += rule_depth if rule_height > 0 and rule_depth > 0: self.cur_v += rule_height p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) elif isinstance(p, Glue): glue_spec = p.glue_spec rule_height = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: # shrinking cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_height += cur_g self.cur_v += rule_height elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in vlist") self.cur_s -= 1 ship = Ship() ############################################################################## # PARSER def Error(msg): """ Helper class to raise parser errors. """ def raise_error(s, loc, toks): raise ParseFatalException(msg + "\n" + s) empty = Empty() empty.setParseAction(raise_error) return empty class Parser(object): """ This is the pyparsing-based parser for math expressions. It actually parses full strings *containing* math expressions, in that raw text may also appear outside of pairs of ``$``. The grammar is based directly on that in TeX, though it cuts a few corners. """ _binary_operators = set(r''' + * \pm \sqcap \rhd \mp \sqcup \unlhd \times \vee \unrhd \div \wedge \oplus \ast \setminus \ominus \star \wr \otimes \circ \diamond \oslash \bullet \bigtriangleup \odot \cdot \bigtriangledown \bigcirc \cap \triangleleft \dagger \cup \triangleright \ddagger \uplus \lhd \amalg'''.split()) _relation_symbols = set(r''' = < > : \leq \geq \equiv \models \prec \succ \sim \perp \preceq \succeq \simeq \mid \ll \gg \asymp \parallel \subset \supset \approx \bowtie \subseteq \supseteq \cong \Join \sqsubset \sqsupset \neq \smile \sqsubseteq \sqsupseteq \doteq \frown \in \ni \propto \vdash \dashv'''.split()) _arrow_symbols = set(r''' \leftarrow \longleftarrow \uparrow \Leftarrow \Longleftarrow \Uparrow \rightarrow \longrightarrow \downarrow \Rightarrow \Longrightarrow \Downarrow \leftrightarrow \longleftrightarrow \updownarrow \Leftrightarrow \Longleftrightarrow \Updownarrow \mapsto \longmapsto \nearrow \hookleftarrow \hookrightarrow \searrow \leftharpoonup \rightharpoonup \swarrow \leftharpoondown \rightharpoondown \nwarrow \rightleftharpoons \leadsto'''.split()) _spaced_symbols = _binary_operators | _relation_symbols | _arrow_symbols _punctuation_symbols = set(r', ; . ! \ldotp \cdotp'.split()) _overunder_symbols = set(r''' \sum \prod \coprod \bigcap \bigcup \bigsqcup \bigvee \bigwedge \bigodot \bigotimes \bigoplus \biguplus '''.split()) _overunder_functions = set( r"lim liminf limsup sup max min".split()) _dropsub_symbols = set(r'''\int \oint'''.split()) _fontnames = set("rm cal it tt sf bf default bb frak circled scr".split()) _function_names = set(""" arccos csc ker min arcsin deg lg Pr arctan det lim sec arg dim liminf sin cos exp limsup sinh cosh gcd ln sup cot hom log tan coth inf max tanh""".split()) _ambiDelim = set(r""" | \| / \backslash \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow .""".split()) _leftDelim = set(r"( [ { < \lfloor \langle \lceil".split()) _rightDelim = set(r") ] } > \rfloor \rangle \rceil".split()) def __init__(self): # All forward declarations are here font = Forward().setParseAction(self.font).setName("font") latexfont = Forward() subsuper = Forward().setParseAction(self.subsuperscript).setName("subsuper") placeable = Forward().setName("placeable") simple = Forward().setName("simple") autoDelim = Forward().setParseAction(self.auto_sized_delimiter) self._expression = Forward().setParseAction(self.finish).setName("finish") float = Regex(r"[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)") lbrace = Literal('{').suppress() rbrace = Literal('}').suppress() start_group = (Optional(latexfont) - lbrace) start_group.setParseAction(self.start_group) end_group = rbrace.copy() end_group.setParseAction(self.end_group) bslash = Literal('\\') accent = oneOf(self._accent_map.keys() + list(self._wide_accents)) function = oneOf(list(self._function_names)) fontname = oneOf(list(self._fontnames)) latex2efont = oneOf(['math' + x for x in self._fontnames]) space =(FollowedBy(bslash) + oneOf([r'\ ', r'\/', r'\,', r'\;', r'\quad', r'\qquad', r'\!']) ).setParseAction(self.space).setName('space') customspace =(Literal(r'\hspace') - (( lbrace - float - rbrace ) | Error(r"Expected \hspace{n}")) ).setParseAction(self.customspace).setName('customspace') unicode_range = u"\U00000080-\U0001ffff" symbol =(Regex(UR"([a-zA-Z0-9 +\-*/<>=:,.;!'@()\[\]|%s])|(\\[%%${}\[\]_|])" % unicode_range) | (Combine( bslash + oneOf(tex2uni.keys()) ) + FollowedBy(Regex("[^a-zA-Z]"))) ).setParseAction(self.symbol).leaveWhitespace() c_over_c =(Suppress(bslash) + oneOf(self._char_over_chars.keys()) ).setParseAction(self.char_over_chars) accent = Group( Suppress(bslash) + accent - placeable ).setParseAction(self.accent).setName("accent") function =(Suppress(bslash) + function ).setParseAction(self.function).setName("function") group = Group( start_group + ZeroOrMore( autoDelim ^ simple) - end_group ).setParseAction(self.group).setName("group") font <<(Suppress(bslash) + fontname) latexfont <<(Suppress(bslash) + latex2efont) frac = Group( Suppress(Literal(r"\frac")) + ((group + group) | Error(r"Expected \frac{num}{den}")) ).setParseAction(self.frac).setName("frac") sqrt = Group( Suppress(Literal(r"\sqrt")) + Optional( Suppress(Literal("[")) - Regex("[0-9]+") - Suppress(Literal("]")), default = None ) + (group | Error("Expected \sqrt{value}")) ).setParseAction(self.sqrt).setName("sqrt") placeable <<(accent ^ function ^ (c_over_c | symbol) ^ group ^ frac ^ sqrt ) simple <<(space | customspace | font | subsuper ) subsuperop = oneOf(["_", "^"]) subsuper << Group( ( Optional(placeable) + OneOrMore( subsuperop - placeable ) ) | placeable ) ambiDelim = oneOf(list(self._ambiDelim)) leftDelim = oneOf(list(self._leftDelim)) rightDelim = oneOf(list(self._rightDelim)) autoDelim <<(Suppress(Literal(r"\left")) + ((leftDelim | ambiDelim) | Error("Expected a delimiter")) + Group( autoDelim ^ OneOrMore(simple)) + Suppress(Literal(r"\right")) + ((rightDelim | ambiDelim) | Error("Expected a delimiter")) ) math = OneOrMore( autoDelim ^ simple ).setParseAction(self.math).setName("math") math_delim = ~bslash + Literal('$') non_math = Regex(r"(?:(?:\\[$])|[^$])*" ).setParseAction(self.non_math).setName("non_math").leaveWhitespace() self._expression << ( non_math + ZeroOrMore( Suppress(math_delim) + Optional(math) + (Suppress(math_delim) | Error("Expected end of math '$'")) + non_math ) ) + StringEnd() self.clear() def clear(self): """ Clear any state before parsing. """ self._expr = None self._state_stack = None self._em_width_cache = {} def parse(self, s, fonts_object, fontsize, dpi): """ Parse expression *s* using the given *fonts_object* for output, at the given *fontsize* and *dpi*. Returns the parse tree of :class:`Node` instances. """ self._state_stack = [self.State(fonts_object, 'default', 'rm', fontsize, dpi)] try: self._expression.parseString(s) except ParseException, err: raise ValueError("\n".join([ "", err.line, " " * (err.column - 1) + "^", str(err)])) return self._expr # The state of the parser is maintained in a stack. Upon # entering and leaving a group { } or math/non-math, the stack # is pushed and popped accordingly. The current state always # exists in the top element of the stack. class State(object): """ Stores the state of the parser. States are pushed and popped from a stack as necessary, and the "current" state is always at the top of the stack. """ def __init__(self, font_output, font, font_class, fontsize, dpi): self.font_output = font_output self._font = font self.font_class = font_class self.fontsize = fontsize self.dpi = dpi def copy(self): return Parser.State( self.font_output, self.font, self.font_class, self.fontsize, self.dpi) def _get_font(self): return self._font def _set_font(self, name): if name in ('it', 'rm', 'bf'): self.font_class = name self._font = name font = property(_get_font, _set_font) def get_state(self): """ Get the current :class:`State` of the parser. """ return self._state_stack[-1] def pop_state(self): """ Pop a :class:`State` off of the stack. """ self._state_stack.pop() def push_state(self): """ Push a new :class:`State` onto the stack which is just a copy of the current state. """ self._state_stack.append(self.get_state().copy()) def finish(self, s, loc, toks): #~ print "finish", toks self._expr = Hlist(toks) return [self._expr] def math(self, s, loc, toks): #~ print "math", toks hlist = Hlist(toks) self.pop_state() return [hlist] def non_math(self, s, loc, toks): #~ print "non_math", toks s = toks[0].replace(r'\$', '$') symbols = [Char(c, self.get_state()) for c in s] hlist = Hlist(symbols) # We're going into math now, so set font to 'it' self.push_state() self.get_state().font = 'it' return [hlist] def _make_space(self, percentage): # All spaces are relative to em width state = self.get_state() key = (state.font, state.fontsize, state.dpi) width = self._em_width_cache.get(key) if width is None: metrics = state.font_output.get_metrics( state.font, 'it', 'm', state.fontsize, state.dpi) width = metrics.advance self._em_width_cache[key] = width return Kern(width * percentage) _space_widths = { r'\ ' : 0.3, r'\,' : 0.4, r'\;' : 0.8, r'\quad' : 1.6, r'\qquad' : 3.2, r'\!' : -0.4, r'\/' : 0.4 } def space(self, s, loc, toks): assert(len(toks)==1) num = self._space_widths[toks[0]] box = self._make_space(num) return [box] def customspace(self, s, loc, toks): return [self._make_space(float(toks[1]))] def symbol(self, s, loc, toks): # print "symbol", toks c = toks[0] try: char = Char(c, self.get_state()) except ValueError: raise ParseFatalException("Unknown symbol: %s" % c) if c in self._spaced_symbols: return [Hlist( [self._make_space(0.2), char, self._make_space(0.2)] , do_kern = False)] elif c in self._punctuation_symbols: return [Hlist( [char, self._make_space(0.2)] , do_kern = False)] return [char] _char_over_chars = { # The first 2 entires in the tuple are (font, char, sizescale) for # the two symbols under and over. The third element is the space # (in multiples of underline height) r'AA' : ( ('rm', 'A', 1.0), (None, '\circ', 0.5), 0.0), } def char_over_chars(self, s, loc, toks): sym = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) under_desc, over_desc, space = \ self._char_over_chars.get(sym, (None, None, 0.0)) if under_desc is None: raise ParseFatalException("Error parsing symbol") over_state = state.copy() if over_desc[0] is not None: over_state.font = over_desc[0] over_state.fontsize *= over_desc[2] over = Accent(over_desc[1], over_state) under_state = state.copy() if under_desc[0] is not None: under_state.font = under_desc[0] under_state.fontsize *= under_desc[2] under = Char(under_desc[1], under_state) width = max(over.width, under.width) over_centered = HCentered([over]) over_centered.hpack(width, 'exactly') under_centered = HCentered([under]) under_centered.hpack(width, 'exactly') return Vlist([ over_centered, Vbox(0., thickness * space), under_centered ]) _accent_map = { r'hat' : r'\circumflexaccent', r'breve' : r'\combiningbreve', r'bar' : r'\combiningoverline', r'grave' : r'\combininggraveaccent', r'acute' : r'\combiningacuteaccent', r'ddot' : r'\combiningdiaeresis', r'tilde' : r'\combiningtilde', r'dot' : r'\combiningdotabove', r'vec' : r'\combiningrightarrowabove', r'"' : r'\combiningdiaeresis', r"`" : r'\combininggraveaccent', r"'" : r'\combiningacuteaccent', r'~' : r'\combiningtilde', r'.' : r'\combiningdotabove', r'^' : r'\circumflexaccent' } _wide_accents = set(r"widehat widetilde".split()) def accent(self, s, loc, toks): assert(len(toks)==1) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) if len(toks[0]) != 2: raise ParseFatalException("Error parsing accent") accent, sym = toks[0] if accent in self._wide_accents: accent = AutoWidthChar( '\\' + accent, sym.width, state, char_class=Accent) else: accent = Accent(self._accent_map[accent], state) centered = HCentered([accent]) centered.hpack(sym.width, 'exactly') return Vlist([ centered, Vbox(0., thickness * 2.0), Hlist([sym]) ]) def function(self, s, loc, toks): #~ print "function", toks self.push_state() state = self.get_state() state.font = 'rm' hlist = Hlist([Char(c, state) for c in toks[0]]) self.pop_state() hlist.function_name = toks[0] return hlist def start_group(self, s, loc, toks): self.push_state() # Deal with LaTeX-style font tokens if len(toks): self.get_state().font = toks[0][4:] return [] def group(self, s, loc, toks): grp = Hlist(toks[0]) return [grp] def end_group(self, s, loc, toks): self.pop_state() return [] def font(self, s, loc, toks): assert(len(toks)==1) name = toks[0] self.get_state().font = name return [] def is_overunder(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._overunder_symbols elif isinstance(nucleus, Hlist) and hasattr(nucleus, 'function_name'): return nucleus.function_name in self._overunder_functions return False def is_dropsub(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._dropsub_symbols return False def is_slanted(self, nucleus): if isinstance(nucleus, Char): return nucleus.is_slanted() return False def subsuperscript(self, s, loc, toks): assert(len(toks)==1) # print 'subsuperscript', toks nucleus = None sub = None super = None if len(toks[0]) == 1: return toks[0].asList() elif len(toks[0]) == 2: op, next = toks[0] nucleus = Hbox(0.0) if op == '_': sub = next else: super = next elif len(toks[0]) == 3: nucleus, op, next = toks[0] if op == '_': sub = next else: super = next elif len(toks[0]) == 5: nucleus, op1, next1, op2, next2 = toks[0] if op1 == op2: if op1 == '_': raise ParseFatalException("Double subscript") else: raise ParseFatalException("Double superscript") if op1 == '_': sub = next1 super = next2 else: super = next1 sub = next2 else: raise ParseFatalException( "Subscript/superscript sequence is too long. " "Use braces { } to remove ambiguity.") state = self.get_state() rule_thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) # Handle over/under symbols, such as sum or integral if self.is_overunder(nucleus): vlist = [] shift = 0. width = nucleus.width if super is not None: super.shrink() width = max(width, super.width) if sub is not None: sub.shrink() width = max(width, sub.width) if super is not None: hlist = HCentered([super]) hlist.hpack(width, 'exactly') vlist.extend([hlist, Kern(rule_thickness * 3.0)]) hlist = HCentered([nucleus]) hlist.hpack(width, 'exactly') vlist.append(hlist) if sub is not None: hlist = HCentered([sub]) hlist.hpack(width, 'exactly') vlist.extend([Kern(rule_thickness * 3.0), hlist]) shift = hlist.height + hlist.depth + rule_thickness * 2.0 vlist = Vlist(vlist) vlist.shift_amount = shift + nucleus.depth * 0.5 result = Hlist([vlist]) return [result] # Handle regular sub/superscripts shift_up = nucleus.height - SUBDROP * xHeight if self.is_dropsub(nucleus): shift_down = nucleus.depth + SUBDROP * xHeight else: shift_down = SUBDROP * xHeight if super is None: # node757 sub.shrink() x = Hlist([sub]) # x.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1) clr = x.height - (abs(xHeight * 4.0) / 5.0) shift_down = max(shift_down, clr) x.shift_amount = shift_down else: super.shrink() x = Hlist([super, Kern(SCRIPT_SPACE * xHeight)]) # x.width += SCRIPT_SPACE * xHeight clr = SUP1 * xHeight shift_up = max(shift_up, clr) clr = x.depth + (abs(xHeight) / 4.0) shift_up = max(shift_up, clr) if sub is None: x.shift_amount = -shift_up else: # Both sub and superscript sub.shrink() y = Hlist([sub]) # y.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1 * xHeight) clr = (2.0 * rule_thickness - ((shift_up - x.depth) - (y.height - shift_down))) if clr > 0.: shift_up += clr shift_down += clr if self.is_slanted(nucleus): x.shift_amount = DELTA * (shift_up + shift_down) x = Vlist([x, Kern((shift_up - x.depth) - (y.height - shift_down)), y]) x.shift_amount = shift_down result = Hlist([nucleus, x]) return [result] def frac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] num.shrink() den.shrink() cnum = HCentered([num]) cden = HCentered([den]) width = max(num.width, den.width) + thickness * 10. cnum.hpack(width, 'exactly') cden.hpack(width, 'exactly') vlist = Vlist([cnum, # numerator Vbox(0, thickness * 2.0), # space Hrule(state), # rule Vbox(0, thickness * 4.0), # space cden # denominator ]) # Shift so the fraction line sits in the middle of the # equals sign metrics = state.font_output.get_metrics( state.font, 'it', '=', state.fontsize, state.dpi) shift = (cden.height - ((metrics.ymax + metrics.ymin) / 2 - thickness * 3.0)) vlist.shift_amount = shift hlist = Hlist([vlist, Hbox(thickness * 2.)]) return [hlist] def sqrt(self, s, loc, toks): #~ print "sqrt", toks root, body = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) # Determine the height of the body, and add a little extra to # the height so it doesn't seem cramped height = body.height - body.shift_amount + thickness * 5.0 depth = body.depth + body.shift_amount check = AutoHeightChar(r'\__sqrt__', height, depth, state, always=True) height = check.height - check.shift_amount depth = check.depth + check.shift_amount # Put a little extra space to the left and right of the body padded_body = Hlist([Hbox(thickness * 2.0), body, Hbox(thickness * 2.0)]) rightside = Vlist([Hrule(state), Fill(), padded_body]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), depth, 'exactly') # Add the root and shift it upward so it is above the tick. # The value of 0.6 is a hard-coded hack ;) if root is None: root = Box(check.width * 0.5, 0., 0.) else: root = Hlist([Char(x, state) for x in root]) root.shrink() root.shrink() root_vlist = Vlist([Hlist([root])]) root_vlist.shift_amount = -height * 0.6 hlist = Hlist([root_vlist, # Root # Negative kerning to put root over tick Kern(-check.width * 0.5), check, # Check rightside]) # Body return [hlist] def auto_sized_delimiter(self, s, loc, toks): #~ print "auto_sized_delimiter", toks front, middle, back = toks state = self.get_state() height = max([x.height for x in middle]) depth = max([x.depth for x in middle]) parts = [] # \left. and \right. aren't supposed to produce any symbols if front != '.': parts.append(AutoHeightChar(front, height, depth, state)) parts.extend(middle.asList()) if back != '.': parts.append(AutoHeightChar(back, height, depth, state)) hlist = Hlist(parts) return hlist ### ############################################################################## # MAIN class MathTextParser(object): _parser = None _backend_mapping = { 'bitmap': MathtextBackendBitmap, 'agg' : MathtextBackendAgg, 'ps' : MathtextBackendPs, 'pdf' : MathtextBackendPdf, 'svg' : MathtextBackendSvg, 'cairo' : MathtextBackendCairo, 'macosx': MathtextBackendAgg, } _font_type_mapping = { 'cm' : BakomaFonts, 'stix' : StixFonts, 'stixsans' : StixSansFonts, 'custom' : UnicodeFonts } def __init__(self, output): """ Create a MathTextParser for the given backend *output*. """ self._output = output.lower() self._cache = maxdict(50) def parse(self, s, dpi = 72, prop = None): """ Parse the given math expression *s* at the given *dpi*. If *prop* is provided, it is a :class:`~matplotlib.font_manager.FontProperties` object specifying the "default" font to use in the math expression, used for all non-math text. The results are cached, so multiple calls to :meth:`parse` with the same expression should be fast. """ if prop is None: prop = FontProperties() cacheKey = (s, dpi, hash(prop)) result = self._cache.get(cacheKey) if result is not None: return result if self._output == 'ps' and rcParams['ps.useafm']: font_output = StandardPsFonts(prop) else: backend = self._backend_mapping[self._output]() fontset = rcParams['mathtext.fontset'] fontset_class = self._font_type_mapping.get(fontset.lower()) if fontset_class is not None: font_output = fontset_class(prop, backend) else: raise ValueError( "mathtext.fontset must be either 'cm', 'stix', " "'stixsans', or 'custom'") fontsize = prop.get_size_in_points() # This is a class variable so we don't rebuild the parser # with each request. if self._parser is None: self.__class__._parser = Parser() box = self._parser.parse(s, font_output, fontsize, dpi) font_output.set_canvas_size(box.width, box.height, box.depth) result = font_output.get_results(box) self._cache[cacheKey] = result # Free up the transient data structures self._parser.clear() # Fix cyclical references font_output.destroy() font_output.mathtext_backend.fonts_object = None font_output.mathtext_backend = None return result def to_mask(self, texstr, dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) x = ftimage.as_array() return x, depth def to_rgba(self, texstr, color='black', dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* Any matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ x, depth = self.to_mask(texstr, dpi=dpi, fontsize=fontsize) r, g, b = mcolors.colorConverter.to_rgb(color) RGBA = np.zeros((x.shape[0], x.shape[1], 4), dtype=np.uint8) RGBA[:,:,0] = int(255*r) RGBA[:,:,1] = int(255*g) RGBA[:,:,2] = int(255*b) RGBA[:,:,3] = x return RGBA, depth def to_png(self, filename, texstr, color='black', dpi=120, fontsize=14): """ Writes a tex expression to a PNG file. Returns the offset of the baseline from the bottom of the image in pixels. *filename* A writable filename or fileobject *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* A valid matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns the offset of the baseline from the bottom of the image in pixels. """ rgba, depth = self.to_rgba(texstr, color=color, dpi=dpi, fontsize=fontsize) numrows, numcols, tmp = rgba.shape _png.write_png(rgba.tostring(), numcols, numrows, filename) return depth def get_depth(self, texstr, dpi=120, fontsize=14): """ Returns the offset of the baseline from the bottom of the image in pixels. *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) return depth
agpl-3.0
mac389/petulant-network
src/latent-schmidt.py
1
1534
import random, itertools,json import numpy as np import numpy.linalg as LA import matplotlib.pyplot as plt def jaccard_similarity(a,b): a = set(a) b = set(b) return len(a&b)/float(len(a|b)) ''' 1. Get topics from corpus using gensim ''' topics = json.load(open('../data/lda_topics.json','rb')) ''' 2. Project words onto topics, using Jaccard similarity ''' corpus = [line.strip() for line in open('../data/sample_topics','rb').read().splitlines()] topic_topic_similarities = np.array([[jaccard_similarity(topics[topic_A],topics[topic_B]) for topic_A in topics] for topic_B in topics]) corpus_topic_similarities = np.array([[jaccard_similarity(text,topics[topic]) for text in corpus] for topic in topics]) ''' 3. Gram-Schmidt Orthogonalize (SciPy) and, identify clusters in this space --generalized eigenvalues are better ''' eigenvalues,eigenvectors = LA.eig(topic_topic_similarities) #symmetric left and right eigenvectors are the same projections = eigenvectors.T.dot(corpus_topic_similarities).T #ijth entry denotes the projection of the ith piece of text onto the jth topic ''' 4. Visuazlie ''' fig = plt.figure() ax = fig.add_subplot(111) cax = ax.imshow(projections,interpolation='nearest',aspect='auto') ax.set_xticks(range(projections.shape[1])) ax.set_yticks(range(projections.shape[0])) ax.set_xlabel('Principal components') ax.set_ylabel('Piece of text') cbar = plt.colorbar(cax) cbar.set_label('Strength of projection') plt.tight_layout() plt.savefig('../data/lda_projections.png',dpi=300)
apache-2.0
fionahamey/Pseudotime-network-inference
encodingFunctions.py
1
9319
#!/usr/bin/env python """encodingFunctions.py: Provides encoding functions for finding boolean rules governing gene expression with booleanRules.py script.""" __author__ = "Fiona Hamey" import pandas as pd import sys sys.path.append('/Users/fiona/z3/build') import z3 expressionFile = sys.argv[2] networkFile = sys.argv[7] # Read in expression matrix expression = pd.read_table(expressionFile, sep = "\t", index_col = 0, header = 0) # Read in network network = pd.read_table(networkFile, sep = "\t", header = 0) # How many genes are there allGenes = list(expression.columns) numGenes = len(allGenes) # Define numbers corresponding to gates, genes and nothing variable AND = 0 OR = 1 NOTHING = numGenes + 2 # Circuits are encoded as bitvectors def makeCircuitVar(name): return z3.BitVec(name, 32) def makeEnforcedVar(name): return z3.BitVec(name, 32) # For each element in bitvector which gene/gate values is it allowed to take def variableDomains(var, booleanAllowed, possibleInputs): if booleanAllowed == True: allowedValues = [0, 1] + possibleInputs else: allowedValues = possibleInputs return z3.Or([var == allowedValues[i] for i in range(len(allowedValues))]) # If a node = nothing then it is not allowed a parent as a gate def parentsOfNothingArentGates(a, r): def f(c1,c2,p): return z3.Implies(z3.Or((c1 == NOTHING), (c2 == NOTHING)), z3.And(p != AND, p != OR)) aParents = z3.And(z3.Implies(z3.Or(a[1] == NOTHING, a[2] == NOTHING), z3.And(a[0] != AND, a[0] != OR, a[0] != NOTHING)), \ f(a[3], a[4], a[1]), \ f(a[5], a[6], a[2])) rParents = z3.And(f(r[1], r[2], r[0]), \ f(r[3], r[4], r[1]), \ f(r[5], r[6], r[2])) return z3.And(aParents, rParents) # If a node is a gene then it must have a gate as a parent def parentsOfRestAreGates(a, r): def f(c1,c2,p): return z3.Implies(z3.Or((c1 != NOTHING), (c2 != NOTHING)), z3.Or(p == AND, p == OR)) aParents = z3.And(f(a[1], a[2], a[0]), \ f(a[3], a[4], a[1]), \ f(a[5], a[6], a[2])) rParents = z3.And(f(r[1], r[2], r[0]), \ f(r[3], r[4], r[1]), \ f(r[5], r[6], r[2])) return z3.And(aParents, rParents) # Can't have a gene more than once in the relation def variablesDoNotAppearMoreThanOnce(symVars): def isVar(v): return z3.And(v != NOTHING, v != AND, v != OR) def notEqual(v, vars): return z3.And([v != i for i in vars if not z3.eq(v,i)]) def doesNotAppearMoreThanOnce(v): return z3.Implies(isVar(v), notEqual(v, symVars)) return z3.And([ doesNotAppearMoreThanOnce(j) for j in symVars]) # Don't waste time doing things multiple times def enforceSiblingLexigraphicalOrdering(v1, v2): return (v1 <= v2) def enforceLexigraphicalOrderingBetweenBranches(p1, p2, c1, c2): return z3.Implies(p1 == p2, c1 <= c2) def enforceLexigraphicalOrderingNaryGate(vars): return z3.Implies(vars[0] == vars[1], vars[2] <= vars[3]) # Store the activator and repressor variables in a list activatorVars = ["a" + str(i) for i in xrange(7)] repressorVars = ["r" + str(i) for i in xrange(7)] circuitVars = activatorVars + repressorVars # Depending on maximum number of inputs may want fewer nodes def fixMaxInputs(v, max): if max == 0: return makeCircuitVar(v+"0") == NOTHING elif max == 1: return makeCircuitVar(v+"2") == NOTHING elif max == 2: return makeCircuitVar(v+"4") == NOTHING elif max == 3: return makeCircuitVar(v+"6") == NOTHING else: return True def fixMaxActivators(max): return fixMaxInputs("a", max) def fixMaxRepressors(max): return fixMaxInputs("r", max) # This encodes the allowed update functions for a gene def encodeUpdateFunction(gene, genes, maxActivators, maxRepressors, possAct, possRep): # Check all inputs are of right form assert (gene in genes and maxActivators > 0 and maxActivators <= 4 and maxRepressors >= 0 and maxRepressors <= 4), \ "Incorrect arguments to encodeUpdateFunction" a = [makeCircuitVar("a%i" %i) for i in xrange(7)] r = [makeCircuitVar("r%i" %i) for i in xrange(7)] circuitEncoding = z3.And(variableDomains(a[0], True, possAct), \ variableDomains(r[0], True, possRep + [NOTHING]), \ variableDomains(a[1], True, possAct + [NOTHING]), variableDomains(a[2], True, possAct + [NOTHING]), \ variableDomains(r[1], True, possRep + [NOTHING]), variableDomains(r[2], True, possRep + [NOTHING]), \ variableDomains(a[3], False, possAct+ [NOTHING]), variableDomains(a[4], False, possAct + [NOTHING]), \ variableDomains(a[5], False, possAct + [NOTHING]), variableDomains(a[6], False, possAct + [NOTHING]), \ variableDomains(r[3], False, possRep + [NOTHING]), variableDomains(r[4], False, possRep + [NOTHING]), \ variableDomains(r[5], False, possRep + [NOTHING]), variableDomains(r[6], False, possRep + [NOTHING]), \ parentsOfNothingArentGates(a, r), \ parentsOfRestAreGates(a, r), \ variablesDoNotAppearMoreThanOnce(a + r), \ z3.And([enforceSiblingLexigraphicalOrdering(a[i], a[i+1]) for i in [1,3,5]]), \ z3.And([enforceSiblingLexigraphicalOrdering(r[i], r[i+1]) for i in [1,3,5]]), \ enforceLexigraphicalOrderingBetweenBranches(a[1], a[2], a[3], a[5]), \ enforceLexigraphicalOrderingBetweenBranches(r[1], r[2], r[3], r[5]), \ enforceLexigraphicalOrderingNaryGate(a), \ enforceLexigraphicalOrderingNaryGate(r), \ fixMaxActivators(maxActivators), \ fixMaxRepressors(maxRepressors)) return (circuitEncoding, a, r) # Given inputs evaluates function def evaluateUpdateFunction(aVars, rVars, geneValues, counter): i = counter intermediateValueVariablesA = [ z3.Bool("va%i_%i" % (j, i)) for j in range(7)] intermediateValueVariablesR = [ z3.Bool("vr%i_%i" % (j, i)) for j in range(7)] def andConstraints(symVars, variables, pi, c1i, c2i): return z3.Implies(symVars[pi] == z3.BitVecVal(AND,32), variables[pi] == z3.And(variables[c1i], variables[c2i])) def orConstraints(symVars, variables, pi, c1i, c2i): return z3.Implies(symVars[pi] == z3.BitVecVal(OR,32), variables[pi] == z3.Or(variables[c1i], variables[c2i])) def variableConstraints(symVars, intermediateVars): def f(symVar, i): return z3.And([z3.Implies(symVar == v, intermediateVars[i] == z3.BoolVal(geneValues[v-2])) for v in range(2, NOTHING)]) return z3.And([f(symVars[i], i) for i in range(7)]) circuitVal = z3.Bool("circuit_%i" % i) def circuitValue(): noRepressors = rVars[0] == NOTHING return z3.If(noRepressors, intermediateValueVariablesA[0], \ z3.And(intermediateValueVariablesA[0], z3.Not(intermediateValueVariablesR[0]))) return (z3.And([variableConstraints(aVars, intermediateValueVariablesA), \ variableConstraints(rVars, intermediateValueVariablesR), \ andConstraints(aVars, intermediateValueVariablesA, 0, 1, 2), \ andConstraints(aVars, intermediateValueVariablesA, 1, 3, 4), \ andConstraints(aVars, intermediateValueVariablesA, 2, 5, 6), \ andConstraints(rVars, intermediateValueVariablesR, 0, 1, 2), \ andConstraints(rVars, intermediateValueVariablesR, 1, 3, 4), \ andConstraints(rVars, intermediateValueVariablesR, 2, 5, 6), \ orConstraints(aVars, intermediateValueVariablesA, 0, 1, 2), \ orConstraints(aVars, intermediateValueVariablesA, 1, 3, 4), \ orConstraints(aVars, intermediateValueVariablesA, 2, 5, 6), \ orConstraints(rVars, intermediateValueVariablesR, 0, 1, 2), \ orConstraints(rVars, intermediateValueVariablesR, 1, 3, 4), \ orConstraints(rVars, intermediateValueVariablesR, 2, 5, 6), \ circuitVal == circuitValue()]), circuitVal) def circuitEvaluatesTo(gene, aVars, rVars, input, output, counter): outValue = output[gene-2] inValues = input evaluationEncoding, circuitVal = evaluateUpdateFunction(aVars, rVars, inValues, counter) return (evaluationEncoding, circuitVal == z3.BoolVal(outValue))
apache-2.0
andrewnc/scikit-learn
examples/ensemble/plot_random_forest_embedding.py
286
3531
""" ========================================================= Hashing feature transformation using Totally Random Trees ========================================================= RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification. The mapping is completely unsupervised and very efficient. This example visualizes the partitions given by several trees and shows how the transformation can also be used for non-linear dimensionality reduction or non-linear classification. Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed representation. This allows to separate two concentric circles simply based on the principal components of the transformed data. In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed space with an ExtraTreesClassifier forests learned on the original data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier from sklearn.decomposition import TruncatedSVD from sklearn.naive_bayes import BernoulliNB # make a synthetic dataset X, y = make_circles(factor=0.5, random_state=0, noise=0.05) # use RandomTreesEmbedding to transform data hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3) X_transformed = hasher.fit_transform(X) # Visualize result using PCA pca = TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) # Learn a Naive Bayes classifier on the transformed data nb = BernoulliNB() nb.fit(X_transformed, y) # Learn an ExtraTreesClassifier for comparison trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0) trees.fit(X, y) # scatter plot of original and reduced data fig = plt.figure(figsize=(9, 8)) ax = plt.subplot(221) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_title("Original Data (2d)") ax.set_xticks(()) ax.set_yticks(()) ax = plt.subplot(222) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50) ax.set_title("PCA reduction (2d) of transformed data (%dd)" % X_transformed.shape[1]) ax.set_xticks(()) ax.set_yticks(()) # Plot the decision in original space. For that, we will assign a color to each # point in the mesh [x_min, m_max] x [y_min, y_max]. h = .01 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # transform grid using RandomTreesEmbedding transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()]) y_grid_pred = nb.predict_proba(transformed_grid)[:, 1] ax = plt.subplot(223) ax.set_title("Naive Bayes on Transformed data") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) # transform grid using ExtraTreesClassifier y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] ax = plt.subplot(224) ax.set_title("ExtraTrees predictions") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() plt.show()
bsd-3-clause
yonglehou/scikit-learn
sklearn/manifold/t_sne.py
106
20057
# Author: Alexander Fabisch -- <[email protected]> # License: BSD 3 clause (C) 2014 # This is the standard t-SNE implementation. There are faster modifications of # the algorithm: # * Barnes-Hut-SNE: reduces the complexity of the gradient computation from # N^2 to N log N (http://arxiv.org/abs/1301.3342) # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import numpy as np from scipy import linalg from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..utils.extmath import _ravel from ..decomposition import RandomizedPCA from ..metrics.pairwise import pairwise_distances from . import _utils MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity conditional_P = _utils._binary_search_perplexity( distances, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _kl_divergence(params, P, alpha, n_samples, n_components): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. alpha : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= alpha n **= (alpha + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) # Gradient: dC/dY grad = np.ndarray((n_samples, n_components)) PQd = squareform((P - Q) * n) for i in range(n_samples): np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i]) grad = grad.ravel() c = 2.0 * (alpha + 1.0) / alpha grad *= c return kl_divergence, grad def _gradient_descent(objective, p0, it, n_iter, n_iter_without_progress=30, momentum=0.5, learning_rate=1000.0, min_gain=0.01, min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0, args=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.5) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 1000.0) The learning rate should be extremely high for t-SNE! Values in the range [100.0, 1000.0] are common. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. min_error_diff : float, optional (default: 1e-7) If the absolute difference of two successive cost function values is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = 0 for i in range(it, n_iter): new_error, grad = objective(p, *args) error_diff = np.abs(new_error - error) error = new_error grad_norm = linalg.norm(grad) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if min_grad_norm >= grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break if min_error_diff >= error_diff: if verbose >= 2: print("[t-SNE] Iteration %d: error difference %f. Finished." % (i + 1, error_diff)) break inc = update * grad >= 0.0 dec = np.invert(inc) gains[inc] += 0.05 gains[dec] *= 0.95 np.clip(gains, min_gain, np.inf) grad *= gains update = momentum * update - learning_rate * grad p += update if verbose >= 2 and (i + 1) % 10 == 0: print("[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f" % (i + 1, error, grad_norm)) return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i (r(i, j) - k)} where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 4.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 1000) The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 200. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string, optional (default: "random") Initialization of embedding. Possible options are 'random' and 'pca'. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Note that different initializations might result in different local minima of the cost function. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = TSNE(n_components=2, random_state=0) >>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([[ 887.28..., 238.61...], [ -714.79..., 3243.34...], [ 957.30..., -2505.78...], [-1130.28..., -974.78...]) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html """ def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000, metric="euclidean", init="random", verbose=0, random_state=None): if init not in ["pca", "random"]: raise ValueError("'init' must be either 'pca' or 'random'") self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model using X as training data. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is " "%f" % self.early_exaggeration) if self.n_iter < 200: raise ValueError("n_iter should be at least 200") if self.metric == "precomputed": if self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be used " "with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) # Degrees of freedom of the Student's t-distribution. The suggestion # alpha = n_components - 1 comes from "Learning a Parametric Embedding # by Preserving Local Structure" Laurens van der Maaten, 2009. alpha = max(self.n_components - 1.0, 1) n_samples = X.shape[0] self.training_data_ = X P = _joint_probabilities(distances, self.perplexity, self.verbose) if self.init == 'pca': pca = RandomizedPCA(n_components=self.n_components, random_state=random_state) X_embedded = pca.fit_transform(X) elif self.init == 'random': X_embedded = None else: raise ValueError("Unsupported initialization scheme: %s" % self.init) self.embedding_ = self._tsne(P, alpha, n_samples, random_state, X_embedded=X_embedded) return self def _tsne(self, P, alpha, n_samples, random_state, X_embedded=None): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with three stages: # * early exaggeration with momentum 0.5 # * early exaggeration with momentum 0.8 # * final optimization with momentum 0.8 # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. if X_embedded is None: # Initialize embedding randomly X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components) params = X_embedded.ravel() # Early exaggeration P *= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=0, n_iter=50, momentum=0.5, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=100, momentum=0.8, min_grad_norm=0.0, min_error_diff=0.0, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations with early " "exaggeration: %f" % (it + 1, error)) # Final optimization P /= self.early_exaggeration params, error, it = _gradient_descent( _kl_divergence, params, it=it + 1, n_iter=self.n_iter, momentum=0.8, learning_rate=self.learning_rate, verbose=self.verbose, args=[P, alpha, n_samples, self.n_components]) if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, error)) X_embedded = params.reshape(n_samples, self.n_components) return X_embedded def fit_transform(self, X, y=None): """Transform X to the embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ self.fit(X) return self.embedding_
bsd-3-clause
keflavich/scikit-image
skimage/transform/tests/test_radon_transform.py
16
14464
from __future__ import print_function, division import numpy as np from numpy.testing import assert_raises import itertools import os.path from skimage.transform import radon, iradon, iradon_sart, rescale from skimage.io import imread from skimage import data_dir from skimage._shared.testing import test_parallel PHANTOM = imread(os.path.join(data_dir, "phantom.png"), as_grey=True)[::2, ::2] PHANTOM = rescale(PHANTOM, 0.5, order=1) def _debug_plot(original, result, sinogram=None): from matplotlib import pyplot as plt imkwargs = dict(cmap='gray', interpolation='nearest') if sinogram is None: plt.figure(figsize=(15, 6)) sp = 130 else: plt.figure(figsize=(11, 11)) sp = 221 plt.subplot(sp + 0) plt.imshow(sinogram, aspect='auto', **imkwargs) plt.subplot(sp + 1) plt.imshow(original, **imkwargs) plt.subplot(sp + 2) plt.imshow(result, vmin=original.min(), vmax=original.max(), **imkwargs) plt.subplot(sp + 3) plt.imshow(result - original, **imkwargs) plt.colorbar() plt.show() def _rescale_intensity(x): x = x.astype(float) x -= x.min() x /= x.max() return x def check_radon_center(shape, circle): # Create a test image with only a single non-zero pixel at the origin image = np.zeros(shape, dtype=np.float) image[(shape[0] // 2, shape[1] // 2)] = 1. # Calculate the sinogram theta = np.linspace(0., 180., max(shape), endpoint=False) sinogram = radon(image, theta=theta, circle=circle) # The sinogram should be a straight, horizontal line sinogram_max = np.argmax(sinogram, axis=0) print(sinogram_max) assert np.std(sinogram_max) < 1e-6 def test_radon_center(): shapes = [(16, 16), (17, 17)] circles = [False, True] for shape, circle in itertools.product(shapes, circles): yield check_radon_center, shape, circle rectangular_shapes = [(32, 16), (33, 17)] for shape in rectangular_shapes: yield check_radon_center, shape, False def check_iradon_center(size, theta, circle): debug = False # Create a test sinogram corresponding to a single projection # with a single non-zero pixel at the rotation center if circle: sinogram = np.zeros((size, 1), dtype=np.float) sinogram[size // 2, 0] = 1. else: diagonal = int(np.ceil(np.sqrt(2) * size)) sinogram = np.zeros((diagonal, 1), dtype=np.float) sinogram[sinogram.shape[0] // 2, 0] = 1. maxpoint = np.unravel_index(np.argmax(sinogram), sinogram.shape) print('shape of generated sinogram', sinogram.shape) print('maximum in generated sinogram', maxpoint) # Compare reconstructions for theta=angle and theta=angle + 180; # these should be exactly equal reconstruction = iradon(sinogram, theta=[theta], circle=circle) reconstruction_opposite = iradon(sinogram, theta=[theta + 180], circle=circle) print('rms deviance:', np.sqrt(np.mean((reconstruction_opposite - reconstruction)**2))) if debug: import matplotlib.pyplot as plt imkwargs = dict(cmap='gray', interpolation='nearest') plt.figure() plt.subplot(221) plt.imshow(sinogram, **imkwargs) plt.subplot(222) plt.imshow(reconstruction_opposite - reconstruction, **imkwargs) plt.subplot(223) plt.imshow(reconstruction, **imkwargs) plt.subplot(224) plt.imshow(reconstruction_opposite, **imkwargs) plt.show() assert np.allclose(reconstruction, reconstruction_opposite) def test_iradon_center(): sizes = [16, 17] thetas = [0, 90] circles = [False, True] for size, theta, circle in itertools.product(sizes, thetas, circles): yield check_iradon_center, size, theta, circle def check_radon_iradon(interpolation_type, filter_type): debug = False image = PHANTOM reconstructed = iradon(radon(image), filter=filter_type, interpolation=interpolation_type) delta = np.mean(np.abs(image - reconstructed)) print('\n\tmean error:', delta) if debug: _debug_plot(image, reconstructed) if filter_type in ('ramp', 'shepp-logan'): if interpolation_type == 'nearest': allowed_delta = 0.03 else: allowed_delta = 0.025 else: allowed_delta = 0.05 assert delta < allowed_delta def test_radon_iradon(): filter_types = ["ramp", "shepp-logan", "cosine", "hamming", "hann"] interpolation_types = ['linear', 'nearest'] for interpolation_type, filter_type in \ itertools.product(interpolation_types, filter_types): yield check_radon_iradon, interpolation_type, filter_type # cubic interpolation is slow; only run one test for it yield check_radon_iradon, 'cubic', 'shepp-logan' def test_iradon_angles(): """ Test with different number of projections """ size = 100 # Synthetic data image = np.tri(size) + np.tri(size)[::-1] # Large number of projections: a good quality is expected nb_angles = 200 radon_image_200 = radon(image, theta=np.linspace(0, 180, nb_angles, endpoint=False)) reconstructed = iradon(radon_image_200) delta_200 = np.mean(abs(_rescale_intensity(image) - _rescale_intensity(reconstructed))) assert delta_200 < 0.03 # Lower number of projections nb_angles = 80 radon_image_80 = radon(image, theta=np.linspace(0, 180, nb_angles, endpoint=False)) # Test whether the sum of all projections is approximately the same s = radon_image_80.sum(axis=0) assert np.allclose(s, s[0], rtol=0.01) reconstructed = iradon(radon_image_80) delta_80 = np.mean(abs(image / np.max(image) - reconstructed / np.max(reconstructed))) # Loss of quality when the number of projections is reduced assert delta_80 > delta_200 def check_radon_iradon_minimal(shape, slices): debug = False theta = np.arange(180) image = np.zeros(shape, dtype=np.float) image[slices] = 1. sinogram = radon(image, theta) reconstructed = iradon(sinogram, theta) print('\n\tMaximum deviation:', np.max(np.abs(image - reconstructed))) if debug: _debug_plot(image, reconstructed, sinogram) if image.sum() == 1: assert (np.unravel_index(np.argmax(reconstructed), image.shape) == np.unravel_index(np.argmax(image), image.shape)) def test_radon_iradon_minimal(): shapes = [(3, 3), (4, 4), (5, 5)] for shape in shapes: c0, c1 = shape[0] // 2, shape[1] // 2 coordinates = itertools.product((c0 - 1, c0, c0 + 1), (c1 - 1, c1, c1 + 1)) for coordinate in coordinates: yield check_radon_iradon_minimal, shape, coordinate def test_reconstruct_with_wrong_angles(): a = np.zeros((3, 3)) p = radon(a, theta=[0, 1, 2]) iradon(p, theta=[0, 1, 2]) assert_raises(ValueError, iradon, p, theta=[0, 1, 2, 3]) def _random_circle(shape): # Synthetic random data, zero outside reconstruction circle np.random.seed(98312871) image = np.random.rand(*shape) c0, c1 = np.ogrid[0:shape[0], 0:shape[1]] r = np.sqrt((c0 - shape[0] // 2)**2 + (c1 - shape[1] // 2)**2) radius = min(shape) // 2 image[r > radius] = 0. return image def test_radon_circle(): a = np.ones((10, 10)) assert_raises(ValueError, radon, a, circle=True) # Synthetic data, circular symmetry shape = (61, 79) c0, c1 = np.ogrid[0:shape[0], 0:shape[1]] r = np.sqrt((c0 - shape[0] // 2)**2 + (c1 - shape[1] // 2)**2) radius = min(shape) // 2 image = np.clip(radius - r, 0, np.inf) image = _rescale_intensity(image) angles = np.linspace(0, 180, min(shape), endpoint=False) sinogram = radon(image, theta=angles, circle=True) assert np.all(sinogram.std(axis=1) < 1e-2) # Synthetic data, random image = _random_circle(shape) sinogram = radon(image, theta=angles, circle=True) mass = sinogram.sum(axis=0) average_mass = mass.mean() relative_error = np.abs(mass - average_mass) / average_mass print(relative_error.max(), relative_error.mean()) assert np.all(relative_error < 3.2e-3) def check_sinogram_circle_to_square(size): from skimage.transform.radon_transform import _sinogram_circle_to_square image = _random_circle((size, size)) theta = np.linspace(0., 180., size, False) sinogram_circle = radon(image, theta, circle=True) argmax_shape = lambda a: np.unravel_index(np.argmax(a), a.shape) print('\n\targmax of circle:', argmax_shape(sinogram_circle)) sinogram_square = radon(image, theta, circle=False) print('\targmax of square:', argmax_shape(sinogram_square)) sinogram_circle_to_square = _sinogram_circle_to_square(sinogram_circle) print('\targmax of circle to square:', argmax_shape(sinogram_circle_to_square)) error = abs(sinogram_square - sinogram_circle_to_square) print(np.mean(error), np.max(error)) assert (argmax_shape(sinogram_square) == argmax_shape(sinogram_circle_to_square)) def test_sinogram_circle_to_square(): for size in (50, 51): yield check_sinogram_circle_to_square, size def check_radon_iradon_circle(interpolation, shape, output_size): # Forward and inverse radon on synthetic data image = _random_circle(shape) radius = min(shape) // 2 sinogram_rectangle = radon(image, circle=False) reconstruction_rectangle = iradon(sinogram_rectangle, output_size=output_size, interpolation=interpolation, circle=False) sinogram_circle = radon(image, circle=True) reconstruction_circle = iradon(sinogram_circle, output_size=output_size, interpolation=interpolation, circle=True) # Crop rectangular reconstruction to match circle=True reconstruction width = reconstruction_circle.shape[0] excess = int(np.ceil((reconstruction_rectangle.shape[0] - width) / 2)) s = np.s_[excess:width + excess, excess:width + excess] reconstruction_rectangle = reconstruction_rectangle[s] # Find the reconstruction circle, set reconstruction to zero outside c0, c1 = np.ogrid[0:width, 0:width] r = np.sqrt((c0 - width // 2)**2 + (c1 - width // 2)**2) reconstruction_rectangle[r > radius] = 0. print(reconstruction_circle.shape) print(reconstruction_rectangle.shape) np.allclose(reconstruction_rectangle, reconstruction_circle) def test_radon_iradon_circle(): shape = (61, 79) interpolations = ('nearest', 'linear') output_sizes = (None, min(shape), max(shape), 97) for interpolation, output_size in itertools.product(interpolations, output_sizes): yield check_radon_iradon_circle, interpolation, shape, output_size def test_order_angles_golden_ratio(): from skimage.transform.radon_transform import order_angles_golden_ratio np.random.seed(1231) lengths = [1, 4, 10, 180] for l in lengths: theta_ordered = np.linspace(0, 180, l, endpoint=False) theta_random = np.random.uniform(0, 180, l) for theta in (theta_random, theta_ordered): indices = [x for x in order_angles_golden_ratio(theta)] # no duplicate indices allowed assert len(indices) == len(set(indices)) @test_parallel() def test_iradon_sart(): debug = False image = rescale(PHANTOM, 0.8) theta_ordered = np.linspace(0., 180., image.shape[0], endpoint=False) theta_missing_wedge = np.linspace(0., 150., image.shape[0], endpoint=True) for theta, error_factor in ((theta_ordered, 1.), (theta_missing_wedge, 2.)): sinogram = radon(image, theta, circle=True) reconstructed = iradon_sart(sinogram, theta) if debug: from matplotlib import pyplot as plt plt.figure() plt.subplot(221) plt.imshow(image, interpolation='nearest') plt.subplot(222) plt.imshow(sinogram, interpolation='nearest') plt.subplot(223) plt.imshow(reconstructed, interpolation='nearest') plt.subplot(224) plt.imshow(reconstructed - image, interpolation='nearest') plt.show() delta = np.mean(np.abs(reconstructed - image)) print('delta (1 iteration) =', delta) assert delta < 0.02 * error_factor reconstructed = iradon_sart(sinogram, theta, reconstructed) delta = np.mean(np.abs(reconstructed - image)) print('delta (2 iterations) =', delta) assert delta < 0.014 * error_factor reconstructed = iradon_sart(sinogram, theta, clip=(0, 1)) delta = np.mean(np.abs(reconstructed - image)) print('delta (1 iteration, clip) =', delta) assert delta < 0.018 * error_factor np.random.seed(1239867) shifts = np.random.uniform(-3, 3, sinogram.shape[1]) x = np.arange(sinogram.shape[0]) sinogram_shifted = np.vstack(np.interp(x + shifts[i], x, sinogram[:, i]) for i in range(sinogram.shape[1])).T reconstructed = iradon_sart(sinogram_shifted, theta, projection_shifts=shifts) if debug: from matplotlib import pyplot as plt plt.figure() plt.subplot(221) plt.imshow(image, interpolation='nearest') plt.subplot(222) plt.imshow(sinogram_shifted, interpolation='nearest') plt.subplot(223) plt.imshow(reconstructed, interpolation='nearest') plt.subplot(224) plt.imshow(reconstructed - image, interpolation='nearest') plt.show() delta = np.mean(np.abs(reconstructed - image)) print('delta (1 iteration, shifted sinogram) =', delta) assert delta < 0.022 * error_factor if __name__ == "__main__": from numpy.testing import run_module_suite run_module_suite()
bsd-3-clause
calebfoss/tensorflow
tensorflow/contrib/factorization/python/ops/gmm.py
11
12252
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Gaussian mixture model (GMM) clustering. This goes on top of skflow API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np from tensorflow.contrib import framework from tensorflow.contrib.factorization.python.ops import gmm_ops from tensorflow.contrib.framework.python.framework import checkpoint_utils from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.learn.python.learn import graph_actions from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn.estimators import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators._sklearn import TransformerMixin from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops.control_flow_ops import with_dependencies from tensorflow.python.platform import tf_logging as logging def _streaming_sum(scalar_tensor): """Create a sum metric and update op.""" sum_metric = framework.local_variable(constant_op.constant(0.0)) sum_update = sum_metric.assign_add(scalar_tensor) return sum_metric, sum_update class GMM(estimator_lib.Estimator, TransformerMixin): """GMM clustering.""" SCORES = 'scores' ASSIGNMENTS = 'assignments' ALL_SCORES = 'all_scores' def __init__(self, num_clusters, model_dir=None, random_seed=0, params='wmc', initial_clusters='random', covariance_type='full', batch_size=128, steps=10, continue_training=False, config=None, verbose=1): """Creates a model for running GMM training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. random_seed: Python integer. Seed for PRNG used to initialize centers. params: Controls which parameters are updated in the training process. Can contain any combination of "w" for weights, "m" for means, and "c" for covars. initial_clusters: specifies how to initialize the clusters for training. See gmm_ops.gmm for the possible values. covariance_type: one of "full", "diag". batch_size: See Estimator steps: See Estimator continue_training: See Estimator config: See Estimator verbose: See Estimator """ super(GMM, self).__init__(model_dir=model_dir, config=config) self.batch_size = batch_size self.steps = steps self.continue_training = continue_training self.verbose = verbose self._num_clusters = num_clusters self._params = params self._training_initial_clusters = initial_clusters self._covariance_type = covariance_type self._training_graph = None self._random_seed = random_seed def fit(self, x, y=None, monitors=None, logdir=None, steps=None): """Trains a GMM clustering on x. Note: See Estimator for logic for continuous training and graph construction across multiple calls to fit. Args: x: training input matrix of shape [n_samples, n_features]. y: labels. Should be None. monitors: List of `Monitor` objects to print training progress and invoke early stopping. logdir: the directory to save the log file that can be used for optional visualization. steps: number of training steps. If not None, overrides the value passed in constructor. Returns: Returns self. """ if logdir is not None: self._model_dir = logdir self._data_feeder = data_feeder.setup_train_data_feeder(x, None, self._num_clusters, self.batch_size) _legacy_train_model( # pylint: disable=protected-access self, input_fn=self._data_feeder.input_builder, feed_fn=self._data_feeder.get_feed_dict_fn(), steps=steps or self.steps, monitors=monitors, init_feed_fn=self._data_feeder.get_feed_dict_fn()) return self def predict(self, x, batch_size=None): """Predict cluster id for each element in x. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Array with same number of rows as x, containing cluster ids. """ return np.array([ prediction[GMM.ASSIGNMENTS] for prediction in super(GMM, self).predict( x=x, batch_size=batch_size, as_iterable=True) ]) def score(self, x, batch_size=None): """Predict total sum of distances to nearest clusters. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Total score. """ return np.sum(self.evaluate(x=x, batch_size=batch_size)[GMM.SCORES]) def transform(self, x, batch_size=None): """Transforms each element in x to distances to cluster centers. Args: x: 2-D matrix or iterator. batch_size: size to use for batching up x for querying the model. Returns: Array with same number of rows as x, and num_clusters columns, containing distances to the cluster centers. """ return np.array([ prediction[GMM.ALL_SCORES] for prediction in super(GMM, self).predict( x=x, batch_size=batch_size, as_iterable=True) ]) def clusters(self): """Returns cluster centers.""" clusters = checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_VARIABLE) return np.squeeze(clusters, 1) def covariances(self): """Returns the covariances.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_COVS_VARIABLE) def _parse_tensor_or_dict(self, features): if isinstance(features, dict): return array_ops.concat([features[k] for k in sorted(features.keys())], 1) return features def _get_train_ops(self, features, _): (_, _, losses, training_op) = gmm_ops.gmm( self._parse_tensor_or_dict(features), self._training_initial_clusters, self._num_clusters, self._random_seed, self._covariance_type, self._params) incr_step = state_ops.assign_add(variables.get_global_step(), 1) loss = math_ops.reduce_sum(losses) training_op = with_dependencies([training_op, incr_step], loss) return training_op, loss def _get_predict_ops(self, features): (all_scores, model_predictions, _, _) = gmm_ops.gmm( self._parse_tensor_or_dict(features), self._training_initial_clusters, self._num_clusters, self._random_seed, self._covariance_type, self._params) return { GMM.ALL_SCORES: all_scores[0], GMM.ASSIGNMENTS: model_predictions[0][0], } def _get_eval_ops(self, features, _, unused_metrics): (_, _, losses, _) = gmm_ops.gmm( self._parse_tensor_or_dict(features), self._training_initial_clusters, self._num_clusters, self._random_seed, self._covariance_type, self._params) return {GMM.SCORES: _streaming_sum(math_ops.reduce_sum(losses))} # TODO(xavigonzalvo): delete this after implementing model-fn based Estimator. def _legacy_train_model(estimator, input_fn, steps, feed_fn=None, init_op=None, init_feed_fn=None, init_fn=None, device_fn=None, monitors=None, log_every_steps=100, fail_on_nan_loss=True, max_steps=None): """Legacy train function of Estimator.""" if hasattr(estimator.config, 'execution_mode'): if estimator.config.execution_mode not in ('all', 'train'): return # Stagger startup of worker sessions based on task id. sleep_secs = min( estimator.config.training_worker_max_startup_secs, estimator.config.task_id * estimator.config.training_worker_session_startup_stagger_secs) if sleep_secs: logging.info('Waiting %d secs before starting task %d.', sleep_secs, estimator.config.task_id) time.sleep(sleep_secs) # Device allocation device_fn = device_fn or estimator._device_fn # pylint: disable=protected-access with ops.Graph().as_default() as g, g.device(device_fn): random_seed_lib.set_random_seed(estimator.config.tf_random_seed) global_step = framework.create_global_step(g) features, labels = input_fn() estimator._check_inputs(features, labels) # pylint: disable=protected-access # The default return type of _get_train_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_train_ops returns a # (train_op, loss) tuple. The following else-statement code covers these # cases, but will soon be deleted after the subclasses are updated. # TODO(b/32664904): Update subclasses and delete the else-statement. train_ops = estimator._get_train_ops(features, labels) # pylint: disable=protected-access if isinstance(train_ops, model_fn_lib.ModelFnOps): # Default signature train_op = train_ops.train_op loss_op = train_ops.loss if estimator.config.is_chief: hooks = train_ops.training_chief_hooks + train_ops.training_hooks else: hooks = train_ops.training_hooks else: # Legacy signature if len(train_ops) != 2: raise ValueError('Expected a tuple of train_op and loss, got {}'.format( train_ops)) train_op = train_ops[0] loss_op = train_ops[1] hooks = [] hooks += monitor_lib.replace_monitors_with_hooks(monitors, estimator) ops.add_to_collection(ops.GraphKeys.LOSSES, loss_op) return graph_actions._monitored_train( # pylint: disable=protected-access graph=g, output_dir=estimator.model_dir, train_op=train_op, loss_op=loss_op, global_step_tensor=global_step, init_op=init_op, init_feed_dict=init_feed_fn() if init_feed_fn is not None else None, init_fn=init_fn, log_every_steps=log_every_steps, supervisor_is_chief=estimator.config.is_chief, supervisor_master=estimator.config.master, supervisor_save_model_secs=estimator.config.save_checkpoints_secs, supervisor_save_model_steps=estimator.config.save_checkpoints_steps, supervisor_save_summaries_steps=estimator.config.save_summary_steps, keep_checkpoint_max=estimator.config.keep_checkpoint_max, keep_checkpoint_every_n_hours=( estimator.config.keep_checkpoint_every_n_hours), feed_fn=feed_fn, steps=steps, fail_on_nan_loss=fail_on_nan_loss, hooks=hooks, max_steps=max_steps)
apache-2.0
argriffing/numpy
numpy/lib/polynomial.py
30
38012
""" Functions to operate on polynomials. """ from __future__ import division, absolute_import, print_function __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import (isscalar, abs, finfo, atleast_1d, hstack, dot, array, ones) from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag, mintypecode from numpy.linalg import eigvals, lstsq, inv class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Compute polynomial values. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: dt = seq_of_zeros.dtype # Let object arrays slip through, e.g. for arbitrary precision if dt != object: seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char)) else: raise ValueError("input must be 1d or non-empty square 2d array.") if len(seq_of_zeros) == 0: return 1.0 dt = seq_of_zeros.dtype a = ones((1,), dtype=dt) for k in range(len(seq_of_zeros)): a = NX.convolve(a, array([1, -seq_of_zeros[k]], dtype=dt), mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0, roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by:: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Compute polynomial values. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError("Input must be a rank-1 array.") # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0,:] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : array_like or poly1d Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : list of `m` scalars or scalar, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError("Order of integral must be positive (see polyder)") if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError( "k must be a scalar or a rank-1 array of length 1 or >m.") truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError("Order of derivative must be positive (see polyint)") truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional Weights to apply to the y-coordinates of the sample points. For gaussian uncertainties, use 1/sigma (not 1/sigma**2). cov : bool, optional Return the estimate and the covariance matrix of the estimate If full is True, then cov is not returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : Present only if `full` = True. Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. V : ndarray, shape (M,M) or (M,M,K) Present only if `full` = False and `cov`=True. The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for the `k`-th data set are in ``V[:,:,k]`` Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Compute polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: raise TypeError("expected 1D vector for x") if x.size == 0: raise TypeError("expected non-empty vector for x") if y.ndim < 1 or y.ndim > 2: raise TypeError("expected 1D or 2D array for y") if x.shape[0] != y.shape[0]: raise TypeError("expected x and y to have same length") # set rcond if rcond is None: rcond = len(x)*finfo(x.dtype).eps # set up least squares equation for powers of x lhs = vander(x, order) rhs = y # apply weighting if w is not None: w = NX.asarray(w) + 0.0 if w.ndim != 1: raise TypeError("expected a 1-d array for weights") if w.shape[0] != y.shape[0]: raise TypeError("expected w and y to have the same length") lhs *= w[:, NX.newaxis] if rhs.ndim == 2: rhs *= w[:, NX.newaxis] else: rhs *= w # scale lhs to improve condition number and solve scale = NX.sqrt((lhs*lhs).sum(axis=0)) lhs /= scale c, resids, rank, s = lstsq(lhs, rhs, rcond) c = (c.T/scale).T # broadcast scale coefficients # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) if full: return c, resids, rank, s, rcond elif cov: Vbase = inv(dot(lhs.T, lhs)) Vbase /= NX.outer(scale, scale) # Some literature ignores the extra -2.0 factor in the denominator, but # it is included here because the covariance of Multivariate Student-T # (which is implied by a Bayesian uncertainty analysis) includes it. # Plus, it gives a slightly more conservative estimate of uncertainty. fac = resids / (len(x) - order - 2.0) if y.ndim == 1: return c, Vbase * fac else: return c, Vbase[:,:, NX.newaxis] * fac else: return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, an array of numbers, or an instance of poly1d, at which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = y * x + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print(p1) 1 x + 2 >>> print(p2) 2 9 x + 5 x + 4 >>> print(np.polyadd(p1, p2)) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval convolve : Array convolution. Same output as polymul, but has parameter for overlap mode. Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print(p1) 2 1 x + 2 x + 3 >>> print(p2) 2 9 x + 5 x + 1 >>> print(np.polymul(p1, p2)) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1, a2 = poly1d(a1), poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while True: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2) + len(toadd2) > wrap) or (len(line1) + len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None __hash__ = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError("Polynomial must be 1d only.") c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError("Power to non-negative integers only.") res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): if self.coeffs.shape != other.coeffs.shape: return False return (self.coeffs == other.coeffs).all() def __ne__(self, other): return not self.__eq__(other) def __setattr__(self, key, val): raise ValueError("Attributes cannot be changed this way.") def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c', 'coef', 'coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError( "'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError("Does not support negative powers.") if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always', RankWarning)
bsd-3-clause
alfonsokim/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/widgets.py
69
40833
""" GUI Neutral widgets All of these widgets require you to predefine an Axes instance and pass that as the first arg. matplotlib doesn't try to be too smart in layout -- you have to figure out how wide and tall you want your Axes to be to accommodate your widget. """ import numpy as np from mlab import dist from patches import Circle, Rectangle from lines import Line2D from transforms import blended_transform_factory class LockDraw: """ some widgets, like the cursor, draw onto the canvas, and this is not desirable under all circumstaces, like when the toolbar is in zoom-to-rect mode and drawing a rectangle. The module level "lock" allows someone to grab the lock and prevent other widgets from drawing. Use matplotlib.widgets.lock(someobj) to pr """ def __init__(self): self._owner = None def __call__(self, o): 'reserve the lock for o' if not self.available(o): raise ValueError('already locked') self._owner = o def release(self, o): 'release the lock' if not self.available(o): raise ValueError('you do not own this lock') self._owner = None def available(self, o): 'drawing is available to o' return not self.locked() or self.isowner(o) def isowner(self, o): 'o owns the lock' return self._owner is o def locked(self): 'the lock is held' return self._owner is not None class Widget: """ OK, I couldn't resist; abstract base class for mpl GUI neutral widgets """ drawon = True eventson = True class Button(Widget): """ A GUI neutral button The following attributes are accesible ax - the Axes the button renders into label - a text.Text instance color - the color of the button when not hovering hovercolor - the color of the button when hovering Call "on_clicked" to connect to the button """ def __init__(self, ax, label, image=None, color='0.85', hovercolor='0.95'): """ ax is the Axes instance the button will be placed into label is a string which is the button text image if not None, is an image to place in the button -- can be any legal arg to imshow (numpy array, matplotlib Image instance, or PIL image) color is the color of the button when not activated hovercolor is the color of the button when the mouse is over it """ if image is not None: ax.imshow(image) self.label = ax.text(0.5, 0.5, label, verticalalignment='center', horizontalalignment='center', transform=ax.transAxes) self.cnt = 0 self.observers = {} self.ax = ax ax.figure.canvas.mpl_connect('button_press_event', self._click) ax.figure.canvas.mpl_connect('motion_notify_event', self._motion) ax.set_navigate(False) ax.set_axis_bgcolor(color) ax.set_xticks([]) ax.set_yticks([]) self.color = color self.hovercolor = hovercolor self._lastcolor = color def _click(self, event): if event.inaxes != self.ax: return if not self.eventson: return for cid, func in self.observers.items(): func(event) def _motion(self, event): if event.inaxes==self.ax: c = self.hovercolor else: c = self.color if c != self._lastcolor: self.ax.set_axis_bgcolor(c) self._lastcolor = c if self.drawon: self.ax.figure.canvas.draw() def on_clicked(self, func): """ When the button is clicked, call this func with event A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class Slider(Widget): """ A slider representing a floating point range The following attributes are defined ax : the slider axes.Axes instance val : the current slider value vline : a Line2D instance representing the initial value poly : A patch.Polygon instance which is the slider valfmt : the format string for formatting the slider text label : a text.Text instance, the slider label closedmin : whether the slider is closed on the minimum closedmax : whether the slider is closed on the maximum slidermin : another slider - if not None, this slider must be > slidermin slidermax : another slider - if not None, this slider must be < slidermax dragging : allow for mouse dragging on slider Call on_changed to connect to the slider event """ def __init__(self, ax, label, valmin, valmax, valinit=0.5, valfmt='%1.2f', closedmin=True, closedmax=True, slidermin=None, slidermax=None, dragging=True, **kwargs): """ Create a slider from valmin to valmax in axes ax; valinit - the slider initial position label - the slider label valfmt - used to format the slider value closedmin and closedmax - indicate whether the slider interval is closed slidermin and slidermax - be used to contrain the value of this slider to the values of other sliders. additional kwargs are passed on to self.poly which is the matplotlib.patches.Rectangle which draws the slider. See the matplotlib.patches.Rectangle documentation for legal property names (eg facecolor, edgecolor, alpha, ...) """ self.ax = ax self.valmin = valmin self.valmax = valmax self.val = valinit self.valinit = valinit self.poly = ax.axvspan(valmin,valinit,0,1, **kwargs) self.vline = ax.axvline(valinit,0,1, color='r', lw=1) self.valfmt=valfmt ax.set_yticks([]) ax.set_xlim((valmin, valmax)) ax.set_xticks([]) ax.set_navigate(False) ax.figure.canvas.mpl_connect('button_press_event', self._update) if dragging: ax.figure.canvas.mpl_connect('motion_notify_event', self._update) self.label = ax.text(-0.02, 0.5, label, transform=ax.transAxes, verticalalignment='center', horizontalalignment='right') self.valtext = ax.text(1.02, 0.5, valfmt%valinit, transform=ax.transAxes, verticalalignment='center', horizontalalignment='left') self.cnt = 0 self.observers = {} self.closedmin = closedmin self.closedmax = closedmax self.slidermin = slidermin self.slidermax = slidermax def _update(self, event): 'update the slider position' if event.button !=1: return if event.inaxes != self.ax: return val = event.xdata if not self.closedmin and val<=self.valmin: return if not self.closedmax and val>=self.valmax: return if self.slidermin is not None: if val<=self.slidermin.val: return if self.slidermax is not None: if val>=self.slidermax.val: return self.set_val(val) def set_val(self, val): xy = self.poly.xy xy[-1] = val, 0 xy[-2] = val, 1 self.poly.xy = xy self.valtext.set_text(self.valfmt%val) if self.drawon: self.ax.figure.canvas.draw() self.val = val if not self.eventson: return for cid, func in self.observers.items(): func(val) def on_changed(self, func): """ When the slider valud is changed, call this func with the new slider position A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass def reset(self): "reset the slider to the initial value if needed" if (self.val != self.valinit): self.set_val(self.valinit) class CheckButtons(Widget): """ A GUI neutral radio button The following attributes are exposed ax - the Axes instance the buttons are in labels - a list of text.Text instances lines - a list of (line1, line2) tuples for the x's in the check boxes. These lines exist for each box, but have set_visible(False) when box is not checked rectangles - a list of patch.Rectangle instances Connect to the CheckButtons with the on_clicked method """ def __init__(self, ax, labels, actives): """ Add check buttons to axes.Axes instance ax labels is a len(buttons) list of labels as strings actives is a len(buttons) list of booleans indicating whether the button is active """ ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) if len(labels)>1: dy = 1./(len(labels)+1) ys = np.linspace(1-dy, dy, len(labels)) else: dy = 0.25 ys = [0.5] cnt = 0 axcolor = ax.get_axis_bgcolor() self.labels = [] self.lines = [] self.rectangles = [] lineparams = {'color':'k', 'linewidth':1.25, 'transform':ax.transAxes, 'solid_capstyle':'butt'} for y, label in zip(ys, labels): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') w, h = dy/2., dy/2. x, y = 0.05, y-h/2. p = Rectangle(xy=(x,y), width=w, height=h, facecolor=axcolor, transform=ax.transAxes) l1 = Line2D([x, x+w], [y+h, y], **lineparams) l2 = Line2D([x, x+w], [y, y+h], **lineparams) l1.set_visible(actives[cnt]) l2.set_visible(actives[cnt]) self.labels.append(t) self.rectangles.append(p) self.lines.append((l1,l2)) ax.add_patch(p) ax.add_line(l1) ax.add_line(l2) cnt += 1 ax.figure.canvas.mpl_connect('button_press_event', self._clicked) self.ax = ax self.cnt = 0 self.observers = {} def _clicked(self, event): if event.button !=1 : return if event.inaxes != self.ax: return for p,t,lines in zip(self.rectangles, self.labels, self.lines): if (t.get_window_extent().contains(event.x, event.y) or p.get_window_extent().contains(event.x, event.y) ): l1, l2 = lines l1.set_visible(not l1.get_visible()) l2.set_visible(not l2.get_visible()) thist = t break else: return if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(thist.get_text()) def on_clicked(self, func): """ When the button is clicked, call this func with button label A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class RadioButtons(Widget): """ A GUI neutral radio button The following attributes are exposed ax - the Axes instance the buttons are in activecolor - the color of the button when clicked labels - a list of text.Text instances circles - a list of patch.Circle instances Connect to the RadioButtons with the on_clicked method """ def __init__(self, ax, labels, active=0, activecolor='blue'): """ Add radio buttons to axes.Axes instance ax labels is a len(buttons) list of labels as strings active is the index into labels for the button that is active activecolor is the color of the button when clicked """ self.activecolor = activecolor ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) dy = 1./(len(labels)+1) ys = np.linspace(1-dy, dy, len(labels)) cnt = 0 axcolor = ax.get_axis_bgcolor() self.labels = [] self.circles = [] for y, label in zip(ys, labels): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') if cnt==active: facecolor = activecolor else: facecolor = axcolor p = Circle(xy=(0.15, y), radius=0.05, facecolor=facecolor, transform=ax.transAxes) self.labels.append(t) self.circles.append(p) ax.add_patch(p) cnt += 1 ax.figure.canvas.mpl_connect('button_press_event', self._clicked) self.ax = ax self.cnt = 0 self.observers = {} def _clicked(self, event): if event.button !=1 : return if event.inaxes != self.ax: return xy = self.ax.transAxes.inverted().transform_point((event.x, event.y)) pclicked = np.array([xy[0], xy[1]]) def inside(p): pcirc = np.array([p.center[0], p.center[1]]) return dist(pclicked, pcirc) < p.radius for p,t in zip(self.circles, self.labels): if t.get_window_extent().contains(event.x, event.y) or inside(p): inp = p thist = t break else: return for p in self.circles: if p==inp: color = self.activecolor else: color = self.ax.get_axis_bgcolor() p.set_facecolor(color) if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(thist.get_text()) def on_clicked(self, func): """ When the button is clicked, call this func with button label A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class SubplotTool(Widget): """ A tool to adjust to subplot params of fig """ def __init__(self, targetfig, toolfig): """ targetfig is the figure to adjust toolfig is the figure to embed the the subplot tool into. If None, a default pylab figure will be created. If you are using this from the GUI """ self.targetfig = targetfig toolfig.subplots_adjust(left=0.2, right=0.9) class toolbarfmt: def __init__(self, slider): self.slider = slider def __call__(self, x, y): fmt = '%s=%s'%(self.slider.label.get_text(), self.slider.valfmt) return fmt%x self.axleft = toolfig.add_subplot(711) self.axleft.set_title('Click on slider to adjust subplot param') self.axleft.set_navigate(False) self.sliderleft = Slider(self.axleft, 'left', 0, 1, targetfig.subplotpars.left, closedmax=False) self.sliderleft.on_changed(self.funcleft) self.axbottom = toolfig.add_subplot(712) self.axbottom.set_navigate(False) self.sliderbottom = Slider(self.axbottom, 'bottom', 0, 1, targetfig.subplotpars.bottom, closedmax=False) self.sliderbottom.on_changed(self.funcbottom) self.axright = toolfig.add_subplot(713) self.axright.set_navigate(False) self.sliderright = Slider(self.axright, 'right', 0, 1, targetfig.subplotpars.right, closedmin=False) self.sliderright.on_changed(self.funcright) self.axtop = toolfig.add_subplot(714) self.axtop.set_navigate(False) self.slidertop = Slider(self.axtop, 'top', 0, 1, targetfig.subplotpars.top, closedmin=False) self.slidertop.on_changed(self.functop) self.axwspace = toolfig.add_subplot(715) self.axwspace.set_navigate(False) self.sliderwspace = Slider(self.axwspace, 'wspace', 0, 1, targetfig.subplotpars.wspace, closedmax=False) self.sliderwspace.on_changed(self.funcwspace) self.axhspace = toolfig.add_subplot(716) self.axhspace.set_navigate(False) self.sliderhspace = Slider(self.axhspace, 'hspace', 0, 1, targetfig.subplotpars.hspace, closedmax=False) self.sliderhspace.on_changed(self.funchspace) # constraints self.sliderleft.slidermax = self.sliderright self.sliderright.slidermin = self.sliderleft self.sliderbottom.slidermax = self.slidertop self.slidertop.slidermin = self.sliderbottom bax = toolfig.add_axes([0.8, 0.05, 0.15, 0.075]) self.buttonreset = Button(bax, 'Reset') sliders = (self.sliderleft, self.sliderbottom, self.sliderright, self.slidertop, self.sliderwspace, self.sliderhspace, ) def func(event): thisdrawon = self.drawon self.drawon = False # store the drawon state of each slider bs = [] for slider in sliders: bs.append(slider.drawon) slider.drawon = False # reset the slider to the initial position for slider in sliders: slider.reset() # reset drawon for slider, b in zip(sliders, bs): slider.drawon = b # draw the canvas self.drawon = thisdrawon if self.drawon: toolfig.canvas.draw() self.targetfig.canvas.draw() # during reset there can be a temporary invalid state # depending on the order of the reset so we turn off # validation for the resetting validate = toolfig.subplotpars.validate toolfig.subplotpars.validate = False self.buttonreset.on_clicked(func) toolfig.subplotpars.validate = validate def funcleft(self, val): self.targetfig.subplots_adjust(left=val) if self.drawon: self.targetfig.canvas.draw() def funcright(self, val): self.targetfig.subplots_adjust(right=val) if self.drawon: self.targetfig.canvas.draw() def funcbottom(self, val): self.targetfig.subplots_adjust(bottom=val) if self.drawon: self.targetfig.canvas.draw() def functop(self, val): self.targetfig.subplots_adjust(top=val) if self.drawon: self.targetfig.canvas.draw() def funcwspace(self, val): self.targetfig.subplots_adjust(wspace=val) if self.drawon: self.targetfig.canvas.draw() def funchspace(self, val): self.targetfig.subplots_adjust(hspace=val) if self.drawon: self.targetfig.canvas.draw() class Cursor: """ A horizontal and vertical line span the axes that and move with the pointer. You can turn off the hline or vline spectively with the attributes horizOn =True|False: controls visibility of the horizontal line vertOn =True|False: controls visibility of the horizontal line And the visibility of the cursor itself with visible attribute """ def __init__(self, ax, useblit=False, **lineprops): """ Add a cursor to ax. If useblit=True, use the backend dependent blitting features for faster updates (GTKAgg only now). lineprops is a dictionary of line properties. See examples/widgets/cursor.py. """ self.ax = ax self.canvas = ax.figure.canvas self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('draw_event', self.clear) self.visible = True self.horizOn = True self.vertOn = True self.useblit = useblit self.lineh = ax.axhline(ax.get_ybound()[0], visible=False, **lineprops) self.linev = ax.axvline(ax.get_xbound()[0], visible=False, **lineprops) self.background = None self.needclear = False def clear(self, event): 'clear the cursor' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.linev.set_visible(False) self.lineh.set_visible(False) def onmove(self, event): 'on mouse motion draw the cursor if visible' if event.inaxes != self.ax: self.linev.set_visible(False) self.lineh.set_visible(False) if self.needclear: self.canvas.draw() self.needclear = False return self.needclear = True if not self.visible: return self.linev.set_xdata((event.xdata, event.xdata)) self.lineh.set_ydata((event.ydata, event.ydata)) self.linev.set_visible(self.visible and self.vertOn) self.lineh.set_visible(self.visible and self.horizOn) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.linev) self.ax.draw_artist(self.lineh) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False class MultiCursor: """ Provide a vertical line cursor shared between multiple axes from matplotlib.widgets import MultiCursor from pylab import figure, show, nx t = nx.arange(0.0, 2.0, 0.01) s1 = nx.sin(2*nx.pi*t) s2 = nx.sin(4*nx.pi*t) fig = figure() ax1 = fig.add_subplot(211) ax1.plot(t, s1) ax2 = fig.add_subplot(212, sharex=ax1) ax2.plot(t, s2) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1) show() """ def __init__(self, canvas, axes, useblit=True, **lineprops): self.canvas = canvas self.axes = axes xmin, xmax = axes[-1].get_xlim() xmid = 0.5*(xmin+xmax) self.lines = [ax.axvline(xmid, visible=False, **lineprops) for ax in axes] self.visible = True self.useblit = useblit self.background = None self.needclear = False self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('draw_event', self.clear) def clear(self, event): 'clear the cursor' if self.useblit: self.background = self.canvas.copy_from_bbox(self.canvas.figure.bbox) for line in self.lines: line.set_visible(False) def onmove(self, event): if event.inaxes is None: return if not self.canvas.widgetlock.available(self): return self.needclear = True if not self.visible: return for line in self.lines: line.set_xdata((event.xdata, event.xdata)) line.set_visible(self.visible) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) for ax, line in zip(self.axes, self.lines): ax.draw_artist(line) self.canvas.blit(self.canvas.figure.bbox) else: self.canvas.draw_idle() class SpanSelector: """ Select a min/max range of the x or y axes for a matplotlib Axes Example usage: ax = subplot(111) ax.plot(x,y) def onselect(vmin, vmax): print vmin, vmax span = SpanSelector(ax, onselect, 'horizontal') onmove_callback is an optional callback that will be called on mouse move with the span range """ def __init__(self, ax, onselect, direction, minspan=None, useblit=False, rectprops=None, onmove_callback=None): """ Create a span selector in ax. When a selection is made, clear the span and call onselect with onselect(vmin, vmax) and clear the span. direction must be 'horizontal' or 'vertical' If minspan is not None, ignore events smaller than minspan The span rect is drawn with rectprops; default rectprops = dict(facecolor='red', alpha=0.5) set the visible attribute to False if you want to turn off the functionality of the span selector """ if rectprops is None: rectprops = dict(facecolor='red', alpha=0.5) assert direction in ['horizontal', 'vertical'], 'Must choose horizontal or vertical for direction' self.direction = direction self.ax = None self.canvas = None self.visible = True self.cids=[] self.rect = None self.background = None self.pressv = None self.rectprops = rectprops self.onselect = onselect self.onmove_callback = onmove_callback self.useblit = useblit self.minspan = minspan # Needed when dragging out of axes self.buttonDown = False self.prev = (0, 0) self.new_axes(ax) def new_axes(self,ax): self.ax = ax if self.canvas is not ax.figure.canvas: for cid in self.cids: self.canvas.mpl_disconnect(cid) self.canvas = ax.figure.canvas self.cids.append(self.canvas.mpl_connect('motion_notify_event', self.onmove)) self.cids.append(self.canvas.mpl_connect('button_press_event', self.press)) self.cids.append(self.canvas.mpl_connect('button_release_event', self.release)) self.cids.append(self.canvas.mpl_connect('draw_event', self.update_background)) if self.direction == 'horizontal': trans = blended_transform_factory(self.ax.transData, self.ax.transAxes) w,h = 0,1 else: trans = blended_transform_factory(self.ax.transAxes, self.ax.transData) w,h = 1,0 self.rect = Rectangle( (0,0), w, h, transform=trans, visible=False, **self.rectprops ) if not self.useblit: self.ax.add_patch(self.rect) def update_background(self, event): 'force an update of the background' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) def ignore(self, event): 'return True if event should be ignored' return event.inaxes!=self.ax or not self.visible or event.button !=1 def press(self, event): 'on button press event' if self.ignore(event): return self.buttonDown = True self.rect.set_visible(self.visible) if self.direction == 'horizontal': self.pressv = event.xdata else: self.pressv = event.ydata return False def release(self, event): 'on button release event' if self.pressv is None or (self.ignore(event) and not self.buttonDown): return self.buttonDown = False self.rect.set_visible(False) self.canvas.draw() vmin = self.pressv if self.direction == 'horizontal': vmax = event.xdata or self.prev[0] else: vmax = event.ydata or self.prev[1] if vmin>vmax: vmin, vmax = vmax, vmin span = vmax - vmin if self.minspan is not None and span<self.minspan: return self.onselect(vmin, vmax) self.pressv = None return False def update(self): 'draw using newfangled blit or oldfangled draw depending on useblit' if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.rect) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False def onmove(self, event): 'on motion notify event' if self.pressv is None or self.ignore(event): return x, y = event.xdata, event.ydata self.prev = x, y if self.direction == 'horizontal': v = x else: v = y minv, maxv = v, self.pressv if minv>maxv: minv, maxv = maxv, minv if self.direction == 'horizontal': self.rect.set_x(minv) self.rect.set_width(maxv-minv) else: self.rect.set_y(minv) self.rect.set_height(maxv-minv) if self.onmove_callback is not None: vmin = self.pressv if self.direction == 'horizontal': vmax = event.xdata or self.prev[0] else: vmax = event.ydata or self.prev[1] if vmin>vmax: vmin, vmax = vmax, vmin self.onmove_callback(vmin, vmax) self.update() return False # For backwards compatibility only! class HorizontalSpanSelector(SpanSelector): def __init__(self, ax, onselect, **kwargs): import warnings warnings.warn('Use SpanSelector instead!', DeprecationWarning) SpanSelector.__init__(self, ax, onselect, 'horizontal', **kwargs) class RectangleSelector: """ Select a min/max range of the x axes for a matplotlib Axes Example usage:: from matplotlib.widgets import RectangleSelector from pylab import * def onselect(eclick, erelease): 'eclick and erelease are matplotlib events at press and release' print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata) print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata) print ' used button : ', eclick.button def toggle_selector(event): print ' Key pressed.' if event.key in ['Q', 'q'] and toggle_selector.RS.active: print ' RectangleSelector deactivated.' toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.RS.active: print ' RectangleSelector activated.' toggle_selector.RS.set_active(True) x = arange(100)/(99.0) y = sin(x) fig = figure ax = subplot(111) ax.plot(x,y) toggle_selector.RS = RectangleSelector(ax, onselect, drawtype='line') connect('key_press_event', toggle_selector) show() """ def __init__(self, ax, onselect, drawtype='box', minspanx=None, minspany=None, useblit=False, lineprops=None, rectprops=None, spancoords='data'): """ Create a selector in ax. When a selection is made, clear the span and call onselect with onselect(pos_1, pos_2) and clear the drawn box/line. There pos_i are arrays of length 2 containing the x- and y-coordinate. If minspanx is not None then events smaller than minspanx in x direction are ignored(it's the same for y). The rect is drawn with rectprops; default rectprops = dict(facecolor='red', edgecolor = 'black', alpha=0.5, fill=False) The line is drawn with lineprops; default lineprops = dict(color='black', linestyle='-', linewidth = 2, alpha=0.5) Use type if you want the mouse to draw a line, a box or nothing between click and actual position ny setting drawtype = 'line', drawtype='box' or drawtype = 'none'. spancoords is one of 'data' or 'pixels'. If 'data', minspanx and minspanx will be interpreted in the same coordinates as the x and ya axis, if 'pixels', they are in pixels """ self.ax = ax self.visible = True self.canvas = ax.figure.canvas self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('button_press_event', self.press) self.canvas.mpl_connect('button_release_event', self.release) self.canvas.mpl_connect('draw_event', self.update_background) self.active = True # for activation / deactivation self.to_draw = None self.background = None if drawtype == 'none': drawtype = 'line' # draw a line but make it self.visible = False # invisible if drawtype == 'box': if rectprops is None: rectprops = dict(facecolor='white', edgecolor = 'black', alpha=0.5, fill=False) self.rectprops = rectprops self.to_draw = Rectangle((0,0), 0, 1,visible=False,**self.rectprops) self.ax.add_patch(self.to_draw) if drawtype == 'line': if lineprops is None: lineprops = dict(color='black', linestyle='-', linewidth = 2, alpha=0.5) self.lineprops = lineprops self.to_draw = Line2D([0,0],[0,0],visible=False,**self.lineprops) self.ax.add_line(self.to_draw) self.onselect = onselect self.useblit = useblit self.minspanx = minspanx self.minspany = minspany assert(spancoords in ('data', 'pixels')) self.spancoords = spancoords self.drawtype = drawtype # will save the data (position at mouseclick) self.eventpress = None # will save the data (pos. at mouserelease) self.eventrelease = None def update_background(self, event): 'force an update of the background' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) def ignore(self, event): 'return True if event should be ignored' # If RectangleSelector is not active : if not self.active: return True # If canvas was locked if not self.canvas.widgetlock.available(self): return True # If no button was pressed yet ignore the event if it was out # of the axes if self.eventpress == None: return event.inaxes!= self.ax # If a button was pressed, check if the release-button is the # same. return (event.inaxes!=self.ax or event.button != self.eventpress.button) def press(self, event): 'on button press event' # Is the correct button pressed within the correct axes? if self.ignore(event): return # make the drawed box/line visible get the click-coordinates, # button, ... self.to_draw.set_visible(self.visible) self.eventpress = event return False def release(self, event): 'on button release event' if self.eventpress is None or self.ignore(event): return # make the box/line invisible again self.to_draw.set_visible(False) self.canvas.draw() # release coordinates, button, ... self.eventrelease = event if self.spancoords=='data': xmin, ymin = self.eventpress.xdata, self.eventpress.ydata xmax, ymax = self.eventrelease.xdata, self.eventrelease.ydata # calculate dimensions of box or line get values in the right # order elif self.spancoords=='pixels': xmin, ymin = self.eventpress.x, self.eventpress.y xmax, ymax = self.eventrelease.x, self.eventrelease.y else: raise ValueError('spancoords must be "data" or "pixels"') if xmin>xmax: xmin, xmax = xmax, xmin if ymin>ymax: ymin, ymax = ymax, ymin spanx = xmax - xmin spany = ymax - ymin xproblems = self.minspanx is not None and spanx<self.minspanx yproblems = self.minspany is not None and spany<self.minspany if (self.drawtype=='box') and (xproblems or yproblems): """Box to small""" # check if drawed distance (if it exists) is return # not to small in neither x nor y-direction if (self.drawtype=='line') and (xproblems and yproblems): """Line to small""" # check if drawed distance (if it exists) is return # not to small in neither x nor y-direction self.onselect(self.eventpress, self.eventrelease) # call desired function self.eventpress = None # reset the variables to their self.eventrelease = None # inital values return False def update(self): 'draw using newfangled blit or oldfangled draw depending on useblit' if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.to_draw) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False def onmove(self, event): 'on motion notify event if box/line is wanted' if self.eventpress is None or self.ignore(event): return x,y = event.xdata, event.ydata # actual position (with # (button still pressed) if self.drawtype == 'box': minx, maxx = self.eventpress.xdata, x # click-x and actual mouse-x miny, maxy = self.eventpress.ydata, y # click-y and actual mouse-y if minx>maxx: minx, maxx = maxx, minx # get them in the right order if miny>maxy: miny, maxy = maxy, miny self.to_draw.set_x(minx) # set lower left of box self.to_draw.set_y(miny) self.to_draw.set_width(maxx-minx) # set width and height of box self.to_draw.set_height(maxy-miny) self.update() return False if self.drawtype == 'line': self.to_draw.set_data([self.eventpress.xdata, x], [self.eventpress.ydata, y]) self.update() return False def set_active(self, active): """ Use this to activate / deactivate the RectangleSelector from your program with an boolean variable 'active'. """ self.active = active def get_active(self): """ to get status of active mode (boolean variable)""" return self.active class Lasso(Widget): def __init__(self, ax, xy, callback=None, useblit=True): self.axes = ax self.figure = ax.figure self.canvas = self.figure.canvas self.useblit = useblit if useblit: self.background = self.canvas.copy_from_bbox(self.axes.bbox) x, y = xy self.verts = [(x,y)] self.line = Line2D([x], [y], linestyle='-', color='black', lw=2) self.axes.add_line(self.line) self.callback = callback self.cids = [] self.cids.append(self.canvas.mpl_connect('button_release_event', self.onrelease)) self.cids.append(self.canvas.mpl_connect('motion_notify_event', self.onmove)) def onrelease(self, event): if self.verts is not None: self.verts.append((event.xdata, event.ydata)) if len(self.verts)>2: self.callback(self.verts) self.axes.lines.remove(self.line) self.verts = None for cid in self.cids: self.canvas.mpl_disconnect(cid) def onmove(self, event): if self.verts is None: return if event.inaxes != self.axes: return if event.button!=1: return self.verts.append((event.xdata, event.ydata)) self.line.set_data(zip(*self.verts)) if self.useblit: self.canvas.restore_region(self.background) self.axes.draw_artist(self.line) self.canvas.blit(self.axes.bbox) else: self.canvas.draw_idle()
agpl-3.0
edhuckle/statsmodels
statsmodels/examples/example_functional_plots.py
33
1367
'''Functional boxplots and rainbow plots see docstrings for an explanation Author: Ralf Gommers ''' from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm #Load the El Nino dataset. Consists of 60 years worth of Pacific Ocean sea #surface temperature data. data = sm.datasets.elnino.load() #Create a functional boxplot: #We see that the years 1982-83 and 1997-98 are outliers; these are #the years where El Nino (a climate pattern characterized by warming #up of the sea surface and higher air pressures) occurred with unusual #intensity. fig = plt.figure() ax = fig.add_subplot(111) res = sm.graphics.fboxplot(data.raw_data[:, 1:], wfactor=2.58, labels=data.raw_data[:, 0].astype(int), ax=ax) ax.set_xlabel("Month of the year") ax.set_ylabel("Sea surface temperature (C)") ax.set_xticks(np.arange(13, step=3) - 1) ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"]) ax.set_xlim([-0.2, 11.2]) #Create a rainbow plot: fig = plt.figure() ax = fig.add_subplot(111) res = sm.graphics.rainbowplot(data.raw_data[:, 1:], ax=ax) ax.set_xlabel("Month of the year") ax.set_ylabel("Sea surface temperature (C)") ax.set_xticks(np.arange(13, step=3) - 1) ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"]) ax.set_xlim([-0.2, 11.2]) plt.show()
bsd-3-clause
jjx02230808/project0223
examples/text/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
dfm/pcp
demo.py
2
1640
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np from PIL import Image from pcp import pcp def bitmap_to_mat(bitmap_seq): """from blog.shriphani.com""" matrix = [] shape = None for bitmap_file in bitmap_seq: img = Image.open(bitmap_file).convert("L") if shape is None: shape = img.size assert img.size == shape img = np.array(img.getdata()) matrix.append(img) return np.array(matrix), shape[::-1] def do_plot(ax, img, shape): ax.cla() ax.imshow(img.reshape(shape), cmap="gray", interpolation="nearest") ax.set_xticklabels([]) ax.set_yticklabels([]) if __name__ == "__main__": import sys import glob import matplotlib.pyplot as pl if "--test" in sys.argv: M = (10*np.ones((10, 10))) + (-5 * np.eye(10)) L, S, svd = pcp(M, verbose=True, svd_method="exact") assert np.allclose(M, L + S), "Failed" print("passed") sys.exit(0) M, shape = bitmap_to_mat(glob.glob("test_data/Escalator/*.bmp")[:2000:2]) print(M.shape) L, S, (u, s, v) = pcp(M, maxiter=50, verbose=True, svd_method="exact") fig, axes = pl.subplots(1, 3, figsize=(10, 4)) fig.subplots_adjust(left=0, right=1, hspace=0, wspace=0.01) for i in range(min(len(M), 500)): do_plot(axes[0], M[i], shape) axes[0].set_title("raw") do_plot(axes[1], L[i], shape) axes[1].set_title("low rank") do_plot(axes[2], S[i], shape) axes[2].set_title("sparse") fig.savefig("results/{0:05d}.png".format(i))
mit
VGonPa/datasets-poses2012
notebooks/hdf_converter.py
1
1256
import pandas as pd import user_data_loader as udl from itertools import product def make_filename(dir_, experiment, user): ''' Produces a filename from input arguments''' return dir_ + experiment + '-' + user + '.arff' #def get_filenames(dir_, experiments, users): # ''' Produces a generator with all the filenames ''' # for exp, user in it.product(experiments, users): # yield make_filename(dir_, exp, user) def build_store(storename, data_dir, experiments, users): ''' Builds an HDF store from the data in arff format @param storename: the filename of the HDFStore @param data_dir: directory where the arff files are located @param experiments: list containing the experiment names @type experiments: list of strings @param users: list with the user ids @type users: list of strings @return: the hdfstore object with all the datasets from the users @rtype: pandas.HDFStore ''' store = pd.HDFStore(storename) for exp, user in product(experiments, users): filename = make_filename(data_dir, exp, user) print filename, df = udl.load_user_file(filename) store.put(exp + '/' + user, df, format='table') return store
gpl-3.0
ch3ll0v3k/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
gweidner/systemml
src/main/python/systemml/converters.py
5
14040
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- __all__ = [ 'getNumCols', 'convertToMatrixBlock', 'convert_caffemodel', 'convert_lmdb_to_jpeg', 'convertToNumPyArr', 'convertToPandasDF', 'SUPPORTED_TYPES', 'convertToLabeledDF', 'convertImageToNumPyArr', 'getDatasetMean'] import numpy as np import pandas as pd import os import math from pyspark.context import SparkContext from scipy.sparse import coo_matrix, spmatrix, csr_matrix from .classloader import * SUPPORTED_TYPES = (np.ndarray, pd.DataFrame, spmatrix) DATASET_MEAN = {'VGG_ILSVRC_19_2014': [103.939, 116.779, 123.68]} def getNumCols(numPyArr): if numPyArr.ndim == 1: return 1 else: return numPyArr.shape[1] def get_pretty_str(key, value): return '\t"' + key + '": ' + str(value) + ',\n' def save_tensor_csv(tensor, file_path, shouldTranspose): w = w.reshape(w.shape[0], -1) if shouldTranspose: w = w.T np.savetxt(file_path, w, delimiter=',') with open(file_path + '.mtd', 'w') as file: file.write('{\n\t"data_type": "matrix",\n\t"value_type": "double",\n') file.write(get_pretty_str('rows', w.shape[0])) file.write(get_pretty_str('cols', w.shape[1])) file.write(get_pretty_str('nnz', np.count_nonzero(w))) file.write( '\t"format": "csv",\n\t"description": {\n\t\t"author": "SystemML"\n\t}\n}\n') def convert_caffemodel(sc, deploy_file, caffemodel_file, output_dir, format="binary", is_caffe_installed=False): """ Saves the weights and bias in the caffemodel file to output_dir in the specified format. This method does not requires caffe to be installed. Parameters ---------- sc: SparkContext SparkContext deploy_file: string Path to the input network file caffemodel_file: string Path to the input caffemodel file output_dir: string Path to the output directory format: string Format of the weights and bias (can be binary, csv or text) is_caffe_installed: bool True if caffe is installed """ if is_caffe_installed: if format != 'csv': raise ValueError( 'The format ' + str(format) + ' is not supported when caffe is installed. Hint: Please specify format=csv') import caffe net = caffe.Net(deploy_file, caffemodel_file, caffe.TEST) for layerName in net.params.keys(): num_parameters = len(net.params[layerName]) if num_parameters == 0: continue elif num_parameters == 2: # Weights and Biases layerType = net.layers[list( net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv( net.params[layerName][0].data, os.path.join( output_dir, layerName + '_weight.mtx'), shouldTranspose) save_tensor_csv( net.params[layerName][1].data, os.path.join( output_dir, layerName + '_bias.mtx'), shouldTranspose) elif num_parameters == 1: # Only Weight layerType = net.layers[list( net._layer_names).index(layerName)].type shouldTranspose = True if layerType == 'InnerProduct' else False save_tensor_csv( net.params[layerName][0].data, os.path.join( output_dir, layerName + '_weight.mtx'), shouldTranspose) else: raise ValueError( 'Unsupported number of parameters:' + str(num_parameters)) else: createJavaObject(sc, 'dummy') utilObj = sc._jvm.org.apache.sysml.api.dl.Utils() utilObj.saveCaffeModelFile( sc._jsc, deploy_file, caffemodel_file, output_dir, format) def convert_lmdb_to_jpeg(lmdb_img_file, output_dir): """ Saves the images in the lmdb file as jpeg in the output_dir. This method requires caffe to be installed along with lmdb and cv2 package. To install cv2 package, do `pip install opencv-python`. Parameters ---------- lmdb_img_file: string Path to the input lmdb file output_dir: string Output directory for images (local filesystem) """ import lmdb import caffe import cv2 lmdb_cursor = lmdb.open(lmdb_file, readonly=True).begin().cursor() datum = caffe.proto.caffe_pb2.Datum() i = 1 for _, value in lmdb_cursor: datum.ParseFromString(value) data = caffe.io.datum_to_array(datum) output_file_path = os.path.join(output_dir, 'file_' + str(i) + '.jpg') image = np.transpose(data, (1, 2, 0)) # CxHxW to HxWxC in cv2 cv2.imwrite(output_file_path, image) i = i + 1 def convertToLabeledDF(sparkSession, X, y=None): from pyspark.ml.feature import VectorAssembler if y is not None: pd1 = pd.DataFrame(X) pd2 = pd.DataFrame(y, columns=['label']) pdf = pd.concat([pd1, pd2], axis=1) inputColumns = ['C' + str(i) for i in pd1.columns] outputColumns = inputColumns + ['label'] else: pdf = pd.DataFrame(X) inputColumns = ['C' + str(i) for i in pdf.columns] outputColumns = inputColumns assembler = VectorAssembler(inputCols=inputColumns, outputCol='features') out = assembler.transform(sparkSession.createDataFrame(pdf, outputColumns)) if y is not None: return out.select('features', 'label') else: return out.select('features') def _convertSPMatrixToMB(sc, src): src = coo_matrix(src, dtype=np.float64) numRows = src.shape[0] numCols = src.shape[1] data = src.data row = src.row.astype(np.int32) col = src.col.astype(np.int32) nnz = len(src.col) buf1 = bytearray(data.tostring()) buf2 = bytearray(row.tostring()) buf3 = bytearray(col.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertSciPyCOOToMB( buf1, buf2, buf3, numRows, numCols, nnz) def _convertDenseMatrixToMB(sc, src): numCols = getNumCols(src) numRows = src.shape[0] src = np.asarray(src, dtype=np.float64) if not isinstance(src, np.ndarray) else src # data_type: 0: int, 1: float and 2: double if src.dtype is np.dtype(np.int32): arr = src.ravel().astype(np.int32) dataType = 0 elif src.dtype is np.dtype(np.float32): arr = src.ravel().astype(np.float32) dataType = 1 else: arr = src.ravel().astype(np.float64) dataType = 2 buf = bytearray(arr.tostring()) createJavaObject(sc, 'dummy') return sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertPy4JArrayToMB( buf, numRows, numCols, dataType) def _copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen): rowIndex = int(i / numRowsPerBlock) tmp = src[i:min(i + numRowsPerBlock, rlen), ] mb = _convertSPMatrixToMB( sc, tmp) if isinstance( src, spmatrix) else _convertDenseMatrixToMB( sc, tmp) sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.copyRowBlocks( mb, rowIndex, ret, numRowsPerBlock, rlen, clen) return i def convertToMatrixBlock(sc, src, maxSizeBlockInMB=128): if not isinstance(sc, SparkContext): raise TypeError('sc needs to be of type SparkContext') if isinstance(src, spmatrix): isSparse = True else: isSparse = False src = np.asarray(src, dtype=np.float64) if not isinstance(src, np.ndarray) else src if len(src.shape) != 2: src_type = str(type(src).__name__) raise TypeError('Expected 2-dimensional ' + src_type + ', instead passed ' + str(len(src.shape)) + '-dimensional ' + src_type) worstCaseSizeInMB = (8*(src.getnnz()*3 if isSparse else src.shape[0]*src.shape[1])) / 1000000 # Ignoring sparsity for computing numRowsPerBlock for now numRowsPerBlock = int( math.ceil((maxSizeBlockInMB * 1000000) / (src.shape[1] * 8))) if worstCaseSizeInMB <= maxSizeBlockInMB: return _convertSPMatrixToMB( sc, src) if isSparse else _convertDenseMatrixToMB(sc, src) else: # Since coo_matrix does not have range indexing src = csr_matrix(src) if isSparse else src rlen = int(src.shape[0]) clen = int(src.shape[1]) ret = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.allocateDenseOrSparse( rlen, clen, isSparse) [_copyRowBlock(i, sc, ret, src, numRowsPerBlock, rlen, clen) for i in range(0, src.shape[0], numRowsPerBlock)] sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.postProcessAfterCopying( ret) return ret def convertToNumPyArr(sc, mb): if isinstance(sc, SparkContext): numRows = mb.getNumRows() numCols = mb.getNumColumns() createJavaObject(sc, 'dummy') buf = sc._jvm.org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt.convertMBtoPy4JDenseArr( mb) return np.frombuffer(buf, count=numRows * numCols, dtype=np.float64).reshape((numRows, numCols)) else: # TODO: We can generalize this by creating py4j gateway ourselves raise TypeError('sc needs to be of type SparkContext') # Returns the mean of a model if defined otherwise None def getDatasetMean(dataset_name): """ Parameters ---------- dataset_name: Name of the dataset used to train model. This name is artificial name based on dataset used to train the model. Returns ------- mean: Mean value of model if its defined in the list DATASET_MEAN else None. """ try: mean = DATASET_MEAN[dataset_name.upper()] except BaseException: mean = None return mean # Example usage: convertImageToNumPyArr(im, img_shape=(3, 224, 224), add_rotated_images=True, add_mirrored_images=True) # The above call returns a numpy array of shape (6, 50176) in NCHW format def convertImageToNumPyArr(im, img_shape=None, add_rotated_images=False, add_mirrored_images=False, color_mode='RGB', mean=None): # Input Parameters # color_mode: In case of VGG models which expect image data in BGR format instead of RGB for other most models, # color_mode parameter is used to process image data in BGR format. # mean: mean value is used to subtract from input data from every pixel # value. By default value is None, so mean value not subtracted. if img_shape is not None: num_channels = img_shape[0] size = (img_shape[1], img_shape[2]) else: num_channels = 1 if im.mode == 'L' else 3 size = None if num_channels != 1 and num_channels != 3: raise ValueError('Expected the number of channels to be either 1 or 3') from PIL import Image if size is not None: im = im.resize(size, Image.LANCZOS) expected_mode = 'L' if num_channels == 1 else 'RGB' if expected_mode is not im.mode: im = im.convert(expected_mode) def _im2NumPy(im): if expected_mode == 'L': return np.asarray(im.getdata()).reshape((1, -1)) else: im = (np.array(im).astype(np.float)) # (H,W,C) -> (C,H,W) im = im.transpose(2, 0, 1) # RGB -> BGR if color_mode == 'BGR': im = im[..., ::-1] # Subtract Mean if mean is not None: for c in range(3): im[:, :, c] = im[:, :, c] - mean[c] # (C,H,W) --> (1, C*H*W) return im.reshape((1, -1)) ret = _im2NumPy(im) if add_rotated_images: ret = np.vstack( (ret, _im2NumPy( im.rotate(90)), _im2NumPy( im.rotate(180)), _im2NumPy( im.rotate(270)))) if add_mirrored_images: ret = np.vstack( (ret, _im2NumPy( im.transpose( Image.FLIP_LEFT_RIGHT)), _im2NumPy( im.transpose( Image.FLIP_TOP_BOTTOM)))) return ret def convertToPandasDF(X): if not isinstance(X, pd.DataFrame): return pd.DataFrame(X, columns=['C' + str(i) for i in range(getNumCols(X))]) return X
apache-2.0
RachitKansal/scikit-learn
sklearn/svm/tests/test_sparse.py
70
12992
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
michaelpacer/networkx
examples/graph/atlas.py
54
2609
#!/usr/bin/env python """ Atlas of all graphs of 6 nodes or less. """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2004 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx from networkx.generators.atlas import * from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic import random def atlas6(): """ Return the atlas of all connected graphs of 6 nodes or less. Attempt to check for isomorphisms and remove. """ Atlas=graph_atlas_g()[0:208] # 208 # remove isolated nodes, only connected graphs are left U=nx.Graph() # graph for union of all graphs in atlas for G in Atlas: zerodegree=[n for n in G if G.degree(n)==0] for n in zerodegree: G.remove_node(n) U=nx.disjoint_union(U,G) # list of graphs of all connected components C=nx.connected_component_subgraphs(U) UU=nx.Graph() # do quick isomorphic-like check, not a true isomorphism checker nlist=[] # list of nonisomorphic graphs for G in C: # check against all nonisomorphic graphs so far if not iso(G,nlist): nlist.append(G) UU=nx.disjoint_union(UU,G) # union the nonisomorphic graphs return UU def iso(G1, glist): """Quick and dirty nonisomorphism checker used to check isomorphisms.""" for G2 in glist: if isomorphic(G1,G2): return True return False if __name__ == '__main__': import networkx as nx G=atlas6() print("graph has %d nodes with %d edges"\ %(nx.number_of_nodes(G),nx.number_of_edges(G))) print(nx.number_connected_components(G),"connected components") try: from networkx import graphviz_layout except ImportError: raise ImportError("This example needs Graphviz and either PyGraphviz or Pydot") import matplotlib.pyplot as plt plt.figure(1,figsize=(8,8)) # layout graphs with positions using graphviz neato pos=nx.graphviz_layout(G,prog="neato") # color nodes the same in each connected subgraph C=nx.connected_component_subgraphs(G) for g in C: c=[random.random()]*nx.number_of_nodes(g) # random color... nx.draw(g, pos, node_size=40, node_color=c, vmin=0.0, vmax=1.0, with_labels=False ) plt.savefig("atlas.png",dpi=75)
bsd-3-clause
SwissTPH/TBRU_serialTB
scripts/variant_processing/serial_functions.py
1
62017
#!/usr/bin/env python #Custom analysis functions for processing data from Serial Isolates of TB patients #NB written for Python 3.5+ ################ # DEPENDENCIES # ################ import numpy as np import sklearn.utils as sku import scipy.stats as ss from collections import Counter import random ############# # FUNCTIONS # ############# def populate_poly(data_dict, patient='Patient02'): """ Extract SNP frequencies from raw data. INPUTS: ------- patient: str, dict key for data_dict data_dict: dict, {PatientID: [['timepoint', (locus, frequency)]...]} OUTPUT: ------- nd.array, first column are loci, sequenital columns are frequencies """ _polys = np.zeros((2,8)) #Need to start with a 2x8 array to be able to iterate correctly. _timepoints = ['00','02','04','06','08','16','24'] _values = data_dict[patient][1:] for _v in _values: for (_locus,_freq) in _v[1:]: _ind = _timepoints.index(_v[0]) if float(_locus) in _polys[:,0]: _mapper = list(_polys[:,0]) _bob = _mapper.index(float(_locus)) _polys[_bob,_ind+1]+=float(_freq) if float(_locus) not in _polys[:,0]: _new = np.zeros(8) _new[0]+=int(_locus) _new[_ind+1]+=float(_freq) _polys = np.vstack((_polys, _new)) _polys = _polys[2:] #Remove first two rows. return _polys def polymorphic_sites_plot(data, cutoff=0.005, colour='red', return_data=False, savefig=False): """Plot of v-SNP counts. INPUT: ------ data: 2D-array generated from populate_poly() cutoff: float, minimal frequency required for counting colour: color of line, can take any value accepted by matplotlib. return_data: Boolean, return the plotted table savefig: give string with filename to generate if you want to save the figure. """ _timepoints = np.array([0,2,4,6,8,16,24]) _polymorphic_sites = np.array([len(np.where(data[:,x]>cutoff)[0]) for x in np.arange(1,8)]) #only plot (consider) timepoints for which we have data. _to_consider = np.nonzero(np.array([len(np.where(data[:,x]>0)[0]) for x in np.arange(1,8)])) _x, _y = _timepoints[_to_consider], _polymorphic_sites[_to_consider] c_label = 'Cutoff = %.1f' %(cutoff*100)+'%' plt.plot(_x, _y, color=colour, label=c_label,lw=1.5) if savefig!=False: plt.savefig(savefig) if return_data!=False: return _x, _y def SFS(data, title='Patient__', plots=[0,2,4,6], grid=(2,2)): _timepoints = [0,2,4,6,8,16,24] for _sn,_pl in enumerate(plots): _i = _timepoints.index(_pl) if grid!=False: plt.subplot(grid[0],grid[1],_sn+1) plt.title('Week %s' %_timepoints[_i]) _to_plot = data[:,_i+1][data[:,_i+1]>0] plt.hist(_to_plot,bins=np.arange(0,1.01,0.01), label='Week %s' %_timepoints[_i], alpha=0.5) plt.xlim(0,1) def SNP_fate(data, cutoff=0.005, method='imshow'): _a = np.zeros(np.shape(data[:,1:])) _a[data[:,1:]>cutoff]+=1 _relevant = np.where(_a.sum(axis=1)>1) _labs = data[:,0][_relevant] _tm = np.array([0,2,4,6,8,16,24]) if method=='imshow': plt.imshow(_a[_relevant], interpolation='none',cmap='Greys') plt.yticks(np.arange(1,len(_relevant)),_labs) if method=='plot': if len(_relevant)>0: for _ind,_ys in enumerate(data[:,1:][_relevant]): plt.plot(_tm[_a.sum(axis=0)>0], _ys[_a.sum(axis=0)>0], label='SNP at %i' %data[:,0][_relevant][_ind],lw=1.5) def SNP_fate_NSI(data, annotation_dict, cutoff=0.005, method='imshow'): _a = np.zeros(np.shape(data[:,1:])) _a[data[:,1:]>cutoff]+=1 _relevant = np.where(_a.sum(axis=1)>1) _labs = data[:,0][_relevant] _tm = np.array([0,2,4,6,8,16,24]) if method=='imshow': plt.imshow(_a[_relevant], interpolation='none',cmap='Greys') plt.yticks(np.arange(1,len(_relevant)),_labs) if method=='plot': if len(_relevant)>0: for _ind,_ys in enumerate(data[:,1:][_relevant]): _mutation_type_color = {'synonymous':'grey', 'nonsynonymous':'red','IGR':'dodgerblue'} _mutation_type = _mutation_type_color.get(annotation_dict[str(int(data[:,0][_relevant][_ind]))][0][1],'yellow') plt.plot(_tm[_a.sum(axis=0)>0], _ys[_a.sum(axis=0)>0],color=_mutation_type, label='SNP at %i' %data[:,0][_relevant][_ind],lw=1.5,alpha=0.8) def SNP_fate_DR(data, annotation_dict, cutoff=0.005, method='imshow'): _a = np.zeros(np.shape(data[:,1:])) _a[data[:,1:]>cutoff]+=1 _relevant = np.where(_a.sum(axis=1)>1) _labs = data[:,0][_relevant] _tm = np.array([0,2,4,6,8,16,24]) if method=='imshow': plt.imshow(_a[_relevant], interpolation='none',cmap='Greys') plt.yticks(np.arange(1,len(_relevant)),_labs) if method=='plot': if len(_relevant)>0: for _ind,_ys in enumerate(data[:,1:][_relevant]): _mutation_type_color = ['grey','red'] _mutation_type = _mutation_type_color[int(annotation_dict[str(int(data[:,0][_relevant][_ind]))][0][0] in DR_set)] _mutation_type_style = {'nonsynonymous':'solid', 'synonymous':'dashed','IGR':'dotted'} _mutation_style = _mutation_type_style.get(annotation_dict[str(int(data[:,0][_relevant][_ind]))][0][1],'dashdot') plt.plot(_tm[_a.sum(axis=0)>0], _ys[_a.sum(axis=0)>0],color=_mutation_type, linestyle=_mutation_style,label='SNP at %i' %data[:,0][_relevant][_ind],lw=1.5,alpha=0.6) def confidence_interval(data, CI=0.95, normal=False): """Calculate the confidence interval for a dataset which is distribution blind. Can be used in the case of a normal distribution expectation. INPUT: ------ data: 1D np.array CI: float < 1.0, confidence interval of interest expects 0.95 for 95% CI, 0.9 for 90% CI... normal: bool, determine CI based on normal distribution. OUTPUT: ------- lower_CI, upper_CI: float NOTES: ------ Designed to be used in conjuncion with bootstrapping Adapted from: http://stackoverflow.com/questions/19124239/scikit-learn-roc-curve-with-confidence-intervals http://adventuresinpython.blogspot.ch/2012/12/confidence-intervals-in-python.html """ _CI = (1.+CI)/2. _lower_CI = sorted(data)[int((1.-_CI)*len(data))] _upper_CI = sorted(data)[int((_CI)*len(data))] _R = (_lower_CI, _upper_CI) if normal!=False: _n, _min_max, _mean, _var, _skew, _kurt = ss.describe(data) _std=np.sqrt(_var) _R = ss.norm.interval(1-_CI,loc=_mean,scale=_std) return _R def simpson_index(data): """Calculate Simpson's index from data. In ecology this index corresponds to the probabilty that two individuals drawn at random from a population belong to the same group. Index takes a value between 0 and 1. The greater the value, the more homogeneous a sample is. 1-SI = Simpson's index of diversity (SID) Probability of two individuals belonging to different groups. 1/SI = Simpson's reciprocal index Effective number of groups in a population. This parameters takes a value between 1 and K where K is the actual number of groups in the sample. INPUT: ------ data: 1d array (sums to 1.) OUTPUT: ------- Simpason's index: float NOTES: ------ Based on http://en.wikipedia.org/wiki/Diversity_index and http://www.countrysideinfo.co.uk/simpsons.htm. """ return np.sum(data**2) def euclidean_distance(data1, data2): """Calculate the euclidian distance between two points. INPUTS: ------- data1, data2: 1D-array of equal length OUTPUT: ------- float NOTES: ------ Based on http://en.wikipedia.org/wiki/Euclidean_distance """ return np.sqrt(np.sum((np.array(data1)-np.array(data2))**2)) def heterozygosity(het_calls, genome_size): """Calcualtes the heterozygosity of a sample from the relative frequencies of the heterozygous alleles in the population. In this iteration it assumes two alleles per position. So Fa = frequency of allele 1, while 1-Fa is frequency of allele 2. INPUTS: ------- het_calls: 1-D array, values range 0-1. genome_size: float, size of genome in question. OUTPUT: ------- float NOTES: ------ Based on the method for determining heterozygosity in Cuevas et al, MBE 2015 http://www.ncbi.nlm.nih.gov/pubmed/25660377 """ _N = len(het_calls) _het1 = het_calls _het2 = np.ones(_N)-het_calls _hets = np.sum(np.ones(_N)-(_het1**2+_het2**2)) return _hets/float(genome_size) def codon_counter(annotation_file): """Calcuates codon frequencies in an annotated genome. Assumes a file where: >gene_annotation TTGACCGATGACCCCGGTTC... the coding sequence is given in a single line. ARGUMENT: --------- Text file formatted as described above OUTPUT: ------- codon_freq: codon counts, dict total_codons: absolute codon count, float total_features: absolute feature count, float """ _codon_dict = {} _codon_clicker = 0. _feature_clicker = 0. for _line in open(annotation_file): if _line[0]!='>': _feature_clicker+=1. _sequence = _line.strip() for i in range(0,len(_sequence),3): _codon = _sequence[i:i+3] _codon_clicker+=1. if _codon in _codon_dict: _codon_dict[_codon]+=1 if _codon not in _codon_dict: _codon_dict[_codon]=1 return _codon_dict, _codon_clicker, _feature_clicker def generate_codon_pool(codon_dict, N): """Generate a weighted pool of codons to be used for codon resampling from a fake genome-defined average gene. ARGUMENTS: ---------- codon_dict: dictionary of codon counts in a genome from codon_counter() N: number of genes in the genome. total_features from codon_counter() OUTPUT: ------- codon_pool: list NOTES: ------ Assumes numpy is imported """ _codon_pool = [] for _key in sorted(codon_dict.keys()): weight = int(np.ceil(codon_dict[_key]/N)) _codon_pool+=[_key,]*weight return _codon_pool def codon_mutate(codon): """Mutates codon at one position. Checks whether the mutations was synonymous or nonsynonymous. ARGUMENTS: ---------- codon: str (3 bases) OUTPUT: ------- 0,1 for S or NS respectively """ codon_table = {'AAA': 'K', 'AAC': 'N', 'AAG': 'K', 'AAU': 'N', 'ACA': 'T', 'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S', 'AGG': 'R', 'AGU': 'S', 'AUA': 'I', 'AUC': 'I', 'AUG': 'M', 'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H', 'CCA': 'P', 'CCC': 'P', 'CCG': 'P', 'CCU': 'P', 'CGA': 'R', 'CGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CUC': 'L', 'CUG': 'L', 'CUU': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E', 'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A', 'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V', 'GUC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAA': 'STOP', 'UAC': 'Y', 'UAG': 'STOP', 'UAU': 'Y', 'UCA': 'S', 'UCC': 'S', 'UCG': 'S', 'UCU': 'S', 'UGA': 'STOP', 'UGC': 'C', 'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UUC': 'F', 'UUG': 'L', 'UUU': 'F'} #Format the sequnce. codon = codon.upper() if 'T' in codon: codon = codon.replace('T', 'U') _bases = ['A', 'C', 'G', 'U'] #all bases _mut_pos = np.random.randint(3) #pick codon position to mutate _bases.remove(codon[_mut_pos]) #remove the ancestral base _mut_base = _bases[np.random.randint(3)] #pick random base _alt_codon = codon[:_mut_pos]+_mut_base+codon[_mut_pos+1:] #mutate codon if codon_table[codon]==codon_table[_alt_codon]: return 0 if codon_table[codon]!=codon_table[_alt_codon]: return 1 def codon_mutate_TiTv_GC(codon, gc_content=0.5, ti=0.5): """Mutates codon at one position. Checks whether the mutations was synonymous or nonsynonymous. ARGUMENTS: ---------- codon: str (3 bases) gc_content: float, if specified will be used for for calculating the substitution_matrix. otherwise will assume 0.5. ti: float, transition probability OUTPUT: ------- 0,1 for S or NS respectively NOTES: ------ Substitution matrix calculated based on Jukes-Cantor 1969 in the basic (default) case. Changing 'ti' modifies the approach according to Kimura 1980. Changing 'gc_content' modifies it based on Felsenstein 1981. Changing both 'ti' and 'gc_content' approximates Hasegawa, Kishino and Yano 1985. """ codon_table = {'AAA': 'K', 'AAC': 'N', 'AAG': 'K', 'AAU': 'N', 'ACA': 'T', 'ACC': 'T', 'ACG': 'T', 'ACU': 'T', 'AGA': 'R', 'AGC': 'S', 'AGG': 'R', 'AGU': 'S', 'AUA': 'I', 'AUC': 'I', 'AUG': 'M', 'AUU': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAU': 'H', 'CCA': 'P', 'CCC': 'P', 'CCG': 'P', 'CCU': 'P', 'CGA': 'R', 'CGC': 'R', 'CGG': 'R', 'CGU': 'R', 'CUA': 'L', 'CUC': 'L', 'CUG': 'L', 'CUU': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E', 'GAU': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCU': 'A', 'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGU': 'G', 'GUA': 'V', 'GUC': 'V', 'GUG': 'V', 'GUU': 'V', 'UAA': 'STOP', 'UAC': 'Y', 'UAG': 'STOP', 'UAU': 'Y', 'UCA': 'S', 'UCC': 'S', 'UCG': 'S', 'UCU': 'S', 'UGA': 'STOP', 'UGC': 'C', 'UGG': 'W', 'UGU': 'C', 'UUA': 'L', 'UUC': 'F', 'UUG': 'L', 'UUU': 'F'} #Format the sequnce. codon = codon.upper() if 'T' in codon: codon = codon.replace('T', 'U') _pa = _pt = (1-gc_content)/2. #genomewide probability of base being A/T _pg = _pc = gc_content/2. #genomewide probability of base being C/G _a = ti #null expectation for transition _b = 1-ti #null expectation for transversion _sub_matrix = { 'A':[_b*_pc/((2*_b+_a)*_pc), _a*_pg/((2*_b+_a)*_pg), _b*_pt/((2*_b+_a)*_pt)], 'C':[_b*_pa/((2*_b+_a)*_pa), _b*_pg/((2*_b+_a)*_pg), _a*_pt/((2*_b+_a)*_pt)], 'G':[_a*_pa/((2*_b+_a)*_pa), _b*_pc/((2*_b+_a)*_pc), _b*_pt/((2*_b+_a)*_pt)], 'U':[_b*_pa/((2*_b+_a)*_pa), _a*_pc/((2*_b+_a)*_pc), _b*_pg/((2*_b+_a)*_pg)] } _bases = ['A', 'C', 'G', 'U'] #all bases _mut_pos = np.random.randint(3) #pick codon position to mutate _sub_params = _sub_matrix[codon[_mut_pos]] #Get substitution probabilities _bases.remove(codon[_mut_pos]) #remove the ancestral base _adjusted_bases = [] for _ind,_val in enumerate(_bases): _expansion = [_val,]*int(_sub_params[_ind]*100) _adjusted_bases += _expansion _mut_base = _adjusted_bases[np.random.randint(len(_adjusted_bases))] #pick random base _alt_codon = codon[:_mut_pos]+_mut_base+codon[_mut_pos+1:] #mutate codon if codon_table[codon]==codon_table[_alt_codon]: return 0 if codon_table[codon]!=codon_table[_alt_codon]: return 1 def calculate_NS(sequence): """Calculates the synonymous/nonsynonymous score for a sequence. It takes the sequence, generates all codons and calculates all that are 1 mutation away. Then it scores the resulting population for mutational potential. Used for simplified dN/dS calculations. ARGUMENT: --------- sequence : any nucleotide sequence, at the core should be a codon. OUTPUT: ------- [(N,S)] N : nonsynonymous score per codon S : synonymous score per codon Note, the function will return a list of tuples if multiple codons are present """ codon_table = {'AAA': 'K', 'AAC': 'N', 'AAG': 'K', 'AAT': 'N', 'ACA': 'T', 'ACC': 'T', 'ACG': 'T', 'ACT': 'T', 'AGA': 'R', 'AGC': 'S', 'AGG': 'R', 'AGT': 'S', 'ATA': 'I', 'ATC': 'I', 'ATG': 'M', 'ATT': 'I', 'CAA': 'Q', 'CAC': 'H', 'CAG': 'Q', 'CAT': 'H', 'CCA': 'P', 'CCC': 'P', 'CCG': 'P', 'CCT': 'P', 'CGA': 'R', 'CGC': 'R', 'CGG': 'R', 'CGT': 'R', 'CTA': 'L', 'CTC': 'L', 'CTG': 'L', 'CTT': 'L', 'GAA': 'E', 'GAC': 'D', 'GAG': 'E', 'GAT': 'D', 'GCA': 'A', 'GCC': 'A', 'GCG': 'A', 'GCT': 'A', 'GGA': 'G', 'GGC': 'G', 'GGG': 'G', 'GGT': 'G', 'GTA': 'V', 'GTC': 'V', 'GTG': 'V', 'GTT': 'V', 'TAA': 'STOP', 'TAC': 'Y', 'TAG': 'STOP', 'TAT': 'Y', 'TCA': 'S', 'TCC': 'S', 'TCG': 'S', 'TCT': 'S', 'TGA': 'STOP', 'TGC': 'C', 'TGG': 'W', 'TGT': 'C', 'TTA': 'L', 'TTC': 'F', 'TTG': 'L', 'TTT': 'F'} #Format the sequnce. sequence = sequence.upper() if 'T' in sequence: sequence = sequence.replace('T', 'U') bases = ['A', 'C', 'G', 'U'] #all bases sequence_len = len(sequence) recipient_list = [] for codon in [sequence[c:c+3] for c in np.arange(0,len(sequence),3)]: #codonise original_aa = codon_table[codon] #expected codon codon_N = 0. codon_S = 0. for ind,base in enumerate(codon): codon_marked = codon[:ind]+'X'+codon[ind+1:] #Put 'X' in place of the base to be mutated, this is to avoid replacing all the bases of a certain type in a string... alt_codons = [codon_marked.replace('X',b) for b in [x for x in bases if x not in base]] # nested list comprehension, the first gets all other bases, the second generates all codons one mutation apart at given position syn = [codon_table[ac] for ac in alt_codons].count(original_aa)/3. #translate alt_codons and see how many match the original aa nsyn = 1.-syn #how many dont match codon_N+=nsyn codon_S+=syn recipient_list.append((codon_N, codon_S)) if len(recipient_list)==1: return recipient_list[0][0], recipient_list[0][1] if len(recipient_list)>1: return recipient_list def drift_simulation(codon_pool, N_codons, N=1000, method='binomial', pars=False): """Simulate a resamplng of a codon pool N times each time fishing out N_codons. A binomial random draw is used to "mutate" the codon to model ranom mutations. The wildtype codons are concatenated and the expected number of synonymous and non- synonymous mutations is calculated using calculate_NS(). ARGUMENTS: ---------- codon_pool: weighted list of codons done with generate_codon_pool() N_codons: number of codons to fish out N: number of iterations method ['derived'|'binomial']: codon mutation model pars: return dN and dS separately - in case there are too mutations to effectively calculate dN/dS OUTPUT: ------- dN/dS values, np.array NOTES: ------ This function has many dependencies, ensure that all the relevant functions are defined first. The probabilites of N/S are defined by _pr_N """ #Define NS probabilities for binomial draws. #This is based on the codon table. _pr_N = {'AAA': 0.888888888888889, 'AAC': 0.888888888888889, 'AAG': 0.888888888888889, 'AAT': 0.888888888888889, 'ACA': 0.6666666666666666, 'ACC': 0.6666666666666666, 'ACG': 0.6666666666666666, 'ACT': 0.6666666666666666, 'AGA': 0.7777777777777778, 'AGC': 0.888888888888889, 'AGG': 0.7777777777777778, 'AGT': 0.888888888888889, 'ATA': 0.7777777777777778, 'ATC': 0.7777777777777778, 'ATG': 1.0, 'ATT': 0.7777777777777778, 'CAA': 0.888888888888889, 'CAC': 0.888888888888889, 'CAG': 0.888888888888889, 'CAT': 0.888888888888889, 'CCA': 0.6666666666666666, 'CCC': 0.6666666666666666, 'CCG': 0.6666666666666666, 'CCT': 0.6666666666666666, 'CGA': 0.5555555555555556, 'CGC': 0.6666666666666666, 'CGG': 0.5555555555555556, 'CGT': 0.6666666666666666, 'CTA': 0.5555555555555556, 'CTC': 0.6666666666666666, 'CTG': 0.5555555555555556, 'CTT': 0.6666666666666666, 'GAA': 0.888888888888889, 'GAC': 0.888888888888889, 'GAG': 0.888888888888889, 'GAT': 0.888888888888889, 'GCA': 0.6666666666666666, 'GCC': 0.6666666666666666, 'GCG': 0.6666666666666666, 'GCT': 0.6666666666666666, 'GGA': 0.6666666666666666,'GGC': 0.6666666666666666, 'GGG': 0.6666666666666666, 'GGT': 0.6666666666666666, 'GTA': 0.6666666666666666, 'GTC': 0.6666666666666666, 'GTG': 0.6666666666666666, 'GTT': 0.6666666666666666, 'TAA': 0.7777777777777778, 'TAC': 0.888888888888889, 'TAG': 0.888888888888889, 'TAT': 0.888888888888889, 'TCA': 0.6666666666666666, 'TCC': 0.6666666666666666, 'TCG': 0.6666666666666666, 'TCT': 0.6666666666666666, 'TGA': 0.888888888888889, 'TGC': 0.888888888888889, 'TGG': 1.0, 'TGT': 0.888888888888889, 'TTA': 0.7777777777777778, 'TTC': 0.888888888888889, 'TTG': 0.7777777777777778, 'TTT': 0.888888888888889} #define recipient variables _dNdS = [] _dNdS_par = [] for _trial in range(N):#loop over number of trials _Ns = 0. #recipient for Nonsynonymous mutations _CONCATENATED_SEQUENCE = '' #recipient for concatenated sequence for _fish in np.random.randint(0,len(codon_pool),N_codons): #select random codon weighted by genomewide codon usage _fished_codon = codon_pool[_fish] #define the fished codon _CONCATENATED_SEQUENCE+=_fished_codon #add fished codon to the concatenated sequence if method=='derived': _Ns+=codon_mutate(_fished_codon) #use the codon_mutate() to model mutation if method=='binomial': _Ns+=np.random.binomial(1, _pr_N[_fished_codon]) #use a binomial random trial to determine if the mutation is Ns _eNS = calculate_NS(_CONCATENATED_SEQUENCE) _eN = 0. _eS = 0. for (_a,_b) in _eNS: _eN+=_a _eS+=_b _dNdS.append((_Ns/_eN)/((N_codons-_Ns)/_eS)) _dNdS_par.append((_Ns/_eN,(N_codons-_Ns)/_eS)) if pars: return _dNdS_par else: return _dNdS def drift_null_Mtb(sequence, N=1000, method='binomial', pars=False, gc=0.656, ti=0.729): """Generate an estimate of the null expectation for the pNS of a given Mtb sequence. ARGUMENTS: ---------- sequence: str, concatenated codons of interest N: number of iterations method ['derived'|'binomial']: codon mutation model pars: return dN and dS separately - in case there are too mutations to effectively calculate dN/dS gc: float, gc content of the genome ti: float, estimated probability of transitions. OUTPUT: ------- expected pNS value under drift, np.array NOTES: ------ This function has many dependencies, ensure that all the relevant functions are defined first. The probabilites of N/S are defined by _pr_N """ #Define NS probabilities for binomial draws. #This is based on the codon table. _pr_N = {'ACC': 0.66410000000000013, 'ATG': 1.0, 'AAG': 0.80871999999999999, 'AAA': 0.80523999999999984, 'ATC': 0.73629999999999984, 'AAC': 0.80698000000000003, 'ATA': 0.85933999999999988, 'AGG': 0.73813999999999991, 'CCT': 0.66512000000000004, 'CTC': 0.66899999999999993, 'AGC': 0.81028000000000011, 'ACA': 0.66819999999999991, 'AGA': 0.7396600000000001, 'CAT': 0.80928000000000011, 'AAT': 0.80779999999999996, 'ATT': 0.73552000000000017, 'CTG': 0.47383999999999993, 'CTA': 0.47404000000000002, 'ACT': 0.66971999999999998, 'CAC': 0.80871999999999999, 'ACG': 0.66917999999999989, 'CAA': 0.80668000000000006, 'AGT': 0.80940000000000001, 'CAG': 0.80868000000000007, 'CCG': 0.6644199999999999, 'CCC': 0.6670799999999999, 'TAT': 0.81141999999999992, 'GGT': 0.66510000000000002, 'TGT': 0.80779999999999996, 'CGA': 0.59169999999999989, 'CCA': 0.66690000000000016, 'CGC': 0.66578000000000004, 'GAT': 0.8096399999999998, 'CGG': 0.59478000000000009, 'CTT': 0.66659999999999997, 'TGC': 0.80824000000000007, 'GGG': 0.6641800000000001, 'TAG': 0.80645999999999995, 'GGA': 0.66880000000000006, 'TAA': 0.61687999999999998, 'GGC': 0.66660000000000008, 'TAC': 0.80803999999999998, 'GAG': 0.81069999999999998, 'TCG': 0.66408, 'TTA': 0.61682000000000003, 'GAC': 0.80948000000000009, 'CGT': 0.6698400000000001, 'TTT': 0.80830000000000002, 'TCA': 0.66878000000000004, 'GCA': 0.66555999999999993, 'GTA': 0.66721999999999992, 'GCC': 0.6660600000000001, 'GTC': 0.66648000000000007, 'GCG': 0.66559999999999997, 'GTG': 0.66546000000000005, 'TTC': 0.80668000000000006, 'GTT': 0.66598000000000002, 'GCT': 0.66961999999999999, 'TGA': 0.80687999999999993, 'TTG': 0.61943999999999999, 'TCC': 0.66835999999999995, 'TGG': 1.0, 'GAA': 0.80825999999999998, 'TCT': 0.66670000000000007} _N_codons = len(sequence)/3 #define recipient variables _dNdS = [] _dNdS_par = [] for _trial in range(N):#loop over number of trials _Ns = 0. #recipient for Nonsynonymous mutations #range of codon steps along the given sequence for _step in np.arange(0,len(sequence),3): #define the fished codon _fished_codon = sequence[_step:_step+3] #use the codon_mutate() to model mutation if method=='derived': _Ns+=codon_mutate_TiTv_GC(_fished_codon, gc_content=gc, ti=ti) #use a binomial random trial to determine if the mutation is Ns if method=='binomial': _Ns+=np.random.binomial(1, _pr_N[_fished_codon]) _eNS = calculate_NS(sequence) _eN = 0. _eS = 0. for (_a,_b) in _eNS: _eN+=_a _eS+=_b try: _dNdS.append((_Ns/_eN)/((_N_codons-_Ns)/_eS)) _dNdS_par.append((_Ns/_eN,(_N_codons-_Ns)/_eS)) except: pass if pars: return _dNdS_par else: return _dNdS def get_dNdS(annotated_dataset, gene_list=None, het_list=None, pars=False): """Calculate dNdS for a the annotated dataset. Same can be done to a subset of genes speicified by 'gene_list'. Assumes a specific data format - see below. ARGUMENTS: ---------- annotated_dataset: annotation dict, example of value[0] in dict: ['Rv3885c', 'synonymous', '39', 'Val/V-Val/V', 'GTC-GTT'] gene_list: list of genes of interest het_list: list of heterozygous positions of interest pars: return dN and dS separately - in case there are too mutations to effectively calculate dN/dS OUTPUT: ------- dNdS: calculated dN/dS,float N: number of codons used for the calculation, float NOTES: ------ First version. The format in which the data is inputed will probably change. Requires the calculate_NS() to be defined. """ _concatenation = '' _N = 0. _S = 0. _dict_of_interest = {} if het_list!=None: for _het in het_list: _het = str(_het) if _het in annotated_dataset: _dict_of_interest[_het] = annotated_dataset[_het] if het_list==None: _dict_of_interest = annotated_dataset if gene_list==None: for _val in annotated_dataset.values(): _info = _val[0] if _info[1]=='nonsynonymous': _N+=1. _codon = _info[4][:3] _concatenation+=_codon if _info[1]=='synonymous': _S+=1. _codon = _info[4][:3] _concatenation+=_codon if gene_list!=None: for _val in _dict_of_interest.values(): _info = _val[0] if _info[1]=='nonsynonymous' and _info[0] in gene_list: _N+=1. _codon = _info[4][:3] _concatenation+=_codon if _info[1]=='synonymous' and _info[0] in gene_list: _S+=1. _codon = _info[4][:3] _concatenation+=_codon _NS = calculate_NS(_concatenation) _eN = 0. _eS = 0. for (_a,_b) in _NS: _eN+=_a _eS+=_b if pars: return _N/_eN, _S/_eS, _N+_S else: return ((_N/_eN)/(_S/_eS)), _N+_S def pNS_CI(data, min_freq=0.005, N=1000, time=0, CI=95, codon_info='WT_CODON', parameters=False): """Calcualte pNS and their confidence intervals based on specific parameters. INPUTS: ------- data: pd.DataFrame, like 'ALL' min_freq: float, minimum frequency for the allele N: int, number of bootstrapping iterations, time: 0|2|4|6|8, timepoint for which to calcualte CI: int, confidence interval codon_info: column label containing codon data parameters: bool, return pN and pS instead of pNS OUTPUTS: -------- (pNS,CI_L, CI_H) NOTES: ------ Depends on pandas as pd, scikits-learn utilities as sku, numpy as np, calculate_NS() """ #define indices for empirical CI _CI_IND_L, _CI_IND_H = int((100-CI)/200.*N-1),int(-(100-CI)/200.*N) #define recipient variables _eNeS_results = [] _oNoS_results = [] #populate recipient variables based on parts above for trial in range(N): _data = sku.resample(data[(data['FREQUENCY']>=min_freq)& (data['TIME']==time)]) _eNeS_results.append(np.sum([[x[0],x[1]] for x in calculate_NS(''.join(_data[codon_info]))],0)) _oNoS_results.append(np.sum(_data[['TYPE_NSY','TYPE_SYN']],axis=0)) #reformat the output _eNeS_results = np.array(_eNeS_results,dtype=float) _oNoS_results = np.array(_oNoS_results,dtype=float) #calcualte the pN and pS as well as pNS _pN_pS = _oNoS_results/_eNeS_results _pNS = _pN_pS[:,0]/_pN_pS[:,1] #Get the specific indices for the measurements at CI edges _CI_INDS = np.argsort(_pNS)[[_CI_IND_L, _CI_IND_H]] if parameters: return np.median(_pN_pS, axis=0), _pN_pS[_CI_INDS[0]], _pN_pS[_CI_INDS[1]] else: return np.median(_pNS, axis=0), _pNS[_CI_INDS[0]], _pNS[_CI_INDS[1]] #MARKOV CHAINS def transition_matrix_PA(patient_matrix, annotation_dict, steps='Auto', min_freq=0, matrix_print=False, exclude=None,mutation_type=None): """Count the different types of transitions in our patient data and estimate transition probabilites. First convert the matrix to a binary matrix reflecting present/absent. The scoring depends on doubling the first column and subtracting the second. Possible outcomes are: 0 - 0->0 1 - 1->1 2 - 1->0 -1 - 0->1 Incidentally the above is the order in which counts will emerge from "Counter". The transition probabilities are calculated as: p(0->0) = #0/(#0+#-1) p(1->1) = #1/(#1+#2) p(1->0) = #2/(#0+#-1) p(0->1) = #-1/(#1+#2) This calculation is done on the collated counts. INPUTS: ------ patient_matrix: np.array <- populate_poly() annotation_dict: dict, {locus:['LOCUS_ID','synonymous/nonsynonymous'...]} steps: list, transitions to consider. steps[0] start transition, steps[1], number of steps to take. If 'Auto' it will take all the transitions for which there are data. min_freq: minimum frequency matrix_print: bool, print the transition matrix exclude: timepoints to exclude (e.g. missing data) Note that this index should reflect the postion within the patient_matrix. mutation_type ('synonymous'|'nonsynonymous'|'IGR'): only take mutations of a specific type OUTPUT: ------- np.array(p(0->0), p(1->1), p(1->0), p(0->1)) NOTES: ------ This function is based on: http://www.stat.cmu.edu/~cshalizi/462/lectures/06/markov-mle.pdf """ #Note that the patient matrix should be a #2D-np.array with locus at positon 1 and #then allele frequency in the following cols. #Start by transforming the array into a #Boolean array if exclude: patient_matrix = np.delete(patient_matrix,exclude,1) if steps=='Auto': #Just in case we want all the data for a patient #determine earliest timepoint with data _start = min(np.arange(1,8)[patient_matrix[:,1:].sum(0)>0]) #determine the latest timepoint with data and calculate the # of steps n_steps = max(np.arange(1,8)[patient_matrix[:,1:].sum(0)>0])-_start #Turn steps into a list, where [0] is the start position and #[1] is the number of steps. steps = [_start,n_steps] _yesno = np.array(patient_matrix>min_freq,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))] _result = _yesno[:,:-1]*2-_yesno[:,1:] if mutation_type: #filter by mutation type _ref = [float(k) for k,v in annotation_dict.items() if v[0][1]==mutation_type] _mtf = [_ind for _ind,_locus in enumerate(patient_matrix[:,0]) if _locus in _ref] _result = _yesno[_mtf,:-1]*2-_yesno[_mtf,1:] #Define count variables _c = np.array([Counter(_result.flatten()).get(x,0) for x in [0,1,2,-1]], dtype=float) #counts of 0->0, 1->1, 1->0, 0->1 _t = np.array(_c+[_c[i] for i in [3,2,1,0]]) #transition counts to 0 and 1. if matrix_print: print('Transition matrix\n\t0\t1\n0\t%.3f\t%.3f\n1\t%.3f\t%.3f\n' %tuple((_c/_t)[i] for i in [0,2,3,1])) return _c/_t def transition_matrix_PL(patient_matrix, annotation_dict, steps='Auto', min_freq=0, cutoff=0.01, matrix_print=False, exclude=None, mutation_type=None): """Count the different types of transitions in our patient data and estimate transition probabilites. First convert the matrix to a matrix reflecting absent(0)/present<=1%(1)/present>1%(2). The scoring depends on tripling the first column and subtracting the second. Possible outcomes are: 0 - 0 -> 0 1 - 1 -> 1+ 2 - 1 -> 1 3 - 1 -> 0 4 - 1+ -> 1+ 5 - 1+ -> 1 6 - 1+ -> 0 -1 - 0 -> 1 -2 - 0 -> 1+ Incidentally the above is the order in which counts will emerge from "Counter". The transition probabilities are calculated as: p(0->X) = #Xs/(#0+#-1+#-2) p(1->Y) = #Ys/(#1+#2+#3) p(1+->Z) = #Zs/(#4+#5+#6) This calculation is done on the collated counts. INPUTS: ------ patient_matrix: np.array <- populate_poly() annotation_dict: dict, {locus:['LOCUS_ID','synonymous/nonsynonymous'...]} steps: list, transitions to consider. steps[0] start transition, steps[1], number of steps to take. If 'Auto' it will take all the transitions for which there are data. min_freq: minimum frequency cutoff: float, cutoff for inclusion into 1+ matrix_print: bool, print the transition matrix exclude: timepoints to exclude (e.g. missing data) Note that this index should reflect the postion within the patient_matrix. mutation_type ('synonymous'|'nonsynonymous'|'IGR'): only take mutations of a specific type OUTPUT: ------- np.array(p(0->0), p(1->1+), p(1->1), p(1->0),p(1+->1+), p(1+->1), p(1+->0), p(0->1+), p(0->1)) NOTES: ------ This script is based on: http://www.stat.cmu.edu/~cshalizi/462/lectures/06/markov-mle.pdf """ #Note that the patient matrix should be a #2D-np.array with locus at positon 1 and #then allele frequency in the following cols. #Start by transforming the array into a #Boolean array if exclude: patient_matrix = np.delete(patient_matrix,exclude,1) if steps=='Auto': #Just in case we want all the data for a patient n_steps = list(np.array(patient_matrix>0,dtype=int).sum(axis=0)).index(0)-2 steps = [1,n_steps] #Turn steps into a list, where [0] is the start position and [1] is the number of steps. _yesno = np.array(patient_matrix>min_freq,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))]+np.array(patient_matrix>cutoff,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))] _result = _yesno[:,:-1]*3-_yesno[:,1:] if mutation_type: #filter by mutation type _ref = [float(k) for k,v in annotation_dict.items() if v[0][1]==mutation_type] _mtf = [_ind for _ind,_locus in enumerate(patient_matrix[:,0]) if _locus in _ref] _result = _yesno[_mtf,:-1]*3-_yesno[_mtf,1:] #Define count variables _c = np.array([Counter(_result.flatten()).get(x,0) for x in [0,1,2,3,4,5,6,-2,-1]],dtype=float) #counts of 0->0, 1->1, 1->0, 0->1 _t = np.array(_c+[_c[i] for i in [7,2,3,1,5,6,4,8,0]] + [_c[i] for i in [8,3,1,2,6,4,5,0,7]]) #transition counts to 0 and 1. if matrix_print: print('Transition matrix\n\t0\t1\t2\n0\t%.3f\t%.3f\t%.3f\n1\t%.3f\t%.3f\t%.3f\n2\t%.3f\t%.3f\t%.3f\n' %tuple((_c/_t)[i] for i in [0,3,6,-1,2,5,-2,1,4])) return _c/_t def MC_PA_CI(patient_matrix, annotation_dict, min_freq=0, steps='Auto', exclude=None, mutation_type=None): """Merge transition data to re-sample and allow the calculation of transition probability CI. INPUTS: ------- patient_matrix: np.array annotation_dict: dict, {locus:['LOCUS_ID','synonymous/nonsynonymous'...]} min_freq: minimum frequency threshold steps: list of steps to take into consideration exclude: define columns to exclude mutation_type ('synonymous'|'nonsynonymous'|'IGR'): only take mutations of a specific type OUTPUT: ------- flattened np.array of simple outputs """ if exclude: #exclude columns for which we don't have data patient_matrix = np.delete(patient_matrix,exclude,1) if steps=='Auto': #Just in case we want all the data for a patient #Just in case we want all the data for a patient #determine earliest timepoint with data _start = min(np.arange(1,8)[patient_matrix[:,1:].sum(0)>0]) #determine the latest timepoint with data and calculate the # of steps n_steps = max(np.arange(1,8)[patient_matrix[:,1:].sum(0)>0])-_start #Turn steps into a list, where [0] is the start position and #[1] is the number of steps. steps = [_start,n_steps] _yesno = np.array(patient_matrix>min_freq,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))] _result = _yesno[:,:-1]*2-_yesno[:,1:] if mutation_type: #filter by mutation type _ref = [float(k) for k,v in annotation_dict.items() if v[0][1]==mutation_type] _mtf = [_ind for _ind,_locus in enumerate(patient_matrix[:,0]) if _locus in _ref] _result = _yesno[_mtf,:-1]*2-_yesno[_mtf,1:] return _result.flatten() def MC_PL_CI(patient_matrix, annotation_dict, steps='Auto', min_freq=0, cutoff=0.01, exclude=None, mutation_type=None): """Merge transition data to re-sample and allow the calculation of transition probability CI. INPUTS: ------- patient_matrix: np.array annotation_dict: dict, {locus:['LOCUS_ID','synonymous/nonsynonymous'...]} steps: list of steps to take into consideration exclude: define columns to exclude mutation_type ('synonymous'|'nonsynonymous'|'IGR'): only take mutations of a specific type min_freq: minimum allele frequency OUTPUT: ------- flattened np.array of simple outputs """ if exclude: patient_matrix = np.delete(patient_matrix,exclude,1) if steps=='Auto': #Just in case we want all the data for a patient n_steps = list(np.array(patient_matrix>0,dtype=int).sum(axis=0)).index(0)-2 steps = [1,n_steps] #Turn steps into a list, where [0] is the start position and [1] is the number of steps. _yesno = np.array(patient_matrix>min_freq,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))]+np.array(patient_matrix>cutoff,dtype=int)[:,np.arange(steps[0],1+np.sum(steps))] _result = _yesno[:,:-1]*3-_yesno[:,1:] if mutation_type: #filter by mutation type _ref = [float(k) for k,v in annotation_dict.items() if v[0][1]==mutation_type] _mtf = [_ind for _ind,_locus in enumerate(patient_matrix[:,0]) if _locus in _ref] _result = _yesno[_mtf,:-1]*3-_yesno[_mtf,1:] return _result.flatten() #EXCESS MUTATION ACCUMULATION def selection_contingency_generator(genes,dataframe,exclude_check=False): """Generates a contingency table using a given set of genes. It will return two tables, one representing the status at time 0 and one covering the rest. INPUTS: ------- genes: list, genes of interest dataframe: requires a df that has many of the same categories as ALL. exclude_check: False|list, check that all problematic genes are removed. OUTPUTS: -------- nd.array, nd.array the first array is the contingency table at t=0 the second array is the contigency table at t!=0 NOTES: ------ Assumes the given data structure. Return array: [[NS_in, S_in],[NS_not, S_not]] EXAMPLE: -------- ct0, ct1 = selection_contingency_generator(DR_set, ALL, exclude_check=excluded) """ _df = dataframe.copy() if exclude_check: genes = [x for x in genes if x not in exclude_check] _df['INTEREST'] = [int(x in genes) for x in _df.GENE] _a = len(np.unique(_df.LOCUS[(_df.TYPE=='NSY')&(_df.INTEREST==1)&(_df.TIME==0)])) _a2 = len(np.unique(_df.LOCUS[(_df.TYPE=='NSY')&(_df.INTEREST==1)]))-_a _b = len(np.unique(_df.LOCUS[(_df.TYPE=='NSY')&(_df.INTEREST==0)&(_df.TIME==0)])) _b2 = len(np.unique(_df.LOCUS[(_df.TYPE=='NSY')&(_df.INTEREST==0)]))-_b _c = len(np.unique(_df.LOCUS[(_df.TYPE=='SYN')&(_df.INTEREST==1)&(_df.TIME==0)])) _c2 = len(np.unique(_df.LOCUS[(_df.TYPE=='SYN')&(_df.INTEREST==1)]))-_c _d = len(np.unique(_df.LOCUS[(_df.TYPE=='SYN')&(_df.INTEREST==0)&(_df.TIME==0)])) _d2 = len(np.unique(_df.LOCUS[(_df.TYPE=='SYN')&(_df.INTEREST==0)]))-_d return np.array([[_a,_c],[_b,_d]]), np.array([[_a2,_c2],[_b2,_d2]]) def geneset_size(gene_list, locus_dict): """Gives you the cumulative size (in bp) of the specified genes in the genome. INPUTS: ------- gene_list: list, genes of interest locus_dict: dict, keys are genes in gene_list value is gene length float. OUTPUT: ------- float, genomic size in bp. NOTES: ------ This function only calculates the size of genes that are present in the locus_dict, if a gene is not present it will not contribute to the tally. """ total_size = 0. for gene in gene_list: total_size+=locus_dict.get(gene,0) return total_size def get_KEGG_pathway_genes(organism='mtu',pathway='mtu00010'): """Uses requests to query the KEGG REST API and retrieve all the genes in a given pathway. INPUTS: ------- organism: str, KEGG organism code, mtu for H37Rv pathway: str, e.g. mtu00100 is H37Rv glycolysis OUTPUTS: -------- list, genes in the pathway NOTES: ------ Needs a connection and the requests module as rq """ _query = 'http://rest.kegg.jp/link/%s/%s' %(organism, pathway) _fetch = rq.get(_query) _entries = _fetch.content.strip().split('\n') _genes = [x.split('\t')[-1].split(':')[-1] for x in _entries] return _genes def excess_mutation(genes,dataframe,genome_size,locus_dict,exclude_check=False,H37Rv=True): """Performs multiple tests to determine whether or not the number of mutations in a locus is higher than expected. INPUTS: ------- genes: list, genes of interest dataframe: requires a df that has many of the same categories as ALL. genome_size: float, denominator locus_dict: dict, keys are genes in gene_list value is gene length float. exclude_check: False|list, check that all problematic genes are removed. H37Rv: boolean, whether or not to expect H37Rv identifiers. OUTPUTS: -------- dict of data and statistics NOTES: ------ This approach explicity ignores mutations that fall outside of coding regions for the sake of simplicity. Also, the counts are nonredundant (i.e. each allele is only counted once, even if it occurs at multiple timepoints. EXAMPLE: -------- excess_mutation(DR_set, ALL, len(MTB_GENOME), SIZE_DICT, exclude_check=excluded) """ _df = dataframe.copy() if H37Rv: genome_size = geneset_size([x for x in locus_dict.keys() if len(x) in [6,7]], locus_dict) if exclude_check: genes = [x for x in genes if x not in exclude_check] genome_size-=geneset_size(exclude_check, locus_dict) _p_hit = geneset_size(genes, locus_dict)/genome_size _df['INTEREST'] = [int(x in genes) for x in _df.GENE] _a = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='NSY')&(_df.INTEREST==1)&(_df.TIME==0)])) _a2 = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='NSY')&(_df.INTEREST==1)]))-_a _b = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='NSY')&(_df.INTEREST==0)&(_df.TIME==0)])) _b2 = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='NSY')&(_df.INTEREST==0)]))-_b _c = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='SYN')&(_df.INTEREST==1)&(_df.TIME==0)])) _c2 = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='SYN')&(_df.INTEREST==1)]))-_c _d = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='SYN')&(_df.INTEREST==0)&(_df.TIME==0)])) _d2 = len(np.unique(_df.LOCUS[(_df.SNP_TYPE=='SYN')&(_df.INTEREST==0)]))-_d _ct0, _ct1 = np.array([[_a,_c],[_b,_d]]), np.array([[_a2,_c2],[_b2,_d2]]) #_N = len(np.unique(_df.LOCUS)) _N = (_ct0+_ct1).sum() _result = {} #Enrichment of mutations following treatment initiation ie more mutations than expected once treatment has comenced try: _result['Enrichment'] = ss.chi2_contingency(np.vstack((_ct0.sum(1),_ct1.sum(1))),lambda_='log-likelihood') except: _result['Enrichment'] = ss.fisher_exact(np.vstack((_ct0.sum(1),_ct1.sum(1)))) #Excess of mutations within given region (G-test, based on probability null) try: _result['Excess_Gtest'] = ss.chi2_contingency(np.vstack(((_ct0+_ct1).sum(1), np.array([_N*_p_hit, _N*(1-_p_hit)]))),lambda_='log-likelihood') except: _result['Excess_Fisher'] = ss.fisher_exact(np.vstack(((_ct0+_ct1).sum(1), np.array([_N*_p_hit, _N*(1-_p_hit)])))) #Excess of mutations within given region (Binomial tet, based on probability null) try: _result['Excess_binomial'] = ss.binom_test([_a+_a2+_c+_c2,_N-(_a+_a2+_c+_c2)],p=_p_hit,alternative='greater') except: _result['Excess_binomial'] = 'Failed' #Relative accumulation of nonsynonymous and synonymous polymorphisms try: _result['NS_binomial'] = ss.binom_test(_ct1[0],p=float(_ct1[1,0])/np.sum(_ct1[1]),alternative='greater') except: _result['NS_binomial'] = 'Failed' try: _result['Excess_binomial_treatment'] = ss.binom_test(sum(_ct1[0]), sum(_ct1),p=_p_hit,alternative='greater') except: _result['Excess_binomial_treatment'] = 'Failed' try: _result['NS_all'] = ss.chi2_contingency((_ct0+_ct1),lambda_='log-likelihood') except: _result['NS_all'] = ss.fisher_exact((_ct0+_ct1)) #Relative accumulation of nonsynonymous and synonymous polymorphisms following treatment try: _result['NS_treatment'] = ss.chi2_contingency(_ct1,lambda_='log-likelihood') except: _result['NS_treatment'] = ss.fisher_exact(_ct1) #Relative accumulation of nonsynonymous and synonymous polymorphisms prior to treatment try: _result['NS_diagnosis'] = ss.chi2_contingency(_ct0,lambda_='log-likelihood') except: _result['NS_diagnosis'] = ss.fisher_exact(_ct0) #Data used to calculate statistics _result['Data'] = [_ct0, _ct1, _p_hit, _N, genome_size, geneset_size(genes, locus_dict)] return _result def ScoreData(data,mapper,output='sum'): """Scores a collection of data based on a score mapper. INPUTS: ------- data: 1darray-like mapper: dict, items in 'data' are keys values are int or float. output: 'sum'|'mean' OUTPUT: -------- float NOTES: ------ Expects the items in a list to be the same as keys in the mapper. Uses dict.get() returning 0 for queries that are not in the mapper dictionary. EXAMPLE: -------- E.g. a list of codons ('codons') needs to be scored for the probability of being mutated to a nonsynonymous codon ('scores'): codons = ['ATG','GGT'] scores = {'ATG': 1., 'GGT': 0.67} ScoreData(codons, scores, output='mean') >>> 0.835 """ _score = sum([mapper.get(_x,0) for _x in data]) if output=='mean': return float(_score)/len(data) else: return float(_score) def BinomialExcess(genes,dataframe,genome_size,locus_dict,score_dict,exclude_check=False,H37Rv=True,codons='WT_CODON'): """Performs binomal tests to determine whether or not the number of mutations in a locus is higher than expected and whether they are more likely than expected to be NSY. INPUTS: ------- genes: list, genes of interest dataframe: requires a df that has many of the same categories as ALL. genome_size: float, denominator locus_dict: dict, keys are genes in gene_list value is gene length float. score_dict: dict, keys are codons in dataframe[codons] value is probabiliy of NSY float. exclude_check: False|list, check that all problematic genes are removed. H37Rv: boolean, whether or not to expect H37Rv identifiers. codons: str, category in dataframe containing codon info. OUTPUTS: -------- list(p_excess_mutations[2-tail], p_excess_NSY[2-tail], p_excess_mutations[1-tail], p_excess_NSY[1-tail]) NOTES: ------ This approach explicity ignores mutations that fall outside of coding regions for the sake of simplicity. Also, the counts are nonredundant (i.e. each allele is only counted once, even if it occurs at multiple timepoints. It also needs a dataframe where wild type codons are specified as it estimates the probability of observing a given number of NSY - diffrent models of substitution can be accounted for by using specific score_dict. EXAMPLE: -------- BinomialExcess(DR_set, ALL, len(MTB_GENOME), SIZE_DICT, Pr_N, exclude_check=excluded) """ _df = dataframe.copy() if H37Rv: genome_size = geneset_size([x for x in locus_dict.keys() if len(x) in [6,7]], locus_dict) if exclude_check: genes = [x for x in genes if x not in exclude_check] genome_size-=geneset_size(exclude_check, locus_dict) _p_hit = geneset_size(genes, locus_dict)/genome_size _df['INTEREST'] = [int(x in genes) for x in _df.GENE] _a2 = len(np.unique(_df.LOCUS[(_df.TYPE=='NSY')&(_df.INTEREST==1)&(_df.TIME!=0)])) _c2 = len(np.unique(_df.LOCUS[(_df.TYPE=='SYN')&(_df.INTEREST==1)&(_df.TIME!=0)])) _l2 = len(np.unique(_df.LOCUS[(_df['TYPE'].isin(['NSY','SYN']))&(_df.TIME!=0)])) _p_N = ScoreData(list(_df[_df['TYPE'].isin(['NSY','SYN'])].drop_duplicates('LOCUS')[codons]), score_dict, output='mean') return [[_a2,_c2,_l2],ss.binom_test((_a2+_c2),_l2,p=_p_hit), ss.binom_test(_a2,(_a2+_c2),p=_p_N), ss.binom.sf((_a2+_c2)-1, _l2, _p_hit), ss.binom.sf(_a2-1, (_a2+_c2), _p_N)] #GENE ANNOTATION def mutated_gene_id(SNP_position, gene_matrix): """Identify the location of a SNP. INPUTS: ------- SNP_position: locus, integer gene_matrix: ND-array, start..stop OUTPUT: ------- int, upstream edge of mutated locus. NOTES: ------ This was established to be used on our MTB_anc annotation. It will return the start positon of a gene to be used with REF_annotation. REF_annotation={start:[end, orientation, locus_ID],...} The rationale is: the only case where (start-SNP)*(end-SNP) is negative will be when start<SNP<end. Both start<end<SNP and SNP<start<end will produce positive values when multiplied. NB. If the SNP falls exactly at the edge of a locus the product will be zero. Therefore we're looking for non-positive products. """ return int(gene_matrix[np.product(gene_matrix-SNP_position, axis=1)<=0][0][0]) def codon_fetch(SNP_position, gene_cooridnates, genome, return_params=False): """Extracts the codon based on a SNP coordinate. INPUTS: ------- SNP_position: locus, integer gene_coordinate: tuple, pythonic indices genome: string, fasta of the genome return_params: bool, return position information OUTPUT: ------- codon: if coding, else IGR NOTES: ------ This was established to be used on our MTB_anc annotation """ _gene_start = gene_cooridnates[0] _gene_end = gene_cooridnates[1] if _gene_start<_gene_end: #Forward gene _into_gene = SNP_position-_gene_start _direction = 1 #set direction, 1 for F, -1 for R if _gene_start>_gene_end: #Reverse gene _into_gene = _gene_start-SNP_position _direction = -1 _codon_position = int(_into_gene)/3+1 #codon _position_in_codon = (int(_into_gene)%3+1)*_direction #base in codon [1,2,3] for F or [-1,-2,-3] for R _slice = {1:(0,3), 2:(-1,2), 3:(-2,1), -1:(-2,1), -2:(-1,2), -3:(0,3)} #define codon locations _begin = SNP_position+_slice[_position_in_codon][0] #where to begin slicing a genome _end = SNP_position+_slice[_position_in_codon][1] #where to end slicing a genome if _direction==1: if return_params: return genome[_begin:_end], _codon_position, _position_in_codon else: return genome[_begin:_end] if _direction==-1: #Need the reverse complement of the codon. Used the translate function from #the string module. xmz = 'ATGC' #the basis for the replacement mzx = 'TACG' complement=(genome[_begin:_end].translate(str.maketrans(xmz, mzx))) #generate complement if return_params: return complement[::-1], _codon_position, _position_in_codon else: return complement[::-1] #reverse complement def mutation_classifier(reference_base, alternative_base): """ Determine mutation type: transition vs transversion INPUTS: ------- refrence_base: A|C|G|T reference base, upper case string alternative_base: A|C|G|T mutated base, upper case string OUTPUT: ------- int: 0 for transversion, 1 for transition. NOTES: ------ see: https://en.wikipedia.org/wiki/Transition_(genetics) """ _mutation_class = {'A':'G', 'C':'T', 'G':'A', 'T':'C'} return int(_mutation_class[reference_base]==alternative_base) def SNP_annotate(SNP_position, wt_base, mut_base, locus_matrix, reference, genome, codon_table): """Generate a basic annotation for SNPs. INPUTS: ------- SNP_position: locus, integer wt_base: str, reference base mut_base: str, mutant base locus_matrix: 2D-array, [[start,end],...] reference: dict, {start:[end,direction,gene],...} genome: genome sequence in FASTA codon_table: {codon: AA,...} OUTPUT: ------- list: [Rv, mutation_type, codon positon, AA/AA, W_codon-M_codon, Ti] if IGR: [Rv-Rv, 'IGR', -, ---, _N-M_, Ti] if RNA: [name, 'RNA', '-', '---', W#posM, Ti] NOTES: ------ This was established to be used on our MTB_anc annotation and with the H37Rv_QC snp input data: pos wt_base alt_base freq """ _gene_internal_id = mutated_gene_id(SNP_position, locus_matrix) _gene = reference[_gene_internal_id][2] if reference[_gene_internal_id][1]=='+': _start, _end = _gene_internal_id,reference[_gene_internal_id][0] #define start and end of CDS _wt_codon, _codon_pos, _pos_in_codon = codon_fetch(SNP_position, (_start,_end), genome, return_params=True) #get codon information _mut_codon = _wt_codon[:abs(_pos_in_codon)-1]+mut_base+_wt_codon[abs(_pos_in_codon):] #derive the mutated codon, change the position affected by the mutation keeping the other two #Call the mutation type if codon_table[_wt_codon]==codon_table[_mut_codon]: _mutation_type='synonymous' if codon_table[_wt_codon]!=codon_table[_mut_codon]: _mutation_type='nonsynonymous' #Generate the information output return [_gene, _mutation_type, _codon_pos, '%s/%s' %(codon_table[_wt_codon], codon_table[_mut_codon]), '%s-%s' %(_wt_codon, _mut_codon),mutation_classifier(wt_base, mut_base)] if reference[_gene_internal_id][1]=='-': _complementary_base = {'A':'T', 'C':'G', 'G':'C', 'T':'A'} #Assumes all SNP calls are done in the + orientation. _start, _end = reference[_gene_internal_id][0]-1, _gene_internal_id+2 #define start and end of CDS, need to tweak a bit, to make sure we stay in frame. Keep an eye out. #The values used here were determined based on a manual insepction of one gene. _wt_codon, _codon_pos, _pos_in_codon = codon_fetch(SNP_position, (_start,_end), genome, return_params=True) #get codon information _mut_codon = _wt_codon[:abs(_pos_in_codon)-1]+_complementary_base[mut_base]+_wt_codon[abs(_pos_in_codon):] #derive the mutated codon, change the position affected by the mutation keeping the other two #Call the mutation type if codon_table[_wt_codon]==codon_table[_mut_codon]: _mutation_type='synonymous' if codon_table[_wt_codon]!=codon_table[_mut_codon]: _mutation_type='nonsynonymous' #Generate the information output return [_gene, _mutation_type, _codon_pos, '%s/%s' %(codon_table[_wt_codon], codon_table[_mut_codon]), '%s-%s' %(_wt_codon, _mut_codon),mutation_classifier(wt_base, mut_base)] if reference[_gene_internal_id][1]=='I': _gene = reference[_gene_internal_id][2].split('_')[1] #Modify _gene to reflect only the position of the intergenic region. _len_to_symbol = {3:'+',6:'+', 7:'-', 9:'..'} #define dict to be used for the construction of the IGR tag string. NB this trick does not work for CCDC5079. In that case '..' is added on both sides of the gene... _up,_down = _len_to_symbol.get(len(_gene.split('-')[0]),'..'), _len_to_symbol.get(len(_gene.split('-')[1]),'..') #get +/- for F and R genes respectively _IGR_tag = '%s%d-%d%s' %(_up,SNP_position-_gene_internal_id,reference[_gene_internal_id][0]-SNP_position,_down) #generate IGR tag: +/- denotes whether the upstream or downstream if F or R. Distance from start/end of neighbouring genes return [_gene, 'IGR', '-', '---', _IGR_tag, mutation_classifier(wt_base, mut_base)] #define output list if reference[_gene_internal_id][1]=='R': _start, _end = _gene_internal_id,reference[_gene_internal_id][0] #get start and stop for ncRNA _into_gene = SNP_position-_start #get position in ncRNA _RNA_tag = '%s%d%s' %(wt_base, _into_gene, mut_base) return [_gene, 'RNA', '-', '---', _RNA_tag, mutation_classifier(wt_base, mut_base)] #define output list #Define functions def logistic(x, K, r, N0): """Generate a logistic curve Input ------- x: 1D array K: carrying capacity r: Growth rate N0: starting population Output ------- Calculates the population at time x given the parameters using a simple logistic model adapted from wikipedia: http://en.wikipedia.org/wiki/Logistic_function Notes ------- Made to be used with scipy.optimize.curve_fit """ return (K*N0*np.exp(r*x))/(K+N0*(np.exp(r*x)-1)) def exp_decay(x, N, k): """Calculate the exponential decay of a number. Input ------- x: 1D array N: Starting population k: exponential decay constant Output ------- 1D array Notes ------- Adapted form: http://en.wikipedia.org/wiki/Exponential_decay """ return N*np.exp(-x/k) def demo_dynamic(g, N0, r, K, k, point_A, point_S, r_=None, K_=None): """Demographic function of growth, cell death, sampling and regrowth. INPUT: ------ g: number of generations to be conisdered N0: starting population (logistic) r: growth rate (logistic) K: carrying capacity (logistic) k: decay rate (exponential decay) point_A: generation of effective treatment point_S: generation of sampling r_: growth rate of re-growth K_: carrying capacity of re-growth OUTPUT: ------- Population size dynamics NOTES: ------ Modelled on: http://simupop.sourceforge.net/manual_release/build/userGuide_ch8_sec2.html therefore expected to be called as: demo_func = demo_dynamic(101, 100., np.log(2), 100000., 15., 30, 60) demo_func(70) : population size at generation 70 """ if r_==None: r_ = r if K_==None: K_ = K _unperturbed = logistic(np.arange(g), K, r, N0) _decayed = exp_decay(np.arange(g), _unperturbed[point_A], k) _regrown = logistic(np.arange(g), K_, r_, _decayed[point_S-point_A]*0.001) #1/1000 dilution _overall = np.concatenate((_unperturbed[:point_A], _decayed[:point_S-point_A], _regrown)) def snipett(gen): return _overall[gen] return snipett
gpl-3.0
liberatorqjw/scikit-learn
sklearn/feature_extraction/hashing.py
29
5648
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : NumPy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
mahak/spark
python/pyspark/pandas/tests/test_dataframe_spark_io.py
14
19999
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import unittest import glob import os import numpy as np import pandas as pd import pyarrow as pa from pyspark import pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils class DataFrameSparkIOTest(PandasOnSparkTestCase, TestUtils): """Test cases for big data I/O using Spark.""" @property def test_column_order(self): return ["i32", "i64", "f", "bhello"] @property def test_pdf(self): pdf = pd.DataFrame( { "i32": np.arange(20, dtype=np.int32) % 3, "i64": np.arange(20, dtype=np.int64) % 5, "f": np.arange(20, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=20).astype("O"), }, columns=self.test_column_order, index=np.random.rand(20), ) return pdf def test_parquet_read(self): with self.temp_dir() as tmp: data = self.test_pdf self.spark.createDataFrame(data, "i32 int, i64 long, f double, bhello string").coalesce( 1 ).write.parquet(tmp, mode="overwrite") def check(columns, expected): if LooseVersion("0.21.1") <= LooseVersion(pd.__version__): expected = pd.read_parquet(tmp, columns=columns) actual = ps.read_parquet(tmp, columns=columns) self.assertPandasEqual(expected, actual.to_pandas()) check(None, data) check(["i32", "i64"], data[["i32", "i64"]]) check(["i64", "i32"], data[["i64", "i32"]]) if LooseVersion(pa.__version__) < LooseVersion("1.0.0"): # TODO: `pd.read_parquet()` changed the behavior due to PyArrow 1.0.0. # We might want to adjust the behavior. Let's see how pandas handles it. check(("i32", "i64"), data[["i32", "i64"]]) check(["a", "b", "i32", "i64"], data[["i32", "i64"]]) check([], pd.DataFrame([])) check(["a"], pd.DataFrame([])) check("i32", pd.DataFrame([])) check("float", data[["f"]]) # check with pyspark patch. if LooseVersion("0.21.1") <= LooseVersion(pd.__version__): expected = pd.read_parquet(tmp) else: expected = data actual = ps.read_parquet(tmp) self.assertPandasEqual(expected, actual.to_pandas()) # When index columns are known pdf = self.test_pdf expected = ps.DataFrame(pdf) expected_idx = expected.set_index("bhello")[["f", "i32", "i64"]] actual_idx = ps.read_parquet(tmp, index_col="bhello")[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) def test_parquet_read_with_pandas_metadata(self): with self.temp_dir() as tmp: expected1 = self.test_pdf path1 = "{}/file1.parquet".format(tmp) expected1.to_parquet(path1) self.assert_eq(ps.read_parquet(path1, pandas_metadata=True), expected1) expected2 = expected1.reset_index() path2 = "{}/file2.parquet".format(tmp) expected2.to_parquet(path2) self.assert_eq(ps.read_parquet(path2, pandas_metadata=True), expected2) expected3 = expected2.set_index("index", append=True) path3 = "{}/file3.parquet".format(tmp) expected3.to_parquet(path3) self.assert_eq(ps.read_parquet(path3, pandas_metadata=True), expected3) def test_parquet_write(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_parquet(tmp, mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_parquet(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_parquet(tmp, mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_parquet(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) def test_table(self): with self.table("test_table"): pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.spark.to_table("test_table", mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_table("test_table") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_table("test_table", mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_table("test_table") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # When index columns are known expected_idx = expected.set_index("bhello")[["f", "i32", "i64"]] actual_idx = ps.read_table("test_table", index_col="bhello")[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) expected_idx = expected.set_index(["bhello"])[["f", "i32", "i64"]] actual_idx = ps.read_table("test_table", index_col=["bhello"])[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) expected_idx = expected.set_index(["i32", "bhello"])[["f", "i64"]] actual_idx = ps.read_table("test_table", index_col=["i32", "bhello"])[["f", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) def test_spark_io(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_spark_io(tmp, format="json", mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_spark_io(tmp, format="json") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_spark_io( tmp, format="json", mode="overwrite", partition_cols=["i32", "bhello"] ) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_spark_io(path=tmp, format="json") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # When index columns are known pdf = self.test_pdf expected = ps.DataFrame(pdf) col_order = ["f", "i32", "i64"] expected_idx = expected.set_index("bhello")[col_order] actual_idx = ps.read_spark_io(tmp, format="json", index_col="bhello")[col_order] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) @unittest.skip("openpyxl") def test_read_excel(self): with self.temp_dir() as tmp: path1 = "{}/file1.xlsx".format(tmp) self.test_pdf[["i32"]].to_excel(path1) self.assert_eq(ps.read_excel(open(path1, "rb")), pd.read_excel(open(path1, "rb"))) self.assert_eq( ps.read_excel(open(path1, "rb"), index_col=0), pd.read_excel(open(path1, "rb"), index_col=0), ) self.assert_eq( ps.read_excel(open(path1, "rb"), index_col=0, squeeze=True), pd.read_excel(open(path1, "rb"), index_col=0, squeeze=True), ) self.assert_eq(ps.read_excel(path1), pd.read_excel(path1)) self.assert_eq(ps.read_excel(path1, index_col=0), pd.read_excel(path1, index_col=0)) self.assert_eq( ps.read_excel(path1, index_col=0, squeeze=True), pd.read_excel(path1, index_col=0, squeeze=True), ) self.assert_eq(ps.read_excel(tmp), pd.read_excel(path1)) path2 = "{}/file2.xlsx".format(tmp) self.test_pdf[["i32"]].to_excel(path2) self.assert_eq( ps.read_excel(tmp, index_col=0).sort_index(), pd.concat( [pd.read_excel(path1, index_col=0), pd.read_excel(path2, index_col=0)] ).sort_index(), ) self.assert_eq( ps.read_excel(tmp, index_col=0, squeeze=True).sort_index(), pd.concat( [ pd.read_excel(path1, index_col=0, squeeze=True), pd.read_excel(path2, index_col=0, squeeze=True), ] ).sort_index(), ) with self.temp_dir() as tmp: path1 = "{}/file1.xlsx".format(tmp) with pd.ExcelWriter(path1) as writer: self.test_pdf.to_excel(writer, sheet_name="Sheet_name_1") self.test_pdf[["i32"]].to_excel(writer, sheet_name="Sheet_name_2") sheet_names = [["Sheet_name_1", "Sheet_name_2"], None] pdfs1 = pd.read_excel(open(path1, "rb"), sheet_name=None, index_col=0) pdfs1_squeezed = pd.read_excel( open(path1, "rb"), sheet_name=None, index_col=0, squeeze=True ) for sheet_name in sheet_names: psdfs = ps.read_excel(open(path1, "rb"), sheet_name=sheet_name, index_col=0) self.assert_eq(psdfs["Sheet_name_1"], pdfs1["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1["Sheet_name_2"]) psdfs = ps.read_excel( open(path1, "rb"), sheet_name=sheet_name, index_col=0, squeeze=True ) self.assert_eq(psdfs["Sheet_name_1"], pdfs1_squeezed["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1_squeezed["Sheet_name_2"]) self.assert_eq( ps.read_excel(tmp, index_col=0, sheet_name="Sheet_name_2"), pdfs1["Sheet_name_2"], ) for sheet_name in sheet_names: psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0) self.assert_eq(psdfs["Sheet_name_1"], pdfs1["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1["Sheet_name_2"]) psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0, squeeze=True) self.assert_eq(psdfs["Sheet_name_1"], pdfs1_squeezed["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1_squeezed["Sheet_name_2"]) path2 = "{}/file2.xlsx".format(tmp) with pd.ExcelWriter(path2) as writer: self.test_pdf.to_excel(writer, sheet_name="Sheet_name_1") self.test_pdf[["i32"]].to_excel(writer, sheet_name="Sheet_name_2") pdfs2 = pd.read_excel(path2, sheet_name=None, index_col=0) pdfs2_squeezed = pd.read_excel(path2, sheet_name=None, index_col=0, squeeze=True) self.assert_eq( ps.read_excel(tmp, sheet_name="Sheet_name_2", index_col=0).sort_index(), pd.concat([pdfs1["Sheet_name_2"], pdfs2["Sheet_name_2"]]).sort_index(), ) self.assert_eq( ps.read_excel( tmp, sheet_name="Sheet_name_2", index_col=0, squeeze=True ).sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_2"], pdfs2_squeezed["Sheet_name_2"]] ).sort_index(), ) for sheet_name in sheet_names: psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0) self.assert_eq( psdfs["Sheet_name_1"].sort_index(), pd.concat([pdfs1["Sheet_name_1"], pdfs2["Sheet_name_1"]]).sort_index(), ) self.assert_eq( psdfs["Sheet_name_2"].sort_index(), pd.concat([pdfs1["Sheet_name_2"], pdfs2["Sheet_name_2"]]).sort_index(), ) psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0, squeeze=True) self.assert_eq( psdfs["Sheet_name_1"].sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_1"], pdfs2_squeezed["Sheet_name_1"]] ).sort_index(), ) self.assert_eq( psdfs["Sheet_name_2"].sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_2"], pdfs2_squeezed["Sheet_name_2"]] ).sort_index(), ) def test_read_orc(self): with self.temp_dir() as tmp: path = "{}/file1.orc".format(tmp) data = self.test_pdf self.spark.createDataFrame(data, "i32 int, i64 long, f double, bhello string").coalesce( 1 ).write.orc(path, mode="overwrite") # `spark.write.orc` create a directory contains distributed orc files. # But pandas only can read from file, not directory. Therefore, we need orc file path. orc_file_path = glob.glob(os.path.join(path, "*.orc"))[0] expected = data.reset_index()[data.columns] actual = ps.read_orc(path) self.assertPandasEqual(expected, actual.to_pandas()) # columns columns = ["i32", "i64"] expected = data.reset_index()[columns] actual = ps.read_orc(path, columns=columns) self.assertPandasEqual(expected, actual.to_pandas()) # index_col expected = data.set_index("i32") actual = ps.read_orc(path, index_col="i32") self.assert_eq(actual, expected) expected = data.set_index(["i32", "f"]) actual = ps.read_orc(path, index_col=["i32", "f"]) self.assert_eq(actual, expected) # index_col with columns expected = data.set_index("i32")[["i64", "bhello"]] actual = ps.read_orc(path, index_col=["i32"], columns=["i64", "bhello"]) self.assert_eq(actual, expected) expected = data.set_index(["i32", "f"])[["bhello", "i64"]] actual = ps.read_orc(path, index_col=["i32", "f"], columns=["bhello", "i64"]) self.assert_eq(actual, expected) msg = "Unknown column name 'i'" with self.assertRaises(ValueError, msg=msg): ps.read_orc(path, columns="i32") msg = "Unknown column name 'i34'" with self.assertRaises(ValueError, msg=msg): ps.read_orc(path, columns=["i34", "i64"]) def test_orc_write(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_orc(tmp, mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_orc(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_orc(tmp, mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_orc(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) if __name__ == "__main__": from pyspark.pandas.tests.test_dataframe_spark_io import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
ronaldahmed/labor-market-demand-analysis
shallow parsing models/utils.py
1
37005
# -*- coding: utf-8 -*- __author__ = 'ronald' import os, sys import time import re, string import pymongo from pymongo import MongoClient import nltk from nltk import UnigramTagger, BigramTagger, TrigramTagger from nltk.tag.hmm import HiddenMarkovModelTagger from nltk.probability import * import pickle import ancora import pdb, ipdb EXT_CORPUS_PATH = '../../nlp/' START = '_START_' END = '_END_' START_TAG = '<START>' END_TAG = '<STOP>' BR = '**' RARE = "<RARE>" NO_LABELS = [ START_TAG, END_TAG, BR, RARE, ] ############################################################################################ GAZETTERS_DIR = 'external_gazetters/' ############################################################################################ vinetas = ['?', 'โ—ฆ', # agregar aki + viรฑetas q sean caracter especial en regex '+', '.', '~', '*', # limite para viรฑetas regex-special 'โ€ข', 'ยบ', 'ยป', 'ยท', 'ยฐ', 'ยฌ', 'ยช', 'ยจ', 'ยง', 'รฐ', 'โ†’', 'ร—', '-', # SIEMPRE AL FINAL -- NO MOVER ] thr = vinetas.index('*') norm_vineta = [] for (i, vin) in enumerate(vinetas): if i > thr: norm_vineta.append(r'\n\s*%s+' % vin) else: norm_vineta.append(r'\n\s*\%s+' % vin) # norm_vineta.append(r'\n\s*[0-9]{0,2}[.)]-?') norm_vineta.append(r'^ *\d+[.)-](?:\d[.)-]*)*') # match con cualquier numero del formato 1.12.12.- norm_vineta.append(r'^ *[a-zA-Z]\d*[.)-](?:[a-zA-Z]?\d*[.)-]+)*') # match con a) A) a.1) a.2.- etc.. roman = r'(?:X(?:X(?:V(?:I(?:I?I)?)?|X(?:I(?:I?I)?)?|I(?:[VX]|I?I)?)?|V(?:I(?:I?I)?)?|I(?:[VX]|I?I)?)?|' \ r'V(?:I(?:I?I)?)?|I(?:[VX]|I?I)?)' norm_vineta.append(r'^ *' + roman + r'[\da-zA-Z]{0,2}[.)-](' + roman + '?[.)-]*[\da-zA-Z]{0,2}[.)-]+)*') # REGEX CASES # Normalizar viรฑetas norm_vineta = re.compile('|'.join(norm_vineta), re.UNICODE | re.MULTILINE) # SI O SI VIร‘ETA unicode_vineta = re.compile('[โ€ขยบยปยทยฐยฌยชยจยง~รฐโ†’ร—]', re.UNICODE) META_VINETA = '*' # curar lineas en blanco blank_line = re.compile(r'\n(\s*[.:,;-]*\s*\n)*', re.UNICODE) # Caso de dinero # money = re.compile(r'(?P<total>(?P<currency>[sS$])\s*/\s*\.?\s*(?P<number>[0-9]+))') soles = r'(?P<totalSoles>(?P<currencySoles>[sS])(?=.*[.,/])\s*/?\s*\.?\s*/?\s*(?P<numberSoles>(\d+ ?[.,]? ?)+))' dolar = r'(?P<totalDolar>(?P<currencyDolar>[$])\s*/?\s*\.?\s*/?\s*(?P<numberDolar>(\d+ ?[.,]? ?)+))' money = re.compile(soles + r'|' + dolar) dinero = re.compile(r'(?P<number>(\d+ ?[.,]? ?)+)') hora = re.compile(r'(^|\s)\d{1,2} ?: ?\d{1,2}') # Normalizar comillas comillas = ['"', "'", '`', 'โ€œ', 'โ€','ยซ','ยป','ยด'] # ยจ se hace strip nomas norm_comillas = re.compile(r'[%s]+' % ''.join(comillas), re.UNICODE) META_COMILLA = '"' # reducir puntuaciones duplicadas doubled = [',', ';', ':', '_', '!', 'ยก', '?', 'ยฟ'] + vinetas[:vinetas.index('+')] + vinetas[vinetas.index('+') + 1:] clean_doubled = re.compile(r'(?P<multi>[%s]+)' % (''.join(doubled)), re.UNICODE) # CORRECION DE TILDES tildes = [ ('ร ', 'รก'), ('รจ', 'รฉ'), ('รฌ', 'รญ'), ('รฒ', 'รณ'), ('รน', 'รบ'), ('ร€', 'ร'), ('รˆ', 'ร‰'), ('รŒ', 'ร'), ('ร’', 'ร“'), ('ร™', 'รš'), ('รบu', 'รบ'), ('รงc', 'c'), ('รฉtc', 'etc'), ('ยธ', ' '), ('ยฎ', ''), ('ยฉ', '@'), ('รค', 'a'), ('รซ', 'e'), ('รฏ', 'i'), ('รถ', 'o'), ('รผ', 'u'), ('ร„', 'A'), ('ร‹', 'E'), ('ร', 'I'), ('ร–', 'O'), ('รœ', 'U'), ('รฟ', 'y'), ('รข', 'รก'), ('รช', 'รฉ'), ('รฎ', 'รญ'), ('รด', 'รณ'), ('รป', 'รบ'), ('ร‚', 'ร'), ('รŠ', 'ร‰'), ('รŽ', 'ร'), ('ร”', 'ร“'), ('ร›', 'รš'), ] ######################################################################################################################################################################################## def separate_number(match): for key in match.groupdict(): if key == 'prefix': return match.group('prefix') + ' ' + match.group('number') if len(match.group('number')) == 1 and len(match.group('word')) == 1: return match.group('number') + match.group('word') return match.group('number') + ' ' + match.group('word') def separate_suffix(match): return match.group('word') + ' ' def clean_space(text): import re text = re.sub('[ \r\t\f\v]+', ' ', text) text = re.sub('(\n+ *)+', '\n', text) return text def corrections_tokenizer(text): # reemplazar puntuacion โ€“ -> - text = text.replace('โ€“', '-') text = text.replace('โ€ฆ', '.') # correciones de tildes for wrong, good in tildes: text = text.replace(wrong, good) ########################################## pattern3 = re.compile(r'\b(?P<first>[0-9]{1,2})y(?P<second>[0-9]{1,2})\b') # 1y30, 08y30 match = pattern3.search(text) while match: ntext = text[:match.start()] + match.group('first') + ':' + match.group('second') + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ########################################## pat_number = re.compile(r'(?P<number>[\d]{1,2})(?P<word>[a-zA-Z]+)') # 6meses 1hora text = pat_number.sub(separate_number, text) text = clean_space(text) #ipdb.set_trace() ########################################## pattern3 = re.compile(r'\b[oรณ]\s*/\s*[yรฝ]\b') # y/0 match = pattern3.search(text) while match: ntext = text[:match.start()] + 'y/o' + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ########################################## pattern3 = re.compile(r'\b[yeoรฝ]\s*7\s*[opรณ0]\b') # y/0 match = pattern3.search(text) while match: ntext = text[:match.start()] + 'y/o' + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ########################################## pattern3 = re.compile(r'\b[yeoรฝ]\s*/\s*[pรณ0]\b') # y/0 match = pattern3.search(text) while match: ntext = text[:match.start()] + 'y/o' + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ########################################## pattern3 = re.compile(r'(?P<first>[a-z]) ?/ (?P<second>[a-z])') # y / o y/ o match = pattern3.search(text) while match: ntext = text[:match.start()] + match.group('first') + '/' + match.group('second') + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext pattern3 = re.compile(r'(?P<first>[a-z]) / ?(?P<second>[a-z])') # y / o y /o match = pattern3.search(text) while match: ntext = text[:match.start()] + match.group('first') + '/' + match.group('second') + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ############################################ # pat_parenthesis = re.compile(r'^[(] ?([aA][sS]|[eE][sS]|[aA]|[oO]|[oO][sS]) ?[)]$') pat_parenthesis = re.compile(r'(?P<word>[a-zA-Z]{3,} ?)(?P<suffix>[(] ?[a-zA-z]{0,2} ?[)])') text = pat_parenthesis.sub(separate_suffix, text) text = clean_space(text) pat_slash = re.compile(r'(?P<word>[a-zA-Z]{3,} ?)(?P<suffix>[/] ?([a-zA-z]{1,2}) )') text = pat_slash.sub(separate_suffix, text) text = clean_space(text) ########################################### pat_number = re.compile(r'(?P<prefix>[nN]ยฐ)(?P<number>\d+)') # Nยฐ123 text = pat_number.sub(separate_number, text) ########################################### pattern3 = re.compile(r'x{3,}') # xxxxxxxxxxxxxxxxxxxx match = pattern3.search(text) while match: ntext = text[:match.start()] + 'xxx' + text[match.end():] match = pattern3.search(ntext) if text == ntext: break text = ntext ########################################## text = clean_space(text) return text def specialCases(words): ans = [] change = False dolar = False for (i, word) in enumerate(words): # eliminar tilde no intencional word = word.strip('ยด') match = money.search(word) if match: # is it currency? curr = match.group('currencySoles') if curr is None: curr = match.group('currencyDolar') if curr.lower() == 's' and '/.' not in word: word = word.replace('/', '/.') change = True ans.append(word) continue if word == '$': dolar = True ans.append(word) continue if dolar: match = dinero.search(word) if match is None: dolar = False ans.append(word) continue ans[-1] += word change = True dolar = False continue if '#' == word: if i - 1 >= 0 and len(ans) > 0: if ans[-1] == 'c' or ans[-1] == 'C': ans[-1] += word change = True else: ans.append(word) continue if '*' in word and len(word) > 1: splitWord = word.split('*') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('*') change = True ans.pop() continue if 'ยก' in word and len(word) > 1: splitWord = word.split('ยก') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('ยก') change = True ans.pop() continue if 'ยฟ' in word and len(word) > 1: splitWord = word.split('ยฟ') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('ยฟ') change = True ans.pop() continue if ':' in word and len(word) > 1: splitWord = word.split(':') match = hora.search(word) if match: ans.append(word) continue for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append(':') change = True ans.pop() continue if '_' in word and len(word) > 1: splitWord = word.split('_') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('_') change = True ans.pop() continue if '\\' in word and len(word) > 1: splitWord = word.split('\\') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('\\') change = True ans.pop() continue if '\'' in word and len(word) > 1: splitWord = word.split('\'') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('\'') change = True ans.pop() continue if '|' in word and len(word) > 1: splitWord = word.split('|') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('|') change = True ans.pop() continue if '/' in word and len(word) > 1: if word.count('/') >= 2: splitWord = word.split('/') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('/') change = True ans.pop() else: slashPos = word.find('/') if len(word[:slashPos]) > 1 and len(word[slashPos + 1:]) > 1: ans.extend([word[:slashPos], '/', word[slashPos + 1:]]) change = True elif len(word[:slashPos]) == 1 and len(word[slashPos + 1:]) == 1: ans.append(word) else: if word[:slashPos]: ans.append(word[:slashPos]) ans.append('/') if word[slashPos + 1:]: ans.append(word[slashPos + 1:]) change = True continue if ',' in word and len(word) > 1: splitWord = word.split(',') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append(',') change = True ans.pop() continue if '-' in word and len(word) > 1: splitWord = word.split('-') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('-') change = True ans.pop() continue if '+' in word and len(word) > 1: if ('c++' in word) or ('C++' in word): ans.append(word) continue splitWord = word.split('+') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('+') change = True ans.pop() continue if '.' in word and len(word) > 1: #print('asdasd') if word.count('.') > 1: if any([word == '...', word.lower() == 'a.m.', word.lower() == 'p.m.', ]): # no separar ... ans.append(word) continue splitWord = word.split('.') for sw in splitWord: if len(sw) > 0: ans.append(sw) ans.append('.') change = True ans.pop() else: #print('asdasd') if word == 'm.' or '.net' == word: ans.append(word) continue dotPos = word.find('.') if len(word[:dotPos]) >= 1 and len(word[dotPos + 1:]) >= 1: if word[:dotPos].isdigit() and word[dotPos + 1:].isdigit(): #print(word) ans.append(word) else: ans.extend([word[:dotPos], '.', word[dotPos + 1:]]) #print(word[:dotPos], '.', word[dotPos + 1:]) change = True elif dotPos == len(word) - 1: ans.extend([word[:-1], '.']) #print(word[:-1], '.') change = True else: ans.extend(['.', word[1:]]) #print('.', word[1:]) change = True continue ans.append(word) return (ans, change) def tokenizer(text): ''' :param text: raw text to tokenize :return: list of words ''' res = [] if type(text) != str: text = text.decode('utf8') text = clean_space(text) # Curar lineas en blanco text = blank_line.sub('\n', text) text = list(text) import unicodedata for i in range(len(text)): try: text[i].encode('latin-1') if text[i] != '\n' and unicodedata.category(text[i])[0] == 'C': text[i] = '*' except UnicodeEncodeError: text[i] = '*' if text[-1] == '*': text.pop() text = "".join(text) text = corrections_tokenizer(text) # caso vinetas duplicadas match = clean_doubled.search(text) text = list(text) if text[-1] == '*': text.pop() text = "".join(text) temp = '' while (match): multis = match.group('multi') f = text.find(multis) temp += text[:f] + multis[0] text = text[f + len(multis):] match = clean_doubled.search(text) text = temp + text # caso dinero match = money.search(text) temp = '' while (match): total = match.group('totalSoles') if total is None: total = match.group('totalDolar') curr = match.group('currencySoles') if curr is None: curr = match.group('currencyDolar') number = match.group('numberSoles') if number is None: number = match.group('numberDolar') f = text.find(total) sub_text = '' if curr.lower() == 's': sub_text = 'S/' else: sub_text = curr sub_text += number.replace(' ', '') temp += text[:f] + ' ' + sub_text + ' ' text = text[f + len(total):] match = money.search(text) text = temp + text text = clean_space(text) # normalizar viรฑetas text = norm_vineta.sub('\n' + META_VINETA, text) text = unicode_vineta.sub(META_VINETA, text) # si o si es viรฑeta pero no tiene \n antes # normalizar comillas text = norm_comillas.sub(META_COMILLA, text) # sent_tokenizer : \n sents = [line + ' ' for line in text.split('\n') if len(line.strip(' ')) > 0] for line in sents: temp = [] for chunk in line.split(META_COMILLA): temp.extend(nltk.word_tokenize(chunk)) temp.append(META_COMILLA) temp.pop() ## casos especiales aqui (temp, change) = specialCases(temp) #print(temp) while change: (temp, change) = specialCases(temp) res.append(temp) res = [r for r in res if len(r) > 0] return res ######################################################################################################################################################################################## def saveModel(model, name='model'): with open(name + '_model.pickle', 'wb') as fd: pickle.dump(model, fd, protocol=pickle.HIGHEST_PROTOCOL) def uploadModel(name_model): # Load tagger with open(name_model + '.pickle', 'rb') as fd: tagger = pickle.load(fd) return tagger ######################################################################################################################################################################################## def simplifyTagset(data): res = [] for doc in data: new_sent = [] for meta in doc: word = meta[0] pos = meta[1].lower() new_pos = pos if pos == 'unk': if word.isdigit(): new_pos = 'z' else: new_pos = 'np00' if pos[0] == 'a': # adjetivo new_pos = pos[:2] + pos[3:5] elif pos[0] == 'd': # determinante new_pos = pos[:5] elif pos[0] == 'n': # sustantivo new_pos = pos[:4] elif pos[0] == 'v': # verbo new_pos = pos[:3] elif pos[0] == 'p': # pronombre new_pos = pos[:5] if pos[1] == 'e': # PE -> PT new_pos = list(new_pos) new_pos[1] = 't' new_pos = ''.join(new_pos) elif pos[0] == 's': # preposicion new_pos = pos[:2] elif pos[0] == 'f': # puntuacion if pos[:2] == 'fa' or pos[:2] == 'fi': new_pos = 'fa' if (pos[:2] == 'fc' or pos[:2] == 'fl') and len(pos) > 2: new_pos = 'fl' if pos == 'fc' or pos == 'fx': new_pos == 'fc' if pos == 'fe' or pos[:2] == 'fr': new_pos == 'fe' elif pos[0] == 'z': # numerico if pos == 'zd': new_pos = 'z' # dividir multi-words try: words = word.split('_') except: pdb.set_trace() for w in words: new_sent.append(tuple([w, new_pos])) # build new data res.append(new_sent) return res def getDataAncora(max_docs='inf'): # get data # Data : lista de documentos # doc : lista de tuples | oraciones separadas por tuple (BR,BR_LABEL) reader = ancora.AncoraCorpusReader(EXT_CORPUS_PATH + 'ancora-2.0/') docs = reader.tagged_sents(max_docs) data = [] for doc in docs: jd = [] doc = simplifyTagset(doc) for sent in doc: jd.extend(sent) jd.append(tuple([BR, BR_LABEL])) jd.pop() data.append(jd) return data def getDataWikicorpus(max_docs='inf'): res = [] sent = [] cont = 0 doc_cont = 0 with open(EXT_CORPUS_PATH + 'wikicorpus/data_wc') as file: for line in file: if '<doc' not in line and '</doc' not in line: line = line.strip('\n') if line: (multiwords, lemma, pos, num) = line.strip('\n').split(' ') for word in multiwords.split('_'): sent.append(tuple([word, pos.lower()])) elif len(sent) > 0: res.append(list(sent)) doc_cont += 1 if cont % 10 == 0: print("--->", cont) cont += 1 if max_docs != 'inf' and doc_cont == max_docs: break sent = [] return res ######################################################################################################################################################################################## def train_and_test(train, test, est): ''' :train : training dataset :test : testing dataset :est : NLTK Prob object ''' tag_set = list(set([tag for sent in train for (word, tag) in sent])) symbols = list(set([word for sent in train for (word, tag) in sent])) # trainer HMM trainer = nltk.HiddenMarkovModelTrainer(tag_set, symbols) hmm = trainer.train_supervised(train, estimator=est) res = 100 * hmm.evaluate(test) return res # estimadores prob mle = lambda fd, bins: MLEProbDist(fd) laplace = LaplaceProbDist ele = ELEProbDist witten = WittenBellProbDist gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5) def lidstone(gamma): return lambda fd, bins: LidstoneProbDist(fd, gamma, bins) ######################################################################################################################################################################################## ## EXTENDED FEATURES : GAZETTERS from nltk.stem.snowball import SpanishStemmer span_stemmer = SpanishStemmer() def getCareerGazetter(): ''' :return: return list with STEMMED careers unigrams ''' careers = [span_stemmer.stem(line.strip()) for line in open(os.path.join(GAZETTERS_DIR, 'carreras'))] careers = [w for w in careers if len(w) > 3] careers.extend(['mina', 'mecan', 'moda', 'ing']) careers = list(set(careers)) return careers def getPlacesGazetter(): return list(set([line.strip() for line in open(os.path.join(GAZETTERS_DIR, 'lugares'))])) ######################################################################################################################################################################################## import codecs import gzip from sequences.label_dictionary import * from sequences.sequence import * from sequences.sequence_list import * from os.path import dirname import numpy as np from sklearn.cross_validation import train_test_split ## Directorie where the data files are located. careers_dir = "careers tagged/" random_dir = "random/" WINDOW = 3 TAGS_PROY = ['AREA', 'REQ', 'JOB', 'CARR'] RANDOM_STATE = 42 np.random.seed(RANDOM_STATE) class JobDBCorpus(object): def __init__(self): # Word dictionary. self.word_dict = LabelDictionary() self.pos_dict = LabelDictionary(['nc']) self.ne_dict = LabelDictionary() self.ne_dict.add(BR) # Initialize sequence list. self.sequence_list = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) # Initialize word & tag dicts self.word_dict.add(START) self.word_dict.add(END) self.ne_dict.add(START_TAG) self.ne_dict.add(END_TAG) self.pos_dict.add(START_TAG) self.pos_dict.add(END_TAG) def read_sequence_list(self, target='BIO', START_END_TAGS=True, entities=TAGS_PROY): ''' :param target: BIO : IBO tagging, Y = B,I,O NE : Y = NE names :return: list of sentences ''' seq_list = [] file_ids = [] for i in range(1, 401): sent_x = [] sent_y = [] sent_pos = [] if START_END_TAGS: sent_x = [START, START] sent_y = [START_TAG, START_TAG] sent_pos = [START_TAG, START_TAG] for line in open(careers_dir + str(i) + '.tsv'): line = line.strip('\n') x = '' y = '' pos = '' if len(line) > 0: temp = line.split('\t') pos = temp[1] x = temp[0] if temp[-1][2:] in entities: if target == 'BIO': y = temp[-1][0] else: y = temp[-1] # temp[-1][2:] else: y = 'O' else: x, pos, y = (BR, BR, BR) if x not in self.word_dict: self.word_dict.add(x) if y not in self.ne_dict: self.ne_dict.add(y) if pos not in self.pos_dict: self.pos_dict.add(pos) sent_x.append(x) sent_y.append(y) sent_pos.append(pos) if sent_x[-1] == BR: sent_x.pop() sent_y.pop() sent_pos.pop() if START_END_TAGS: sent_x.append(END) sent_y.append(END_TAG) sent_pos.append(END_TAG) seq_list.append([sent_x, sent_y, sent_pos]) file_ids.append("car_tag_" + str(i)) for i in range(1, 401): sent_x = [] sent_y = [] sent_pos = [] if START_END_TAGS: sent_x = [START, START] sent_y = [START_TAG, START_TAG] sent_pos = [START_TAG, START_TAG] for line in open(random_dir + str(i) + '.tsv'): line = line.strip('\n') x = '' y = '' pos = '' if len(line) > 0: temp = line.split('\t') x = temp[0] pos = temp[1] if temp[-1][2:] in entities: if target == 'BIO': y = temp[-1][0] else: y = temp[-1] # temp[-1][2:] else: y = 'O' else: x, pos, y = (BR, BR, BR) if x not in self.word_dict: self.word_dict.add(x) if y not in self.ne_dict: self.ne_dict.add(y) if pos not in self.pos_dict: self.pos_dict.add(pos) sent_x.append(x) sent_y.append(y) sent_pos.append(pos) if sent_x[-1] == BR: sent_x.pop() sent_y.pop() sent_pos.pop() if START_END_TAGS: sent_x.append(END) sent_y.append(END_TAG) sent_pos.append(END_TAG) seq_list.append([sent_x, sent_y, sent_pos]) file_ids.append("random_" + str(i)) self.sequence_list = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) for i, (x, y, pos) in enumerate(seq_list): self.sequence_list.add_sequence(x, y, pos, file_ids[i]) return self.sequence_list def train_test_data(self, test_size=0.1): train = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) test = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) tn, tt = train_test_split(self.sequence_list.seq_list, test_size=test_size) train.seq_list = tn test.seq_list = tt return train, test def TTCV_data(self, test_size=0.2, cv_size=0.2): train = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) test = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) cv = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) tn, temp = train_test_split(self.sequence_list.seq_list, test_size=test_size + cv_size, random_state=RANDOM_STATE) tst, cvt = train_test_split(temp, test_size=cv_size / (cv_size + test_size), random_state=RANDOM_STATE) train.seq_list = tn test.seq_list = tst cv.seq_list = cvt return train, test, cv ## Dumps a corpus into a file def save_corpus(self, name): with open(name + '_corpus.pickle', 'wb') as fd: pickle.dump(self, fd, protocol=pickle.HIGHEST_PROTOCOL) ## Loads a corpus from a file def load_corpus(self, name): with open(name + '_corpus.pickle', 'rb') as fd: loaded = pickle.load(fd) self.word_dict = loaded.word_dict self.pos_dict = loaded.pos_dict self.ne_dict = loaded.ne_dict self.sequence_list = loaded.sequence_list def trimTrain(self, data, percentage=1.0): ''' :param data: Seq List object :param num_docs: porcentaje a conservar :return: Sequence List Object ''' train = SequenceList(self.word_dict, self.pos_dict, self.ne_dict) res, _ = train_test_split(data.seq_list, test_size=1.0 - percentage, random_state=RANDOM_STATE) train.seq_list = res return train ############################################################################################## ########## NEC UTILS from sklearn.decomposition import TruncatedSVD as SVD from sklearn.preprocessing import Normalizer from sklearn.preprocessing import normalize from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.lda import LDA from scipy import sparse import classifiers.id_features_NEC as featNEC class Chunk: def __init__(self, sequence_id, pos, length, entity): self.sequence_id = sequence_id self.pos = pos self.length = length self.entity = entity # NOMBRE, NO ID def __repr__(self): return "<\nSequence id:%i\n" \ "Pos inicial: %i\n" \ "Longitud: %i\n" \ "Entidad: %s\n>" % (self.sequence_id, self.pos, self.length, self.entity) class ChunkSet: def __init__(self, dataset): self.dataset = dataset self.chunk_list = [] self.entity_classes = LabelDictionary() self.chunk_data() def chunk_data(self): for seq_id in range(len(self.dataset)): sequence = self.dataset.seq_list[seq_id] pos = 0 open = False n = len(sequence.x) ne = '' for (i, w) in enumerate(sequence.x): tag = self.dataset.y_dict.get_label_name(sequence.y[i]) if len(tag) > 1: ne = tag[2:] else: ne = tag if ne != 'O' and tag != START_TAG and tag != END_TAG and tag != BR: self.entity_classes.add(ne) prev_ne = ne if i > 0: prev_tag = self.dataset.y_dict.get_label_name(sequence.y[i - 1]) if len(prev_tag) > 1: prev_ne = prev_tag[2:] if tag.find('B') == 0: if open and i > 0: chunk = Chunk(sequence_id=seq_id, pos=pos, length=i - pos, entity=prev_ne) self.chunk_list.append(chunk) pos = i open = True elif tag.find('I') != 0 and open: open = False chunk = Chunk(sequence_id=seq_id, pos=pos, length=i - pos, entity=prev_ne) self.chunk_list.append(chunk) if open: chunk = Chunk(sequence_id=seq_id, pos=pos, length=n - pos, entity=ne) self.chunk_list.append(chunk) def getStandart(chunks, feature_mapper, mode='BINARY'): X = np.zeros((len(chunks.chunk_list), len(feature_mapper.feature_dict))) Y = [] if mode == 'BINARY': Y = np.zeros(len(chunks.chunk_list), dtype=np.int_) else: Y = np.zeros((len(chunks.chunk_list), len(chunks.entity_classes))) # CUATRO ENTIDADES for i, chunk in enumerate(chunks.chunk_list): features = feature_mapper.get_features(chunk, chunks.dataset) X[i, features] = 1 ne_id = chunks.entity_classes.get_label_id(chunk.entity) if mode == 'BINARY': Y[i] = ne_id else: Y[i, ne_id] = 1 return X, Y def getData_NEC(): reader = JobDBCorpus() data = reader.read_sequence_list(target='TODO') np.seterr(all='ignore') train, test = reader.train_test_data(test_size=0.2) print("Reading chunks...") chunks_train = ChunkSet(dataset=train) chunks_test = ChunkSet(dataset=test) print("Building features...") idf = featNEC.IDFeatures(dataset=train, chunkset=chunks_train) idf.build_features() ############################################################################### print("Standarizing dataset...") X_train, Y_train = getStandart(chunks_train, idf) X_test, Y_test = getStandart(chunks_test, idf) # sparse representation and normalize X_train = sparse.csr_matrix(X_train) X_train = normalize(X_train, copy=False) X_test = sparse.csr_matrix(X_test) X_test = normalize(X_test, copy=False) return X_train, Y_train, X_test, Y_test, chunks_train ############################################################################################## import classifiers.id_features_NERC as featNERC def getStandart_NERC(data, feature_mapper): BR_x_id = data.x_dict.get_label_id(BR) n = 0 for sequence in data.seq_list: for pos in range(2, len(sequence.x) - 1): x = sequence.x[pos] if x == BR_x_id: continue n += 1 n_features = feature_mapper.get_num_features() row = [] col = [] values = [] Y = np.zeros(n, dtype=np.int_) sample = 0 for sequence in data.seq_list: for pos in range(2, len(sequence.x) - 1): x = sequence.x[pos] if x == BR_x_id: continue y_1 = sequence.y[pos - 1] y_2 = sequence.y[pos - 2] y = sequence.y[pos] features = feature_mapper.get_features(sequence, pos, y_1, y_2) row.extend([sample for i in range(len(features))]) col.extend(features) Y[sample] = y sample += 1 values = np.ones(len(row)) X = sparse.csr_matrix((values, (row, col)), shape=(n, n_features)) return X, Y def toSeqList(data, seq_array): ST_id = data.y_dict.get_label_id(START_TAG) END_id = data.y_dict.get_label_id(END_TAG) BR_id = data.y_dict.get_label_id(BR) BR_x_id = data.x_dict.get_label_id(BR) res = [] pos = 0 for sequence in data.seq_list: y = [ST_id, ST_id] for i in range(2, len(sequence.y) - 1): id = sequence.y[i] if id == BR_id: y.append(BR_id) else: y.append(seq_array[pos]) pos += 1 y.append(END_id) seq = sequence.copy_sequence() seq.y = y res.append(seq) return res
mit
RiccardoPecora/MP
Lib/site-packages/numpy/doc/creation.py
94
5411
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or record arrays. Both of those are covered in their own sections. Converting Python array_like Objects to Numpy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic Numpy Array Creation ============================== Numpy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. ``>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])`` ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=np.float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: PyTables FITS: PyFITS Examples of formats that cannot be read directly but for which it is not hard to convert are libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """
gpl-3.0
subutai/NAB
tests/integration/corpuslabel_test.py
7
7661
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014-15, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import datetime import os import pandas import tempfile import shutil import unittest import nab.corpus import nab.labeler from nab.util import strp from nab.test_helpers import writeCorpus, writeCorpusLabel, generateTimestamps class CorpusLabelTest(unittest.TestCase): def setUp(self): self.tempDir = os.path.join(tempfile.mkdtemp(), "test") self.tempCorpusPath = os.path.join(self.tempDir, "data") self.tempCorpusLabelPath = os.path.join( self.tempDir, "labels", "label.json") def tearDown(self): shutil.rmtree(self.tempDir) def testWindowTimestampsNotInDataFileThrowsError(self): """ A ValueError should be thrown when label windows contain timestamps that do no exist in the data file. """ data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2014-01-01"), None, 1)}) windows = [["2015-01-01", "2015-01-01"]] writeCorpus(self.tempCorpusPath, {"test_data_file.csv" : data}) writeCorpusLabel(self.tempCorpusLabelPath, {"test_data_file.csv": windows}) corpus = nab.corpus.Corpus(self.tempCorpusPath) self.assertRaises(ValueError, nab.labeler.CorpusLabel, self.tempCorpusLabelPath, corpus) def testWindowTimestampsNonChronologicalThrowsError(self): """ A ValueError should be thrown when a label window's start and end times are not in chronological order. """ data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2014-01-01"), datetime.timedelta(minutes=5), 10)}) # Windows both in and out of order windows = [["2014-01-01 00:45", "2014-01-01 00:00"], ["2014-01-01 10:15", "2014-01-01 11:15"]] writeCorpus(self.tempCorpusPath, {"test_data_file.csv" : data}) writeCorpusLabel(self.tempCorpusLabelPath, {"test_data_file.csv": windows}) corpus = nab.corpus.Corpus(self.tempCorpusPath) self.assertRaises( ValueError, nab.labeler.CorpusLabel, self.tempCorpusLabelPath, corpus) def testRowsLabeledAnomalousWithinAWindow(self): """ All timestamps labeled as anomalous should be within a label window. """ data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2014-01-01"), datetime.timedelta(minutes=5), 10)}) windows = [["2014-01-01 00:15", "2014-01-01 00:30"]] writeCorpus(self.tempCorpusPath, {"test_data_file.csv": data}) writeCorpusLabel(self.tempCorpusLabelPath, {"test_data_file.csv": windows}) corpus = nab.corpus.Corpus(self.tempCorpusPath) corpusLabel = nab.labeler.CorpusLabel(self.tempCorpusLabelPath, corpus) for relativePath, lab in corpusLabel.labels.iteritems(): windows = corpusLabel.windows[relativePath] for row in lab[lab["label"] == 1].iterrows(): self.assertTrue( all([w[0] <= row[1]["timestamp"] <= w[1] for w in windows]), "The label at %s of file %s is not within a label window" % (row[1]["timestamp"], relativePath)) def testNonexistentDatafileForLabelsThrowsError(self): data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2014-01-01"), datetime.timedelta(minutes=5), 10)}) windows = [["2014-01-01 00:15", "2014-01-01 00:30"]] writeCorpus(self.tempCorpusPath, {"test_data_file.csv": data}) writeCorpusLabel(self.tempCorpusLabelPath, {"test_data_file.csv": windows, "non_existent_data_file.csv": windows}) corpus = nab.corpus.Corpus(self.tempCorpusPath) self.assertRaises( KeyError, nab.labeler.CorpusLabel, self.tempCorpusLabelPath, corpus) def testGetLabels(self): """ Labels dictionary generated by CorpusLabel.getLabels() should match the label windows. """ data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2014-01-01"), datetime.timedelta(minutes=5), 10)}) windows = [["2014-01-01 00:00", "2014-01-01 00:10"], ["2014-01-01 00:10", "2014-01-01 00:15"]] writeCorpus(self.tempCorpusPath, {"test_data_file.csv" : data}) writeCorpusLabel(self.tempCorpusLabelPath, {"test_data_file.csv": windows}) corpus = nab.corpus.Corpus(self.tempCorpusPath) corpusLabel = nab.labeler.CorpusLabel(self.tempCorpusLabelPath, corpus) for relativePath, l in corpusLabel.labels.iteritems(): windows = corpusLabel.windows[relativePath] for t, lab in corpusLabel.labels["test_data_file.csv"].values: for w in windows: if (w[0] <= t and t <= w[1]): self.assertEqual(lab, 1, "Incorrect label value for timestamp %r" % t) def testRedundantTimestampsRaiseException(self): data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2015-01-01"), datetime.timedelta(days=1), 365)}) dataFileName = "test_data_file.csv" writeCorpus(self.tempCorpusPath, {dataFileName : data}) labels = ["2015-12-25 00:00:00", "2015-12-26 00:00:00", "2015-12-31 00:00:00"] labelsDir = self.tempCorpusLabelPath.replace( "/label.json", "/raw/label.json") writeCorpusLabel(labelsDir, {dataFileName: labels}) corpus = nab.corpus.Corpus(self.tempCorpusPath) labDir = labelsDir.replace("/label.json", "") labelCombiner = nab.labeler.LabelCombiner( labDir, corpus, 0.5, 0.10, 0.15, 0) self.assertRaises(ValueError, labelCombiner.combine) def testBucketMerge(self): data = pandas.DataFrame({"timestamp" : generateTimestamps(strp("2015-12-01"), datetime.timedelta(days=1), 31)}) dataFileName = "test_data_file.csv" writeCorpus(self.tempCorpusPath, {dataFileName : data}) rawLabels = (["2015-12-24 00:00:00", "2015-12-31 00:00:00"], ["2015-12-01 00:00:00", "2015-12-25 00:00:00", "2015-12-31 00:00:00"], ["2015-12-25 00:00:00"]) for i, labels in enumerate(rawLabels): labelsPath = self.tempCorpusLabelPath.replace( os.path.sep+"label.json", os.path.sep+"raw"+os.path.sep+"label{}.json".format(i)) writeCorpusLabel(labelsPath, {"test_data_file.csv": labels}) labelsDir = labelsPath.replace(os.path.sep+"label{}.json".format(i), "") corpus = nab.corpus.Corpus(self.tempCorpusPath) labelCombiner = nab.labeler.LabelCombiner( labelsDir, corpus, 0.5, 0.10, 0.15, 0) labelCombiner.getRawLabels() labelTimestamps, _ = labelCombiner.combineLabels() expectedLabels = ['2015-12-25 00:00:00', '2015-12-31 00:00:00'] self.assertEqual(expectedLabels, labelTimestamps[dataFileName], "The combined labels did not bucket and merge as expected.") if __name__ == '__main__': unittest.main()
agpl-3.0
alfonsokim/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gdk.py
69
15968
from __future__ import division import math import os import sys import warnings def fn_name(): return sys._getframe(1).f_code.co_name import gobject import gtk; gdk = gtk.gdk import pango pygtk_version_required = (2,2,0) if gtk.pygtk_version < pygtk_version_required: raise ImportError ("PyGTK %d.%d.%d is installed\n" "PyGTK %d.%d.%d or later is required" % (gtk.pygtk_version + pygtk_version_required)) del pygtk_version_required import numpy as npy import matplotlib from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.transforms import Affine2D from matplotlib.backends._backend_gdk import pixbuf_get_pixels_array backend_version = "%d.%d.%d" % gtk.pygtk_version _debug = False # Image formats that this backend supports - for FileChooser and print_figure() IMAGE_FORMAT = ['eps', 'jpg', 'png', 'ps', 'svg'] + ['bmp'] # , 'raw', 'rgb'] IMAGE_FORMAT.sort() IMAGE_FORMAT_DEFAULT = 'png' class RendererGDK(RendererBase): fontweights = { 100 : pango.WEIGHT_ULTRALIGHT, 200 : pango.WEIGHT_LIGHT, 300 : pango.WEIGHT_LIGHT, 400 : pango.WEIGHT_NORMAL, 500 : pango.WEIGHT_NORMAL, 600 : pango.WEIGHT_BOLD, 700 : pango.WEIGHT_BOLD, 800 : pango.WEIGHT_HEAVY, 900 : pango.WEIGHT_ULTRABOLD, 'ultralight' : pango.WEIGHT_ULTRALIGHT, 'light' : pango.WEIGHT_LIGHT, 'normal' : pango.WEIGHT_NORMAL, 'medium' : pango.WEIGHT_NORMAL, 'semibold' : pango.WEIGHT_BOLD, 'bold' : pango.WEIGHT_BOLD, 'heavy' : pango.WEIGHT_HEAVY, 'ultrabold' : pango.WEIGHT_ULTRABOLD, 'black' : pango.WEIGHT_ULTRABOLD, } # cache for efficiency, these must be at class, not instance level layoutd = {} # a map from text prop tups to pango layouts rotated = {} # a map from text prop tups to rotated text pixbufs def __init__(self, gtkDA, dpi): # widget gtkDA is used for: # '<widget>.create_pango_layout(s)' # cmap line below) self.gtkDA = gtkDA self.dpi = dpi self._cmap = gtkDA.get_colormap() self.mathtext_parser = MathTextParser("Agg") def set_pixmap (self, pixmap): self.gdkDrawable = pixmap def set_width_height (self, width, height): """w,h is the figure w,h not the pixmap w,h """ self.width, self.height = width, height def draw_path(self, gc, path, transform, rgbFace=None): transform = transform + Affine2D(). \ scale(1.0, -1.0).translate(0, self.height) polygons = path.to_polygons(transform, self.width, self.height) for polygon in polygons: # draw_polygon won't take an arbitrary sequence -- it must be a list # of tuples polygon = [(int(round(x)), int(round(y))) for x, y in polygon] if rgbFace is not None: saveColor = gc.gdkGC.foreground gc.gdkGC.foreground = gc.rgb_to_gdk_color(rgbFace) self.gdkDrawable.draw_polygon(gc.gdkGC, True, polygon) gc.gdkGC.foreground = saveColor if gc.gdkGC.line_width > 0: self.gdkDrawable.draw_lines(gc.gdkGC, polygon) def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): if bbox != None: l,b,w,h = bbox.bounds #rectangle = (int(l), self.height-int(b+h), # int(w), int(h)) # set clip rect? im.flipud_out() rows, cols, image_str = im.as_rgba_str() image_array = npy.fromstring(image_str, npy.uint8) image_array.shape = rows, cols, 4 pixbuf = gtk.gdk.Pixbuf(gtk.gdk.COLORSPACE_RGB, has_alpha=True, bits_per_sample=8, width=cols, height=rows) array = pixbuf_get_pixels_array(pixbuf) array[:,:,:] = image_array gc = self.new_gc() y = self.height-y-rows try: # new in 2.2 # can use None instead of gc.gdkGC, if don't need clipping self.gdkDrawable.draw_pixbuf (gc.gdkGC, pixbuf, 0, 0, int(x), int(y), cols, rows, gdk.RGB_DITHER_NONE, 0, 0) except AttributeError: # deprecated in 2.2 pixbuf.render_to_drawable(self.gdkDrawable, gc.gdkGC, 0, 0, int(x), int(y), cols, rows, gdk.RGB_DITHER_NONE, 0, 0) # unflip im.flipud_out() def draw_text(self, gc, x, y, s, prop, angle, ismath): x, y = int(x), int(y) if x <0 or y <0: # window has shrunk and text is off the edge return if angle not in (0,90): warnings.warn('backend_gdk: unable to draw text at angles ' + 'other than 0 or 90') elif ismath: self._draw_mathtext(gc, x, y, s, prop, angle) elif angle==90: self._draw_rotated_text(gc, x, y, s, prop, angle) else: layout, inkRect, logicalRect = self._get_pango_layout(s, prop) l, b, w, h = inkRect self.gdkDrawable.draw_layout(gc.gdkGC, x, y-h-b, layout) def _draw_mathtext(self, gc, x, y, s, prop, angle): ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) if angle==90: width, height = height, width x -= width y -= height imw = font_image.get_width() imh = font_image.get_height() N = imw * imh # a numpixels by num fonts array Xall = npy.zeros((N,1), npy.uint8) image_str = font_image.as_str() Xall[:,0] = npy.fromstring(image_str, npy.uint8) # get the max alpha at each pixel Xs = npy.amax(Xall,axis=1) # convert it to it's proper shape Xs.shape = imh, imw pixbuf = gtk.gdk.Pixbuf(gtk.gdk.COLORSPACE_RGB, has_alpha=True, bits_per_sample=8, width=imw, height=imh) array = pixbuf_get_pixels_array(pixbuf) rgb = gc.get_rgb() array[:,:,0]=int(rgb[0]*255) array[:,:,1]=int(rgb[1]*255) array[:,:,2]=int(rgb[2]*255) array[:,:,3]=Xs try: # new in 2.2 # can use None instead of gc.gdkGC, if don't need clipping self.gdkDrawable.draw_pixbuf (gc.gdkGC, pixbuf, 0, 0, int(x), int(y), imw, imh, gdk.RGB_DITHER_NONE, 0, 0) except AttributeError: # deprecated in 2.2 pixbuf.render_to_drawable(self.gdkDrawable, gc.gdkGC, 0, 0, int(x), int(y), imw, imh, gdk.RGB_DITHER_NONE, 0, 0) def _draw_rotated_text(self, gc, x, y, s, prop, angle): """ Draw the text rotated 90 degrees, other angles are not supported """ # this function (and its called functions) is a bottleneck # Pango 1.6 supports rotated text, but pygtk 2.4.0 does not yet have # wrapper functions # GTK+ 2.6 pixbufs support rotation gdrawable = self.gdkDrawable ggc = gc.gdkGC layout, inkRect, logicalRect = self._get_pango_layout(s, prop) l, b, w, h = inkRect x = int(x-h) y = int(y-w) if x < 0 or y < 0: # window has shrunk and text is off the edge return key = (x,y,s,angle,hash(prop)) imageVert = self.rotated.get(key) if imageVert != None: gdrawable.draw_image(ggc, imageVert, 0, 0, x, y, h, w) return imageBack = gdrawable.get_image(x, y, w, h) imageVert = gdrawable.get_image(x, y, h, w) imageFlip = gtk.gdk.Image(type=gdk.IMAGE_FASTEST, visual=gdrawable.get_visual(), width=w, height=h) if imageFlip == None or imageBack == None or imageVert == None: warnings.warn("Could not renderer vertical text") return imageFlip.set_colormap(self._cmap) for i in range(w): for j in range(h): imageFlip.put_pixel(i, j, imageVert.get_pixel(j,w-i-1) ) gdrawable.draw_image(ggc, imageFlip, 0, 0, x, y, w, h) gdrawable.draw_layout(ggc, x, y-b, layout) imageIn = gdrawable.get_image(x, y, w, h) for i in range(w): for j in range(h): imageVert.put_pixel(j, i, imageIn.get_pixel(w-i-1,j) ) gdrawable.draw_image(ggc, imageBack, 0, 0, x, y, w, h) gdrawable.draw_image(ggc, imageVert, 0, 0, x, y, h, w) self.rotated[key] = imageVert def _get_pango_layout(self, s, prop): """ Create a pango layout instance for Text 's' with properties 'prop'. Return - pango layout (from cache if already exists) Note that pango assumes a logical DPI of 96 Ref: pango/fonts.c/pango_font_description_set_size() manual page """ # problem? - cache gets bigger and bigger, is never cleared out # two (not one) layouts are created for every text item s (then they # are cached) - why? key = self.dpi, s, hash(prop) value = self.layoutd.get(key) if value != None: return value size = prop.get_size_in_points() * self.dpi / 96.0 size = round(size) font_str = '%s, %s %i' % (prop.get_name(), prop.get_style(), size,) font = pango.FontDescription(font_str) # later - add fontweight to font_str font.set_weight(self.fontweights[prop.get_weight()]) layout = self.gtkDA.create_pango_layout(s) layout.set_font_description(font) inkRect, logicalRect = layout.get_pixel_extents() self.layoutd[key] = layout, inkRect, logicalRect return layout, inkRect, logicalRect def flipy(self): return True def get_canvas_width_height(self): return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): if ismath: ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent layout, inkRect, logicalRect = self._get_pango_layout(s, prop) l, b, w, h = inkRect return w, h+1, h + 1 def new_gc(self): return GraphicsContextGDK(renderer=self) def points_to_pixels(self, points): return points/72.0 * self.dpi class GraphicsContextGDK(GraphicsContextBase): # a cache shared by all class instances _cached = {} # map: rgb color -> gdk.Color _joind = { 'bevel' : gdk.JOIN_BEVEL, 'miter' : gdk.JOIN_MITER, 'round' : gdk.JOIN_ROUND, } _capd = { 'butt' : gdk.CAP_BUTT, 'projecting' : gdk.CAP_PROJECTING, 'round' : gdk.CAP_ROUND, } def __init__(self, renderer): GraphicsContextBase.__init__(self) self.renderer = renderer self.gdkGC = gtk.gdk.GC(renderer.gdkDrawable) self._cmap = renderer._cmap def rgb_to_gdk_color(self, rgb): """ rgb - an RGB tuple (three 0.0-1.0 values) return an allocated gtk.gdk.Color """ try: return self._cached[tuple(rgb)] except KeyError: color = self._cached[tuple(rgb)] = \ self._cmap.alloc_color( int(rgb[0]*65535),int(rgb[1]*65535),int(rgb[2]*65535)) return color #def set_antialiased(self, b): # anti-aliasing is not supported by GDK def set_capstyle(self, cs): GraphicsContextBase.set_capstyle(self, cs) self.gdkGC.cap_style = self._capd[self._capstyle] def set_clip_rectangle(self, rectangle): GraphicsContextBase.set_clip_rectangle(self, rectangle) if rectangle is None: return l,b,w,h = rectangle.bounds rectangle = (int(l), self.renderer.height-int(b+h)+1, int(w), int(h)) #rectangle = (int(l), self.renderer.height-int(b+h), # int(w+1), int(h+2)) self.gdkGC.set_clip_rectangle(rectangle) def set_dashes(self, dash_offset, dash_list): GraphicsContextBase.set_dashes(self, dash_offset, dash_list) if dash_list == None: self.gdkGC.line_style = gdk.LINE_SOLID else: pixels = self.renderer.points_to_pixels(npy.asarray(dash_list)) dl = [max(1, int(round(val))) for val in pixels] self.gdkGC.set_dashes(dash_offset, dl) self.gdkGC.line_style = gdk.LINE_ON_OFF_DASH def set_foreground(self, fg, isRGB=False): GraphicsContextBase.set_foreground(self, fg, isRGB) self.gdkGC.foreground = self.rgb_to_gdk_color(self.get_rgb()) def set_graylevel(self, frac): GraphicsContextBase.set_graylevel(self, frac) self.gdkGC.foreground = self.rgb_to_gdk_color(self.get_rgb()) def set_joinstyle(self, js): GraphicsContextBase.set_joinstyle(self, js) self.gdkGC.join_style = self._joind[self._joinstyle] def set_linewidth(self, w): GraphicsContextBase.set_linewidth(self, w) if w == 0: self.gdkGC.line_width = 0 else: pixels = self.renderer.points_to_pixels(w) self.gdkGC.line_width = max(1, int(round(pixels))) def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGDK(thisFig) manager = FigureManagerBase(canvas, num) # equals: #manager = FigureManagerBase (FigureCanvasGDK (Figure(*args, **kwargs), # num) return manager class FigureCanvasGDK (FigureCanvasBase): def __init__(self, figure): FigureCanvasBase.__init__(self, figure) self._renderer_init() def _renderer_init(self): self._renderer = RendererGDK (gtk.DrawingArea(), self.figure.dpi) def _render_figure(self, pixmap, width, height): self._renderer.set_pixmap (pixmap) self._renderer.set_width_height (width, height) self.figure.draw (self._renderer) filetypes = FigureCanvasBase.filetypes.copy() filetypes['jpg'] = 'JPEG' filetypes['jpeg'] = 'JPEG' def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, 'jpeg') print_jpg = print_jpeg def print_png(self, filename, *args, **kwargs): return self._print_image(filename, 'png') def _print_image(self, filename, format, *args, **kwargs): width, height = self.get_width_height() pixmap = gtk.gdk.Pixmap (None, width, height, depth=24) self._render_figure(pixmap, width, height) # jpg colors don't match the display very well, png colors match # better pixbuf = gtk.gdk.Pixbuf(gtk.gdk.COLORSPACE_RGB, 0, 8, width, height) pixbuf.get_from_drawable(pixmap, pixmap.get_colormap(), 0, 0, 0, 0, width, height) pixbuf.save(filename, format) def get_default_filetype(self): return 'png'
agpl-3.0
jtwhite79/pyemu
pyemu/mc.py
1
11486
"""pyEMU Monte Carlo module. Supports easy Monte Carlo and GLUE analyses. The MonteCarlo class inherits from pyemu.LinearAnalysis """ from __future__ import print_function, division import os import numpy as np import warnings from pyemu.la import LinearAnalysis from pyemu.en import ObservationEnsemble, ParameterEnsemble from pyemu.mat import Cov from .pyemu_warnings import PyemuWarning # from pyemu.utils.helpers import zero_order_tikhonov class MonteCarlo(LinearAnalysis): """LinearAnalysis derived type for monte carlo analysis Parameters ---------- **kwargs : dict dictionary of keyword arguments. See pyemu.LinearAnalysis for complete definitions Attributes ---------- parensemble : pyemu.ParameterEnsemble pyemu object derived from a pandas dataframe, the ensemble of parameters from the PEST control file with associated starting value and bounds. Object also exposes methods relevant to the dataframe and parameters-- see documentation. obsensemble : pyemu.ObservationEnsemble pyemu object derived from a pandas dataframe, the ensemble of observations from the PEST control file with associated starting weights. Object also exposes methods relevant to the dataframe and observations-- see documentation. Returns ------- MonteCarlo pyEMU MonteCarlo object Example ------- ``>>>import pyemu`` ``>>>mc = pyemu.MonteCarlo(pst="pest.pst")`` """ def __init__(self, **kwargs): warnings.warn( "pyemu.MonteCarlo class is deprecated. " + "Please use the ensemble classes directly", PyemuWarning, ) super(MonteCarlo, self).__init__(**kwargs) assert self.pst is not None, "monte carlo requires a pest control file" self.parensemble = ParameterEnsemble(pst=self.pst) self.obsensemble = ObservationEnsemble(pst=self.pst) @property def num_reals(self): """get the number of realizations in the parameter ensemble Returns ------- num_real : int """ return self.parensemble.shape[0] def get_nsing(self, epsilon=1.0e-4): """get the number of solution space dimensions given a ratio between the largest and smallest singular values Parameters ---------- epsilon: float singular value ratio Returns ------- nsing : float number of singular components above the epsilon ratio threshold Note ----- If nsing == nadj_par, then None is returned """ mx = self.xtqx.shape[0] nsing = mx - np.searchsorted( np.sort((self.xtqx.s.x / self.xtqx.s.x.max())[:, 0]), epsilon ) if nsing == mx: self.logger.warn("optimal nsing=npar") nsing = None return nsing def get_null_proj(self, nsing=None): """get a null-space projection matrix of XTQX Parameters ---------- nsing: int optional number of singular components to use If Nonte, then nsing is determined from call to MonteCarlo.get_nsing() Returns ------- v2_proj : pyemu.Matrix the null-space projection matrix (V2V2^T) """ if nsing is None: nsing = self.get_nsing() if nsing is None: raise Exception("nsing is None") print("using {0} singular components".format(nsing)) self.log( "forming null space projection matrix with " + "{0} of {1} singular components".format(nsing, self.jco.shape[1]) ) v2_proj = self.xtqx.v[:, nsing:] * self.xtqx.v[:, nsing:].T self.log( "forming null space projection matrix with " + "{0} of {1} singular components".format(nsing, self.jco.shape[1]) ) return v2_proj def draw( self, num_reals=1, par_file=None, obs=False, enforce_bounds=None, cov=None, how="gaussian", ): """draw stochastic realizations of parameters and optionally observations, filling MonteCarlo.parensemble and optionally MonteCarlo.obsensemble. Parameters ---------- num_reals : int number of realization to generate par_file : str parameter file to use as mean values. If None, use MonteCarlo.pst.parameter_data.parval1. Default is None obs : bool add a realization of measurement noise to observation values, forming MonteCarlo.obsensemble.Default is False enforce_bounds : str enforce parameter bounds based on control file information. options are 'reset', 'drop' or None. Default is None how : str type of distribution to draw from. Must be in ["gaussian","uniform"] default is "gaussian". Example ------- ``>>>import pyemu`` ``>>>mc = pyemu.MonteCarlo(pst="pest.pst")`` ``>>>mc.draw(1000)`` """ if par_file is not None: self.pst.parrep(par_file) how = how.lower().strip() assert how in ["gaussian", "uniform"] if cov is not None: assert isinstance(cov, Cov) if how == "uniform": raise Exception( "MonteCarlo.draw() error: 'how'='uniform'," + " 'cov' arg cannot be passed" ) else: cov = self.parcov self.log("generating {0:d} parameter realizations".format(num_reals)) if how == "gaussian": self.parensemble = ParameterEnsemble.from_gaussian_draw( pst=self.pst, cov=cov, num_reals=num_reals, use_homegrown=True, enforce_bounds=False, ) elif how == "uniform": self.parensemble = ParameterEnsemble.from_uniform_draw( pst=self.pst, num_reals=num_reals ) else: raise Exception( "MonteCarlo.draw(): unrecognized 'how' arg: {0}".format(how) ) # self.parensemble = ParameterEnsemble(pst=self.pst) # self.obsensemble = ObservationEnsemble(pst=self.pst) # self.parensemble.draw(cov,num_reals=num_reals, how=how, # enforce_bounds=enforce_bounds) if enforce_bounds is not None: self.parensemble.enforce(enforce_bounds) self.log("generating {0:d} parameter realizations".format(num_reals)) if obs: self.log("generating {0:d} observation realizations".format(num_reals)) self.obsensemble = ObservationEnsemble.from_id_gaussian_draw( pst=self.pst, num_reals=num_reals ) self.log("generating {0:d} observation realizations".format(num_reals)) def project_parensemble( self, par_file=None, nsing=None, inplace=True, enforce_bounds="reset" ): """perform the null-space projection operations for null-space monte carlo Parameters ---------- par_file: str an optional file of parameter values to use nsing: int number of singular values to in forming null subspace matrix inplace: bool overwrite the existing parameter ensemble with the projected values enforce_bounds: str how to enforce parameter bounds. can be None, 'reset', or 'drop'. Default is None Returns ------- par_en : pyemu.ParameterEnsemble if inplace is False, otherwise None Note ---- to use this method, the MonteCarlo instance must have been constructed with the ``jco`` argument. Example ------- ``>>>import pyemu`` ``>>>mc = pyemu.MonteCarlo(jco="pest.jcb")`` ``>>>mc.draw(1000)`` ``>>>mc.project_parensemble(par_file="final.par",nsing=100)`` """ assert self.jco is not None, ( "MonteCarlo.project_parensemble()" + "requires a jacobian attribute" ) if par_file is not None: assert os.path.exists(par_file), ( "monte_carlo.draw() error: par_file not found:" + par_file ) self.parensemble.pst.parrep(par_file) # project the ensemble self.log("projecting parameter ensemble") en = self.parensemble.project( self.get_null_proj(nsing), inplace=inplace, log=self.log ) self.log("projecting parameter ensemble") return en def write_psts(self, prefix, existing_jco=None, noptmax=None): """write parameter and optionally observation realizations to a series of pest control files Parameters ---------- prefix: str pest control file prefix existing_jco: str filename of an existing jacobian matrix to add to the pest++ options in the control file. This is useful for NSMC since this jco can be used to get the first set of parameter upgrades for free! Needs to be the path the jco file as seen from the location where pest++ will be run noptmax: int value of NOPTMAX to set in new pest control files Example ------- ``>>>import pyemu`` ``>>>mc = pyemu.MonteCarlo(jco="pest.jcb")`` ``>>>mc.draw(1000, obs=True)`` ``>>>mc.write_psts("mc_", existing_jco="pest.jcb", noptmax=1)`` """ self.log("writing realized pest control files") # get a copy of the pest control file pst = self.pst.get(par_names=self.pst.par_names, obs_names=self.pst.obs_names) if noptmax is not None: pst.control_data.noptmax = noptmax pst.control_data.noptmax = noptmax if existing_jco is not None: pst.pestpp_options["BASE_JACOBIAN"] = existing_jco # set the indices pst.parameter_data.index = pst.parameter_data.parnme pst.observation_data.index = pst.observation_data.obsnme if self.parensemble.istransformed: par_en = self.parensemble._back_transform(inplace=False) else: par_en = self.parensemble for i in range(self.num_reals): pst_name = prefix + "{0:d}.pst".format(i) self.log("writing realized pest control file " + pst_name) pst.parameter_data.loc[par_en.columns, "parval1"] = par_en.iloc[i, :].T # reset the regularization # if pst.control_data.pestmode == "regularization": # pst.zero_order_tikhonov(parbounds=True) # zero_order_tikhonov(pst,parbounds=True) # add the obs noise realization if needed if self.obsensemble.shape[0] == self.num_reals: pst.observation_data.loc[ self.obsensemble.columns, "obsval" ] = self.obsensemble.iloc[i, :].T # write pst.write(pst_name) self.log("writing realized pest control file " + pst_name) self.log("writing realized pest control files")
bsd-3-clause
lazywei/scikit-learn
examples/classification/plot_classification_probability.py
242
2624
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial' )} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
gargleblaster/trading-with-python
lib/cboe.py
76
4433
# -*- coding: utf-8 -*- """ toolset working with cboe data @author: Jev Kuznetsov Licence: BSD """ from datetime import datetime, date import urllib2 from pandas import DataFrame, Index from pandas.core import datetools import numpy as np import pandas as pd def monthCode(month): """ perform month->code and back conversion Input: either month nr (int) or month code (str) Returns: code or month nr """ codes = ('F','G','H','J','K','M','N','Q','U','V','X','Z') if isinstance(month,int): return codes[month-1] elif isinstance(month,str): return codes.index(month)+1 else: raise ValueError('Function accepts int or str') def vixExpiration(year,month): """ expriration date of a VX future """ t = datetime(year,month,1)+datetools.relativedelta(months=1) offset = datetools.Week(weekday=4) if t.weekday()<>4: t_new = t+3*offset else: t_new = t+2*offset t_exp = t_new-datetools.relativedelta(days=30) return t_exp def getPutCallRatio(): """ download current Put/Call ratio""" urlStr = 'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/totalpc.csv' try: lines = urllib2.urlopen(urlStr).readlines() except Exception, e: s = "Failed to download:\n{0}".format(e); print s headerLine = 2 header = lines[headerLine].strip().split(',') data = [[] for i in range(len(header))] for line in lines[(headerLine+1):]: fields = line.rstrip().split(',') data[0].append(datetime.strptime(fields[0],'%m/%d/%Y')) for i,field in enumerate(fields[1:]): data[i+1].append(float(field)) return DataFrame(dict(zip(header[1:],data[1:])), index = Index(data[0])) def getHistoricData(symbols = ['VIX','VXV','VXMT','VVIX']): ''' get historic data from CBOE return dataframe ''' if not isinstance(symbols,list): symbols = [symbols] urls = {'VIX':'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/vixcurrent.csv', 'VXV':'http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vxvdailyprices.csv', 'VXMT':'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/vxmtdailyprices.csv', 'VVIX':'http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/VVIXtimeseries.csv'} startLines = {'VIX':1,'VXV':2,'VXMT':2,'VVIX':1} cols = {'VIX':'VIX Close','VXV':'CLOSE','VXMT':'Close','VVIX':'VVIX'} data = {} for symbol in symbols: urlStr = urls[symbol] print 'Downloading %s from %s' % (symbol,urlStr) data[symbol] = pd.read_csv(urllib2.urlopen(urlStr), header=startLines[symbol],index_col=0,parse_dates=True)[cols[symbol]] return pd.DataFrame(data) #---------------------classes-------------------------------------------- class VixFuture(object): """ Class for easy handling of futures data. """ def __init__(self,year,month): self.year = year self.month = month def expirationDate(self): return vixExpiration(self.year,self.month) def daysLeft(self,date): """ business days to expiration date """ from pandas import DateRange # this will cause a problem with pandas 0.14 and higher... Method is depreciated and replaced by DatetimeIndex r = DateRange(date,self.expirationDate()) return len(r) def __repr__(self): return 'VX future [%i-%i %s] Exprires: %s' % (self.year,self.month,monthCode(self.month), self.expirationDate()) #-------------------test functions--------------------------------------- def testDownload(): vix = getHistoricData('VIX') vxv = getHistoricData('VXV') vix.plot() vxv.plot() def testExpiration(): for month in xrange(1,13): d = vixExpiration(2011,month) print d.strftime("%B, %d %Y (%A)") if __name__ == '__main__': #testExpiration() v = VixFuture(2011,11) print v print v.daysLeft(datetime(2011,11,10))
bsd-3-clause
flightgong/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
43
1791
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_3 = DecisionTreeRegressor(max_depth=8) clf_1.fit(X, y) clf_2.fit(X, y) clf_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) y_3 = clf_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
steffengraber/nest-simulator
pynest/nest/voltage_trace.py
18
7432
# -*- coding: utf-8 -*- # # voltage_trace.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Functions to plot voltage traces. """ import nest import numpy __all__ = [ 'from_device', 'from_file', ] def from_file(fname, title=None, grayscale=False): """Plot voltage trace from file. Parameters ---------- fname : str or list Filename or list of filenames to load from title : str, optional Plot title grayscale : bool, optional Plot in grayscale Raises ------ ValueError """ import matplotlib.pyplot as plt if isinstance(fname, (list, tuple)): data = None for f in fname: if data is None: data = numpy.loadtxt(f) else: data = numpy.concatenate((data, numpy.loadtxt(f))) else: data = numpy.loadtxt(fname) if grayscale: line_style = "k" else: line_style = "" if len(data.shape) == 1: print("INFO: only found 1 column in the file. \ Assuming that only one neuron was recorded.") plotid = plt.plot(data, line_style) plt.xlabel("Time (steps of length interval)") elif data.shape[1] == 2: print("INFO: found 2 columns in the file. Assuming \ them to be node ID, pot.") plotid = [] data_dict = {} for d in data: if not d[0] in data_dict: data_dict[d[0]] = [d[1]] else: data_dict[d[0]].append(d[1]) for d in data_dict: plotid.append( plt.plot(data_dict[d], line_style, label="Neuron %i" % d) ) plt.xlabel("Time (steps of length interval)") plt.legend() elif data.shape[1] == 3: plotid = [] data_dict = {} g = data[0][0] t = [] for d in data: if not d[0] in data_dict: data_dict[d[0]] = [d[2]] else: data_dict[d[0]].append(d[2]) if d[0] == g: t.append(d[1]) for d in data_dict: plotid.append( plt.plot(t, data_dict[d], line_style, label="Neuron %i" % d) ) plt.xlabel("Time (ms)") plt.legend() else: raise ValueError("Inappropriate data shape %i!" % data.shape) if not title: title = "Membrane potential from file '%s'" % fname plt.title(title) plt.ylabel("Membrane potential (mV)") plt.draw() return plotid def from_device(detec, neurons=None, title=None, grayscale=False, timeunit="ms"): """Plot the membrane potential of a set of neurons recorded by the given voltmeter or multimeter. Parameters ---------- detec : list Global id of voltmeter or multimeter in a list, e.g. [1] neurons : list, optional Indices of of neurons to plot title : str, optional Plot title grayscale : bool, optional Plot in grayscale timeunit : str, optional Unit of time Raises ------ nest.kernel.NESTError Description """ import matplotlib.pyplot as plt if len(detec) > 1: raise nest.kernel.NESTError("Please provide a single voltmeter.") type_id = nest.GetDefaults(detec.get('model'), 'type_id') if type_id not in ('voltmeter', 'multimeter'): raise nest.kernel.NESTError("Please provide a voltmeter or a \ multimeter measuring V_m.") elif type_id == 'multimeter': if "V_m" not in detec.get("record_from"): raise nest.kernel.NESTError("Please provide a multimeter \ measuring V_m.") elif (not detec.get("record_to") == "memory" and len(detec.get("record_from")) > 1): raise nest.kernel.NESTError("Please provide a multimeter \ measuring only V_m or record to memory!") if detec.get("record_to") == "memory": timefactor = 1.0 if not detec.get('time_in_steps'): if timeunit == "s": timefactor = 1000.0 else: timeunit = "ms" times, voltages = _from_memory(detec) if not len(times): raise nest.NESTError("No events recorded!") if neurons is None: neurons = voltages.keys() plotids = [] for neuron in neurons: time_values = numpy.array(times[neuron]) / timefactor if grayscale: line_style = "k" else: line_style = "" try: plotids.append( plt.plot(time_values, voltages[neuron], line_style, label="Neuron %i" % neuron) ) except KeyError: print("INFO: Wrong ID: {0}".format(neuron)) if not title: title = "Membrane potential" plt.title(title) plt.ylabel("Membrane potential (mV)") if nest.GetStatus(detec)[0]['time_in_steps']: plt.xlabel("Steps") else: plt.xlabel("Time (%s)" % timeunit) plt.legend(loc="best") plt.draw() return plotids elif detec.get("record_to") == "ascii": fname = detec.get("filenames") return from_file(fname, title, grayscale) else: raise nest.kernel.NESTError("Provided devices neither record to \ ascii file, nor to memory.") def _from_memory(detec): """Get voltage traces from memory. ---------- detec : list Global id of voltmeter or multimeter """ import array ev = detec.get('events') potentials = ev['V_m'] senders = ev['senders'] v = {} t = {} if 'times' in ev: times = ev['times'] for s, currentsender in enumerate(senders): if currentsender not in v: v[currentsender] = array.array('f') t[currentsender] = array.array('f') v[currentsender].append(float(potentials[s])) t[currentsender].append(float(times[s])) else: # reconstruct the time vector, if not stored explicitly origin = detec.get('origin') start = detec.get('start') interval = detec.get('interval') senders_uniq = numpy.unique(senders) num_intvls = len(senders) / len(senders_uniq) times_s = origin + start + interval + \ interval * numpy.array(range(num_intvls)) for s, currentsender in enumerate(senders): if currentsender not in v: v[currentsender] = array.array('f') t[currentsender] = times_s v[currentsender].append(float(potentials[s])) return t, v
gpl-2.0
DGrady/pandas
doc/source/conf.py
5
19809
# -*- coding: utf-8 -*- # # pandas documentation build configuration file, created by # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import re import inspect import importlib from pandas.compat import u, PY3 try: raw_input # Python 2 except NameError: raw_input = input # Python 3 # https://github.com/sphinx-doc/sphinx/pull/2325/files # Workaround for sphinx-build recursion limit overflow: # pickle.dump(doctree, f, pickle.HIGHEST_PROTOCOL) # RuntimeError: maximum recursion depth exceeded while pickling an object # # Python's default allowed recursion depth is 1000. sys.setrecursionlimit(5000) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.append(os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.extend([ # numpy standard doc extensions os.path.join(os.path.dirname(__file__), '..', '../..', 'sphinxext') ]) # -- General configuration ----------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sphinxext. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.todo', 'numpydoc', # used to parse numpy-style docstrings for autodoc 'ipython_sphinxext.ipython_directive', 'ipython_sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_console_highlighting', # lowercase didn't work 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.linkcode', 'nbsphinx', ] exclude_patterns = ['**.ipynb_checkpoints'] with open("index.rst") as f: index_rst_lines = f.readlines() # only include the slow autosummary feature if we're building the API section # of the docs # JP: added from sphinxdocs autosummary_generate = False if any([re.match("\s*api\s*", l) for l in index_rst_lines]): autosummary_generate = True files_to_delete = [] for f in os.listdir(os.path.dirname(__file__)): if (not f.endswith(('.ipynb', '.rst')) or f.startswith('.') or os.path.basename(f) == 'index.rst'): continue _file_basename = os.path.splitext(f)[0] _regex_to_match = "\s*{}\s*$".format(_file_basename) if not any([re.match(_regex_to_match, line) for line in index_rst_lines]): files_to_delete.append(f) if files_to_delete: print("I'm about to DELETE the following:\n%s\n" % list(sorted(files_to_delete))) sys.stdout.write("WARNING: I'd like to delete those to speed up processing (yes/no)? ") if PY3: answer = input() else: answer = raw_input() if answer.lower().strip() in ('y','yes'): for f in files_to_delete: f = os.path.join(os.path.join(os.path.dirname(__file__),f)) f= os.path.abspath(f) try: print("Deleting %s" % f) os.unlink(f) except: print("Error deleting %s" % f) pass # Add any paths that contain templates here, relative to this directory. templates_path = ['../_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u('pandas') copyright = u('2008-2014, the pandas development team') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import pandas # version = '%s r%s' % (pandas.__version__, svn_version()) version = '%s' % (pandas.__version__) # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'nature_with_gtoc' # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. # html_style = 'statsmodels.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # Add redirect for previously existing API pages # each item is like `(from_old, to_new)` # To redirect a class and all its methods, see below # https://github.com/pandas-dev/pandas/issues/16186 moved_api_pages = [ ('pandas.core.common.isnull', 'pandas.isna'), ('pandas.core.common.notnull', 'pandas.notna'), ('pandas.core.reshape.get_dummies', 'pandas.get_dummies'), ('pandas.tools.merge.concat', 'pandas.concat'), ('pandas.tools.merge.merge', 'pandas.merge'), ('pandas.tools.pivot.pivot_table', 'pandas.pivot_table'), ('pandas.tseries.tools.to_datetime', 'pandas.to_datetime'), ('pandas.io.clipboard.read_clipboard', 'pandas.read_clipboard'), ('pandas.io.excel.ExcelFile.parse', 'pandas.ExcelFile.parse'), ('pandas.io.excel.read_excel', 'pandas.read_excel'), ('pandas.io.gbq.read_gbq', 'pandas.read_gbq'), ('pandas.io.html.read_html', 'pandas.read_html'), ('pandas.io.json.read_json', 'pandas.read_json'), ('pandas.io.parsers.read_csv', 'pandas.read_csv'), ('pandas.io.parsers.read_fwf', 'pandas.read_fwf'), ('pandas.io.parsers.read_table', 'pandas.read_table'), ('pandas.io.pickle.read_pickle', 'pandas.read_pickle'), ('pandas.io.pytables.HDFStore.append', 'pandas.HDFStore.append'), ('pandas.io.pytables.HDFStore.get', 'pandas.HDFStore.get'), ('pandas.io.pytables.HDFStore.put', 'pandas.HDFStore.put'), ('pandas.io.pytables.HDFStore.select', 'pandas.HDFStore.select'), ('pandas.io.pytables.read_hdf', 'pandas.read_hdf'), ('pandas.io.sql.read_sql', 'pandas.read_sql'), ('pandas.io.sql.read_frame', 'pandas.read_frame'), ('pandas.io.sql.write_frame', 'pandas.write_frame'), ('pandas.io.stata.read_stata', 'pandas.read_stata'), ] # Again, tuples of (from_old, to_new) moved_classes = [ ('pandas.tseries.resample.Resampler', 'pandas.core.resample.Resampler'), ('pandas.formats.style.Styler', 'pandas.io.formats.style.Styler'), ] for old, new in moved_classes: # the class itself... moved_api_pages.append((old, new)) mod, classname = new.rsplit('.', 1) klass = getattr(importlib.import_module(mod), classname) methods = [x for x in dir(klass) if not x.startswith('_') or x in ('__iter__', '__array__')] for method in methods: # ... and each of its public methods moved_api_pages.append( ("{old}.{method}".format(old=old, method=method), "{new}.{method}".format(new=new, method=method)) ) html_additional_pages = { 'generated/' + page[0]: 'api_redirect.html' for page in moved_api_pages } html_context = { 'redirects': {old: new for old, new in moved_api_pages} } # If false, no module index is generated. html_use_modindex = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pandas' # -- Options for nbsphinx ------------------------------------------------ nbsphinx_allow_errors = True # -- Options for LaTeX output -------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pandas.tex', u('pandas: powerful Python data analysis toolkit'), u('Wes McKinney\n\& PyData Development Team'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'statsmodels': ('http://www.statsmodels.org/devel/', None), 'matplotlib': ('http://matplotlib.org/', None), 'python': ('http://docs.python.org/3', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference', None), 'py': ('https://pylib.readthedocs.io/en/latest/', None) } import glob autosummary_generate = glob.glob("*.rst") # extlinks alias extlinks = {'issue': ('https://github.com/pandas-dev/pandas/issues/%s', 'GH'), 'wiki': ('https://github.com/pandas-dev/pandas/wiki/%s', 'wiki ')} ipython_exec_lines = [ 'import numpy as np', 'import pandas as pd', # This ensures correct rendering on system with console encoding != utf8 # (windows). It forces pandas to encode its output reprs using utf8 # whereever the docs are built. The docs' target is the browser, not # the console, so this is fine. 'pd.options.display.encoding="utf8"' ] # Add custom Documenter to handle attributes/methods of an AccessorProperty # eg pandas.Series.str and pandas.Series.dt (see GH9322) import sphinx from sphinx.util import rpartition from sphinx.ext.autodoc import Documenter, MethodDocumenter, AttributeDocumenter from sphinx.ext.autosummary import Autosummary class AccessorDocumenter(MethodDocumenter): """ Specialized Documenter subclass for accessors. """ objtype = 'accessor' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 def format_signature(self): # this method gives an error/warning for the accessors, therefore # overriding it (accessor has no arguments) return '' class AccessorLevelDocumenter(Documenter): """ Specialized Documenter subclass for objects on accessor level (methods, attributes). """ # This is the simple straightforward version # modname is None, base the last elements (eg 'hour') # and path the part before (eg 'Series.dt') # def resolve_name(self, modname, parents, path, base): # modname = 'pandas' # mod_cls = path.rstrip('.') # mod_cls = mod_cls.split('.') # # return modname, mod_cls + [base] def resolve_name(self, modname, parents, path, base): if modname is None: if path: mod_cls = path.rstrip('.') else: mod_cls = None # if documenting a class-level object without path, # there must be a current class, either from a parent # auto directive ... mod_cls = self.env.temp_data.get('autodoc:class') # ... or from a class directive if mod_cls is None: mod_cls = self.env.temp_data.get('py:class') # ... if still None, there's no way to know if mod_cls is None: return None, [] # HACK: this is added in comparison to ClassLevelDocumenter # mod_cls still exists of class.accessor, so an extra # rpartition is needed modname, accessor = rpartition(mod_cls, '.') modname, cls = rpartition(modname, '.') parents = [cls, accessor] # if the module name is still missing, get it like above if not modname: modname = self.env.temp_data.get('autodoc:module') if not modname: if sphinx.__version__ > '1.3': modname = self.env.ref_context.get('py:module') else: modname = self.env.temp_data.get('py:module') # ... else, it stays None, which means invalid return modname, parents + [base] class AccessorAttributeDocumenter(AccessorLevelDocumenter, AttributeDocumenter): objtype = 'accessorattribute' directivetype = 'attribute' # lower than AttributeDocumenter so this is not chosen for normal attributes priority = 0.6 class AccessorMethodDocumenter(AccessorLevelDocumenter, MethodDocumenter): objtype = 'accessormethod' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 class AccessorCallableDocumenter(AccessorLevelDocumenter, MethodDocumenter): """ This documenter lets us removes .__call__ from the method signature for callable accessors like Series.plot """ objtype = 'accessorcallable' directivetype = 'method' # lower than MethodDocumenter; otherwise the doc build prints warnings priority = 0.5 def format_name(self): return MethodDocumenter.format_name(self).rstrip('.__call__') class PandasAutosummary(Autosummary): """ This alternative autosummary class lets us override the table summary for Series.plot and DataFrame.plot in the API docs. """ def _replace_pandas_items(self, display_name, sig, summary, real_name): # this a hack: ideally we should extract the signature from the # .__call__ method instead of hard coding this if display_name == 'DataFrame.plot': sig = '([x, y, kind, ax, ....])' summary = 'DataFrame plotting accessor and method' elif display_name == 'Series.plot': sig = '([kind, ax, figsize, ....])' summary = 'Series plotting accessor and method' return (display_name, sig, summary, real_name) def get_items(self, names): items = Autosummary.get_items(self, names) items = [self._replace_pandas_items(*item) for item in items] return items # based on numpy doc/source/conf.py def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(pandas.__file__)) if '+' in pandas.__version__: return "http://github.com/pandas-dev/pandas/blob/master/pandas/%s%s" % ( fn, linespec) else: return "http://github.com/pandas-dev/pandas/blob/v%s/pandas/%s%s" % ( pandas.__version__, fn, linespec) # remove the docstring of the flags attribute (inherited from numpy ndarray) # because these give doc build errors (see GH issue 5331) def remove_flags_docstring(app, what, name, obj, options, lines): if what == "attribute" and name.endswith(".flags"): del lines[:] def setup(app): app.connect("autodoc-process-docstring", remove_flags_docstring) app.add_autodocumenter(AccessorDocumenter) app.add_autodocumenter(AccessorAttributeDocumenter) app.add_autodocumenter(AccessorMethodDocumenter) app.add_autodocumenter(AccessorCallableDocumenter) app.add_directive('autosummary', PandasAutosummary)
bsd-3-clause
SkRobo/Eurobot-2017
old year/RESET-master/CommunicationWithRobot/control4_debug.py
2
7940
from serial.tools import list_ports import numpy as np import serialWrapper import packetBuilder import packetParser import sys import time import socket import math import random import traceback import multiprocessing import lidar3_debug import lidarGui from ctypes import Structure, c_double import matplotlib.pyplot as plt # STM32 USB microcontroller ID #VID = 1155 #PID = 22336 #SNR = '336234893534' VID = 1155 PID = 22336 SNR = '3677346C3034' #################### # CONTROL # #################### def initPTC(): """Initialize PID, Trajectory, Kinematics""" # Build packet for sending to robot packet = packetBuilder.BuildPacket(commands.switchOnPid) # send packet to port. sendRequest method will wait answer from robot. In case # if you don't need answer possible to use 'sendData' method (just send data, # without waiting for answer) startT = time.time() recievedPacket = computerPort.sendRequest(packet.bytearray) endT = time.time() print 'Recieved ', (endT - startT) if recievedPacket.reply == 'Ok': print 'PID controller On' else: raise Exception('switchOnPid failed') packet = packetBuilder.BuildPacket(commands.switchOnTrajectoryRegulator) startT = time.time() recievedPacket = computerPort.sendRequest(packet.bytearray) endT = time.time() print 'Recieved ', (endT - startT) if recievedPacket.reply == 'Ok': print 'Trajectory regulator ON' else: raise Exception('switchOnTrajectoryRegulator failed') packet = packetBuilder.BuildPacket(commands.switchOnKinematicCalculation) startT = time.time() recievedPacket = computerPort.sendRequest(packet.bytearray) endT = time.time() print 'Recieved ', (endT - startT) if recievedPacket.reply == 'Ok': print 'Kinematics ON' else: raise Exception('switchOnKinematicCalculation failed') def portNumber(): """Find all ports, and returns one with defined STM values""" for port in list_ports.comports(): print port print port.serial_number, port.pid, port.vid if (port.serial_number == SNR) and (port.pid == PID) and (port.vid == VID): return port.name def globMov(): print '\nInput coordinates and speed type' # Get user input for movement x = float(raw_input('X: ')) y = float(raw_input('Y: ')) fi = float(raw_input('angle: ')) speed = int(raw_input('speed type (0 = normal, 1 = stop, 2 = stand): ')) coordinates = [x, y, fi, speed] #print 'Movement command: ', coordinates packet = packetBuilder.BuildPacket(commands.addPointToStack, coordinates) with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) if recievedPacket.reply != 'Ok': raise Exception('add PointToStack failed') def relMov(x = False, y = False, fi = False, speed = False): """Move robot relative to its current coord""" print '\nInput robot displacement and speed type' if x == False: x = float(raw_input('X: ')) if y == False: y = float(raw_input('Y: ')) if fi == False: fi = float(raw_input('angle: ')) if speed == False: speed = int(raw_input('speed type (0 = normal, 1 = stop, 2 = stand): ')) dsplcmnt = [x, y, fi, speed] #startT = time.time() oldCoord = getCoord() newCoord = [oldCoord[0] + dsplcmnt[0], oldCoord[1] + dsplcmnt[1], oldCoord[2] + dsplcmnt[2], speed] #endT = time.time() #print 'Rel Mov ', (endT - startT) #print 'Displacement: ', dsplcmnt #print 'Old Coord: ', oldCoord #print 'New Coord: ', newCoord packet = packetBuilder.BuildPacket(commands.addPointToStack, newCoord) with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) def setStart(x,y,fi): coordinates = [x, y, fi] packet = packetBuilder.BuildPacket(commands.setCoordinates, coordinates) with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) if recievedPacket.reply != 'Ok': raise Exception('setCoordinates failed') def setCoord(): print '\nSet current robot coordinates' x = float(raw_input('X: ')) y = float(raw_input('Y: ')) fi = float(raw_input('angle: ')) coordinates = [x, y, fi] packet = packetBuilder.BuildPacket(commands.setCorectCoordinates, coordinates) with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) if recievedPacket.reply != 'Ok': raise Exception('setCoordinates failed') def setCCoord(x,y,fi): sharedcor.value = 1 coordinates = [x, y, fi] while sharedcor.value == 0: continue packet = packetBuilder.BuildPacket(commands.setCorectCoordinates, coordinates) with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) if recievedPacket.reply != 'Ok': raise Exception('setCoordinates failed') def getCoord(): """Return robot current coordinates""" packet = packetBuilder.BuildPacket(commands.getCurentCoordinates) #startT = time.time() with lock: recievedPacket = computerPort.sendRequest(packet.bytearray) #endT = time.time() #print 'GetCoord time: ', (endT - startT) #print 'Current robot coordinates: ', recievedPacket.reply return recievedPacket.reply #packet = packetBuilder.BuildPacket(commands.switchOnKinematicCalculation) #recievedPacket = computerPort.sendRequest(packet.bytearray) def correction(): #robot = getCoord() #print robot lidar = shared[:] print 'lidar correction: ', lidar #diff = [lidar[0]/1000-robot[0],lidar[1]/1000-robot[1],lidar[2]-robot[2]] setCCoord(lidar[0]/1000, lidar[1]/1000, lidar[2]) def getLidar(): return shared[:] def detectStop(): old = getCoord() time.sleep(0.5) new = getCoord() suma = sum([new[0]-old[0], new[1]-old[1],new[2]-old[2]]) if suma < 0.001: return True return False class Pose(Structure): _fields_ = [('x', c_double), ('y', c_double), ('fi', c_double)] def weights(): """ setup an XY plot canvas """ global plidar, wlidar pipx = [i.x for i in plidar] pipy = [i.y for i in plidar] pipfi =[math.degrees(i.fi) for i in plidar] #we = [(wlidar[i],wlidar[i],wlidar[i]) for i in xrange(100)] #print we #print pip plt.ion() n, bins, patches = plt.hist((pipx,pipy,pipfi), bins = 50, weights = (wlidar,wlidar,wlidar), rwidth = 0.9, color = ('b','r','g')) plt.grid(True) plt.draw() raw_input("<Hit Enter To Close>") plt.close() ################ ## START ## ################ port = '/dev/'+portNumber() if port: print 'STM32 found on port %s' %port else: print 'No STM32 found. Aborting' sys.exit() # COM port initialization computerPort = serialWrapper.SerialWrapper(port) # we will choose commands which we want to send from this list commands = packetBuilder.CommandsList() # Initialize PID, Trajectory and Kinematics initPTC() iteration = 0 lock = multiprocessing.Lock() shared = multiprocessing.Array('d', [0.0, 0.0, 0.0]) sharedcor = multiprocessing.Value('i', 0) wlidar = multiprocessing.Array('d', 200) plidar = multiprocessing.Array(Pose, [(0.0, 0.0, 0.0) for i in xrange(200)]) l = multiprocessing.Process(target=lidar3_debug.localisation, args =(lock,shared,computerPort,commands,plidar,wlidar,sharedcor)) l.start() g = multiprocessing.Process(target=lidarGui.begin, args =(shared,)) g.start() setStart(0.152,0.72,0.0) #figure, lines = init_xy_plot() comm_list = {1: globMov, 2: relMov, 3: setCoord, 4: getCoord, 5: getLidar, 6: correction, 7: weights} while True: try: iteration += 1 print '\nList of available commands: \n1 Global Movement\n2 Relative Movement'\ '\n3 Set Coordinates\n4 Get Coordinates\n5 Get Lidar\n6 Correction'\ '\n7 Histogram' command = int(raw_input('Command number: ')) print comm_list[command]() print 'Command ended' #print shared[:] except: print 'Traceback line in main: ' traceback.print_exc() sys.exit() #Communication test #getCoord() #print 'Iteration: ', iteration #relMov(0.1, 0.1, 1.571, 2) #print 'new' #relMov(-0.1, -0.1, -1.571, 2) #print 'new' #relMov(0.1, 0.1, 1.571, 2) #print 'new' #relMov(-0.1, -0.1, -1.571, 2) #print 'new' #relMov(0.1, 0.1, 1.571, 2) #print 'new' #relMov(-0.1, -0.1, -1.571, 2) #print 'stop'
mit
rs2/pandas
pandas/tests/extension/arrow/test_bool.py
1
2726
import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.tests.extension import base pytest.importorskip("pyarrow", minversion="0.13.0") from .arrays import ArrowBoolArray, ArrowBoolDtype # isort:skip @pytest.fixture def dtype(): return ArrowBoolDtype() @pytest.fixture def data(): values = np.random.randint(0, 2, size=100, dtype=bool) values[1] = ~values[0] return ArrowBoolArray.from_scalars(values) @pytest.fixture def data_missing(): return ArrowBoolArray.from_scalars([None, True]) def test_basic_equals(data): # https://github.com/pandas-dev/pandas/issues/34660 assert pd.Series(data).equals(pd.Series(data)) class BaseArrowTests: pass class TestDtype(BaseArrowTests, base.BaseDtypeTests): def test_array_type_with_arg(self, data, dtype): pytest.skip("GH-22666") class TestInterface(BaseArrowTests, base.BaseInterfaceTests): def test_copy(self, data): # __setitem__ does not work, so we only have a smoke-test data.copy() def test_view(self, data): # __setitem__ does not work, so we only have a smoke-test data.view() class TestConstructors(BaseArrowTests, base.BaseConstructorsTests): def test_from_dtype(self, data): pytest.skip("GH-22666") # seems like some bug in isna on empty BoolArray returning floats. @pytest.mark.xfail(reason="bad is-na for empty data") def test_from_sequence_from_cls(self, data): super().test_from_sequence_from_cls(data) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_no_data_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_no_data_with_index(dtype, na_value) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_scalar_na_with_index(dtype, na_value) @pytest.mark.xfail(reason="raises AssertionError") def test_construct_empty_dataframe(self, dtype): super().test_construct_empty_dataframe(dtype) class TestReduce(base.BaseNoReduceTests): def test_reduce_series_boolean(self): pass class TestReduceBoolean(base.BaseBooleanReduceTests): pass def test_is_bool_dtype(data): assert pd.api.types.is_bool_dtype(data) assert pd.core.common.is_bool_indexer(data) s = pd.Series(range(len(data))) result = s[data] expected = s[np.asarray(data)] tm.assert_series_equal(result, expected)
bsd-3-clause
abimannans/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
98
20870
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
sankar-mukherjee/CoFee
laurent/coFeeClassif.py
1
17162
# -*- coding: utf-8 -*- """ Created on Thu Mar 19 20:02:02 2015 @author: prevot """ import sys #sys.path.append('/Users/prevot/Ubuntu One/Code') import nltk import csv import sklearn import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import svm from sklearn import metrics from sklearn import preprocessing from sklearn import tree from sklearn.ensemble import RandomForestClassifier from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import AdaBoostClassifier from numpy import array from random import shuffle from pandas import DataFrame from pandas import Series WORKING_DIR = 'C:/Users/mukherjee/Desktop/CoFee/analysis/laurent/' CORPORA_LIST = ['CID','MTR']#,'MTX','DVD'] SPEAKER_LIST = ['AB','CM','AG','YM','EB','SR','NH','LL','AC','MB','BX','MG','LJ','AP','ML','IM','BLX','BLY','ROX','ROY','VEX','VEY','MAX','MAY'] ROLE_LIST = ['F','G','-'] SESSION_LIST = ['1','2','3','4','5','6','7','8'] def readData(filename): res = [] with open(filename, 'r') as filename: reader = csv.DictReader(filename, delimiter=',', quotechar='"') for row in reader: res.append(row) return res def filterData(data,filterField,filterValues,positive=True): ''' Example filterData(data,'base0.65',['None'],False) Example filterData(data,'corpus',['MTX',MTR'],True) ''' res = [] for line in data: if positive: if line[filterField] in filterValues: res.append(line) else: if line[filterField] not in filterValues: res.append(line) return res def cutTextfeat(data,feature,threshold): listValues = [line[feature] for line in data] distrib = nltk.FreqDist(listValues) frequentValues = [item for item in distrib if distrib[item]>=threshold] print "size lexicon "+feature+" :"+str(len(frequentValues)) for line in data: if line[feature] not in frequentValues: line[feature] = 'hapax' return data def buildFilteredLexica(data,featureList,threshold): res = {} for feat in featureList: listValues= [line[feat] for line in data] distrib = nltk.FreqDist(listValues) frequentValues = [item for item in distrib if distrib[item] >= threshold] res[feat] = frequentValues return res def cleanData(data,lexica): res = [] for line in data: lineres = {} for item in line.keys(): if item in ACO_FEAT+POS_FEAT+INTER_ACO_FEAT: if line[item] == 'NaN': lineres[item] = 0 #TODO elif line[item] == 'Inf': lineres[item] = -1 #TODO else: lineres[item] = float(line[item]) elif item in FUNCTIONS: lineres[item] = line[item] elif item in ['sa','osa','osb','pa','pb','opa','opb']: if float(line[item]) > 4.0: lineres[item] =4.0 elif float(line[item]) < 0.0: lineres[item] =0.0 else: lineres[item] = float(line[item]) elif item in NUM_LEX_FEAT + NUM_CTX_FEAT + NUM_INTER_FEAT + CTX_MAN_FEAT: lineres[item] = float(line[item]) elif item in BIN_FEAT: lineres[item] = int(line[item]) elif item in TXT_FEAT: lb = preprocessing.LabelBinarizer() lb.fit(lexica[item]) binSimple = lb.transform([(line[item])]) for i in range(len(binSimple[0])): lineres[item+'_'+str(i)] = binSimple[0][i] elif item in META_FEAT: lb = preprocessing.LabelBinarizer() lb.fit(lexica[item]) binSimple = lb.transform([(line[item])]) for i in range(len(binSimple[0])): lineres[item+'_'+str(i)] = binSimple[0][i] lineres['ndo'] = float(line['do'])/float(line['dur']) res.append(lineres) return res def prepdata(rawdata): for feature in TOKENS_FEAT: tempdata = cutTextfeat(rawdata,feature,30) for feature in BIGRAMS_FEAT: processedData = cutTextfeat(tempdata,feature,15) lexiUni = buildFilteredLexica(processedData,TOKENS_FEAT,30) lexiBi = buildFilteredLexica(processedData,BIGRAMS_FEAT,15) lexicaCut = dict(lexiUni.items() + lexiBi.items()) lexicaCut['corpus']= CORPORA_LIST lexicaCut['spk']= SPEAKER_LIST lexicaCut['sess']= SESSION_LIST lexicaCut['rol']= ROLE_LIST cleaneddata = cleanData(processedData,lexicaCut) return cleaneddata def runExpeClassifiers(data,features,target,fileout): allres = {} shuffle(data) # Prep features featData = array([[sample[feat] for feat in features] for sample in data]) # featData_scaled = preprocessing.scale(featData) min_max_scaler = preprocessing.MinMaxScaler() featData_MinMax = min_max_scaler.fit_transform(featData) #Prep target labelBase = [sample[target] for sample in data] X_train, X_test, y_train, y_test = cross_validation.train_test_split(featData_MinMax, labelBase, test_size=0.1, random_state=0) classifiers = [ # ('ada-10', AdaBoostClassifier(n_estimators=10)), # ('ada-50', AdaBoostClassifier(n_estimators=50)), # ('ada-100', AdaBoostClassifier(n_estimators=100)), # ('svm-1', svm.SVC(cache_size=1000,C=1.0)), # ('svm-05', svm.SVC(cache_size=1000,C=0.5)), # ('forest-10', RandomForestClassifier(n_estimators=10)), # ('forest-20', RandomForestClassifier(n_estimators=20)), ('forest-50', RandomForestClassifier(n_estimators=50)), ('forest-50-min5', RandomForestClassifier(n_estimators=50,min_samples_leaf=5)), ('forest-50-min10', RandomForestClassifier(n_estimators=50,min_samples_leaf=10)), # ('forest-5010', RandomForestClassifier(n_estimators=50,max_features=10)), # ('forest-5020', RandomForestClassifier(n_estimators=50,max_features=20)), ] for name,clf in classifiers: print name clf = clf.fit(X_train, y_train) res = clf.predict(X_test) scores = cross_validation.cross_val_score(clf,featData_MinMax,labelBase,cv=10) print scores.mean() print scores.std() print(metrics.classification_report(y_test, res)) allres[name] = scores if name[0:6]=='forest': print"Feature Importance" showFeatureImportance(clf.feature_importances_,clf.estimators_,features,WORKING_DIR+'importance.png') cols = [x for (x,y) in classifiers] df = pd.DataFrame(allres,columns=cols) means = df.mean() errors = df.std() fig, ax = plt.subplots() ax = means.plot(yerr=errors, ax=ax, kind='bar') ax.set_ylabel('Accuracy') ax.set_ylim(0.4,1) fig = ax.get_figure() fig.savefig(fileout) return allres def showFeatureImportance(importances,estimators,features,fileout): # std = np.std([tr.feature_importances_ for tr in estimators], # axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") forsumming = {} for f in range(len(features)): forsumming[features[indices[f]]] = importances[indices[f]] lex = aco = pos = aut = man = met = bid = 0 # oth = for feat in forsumming.keys(): if feat in REAL_LEX_FEAT: lex = lex + forsumming[feat] elif feat in REAL_ACO_FEAT: aco = aco + forsumming[feat] elif feat in REAL_POS_FEAT: pos = pos + forsumming[feat] elif feat in REAL_CTX_AUT_FEAT: aut = aut + forsumming[feat] elif feat in REAL_CTX_MAN_FEAT: man = man + forsumming[feat] elif feat in REAL_MET_FEAT: met = met + forsumming[feat] # elif feat in REAL_OTH_FEAT: # oth = oth + forsumming[feat] else: bid = bid + forsumming[feat] df = pd.Series({'lex':lex,'aco':aco,'pos':pos,'ctx-aut':aut,'ctx-man':man,'met':met,'oth':bid})#inter':oth, # Plot the feature importances of the forest fig, ax = plt.subplots() ax = df.plot(ax=ax, kind='bar') ax.set_ylabel('Accuracy') fig = ax.get_figure() fig.savefig(fileout) return 0 def runOneExperiment(data,classifier,features,target): # Prep data shuffle(data) featData = array([[sample[feat] for feat in features] for sample in data]) min_max_scaler = preprocessing.MinMaxScaler() featData_MinMax = min_max_scaler.fit_transform(featData) #Prep target labelBase = [sample[target] for sample in data] X_train, X_test, y_train, y_test = cross_validation.train_test_split(featData_MinMax, labelBase, test_size=0.1, random_state=0) clf = classifier clf = clf.fit(X_train, y_train) res = clf.predict(X_test) scores = cross_validation.cross_val_score(clf,featData_MinMax,labelBase,cv=10) print scores.mean() print scores.std() print(metrics.classification_report(y_test, res)) return scores def runExpeFeatures(rawdata,classifier,target): ''' Featsets is a list of pair name,featset ''' # filtereddata = filterData(rawdata,'baseFun0.65','None',False) # filtereddata = rawdata # filtereddata = filterData(rawdata,'EvalFun0.49','None',False) filtereddata = filterData(rawdata,'EvalFun0.65','None',False) corpora = [('cid',prepdata(filterData(filtereddata,'corpus','CID',True))), ('mtr',prepdata(filterData(filtereddata,'corpus','MTR',True))), ('all',prepdata(filtereddata)) ] globalres = {} for namec,corpus in corpora: print '*******' print namec print '*******' allfeatures = corpus[0].keys() finalfeatures = set(allfeatures) REAL_LEX_FEAT = [item for item in finalfeatures if item[0:5]=='trans'] + NUM_LEX_FEAT + BIN_LEX_FEAT REAL_CTX_AUT_FEAT = [item for item in finalfeatures if item[0:7]=='othLast'] + [item for item in finalfeatures if item[0:8]=='prevLast'] + [item for item in finalfeatures if item[0:9]=='prevFirst'] + [item for item in finalfeatures if item[0:9]=='prevfirst'] + [item for item in finalfeatures if item[0:8]=='othFirst'] + [item for item in finalfeatures if item[0:8]=='othfirst']+ NUM_CTX_FEAT + NUM_INTER_FEAT REAL_MET_FEAT = [item for item in finalfeatures if item[0:4]=='spk_'] + [item for item in finalfeatures if item[0:6]=='corpus'] + [item for item in finalfeatures if item[0:4]=='sess'] + [item for item in finalfeatures if item[0:3]=='rol'] featsets = [#('bas',GEST_FEAT), # ('lpa+inter',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_AUT_FEAT+REAL_INTER_FEAT), ('lex',REAL_LEX_FEAT), ('pos',REAL_POS_FEAT), ('aco',REAL_ACO_FEAT), ('lex+pos',REAL_LEX_FEAT+REAL_POS_FEAT), ('lex+aco',REAL_LEX_FEAT+REAL_ACO_FEAT), ('lex+met',REAL_LEX_FEAT+REAL_MET_FEAT), ('aco+pos',REAL_ACO_FEAT+REAL_POS_FEAT), ('lpa',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT), ('lpa+aut',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_AUT_FEAT), ('lpa+aut+met',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_AUT_FEAT+REAL_MET_FEAT), ('lpa+man',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_MAN_FEAT), ('lpa+man+met',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_MAN_FEAT+REAL_MET_FEAT), # ('all',REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_MAN_FEAT+REAL_MET_FEAT+REAL_INTER_FEAT) ] allres = {} for name,featset in featsets: print name allres[name] = runOneExperiment(corpus,classifier,featset,target) globalres[namec] = allres corpcol = ['cid','mtr', 'all'] featcol = ['lex', 'pos', 'aco', 'lex+pos','lex+aco','lex+met','aco+pos','lpa', 'lpa+aut','lpa+aut+met','lpa+man','lpa+man+met'] means = DataFrame(columns=corpcol, index=featcol) errors = DataFrame(columns=corpcol, index=featcol) for corpus in globalres.keys(): print corpus for featset in globalres[corpus].keys(): print featset means[corpus][featset] = Series(globalres[corpus][featset]).mean() errors[corpus][featset] = Series(globalres[corpus][featset]).std() fig, ax = plt.subplots() ax.set_ylim(0.5,0.9) means.plot(yerr=errors, ax=ax, kind='bar') fig.savefig(WORKING_DIR+'corpus-eval-featset.png',dpi=100) return globalres ############################## ############################## ############################## ############################## DATA_FILE = WORKING_DIR+'allmerged.csv' rawdata = readData(DATA_FILE) # Remove None Values (if desired) filtereddata = filterData(rawdata,'baseFun0.65','None',False) TOKENS_FEAT = ['prevLastTok','prevFirstTok','othLastTok','othFirstTok','trans'] BIGRAMS_FEAT = ['prevLastBi','prevfirstBi','othLastBi','othfirstBi']#! prevfirstBi != prevFirstBi, othfirstBi FUNCTIONS = ['baseFun0.49','baseFun0.65', 'baseFun0.74', 'baseFun1','EvalFun0.49','EvalFun0.65', 'EvalFun0.74','EvalFun1'] ################################### # LEX FEATURES ################################### NUM_LEX_FEAT = ['nbmh','nbouais','size'] BIN_LEX_FEAT = ['ouais','mh', 'laugh','ah','bon','oui','mais','ok','dac','voila','non','et'] TXT_LEX_FEAT = ['trans'] LEX_FEAT = NUM_LEX_FEAT + BIN_LEX_FEAT + TXT_LEX_FEAT ################################### # ACO FEATURES ################################### PITCH_FEAT = ['slope','f0max','f0min','f0stdev','NanRatio','span','steepness','height'] INTENSITY_FEAT = ['intQ1','intQ3','intQ2']#,'intQ1raw','intQ2raw','intQ3raw' PHON_FEAT = ['phonSplit','form1','form2','form3'] ACO_FEAT = PITCH_FEAT + INTENSITY_FEAT + PHON_FEAT + ['duration'] + ['aperiodAV'] ################################### # INTER FEATURES ################################### INTER_ACO_FEAT = ['steepnessInterl','spanInterl','f0maxInterl','intQ2Interl','aperiodAVInterl','f0stdevInterl','heightInterl','f0minInterl','NanRatioInterl', 'intQ1Interl', 'intQ2Interl','intQ3Interl','slopeInterl','durationInterl'] ################################### # POS FEATURES ################################### POS_FEAT = ['sa','pa','pb','opa','opb','osa','osb','do','ndo','posDial'] ################################### # CTX-AUTO FEATURES ################################### NUM_CTX_FEAT = ['prevNbTu','prevNbJe','prevSize','prevNbFeedback','prevRed'] TXT_CTX_FEAT = ['prevLastTok','prevFirstTok','prevLastBi','prevfirstBi'] #! prevfirstBi != prevFirstBi NUM_INTER_FEAT = ['othNbTu','othNbJe','othNbFeedback','othSize','othRed'] TXT_INTER_FEAT = ['othLastTok','othLastBi','othFirstTok','othfirstBi']#! prevfirstBi != prevFirstBi ################################### # CTX-MAN FEATURES ################################### CTX_MAN_FEAT = ['inint','quest','feedback','ordre','essai','assert','incomp'] ################################### # META FEATURES ################################### META_FEAT = ['spk','sess','rol','corpus'] ################################### # OTHER FEATURES ################################### SIM_ACOU_FEAT = ['SimScore'] GEST_FEAT = ['gest'] ################################### # TYPE of FEATURES ################################### TXT_FEAT = TXT_INTER_FEAT + TXT_CTX_FEAT + TXT_LEX_FEAT BIN_FEAT = BIN_LEX_FEAT data = prepdata(filtereddata) allfeatures = data[0].keys() finalfeatures = set(allfeatures) # REAL FEATURES (Binarized,...) REAL_LEX_FEAT = [item for item in finalfeatures if item[0:5]=='trans'] + NUM_LEX_FEAT + BIN_LEX_FEAT REAL_ACO_FEAT = ACO_FEAT REAL_POS_FEAT = POS_FEAT REAL_CTX_MAN_FEAT = CTX_MAN_FEAT REAL_CTX_AUT_FEAT = [item for item in finalfeatures if item[0:7]=='othLast'] + [item for item in finalfeatures if item[0:8]=='prevLast'] + [item for item in finalfeatures if item[0:9]=='prevFirst'] + [item for item in finalfeatures if item[0:9]=='prevfirst'] + [item for item in finalfeatures if item[0:8]=='othFirst'] + [item for item in finalfeatures if item[0:8]=='othfirst']+ NUM_CTX_FEAT + NUM_INTER_FEAT REAL_MET_FEAT = [item for item in finalfeatures if item[0:4]=='spk_'] + [item for item in finalfeatures if item[0:6]=='corpus'] + [item for item in finalfeatures if item[0:4]=='sess'] + [item for item in finalfeatures if item[0:3]=='rol'] REAL_INTER_FEAT = INTER_ACO_FEAT #RUN classifier testing experiment runExpeClassifiers(data,REAL_LEX_FEAT+REAL_POS_FEAT+REAL_ACO_FEAT+REAL_CTX_AUT_FEAT+REAL_CTX_AUT_FEAT+REAL_MET_FEAT,'baseFun0.65',WORKING_DIR+'classifier.png') runOneExperiment(data,classifier,REAL_POS_FEAT,'baseFun0.65')
apache-2.0
pylayers/pylayers
pylayers/em/openems/animfield.py
2
1199
import vtk import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from mpl_toolkits.axes_grid1 import make_axes_locatable plt.rcParams['animation.ffmpeg_path']='/usr/bin/ffmpeg' from vtk.util.numpy_support import vtk_to_numpy reader = vtk.vtkXMLRectilinearGridReader() fig,ax = plt.subplots() NrTs = 1500 ims = [] for k in np.arange(0,NrTs,1): # create the filename from sequence number if k<10: filename="tmp/Et_000000000"+str(k)+'.vtr' elif k<100: filename="tmp/Et_00000000"+str(k)+'.vtr' elif k<1000: filename="tmp/Et_0000000"+str(k)+'.vtr' reader.SetFileName(filename) reader.Update() Efield = reader.GetOutput().GetPointData().GetArray(0) u=vtk_to_numpy(Efield) im = ax.imshow(u,interpolation='nearest') a = im.get_axes() # Draw colorbar only once if k==0: divider = make_axes_locatable(ax) cax = divider.append_axes("right",size="5%",pad=0.05) clb = fig.colorbar(im,cax) clb.set_label("Efield V/m") ax.axis('tight') ims.append([im]) ani = animation.ArtistAnimation(fig,ims,interval=50,blit=True,repeat_delay=1000) #ani.save('Efield.mp4')
mit
bsipocz/scikit-image
doc/examples/plot_ihc_color_separation.py
18
1925
""" ============================================== Immunohistochemical staining colors separation ============================================== In this example we separate the immunohistochemical (IHC) staining from the hematoxylin counterstaining. The separation is achieved with the method described in [1]_, known as "color deconvolution". The IHC staining expression of the FHL2 protein is here revealed with Diaminobenzidine (DAB) which gives a brown color. .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. """ import matplotlib.pyplot as plt from skimage import data from skimage.color import rgb2hed ihc_rgb = data.immunohistochemistry() ihc_hed = rgb2hed(ihc_rgb) fig, axes = plt.subplots(2, 2, figsize=(7, 6)) ax0, ax1, ax2, ax3 = axes.ravel() ax0.imshow(ihc_rgb) ax0.set_title("Original image") ax1.imshow(ihc_hed[:, :, 0], cmap=plt.cm.gray) ax1.set_title("Hematoxylin") ax2.imshow(ihc_hed[:, :, 1], cmap=plt.cm.gray) ax2.set_title("Eosin") ax3.imshow(ihc_hed[:, :, 2], cmap=plt.cm.gray) ax3.set_title("DAB") for ax in axes.ravel(): ax.axis('off') fig.subplots_adjust(hspace=0.3) """ .. image:: PLOT2RST.current_figure Now we can easily manipulate the hematoxylin and DAB "channels": """ import numpy as np from skimage.exposure import rescale_intensity # Rescale hematoxylin and DAB signals and give them a fluorescence look h = rescale_intensity(ihc_hed[:, :, 0], out_range=(0, 1)) d = rescale_intensity(ihc_hed[:, :, 2], out_range=(0, 1)) zdh = np.dstack((np.zeros_like(h), d, h)) fig, ax = plt.subplots() ax.imshow(zdh) ax.set_title("Stain separated image (rescaled)") ax.axis('off') plt.show() """ .. image:: PLOT2RST.current_figure """
bsd-3-clause
yonglehou/scikit-learn
sklearn/linear_model/ridge.py
89
39360
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _rescale_data(X, y, sample_weight): """Rescale data so as to support sample_weight""" n_samples = X.shape[0] sample_weight = sample_weight * np.ones(n_samples) sample_weight = np.sqrt(sample_weight) sw_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) X = safe_sparse_dot(sw_matrix, X) y = safe_sparse_dot(sw_matrix, y) return X, y def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is set, then the solver will automatically be set to 'cholesky' solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr'): raise ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Singular value decomposition to obtain the solution, 'cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight' : sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. If an integer is passed, it is the number of folds for KFold cross validation. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter. intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
huzq/scikit-learn
sklearn/tree/tests/test_tree.py
4
72223
""" Testing for the tree module (sklearn.tree). """ import copy import pickle from itertools import product import struct import pytest import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import _sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_warns from sklearn.utils._testing import assert_warns_message from sklearn.utils._testing import create_memmap_backed_data from sklearn.utils._testing import ignore_warnings from sklearn.utils._testing import skip_if_32bit from sklearn.utils.validation import check_random_state from sklearn.exceptions import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree._tree import TREE_LEAF, TREE_UNDEFINED from sklearn.tree._classes import CRITERIA_CLF from sklearn.tree._classes import CRITERIA_REG from sklearn import datasets from sklearn.utils import compute_sample_weight CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", "mae", "friedman_mse") CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the diabetes dataset # and randomly permute it diabetes = datasets.load_diabetes() perm = rng.permutation(diabetes.target.size) diabetes.data = diabetes.data[perm] diabetes.target = diabetes.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) # NB: despite their names X_sparse_* are numpy arrays (and not sparse matrices) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = _sparse_random_matrix(20, 10, density=0.25, random_state=0).toarray() DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "diabetes": {"X": diabetes.data, "y": diabetes.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert s.node_count == d.node_count, ( "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.full(len(X), 0.5)) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert clf.score(X, y) == 1.0, "Failed with {0}".format(name) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert clf.score(X, y) == 1.0, "Failed with {0}".format(name) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert score > 0.9, ( "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert score > 0.5, ( "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) @pytest.mark.parametrize("name, Tree", REG_TREES.items()) @pytest.mark.parametrize("criterion", REG_CRITERIONS) def test_diabetes_overfit(name, Tree, criterion): # check consistency of overfitted trees on the diabetes dataset # since the trees will overfit, we expect an MSE of 0 reg = Tree(criterion=criterion, random_state=0) reg.fit(diabetes.data, diabetes.target) score = mean_squared_error(diabetes.target, reg.predict(diabetes.data)) assert score == pytest.approx(0), ( f"Failed with {name}, criterion = {criterion} and score = {score}" ) @skip_if_32bit @pytest.mark.parametrize("name, Tree", REG_TREES.items()) @pytest.mark.parametrize( "criterion, max_depth", [("mse", 15), ("mae", 20), ("friedman_mse", 15)] ) def test_diabetes_underfit(name, Tree, criterion, max_depth): # check consistency of trees when the depth and the number of features are # limited reg = Tree( criterion=criterion, max_depth=max_depth, max_features=6, random_state=0 ) reg.fit(diabetes.data, diabetes.target) score = mean_squared_error(diabetes.target, reg.predict(diabetes.data)) assert score < 60 and score > 0, ( f"Failed with {name}, criterion = {criterion} and score = {score}" ) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(reg.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=5000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert importances.shape[0] == 10, "Failed with {0}".format(name) assert n_important == 3, "Failed with {0}".format(name) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() with pytest.raises(ValueError): getattr(clf, 'feature_importances_') def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(diabetes.data, diabetes.target) assert reg.max_features_ == diabetes.data.shape[1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert clf.max_features_ == 2 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert (est.max_features_ == int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert (est.max_features_ == int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert est.max_features_ == 1 est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert est.max_features_ == 3 est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert est.max_features_ == 1 est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert (est.max_features_ == int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert est.max_features_ == iris.data.shape[1] est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert est.max_features_ == iris.data.shape[1] # use values of max_features that are invalid est = TreeEstimator(max_features=10) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_features=-1) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_features=0.0) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_features=1.5) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_features="foobar") with pytest.raises(ValueError): est.fit(X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() with pytest.raises(NotFittedError): est.predict_proba(X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample with pytest.raises(ValueError): est.predict_proba(X2) for name, TreeEstimator in ALL_TREES.items(): with pytest.raises(ValueError): TreeEstimator(min_samples_leaf=-1).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_leaf=.6).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_leaf=0.).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_leaf=3.).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_weight_fraction_leaf=-1).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_weight_fraction_leaf=0.51).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_split=-1).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_split=0.0).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_split=1.1).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_samples_split=2.5).fit(X, y) with pytest.raises(ValueError): TreeEstimator(max_depth=-1).fit(X, y) with pytest.raises(ValueError): TreeEstimator(max_features=42).fit(X, y) # min_impurity_split warning with ignore_warnings(category=FutureWarning): with pytest.raises(ValueError): TreeEstimator(min_impurity_split=-1.0).fit(X, y) with pytest.raises(ValueError): TreeEstimator(min_impurity_decrease=-1.0).fit(X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] with pytest.raises(ValueError): est.fit(X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() with pytest.raises(NotFittedError): est.predict(T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) with pytest.raises(ValueError): est.predict(t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) with pytest.raises(ValueError): est.predict(X) with pytest.raises(ValueError): est.apply(X) clf = TreeEstimator() clf.fit(X, y) with pytest.raises(ValueError): clf.predict(Xt) with pytest.raises(ValueError): clf.apply(Xt) # apply before fitting est = TreeEstimator() with pytest.raises(NotFittedError): est.apply(T) def test_min_samples_split(): """Test min_samples_split parameter""" X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test for integer parameter est = TreeEstimator(min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert np.min(node_samples) > 9, "Failed with {0}".format(name) # test for float parameter est = TreeEstimator(min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert np.min(node_samples) > 9, "Failed with {0}".format(name) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test integer parameter est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert np.min(leaf_count) > 4, "Failed with {0}".format(name) # test float parameter est = TreeEstimator(min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert np.min(leaf_count) > 4, "Failed with {0}".format(name) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert ( np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf), ( "Failed with {0} min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) # test case with no weights passed in total_weight = X.shape[0] for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert ( np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf), ( "Failed with {0} min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) @pytest.mark.parametrize("name", ALL_TREES) def test_min_weight_fraction_leaf_on_dense_input(name): check_min_weight_fraction_leaf(name, "iris") @pytest.mark.parametrize("name", SPARSE_TREES) def test_min_weight_fraction_leaf_on_sparse_input(name): check_min_weight_fraction_leaf(name, "multilabel", True) def check_min_weight_fraction_leaf_with_min_samples_leaf(name, datasets, sparse=False): """Test the interaction between min_weight_fraction_leaf and min_samples_leaf when sample_weights is not provided in fit.""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] total_weight = X.shape[0] TreeEstimator = ALL_TREES[name] for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)): # test integer min_samples_leaf est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, min_samples_leaf=5, random_state=0) est.fit(X, y) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert ( np.min(leaf_weights) >= max((total_weight * est.min_weight_fraction_leaf), 5)), ( "Failed with {0} min_weight_fraction_leaf={1}, " "min_samples_leaf={2}".format( name, est.min_weight_fraction_leaf, est.min_samples_leaf)) for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 3)): # test float min_samples_leaf est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, min_samples_leaf=.1, random_state=0) est.fit(X, y) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert ( np.min(leaf_weights) >= max((total_weight * est.min_weight_fraction_leaf), (total_weight * est.min_samples_leaf))), ( "Failed with {0} min_weight_fraction_leaf={1}, " "min_samples_leaf={2}".format(name, est.min_weight_fraction_leaf, est.min_samples_leaf)) @pytest.mark.parametrize("name", ALL_TREES) def test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input(name): check_min_weight_fraction_leaf_with_min_samples_leaf(name, "iris") @pytest.mark.parametrize("name", SPARSE_TREES) def test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input(name): check_min_weight_fraction_leaf_with_min_samples_leaf( name, "multilabel", True) def test_min_impurity_split(): # test if min_impurity_split creates leaves with impurity # [0, min_impurity_split) when min_samples_leaf = 1 and # min_samples_split = 2. X = np.asfortranarray(iris.data, dtype=tree._tree.DTYPE) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] min_impurity_split = .5 # verify leaf nodes without min_impurity_split less than # impurity 1e-7 est = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0) assert est.min_impurity_split is None, ( "Failed, min_impurity_split = {0} != None".format( est.min_impurity_split)) try: assert_warns(FutureWarning, est.fit, X, y) except AssertionError: pass for node in range(est.tree_.node_count): if (est.tree_.children_left[node] == TREE_LEAF or est.tree_.children_right[node] == TREE_LEAF): assert est.tree_.impurity[node] == 0., ( "Failed with {0} min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) # verify leaf nodes have impurity [0,min_impurity_split] when using # min_impurity_split est = TreeEstimator(max_leaf_nodes=max_leaf_nodes, min_impurity_split=min_impurity_split, random_state=0) assert_warns_message(FutureWarning, "Use the min_impurity_decrease", est.fit, X, y) for node in range(est.tree_.node_count): if (est.tree_.children_left[node] == TREE_LEAF or est.tree_.children_right[node] == TREE_LEAF): assert est.tree_.impurity[node] >= 0, ( "Failed with {0}, min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) assert est.tree_.impurity[node] <= min_impurity_split, ( "Failed with {0}, min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) def test_min_impurity_decrease(): # test if min_impurity_decrease ensure that a split is made only if # if the impurity decrease is atleast that value X, y = datasets.make_classification(n_samples=10000, random_state=42) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # Check default value of min_impurity_decrease, 1e-7 est1 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0) # Check with explicit value of 0.05 est2 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.05, random_state=0) # Check with a much lower value of 0.0001 est3 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.0001, random_state=0) # Check with a much lower value of 0.1 est4 = TreeEstimator(max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=0.1, random_state=0) for est, expected_decrease in ((est1, 1e-7), (est2, 0.05), (est3, 0.0001), (est4, 0.1)): assert est.min_impurity_decrease <= expected_decrease, ( "Failed, min_impurity_decrease = {0} > {1}".format( est.min_impurity_decrease, expected_decrease)) est.fit(X, y) for node in range(est.tree_.node_count): # If current node is a not leaf node, check if the split was # justified w.r.t the min_impurity_decrease if est.tree_.children_left[node] != TREE_LEAF: imp_parent = est.tree_.impurity[node] wtd_n_node = est.tree_.weighted_n_node_samples[node] left = est.tree_.children_left[node] wtd_n_left = est.tree_.weighted_n_node_samples[left] imp_left = est.tree_.impurity[left] wtd_imp_left = wtd_n_left * imp_left right = est.tree_.children_right[node] wtd_n_right = est.tree_.weighted_n_node_samples[right] imp_right = est.tree_.impurity[right] wtd_imp_right = wtd_n_right * imp_right wtd_avg_left_right_imp = wtd_imp_right + wtd_imp_left wtd_avg_left_right_imp /= wtd_n_node fractional_node_weight = ( est.tree_.weighted_n_node_samples[node] / X.shape[0]) actual_decrease = fractional_node_weight * ( imp_parent - wtd_avg_left_right_imp) assert actual_decrease >= expected_decrease, ( "Failed with {0} expected min_impurity_decrease={1}" .format(actual_decrease, expected_decrease)) for name, TreeEstimator in ALL_TREES.items(): if "Classifier" in name: X, y = iris.data, iris.target else: X, y = diabetes.data, diabetes.target est = TreeEstimator(random_state=0) est.fit(X, y) score = est.score(X, y) fitted_attribute = dict() for attribute in ["max_depth", "node_count", "capacity"]: fitted_attribute[attribute] = getattr(est.tree_, attribute) serialized_object = pickle.dumps(est) est2 = pickle.loads(serialized_object) assert type(est2) == est.__class__ score2 = est2.score(X, y) assert score == score2, ( "Failed to generate same score after pickling " "with {0}".format(name)) for attribute in fitted_attribute: assert (getattr(est2.tree_, attribute) == fitted_attribute[attribute]), ( "Failed to generate same attribute {0} after " "pickling with {1}".format(attribute, name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert y_hat.shape == (4, 2) proba = clf.predict_proba(T) assert len(proba) == 2 assert proba[0].shape == (4, 2) assert proba[1].shape == (4, 4) log_proba = clf.predict_log_proba(T) assert len(log_proba) == 2 assert log_proba[0].shape == (4, 2) assert log_proba[1].shape == (4, 4) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert y_hat.shape == (4, 2) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert clf.n_classes_ == 2 assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert len(clf.n_classes_) == 2 assert len(clf.classes_) == 2 assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = compute_sample_weight("balanced", unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert clf.tree_.threshold[0] == 149.5 sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert clf.tree_.threshold[0] == 49.5 # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) with pytest.raises(ValueError): clf.fit(X, y, sample_weight=sample_weight) sample_weight = np.array(0) expected_err = r"Singleton.* cannot be considered a valid collection" with pytest.raises(TypeError, match=expected_err): clf.fit(X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) @pytest.mark.parametrize("name", CLF_TREES) def test_class_weights(name): check_class_weights(name) def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) with pytest.raises(ValueError): clf.fit(X, y) with pytest.raises(ValueError): clf.fit(X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) with pytest.raises(ValueError): clf.fit(X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) with pytest.raises(ValueError): clf.fit(X, _y) @pytest.mark.parametrize("name", CLF_TREES) def test_class_weight_errors(name): check_class_weight_errors(name) def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) assert est.get_n_leaves() == k + 1 # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) with pytest.raises(ValueError): est.fit(X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) with pytest.raises(ValueError): est.fit(X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) assert est.get_depth() == 1 def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert -3 <= value.flat[0] < 3, \ 'Array points to arbitrary memory' def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert est.tree_.max_depth == 0 def test_behaviour_constant_feature_after_splits(): X = np.transpose(np.vstack(([[0, 0, 0, 0, 0, 1, 2, 4, 5, 6, 7]], np.zeros((4, 11))))) y = [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3] for name, TreeEstimator in ALL_TREES.items(): # do not check extra random trees if "ExtraTree" not in name: est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert est.tree_.max_depth == 2 assert est.tree_.node_count == 5 def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert est.tree_.max_depth == 1 assert_array_equal(est.predict_proba(X), np.full((4, 2), 0.5)) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert est.tree_.max_depth == 1 assert_array_equal(est.predict(X), np.full((4, ), 0.5)) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert "float32" in str(e) def test_realloc(): from sklearn.tree._utils import _realloc_test with pytest.raises(MemoryError): _realloc_test() def test_huge_allocations(): n_bits = 8 * struct.calcsize("P") X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) with pytest.raises(Exception): clf.fit(X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) with pytest.raises(MemoryError): clf.fit(X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "diabetes"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) @pytest.mark.parametrize("tree_type", SPARSE_TREES) @pytest.mark.parametrize( "dataset", ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros") ) def test_sparse_input(tree_type, dataset): max_depth = 3 if dataset == "digits" else None check_sparse_input(tree_type, dataset, max_depth) @pytest.mark.parametrize("tree_type", sorted(set(SPARSE_TREES).intersection(REG_TREES))) @pytest.mark.parametrize("dataset", ["diabetes", "reg_small"]) def test_sparse_input_reg_trees(tree_type, dataset): # Due to numerical instability of MSE and too strict test, we limit the # maximal depth check_sparse_input(tree_type, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) @pytest.mark.parametrize("tree_type", SPARSE_TREES) @pytest.mark.parametrize("dataset", ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]) @pytest.mark.parametrize("check", [check_sparse_parameters, check_sparse_criterion]) def test_sparse(tree_type, dataset, check): check(tree_type, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert (X_sparse.data == 0.).sum() > 0 assert (X_sparse_test.data == 0.).sum() > 0 # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), d.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) @pytest.mark.parametrize("tree_type", SPARSE_TREES) def test_explicit_sparse_zeros(tree_type): check_explicit_sparse_zeros(tree_type) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target with pytest.raises(ValueError): TreeEstimator(random_state=0).fit(X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) with pytest.raises(ValueError): est.predict([X]) @pytest.mark.parametrize("name", ALL_TREES) def test_1d_input(name): with ignore_warnings(): check_raise_error_on_1d_input(name) def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert est.tree_.max_depth == 1 est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert est.tree_.max_depth == 0 def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) @pytest.mark.parametrize("name", ALL_TREES) def test_min_weight_leaf_split_level(name): check_min_weight_leaf_split_level(name) def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE, copy=False) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE, copy=False)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) @pytest.mark.parametrize("name", ALL_TREES) def test_public_apply_all_trees(name): check_public_apply(name) @pytest.mark.parametrize("name", SPARSE_TREES) def test_public_apply_sparse_trees(name): check_public_apply_sparse(name) def test_decision_path_hardcoded(): X = iris.data y = iris.target est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) node_indicator = est.decision_path(X[:2]).toarray() assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) def check_decision_path(name): X = iris.data y = iris.target n_samples = X.shape[0] TreeEstimator = ALL_TREES[name] est = TreeEstimator(random_state=0, max_depth=2) est.fit(X, y) node_indicator_csr = est.decision_path(X) node_indicator = node_indicator_csr.toarray() assert node_indicator.shape == (n_samples, est.tree_.node_count) # Assert that leaves index are correct leaves = est.apply(X) leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) # Ensure only one leave node per sample all_leaves = est.tree_.children_left == TREE_LEAF assert_array_almost_equal(np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)) # Ensure max depth is consistent with sum of indicator max_depth = node_indicator.sum(axis=1).max() assert est.tree_.max_depth <= max_depth @pytest.mark.parametrize("name", ALL_TREES) def test_decision_path(name): check_decision_path(name) def check_no_sparse_y_support(name): X, y = X_multilabel, csr_matrix(y_multilabel) TreeEstimator = ALL_TREES[name] with pytest.raises(TypeError): TreeEstimator(random_state=0).fit(X, y) @pytest.mark.parametrize("name", ALL_TREES) def test_no_sparse_y_support(name): # Currently we don't support sparse y check_no_sparse_y_support(name) def test_mae(): """Check MAE criterion produces correct results on small toy dataset: ------------------ | X | y | weight | ------------------ | 3 | 3 | 0.1 | | 5 | 3 | 0.3 | | 8 | 4 | 1.0 | | 3 | 6 | 0.6 | | 5 | 7 | 0.3 | ------------------ |sum wt:| 2.3 | ------------------ Because we are dealing with sample weights, we cannot find the median by simply choosing/averaging the centre value(s), instead we consider the median where 50% of the cumulative weight is found (in a y sorted data set) . Therefore with regards to this test data, the cumulative weight is >= 50% when y = 4. Therefore: Median = 4 For all the samples, we can get the total error by summing: Absolute(Median - y) * weight I.e., total error = (Absolute(4 - 3) * 0.1) + (Absolute(4 - 3) * 0.3) + (Absolute(4 - 4) * 1.0) + (Absolute(4 - 6) * 0.6) + (Absolute(4 - 7) * 0.3) = 2.5 Impurity = Total error / total weight = 2.5 / 2.3 = 1.08695652173913 ------------------ From this root node, the next best split is between X values of 3 and 5. Thus, we have left and right child nodes: LEFT RIGHT ------------------ ------------------ | X | y | weight | | X | y | weight | ------------------ ------------------ | 3 | 3 | 0.1 | | 5 | 3 | 0.3 | | 3 | 6 | 0.6 | | 8 | 4 | 1.0 | ------------------ | 5 | 7 | 0.3 | |sum wt:| 0.7 | ------------------ ------------------ |sum wt:| 1.6 | ------------------ Impurity is found in the same way: Left node Median = 6 Total error = (Absolute(6 - 3) * 0.1) + (Absolute(6 - 6) * 0.6) = 0.3 Left Impurity = Total error / total weight = 0.3 / 0.7 = 0.428571428571429 ------------------- Likewise for Right node: Right node Median = 4 Total error = (Absolute(4 - 3) * 0.3) + (Absolute(4 - 4) * 1.0) + (Absolute(4 - 7) * 0.3) = 1.2 Right Impurity = Total error / total weight = 1.2 / 1.6 = 0.75 ------ """ dt_mae = DecisionTreeRegressor(random_state=0, criterion="mae", max_leaf_nodes=2) # Test MAE where sample weights are non-uniform (as illustrated above): dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3], sample_weight=[0.6, 0.3, 0.1, 1.0, 0.3]) assert_allclose(dt_mae.tree_.impurity, [2.5 / 2.3, 0.3 / 0.7, 1.2 / 1.6]) assert_array_equal(dt_mae.tree_.value.flat, [4.0, 6.0, 4.0]) # Test MAE where all sample weights are uniform: dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3], sample_weight=np.ones(5)) assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0]) assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0]) # Test MAE where a `sample_weight` is not explicitly provided. # This is equivalent to providing uniform sample weights, though # the internal logic is different: dt_mae.fit(X=[[3], [5], [3], [8], [5]], y=[6, 7, 3, 4, 3]) assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0 / 3.0]) assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0]) def test_criterion_copy(): # Let's check whether copy of our criterion has the same type # and properties as original n_outputs = 3 n_classes = np.arange(3, dtype=np.intp) n_samples = 100 def _pickle_copy(obj): return pickle.loads(pickle.dumps(obj)) for copy_func in [copy.copy, copy.deepcopy, _pickle_copy]: for _, typename in CRITERIA_CLF.items(): criteria = typename(n_outputs, n_classes) result = copy_func(criteria).__reduce__() typename_, (n_outputs_, n_classes_), _ = result assert typename == typename_ assert n_outputs == n_outputs_ assert_array_equal(n_classes, n_classes_) for _, typename in CRITERIA_REG.items(): criteria = typename(n_outputs, n_samples) result = copy_func(criteria).__reduce__() typename_, (n_outputs_, n_samples_), _ = result assert typename == typename_ assert n_outputs == n_outputs_ assert n_samples == n_samples_ def test_empty_leaf_infinite_threshold(): # try to make empty leaf by using near infinite value. data = np.random.RandomState(0).randn(100, 11) * 2e38 data = np.nan_to_num(data.astype('float32')) X_full = data[:, :-1] X_sparse = csc_matrix(X_full) y = data[:, -1] for X in [X_full, X_sparse]: tree = DecisionTreeRegressor(random_state=0).fit(X, y) terminal_regions = tree.apply(X) left_leaf = set(np.where(tree.tree_.children_left == TREE_LEAF)[0]) empty_leaf = left_leaf.difference(terminal_regions) infinite_threshold = np.where(~np.isfinite(tree.tree_.threshold))[0] assert len(infinite_threshold) == 0 assert len(empty_leaf) == 0 @pytest.mark.parametrize("criterion", CLF_CRITERIONS) @pytest.mark.parametrize( "dataset", sorted(set(DATASETS.keys()) - {"reg_small", "diabetes"})) @pytest.mark.parametrize( "tree_cls", [DecisionTreeClassifier, ExtraTreeClassifier]) def test_prune_tree_classifier_are_subtrees(criterion, dataset, tree_cls): dataset = DATASETS[dataset] X, y = dataset["X"], dataset["y"] est = tree_cls(max_leaf_nodes=20, random_state=0) info = est.cost_complexity_pruning_path(X, y) pruning_path = info.ccp_alphas impurities = info.impurities assert np.all(np.diff(pruning_path) >= 0) assert np.all(np.diff(impurities) >= 0) assert_pruning_creates_subtree(tree_cls, X, y, pruning_path) @pytest.mark.parametrize("criterion", REG_CRITERIONS) @pytest.mark.parametrize("dataset", DATASETS.keys()) @pytest.mark.parametrize( "tree_cls", [DecisionTreeRegressor, ExtraTreeRegressor]) def test_prune_tree_regression_are_subtrees(criterion, dataset, tree_cls): dataset = DATASETS[dataset] X, y = dataset["X"], dataset["y"] est = tree_cls(max_leaf_nodes=20, random_state=0) info = est.cost_complexity_pruning_path(X, y) pruning_path = info.ccp_alphas impurities = info.impurities assert np.all(np.diff(pruning_path) >= 0) assert np.all(np.diff(impurities) >= 0) assert_pruning_creates_subtree(tree_cls, X, y, pruning_path) def test_prune_single_node_tree(): # single node tree clf1 = DecisionTreeClassifier(random_state=0) clf1.fit([[0], [1]], [0, 0]) # pruned single node tree clf2 = DecisionTreeClassifier(random_state=0, ccp_alpha=10) clf2.fit([[0], [1]], [0, 0]) assert_is_subtree(clf1.tree_, clf2.tree_) def assert_pruning_creates_subtree(estimator_cls, X, y, pruning_path): # generate trees with increasing alphas estimators = [] for ccp_alpha in pruning_path: est = estimator_cls( max_leaf_nodes=20, ccp_alpha=ccp_alpha, random_state=0).fit(X, y) estimators.append(est) # A pruned tree must be a subtree of the previous tree (which had a # smaller ccp_alpha) for prev_est, next_est in zip(estimators, estimators[1:]): assert_is_subtree(prev_est.tree_, next_est.tree_) def assert_is_subtree(tree, subtree): assert tree.node_count >= subtree.node_count assert tree.max_depth >= subtree.max_depth tree_c_left = tree.children_left tree_c_right = tree.children_right subtree_c_left = subtree.children_left subtree_c_right = subtree.children_right stack = [(0, 0)] while stack: tree_node_idx, subtree_node_idx = stack.pop() assert_array_almost_equal(tree.value[tree_node_idx], subtree.value[subtree_node_idx]) assert_almost_equal(tree.impurity[tree_node_idx], subtree.impurity[subtree_node_idx]) assert_almost_equal(tree.n_node_samples[tree_node_idx], subtree.n_node_samples[subtree_node_idx]) assert_almost_equal(tree.weighted_n_node_samples[tree_node_idx], subtree.weighted_n_node_samples[subtree_node_idx]) if (subtree_c_left[subtree_node_idx] == subtree_c_right[subtree_node_idx]): # is a leaf assert_almost_equal(TREE_UNDEFINED, subtree.threshold[subtree_node_idx]) else: # not a leaf assert_almost_equal(tree.threshold[tree_node_idx], subtree.threshold[subtree_node_idx]) stack.append((tree_c_left[tree_node_idx], subtree_c_left[subtree_node_idx])) stack.append((tree_c_right[tree_node_idx], subtree_c_right[subtree_node_idx])) def test_prune_tree_raises_negative_ccp_alpha(): clf = DecisionTreeClassifier() msg = "ccp_alpha must be greater than or equal to 0" with pytest.raises(ValueError, match=msg): clf.set_params(ccp_alpha=-1.0) clf.fit(X, y) clf.set_params(ccp_alpha=0.0) clf.fit(X, y) with pytest.raises(ValueError, match=msg): clf.set_params(ccp_alpha=-1.0) clf._prune_tree() def check_apply_path_readonly(name): X_readonly = create_memmap_backed_data(X_small.astype(tree._tree.DTYPE, copy=False)) y_readonly = create_memmap_backed_data(np.array(y_small, dtype=tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_readonly, y_readonly) assert_array_equal(est.predict(X_readonly), est.predict(X_small)) assert_array_equal(est.decision_path(X_readonly).todense(), est.decision_path(X_small).todense()) @pytest.mark.parametrize("name", ALL_TREES) def test_apply_path_readonly_all_trees(name): check_apply_path_readonly(name) # TODO: Remove in v0.26 @pytest.mark.parametrize("TreeEstimator", [DecisionTreeClassifier, DecisionTreeRegressor]) def test_X_idx_sorted_deprecated(TreeEstimator): X_idx_sorted = np.argsort(X, axis=0) tree = TreeEstimator() with pytest.warns(FutureWarning, match="The parameter 'X_idx_sorted' is deprecated"): tree.fit(X, y, X_idx_sorted=X_idx_sorted)
bsd-3-clause
jundongl/scikit-feature
skfeature/example/test_reliefF.py
3
1587
import scipy.io from sklearn import cross_validation from sklearn import svm from sklearn.metrics import accuracy_score from skfeature.function.similarity_based import reliefF def main(): # load data mat = scipy.io.loadmat('../data/COIL20.mat') X = mat['X'] # data X = X.astype(float) y = mat['Y'] # label y = y[:, 0] n_samples, n_features = X.shape # number of samples and number of features # split data into 10 folds ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True) # perform evaluation on classification task num_fea = 100 # number of selected features clf = svm.LinearSVC() # linear SVM correct = 0 for train, test in ss: # obtain the score of each feature on the training set score = reliefF.reliefF(X[train], y[train]) # rank features in descending order according to score idx = reliefF.feature_ranking(score) # obtain the dataset on the selected features selected_features = X[:, idx[0:num_fea]] # train a classification model with the selected features on the training dataset clf.fit(selected_features[train], y[train]) # predict the class labels of test data y_predict = clf.predict(selected_features[test]) # obtain the classification accuracy on the test data acc = accuracy_score(y[test], y_predict) correct = correct + acc # output the average classification accuracy over all 10 folds print 'Accuracy:', float(correct)/10 if __name__ == '__main__': main()
gpl-2.0
shenzebang/scikit-learn
sklearn/neighbors/base.py
22
31143
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array, _get_n_jobs, gen_even_slices from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..utils.validation import NotFittedError from ..externals import six from ..externals.joblib import Parallel, delayed VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p self.n_jobs = n_jobs if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': if metric == 'precomputed': alg_check = 'brute' else: alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if ((self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2) and self.metric != 'precomputed'): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) if self.n_neighbors is not None: if self.n_neighbors <= 0: raise ValueError( "Expected n_neighbors > 0. Got %d" % self.n_neighbors ) return self @property def _pairwise(self): # For cross-validation routines to split data correctly return self.metric == 'precomputed' class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] n_jobs = _get_n_jobs(self.n_jobs) if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', n_jobs=n_jobs, squared=True) else: dist = pairwise_distances( X, self._fit_X, self.effective_metric_, n_jobs=n_jobs, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = Parallel(n_jobs, backend='threading')( delayed(self._tree.query, check_pickle=False)( X[s], n_neighbors, return_distance) for s in gen_even_slices(X.shape[0], n_jobs) ) if return_distance: dist, neigh_ind = tuple(zip(*result)) result = np.vstack(dist), np.vstack(neigh_ind) else: result = np.vstack(result) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([1., 1., 1.]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. """ return self._fit(X)
bsd-3-clause
tawsifkhan/scikit-learn
sklearn/linear_model/tests/test_ridge.py
130
22974
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) cv = KFold(n_samples, 5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
bsd-3-clause
saketkc/statsmodels
statsmodels/tsa/statespace/tests/test_representation.py
3
41354
""" Tests for python wrapper of state space representation and filtering Author: Chad Fulton License: Simplified-BSD References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. """ from __future__ import division, absolute_import, print_function import warnings import numpy as np import pandas as pd import os from statsmodels.tsa.statespace.representation import Representation from statsmodels.tsa.statespace.kalman_filter import KalmanFilter, FilterResults, PredictionResults from statsmodels.tsa.statespace import tools, sarimax from .results import results_kalman_filter from numpy.testing import assert_equal, assert_almost_equal, assert_raises, assert_allclose from nose.exc import SkipTest current_path = os.path.dirname(os.path.abspath(__file__)) clark1989_path = 'results' + os.sep + 'results_clark1989_R.csv' clark1989_results = pd.read_csv(current_path + os.sep + clark1989_path) class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = KalmanFilter(k_endog=1, k_states=k_states, **kwargs) self.model.bind(data['lgdp'].values) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'] ) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[self.true['start']:].sum(), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:], self.true_states.iloc[:, 2], 4 ) class TestClark1987Single(Clark1987): """ Basic single precision test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987Single, self).__init__( dtype=np.float32, conserve_memory=0 ) self.run_filter() class TestClark1987Double(Clark1987): """ Basic double precision test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Double, self).__init__( dtype=float, conserve_memory=0 ) self.run_filter() class TestClark1987SingleComplex(Clark1987): """ Basic single precision complex test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987SingleComplex, self).__init__( dtype=np.complex64, conserve_memory=0 ) self.run_filter() class TestClark1987DoubleComplex(Clark1987): """ Basic double precision complex test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987DoubleComplex, self).__init__( dtype=complex, conserve_memory=0 ) self.run_filter() class TestClark1987Conserve(Clark1987): """ Memory conservation test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1987Forecast(Clark1987): """ Forecasting test for the loglikelihood and filtered states. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1987Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.r_[self.model.endog[0, :], [np.nan]*nforecast], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) class TestClark1987ForecastDouble(Clark1987Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDouble, self).__init__() self.run_filter() class TestClark1987ForecastDoubleComplex(Clark1987Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1987ForecastConserve(Clark1987Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1987ConserveAll(Clark1987): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) self.model.loglikelihood_burn = self.true['start'] self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 5 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) k_states = 6 self.model = KalmanFilter(k_endog=2, k_states=k_states, **kwargs) self.model.bind(np.ascontiguousarray(data.values)) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[ ([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0]) ] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: self.modelification initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( # self.results.llf_obs[self.true['start']:].sum(), self.results.llf_obs[0:].sum(), self.true['loglike'], 2 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:], self.true_states.iloc[:, 3], 4 ) class TestClark1989(Clark1989): """ Basic double precision test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989, self).__init__(dtype=float, conserve_memory=0) self.run_filter() def test_kalman_gain(self): assert_allclose(self.results.kalman_gain.sum(axis=1).sum(axis=0), clark1989_results['V1'], atol=1e-4) class TestClark1989Conserve(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class Clark1989Forecast(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, self).__init__( dtype=dtype, conserve_memory=conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self.model.endog = np.array( np.c_[ self.model.endog, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) self.model.nobs = self.model.endog.shape[1] self.run_filter() def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:-self.nforecast], self.true_states.iloc[:, 3], 4 ) class TestClark1989ForecastDouble(Clark1989Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDouble, self).__init__() self.run_filter() class TestClark1989ForecastDoubleComplex(Clark1989Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDoubleComplex, self).__init__( dtype=complex ) self.run_filter() class TestClark1989ForecastConserve(Clark1989Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.run_filter() class TestClark1989ConserveAll(Clark1989): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) # self.model.loglikelihood_burn = self.true['start'] self.model.loglikelihood_burn = 0 self.run_filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[0], self.true['loglike'], 2 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.results.filtered_state[0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][-1], self.true_states.iloc[end-1, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][-1], self.true_states.iloc[end-1, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][-1], self.true_states.iloc[end-1, 3], 4 ) class TestClark1989PartialMissing(Clark1989): def __init__(self): super(TestClark1989PartialMissing, self).__init__() endog = self.model.endog endog[1,-51:] = np.NaN self.model.bind(endog) self.run_filter() def test_loglike(self): assert_allclose(self.results.llf_obs[0:].sum(), 1232.113456) def test_filtered_state(self): # Could do this, but no need really. pass def test_predicted_state(self): assert_allclose( self.results.predicted_state.T[1:], clark1989_results.iloc[:,1:], atol=1e-8 ) # Miscellaneous coverage-related tests def test_slice_notation(): # Test setting and getting state space representation matrices using the # slice notation. endog = np.arange(10)*1.0 mod = KalmanFilter(k_endog=1, k_states=2) mod.bind(endog) # Test invalid __setitem__ def set_designs(): mod['designs'] = 1 def set_designs2(): mod['designs',0,0] = 1 def set_designs3(): mod[0] = 1 assert_raises(IndexError, set_designs) assert_raises(IndexError, set_designs2) assert_raises(IndexError, set_designs3) # Test invalid __getitem__ assert_raises(IndexError, lambda: mod['designs']) assert_raises(IndexError, lambda: mod['designs',0,0,0]) assert_raises(IndexError, lambda: mod[0]) # Test valid __setitem__, __getitem__ assert_equal(mod.design[0,0,0], 0) mod['design',0,0,0] = 1 assert_equal(mod['design'].sum(), 1) assert_equal(mod.design[0,0,0], 1) assert_equal(mod['design',0,0,0], 1) # Test valid __setitem__, __getitem__ with unspecified time index mod['design'] = np.zeros(mod['design'].shape) assert_equal(mod.design[0,0], 0) mod['design',0,0] = 1 assert_equal(mod.design[0,0], 1) assert_equal(mod['design',0,0], 1) def test_representation(): # Test Representation construction # Test an invalid number of states def zero_kstates(): mod = Representation(1, 0) assert_raises(ValueError, zero_kstates) # Test an invalid endogenous array def empty_endog(): endog = np.zeros((0,0)) mod = Representation(endog, k_states=2) assert_raises(ValueError, empty_endog) # Test a Fortran-ordered endogenous array (which will be assumed to be in # wide format: k_endog x nobs) nobs = 10 k_endog = 2 endog = np.asfortranarray(np.arange(nobs*k_endog).reshape(k_endog,nobs)*1.) mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test a C-ordered endogenous array (which will be assumed to be in # tall format: nobs x k_endog) nobs = 10 k_endog = 2 endog = np.arange(nobs*k_endog).reshape(nobs,k_endog)*1. mod = Representation(endog, k_states=2) assert_equal(mod.nobs, nobs) assert_equal(mod.k_endog, k_endog) # Test getting the statespace representation assert_equal(mod._statespace, None) mod._initialize_representation() assert_equal(mod._statespace is not None, True) def test_bind(): # Test binding endogenous data to Kalman filter mod = Representation(1, k_states=2) # Test invalid endogenous array (it must be ndarray) assert_raises(ValueError, lambda: mod.bind([1,2,3,4])) # Test valid (nobs x 1) endogenous array mod.bind(np.arange(10)*1.) assert_equal(mod.nobs, 10) # Test valid (k_endog x 0) endogenous array mod.bind(np.zeros(0,dtype=np.float64)) # Test invalid (3-dim) endogenous array assert_raises(ValueError, lambda: mod.bind(np.arange(12).reshape(2,2,3)*1.)) # Test valid F-contiguous mod.bind(np.asfortranarray(np.arange(10).reshape(1,10))) assert_equal(mod.nobs, 10) # Test valid C-contiguous mod.bind(np.arange(10).reshape(10,1)) assert_equal(mod.nobs, 10) # Test invalid F-contiguous assert_raises(ValueError, lambda: mod.bind(np.asfortranarray(np.arange(10).reshape(10,1)))) # Test invalid C-contiguous assert_raises(ValueError, lambda: mod.bind(np.arange(10).reshape(1,10))) def test_initialization(): # Test Kalman filter initialization mod = Representation(1, k_states=2) # Test invalid state initialization assert_raises(RuntimeError, lambda: mod._initialize_state()) # Test valid initialization initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(2) * 3. mod.initialize_known(initial_state, initial_state_cov) assert_equal(mod._initial_state.sum(), 3) assert_equal(mod._initial_state_cov.diagonal().sum(), 6) # Test invalid initial_state initial_state = np.zeros(10,) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) initial_state = np.zeros((10,10)) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) # Test invalid initial_state_cov initial_state = np.zeros(2,) + 1.5 initial_state_cov = np.eye(3) assert_raises(ValueError, lambda: mod.initialize_known(initial_state, initial_state_cov)) def test_no_endog(): # Test for RuntimeError when no endog is provided by the time filtering # is initialized. mod = KalmanFilter(k_endog=1, k_states=1) # directly call the _initialize_filter function assert_raises(RuntimeError, mod._initialize_filter) # indirectly call it through filtering mod.initialize_approximate_diffuse() assert_raises(RuntimeError, mod.filter) def test_cython(): # Test the cython _kalman_filter creation, re-creation, calling, etc. # Check that datatypes are correct: for prefix, dtype in tools.prefix_dtype_map.items(): endog = np.array(1., ndmin=2, dtype=dtype) mod = KalmanFilter(k_endog=1, k_states=1, dtype=dtype) # Bind data and initialize the ?KalmanFilter object mod.bind(endog) mod._initialize_filter() # Check that the dtype and prefix are correct assert_equal(mod.prefix, prefix) assert_equal(mod.dtype, dtype) # Test that a dKalmanFilter instance was created assert_equal(prefix in mod._kalman_filters, True) kf = mod._kalman_filters[prefix] assert_equal(isinstance(kf, tools.prefix_kalman_filter_map[prefix]), True) # Test that the default returned _kalman_filter is the above instance assert_equal(mod._kalman_filter, kf) # Check that upcasting datatypes / ?KalmanFilter works (e.g. d -> z) mod = KalmanFilter(k_endog=1, k_states=1) # Default dtype is float assert_equal(mod.prefix, 'd') assert_equal(mod.dtype, np.float64) # Prior to initialization, no ?KalmanFilter exists assert_equal(mod._kalman_filter, None) # Bind data and initialize the ?KalmanFilter object endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.float64)) mod.bind(endog) mod._initialize_filter() kf = mod._kalman_filters['d'] # Rebind data, still float, check that we haven't changed mod.bind(endog) mod._initialize_filter() assert_equal(mod._kalman_filter, kf) # Force creating new ?Statespace and ?KalmanFilter, by changing the # time-varying character of an array mod.design = np.zeros((1,1,2)) mod._initialize_filter() assert_equal(mod._kalman_filter == kf, False) kf = mod._kalman_filters['d'] # Rebind data, now complex, check that the ?KalmanFilter instance has # changed endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.complex128)) mod.bind(endog) assert_equal(mod._kalman_filter == kf, False) def test_filter(): # Tests of invalid calls to the filter function endog = np.ones((10,1)) mod = KalmanFilter(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test default filter results res = mod.filter() assert_equal(isinstance(res, FilterResults), True) # Test specified invalid results class assert_raises(ValueError, mod.filter, results=object) # Test specified valid results class res = mod.filter(results=FilterResults) assert_equal(isinstance(res, FilterResults), True) def test_loglike(): # Tests of invalid calls to the loglike function endog = np.ones((10,1)) mod = KalmanFilter(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test that self.memory_no_likelihood = True raises an error mod.memory_no_likelihood = True assert_raises(RuntimeError, mod.loglike) assert_raises(RuntimeError, mod.loglikeobs) def test_predict(): # Tests of invalid calls to the predict function warnings.simplefilter("always") endog = np.ones((10,1)) mod = KalmanFilter(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_intercept'] = np.zeros((1,10)) mod['selection', :] = 1 mod['state_cov', :] = 1 # Check that we need both forecasts and predicted output for prediction mod.memory_no_forecast = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_forecast = False mod.memory_no_predicted = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_predicted = False # Now get a clean filter object res = mod.filter() # Check that start < 0 is an error assert_raises(ValueError, res.predict, start=-1) # Check that end < start is an error assert_raises(ValueError, res.predict, start=2, end=1) # Check that dynamic < 0 is an error assert_raises(ValueError, res.predict, dynamic=-1) # Check that dynamic > end is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=1, dynamic=2) message = ('Dynamic prediction specified to begin after the end of' ' prediction, and so has no effect.') assert_equal(str(w[0].message), message) # Check that dynamic > nobs is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=11, dynamic=11, obs_intercept=np.zeros((1,1))) message = ('Dynamic prediction specified to begin during' ' out-of-sample forecasting period, and so has no' ' effect.') assert_equal(str(w[0].message), message) # Check for a warning when providing a non-used statespace matrix with warnings.catch_warnings(record=True) as w: res.predict(end=res.nobs+1, design=True, obs_intercept=np.zeros((1,1))) message = ('Model has time-invariant design matrix, so the design' ' argument to `predict` has been ignored.') assert_equal(str(w[0].message), message) # Check that an error is raised when a new time-varying matrix is not # provided assert_raises(ValueError, res.predict, end=res.nobs+1) # Check that an error is raised when a non-two-dimensional obs_intercept # is given assert_raises(ValueError, res.predict, end=res.nobs+1, obs_intercept=np.zeros(1)) # Check that an error is raised when an obs_intercept with incorrect length # is given assert_raises(ValueError, res.predict, end=res.nobs+1, obs_intercept=np.zeros(2)) # Check that start=None gives start=0 and end=None gives end=nobs assert_equal(res.predict().forecasts.shape, (1,res.nobs)) # Check that dynamic=True begins dynamic prediction immediately # TODO just a smoke test res.predict(dynamic=True) # Check that on success, PredictionResults object is returned prediction_results = res.predict(start=3, end=5) assert_equal(isinstance(prediction_results, PredictionResults), True) # Check for correctly subset representation arrays # (k_endog, npredictions) = (1, 2) assert_equal(prediction_results.endog.shape, (1, 2)) # (k_endog, npredictions) = (1, 2) assert_equal(prediction_results.obs_intercept.shape, (1, 2)) # (k_endog, k_states) = (1, 1) assert_equal(prediction_results.design.shape, (1, 1)) # (k_endog, k_endog) = (1, 1) assert_equal(prediction_results.obs_cov.shape, (1, 1)) # (k_state,) = (1,) assert_equal(prediction_results.state_intercept.shape, (1,)) # (k_state, npredictions) = (1, 2) assert_equal(prediction_results.obs_intercept.shape, (1, 2)) # (k_state, k_state) = (1, 1) assert_equal(prediction_results.transition.shape, (1, 1)) # (k_state, k_posdef) = (1, 1) assert_equal(prediction_results.selection.shape, (1, 1)) # (k_posdef, k_posdef) = (1, 1) assert_equal(prediction_results.state_cov.shape, (1, 1)) # Check for correctly subset filter output arrays # (k_endog, npredictions) = (1, 2) assert_equal(prediction_results.forecasts.shape, (1, 2)) assert_equal(prediction_results.forecasts_error.shape, (1, 2)) # (k_states, npredictions) = (1, 2) assert_equal(prediction_results.filtered_state.shape, (1, 2)) assert_equal(prediction_results.predicted_state.shape, (1, 2)) # (k_endog, k_endog, npredictions) = (1, 1, 2) assert_equal(prediction_results.forecasts_error_cov.shape, (1, 1, 2)) # (k_states, k_states, npredictions) = (1, 1, 2) assert_equal(prediction_results.filtered_state_cov.shape, (1, 1, 2)) assert_equal(prediction_results.predicted_state_cov.shape, (1, 1, 2)) # Check for invalid attribute assert_raises(AttributeError, getattr, prediction_results, 'test') # Check that an error is raised when a non-two-dimensional obs_cov # is given # ...and... # Check that an error is raised when an obs_cov with incorrect length # is given mod = KalmanFilter(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_cov'] = np.zeros((1,1,10)) mod['selection', :] = 1 mod['state_cov', :] = 1 res = mod.filter() assert_raises(ValueError, res.predict, end=res.nobs+1, obs_cov=np.zeros((1,1))) assert_raises(ValueError, res.predict, end=res.nobs+1, obs_cov=np.zeros((1,1,2))) def test_standardized_forecasts_error(): # Simple test that standardized forecasts errors are calculated correctly. # Just uses a different calculation method on a univariate series. # Get the dataset true = results_kalman_filter.uc_uni data = pd.DataFrame( true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Fit an ARIMA(1,1,0) to log GDP mod = sarimax.SARIMAX(data['lgdp'], order=(1,1,0)) res = mod.fit(disp=-1) standardized_forecasts_error = ( res.filter_results.forecasts_error[0] / np.sqrt(res.filter_results.forecasts_error_cov[0,0]) ) assert_allclose( res.filter_results.standardized_forecasts_error[0], standardized_forecasts_error, ) def test_simulate(): # Test for simulation of new time-series from scipy.signal import lfilter # Common parameters nsimulations = 10 sigma2 = 2 measurement_shocks = np.zeros(nsimulations) state_shocks = np.random.normal(scale=sigma2**0.5, size=nsimulations) # Random walk model, so simulated series is just the cumulative sum of # the shocks mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. actual = mod.simulate( nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks)[0].squeeze() desired = np.r_[0, np.cumsum(state_shocks)[:-1]] assert_allclose(actual, desired) # Local level model, so simulated series is just the cumulative sum of # the shocks plus the measurement shock mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. actual = mod.simulate( nsimulations, measurement_shocks=np.ones(nsimulations), state_shocks=state_shocks)[0].squeeze() desired = np.r_[1, np.cumsum(state_shocks)[:-1] + 1] assert_allclose(actual, desired) # Local level-like model with observation and state intercepts, so # simulated series is just the cumulative sum of the shocks minus the state # intercept, plus the observation intercept and the measurement shock mod = KalmanFilter(k_endog=1, k_states=1) mod['obs_intercept', 0, 0] = 5. mod['design', 0, 0] = 1. mod['state_intercept', 0, 0] = -2. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. actual = mod.simulate( nsimulations, measurement_shocks=np.ones(nsimulations), state_shocks=state_shocks)[0].squeeze() desired = np.r_[1 + 5, np.cumsum(state_shocks - 2)[:-1] + 1 + 5] assert_allclose(actual, desired) # Model with time-varying observation intercept mod = KalmanFilter(k_endog=1, k_states=1, nobs=10) mod['obs_intercept'] = (np.arange(10)*1.).reshape(1, 10) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. actual = mod.simulate( nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks)[0].squeeze() desired = np.r_[0, np.cumsum(state_shocks)[:-1] + np.arange(1,10)] assert_allclose(actual, desired) # Model with time-varying observation intercept, check that error is raised # if more simulations are requested than are nobs. mod = KalmanFilter(k_endog=1, k_states=1, nobs=10) mod['obs_intercept'] = (np.arange(10)*1.).reshape(1, 10) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. assert_raises(ValueError, mod.simulate, nsimulations+1, measurement_shocks, state_shocks) # ARMA(1,1): phi = [0.1], theta = [0.5], sigma^2 = 2 phi = np.r_[0.1] theta = np.r_[0.5] mod = sarimax.SARIMAX([0], order=(1,0,1)) mod.update(np.r_[phi, theta, sigma2]) actual = mod.ssm.simulate( nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks)[0].squeeze() desired = lfilter([1, theta], [1, -phi], np.r_[0, state_shocks[:-1]]) assert_allclose(actual, desired) # SARIMAX(1,0,1)x(1,0,1,4), this time using the results object call mod = sarimax.SARIMAX([0.1, 0.5, -0.2], order=(1,0,1), seasonal_order=(1,0,1,4)) res = mod.filter([0.1, 0.5, 0.2, -0.3, 1]) actual = res.simulate( nsimulations, measurement_shocks=measurement_shocks, state_shocks=state_shocks)[0].squeeze() desired = lfilter( res.polynomial_reduced_ma, res.polynomial_reduced_ar, np.r_[0, state_shocks[:-1]]) assert_allclose(actual, desired) def test_impulse_responses(): # Test for impulse response functions # Random walk: 1-unit impulse response (i.e. non-orthogonalized irf) is 1 # for all periods mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. mod['state_cov', 0, 0] = 2. actual = mod.impulse_responses(steps=10) desired = np.ones((11, 1)) assert_allclose(actual, desired) # Random walk: 2-unit impulse response (i.e. non-orthogonalized irf) is 2 # for all periods mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. mod['state_cov', 0, 0] = 2. actual = mod.impulse_responses(steps=10, impulse=[2]) desired = np.ones((11, 1)) * 2 assert_allclose(actual, desired) # Random walk: 1-standard-deviation response (i.e. orthogonalized irf) is # sigma for all periods (here sigma^2 = 2) mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. mod['state_cov', 0, 0] = 2. actual = mod.impulse_responses(steps=10, orthogonalized=True) desired = np.ones((11, 1)) * 2**0.5 assert_allclose(actual, desired) # Random walk: 1-standard-deviation cumulative response (i.e. cumulative # orthogonalized irf) mod = KalmanFilter(k_endog=1, k_states=1) mod['design', 0, 0] = 1. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. mod['state_cov', 0, 0] = 2. actual = mod.impulse_responses(steps=10, orthogonalized=True, cumulative=True) desired = np.cumsum(np.ones((11, 1)) * 2**0.5)[:, np.newaxis] actual = mod.impulse_responses(steps=10, impulse=[1], orthogonalized=True, cumulative=True) desired = np.cumsum(np.ones((11, 1)) * 2**0.5)[:, np.newaxis] assert_allclose(actual, desired) # Random walk: 1-unit impulse response (i.e. non-orthogonalized irf) is 1 # for all periods, even when intercepts are present mod = KalmanFilter(k_endog=1, k_states=1) mod['state_intercept', 0] = 100. mod['design', 0, 0] = 1. mod['obs_intercept', 0] = -1000. mod['transition', 0, 0] = 1. mod['selection', 0, 0] = 1. mod['state_cov', 0, 0] = 2. actual = mod.impulse_responses(steps=10) desired = np.ones((11, 1)) assert_allclose(actual, desired) # Univariate model (random walk): test that an error is thrown when # a multivariate or empty "impulse" is sent mod = KalmanFilter(k_endog=1, k_states=1) assert_raises(ValueError, mod.impulse_responses, impulse=1) assert_raises(ValueError, mod.impulse_responses, impulse=[1,1]) assert_raises(ValueError, mod.impulse_responses, impulse=[]) # Univariate model with two uncorrelated shocks mod = KalmanFilter(k_endog=1, k_states=2) mod['design', 0, 0:2] = 1. mod['transition', :, :] = np.eye(2) mod['selection', :, :] = np.eye(2) mod['state_cov', :, :] = np.eye(2) desired = np.ones((11, 1)) actual = mod.impulse_responses(steps=10, impulse=0) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=[1,0]) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=1) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=[0,1]) assert_allclose(actual, desired) # In this case (with sigma=sigma^2=1), orthogonalized is the same as not actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=[1,0], orthogonalized=True) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=[0,1], orthogonalized=True) assert_allclose(actual, desired) # Univariate model with two correlated shocks mod = KalmanFilter(k_endog=1, k_states=2) mod['design', 0, 0:2] = 1. mod['transition', :, :] = np.eye(2) mod['selection', :, :] = np.eye(2) mod['state_cov', :, :] = np.array([[1, 0.5], [0.5, 1.25]]) desired = np.ones((11, 1)) # Non-orthogonalized (i.e. 1-unit) impulses still just generate 1's actual = mod.impulse_responses(steps=10, impulse=0) assert_allclose(actual, desired) actual = mod.impulse_responses(steps=10, impulse=1) assert_allclose(actual, desired) # Orthogonalized (i.e. 1-std-dev) impulses now generate different responses actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True) assert_allclose(actual, desired + desired * 0.5) actual = mod.impulse_responses(steps=10, impulse=1, orthogonalized=True) assert_allclose(actual, desired) # Multivariate model with two correlated shocks mod = KalmanFilter(k_endog=2, k_states=2) mod['design', :, :] = np.eye(2) mod['transition', :, :] = np.eye(2) mod['selection', :, :] = np.eye(2) mod['state_cov', :, :] = np.array([[1, 0.5], [0.5, 1.25]]) ones = np.ones((11, 1)) zeros = np.zeros((11, 1)) # Non-orthogonalized (i.e. 1-unit) impulses still just generate 1's, but # only for the appropriate series actual = mod.impulse_responses(steps=10, impulse=0) assert_allclose(actual, np.c_[ones, zeros]) actual = mod.impulse_responses(steps=10, impulse=1) assert_allclose(actual, np.c_[zeros, ones]) # Orthogonalized (i.e. 1-std-dev) impulses now generate different # responses, and only for the appropriate series actual = mod.impulse_responses(steps=10, impulse=0, orthogonalized=True) assert_allclose(actual, np.c_[ones, ones * 0.5]) actual = mod.impulse_responses(steps=10, impulse=1, orthogonalized=True) assert_allclose(actual, np.c_[zeros, ones]) # AR(1) model generates a geometrically declining series mod = sarimax.SARIMAX([0.1, 0.5, -0.2], order=(1,0,0)) phi = 0.5 mod.update([phi, 1]) desired = np.cumprod(np.r_[1, [phi]*10])[:, np.newaxis] # Test going through the model directly actual = mod.ssm.impulse_responses(steps=10) assert_allclose(actual, desired) # Test going through the results object res = mod.filter([phi, 1.]) actual = res.impulse_responses(steps=10) assert_allclose(actual, desired)
bsd-3-clause
fhennecker/semiteleporter
src/gui/tabs.py
1
8387
import os import glob import logging import threading import Tkinter, ttk, tkFileDialog import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from mesher.voxel import Point class Tab(Tkinter.Frame): def __init__(self, rootTab, title=""): """ Create a new 'abstract' Tab object rootTab = the Notebook reference title = the name of the tab """ self.rootTab = rootTab Tkinter.Frame.__init__(self, self.rootTab, width=800, height=600) self.rootTab.add(self, text=title) class SetupTab(Tab): def __init__(self, rootTab, config): """ Create a new SetupTab object rootTab = the Notebook reference config = the reference to the Config object from the Scanner """ Tab.__init__(self, rootTab, "Setup") self.config = config self.entries = dict() for i in range(6): self.rowconfigure(i, weight=1) for i in range(3): self.columnconfigure(i, weight=1) self.createSectionFrame("File").grid(row=0, column=0, columnspan=3) self.createSectionFrame("Arduino").grid(row=1, column=0, columnspan=3) self.createSectionFrame("Camera").grid(row=2, column=0, columnspan=3) self.createSectionFrame("LaserLeft").grid(row=3, column=0, columnspan=3) self.createSectionFrame("LaserRight").grid(row=4, column=0, columnspan=3) self.createSectionFrame("TurnTable").grid(row=5, column=0, columnspan=3) Tkinter.Button(self, text="Open", command=self.openConfigFile).grid(row=6, column=0, sticky='e') Tkinter.Button(self, text="Load", command=self.loadConfigFile).grid(row=6, column=1) Tkinter.Button(self, text="Save", command=self.saveConfigFile).grid(row=6, column=2, sticky='w') def createSectionFrame(self, section): frame = Tkinter.LabelFrame(self, text=section, font=("bold")) self.entries[section] = dict() line = 0 for option in self.config[section]: value = self.config.getToStr(section, option) if(type(value) == list): varList = [] Tkinter.Label(frame, text=option+" :").grid(row=line, column=0) line += 1 for item,letter,col in zip(value, range(123-len(value),123), range(0,2*len(value),2)): Tkinter.Label(frame, text=(chr(letter).upper()+" :")).grid(row=line, column=col) varList.append(Tkinter.StringVar(frame, item)) Tkinter.Entry(frame, background="white", textvariable=varList[-1]).grid(row=line, column=col+1) self.entries[section][option] = varList else: Tkinter.Label(frame, text=option).grid(row=line, column=0) self.entries[section][option] = Tkinter.StringVar(frame, value) if(option == "port"): path = self.entries[section][option].get()[:-1]+"*" ttk.Combobox(frame, textvariable=self.entries[section][option], values=glob.glob(path), state='readonly', background="white").grid(row=line, column=1, padx=5, pady=5) else: Tkinter.Entry(frame, background="white", textvariable=self.entries[section][option]).grid(row=line, column=1) line += 1 return frame def refresh(self): for section in self.entries: for option in self.entries[section]: res = self.entries[section][option] if(type(res) == list): for entry,idx in zip(res,range(len(res))): entry.set(self.config[section][option][idx]) else: res.set(self.config[section][option]) def openConfigFile(self): ext = None filename = None while(ext !=".cfg" and filename != ''): filename = tkFileDialog.askopenfilename(defaultextension=".cfg") ext = os.path.splitext(filename)[-1] if(filename != ''): self.config.load(filename) self.refresh() def loadConfigFile(self): logging.info("Loading Gui config to Config object") for section in self.entries: for option in self.entries[section]: res = self.entries[section][option] if(type(res) == list): res = [res[0].get(),res[1].get(),res[2].get()] self.config[section][option] = np.array(res, dtype=np.float32) else: try: self.config[section][option] = float(res.get()) except: self.config[section][option] = res.get() def saveConfigFile(self): self.loadConfigFile() self.config.save() class ViewerTab(Tab): def __init__(self, rootTab, scanner): """ Create a new ViewerTab object rootTab = the Notebook reference scanner = the Scanner reference """ Tab.__init__(self, rootTab, "Viewer") self.scanner = scanner self.graph = None self.axis = None self.createGraph() self.createOptions() def createGraph(self, init=True): if(init): self.figure = plt.figure() self.graph = FigureCanvasTkAgg(self.figure, master=self) self.graph.get_tk_widget().grid(row=0, column=0) self.axis = self.figure.add_subplot(111, projection='3d') else: self.axis.clear() self.axis.set_xlabel('X axis') self.axis.set_xlim3d(-250,250) self.axis.set_ylabel('Y axis') self.axis.set_ylim3d(-250,250) self.axis.set_zlabel('Z axis') self.axis.set_zlim3d(0,500) self.graph.show() def createOptions(self): frame = Tkinter.LabelFrame(self, text="Options", font=("bold")) frame.grid(row=0, column=1) Tkinter.Button(frame, text="Start", command=self.start).grid(row=0, column=0) Tkinter.Button(frame, text="Export", command=self.export).grid(row=1, column=0) Tkinter.Button(frame, text="Mesh", command=self.mesh).grid(row=2, column=0) Tkinter.Button(frame, text="Mesh with Delaunay3D", command=self.meshDelaunay).grid(row=3, column=0) Tkinter.Button(frame, text="Mesh with BPA", command=self.meshBPA).grid(row=4, column=0) Tkinter.Button(frame, text="Quit", command=self.winfo_toplevel().destroy).grid(row=5, column=0) def _objSaveDialog(self, extension=".obj"): filename, ext = None, None while ext != extension and filename != '': filename = tkFileDialog.asksaveasfilename(defaultextension=extension) ext = os.path.splitext(filename)[-1] return filename def export(self): filename = self._objSaveDialog() if filename != "": self.scanner.exportToObjFile(filename) def start(self): self.scanner.startScan() self.plot() def plot(self, scene=None, lock=None): if(lock == None): self.createGraph(False) logging.info("Start plotting") lock = threading.Lock() thread_left = threading.Thread(target=self.plot, args=(self.scanner.sceneLeft, lock)) thread_right = threading.Thread(target=self.plot, args=(self.scanner.sceneRight, lock)) thread_left.start() thread_right.start() else: for slice in scene: arrays = map(Point.toNPArray, slice[0]) colors = map(Point.toRGB, slice[0]) if(len(arrays) != 0): x, y, z = zip(*arrays) lock.acquire() self.axis.scatter(x, y, z, c=colors) self.graph.draw() lock.release() def mesh(self): filename = self._objSaveDialog() if filename != "": self.scanner.meshToObjFile(filename) def meshDelaunay(self): filename = self._objSaveDialog() if filename != "": self.scanner.meshDelaunay3D(filename) def meshBPA(self): filename = self._objSaveDialog(".ply") if filename != "": self.scanner.meshBPA(filename)
mit
cademarkegard/airflow
airflow/contrib/hooks/bigquery_hook.py
3
35020
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ from builtins import range from past.builtins import basestring import logging import time from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from apiclient.discovery import build, HttpError from pandas.io.gbq import GbqConnector, \ _parse_data as gbq_parse_data, \ _check_google_client_version as gbq_check_google_client_version, \ _test_google_api_imports as gbq_test_google_api_imports from pandas.tools.merge import concat logging.getLogger("bigquery").setLevel(logging.INFO) class BigQueryHook(GoogleCloudBaseHook, DbApiHook): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None): super(BigQueryHook, self).__init__( conn_id=bigquery_conn_id, delegate_to=delegate_to) def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection(service=service, project_id=project) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, bql, parameters=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param bql: The BigQuery SQL to execute. :type bql: string """ service = self.get_service() project = self._get_field('project') connector = BigQueryPandasConnector(project, service) schema, pages = connector.run_query(bql) dataframe_list = [] while len(pages) > 0: page = pages.pop() dataframe_list.append(gbq_parse_data(schema, page)) if len(dataframe_list) > 0: return concat(dataframe_list, ignore_index=True) else: return gbq_parse_data(schema, []) class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False): gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(object): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id): self.service = service self.project_id = project_id def run_query( self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', allow_large_results=False, udf_config = False, use_legacy_sql=True): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: The BigQuery SQL to execute. :type bql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :param write_disposition: What to do if the table already exists in BigQuery. :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). :type use_legacy_sql: boolean """ configuration = { 'query': { 'query': bql, 'useLegacySql': use_legacy_sql } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'writeDisposition': write_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=','): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table> BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string """ destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'schema': { 'fields': schema_fields }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, } } if source_format == 'CSV': configuration['load']['skipLeadingRows'] = skip_leading_rows configuration['load']['fieldDelimiter'] = field_delimiter return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = { 'configuration': configuration } # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() job_id = query_reply['jobReference']['jobId'] job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Wait for query to finish. while not job['status']['state'] == 'DONE': logging.info('Waiting for job to complete: %s, %s', self.project_id, job_id) time.sleep(5) job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'.format( job['status']['errorResult'], job ) ) return job_id def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, page_token=None, start_index=None): """ Get the data of a given dataset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return ( self.service.tabledata() .list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params) .execute() ) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: tables_resource = self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() logging.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception( 'Table deletion failed. Table does not exist.') else: logging.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list(projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update logging.info('table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert logging.info('table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert(projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project = None, view_project = None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get(projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource['access'] if 'access' in source_dataset_resource else [] view_access = {'view': {'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}} # check to see if the view we want to add already exists. if view_access not in access: logging.info('granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch(projectId=source_project, datasetId=source_dataset, body={'access': access}).execute() else: # if view is already in access, do nothing. logging.info('table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id): super(BigQueryCursor, self).__init__(service=service, project_id=project_id) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ bql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(bql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param parameters: List of dictionary parameters to substitute into the query. :type parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token) .execute() ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER' or bq_type == 'TIMESTAMP': return int(string_field) elif bq_type == 'FLOAT': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) cmpt = table_input.split(':') if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ( "{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception(( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: logging.info( 'project not included in {var}: ' '{input}; using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id
apache-2.0
tracierenea/gnuradio
gr-digital/examples/berawgn.py
32
4886
#!/usr/bin/env python # # Copyright 2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # """ BER simulation for QPSK signals, compare to theoretical values. Change the N_BITS value to simulate more bits per Eb/N0 value, thus allowing to check for lower BER values. Lower values will work faster, higher values will use a lot of RAM. Also, this app isn't highly optimized--the flow graph is completely reinstantiated for every Eb/N0 value. Of course, expect the maximum value for BER to be one order of magnitude below what you chose for N_BITS. """ import math import numpy from gnuradio import gr, digital from gnuradio import analog from gnuradio import blocks import sys try: from scipy.special import erfc except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) # Best to choose powers of 10 N_BITS = 1e7 RAND_SEED = 42 def berawgn(EbN0): """ Calculates theoretical bit error rate in AWGN (for BPSK and given Eb/N0) """ return 0.5 * erfc(math.sqrt(10**(float(EbN0)/10))) class BitErrors(gr.hier_block2): """ Two inputs: true and received bits. We compare them and add up the number of incorrect bits. Because integrate_ff() can only add up a certain number of values, the output is not a scalar, but a sequence of values, the sum of which is the BER. """ def __init__(self, bits_per_byte): gr.hier_block2.__init__(self, "BitErrors", gr.io_signature(2, 2, gr.sizeof_char), gr.io_signature(1, 1, gr.sizeof_int)) # Bit comparison comp = blocks.xor_bb() intdump_decim = 100000 if N_BITS < intdump_decim: intdump_decim = int(N_BITS) self.connect(self, comp, blocks.unpack_k_bits_bb(bits_per_byte), blocks.uchar_to_float(), blocks.integrate_ff(intdump_decim), blocks.multiply_const_ff(1.0/N_BITS), self) self.connect((self, 1), (comp, 1)) class BERAWGNSimu(gr.top_block): " This contains the simulation flow graph " def __init__(self, EbN0): gr.top_block.__init__(self) self.const = digital.qpsk_constellation() # Source is N_BITS bits, non-repeated data = map(int, numpy.random.randint(0, self.const.arity(), N_BITS/self.const.bits_per_symbol())) src = blocks.vector_source_b(data, False) mod = digital.chunks_to_symbols_bc((self.const.points()), 1) add = blocks.add_vcc() noise = analog.noise_source_c(analog.GR_GAUSSIAN, self.EbN0_to_noise_voltage(EbN0), RAND_SEED) demod = digital.constellation_decoder_cb(self.const.base()) ber = BitErrors(self.const.bits_per_symbol()) self.sink = blocks.vector_sink_f() self.connect(src, mod, add, demod, ber, self.sink) self.connect(noise, (add, 1)) self.connect(src, (ber, 1)) def EbN0_to_noise_voltage(self, EbN0): """ Converts Eb/N0 to a complex noise voltage (assuming unit symbol power) """ return 1.0 / math.sqrt(self.const.bits_per_symbol() * 10**(float(EbN0)/10)) def simulate_ber(EbN0): """ All the work's done here: create flow graph, run, read out BER """ print "Eb/N0 = %d dB" % EbN0 fg = BERAWGNSimu(EbN0) fg.run() return numpy.sum(fg.sink.data()) if __name__ == "__main__": EbN0_min = 0 EbN0_max = 15 EbN0_range = range(EbN0_min, EbN0_max+1) ber_theory = [berawgn(x) for x in EbN0_range] print "Simulating..." ber_simu = [simulate_ber(x) for x in EbN0_range] f = pylab.figure() s = f.add_subplot(1,1,1) s.semilogy(EbN0_range, ber_theory, 'g-.', label="Theoretical") s.semilogy(EbN0_range, ber_simu, 'b-o', label="Simulated") s.set_title('BER Simulation') s.set_xlabel('Eb/N0 (dB)') s.set_ylabel('BER') s.legend() s.grid() pylab.show()
gpl-3.0
wkfwkf/statsmodels
statsmodels/datasets/committee/data.py
25
2583
"""First 100 days of the US House of Representatives 1995""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unifited Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """Number of bill assignments in the 104th House in 1995""" DESCRLONG = """The example in Gill, seeks to explain the number of bill assignments in the first 100 days of the US' 104th House of Representatives. The response variable is the number of bill assignments in the first 100 days over 20 Committees. The explanatory variables in the example are the number of assignments in the first 100 days of the 103rd House, the number of members on the committee, the number of subcommittees, the log of the number of staff assigned to the committee, a dummy variable indicating whether the committee is a high prestige committee, and an interaction term between the number of subcommittees and the log of the staff size. The data returned by load are not cleaned to represent the above example. """ NOTE = """:: Number of Observations - 20 Number of Variables - 6 Variable name definitions:: BILLS104 - Number of bill assignments in the first 100 days of the 104th House of Representatives. SIZE - Number of members on the committee. SUBS - Number of subcommittees. STAFF - Number of staff members assigned to the committee. PRESTIGE - PRESTIGE == 1 is a high prestige committee. BILLS103 - Number of bill assignments in the first 100 days of the 103rd House of Representatives. Committee names are included as a variable in the data file though not returned by load. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """Load the committee data and returns a data class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/committee.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,5,6)) return data
bsd-3-clause
Erotemic/ibeis
ibeis/algo/smk/script_smk.py
1
46896
# -*- coding: utf-8 -*- """ Results so far without SV / fancyness Using standard descriptors / vocabulary proot=bow,nWords=1E6 -> .594 proot=asmk,nWords=1E6 -> .529 Note: * Results from SMK Oxford Paper (mAP) ASMK nAssign=1, SV=False: .78 ASMK nAssign=5, SV=False: .82 Philbin with tf-idf ranking SV=False SIFT: .636, RootSIFT: .683 (+.05) Philbin with tf-idf ranking SV=True SIFT: .672, RootSIFT: .720 (+.05) * My Results (WITH BAD QUERY BBOXES) smk:nAssign=1,SV=True,: .58 smk:nAssign=1,SV=False,: .38 Yesterday I got .22 when I fixed the bounding boxes And now I'm getting .08 and .32 (sv=[F,T]) after deleting and redoing everything (also removing junk images) After fix of normalization I get .38 and .44 Using oxford descriptors I get .51ish Then changing to root-sift I smk-bow = get=0.56294936807700813 Then using tfidf-bow2=0.56046968275748565 asmk-gets 0.54146 Going down to 8K words smk-BOW gets .153 Going down to 8K words tfidf-BOW gets .128 Going down to 8K words smk-asmk gets 0.374 Ok the 65K vocab smk-asmk gets mAP=0.461... Ok, after recomputing a new 65K vocab with centered and root-sifted descriptors, using float32 precision (in most places), asmk gets a new map score of: mAP=.5275... :( This is with permissive query kpts and oxford vocab. Next step: ensure everything is float32. Ensured float32 mAP=.5279, ... better but indiciative of real error After that try again at Jegou's data. Ensure there are no smk algo bugs. There must be one. FINALLY! Got Jegou's data working. With jegou percmopute oxford feats, words, and assignments And float32 version asmk = .78415 bow = .545 asmk got 0.78415 with float32 version bow got .545 bot2 got .551 vecs07, root_sift, approx assign, (either jegou or my words) mAP=.673 Weird: vecs07, root_sift, exact assign, Maybe jegou words or maybe my words. Can't quite tell. Might have messed with a config. mAP=0.68487357885738664 October 8 Still using the same descriptors, but my own vocab with approx assign mAP = 0.78032 my own vocab approx assign, no center map = .793 The problem was minibatch params. Need higher batch size and init size. Needed to modify sklearn to handle this requirement. Using my own descriptors I got 0.7460. Seems good. Now, back to the HS pipeline. Getting a 0.638, so there is an inconsistency. Should be getting .7460. Maybe I gotta root_sift it up? Turned off root_sift in script got .769, so there is a problem in system script minibatch 29566/270340... rate=0.86 Hz, eta=0:00:00, total=9:44:35, wall=05:24 EST inertia: mean batch=53730.923812, ewa=53853.439903 now need to try turning off float32 Differences Between this and SMK: * No RootSIFT * No SIFT Centering * No Independent Vocab * Chip RESIZE Differences between this and VLAD * residual vectors are normalized * larger default vocabulary size Feat Info ========== name | num_vecs | n_annots | ================================= Oxford13 | 12,534,635 | | Oxford07 | 16,334,970 | | mine1 | 8,997,955 | | mine2 | 13,516,721 | 5063 | mine3 | 8,371,196 | 4728 | mine4 | 8,482,137 | 4783 | Cluster Algo Config =================== name | algo | init | init_size | batch size | ==========================================================================| minibatch1 | minibatch kmeans | kmeans++ | num_words * 4 | 100 | minibatch2 | minibatch kmeans | kmeans++ | num_words * 4 | 1000 | given13 | Lloyd? | kmeans++? | num_words * 8? | nan? | Assign Algo Config ================== name | algo | trees | checks | ====================================== approx | kdtree | 8 | 1024 | exact | linear | nan | nan | exact | linear | nan | nan | SMK Results =========== tagid | mAP | train_feats | test_feats | center | rootSIFT | assign | num_words | cluster methods | int | only_xy | ================================================================================================================= | 0.38 | mine1 | mine1 | | | approx | 64000 | minibatch1 | | | | 0.541 | oxford07 | oxford07 | | X | approx | 2 ** 16 | minibatch1 | | X | | 0.673 | oxford13 | oxford13 | X | X | approx | 2 ** 16 | minibatch1 | | X | | 0.684 | oxford13 | oxford13 | X | X | exact | 2 ** 16 | minibatch1 | | X | ---------------------------------------------------------------------------------------------------------------- mybest | 0.793 | oxford13 | oxford13 | | X | approx | 2 ** 16 | minibatch2 | | X | | 0.780 | oxford13 | oxford13 | X | X | approx | 2 ** 16 | minibatch2 | | X | | 0.788 | paras13 | oxford13 | X | X | approx | 2 ** 16 | given13 | | X | allgiven | 0.784 | paras13 | oxford13 | X | X | given13 | 2 ** 16 | given13 | | X | reported13 | 0.781 | paras13 | oxford13 | X | X | given13 | 2 ** 16 | given13 | | X | ----------------------------------------------------------------------------------------------------------------- inhouse1 | 0.746 | mine2 | mine2 | | X | approx | 2 ** 16 | minibatch2 | | X | inhouse2 | 0.769 | mine2 | mine2 | | | approx | 2 ** 16 | minibatch2 | | X | inhouse3 | 0.769 | mine2 | mine2 | | | approx | 2 ** 16 | minibatch2 | X | X | inhouse4 | 0.751 | mine2 | mine2 | | | approx | 2 ** 16 | minibatch2 | X | | sysharn1 | 0.638 | mine3 | mine3 | | | approx | 64000 | minibatch2 | X | | sysharn2 | 0.713 | mine3 | mine4 | | | approx | 64000 | minibatch2 | X | | In the SMK paper they report 0.781 as shown in the table, but they also report a score of 0.820 when increasing the number of features to from 12.5M to 19.2M by lowering feature detection thresholds. """ from __future__ import absolute_import, division, print_function, unicode_literals import utool as ut import numpy as np from ibeis.algo.smk import inverted_index from ibeis.algo.smk import smk_funcs from ibeis.algo.smk import smk_pipeline from six.moves import zip, map (print, rrr, profile) = ut.inject2(__name__) class SMK(ut.NiceRepr): def __nice__(smk): return smk.method def __init__(smk, wx_to_weight, method='asmk', **kwargs): smk.wx_to_weight = wx_to_weight smk.method = method if method == 'asmk': smk.match_score = smk.match_score_agg elif method == 'smk': smk.match_score = smk.match_score_sep elif method == 'bow': smk.match_score = smk.match_score_bow if method in ['asmk', 'smk']: smk.alpha = kwargs.pop('alpha', 0.0) smk.thresh = kwargs.pop('thresh', 0.0) if method == 'bow2': smk.kernel = smk.kernel_bow_tfidf else: smk.kernel = smk.kernel_smk assert len(kwargs) == 0, 'unexpected kwargs=%r' % (kwargs,) def gamma(smk, X): """ gamma(X) = (M(X, X)) ** (-1/2) """ score = smk.match_score(X, X) sccw = np.reciprocal(np.sqrt(score)) return sccw def kernel_bow_tfidf(smk, X, Y): return X.bow.dot(Y.bow) def kernel_smk(smk, X, Y): score = smk.match_score(X, Y) score = X.gamma * Y.gamma * score return score def word_isect(smk, X, Y): isect_wxs = X.wx_set.intersection(Y.wx_set) X_idx = ut.take(X.wx_to_idx, isect_wxs) Y_idx = ut.take(Y.wx_to_idx, isect_wxs) weights = ut.take(smk.wx_to_weight, isect_wxs) return X_idx, Y_idx, weights def match_score_agg(smk, X, Y): X_idx, Y_idx, weights = smk.word_isect(X, Y) PhisX, flagsX = X.Phis_flags(X_idx) PhisY, flagsY = Y.Phis_flags(Y_idx) scores = smk_funcs.match_scores_agg( PhisX, PhisY, flagsX, flagsY, smk.alpha, smk.thresh) scores = np.multiply(scores, weights, out=scores) score = scores.sum() return score def match_score_sep(smk, X, Y): X_idx, Y_idx, weights = smk.word_isect(X, Y) phisX_list, flagsY_list = X.phis_flags_list(X_idx) phisY_list, flagsX_list = Y.phis_flags_list(Y_idx) scores_list = smk_funcs.match_scores_sep( phisX_list, phisY_list, flagsX_list, flagsY_list, smk.alpha, smk.thresh) for scores, w in zip(scores_list, weights): np.multiply(scores, w, out=scores) score = np.sum([s.sum() for s in scores_list]) return score def match_score_bow(smk, X, Y): isect_words = X.wx_set.intersection(Y.wx_set) weights = ut.take(smk.wx_to_weight, isect_words) score = np.sum(weights) return score class SparseVector(ut.NiceRepr): def __init__(self, _dict): self._dict = _dict def __nice__(self): return '%d nonzero values' % (len(self._dict),) def __getitem__(self, keys): vals = ut.take(self._dict, keys) return vals def dot(self, other): keys1 = set(self._dict.keys()) keys2 = set(other._dict.keys()) keys = keys1.intersection(keys2) vals1 = np.array(self[keys]) vals2 = np.array(other[keys]) return np.multiply(vals1, vals2).sum() # class StackedLists(object): # def __init__(self, list_, offsets): # self.list_ = list_ # self.offsets = offsets # def split(self): # return [self._list_[l:r] for l, r in ut.itertwo(self.offsets)] # stacked_vecs = StackedLists(all_vecs, offset_list) # vecs_list = stacked_vecs.split() def load_oxford_2007(): """ Loads data from http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf >>> from ibeis.algo.smk.script_smk import * # NOQA """ from os.path import join, basename, splitext import pandas as pd import vtool_ibeis as vt dbdir = ut.truepath('/raid/work/Oxford/') data_fpath0 = join(dbdir, 'data_2007.pkl') if ut.checkpath(data_fpath0): data = ut.load_data(data_fpath0) return data else: word_dpath = join(dbdir, 'word_oxc1_hesaff_sift_16M_1M') _word_fpath_list = ut.ls(word_dpath) imgid_to_word_fpath = { splitext(basename(word_fpath))[0]: word_fpath for word_fpath in _word_fpath_list } readme_fpath = join(dbdir, 'README2.txt') imgid_order = ut.readfrom(readme_fpath).split('\n')[20:-1] imgid_order = imgid_order data_uri_order = [x.replace('oxc1_', '') for x in imgid_order] imgid_to_df = {} for imgid in ut.ProgIter(imgid_order, label='reading kpts'): word_fpath = imgid_to_word_fpath[imgid] row_gen = (map(float, line.strip('\n').split(' ')) for line in ut.read_lines_from(word_fpath)[2:]) rows = [(int(word_id), x, y, e11, e12, e22) for (word_id, x, y, e11, e12, e22) in row_gen] df = pd.DataFrame(rows, columns=['word_id', 'x', 'y', 'e11', 'e12', 'e22']) imgid_to_df[imgid] = df df_list = ut.take(imgid_to_df, imgid_order) nfeat_list = [len(df_) for df_ in df_list] offset_list = [0] + ut.cumsum(nfeat_list) shape = (offset_list[-1], 128) #shape = (16334970, 128) sift_fpath = join(dbdir, 'OxfordSIFTDescriptors', 'feat_oxc1_hesaff_sift.bin') try: file_ = open(sift_fpath, 'rb') with ut.Timer('Reading SIFT binary file'): nbytes = np.prod(shape) all_vecs = np.fromstring(file_.read(nbytes), dtype=np.uint8) all_vecs = all_vecs.reshape(shape) finally: file_.close() kpts_list = [df_.loc[:, ('x', 'y', 'e11', 'e12', 'e22')].values for df_ in df_list] wordid_list = [df_.loc[:, 'word_id'].values for df_ in df_list] kpts_Z = np.vstack(kpts_list) idx_to_wx = np.hstack(wordid_list) # assert len(np.unique(idx_to_wx)) == 1E6 # Reqd standard query order query_files = sorted(ut.glob(dbdir + '/oxford_groundtruth', '*_query.txt')) query_uri_order = [] for qpath in query_files: text = ut.readfrom(qpath, verbose=0) query_uri = text.split(' ')[0].replace('oxc1_', '') query_uri_order.append(query_uri) print('converting to invV') all_kpts = vt.convert_kptsZ_to_kpts(kpts_Z) data = { 'offset_list': offset_list, 'all_kpts': all_kpts, 'all_vecs': all_vecs, 'idx_to_wx': idx_to_wx, 'data_uri_order': data_uri_order, 'query_uri_order': query_uri_order, } ut.save_data(data_fpath0, data) return data def load_oxford_2013(): """ Found this data in README of SMK publication https://hal.inria.fr/hal-00864684/document http://people.rennes.inria.fr/Herve.Jegou/publications.html with download script CommandLine: # Download oxford13 data cd ~/work/Oxford mkdir -p smk_data_iccv_2013 cd smk_data_iccv_2013 wget -nH --cut-dirs=4 -r -Pdata/ ftp://ftp.irisa.fr/local/texmex/corpus/iccv2013/ This dataset has 5063 images wheras 07 has 5062 This dataset seems to contain an extra junk image: ashmolean_000214 # Remember that matlab is 1 indexed! # DONT FORGET TO CONVERT TO 0 INDEXING! """ from yael.ynumpy import fvecs_read from yael.yutils import load_ext import scipy.io import vtool_ibeis as vt from os.path import join dbdir = ut.truepath('/raid/work/Oxford/') datadir = dbdir + '/smk_data_iccv_2013/data/' # we are not retraining, so this is unused # # Training data descriptors for Paris6k dataset # train_sift_fname = join(datadir, 'paris_sift.uint8') # NOQA # # File storing visual words of Paris6k descriptors used in our ICCV paper # train_vw_fname = join(datadir, 'clust_preprocessed/oxford_train_vw.int32') # Pre-learned quantizer used in ICCV paper (used if docluster=false) codebook_fname = join(datadir, 'clust_preprocessed/oxford_codebook.fvecs') # Files storing descriptors/geometry for Oxford5k dataset test_sift_fname = join(datadir, 'oxford_sift.uint8') test_geom_fname = join(datadir, 'oxford_geom_sift.float') test_nf_fname = join(datadir, 'oxford_nsift.uint32') # File storing visual words of Oxford5k descriptors used in our ICCV paper test_vw_fname = join(datadir, 'clust_preprocessed/oxford_vw.int32') # Ground-truth for Oxford dataset gnd_fname = join(datadir, 'gnd_oxford.mat') oxford_vecs = load_ext(test_sift_fname, ndims=128, verbose=True) oxford_nfeats = load_ext(test_nf_fname, verbose=True) oxford_words = fvecs_read(codebook_fname) oxford_wids = load_ext(test_vw_fname, verbose=True) - 1 test_geom_invV_fname = test_geom_fname + '.invV.pkl' try: all_kpts = ut.load_data(test_geom_invV_fname) print('loaded invV keypoints') except IOError: oxford_kptsZ = load_ext(test_geom_fname, ndims=5, verbose=True) print('converting to invV keypoints') all_kpts = vt.convert_kptsZ_to_kpts(oxford_kptsZ) ut.save_data(test_geom_invV_fname, all_kpts) gnd_ox = scipy.io.loadmat(gnd_fname) imlist = [x[0][0] for x in gnd_ox['imlist']] qx_to_dx = gnd_ox['qidx'] - 1 data_uri_order = imlist query_uri_order = ut.take(data_uri_order, qx_to_dx) offset_list = np.hstack(([0], oxford_nfeats.cumsum())).astype(np.int64) # query_gnd = gnd_ox['gnd'][0][0] # bboxes = query_gnd[0] # qx_to_ok_gtidxs1 = [x[0] for x in query_gnd[1][0]] # qx_to_junk_gtidxs2 = [x[0] for x in query_gnd[2][0]] # # ut.depth_profile(qx_to_gtidxs1) # # ut.depth_profile(qx_to_gtidxs2) assert sum(oxford_nfeats) == len(oxford_vecs) assert offset_list[-1] == len(oxford_vecs) assert len(oxford_wids) == len(oxford_vecs) assert oxford_wids.max() == len(oxford_words) - 1 data = { 'offset_list': offset_list, 'all_kpts': all_kpts, 'all_vecs': oxford_vecs, 'words': oxford_words, 'idx_to_wx': oxford_wids, 'data_uri_order': data_uri_order, 'query_uri_order': query_uri_order, } return data def load_oxford_ibeis(): import ibeis ibs = ibeis.opendb('Oxford') dim_size = None _dannots = ibs.annots(ibs.filter_annots_general(has_none='query'), config=dict(dim_size=dim_size)) _qannots = ibs.annots(ibs.filter_annots_general(has_any='query'), config=dict(dim_size=dim_size)) with ut.Timer('reading info'): vecs_list = _dannots.vecs kpts_list = _dannots.kpts nfeats_list = np.array(_dannots.num_feats) with ut.Timer('stacking info'): all_vecs = np.vstack(vecs_list) all_kpts = np.vstack(kpts_list) offset_list = np.hstack(([0], nfeats_list.cumsum())).astype(np.int64) # data_annots = reorder_annots(_dannots, data_uri_order) data_uri_order = get_annots_imgid(_dannots) query_uri_order = get_annots_imgid(_qannots) data = { 'offset_list': offset_list, 'all_kpts': all_kpts, 'all_vecs': all_vecs, 'data_uri_order': data_uri_order, 'query_uri_order': query_uri_order, } return data def get_annots_imgid(_annots): from os.path import basename, splitext _images = _annots._ibs.images(_annots.gids) intern_uris = [splitext(basename(uri))[0] for uri in _images.uris_original] return intern_uris def load_ordered_annots(data_uri_order, query_uri_order): # Open the ibeis version of oxford import ibeis ibs = ibeis.opendb('Oxford') def reorder_annots(_annots, uri_order): intern_uris = get_annots_imgid(_annots) lookup = ut.make_index_lookup(intern_uris) _reordered = _annots.take(ut.take(lookup, uri_order)) return _reordered # Load database annotations and reorder them to agree with internals _dannots = ibs.annots(ibs.filter_annots_general(has_none='query')) data_annots = reorder_annots(_dannots, data_uri_order) # Load query annototations and reorder to standard order _qannots = ibs.annots(ibs.filter_annots_general(has_any='query')) query_annots = reorder_annots(_qannots, query_uri_order) # Map each query annot to its corresponding data index dgid_to_dx = ut.make_index_lookup(data_annots.gids) qx_to_dx = ut.take(dgid_to_dx, query_annots.gids) return ibs, query_annots, data_annots, qx_to_dx def run_asmk_script(): with ut.embed_on_exception_context: # NOQA """ >>> from ibeis.algo.smk.script_smk import * """ # NOQA # ============================================== # PREPROCESSING CONFIGURATION # ============================================== config = { # 'data_year': 2013, 'data_year': None, 'dtype': 'float32', # 'root_sift': True, 'root_sift': False, # 'centering': True, 'centering': False, 'num_words': 2 ** 16, #'num_words': 1E6 #'num_words': 8000, 'kmeans_impl': 'sklearn.mini', 'extern_words': False, 'extern_assign': False, 'assign_algo': 'kdtree', 'checks': 1024, 'int_rvec': True, 'only_xy': False, } # Define which params are relevant for which operations relevance = {} relevance['feats'] = ['dtype', 'root_sift', 'centering', 'data_year'] relevance['words'] = relevance['feats'] + ['num_words', 'extern_words', 'kmeans_impl'] relevance['assign'] = relevance['words'] + ['checks', 'extern_assign', 'assign_algo'] # relevance['ydata'] = relevance['assign'] + ['int_rvec'] # relevance['xdata'] = relevance['assign'] + ['only_xy', 'int_rvec'] nAssign = 1 class SMKCacher(ut.Cacher): def __init__(self, fname, ext='.cPkl'): relevant_params = relevance[fname] relevant_cfg = ut.dict_subset(config, relevant_params) cfgstr = ut.get_cfg_lbl(relevant_cfg) dbdir = ut.truepath('/raid/work/Oxford/') super(SMKCacher, self).__init__(fname, cfgstr, cache_dir=dbdir, ext=ext) # ============================================== # LOAD DATASET, EXTRACT AND POSTPROCESS FEATURES # ============================================== if config['data_year'] == 2007: data = load_oxford_2007() elif config['data_year'] == 2013: data = load_oxford_2013() elif config['data_year'] is None: data = load_oxford_ibeis() offset_list = data['offset_list'] all_kpts = data['all_kpts'] raw_vecs = data['all_vecs'] query_uri_order = data['query_uri_order'] data_uri_order = data['data_uri_order'] # del data # ================ # PRE-PROCESS # ================ import vtool_ibeis as vt # Alias names to avoid errors in interactive sessions proc_vecs = raw_vecs del raw_vecs feats_cacher = SMKCacher('feats', ext='.npy') all_vecs = feats_cacher.tryload() if all_vecs is None: if config['dtype'] == 'float32': print('Converting vecs to float32') proc_vecs = proc_vecs.astype(np.float32) else: proc_vecs = proc_vecs raise NotImplementedError('other dtype') if config['root_sift']: with ut.Timer('Apply root sift'): np.sqrt(proc_vecs, out=proc_vecs) vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs) if config['centering']: with ut.Timer('Apply centering'): mean_vec = np.mean(proc_vecs, axis=0) # Center and then re-normalize np.subtract(proc_vecs, mean_vec[None, :], out=proc_vecs) vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs) if config['dtype'] == 'int8': smk_funcs all_vecs = proc_vecs feats_cacher.save(all_vecs) del proc_vecs # ===================================== # BUILD VISUAL VOCABULARY # ===================================== if config['extern_words']: words = data['words'] assert config['num_words'] is None or len(words) == config['num_words'] else: word_cacher = SMKCacher('words') words = word_cacher.tryload() if words is None: with ut.embed_on_exception_context: if config['kmeans_impl'] == 'sklearn.mini': import sklearn.cluster rng = np.random.RandomState(13421421) # init_size = int(config['num_words'] * 8) init_size = int(config['num_words'] * 4) # converged after 26043 iterations clusterer = sklearn.cluster.MiniBatchKMeans( config['num_words'], init_size=init_size, batch_size=1000, compute_labels=False, max_iter=20, random_state=rng, n_init=1, verbose=1) clusterer.fit(all_vecs) words = clusterer.cluster_centers_ elif config['kmeans_impl'] == 'yael': from yael import ynumpy centroids, qerr, dis, assign, nassign = ynumpy.kmeans( all_vecs, config['num_words'], init='kmeans++', verbose=True, output='all') words = centroids word_cacher.save(words) # ===================================== # ASSIGN EACH VECTOR TO ITS NEAREST WORD # ===================================== if config['extern_assign']: assert config['extern_words'], 'need extern cluster to extern assign' idx_to_wxs = vt.atleast_nd(data['idx_to_wx'], 2) idx_to_maws = np.ones(idx_to_wxs.shape, dtype=np.float32) idx_to_wxs = np.ma.array(idx_to_wxs) idx_to_maws = np.ma.array(idx_to_maws) else: from ibeis.algo.smk import vocab_indexer vocab = vocab_indexer.VisualVocab(words) dassign_cacher = SMKCacher('assign') assign_tup = dassign_cacher.tryload() if assign_tup is None: vocab.flann_params['algorithm'] = config['assign_algo'] vocab.build() # Takes 12 minutes to assign jegous vecs to 2**16 vocab with ut.Timer('assign vocab neighbors'): _idx_to_wx, _idx_to_wdist = vocab.nn_index(all_vecs, nAssign, checks=config['checks']) if nAssign > 1: idx_to_wxs, idx_to_maws = smk_funcs.weight_multi_assigns( _idx_to_wx, _idx_to_wdist, massign_alpha=1.2, massign_sigma=80.0, massign_equal_weights=True) else: idx_to_wxs = np.ma.masked_array(_idx_to_wx, fill_value=-1) idx_to_maws = np.ma.ones(idx_to_wxs.shape, fill_value=-1, dtype=np.float32) idx_to_maws.mask = idx_to_wxs.mask assign_tup = (idx_to_wxs, idx_to_maws) dassign_cacher.save(assign_tup) idx_to_wxs, idx_to_maws = assign_tup # Breakup vectors, keypoints, and word assignments by annotation wx_lists = [idx_to_wxs[l:r] for l, r in ut.itertwo(offset_list)] maw_lists = [idx_to_maws[l:r] for l, r in ut.itertwo(offset_list)] vecs_list = [all_vecs[l:r] for l, r in ut.itertwo(offset_list)] kpts_list = [all_kpts[l:r] for l, r in ut.itertwo(offset_list)] # ======================= # FIND QUERY SUBREGIONS # ======================= ibs, query_annots, data_annots, qx_to_dx = load_ordered_annots( data_uri_order, query_uri_order) daids = data_annots.aids qaids = query_annots.aids query_super_kpts = ut.take(kpts_list, qx_to_dx) query_super_vecs = ut.take(vecs_list, qx_to_dx) query_super_wxs = ut.take(wx_lists, qx_to_dx) query_super_maws = ut.take(maw_lists, qx_to_dx) # Mark which keypoints are within the bbox of the query query_flags_list = [] only_xy = config['only_xy'] for kpts_, bbox in zip(query_super_kpts, query_annots.bboxes): flags = kpts_inside_bbox(kpts_, bbox, only_xy=only_xy) query_flags_list.append(flags) print('Queries are crops of existing database images.') print('Looking at average percents') percent_list = [flags_.sum() / flags_.shape[0] for flags_ in query_flags_list] percent_stats = ut.get_stats(percent_list) print('percent_stats = %s' % (ut.repr4(percent_stats),)) import vtool_ibeis as vt query_kpts = vt.zipcompress(query_super_kpts, query_flags_list, axis=0) query_vecs = vt.zipcompress(query_super_vecs, query_flags_list, axis=0) query_wxs = vt.zipcompress(query_super_wxs, query_flags_list, axis=0) query_maws = vt.zipcompress(query_super_maws, query_flags_list, axis=0) # ======================= # CONSTRUCT QUERY / DATABASE REPR # ======================= # int_rvec = not config['dtype'].startswith('float') int_rvec = config['int_rvec'] X_list = [] _prog = ut.ProgPartial(length=len(qaids), label='new X', bs=True, adjust=True) for aid, fx_to_wxs, fx_to_maws in _prog(zip(qaids, query_wxs, query_maws)): X = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec) X_list.append(X) # ydata_cacher = SMKCacher('ydata') # Y_list = ydata_cacher.tryload() # if Y_list is None: Y_list = [] _prog = ut.ProgPartial(length=len(daids), label='new Y', bs=True, adjust=True) for aid, fx_to_wxs, fx_to_maws in _prog(zip(daids, wx_lists, maw_lists)): Y = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec) Y_list.append(Y) # ydata_cacher.save(Y_list) #====================== # Add in some groundtruth print('Add in some groundtruth') for Y, nid in zip(Y_list, ibs.get_annot_nids(daids)): Y.nid = nid for X, nid in zip(X_list, ibs.get_annot_nids(qaids)): X.nid = nid for Y, qual in zip(Y_list, ibs.get_annot_quality_texts(daids)): Y.qual = qual #====================== # Add in other properties for Y, vecs, kpts in zip(Y_list, vecs_list, kpts_list): Y.vecs = vecs Y.kpts = kpts imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images') for Y, imgid in zip(Y_list, data_uri_order): gpath = ut.unixjoin(imgdir, imgid + '.jpg') Y.gpath = gpath for X, vecs, kpts in zip(X_list, query_vecs, query_kpts): X.kpts = kpts X.vecs = vecs #====================== print('Building inverted list') daids = [Y.aid for Y in Y_list] # wx_list = sorted(ut.list_union(*[Y.wx_list for Y in Y_list])) wx_list = sorted(set.union(*[Y.wx_set for Y in Y_list])) assert daids == data_annots.aids assert len(wx_list) <= config['num_words'] wx_to_aids = smk_funcs.invert_lists( daids, [Y.wx_list for Y in Y_list], all_wxs=wx_list) # Compute IDF weights print('Compute IDF weights') ndocs_total = len(daids) # Use only the unique number of words ndocs_per_word = np.array([len(set(wx_to_aids[wx])) for wx in wx_list]) print('ndocs_perword stats: ' + ut.repr4(ut.get_stats(ndocs_per_word))) idf_per_word = smk_funcs.inv_doc_freq(ndocs_total, ndocs_per_word) wx_to_weight = dict(zip(wx_list, idf_per_word)) print('idf stats: ' + ut.repr4(ut.get_stats(wx_to_weight.values()))) # Filter junk Y_list_ = [Y for Y in Y_list if Y.qual != 'junk'] # ======================= # CHOOSE QUERY KERNEL # ======================= params = { 'asmk': dict(alpha=3.0, thresh=0.0), 'bow': dict(), 'bow2': dict(), } # method = 'bow' method = 'bow2' method = 'asmk' smk = SMK(wx_to_weight, method=method, **params[method]) # Specific info for the type of query if method == 'asmk': # Make residual vectors if True: # The stacked way is 50x faster # TODO: extend for multi-assignment and record fxs flat_query_vecs = np.vstack(query_vecs) flat_query_wxs = np.vstack(query_wxs) flat_query_offsets = np.array([0] + ut.cumsum(ut.lmap(len, query_wxs))) flat_wxs_assign = flat_query_wxs flat_offsets = flat_query_offsets flat_vecs = flat_query_vecs tup = smk_funcs.compute_stacked_agg_rvecs( words, flat_wxs_assign, flat_vecs, flat_offsets) all_agg_vecs, all_error_flags, agg_offset_list = tup if int_rvec: all_agg_vecs = smk_funcs.cast_residual_integer(all_agg_vecs) agg_rvecs_list = [all_agg_vecs[l:r] for l, r in ut.itertwo(agg_offset_list)] agg_flags_list = [all_error_flags[l:r] for l, r in ut.itertwo(agg_offset_list)] for X, agg_rvecs, agg_flags in zip(X_list, agg_rvecs_list, agg_flags_list): X.agg_rvecs = agg_rvecs X.agg_flags = agg_flags[:, None] flat_wxs_assign = idx_to_wxs flat_offsets = offset_list flat_vecs = all_vecs tup = smk_funcs.compute_stacked_agg_rvecs( words, flat_wxs_assign, flat_vecs, flat_offsets) all_agg_vecs, all_error_flags, agg_offset_list = tup if int_rvec: all_agg_vecs = smk_funcs.cast_residual_integer(all_agg_vecs) agg_rvecs_list = [all_agg_vecs[l:r] for l, r in ut.itertwo(agg_offset_list)] agg_flags_list = [all_error_flags[l:r] for l, r in ut.itertwo(agg_offset_list)] for Y, agg_rvecs, agg_flags in zip(Y_list, agg_rvecs_list, agg_flags_list): Y.agg_rvecs = agg_rvecs Y.agg_flags = agg_flags[:, None] else: # This non-stacked way is about 500x slower _prog = ut.ProgPartial(label='agg Y rvecs', bs=True, adjust=True) for Y in _prog(Y_list_): make_agg_vecs(Y, words, Y.vecs) _prog = ut.ProgPartial(label='agg X rvecs', bs=True, adjust=True) for X in _prog(X_list): make_agg_vecs(X, words, X.vecs) elif method == 'bow2': # Hack for orig tf-idf bow vector nwords = len(words) for X in ut.ProgIter(X_list, label='make bow vector'): ensure_tf(X) bow_vector(X, wx_to_weight, nwords) for Y in ut.ProgIter(Y_list_, label='make bow vector'): ensure_tf(Y) bow_vector(Y, wx_to_weight, nwords) if method != 'bow2': for X in ut.ProgIter(X_list, 'compute X gamma'): X.gamma = smk.gamma(X) for Y in ut.ProgIter(Y_list_, 'compute Y gamma'): Y.gamma = smk.gamma(Y) # Execute matches (could go faster by enumerating candidates) scores_list = [] for X in ut.ProgIter(X_list, label='query %s' % (smk,)): scores = [smk.kernel(X, Y) for Y in Y_list_] scores = np.array(scores) scores = np.nan_to_num(scores) scores_list.append(scores) import sklearn.metrics avep_list = [] _iter = list(zip(scores_list, X_list)) _iter = ut.ProgIter(_iter, label='evaluate %s' % (smk,)) for scores, X in _iter: truth = [X.nid == Y.nid for Y in Y_list_] avep = sklearn.metrics.average_precision_score(truth, scores) avep_list.append(avep) avep_list = np.array(avep_list) mAP = np.mean(avep_list) print('mAP = %r' % (mAP,)) def new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec): wx_to_fxs, wx_to_maws = smk_funcs.invert_assigns(fx_to_wxs, fx_to_maws) X = inverted_index.SingleAnnot() X.aid = aid # Build Aggregate Residual Vectors X.wx_list = np.array(sorted(wx_to_fxs.keys()), dtype=np.int32) X.wx_to_idx = ut.make_index_lookup(X.wx_list) X.int_rvec = int_rvec X.wx_set = set(X.wx_list) # TODO: maybe use offset list structure instead of heavy nesting X.fxs_list = ut.take(wx_to_fxs, X.wx_list) X.maws_list = ut.take(wx_to_maws, X.wx_list) return X def make_agg_vecs(X, words, fx_to_vecs): word_list = ut.take(words, X.wx_list) dtype = np.int8 if X.int_rvec else np.float32 dim = fx_to_vecs.shape[1] X.agg_rvecs = np.empty((len(X.wx_list), dim), dtype=dtype) X.agg_flags = np.empty((len(X.wx_list), 1), dtype=np.bool) for idx in range(len(X.wx_list)): word = word_list[idx] fxs = X.fxs_list[idx] maws = X.maws_list[idx] vecs = fx_to_vecs.take(fxs, axis=0) _rvecs, _flags = smk_funcs.compute_rvec(vecs, word) _agg_rvec, _agg_flag = smk_funcs.aggregate_rvecs(_rvecs, maws, _flags) if X.int_rvec: _agg_rvec = smk_funcs.cast_residual_integer(_agg_rvec) X.agg_rvecs[idx] = _agg_rvec X.agg_flags[idx] = _agg_flag return X def ensure_tf(X): termfreq = ut.dict_hist(X.wx_list) # do what video google does termfreq = ut.map_dict_vals(lambda x: x / len(X.wx_list), termfreq) X.termfreq = termfreq def bow_vector(X, wx_to_weight, nwords): import vtool_ibeis as vt wxs = sorted(list(X.wx_set)) tf = np.array(ut.take(X.termfreq, wxs)) idf = np.array(ut.take(wx_to_weight, wxs)) bow_ = tf * idf bow_ = vt.normalize(bow_) bow = SparseVector(dict(zip(wxs, bow_))) X.bow = bow def make_temporary_annot(aid, vocab, wx_to_weight, ibs, config): nAssign = config.get('nAssign', 1) alpha = config.get('smk_alpha', 3.0) thresh = config.get('smk_thresh', 3.0) # Compute assignments fx_to_vecs = ibs.get_annot_vecs(aid, config2_=config) fx_to_wxs, fx_to_maws = smk_funcs.assign_to_words(vocab, fx_to_vecs, nAssign) wx_to_fxs, wx_to_maws = smk_funcs.invert_assigns(fx_to_wxs, fx_to_maws) # Build Aggregate Residual Vectors wx_list = sorted(wx_to_fxs.keys()) word_list = ut.take(vocab.wx_to_word, wx_list) fxs_list = ut.take(wx_to_fxs, wx_list) maws_list = ut.take(wx_to_maws, wx_list) agg_rvecs = np.empty((len(wx_list), fx_to_vecs.shape[1]), dtype=np.float) agg_flags = np.empty((len(wx_list), 1), dtype=np.bool) for idx in range(len(wx_list)): word = word_list[idx] fxs = fxs_list[idx] maws = maws_list[idx] vecs = fx_to_vecs.take(fxs, axis=0) _rvecs, _flags = smk_funcs.compute_rvec(vecs, word) _agg_rvec, _agg_flag = smk_funcs.aggregate_rvecs(_rvecs, maws, _flags) agg_rvecs[idx] = _agg_rvec agg_flags[idx] = _agg_flag X = inverted_index.SingleAnnot() X.aid = aid X.wx_list = wx_list X.fxs_list = fxs_list X.maws_list = maws_list X.agg_rvecs = agg_rvecs X.agg_flags = agg_flags X.wx_to_idx = ut.make_index_lookup(X.wx_list) X.int_rvec = False X.wx_set = set(X.wx_list) weight_list = np.array(ut.take(wx_to_weight, wx_list)) X.gamma = smk_funcs.gamma_agg(X.agg_rvecs, X.agg_flags, weight_list, alpha, thresh) return X def verify_score(): """ Recompute all SMK things for two annotations and compare scores. >>> from ibeis.algo.smk.script_smk import * # NOQA cm.print_inspect_str(qreq_) cm.show_single_annotmatch(qreq_, daid1) cm.show_single_annotmatch(qreq_, daid2) """ qreq_, cm = load_internal_data() qreq_.ensure_data() ibs = qreq_.ibs qaid = cm.qaid daid1 = cm.get_top_truth_aids(ibs, ibs.const.EVIDENCE_DECISION.POSITIVE)[0] daid2 = cm.get_top_truth_aids(ibs, ibs.const.EVIDENCE_DECISION.POSITIVE, invert=True)[0] vocab = ibs.depc['vocab'].get_row_data([qreq_.dinva.vocab_rowid], 'words')[0] wx_to_weight = qreq_.dinva.wx_to_weight aid = qaid # NOQA config = qreq_.qparams alpha = config.get('smk_alpha', 3.0) thresh = config.get('smk_thresh', 3.0) X = make_temporary_annot(qaid, vocab, wx_to_weight, ibs, config) assert np.isclose(smk_pipeline.match_kernel_agg(X, X, wx_to_weight, alpha, thresh)[0], 1.0) Y1 = make_temporary_annot(daid1, vocab, wx_to_weight, ibs, config) item = smk_pipeline.match_kernel_agg(X, Y1, wx_to_weight, alpha, thresh) score = item[0] assert np.isclose(score, cm.get_annot_scores([daid1])[0]) assert np.isclose(smk_pipeline.match_kernel_agg(Y1, Y1, wx_to_weight, alpha, thresh)[0], 1.0) Y2 = make_temporary_annot(daid2, vocab, wx_to_weight, ibs, config) item = smk_pipeline.match_kernel_agg(X, Y2, wx_to_weight, alpha, thresh) score = item[0] assert np.isclose(score, cm.get_annot_scores([daid2])[0]) assert np.isclose(smk_pipeline.match_kernel_agg(Y2, Y2, wx_to_weight, alpha, thresh)[0], 1.0) #Y2 = make_temporary_annot(daid2, vocab, wx_to_weight, ibs, config) def kpts_inside_bbox(kpts, bbox, only_xy=False): # Use keypoint extent to filter out what is in query import vtool_ibeis as vt xys = kpts[:, 0:2] if only_xy: flags = vt.point_inside_bbox(xys.T, bbox) else: wh_list = vt.get_kpts_wh(kpts) radii = wh_list / 2 pts1 = xys + radii * (-1, 1) pts2 = xys + radii * (-1, -1) pts3 = xys + radii * (1, -1) pts4 = xys + radii * (1, 1) flags = np.logical_and.reduce([ vt.point_inside_bbox(pts1.T, bbox), vt.point_inside_bbox(pts2.T, bbox), vt.point_inside_bbox(pts3.T, bbox), vt.point_inside_bbox(pts4.T, bbox), ]) return flags def sanity_checks(offset_list, Y_list, query_annots, ibs): nfeat_list = np.diff(offset_list) for Y, nfeat in ut.ProgIter(zip(Y_list, nfeat_list), 'checking'): assert nfeat == sum(ut.lmap(len, Y.fxs_list)) if False: # Visualize queries # Look at the standard query images here # http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf from ibeis.viz import viz_chip import plottool_ibeis as pt pt.qt4ensure() fnum = 1 pnum_ = pt.make_pnum_nextgen(len(query_annots.aids) // 5, 5) for aid in ut.ProgIter(query_annots.aids): pnum = pnum_() viz_chip.show_chip(ibs, aid, in_image=True, annote=False, notitle=True, draw_lbls=False, fnum=fnum, pnum=pnum) def oxford_conic_test(): # Test that these are what the readme says A, B, C = [0.016682, 0.001693, 0.014927] A, B, C = [0.010141, -1.1e-05, 0.02863] Z = np.array([[A, B], [B, C]]) import vtool_ibeis as vt invV = vt.decompose_Z_to_invV_2x2(Z) # NOQA invV = vt.decompose_Z_to_invV_mats2x2(np.array([Z])) # NOQA # seems ok #invV = np.linalg.inv(V) def load_internal_data(): """ ibeis TestResult --db Oxford \ -p smk:nWords=[64000],nAssign=[1],SV=[False],can_match_sameimg=True,dim_size=None \ -a oxford \ --dev-mode ibeis TestResult --db GZ_Master1 \ -p smk:nWords=[64000],nAssign=[1],SV=[False],fg_on=False \ -a ctrl:qmingt=2 \ --dev-mode """ # from ibeis.algo.smk.smk_pipeline import * # NOQA import ibeis qreq_ = ibeis.testdata_qreq_( defaultdb='Oxford', a='oxford', p='smk:nWords=[64000],nAssign=[1],SV=[False],can_match_sameimg=True,dim_size=None') cm_list = qreq_.execute() ave_precisions = [cm.get_annot_ave_precision() for cm in cm_list] mAP = np.mean(ave_precisions) print('mAP = %.3f' % (mAP,)) cm = cm_list[-1] return qreq_, cm def compare_data(Y_list_): import ibeis qreq_ = ibeis.testdata_qreq_( defaultdb='Oxford', a='oxford', p='smk:nWords=[64000],nAssign=[1],SV=[False],can_match_sameimg=True,dim_size=None') qreq_.ensure_data() gamma1s = [] gamma2s = [] print(len(Y_list_)) print(len(qreq_.daids)) dinva = qreq_.dinva bady = [] for Y in Y_list_: aid = Y.aid gamma1 = Y.gamma if aid in dinva.aid_to_idx: idx = dinva.aid_to_idx[aid] gamma2 = dinva.gamma_list[idx] gamma1s.append(gamma1) gamma2s.append(gamma2) else: bady += [Y] print(Y.nid) # print(Y.qual) # ibs = qreq_.ibs # z = ibs.annots([a.aid for a in bady]) import plottool_ibeis as pt ut.qtensure() gamma1s = np.array(gamma1s) gamma2s = np.array(gamma2s) sortx = gamma1s.argsort() pt.plot(gamma1s[sortx], label='script') pt.plot(gamma2s[sortx], label='pipe') pt.legend() def show_data_image(data_uri_order, i, offset_list, all_kpts, all_vecs): """ i = 12 """ import vtool_ibeis as vt from os.path import join imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images') gpath = join(imgdir, data_uri_order[i] + '.jpg') image = vt.imread(gpath) import plottool_ibeis as pt pt.qt4ensure() # pt.imshow(image) l = offset_list[i] r = offset_list[i + 1] kpts = all_kpts[l:r] vecs = all_vecs[l:r] pt.interact_keypoints.ishow_keypoints(image, kpts, vecs, ori=False, ell_alpha=.4, color='distinct') def check_image_sizes(data_uri_order, all_kpts, offset_list): """ Check if any keypoints go out of bounds wrt their associated images """ import vtool_ibeis as vt from os.path import join imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images') gpath_list = [join(imgdir, imgid + '.jpg') for imgid in data_uri_order] imgsize_list = [vt.open_image_size(gpath) for gpath in gpath_list] kpts_list = [all_kpts[l:r] for l, r in ut.itertwo(offset_list)] kpts_extent = [vt.get_kpts_image_extent(kpts, outer=False, only_xy=False) for kpts in ut.ProgIter(kpts_list, 'kpts extent')] for i, (size, extent) in enumerate(zip(imgsize_list, kpts_extent)): w, h = size _, maxx, _, maxy = extent assert np.isnan(maxx) or maxx < w assert np.isnan(maxy) or maxy < h def hyrule_vocab_test(): from yael.yutils import load_ext from os.path import join import sklearn.cluster dbdir = ut.truepath('/raid/work/Oxford/') datadir = dbdir + '/smk_data_iccv_2013/data/' # Files storing descriptors/geometry for Oxford5k dataset test_sift_fname = join(datadir, 'oxford_sift.uint8') # test_nf_fname = join(datadir, 'oxford_nsift.uint32') all_vecs = load_ext(test_sift_fname, ndims=128, verbose=True).astype(np.float32) print(ut.print_object_size(all_vecs)) # nfeats_list = load_ext(test_nf_fname, verbose=True) with ut.embed_on_exception_context: rng = np.random.RandomState(13421421) # init_size = int(config['num_words'] * 8) num_words = int(2 ** 16) init_size = num_words * 4 # converged after 26043 iterations minibatch_params = dict( n_clusters=num_words, init='k-means++', # init='random', init_size=init_size, n_init=1, max_iter=100, batch_size=1000, tol=0.0, max_no_improvement=10, reassignment_ratio=0.01, ) clusterer = sklearn.cluster.MiniBatchKMeans( compute_labels=False, random_state=rng, verbose=1, **minibatch_params) clusterer.fit(all_vecs) words = clusterer.cluster_centers_ print(words.shape) if __name__ == '__main__': r""" CommandLine: python -m ibeis.algo.smk.script_smk """ run_asmk_script()
apache-2.0
soylentdeen/BlurryApple
Diagnostics/calc_xy.py
1
3238
import scipy import numpy import pyfits import matplotlib.pyplot as pyplot def findRegion(x, y, regions): for r in range(len(regions)): for pix in regions[r]: if (abs(x-pix[0]) < 2) & (abs(y-pix[1]) < 2): return r return -1 def findContiguousRegions(nonzero): regions = [] for x, y in zip(nonzero[0], nonzero[1]): index = findRegion(x, y, regions) if index >= 0: regions[index].append([x, y]) else: regions.append([[x,y]]) return regions def computeCentroid(image, coords): sdrooc = coords.T xvals = numpy.unique(sdrooc[0]) yvals = numpy.unique(sdrooc[1]) x = 0.0 y = 0.0 x_c = 0.0 y_c = 0.0 intensity = 0.0 i_c = 0.0 for pix in coords: pixval = image[pix[0]][pix[1]] intensity += pixval x += pixval*pix[0] y += pixval*pix[1] x_c += pix[0] y_c += pix[1] i_c += 1.0 #print x_c/i_c, y_c/i_c #print x/intensity, x_c/i_c #print y/intensity, y_c/i_c return x/intensity, y/intensity, x_c/i_c, y_c/i_c def avgGradients(image, nonzero): gradx = [] grady = [] xc_pos = [] yc_pos = [] postageStamps = findContiguousRegions(nonzero) for postageStamp in postageStamps: x, y, x_c, y_c = computeCentroid(image, numpy.array(postageStamp)) gradx.append(x-x_c) grady.append(y-y_c) xc_pos.append(x_c) yc_pos.append(y_c) return gradx, grady, xc_pos, yc_pos fig = pyplot.figure(0) fig.clear() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) datadir = '/home/deen/Data/GRAVITY/' image = 'RefSlopes/RefSlopes_5.fits' bkgnd = 'Bkgnd/Bkgnd.fits' back = pyfits.getdata(datadir+bkgnd) backstack = numpy.zeros([72, 72]) f = numpy.resize(back[0][-1].copy(), [72,72]) nonzero = numpy.nonzero(f) backstack += f initial_median = numpy.median(f[nonzero]) for frame in back[1:]: f = numpy.resize(frame[-1].copy(), [72, 72]) backstack += f*initial_median/numpy.median(f[nonzero]) backstack /= float(len(back)) data = pyfits.getdata(datadir+image) imgstack = numpy.zeros([72, 72]) f = numpy.resize(data[0][-1].copy(), [72, 72]) imgstack += f #nonzero = numpy.nonzero(f) #initial_median = numpy.median(f[nonzero]) f = numpy.resize(data[0][-1].copy(), [72, 72]) nonzero = numpy.nonzero(f) initial_median = numpy.median(f[nonzero]) for frame in data[1:]: f = numpy.resize(frame[-1].copy(), [72, 72]) imgstack+= f*initial_median/numpy.median(f[nonzero]) imgstack /= float(len(data)) calibrated = imgstack #calibrated = imgstack - backstack gx, gy, x_c, y_c = avgGradients(calibrated, nonzero) #calibrated[nonzero] += 50000.0 ax.imshow(calibrated.transpose()) ax.scatter(x_c, y_c, color = 'r', marker = '+') ax.scatter(numpy.array(x_c)+numpy.array(gx), numpy.array(y_c)+numpy.array(gy), color = 'k', marker = '+') for p in zip(x_c, y_c, gx, gy): ax.plot([p[0], p[0]+p[2]], [p[1], p[1]+p[3]], color = 'k') print("Mean X gradient: %f" % numpy.mean(gx)) print("Mean Y gradient: %f" % numpy.mean(gy)) ax.set_title("Gradients: x=%5.3f, y=%5.3f" %(numpy.mean(gx), numpy.mean(gy))) fig.show() #fig.savefig('centroids_stretch.png') #fig.savefig('centroids.png')
gpl-2.0
zingale/pyro2
examples/multigrid/mg_vis.py
2
2607
#!/usr/bin/env python3 """ an example of using the multigrid class to solve Laplace's equation. Here, we solve:: u_xx + u_yy = -2[(1-6x**2)y**2(1-y**2) + (1-6y**2)x**2(1-x**2)] u = 0 on the boundary this is the example from page 64 of the book `A Multigrid Tutorial, 2nd Ed.` The analytic solution is u(x,y) = (x**2 - x**4)(y**4 - y**2) """ from __future__ import print_function import numpy as np import multigrid.MG as MG import matplotlib.pyplot as plt # the analytic solution def true(x, y): return (x**2 - x**4)*(y**4 - y**2) # the righthand side def f(x, y): return -2.0*((1.0-6.0*x**2)*y**2*(1.0-y**2) + (1.0-6.0*y**2)*x**2*(1.0-x**2)) def doit(nx, ny): # test the multigrid solver # create the multigrid object a = MG.CellCenterMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", verbose=0, nsmooth=5, nsmooth_bottom=10, vis=1, true_function=true, vis_title=r"$u_{xx} + u_{yy} = -2[(1-6x^2)y^2(1-y^2) + (1-6y^2)x^2(1-x^2)]$") plt.ion() plt.figure(num=1, figsize=(12.8, 7.2), dpi=100, facecolor='w') # initialize the solution to 0 init = a.soln_grid.scratch_array() a.init_solution(init) # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following # a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d, a.y2d) e = v - b print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % (a.soln_grid.norm(e), a.relative_error, a.num_cycles)) # plot it # plt.figure(num=1, figsize=(2.10,2.10), dpi=100, facecolor='w') plt.figure(num=1, figsize=(5.0, 5.0), dpi=100, facecolor='w') plt.imshow(np.transpose(v[a.ilo:a.ihi+1, a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) # plt.axis("off") # plt.subplots_adjust(bottom=0.0, top=1.0, left=0.0, right=1.0) plt.xlabel("x") plt.ylabel("y") plt.savefig("mg_test.png") # store the output for later comparison my_data = a.get_solution_object() my_data.write("mg_test") if __name__ == "__main__": doit(64, 64)
bsd-3-clause
TheNeuralBit/arrow
python/pyarrow/tests/test_ipc.py
2
4452
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import pytest import numpy as np from pandas.util.testing import assert_frame_equal import pandas as pd from pyarrow.compat import unittest import pyarrow as pa class MessagingTest(object): def setUp(self): self.sink = self._get_sink() def _get_sink(self): return io.BytesIO() def _get_source(self): return pa.BufferReader(self.sink.getvalue()) def write_batches(self): nrows = 5 df = pd.DataFrame({ 'one': np.random.randn(nrows), 'two': ['foo', np.nan, 'bar', 'bazbaz', 'qux']}) batch = pa.RecordBatch.from_pandas(df) writer = self._get_writer(self.sink, batch.schema) num_batches = 5 frames = [] batches = [] for i in range(num_batches): unique_df = df.copy() unique_df['one'] = np.random.randn(nrows) batch = pa.RecordBatch.from_pandas(unique_df) writer.write_batch(batch) frames.append(unique_df) batches.append(batch) writer.close() return batches class TestFile(MessagingTest, unittest.TestCase): # Also tests writing zero-copy NumPy array with additional padding def _get_writer(self, sink, schema): return pa.FileWriter(sink, schema) def test_simple_roundtrip(self): batches = self.write_batches() file_contents = self._get_source() reader = pa.FileReader(file_contents) assert reader.num_record_batches == len(batches) for i, batch in enumerate(batches): # it works. Must convert back to DataFrame batch = reader.get_batch(i) assert batches[i].equals(batch) def test_read_all(self): batches = self.write_batches() file_contents = self._get_source() reader = pa.FileReader(file_contents) result = reader.read_all() expected = pa.Table.from_batches(batches) assert result.equals(expected) class TestStream(MessagingTest, unittest.TestCase): def _get_writer(self, sink, schema): return pa.StreamWriter(sink, schema) def test_simple_roundtrip(self): batches = self.write_batches() file_contents = self._get_source() reader = pa.StreamReader(file_contents) total = 0 for i, next_batch in enumerate(reader): assert next_batch.equals(batches[i]) total += 1 assert total == len(batches) with pytest.raises(StopIteration): reader.get_next_batch() def test_read_all(self): batches = self.write_batches() file_contents = self._get_source() reader = pa.StreamReader(file_contents) result = reader.read_all() expected = pa.Table.from_batches(batches) assert result.equals(expected) class TestInMemoryFile(TestFile): def _get_sink(self): return pa.InMemoryOutputStream() def _get_source(self): return self.sink.get_result() def test_ipc_zero_copy_numpy(): df = pd.DataFrame({'foo': [1.5]}) batch = pa.RecordBatch.from_pandas(df) sink = pa.InMemoryOutputStream() write_file(batch, sink) buffer = sink.get_result() reader = pa.BufferReader(buffer) batches = read_file(reader) data = batches[0].to_pandas() rdf = pd.DataFrame(data) assert_frame_equal(df, rdf) def write_file(batch, sink): writer = pa.FileWriter(sink, batch.schema) writer.write_batch(batch) writer.close() def read_file(source): reader = pa.FileReader(source) return [reader.get_batch(i) for i in range(reader.num_record_batches)]
apache-2.0
okesontj/APMonitor
apm.py
4
26852
# Import import csv import math import os import random import string import time import webbrowser from contextlib import closing import sys # Get Python version ver = sys.version_info[0] #print('Version: '+str(ver)) if ver==2: # Python 2 import urllib else: # Python 3+ import urllib.request, urllib.parse, urllib.error #import socket if ver==2: # Python 2 def cmd(server, app, aline): '''Send a request to the server \n \ server = address of server \n \ app = application name \n \ aline = line to send to server \n''' try: # Web-server URL address url_base = string.strip(server) + '/online/apm_line.php' app = app.lower() app.replace(" ", "") params = urllib.urlencode({'p': app, 'a': aline}) f = urllib.urlopen(url_base, params) # Stream solution output if(aline=='solve'): line = '' while True: char = f.read(1) if not char: break elif char == '\n': print(line) line = '' else: line += char # Send request to web-server response = f.read() except: response = 'Failed to connect to server' return response def load_model(server,app,filename): '''Load APM model file \n \ server = address of server \n \ app = application name \n \ filename = APM file name''' # Load APM File f = open(filename,'r') aline = f.read() f.close() app = app.lower() app.replace(" ","") response = cmd(server,app,' '+aline) return def load_data(server,app,filename): '''Load CSV data file \n \ server = address of server \n \ app = application name \n \ filename = CSV file name''' # Load CSV File f = open(filename,'r') aline = f.read() f.close() app = app.lower() app.replace(" ","") response = cmd(server,app,'csv '+aline) return def get_ip(server): '''Get current IP address \n \ server = address of server''' # get ip address for web-address lookup url_base = string.strip(server) + '/ip.php' f = urllib.urlopen(url_base) ip = string.strip(f.read()) return ip def apm_t0(server,app,mode): '''Retrieve restart file \n \ server = address of server \n \ app = application name \n \ mode = {'ss','mpu','rto','sim','est','ctl'} ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/' + string.strip(mode) + '.t0' f = urllib.urlopen(url) # Send request to web-server solution = f.read() return solution def get_solution(server,app): '''Retrieve solution results\n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/results.csv' f = urllib.urlopen(url) # Send request to web-server solution = f.read() # Write the file sol_file = 'solution_' + app + '.csv' fh = open(sol_file,'w') # possible problem here if file isn't able to open (see MATLAB equivalent) fh.write(solution.replace('\r','')) fh.close() # Use array package from array import array # Import CSV file from web server with closing(urllib.urlopen(url)) as f: reader = csv.reader(f, delimiter=',') y={} for row in reader: if len(row)==2: y[row[0]] = float(row[1]) else: y[row[0]] = array('f', [float(col) for col in row[1:]]) # Return solution return y def get_file(server,app,filename): '''Retrieve any file from web-server\n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/' + filename f = urllib.urlopen(url) # Send request to web-server file = f.read() # Write the file fh = open(filename,'w') fh.write(file.replace('\r','')) fh.close() return (file) def set_option(server,app,name,value): '''Load APM option \n \ server = address of server \n \ app = application name \n \ name = {FV,MV,SV,CV}.option \n \ value = numeric value of option ''' aline = 'option %s = %f' %(name,value) app = app.lower() app.replace(" ","") response = cmd(server,app,aline) return response def web(server,app): '''Open APM web viewer in local browser \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/' + ip + '_' + app + '_oper.htm' webbrowser.get().open_new_tab(url) return url def web_var(server,app): '''Open APM web viewer in local browser \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/' + ip + '_' + app + '_var.htm' webbrowser.get().open_new_tab(url) return url def web_root(server,app): '''Open APM root folder \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = string.strip(server) + '/online/' + ip + '_' + app + '/' webbrowser.get().open_new_tab(url) return url def classify(server,app,type,aline): '''Classify parameter or variable as FV, MV, SV, or CV \n \ server = address of server \n \ app = application name \n \ type = {FV,MV,SV,CV} \n \ aline = parameter or variable name ''' x = 'info' + ' ' + type + ', ' + aline app = app.lower() app.replace(" ","") response = cmd(server,app,x) return response def csv_data(filename): '''Load CSV File into Python A = csv_data(filename) Function csv_data extracts data from a comma separated value (csv) file and returns it to the array A''' try: f = open(filename, 'rb') reader = csv.reader(f) headers = reader.next() c = [float] * (len(headers)) A = {} for h in headers: A[h] = [] for row in reader: for h, v, conv in zip(headers, row, c): A[h].append(conv(v)) except ValueError: A = {} return A def csv_lookup(name,replay): '''Lookup Index of CSV Column \n \ name = parameter or variable name \n \ replay = csv replay data to search''' header = replay[0] try: i = header.index(string.strip(name)) except ValueError: i = -1 # no match return i def csv_element(name,row,replay): '''Retrieve CSV Element \n \ name = parameter or variable name \n \ row = row of csv file \n \ replay = csv replay data to search''' # get row number if (row>len(replay)): row = len(replay)-1 # get column number col = csv_lookup(name,replay) if (col>=0): value = float(replay[row][col]) else: value = float('nan') return value def get_attribute(server,app,name): '''Retrieve options for FV, MV, SV, or CV \n \ server = address of server \n \ app = application name \n \ name = {FV,MV,SV,CV}.{MEAS,MODEL,NEWVAL} \n \n \ Valid name combinations \n \ {FV,MV,CV}.MEAS \n \ {SV,CV}.MODEL \n \ {FV,MV}.NEWVAL ''' # Web-server URL address url_base = string.strip(server) + '/online/get_tag.php' app = app.lower() app.replace(" ","") params = urllib.urlencode({'p':app,'n':name}) f = urllib.urlopen(url_base,params) # Send request to web-server value = eval(f.read()) return value def load_meas(server,app,name,value): '''Transfer measurement to server for FV, MV, or CV \n \ server = address of server \n \ app = application name \n \ name = name of {FV,MV,CV} ''' # Web-server URL address url_base = string.strip(server) + '/online/meas.php' app = app.lower() app.replace(" ","") params = urllib.urlencode({'p':app,'n':name+'.MEAS','v':value}) f = urllib.urlopen(url_base,params) # Send request to web-server response = f.read() return response else: # Python 3+ def cmd(server,app,aline): '''Send a request to the server \n \ server = address of server \n \ app = application name \n \ aline = line to send to server \n''' try: # Web-server URL address url_base = server.strip() + '/online/apm_line.php' app = app.lower() app.replace(" ","") params = urllib.parse.urlencode({'p':app,'a':aline}) en_params = params.encode() f = urllib.request.urlopen(url_base,en_params) # Stream solution output if(aline=='solve'): line = '' while True: en_char = f.read(1) char = en_char.decode() if not char: break elif char == '\n': print(line) line = '' else: line += char # Send request to web-server en_response = f.read() response = en_response.decode() except: response = 'Failed to connect to server' return response def load_model(server,app,filename): '''Load APM model file \n \ server = address of server \n \ app = application name \n \ filename = APM file name''' # Load APM File f = open(filename,'r') aline = f.read() f.close() app = app.lower() app.replace(" ","") response = cmd(server,app,' '+aline) return def load_data(server,app,filename): '''Load CSV data file \n \ server = address of server \n \ app = application name \n \ filename = CSV file name''' # Load CSV File f = open(filename,'r') aline = f.read() f.close() app = app.lower() app.replace(" ","") response = cmd(server,app,'csv '+aline) return def get_ip(server): '''Get current IP address \n \ server = address of server''' # get ip address for web-address lookup url_base = server.strip() + '/ip.php' f = urllib.request.urlopen(url_base) fip = f.read() ip = fip.decode().strip() return ip def apm_t0(server,app,mode): '''Retrieve restart file \n \ server = address of server \n \ app = application name \n \ mode = {'ss','mpu','rto','sim','est','ctl'} ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/' + mode.strip() + '.t0' f = urllib.request.urlopen(url) # Send request to web-server solution = f.read() return solution def get_solution(server,app): '''Retrieve solution results\n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/results.csv' f = urllib.request.urlopen(url) # Send request to web-server solution = f.read() # Write the file sol_file = 'solution_' + app + '.csv' fh = open(sol_file,'w') # possible problem here if file isn't able to open (see MATLAB equivalent) en_solution = solution.decode().replace('\r','') fh.write(en_solution) fh.close() # Use array package from array import array # Import CSV file from web server with closing(urllib.request.urlopen(url)) as f: fr = f.read() de_f = fr.decode() reader = csv.reader(de_f.splitlines(), delimiter=',') y={} for row in reader: if len(row)==2: y[row[0]] = float(row[1]) else: y[row[0]] = array('f', [float(col) for col in row[1:]]) # Return solution return y def get_file(server,app,filename): '''Retrieve any file from web-server\n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/' + filename f = urllib.request.urlopen(url) # Send request to web-server file = f.read() # Write the file fh = open(filename,'w') en_file = file.decode().replace('\r','') fh.write(en_file) fh.close() return (file) def set_option(server,app,name,value): '''Load APM option \n \ server = address of server \n \ app = application name \n \ name = {FV,MV,SV,CV}.option \n \ value = numeric value of option ''' aline = 'option %s = %f' %(name,value) app = app.lower() app.replace(" ","") response = cmd(server,app,aline) return response def web(server,app): '''Open APM web viewer in local browser \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/' + ip + '_' + app + '_oper.htm' webbrowser.get().open_new_tab(url) return url def web_var(server,app): '''Open APM web viewer in local browser \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/' + ip + '_' + app + '_var.htm' webbrowser.get().open_new_tab(url) return url def web_root(server,app): '''Open APM root folder \n \ server = address of server \n \ app = application name ''' # Retrieve IP address ip = get_ip(server) # Web-server URL address app = app.lower() app.replace(" ","") url = server.strip() + '/online/' + ip + '_' + app + '/' webbrowser.get().open_new_tab(url) return url def classify(server,app,type,aline): '''Classify parameter or variable as FV, MV, SV, or CV \n \ server = address of server \n \ app = application name \n \ type = {FV,MV,SV,CV} \n \ aline = parameter or variable name ''' x = 'info' + ' ' + type + ', ' + aline app = app.lower() app.replace(" ","") response = cmd(server,app,x) return response def csv_data(filename): '''Load CSV File into Python A = csv_data(filename) Function csv_data extracts data from a comma separated value (csv) file and returns it to the array A''' try: f = open(filename, 'rb') reader = csv.reader(f) headers = next(reader) c = [float] * (len(headers)) A = {} for h in headers: A[h] = [] for row in reader: for h, v, conv in zip(headers, row, c): A[h].append(conv(v)) except ValueError: A = {} return A def csv_lookup(name,replay): '''Lookup Index of CSV Column \n \ name = parameter or variable name \n \ replay = csv replay data to search''' header = replay[0] try: i = header.index(name.strip()) except ValueError: i = -1 # no match return i def csv_element(name,row,replay): '''Retrieve CSV Element \n \ name = parameter or variable name \n \ row = row of csv file \n \ replay = csv replay data to search''' # get row number if (row>len(replay)): row = len(replay)-1 # get column number col = csv_lookup(name,replay) if (col>=0): value = float(replay[row][col]) else: value = float('nan') return value def get_attribute(server,app,name): '''Retrieve options for FV, MV, SV, or CV \n \ server = address of server \n \ app = application name \n \ name = {FV,MV,SV,CV}.{MEAS,MODEL,NEWVAL} \n \n \ Valid name combinations \n \ {FV,MV,CV}.MEAS \n \ {SV,CV}.MODEL \n \ {FV,MV}.NEWVAL ''' # Web-server URL address url_base = server.strip() + '/online/get_tag.php' app = app.lower() app.replace(" ","") params = urllib.parse.urlencode({'p':app,'n':name}) params_en = params.encode() f = urllib.request.urlopen(url_base,params_en) # Send request to web-server value = eval(f.read()) return value def load_meas(server,app,name,value): '''Transfer measurement to server for FV, MV, or CV \n \ server = address of server \n \ app = application name \n \ name = name of {FV,MV,CV} ''' # Web-server URL address url_base = server.strip() + '/online/meas.php' app = app.lower() app.replace(" ","") params = urllib.parse.urlencode({'p':app,'n':name+'.MEAS','v':value}) params_en = params.encode() f = urllib.request.urlopen(url_base,params_en) # Send request to web-server response = f.read() return response def solve(app,imode): ''' APM Solver for simulation, estimation, and optimization with both static (steady-state) and dynamic models. The dynamic modes can solve index 2+ DAEs without numerical differentiation. y = solve(app,imode) Function solve uploads the model file (apm) and optionally a data file (csv) with the same name to the web-server and performs a forward-time stepping integration of ODE or DAE equations with the following arguments: Input: app = model (apm) and data file (csv) name imode = simulation mode {1..7} steady-state dynamic sequential simulate 1 4 7 estimate 2 5 8 (under dev) optimize 3 6 9 (under dev) Output: y.names = names of all variables y.values = tables of values corresponding to y.names y.nvar = number of variables y.x = combined variables and values but variable names may be modified to make them valid characters (e.g. replace '[' with '') ''' # server and application file names server = 'http://byu.apmonitor.com' app = app.lower() app.replace(" ","") app_model = app + '.apm' app_data = app + '.csv' # randomize the application name from random import randint app = app + '_' + str(randint(1000,9999)) # clear previous application cmd(server,app,'clear all') try: # load model file load_model(server,app,app_model) except: msg = 'Model file ' + app + '.apm does not exist' print(msg) return [] # check if data file exists (optional) try: # load data file load_data(server,app,app_data) except: # data file is optional print('Optional data file ' + app + '.csv does not exist') pass # default options # use or don't use web viewer web = False if web: set_option(server,app,'nlc.web',2) else: set_option(server,app,'nlc.web',0) # internal nodes in the collocation (between 2 and 6) set_option(server,app,'nlc.nodes',3) # sensitivity analysis (default: 0 - off) set_option(server,app,'nlc.sensitivity',0) # simulation mode (1=ss, 2=mpu, 3=rto) # (4=sim, 5=est, 6=nlc, 7=sqs) set_option(server,app,'nlc.imode',imode) # attempt solution solver_output = cmd(server,app,'solve') # check for successful solution status = get_attribute(server,app,'nlc.appstatus') if status==1: # open web viewer if selected if web: web(server,app) # retrieve solution and solution.csv z = get_solution(server,app) return z else: print(solver_output) print('Error: Did not converge to a solution') return [] def plotter(y, subplots=1, save=False, filename='solution', format='png'): ''' The plotter will go through each of the variables in the output y and create plots for them. The number of vertical subplots can be specified and the plots can be saved in the same folder. This functionality is dependant on matplotlib, so this library must be installed on the computer for the automatic plotter to work. The input y should be the output from the apm solution. This can be retrieved from the server using the following line of code: y = get_solution(server, app) ''' try: import matplotlib.pyplot as plt var_size = len(y) colors = ['r-', 'g-', 'k-', 'b-'] color_pick = 0 if subplots > 9: subplots = 9 j = 1 pltcount = 0 start = True for i in range(var_size): if list(y)[i] != 'time' and list(y)[i][:3] != 'slk': if j == 1: if start != True: plt.xlabel('time') start = False if save: if pltcount != 0: plt.savefig(filename + str(pltcount) + '.' + format, format=format) pltcount += 1 plt.figure() else: plt.gca().axes.get_xaxis().set_ticklabels([]) plt.subplot(100*subplots+10+j) plt.plot(y['time'], y[list(y)[i]], colors[color_pick], linewidth=2.0) if color_pick == 3: color_pick = 0 else: color_pick += 1 plt.ylabel(list(y)[i]) if subplots == 1: plt.title(list(y)[i]) if j == subplots or i+2 == var_size: j = 1 else: j += 1 plt.xlabel('time') if save: plt.savefig('plots/' + filename + str(pltcount) + '.' + format, format=format) if pltcount <= 20: plt.show() except ImportError: print('Dependent Packages not imported.') print('Please install matplotlib package to use plotting features.') except: print('Graphs not created. Double check that the') print('simulation/optimization was succesfull') # This code adds back compatibility with previous versions apm = cmd apm_load = load_model csv_load = load_data apm_ip = get_ip apm_sol = get_solution apm_get = get_file apm_option = set_option apm_web = web apm_web_var = web_var apm_web_root = web_root apm_info = classify apm_tag = get_attribute apm_meas = load_meas apm_solve = solve
bsd-2-clause
ronalcc/zipline
zipline/finance/performance/tracker.py
3
22303
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Performance Tracking ==================== +-----------------+----------------------------------------------------+ | key | value | +=================+====================================================+ | period_start | The beginning of the period to be tracked. datetime| | | in pytz.utc timezone. Will always be 0:00 on the | | | date in UTC. The fact that the time may be on the | | | prior day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | period_end | The end of the period to be tracked. datetime | | | in pytz.utc timezone. Will always be 23:59 on the | | | date in UTC. The fact that the time may be on the | | | next day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | progress | percentage of test completed | +-----------------+----------------------------------------------------+ | capital_base | The initial capital assumed for this tracker. | +-----------------+----------------------------------------------------+ | cumulative_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | +-----------------+----------------------------------------------------+ | todays_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker with datetime stamps between last_open| | | and last_close. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | | | TODO: adding this because we calculate it. May be | | | overkill. | +-----------------+----------------------------------------------------+ | cumulative_risk | A dictionary representing the risk metrics | | _metrics | calculated based on the positions aggregated | | | through all the events delivered to this tracker. | | | For details look at the comments for | | | :py:meth:`zipline.finance.risk.RiskMetrics.to_dict`| +-----------------+----------------------------------------------------+ """ from __future__ import division import logbook import pickle from six import iteritems from datetime import datetime import numpy as np import pandas as pd from pandas.tseries.tools import normalize_date import zipline.finance.risk as risk from zipline.finance.trading import TradingEnvironment from . period import PerformancePeriod from zipline.utils.serialization_utils import ( VERSION_LABEL ) from . position_tracker import PositionTracker log = logbook.Logger('Performance') class PerformanceTracker(object): """ Tracks the performance of the algorithm. """ def __init__(self, sim_params): self.sim_params = sim_params env = TradingEnvironment.instance() self.period_start = self.sim_params.period_start self.period_end = self.sim_params.period_end self.last_close = self.sim_params.last_close first_open = self.sim_params.first_open.tz_convert(env.exchange_tz) self.day = pd.Timestamp(datetime(first_open.year, first_open.month, first_open.day), tz='UTC') self.market_open, self.market_close = env.get_open_and_close(self.day) self.total_days = self.sim_params.days_in_period self.capital_base = self.sim_params.capital_base self.emission_rate = sim_params.emission_rate all_trading_days = env.trading_days mask = ((all_trading_days >= normalize_date(self.period_start)) & (all_trading_days <= normalize_date(self.period_end))) self.trading_days = all_trading_days[mask] self.dividend_frame = pd.DataFrame() self._dividend_count = 0 self.position_tracker = PositionTracker() self.perf_periods = [] if self.emission_rate == 'daily': self.all_benchmark_returns = pd.Series( index=self.trading_days) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params) elif self.emission_rate == 'minute': self.all_benchmark_returns = pd.Series(index=pd.date_range( self.sim_params.first_open, self.sim_params.last_close, freq='Min')) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params, create_first_day_stats=True) self.minute_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the # entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False ) self.minute_performance.position_tracker = self.position_tracker self.perf_periods.append(self.minute_performance) # this performance period will span the entire simulation from # inception. self.cumulative_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False, ) self.cumulative_performance.position_tracker = self.position_tracker self.perf_periods.append(self.cumulative_performance) # this performance period will span just the current market day self.todays_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the daily period will be calculated for the market day self.market_open, self.market_close, keep_transactions=True, keep_orders=True, serialize_positions=True, ) self.todays_performance.position_tracker = self.position_tracker self.perf_periods.append(self.todays_performance) self.saved_dt = self.period_start # one indexed so that we reach 100% self.day_count = 0.0 self.txn_count = 0 self.account_needs_update = True self._account = None def __repr__(self): return "%s(%r)" % ( self.__class__.__name__, {'simulation parameters': self.sim_params}) @property def progress(self): if self.emission_rate == 'minute': # Fake a value return 1.0 elif self.emission_rate == 'daily': return self.day_count / self.total_days def set_date(self, date): if self.emission_rate == 'minute': self.saved_dt = date self.todays_performance.period_close = self.saved_dt def update_dividends(self, new_dividends): """ Update our dividend frame with new dividends. @new_dividends should be a DataFrame with columns containing at least the entries in zipline.protocol.DIVIDEND_FIELDS. """ # Mark each new dividend with a unique integer id. This ensures that # we can differentiate dividends whose date/sid fields are otherwise # identical. new_dividends['id'] = np.arange( self._dividend_count, self._dividend_count + len(new_dividends), ) self._dividend_count += len(new_dividends) self.dividend_frame = pd.concat( [self.dividend_frame, new_dividends] ).sort(['pay_date', 'ex_date']).set_index('id', drop=False) def initialize_dividends_from_other(self, other): """ Helper for copying dividends to a new PerformanceTracker while preserving dividend count. Useful if a simulation needs to create a new PerformanceTracker mid-stream and wants to preserve stored dividend info. Note that this does not copy unpaid dividends. """ self.dividend_frame = other.dividend_frame self._dividend_count = other._dividend_count def handle_sid_removed_from_universe(self, sid): """ This method handles any behaviors that must occur when a SID leaves the universe of the TradingAlgorithm. Parameters __________ sid : int The sid of the Asset being removed from the universe. """ # Drop any dividends for the sid from the dividends frame self.dividend_frame = self.dividend_frame[ self.dividend_frame.sid != sid ] def update_performance(self): # calculate performance as of last trade for perf_period in self.perf_periods: perf_period.calculate_performance() def get_portfolio(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True return self.cumulative_performance.as_portfolio() def get_account(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True if self.account_needs_update: self._update_account() return self._account def _update_account(self): self._account = self.cumulative_performance.as_account() self.account_needs_update = False def to_dict(self, emission_type=None): """ Creates a dictionary representing the state of this tracker. Returns a dict object of the form described in header comments. """ # Default to the emission rate of this tracker if no type is provided if emission_type is None: emission_type = self.emission_rate _dict = { 'period_start': self.period_start, 'period_end': self.period_end, 'capital_base': self.capital_base, 'cumulative_perf': self.cumulative_performance.to_dict(), 'progress': self.progress, 'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict() } if emission_type == 'daily': _dict['daily_perf'] = self.todays_performance.to_dict() elif emission_type == 'minute': _dict['minute_perf'] = self.todays_performance.to_dict( self.saved_dt) else: raise ValueError("Invalid emission type: %s" % emission_type) return _dict def process_trade(self, event): # update last sale, and pay out a cash adjustment cash_adjustment = self.position_tracker.update_last_sale(event) if cash_adjustment != 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(cash_adjustment) def process_transaction(self, event): self.txn_count += 1 self.position_tracker.execute_transaction(event) for perf_period in self.perf_periods: perf_period.handle_execution(event) def process_dividend(self, dividend): log.info("Ignoring DIVIDEND event.") def process_split(self, event): leftover_cash = self.position_tracker.handle_split(event) if leftover_cash > 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(leftover_cash) def process_order(self, event): for perf_period in self.perf_periods: perf_period.record_order(event) def process_commission(self, event): self.position_tracker.handle_commission(event) for perf_period in self.perf_periods: perf_period.handle_commission(event) def process_benchmark(self, event): if self.sim_params.data_frequency == 'minute' and \ self.sim_params.emission_rate == 'daily': # Minute data benchmarks should have a timestamp of market # close, so that calculations are triggered at the right time. # However, risk module uses midnight as the 'day' # marker for returns, so adjust back to midnight. midnight = pd.tseries.tools.normalize_date(event.dt) else: midnight = event.dt if midnight not in self.all_benchmark_returns.index: raise AssertionError( ("Date %s not allocated in all_benchmark_returns. " "Calendar seems to mismatch with benchmark. " "Benchmark container is=%s" % (midnight, self.all_benchmark_returns.index))) self.all_benchmark_returns[midnight] = event.returns def process_close_position(self, event): # CLOSE_POSITION events contain prices that must be handled as a final # trade event self.process_trade(event) txn = self.position_tracker.create_close_position_transaction(event) if txn: self.process_transaction(txn) def check_upcoming_dividends(self, completed_date): """ Check if we currently own any stocks with dividends whose ex_date is the next trading day. Track how much we should be payed on those dividends' pay dates. Then check if we are owed cash/stock for any dividends whose pay date is the next trading day. Apply all such benefits, then recalculate performance. """ if len(self.dividend_frame) == 0: # We don't currently know about any dividends for this simulation # period, so bail. return # Get the next trading day and, if it is outside the bounds of the # simulation, bail. next_trading_day = TradingEnvironment.instance().\ next_trading_day(completed_date) if (next_trading_day is None) or (next_trading_day >= self.last_close): return # Dividends whose ex_date is the next trading day. We need to check if # we own any of these stocks so we know to pay them out when the pay # date comes. ex_date_mask = (self.dividend_frame['ex_date'] == next_trading_day) dividends_earnable = self.dividend_frame[ex_date_mask] # Dividends whose pay date is the next trading day. If we held any of # these stocks on midnight before the ex_date, we need to pay these out # now. pay_date_mask = (self.dividend_frame['pay_date'] == next_trading_day) dividends_payable = self.dividend_frame[pay_date_mask] position_tracker = self.position_tracker if len(dividends_earnable): position_tracker.earn_dividends(dividends_earnable) if not len(dividends_payable): return net_cash_payment = position_tracker.pay_dividends(dividends_payable) for period in self.perf_periods: # notify periods to update their stats period.handle_dividends_paid(net_cash_payment) def handle_minute_close(self, dt): """ Handles the close of the given minute. This includes handling market-close functions if the given minute is the end of the market day. Parameters __________ dt : Timestamp The minute that is ending Returns _______ (dict, dict/None) A tuple of the minute perf packet and daily perf packet. If the market day has not ended, the daily perf packet is None. """ self.update_performance() todays_date = normalize_date(dt) account = self.get_account(False) self.minute_performance.rollover() bench_returns = self.all_benchmark_returns.loc[todays_date:dt] # cumulative returns bench_since_open = (1. + bench_returns).prod() - 1 self.cumulative_risk_metrics.update(todays_date, self.todays_performance.returns, bench_since_open, account) minute_packet = self.to_dict(emission_type='minute') # if this is the close, update dividends for the next day. # Return the performance tuple if dt == self.market_close: return (minute_packet, self._handle_market_close(todays_date)) else: return (minute_packet, None) def handle_market_close_daily(self): """ Function called after handle_data when running with daily emission rate. """ self.update_performance() completed_date = self.day account = self.get_account(False) # update risk metrics for cumulative performance self.cumulative_risk_metrics.update( completed_date, self.todays_performance.returns, self.all_benchmark_returns[completed_date], account) return self._handle_market_close(completed_date) def _handle_market_close(self, completed_date): # increment the day counter before we move markers forward. self.day_count += 1.0 # Take a snapshot of our current performance to return to the # browser. daily_update = self.to_dict(emission_type='daily') # On the last day of the test, don't create tomorrow's performance # period. We may not be able to find the next trading day if we're at # the end of our historical data if self.market_close >= self.last_close: return daily_update # move the market day markers forward env = TradingEnvironment.instance() self.market_open, self.market_close = \ env.next_open_and_close(self.day) self.day = env.next_trading_day(self.day) # Roll over positions to current day. self.todays_performance.rollover() self.todays_performance.period_open = self.market_open self.todays_performance.period_close = self.market_close # Check for any dividends self.check_upcoming_dividends(completed_date) return daily_update def handle_simulation_end(self): """ When the simulation is complete, run the full period risk report and send it out on the results socket. """ log_msg = "Simulated {n} trading days out of {m}." log.info(log_msg.format(n=int(self.day_count), m=self.total_days)) log.info("first open: {d}".format( d=self.sim_params.first_open)) log.info("last close: {d}".format( d=self.sim_params.last_close)) bms = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.benchmark_returns_cont) ars = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.algorithm_returns_cont) acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages self.risk_report = risk.RiskReport( ars, self.sim_params, benchmark_returns=bms, algorithm_leverages=acl) risk_dict = self.risk_report.to_dict() return risk_dict def __getstate__(self): state_dict = \ {k: v for k, v in iteritems(self.__dict__) if not k.startswith('_')} state_dict['dividend_frame'] = pickle.dumps(self.dividend_frame) state_dict['_dividend_count'] = self._dividend_count # we already store perf periods as attributes del state_dict['perf_periods'] STATE_VERSION = 3 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 3 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("PerformanceTracker saved state is too old.") self.__dict__.update(state) # Handle the dividend frame specially self.dividend_frame = pickle.loads(state['dividend_frame']) # properly setup the perf periods self.perf_periods = [] p_types = ['cumulative', 'todays', 'minute'] for p_type in p_types: name = p_type + '_performance' period = getattr(self, name, None) if period is None: continue period._position_tracker = self.position_tracker self.perf_periods.append(period)
apache-2.0
ngoix/OCRF
examples/gaussian_process/plot_gpc_iris.py
81
2231
""" ===================================================== Gaussian process classification (GPC) on iris dataset ===================================================== This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two feature dimensions. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. y = np.array(iris.target, dtype=int) h = .02 # step size in the mesh kernel = 1.0 * RBF([1.0]) gpc_rbf_isotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y) kernel = 1.0 * RBF([1.0, 1.0]) gpc_rbf_anisotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) titles = ["Isotropic RBF", "Anisotropic RBF"] plt.figure(figsize=(10, 5)) for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)): # Plot the predicted probabilities. For that, we will assign a color to # each point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 2, i + 1) Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape((xx.shape[0], xx.shape[1], 3)) plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower") # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y]) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title("%s, LML: %.3f" % (titles[i], clf.log_marginal_likelihood(clf.kernel_.theta))) plt.tight_layout() plt.show()
bsd-3-clause
jchodera/mdtraj
tests/test_topology.py
4
9078
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2014 Stanford University and the Authors # # Authors: Kyle A. Beauchamp # Contributors: Robert McGibbon, Matthew Harrigan, Carlos Xavier Hernandez # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. ############################################################################## import os import pickle import tempfile import mdtraj as md import numpy as np import pytest from mdtraj.testing import eq try: from simtk.openmm import app import simtk.unit as u HAVE_OPENMM = True except ImportError: HAVE_OPENMM = False needs_openmm = pytest.mark.skipif(not HAVE_OPENMM, reason='needs OpenMM') @needs_openmm def test_topology_openmm(get_fn): topology = md.load(get_fn('1bpi.pdb')).topology topology_with_bond_order = md.load(get_fn('imatinib.mol2')).topology # the openmm trajectory doesn't have the distinction # between resSeq and index, so if they're out of whack # in the openmm version, that cant be preserved for top in [topology, topology_with_bond_order]: for residue in top.residues: residue.resSeq = residue.index mm = top.to_openmm() assert isinstance(mm, app.Topology) topology2 = md.Topology.from_openmm(mm) eq(top, topology2) @needs_openmm def test_topology_openmm_boxes(get_fn): traj = md.load(get_fn('1vii_sustiva_water.pdb')) mmtop = traj.topology.to_openmm(traj=traj) box = mmtop.getUnitCellDimensions() / u.nanometer def test_topology_pandas(get_fn): topology = md.load(get_fn('native.pdb')).topology atoms, bonds = topology.to_dataframe() topology2 = md.Topology.from_dataframe(atoms, bonds) eq(topology, topology2) # Make sure default argument of None works, see issue #774 topology3 = md.Topology.from_dataframe(atoms) def test_topology_pandas_TIP4PEW(get_fn): topology = md.load(get_fn('GG-tip4pew.pdb')).topology atoms, bonds = topology.to_dataframe() topology2 = md.Topology.from_dataframe(atoms, bonds) eq(topology, topology2) def test_topology_numbers(get_fn): topology = md.load(get_fn('1bpi.pdb')).topology assert len(list(topology.atoms)) == topology.n_atoms assert len(list(topology.residues)) == topology.n_residues assert all([topology.atom(i).index == i for i in range(topology.n_atoms)]) def test_topology_unique_elements_bpti(get_fn): traj = md.load(get_fn('bpti.pdb')) top, bonds = traj.top.to_dataframe() atoms = np.unique(["C", "O", "N", "H", "S"]) eq(atoms, np.unique(top.element.values)) def test_chain(get_fn): top = md.load(get_fn('bpti.pdb')).topology chain = top.chain(0) assert chain.n_residues == len(list(chain.residues)) atoms = list(chain.atoms) assert chain.n_atoms == len(atoms) for i in range(chain.n_atoms): assert atoms[i] == chain.atom(i) def test_residue(get_fn): top = md.load(get_fn('bpti.pdb')).topology residue = top.residue(0) assert len(list(residue.atoms)) == residue.n_atoms atoms = list(residue.atoms) for i in range(residue.n_atoms): assert residue.atom(i) == atoms[i] def test_segment_id(get_fn): top = md.load(get_fn('ala_ala_ala.pdb')).topology assert next(top.residues).segment_id == "AAL", "Segment id is not being assigned correctly for ala_ala_ala.psf" df = top.to_dataframe()[0] assert len(df["segmentID"] == "AAL") == len( df), "Segment id is not being assigned correctly to topology data frame ala_ala_ala.psf" def test_nonconsective_resSeq(get_fn): t = md.load(get_fn('nonconsecutive_resSeq.pdb')) assert eq(np.array([r.resSeq for r in t.top.residues]), np.array([1, 3, 5])) df1 = t.top.to_dataframe() df2 = md.Topology.from_dataframe(*df1).to_dataframe() assert eq(df1[0], df2[0]) # round-trip through a PDB load/save loop fd, fname = tempfile.mkstemp(suffix='.pdb') os.close(fd) t.save(fname) t2 = md.load(fname) assert eq(df1[0], t2.top.to_dataframe()[0]) os.unlink(fname) def test_pickle(get_fn): # test pickling of topology (bug #391) topology_without_bond_order = md.load(get_fn('bpti.pdb')).topology topology_with_bond_order = md.load(get_fn('imatinib.mol2')).topology for top in [topology_with_bond_order, topology_without_bond_order]: loaded_top = pickle.loads(pickle.dumps(top)) assert loaded_top == top def test_atoms_by_name(get_fn): top = md.load(get_fn('bpti.pdb')).topology atoms = list(top.atoms) for atom1, atom2 in zip(top.atoms_by_name('CA'), top.chain(0).atoms_by_name('CA')): assert atom1 == atom2 assert atom1 in atoms assert atom1.name == 'CA' assert len(list(top.atoms_by_name('CA'))) == sum(1 for _ in atoms if _.name == 'CA') assert top.residue(15).atom('CA') == [a for a in top.residue(15).atoms if a.name == 'CA'][0] with pytest.raises(KeyError): top.residue(15).atom('sdfsdf') def test_select_atom_indices(get_fn): top = md.load(get_fn('native.pdb')).topology assert eq(top.select_atom_indices('alpha'), np.array([8])) assert eq(top.select_atom_indices('minimal'), np.array([4, 5, 6, 8, 10, 14, 15, 16, 18])) with pytest.raises(ValueError): top.select_atom_indices('sdfsdf') @needs_openmm def test_top_dataframe_openmm_roundtrip(get_fn): t = md.load(get_fn('2EQQ.pdb')) top, bonds = t.top.to_dataframe() t.topology = md.Topology.from_dataframe(top, bonds) omm_top = t.top.to_openmm() def test_n_bonds(get_fn): t = md.load(get_fn('2EQQ.pdb')) for atom in t.top.atoms: if atom.element.symbol == 'H': assert atom.n_bonds == 1 elif atom.element.symbol == 'C': assert atom.n_bonds in [3, 4] elif atom.element.symbol == 'O': assert atom.n_bonds in [1, 2] def test_load_unknown_topology(get_fn): try: md.load(get_fn('frame0.dcd'), top=get_fn('frame0.dcd')) except IOError as e: # we want to make sure there's a nice error message than includes # a list of the supported topology formats. assert all(s in str(e) for s in ('.pdb', '.psf', '.prmtop')) else: assert False # fail def test_unique_pairs(): n = 10 a = np.arange(n) b = np.arange(n, n + n) eq(md.Topology._unique_pairs(a, a).sort(), md.Topology._unique_pairs_equal(a).sort()) eq(md.Topology._unique_pairs(a, b).sort(), md.Topology._unique_pairs_mutually_exclusive(a, b).sort()) def test_select_pairs(get_fn): traj = md.load(get_fn('tip3p_300K_1ATM.pdb')) select_pairs = traj.top.select_pairs assert len(select_pairs(selection1='name O', selection2='name O')) == 258 * (258 - 1) // 2 assert len(select_pairs(selection1='name H1', selection2='name O')) == 258 * 258 selections = iter([ # Equal ("(name O) or (name =~ 'H.*')", "(name O) or (name =~ 'H.*')"), ('all', 'all'), # Exclusive ('name O', 'name H1'), ('name H1', 'name O'), # Overlap (range(traj.n_atoms), 'name O'), ('all', 'name O')]) for select1, select2 in selections: select3, select4 = next(selections) assert eq(select_pairs(selection1=select1, selection2=select2).sort(), select_pairs(selection1=select3, selection2=select4).sort()) def test_to_fasta(get_fn): t = md.load(get_fn('2EQQ.pdb')) assert t.topology.to_fasta(0) == "ENFSGGCVAGYMRTPDGRCKPTFYQLIT" def test_subset(get_fn): t1 = md.load(get_fn('2EQQ.pdb')).top t2 = t1.subset([1, 2, 3]) assert t2.n_residues == 1 def test_molecules(get_fn): top = md.load(get_fn('4OH9.pdb')).topology molecules = top.find_molecules() assert sum(len(mol) for mol in molecules) == top.n_atoms assert sum(1 for mol in molecules if len(mol) > 1) == 2 # All but two molecules are water def test_copy_and_hash(get_fn): t = md.load(get_fn('traj.h5')) t1 = t.topology t2 = t.topology.copy() assert t1 == t2 assert hash(tuple(t1._chains)) == hash(tuple(t2._chains)) assert hash(tuple(t1._atoms)) == hash(tuple(t2._atoms)) assert hash(tuple(t1._bonds)) == hash(tuple(t2._bonds)) assert hash(tuple(t1._residues)) == hash(tuple(t2._residues)) assert hash(t1) == hash(t2)
lgpl-2.1
giorgiop/scikit-learn
sklearn/neighbors/nearest_centroid.py
37
7348
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 from ..utils.multiclass import check_classification_targets class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") check_classification_targets(y) n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to its members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
LuizArmesto/gastos_abertos
setup.py
1
1181
# -*- coding: utf-8 -*- from setuptools import setup project = "gastosabertos" setup( name=project, version='0.0.1', url='https://github.com/okfn-brasil/gastos_abertos', description='Visualization of public spending in Sao Paulo city for Gastos Abertos project', author='Edgar Zanella Alvarenga', author_email='[email protected]', packages=["gastosabertos"], include_package_data=True, zip_safe=False, install_requires=[ 'Flask>=0.10.1', 'Flask-SQLAlchemy', 'Flask-WTF', 'Flask-Script', 'Flask-Babel', 'Flask-Testing', 'Flask-Restful', 'Flask-Paginate', 'Flask-CORS', 'Flask-Restplus', 'geoalchemy2', 'fabric', 'docopt', 'pandas', 'psycopg2', 'geopy', 'shapely', ], classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries' ] )
agpl-3.0
jorisvandenbossche/geopandas
geopandas/tests/test_sindex.py
1
4517
import sys from shapely.geometry import Polygon, Point from geopandas import GeoSeries, GeoDataFrame, base, read_file from geopandas.tests.util import unittest, download_nybb @unittest.skipIf(sys.platform.startswith("win"), "fails on AppVeyor") @unittest.skipIf(not base.HAS_SINDEX, 'Rtree absent, skipping') class TestSeriesSindex(unittest.TestCase): def test_empty_index(self): self.assert_(GeoSeries().sindex is None) def test_point(self): s = GeoSeries([Point(0, 0)]) self.assertEqual(s.sindex.size, 1) hits = s.sindex.intersection((-1, -1, 1, 1)) self.assertEqual(len(list(hits)), 1) hits = s.sindex.intersection((-2, -2, -1, -1)) self.assertEqual(len(list(hits)), 0) def test_empty_point(self): s = GeoSeries([Point()]) self.assert_(GeoSeries().sindex is None) def test_polygons(self): t1 = Polygon([(0, 0), (1, 0), (1, 1)]) t2 = Polygon([(0, 0), (1, 1), (0, 1)]) sq = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) s = GeoSeries([t1, t2, sq]) self.assertEqual(s.sindex.size, 3) def test_polygons_append(self): t1 = Polygon([(0, 0), (1, 0), (1, 1)]) t2 = Polygon([(0, 0), (1, 1), (0, 1)]) sq = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) s = GeoSeries([t1, t2, sq]) t = GeoSeries([t1, t2, sq], [3,4,5]) s = s.append(t) self.assertEqual(len(s), 6) self.assertEqual(s.sindex.size, 6) def test_lazy_build(self): s = GeoSeries([Point(0, 0)]) self.assert_(s._sindex is None) self.assertEqual(s.sindex.size, 1) self.assert_(s._sindex is not None) @unittest.skipIf(sys.platform.startswith("win"), "fails on AppVeyor") @unittest.skipIf(not base.HAS_SINDEX, 'Rtree absent, skipping') class TestFrameSindex(unittest.TestCase): def setUp(self): data = {"A": range(5), "B": range(-5, 0), "location": [Point(x, y) for x, y in zip(range(5), range(5))]} self.df = GeoDataFrame(data, geometry='location') def test_sindex(self): self.df.crs = {'init': 'epsg:4326'} self.assertEqual(self.df.sindex.size, 5) hits = list(self.df.sindex.intersection((2.5, 2.5, 4, 4), objects=True)) self.assertEqual(len(hits), 2) self.assertEqual(hits[0].object, 3) def test_lazy_build(self): self.assert_(self.df._sindex is None) self.assertEqual(self.df.sindex.size, 5) self.assert_(self.df._sindex is not None) def test_sindex_rebuild_on_set_geometry(self): # First build the sindex self.assert_(self.df.sindex is not None) self.df.set_geometry( [Point(x, y) for x, y in zip(range(5, 10), range(5, 10))], inplace=True) self.assert_(self.df._sindex_valid == False) # Skip to accommodate Shapely geometries being unhashable @unittest.skip class TestJoinSindex(unittest.TestCase): def setUp(self): nybb_filename, nybb_zip_path = download_nybb() self.boros = read_file(nybb_zip_path, vfs='zip://' + nybb_filename) def test_merge_geo(self): # First check that we gets hits from the boros frame. tree = self.boros.sindex hits = tree.intersection((1012821.80, 229228.26), objects=True) self.assertEqual( [self.boros.ix[hit.object]['BoroName'] for hit in hits], ['Bronx', 'Queens']) # Check that we only get the Bronx from this view. first = self.boros[self.boros['BoroCode'] < 3] tree = first.sindex hits = tree.intersection((1012821.80, 229228.26), objects=True) self.assertEqual( [first.ix[hit.object]['BoroName'] for hit in hits], ['Bronx']) # Check that we only get Queens from this view. second = self.boros[self.boros['BoroCode'] >= 3] tree = second.sindex hits = tree.intersection((1012821.80, 229228.26), objects=True) self.assertEqual( [second.ix[hit.object]['BoroName'] for hit in hits], ['Queens']) # Get both the Bronx and Queens again. merged = first.merge(second, how='outer') self.assertEqual(len(merged), 5) self.assertEqual(merged.sindex.size, 5) tree = merged.sindex hits = tree.intersection((1012821.80, 229228.26), objects=True) self.assertEqual( [merged.ix[hit.object]['BoroName'] for hit in hits], ['Bronx', 'Queens'])
bsd-3-clause
dimitri-yatsenko/datajoint-python
tests/test_relational_operand.py
2
20759
import random import string import pandas import datetime import numpy as np from nose.tools import (assert_equal, assert_false, assert_true, raises, assert_set_equal, assert_list_equal) import datajoint as dj from .schema_simple import (A, B, D, E, F, L, DataA, DataB, TTestUpdate, IJ, JI, ReservedWord, OutfitLaunch) from .schema import (Experiment, TTest3, Trial, Ephys, Child, Parent, SubjectA, SessionA, SessionStatusA, SessionDateA) def setup(): """ module-level test setup """ A.insert(A.contents, skip_duplicates=True) L.insert(L.contents, skip_duplicates=True) B.populate() D.populate() E.populate() Experiment.populate() class TestRelational: @staticmethod def test_populate(): assert_false(B().progress(display=False)[0], 'B incompletely populated') assert_false(D().progress(display=False)[0], 'D incompletely populated') assert_false(E().progress(display=False)[0], 'E incompletely populated') assert_true(len(B()) == 40, 'B populated incorrectly') assert_true(len(B.C()) > 0, 'C populated incorrectly') assert_true(len(D()) == 40, 'D populated incorrectly') assert_true(len(E()) == len(B()) * len(D()) / len(A()), 'E populated incorrectly') assert_true(len(E.F()) > 0, 'F populated incorrectly') @staticmethod def test_free_relation(): b = B() free = dj.FreeTable(b.connection, b.full_table_name) assert_true(repr(free).startswith('FreeTable') and b.full_table_name in repr(free)) r = 'n>5' assert_equal((B() & r).make_sql(), (free & r).make_sql()) @staticmethod def test_rename(): # test renaming x = B().proj(i='id_a') & 'i in (1,2,3,4)' lenx = len(x) assert_equal(len(x), len(B() & 'id_a in (1,2,3,4)'), 'incorrect restriction of renamed attributes') assert_equal(len(x & 'id_b in (1,2)'), len(B() & 'id_b in (1,2) and id_a in (1,2,3,4)'), 'incorrect restriction of renamed restriction') assert_equal(len(x), lenx, 'restriction modified original') y = x.proj(j='i') assert_equal(len(y), len(B() & 'id_a in (1,2,3,4)'), 'incorrect projection of restriction') z = y & 'j in (3, 4, 5, 6)' assert_equal(len(z), len(B() & 'id_a in (3,4)'), 'incorrect nested subqueries') @staticmethod def test_rename_order(): """ Renaming projection should not change the order of the primary key attributes. See issues #483 and #516. """ pk1 = D.primary_key pk2 = D.proj(a='id_a').primary_key assert_list_equal(['a' if i == 'id_a' else i for i in pk1], pk2) @staticmethod def test_join(): # Test cartesian product x = A() y = L() rel = x * y assert_equal(len(rel), len(x) * len(y), 'incorrect join') assert_equal(set(x.heading.names).union(y.heading.names), set(rel.heading.names), 'incorrect join heading') assert_equal(set(x.primary_key).union(y.primary_key), set(rel.primary_key), 'incorrect join primary_key') # Test cartesian product of restricted relations x = A() & 'cond_in_a=1' y = L() & 'cond_in_l=1' rel = x * y assert_equal(len(rel), len(x) * len(y), 'incorrect join') assert_equal(set(x.heading.names).union(y.heading.names), set(rel.heading.names), 'incorrect join heading') assert_equal(set(x.primary_key).union(y.primary_key), set(rel.primary_key), 'incorrect join primary_key') # Test join with common attributes cond = A() & 'cond_in_a=1' x = B() & cond y = D() rel = x * y assert_true(len(rel) >= len(x) and len(rel) >= len(y), 'incorrect join') assert_false(rel - cond, 'incorrect join, restriction, or antijoin') assert_equal(set(x.heading.names).union(y.heading.names), set(rel.heading.names), 'incorrect join heading') assert_equal(set(x.primary_key).union(y.primary_key), set(rel.primary_key), 'incorrect join primary_key') # test renamed join x = B().proj(i='id_a') # rename the common attribute to achieve full cartesian product y = D() rel = x * y assert_equal(len(rel), len(x) * len(y), 'incorrect join') assert_equal(set(x.heading.names).union(y.heading.names), set(rel.heading.names), 'incorrect join heading') assert_equal(set(x.primary_key).union(y.primary_key), set(rel.primary_key), 'incorrect join primary_key') x = B().proj(a='id_a') y = D() rel = x * y assert_equal(len(rel), len(x) * len(y), 'incorrect join') assert_equal(set(x.heading.names).union(y.heading.names), set(rel.heading.names), 'incorrect join heading') assert_equal(set(x.primary_key).union(y.primary_key), set(rel.primary_key), 'incorrect join primary_key') # test pairing # Approach 1: join then restrict x = A.proj(a1='id_a', c1='cond_in_a') y = A.proj(a2='id_a', c2='cond_in_a') rel = x * y & 'c1=0' & 'c2=1' lenx = len(x & 'c1=0') leny = len(y & 'c2=1') assert_equal(lenx + leny, len(A()), 'incorrect restriction') assert_equal(len(rel), len(x & 'c1=0') * len(y & 'c2=1'), 'incorrect pairing') # Approach 2: restrict then join x = (A & 'cond_in_a=0').proj(a1='id_a') y = (A & 'cond_in_a=1').proj(a2='id_a') assert_equal(len(rel), len(x * y)) @staticmethod def test_issue_376(): tab = TTest3() tab.delete_quick() tab.insert(( (1, '%%%'), (2, 'one%'), (3, 'one'))) assert_equal(len(tab & 'value="%%%"'), 1) assert_equal(len(tab & {'value': "%%%"}), 1) assert_equal(len(tab & 'value like "o%"'), 2) assert_equal(len(tab & 'value like "o%%"'), 2) @staticmethod def test_issue_463(): assert_equal(((A & B) * B).fetch().size, len(A * B)) @staticmethod def test_project(): x = A().proj(a='id_a') # rename assert_equal(x.heading.names, ['a'], 'renaming does not work') x = A().proj(a='(id_a)') # extend assert_equal(set(x.heading.names), set(('id_a', 'a')), 'extend does not work') # projection after restriction cond = L() & 'cond_in_l' assert_equal(len(D() & cond) + len(D() - cond), len(D()), 'failed semijoin or antijoin') assert_equal(len((D() & cond).proj()), len((D() & cond)), 'projection failed: altered its argument''s cardinality') @staticmethod def test_union(): x = set(zip(*IJ.fetch('i', 'j'))) y = set(zip(*JI.fetch('i', 'j'))) assert_true(len(x) > 0 and len(y) > 0 and len(IJ() * JI()) < len(x)) # ensure the IJ and JI are non-trivial z = set(zip(*(IJ + JI).fetch('i', 'j'))) # union assert_set_equal(x.union(y), z) assert_equal(len(IJ + JI), len(z)) @staticmethod @raises(dj.DataJointError) def test_outer_union_fail(): """Union of two tables with different primary keys raises an error.""" A() + B() @staticmethod def test_outer_union_fail(): """Union of two tables with different primary keys raises an error.""" t = Trial + Ephys t.fetch() assert_set_equal(set(t.heading.names), set(Trial.heading.names) | set(Ephys.heading.names)) len(t) @staticmethod def test_preview(): with dj.config(display__limit=7): x = A().proj(a='id_a') s = x.preview() assert_equal(len(s.split('\n')), len(x) + 2) @staticmethod def test_heading_repr(): x = A * D s = repr(x.heading) assert_equal(len(list(1 for g in s.split('\n') if g.strip() and not g.strip().startswith(('-', '#')))), len(x.heading.attributes)) @staticmethod def test_aggregate(): x = B().aggregate(B.C()) assert_equal(len(x), len(B() & B.C())) x = B().aggregate(B.C(), keep_all_rows=True) assert_equal(len(x), len(B())) # test LEFT join assert_equal(len((x & 'id_b=0').fetch()), len(B() & 'id_b=0')) # test restricted aggregation x = B().aggregate(B.C(), 'n', count='count(id_c)', mean='avg(value)', max='max(value)', keep_all_rows=True) assert_equal(len(x), len(B())) y = x & 'mean>0' # restricted aggregation assert_true(len(y) > 0) assert_true(all(y.fetch('mean') > 0)) for n, count, mean, max_, key in zip(*x.fetch('n', 'count', 'mean', 'max', dj.key)): assert_equal(n, count, 'aggregation failed (count)') values = (B.C() & key).fetch('value') assert_true(bool(len(values)) == bool(n), 'aggregation failed (restriction)') if n: assert_true(np.isclose(mean, values.mean(), rtol=1e-4, atol=1e-5), "aggregation failed (mean)") assert_true(np.isclose(max_, values.max(), rtol=1e-4, atol=1e-5), "aggregation failed (max)") @staticmethod def test_aggr(): x = B.aggr(B.C) l1 = len(x) l2 = len(B & B.C) assert_equal(l1, l2) x = B().aggr(B.C(), keep_all_rows=True) assert_equal(len(x), len(B())) # test LEFT join assert_equal(len((x & 'id_b=0').fetch()), len(B() & 'id_b=0')) # test restricted aggregation x = B().aggr(B.C(), 'n', count='count(id_c)', mean='avg(value)', max='max(value)', keep_all_rows=True) assert_equal(len(x), len(B())) y = x & 'mean>0' # restricted aggregation assert_true(len(y) > 0) assert_true(all(y.fetch('mean') > 0)) for n, count, mean, max_, key in zip(*x.fetch('n', 'count', 'mean', 'max', dj.key)): assert_equal(n, count, 'aggregation failed (count)') values = (B.C() & key).fetch('value') assert_true(bool(len(values)) == bool(n), 'aggregation failed (restriction)') if n: assert_true(np.isclose(mean, values.mean(), rtol=1e-4, atol=1e-5), "aggregation failed (mean)") assert_true(np.isclose(max_, values.max(), rtol=1e-4, atol=1e-5), "aggregation failed (max)") @staticmethod def test_semijoin(): """ test that semijoins and antijoins are formed correctly """ x = IJ() y = JI() n = len(x & y.fetch(as_dict=True)) m = len(x - y.fetch(as_dict=True)) assert_true(n > 0 and m > 0) assert_true(len(x) == m + n) assert_true(len(x & y.fetch()) == n) assert_true(len(x - y.fetch()) == m) semi = x & y anti = x - y assert_true(len(semi) == n) assert_true(len(anti) == m) @staticmethod def test_pandas_fetch_and_restriction(): q = (L & 'cond_in_l = 0') df = q.fetch(format='frame') # pandas dataframe assert_true(isinstance(df, pandas.DataFrame)) assert_equal(len(E & q), len(E & df)) @staticmethod def test_restriction_by_null(): assert_true(len(Experiment & 'username is null') > 0) assert_true(len(Experiment & 'username is not null') > 0) @staticmethod def test_restriction_between(): # see issue assert_true(len(Experiment & 'username between "S" and "Z"') < len(Experiment())) @staticmethod def test_restrictions_by_lists(): x = D() y = L() & 'cond_in_l' lenx = len(x) assert_true(lenx > 0 and len(y) > 0 and len(x & y) < len(x), 'incorrect test setup') assert_equal(len(D()), len(D & dj.AndList([]))) assert_true(len(D & []) == 0) assert_true(len(D & [[]]) == 0) # an OR-list of OR-list lenx = len(x) assert_true(lenx > 0 and len(y) > 0 and len(x & y) < len(x), 'incorrect test setup') assert_equal(len(x & y), len(D * L & 'cond_in_l'), 'incorrect semijoin') assert_equal(len(x - y), len(x) - len(x & y), 'incorrect antijoin') assert_equal(len(y - x), len(y) - len(y & x), 'incorrect antijoin') assert_true(len(x & []) == 0, 'incorrect restriction by an empty list') assert_true(len(x & ()) == 0, 'incorrect restriction by an empty tuple') assert_true(len(x & set()) == 0, 'incorrect restriction by an empty set') assert_equal(len(x - []), lenx, 'incorrect restriction by an empty list') assert_equal(len(x - ()), lenx, 'incorrect restriction by an empty tuple') assert_equal(len(x - set()), lenx, 'incorrect restriction by an empty set') assert_equal(len(x & {}), lenx, 'incorrect restriction by a tuple with no attributes') assert_true(len(x - {}) == 0, 'incorrect restriction by a tuple with no attributes') assert_equal(len(x & {'foo': 0}), lenx, 'incorrect restriction by a tuple with no matching attributes') assert_true(len(x - {'foo': 0}) == 0, 'incorrect restriction by a tuple with no matching attributes') assert_equal(len(x & y), len(x & y.fetch()), 'incorrect restriction by a list') assert_equal(len(x - y), len(x - y.fetch()), 'incorrect restriction by a list') w = A() assert_true(len(w) > 0, 'incorrect test setup: w is empty') assert_false(bool(set(w.heading.names) & set(y.heading.names)), 'incorrect test setup: w and y should have no common attributes') assert_equal(len(w), len(w & y), 'incorrect restriction without common attributes') assert_true(len(w - y) == 0, 'incorrect restriction without common attributes') @staticmethod def test_datetime(): """Test date retrieval""" date = Experiment().fetch('experiment_date')[0] e1 = Experiment() & dict(experiment_date=str(date)) e2 = Experiment() & dict(experiment_date=date) assert_true(len(e1) == len(e2) > 0, 'Two date restriction do not yield the same result') @staticmethod def test_date(): """Test date update""" # https://github.com/datajoint/datajoint-python/issues/664 F.insert1((2, '2019-09-25')) new_value = None (F & 'id=2')._update('date', new_value) assert_equal((F & 'id=2').fetch1('date'), new_value) new_value = datetime.date(2019, 10, 25) (F & 'id=2')._update('date', new_value) assert_equal((F & 'id=2').fetch1('date'), new_value) (F & 'id=2')._update('date') assert_equal((F & 'id=2').fetch1('date'), None) @staticmethod def test_join_project(): """Test join of projected relations with matching non-primary key""" q = DataA.proj() * DataB.proj() assert_true(len(q) == len(DataA()) == len(DataB()), "Join of projected relations does not work") @staticmethod def test_ellipsis(): r = Experiment.proj(..., '- data_path').head(1, as_dict=True) assert_set_equal(set(Experiment.heading).difference(r[0]), {'data_path'}) @staticmethod @raises(dj.DataJointError) def test_update_single_key(): """Test that only one row can be updated""" TTestUpdate()._update('string_attr', 'my new string') @staticmethod @raises(dj.DataJointError) def test_update_no_primary(): """Test that no primary key can be updated""" TTestUpdate()._update('primary_key', 2) @staticmethod @raises(dj.DataJointError) def test_update_missing_attribute(): """Test that attribute is in table""" TTestUpdate()._update('not_existing', 2) @staticmethod def test_update_string_attribute(): """Test replacing a string value""" rel = (TTestUpdate() & dict(primary_key=0)) s = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) rel._update('string_attr', s) assert_equal(s, rel.fetch1('string_attr'), "Updated string does not match") @staticmethod def test_update_numeric_attribute(): """Test replacing a string value""" rel = (TTestUpdate() & dict(primary_key=0)) s = random.randint(0, 10) rel._update('num_attr', s) assert_equal(s, rel.fetch1('num_attr'), "Updated integer does not match") rel._update('num_attr', None) assert_true(np.isnan(rel.fetch1('num_attr')), "Numeric value is not NaN") @staticmethod def test_update_blob_attribute(): """Test replacing a string value""" rel = (TTestUpdate() & dict(primary_key=0)) s = rel.fetch1('blob_attr') rel._update('blob_attr', s.T) assert_equal(s.T.shape, rel.fetch1('blob_attr').shape, "Array dimensions do not match") @staticmethod def test_reserved_words(): """Test the user of SQL reserved words as attributes""" rel = ReservedWord() rel.insert1({'key': 1, 'in': 'ouch', 'from': 'bummer', 'int': 3, 'select': 'major pain'}) assert_true((rel & {'key': 1, 'in': 'ouch', 'from': 'bummer'}).fetch1('int') == 3) assert_true((rel.proj('int', double='from') & {'double': 'bummer'}).fetch1('int') == 3) (rel & {'key': 1}).delete() @staticmethod @raises(dj.DataJointError) def test_reserved_words2(): """Test the user of SQL reserved words as attributes""" rel = ReservedWord() rel.insert1({'key': 1, 'in': 'ouch', 'from': 'bummer', 'int': 3, 'select': 'major pain'}) (rel & 'key=1').fetch('in') # error because reserved word `key` is not in backquotes. See issue #249 @staticmethod def test_permissive_join_basic(): """Verify join compatibility check is skipped for join""" Child @ Parent @staticmethod def test_permissive_restriction_basic(): """Verify join compatibility check is skipped for restriction""" Child ^ Parent @staticmethod def test_complex_date_restriction(): # https://github.com/datajoint/datajoint-python/issues/892 """Test a complex date restriction""" q = OutfitLaunch & 'day between curdate() - interval 30 day and curdate()' assert len(q) == 1 q = OutfitLaunch & 'day between curdate() - interval 4 week and curdate()' assert len(q) == 1 q = OutfitLaunch & 'day between curdate() - interval 1 month and curdate()' assert len(q) == 1 q = OutfitLaunch & 'day between curdate() - interval 1 year and curdate()' assert len(q) == 1 q = OutfitLaunch & '`day` between curdate() - interval 30 day and curdate()' assert len(q) == 1 q.delete() @staticmethod def test_null_dict_restriction(): # https://github.com/datajoint/datajoint-python/issues/824 """Test a restriction for null using dict""" F.insert([dict(id=5)]) q = F & dj.AndList([dict(id=5), 'date is NULL']) assert len(q) == 1 q = F & dict(id=5, date=None) assert len(q) == 1 @staticmethod def test_joins_with_aggregation(): # https://github.com/datajoint/datajoint-python/issues/898 # https://github.com/datajoint/datajoint-python/issues/899 subjects = SubjectA.aggr( SessionStatusA & 'status="trained_1a" or status="trained_1b"', date_trained='min(date(session_start_time))') assert len(SessionDateA * subjects) == 4 assert len(subjects * SessionDateA) == 4 subj_query = SubjectA.aggr( SessionA * SessionStatusA & 'status="trained_1a" or status="trained_1b"', date_trained='min(date(session_start_time))') session_dates = ((SessionDateA * (subj_query & 'date_trained<"2020-12-21"')) & 'session_date<date_trained') assert len(session_dates) == 1
lgpl-2.1
drphilmarshall/LocalGroupHaloProps
localgroup/likelihood.py
1
9210
# ====================================================================== import localgroup import numpy as np from sklearn import mixture from sklearn.grid_search import GridSearchCV from scipy import linalg import matplotlib as mpl mpl.rc('text', usetex=True) import triangle # ====================================================================== class Likelihood(object): """ NAME Likelihood PURPOSE Compute the likelihood of a given halo having the observed properties. COMMENTS This class allows you to generate the approximation used, as well as evalu ate the likelihood. INITIALISATION METHODS generate - draw sample vector from observations' distribuions approximate - compute KNN/GMM/etc estimate of PDF evaluate - compute value of PDF at given vector plot_samples - make triangle plot for observed data in M31 ref frame set_PDF - set the L.PDF field test_gauss - plots and calculates score vs ngauss components preprocess_samples - zero the mean of the samples and scale by standard deviation NB. "vector" refes to a position in 6D MW-M31 D,vr,vt space BUGS AUTHORS This file is part of the LocalGroupHaloProps project, distributed under the GPL v2, by Marc Williamson Phil Marshall (KIPAC). Please cite: Williamson et al in preparation. HISTORY 2014-09-23 started Williamson and Marshall (KIPAC) """ # ====================================================================== def __init__(self, isPair=False): self.T = localgroup.Triplet(isPair=isPair) self.PDF = None self.write_labels() return # ---------------------------------------------------------------------------- def write_labels(self): if self.T.isPair: # self.labs = ["MW_D", "MW_vr", "MW_vt"] self.labels = ["$D^{\\rm M31} Mpc$", "$v_{\\rm rad}^{\\rm M31} km/s$", "$v_{\\rm tan}^{\\rm M31} km/s$"] else: # self.labs = ["MW_D", "MW_vr", "MW_vt", "M33_D", "M33_vr", "M33_vt"] self.labels = ["$D^{\\rm M31} Mpc$", "$v_{\\rm rad}^{\\rm M31} km/s$", "$v_{\\rm tan}^{\\rm M31} km/s$", "$D^{\\rm M33} Mpc$", "$v_{\\rm rad}^{\\rm M33} km/s$", "$v_{\\rm tan}^{\\rm M33} km/s$","$D^{\\rm LMC} Mpc$", "$v_{\\rm rad}^{\\rm LMC} km/s$", "$v_{\\rm tan}^{\\rm LMC} km/s$"] return # ---------------------------------------------------------------------------- def generate(self,mode="observational",Nsamples=10000): self.T.observe_halos(Nsamples=Nsamples) self.T.transform_to_M31() #dt = np.dtype([('MW_D', 'f8'), ('MW_vr', 'f8'), ('MW_vt', 'f8'), ('M33_D', 'f8'), ('M33_vr', 'f8'), ('M33_vt', 'f8')]) self.samples = np.transpose(np.array(self.T.get_kinematics())) self.samples_means = np.array([np.mean(self.samples[:,i]) for i in range(self.samples.shape[1])]) self.samples_stds = np.array([np.std(self.samples[:,i]) for i in range(self.samples.shape[1])]) self.preprocess_samples() # PJM: Might be better to have Triplet.get_kinematics do this # packaging, perhaps... Also, might be better to leave the samples # in the Triplet object, and feed them to the GMM... return # ---------------------------------------------------------------------------- def approximate(self, mode="GMM", cv=False): if (mode == "GMM"): if (cv): def bic_scorefn(GMM, X): return GMM.bic(X) score_dict = self.test_GaussMM(num_folds=10, score_fns=[bic_scorefn], maxMM=15) bic = score_dict['bic_scorefn'] min_bic = np.min(bic) min_bic_components = 1+np.array([i for i, x in enumerate(bic) if x == min_bic]) print "Minimum BIC: ", min_bic print "Minimum BIC number of components: ", min_bic_components self.set_PDF(mixture.GMM(min_bic_components[0], covariance_type='full')) self.PDF.fit(self.samples) else: raise ValueError("Unrecognised approximation mode %s" % mode) return # ====================================================================== def evaluate(self, points, mode="GMM"): if self.T.isPair: eval_points = points[:,0:3] else: eval_points = points[:,0:9] if (mode == "GMM"): logprobs = self.PDF.score_mem(eval_points) else: raise ValueError("Unrecognised approximation mode %s" % mode ) return logprobs # ====================================================================== def model_gof(self, n_points, color, fig=None, mode="GMM"): self.write_labels() if (mode == "GMM"): drawn_points = self.PDF.sample(n_samples=n_points)*self.samples_stds + self.samples_means drawn_points = drawn_points[drawn_points[:,2] > 0] if not self.T.isPair: drawn_points = drawn_points[drawn_points[:,8] > 0] figure = triangle.corner(drawn_points, labels=self.labels, quantiles=[0.16,0.5,0.84], fig=fig, show_titles=True, title_args={"fontsize": 12}, label_args={"fontsize": 16}, color=color, verbose=False) else: raise ValueError("Unrecognized approximation mode %s" % mode) if fig==None: return figure return fig # ====================================================================== def plot_samples(self, ngauss, color, fig=None, overlay=False): self.unprocess() self.write_labels() try: figure = triangle.corner(self.samples, labels=self.labels, quantiles=[0.16,0.5,0.84], fig=fig, plot_contours=True, show_titles=True, title_args={"fontsize": 12}, label_args={"fontsize": 16}, color=color) except AttributeError: raise AttributeError("L.generate has not been run.") # figure.gca().annotate("MW and M33 Observational Data Distributions (M31 centric)", xy=(0.5, 1.0), xycoords="figure fraction", xytext=(0, -5), textcoords="offset points", ha="center", va="top") if overlay: self.gaussianOverlay(figure, ngauss) self.preprocess_samples() return figure # ====================================================================== def set_PDF(self, pdf): self.PDF = pdf return # ====================================================================== def test_GaussMM(self, num_folds, score_fns, maxMM=10): aic_scores = [] bic_scores = [] scores_dict = {} params = {'n_components':np.arange(1,maxMM+1), 'covariance_type':['full']} gmm = mixture.GMM() for score_fn in score_fns: grid = GridSearchCV(estimator=gmm, param_grid=params, cv=num_folds, scoring=score_fn) grid.fit(self.samples) scores_dict[score_fn.func_name] = np.array(grid.grid_scores_)[:,1] return scores_dict # ====================================================================== def preprocess_samples(self): self.samples = (self.samples - self.samples_means)/self.samples_stds return # ====================================================================== def unprocess(self): self.samples = self.samples*self.samples_stds + self.samples_means return # ====================================================================== def gaussianOverlay(self, figure, ngauss): if self.T.isPair: size = 3 else: size = 6 n_gaussians = ngauss #if ngauss > 5: raise AttributeError("Only 5 colors can be shown.") colors = ['g', 'r', 'y', 'b', 'c'] transparency = 0.5 model = mixture.GMM(n_gaussians, covariance_type='full') axes = np.reshape(figure.axes, (size,size)) model.fit(self.samples) for i in range(size): for j in range(size): if j < i: #model.fit(self.samples) subplot = axes[i,j] for gauss_num in range(n_gaussians): mean = [model.means_[gauss_num][j], model.means_[gauss_num][i]] covar = model.covars_[gauss_num] covar = [[covar[j,j], covar[j,i]], [covar[i,j], covar[i,i]]] color = colors[gauss_num%5] v, w = linalg.eigh(covar) u = w[0]/linalg.norm(w[0]) angle = np.arctan(u[1]/u[0]) angle = 180 * angle / np.pi ell = mpl.patches.Ellipse(mean, 2*np.sqrt(v[0]), 2*np.sqrt(v[1]), 180 + angle, color=color) ell.set_clip_box(subplot.bbox) ell.set_alpha(transparency) subplot.add_artist(ell) return # ====================================================================== if __name__ == '__main__': Lhood = Likelihood() Lhood.generate() print "Sample kinematic parameters: ",Lhood.samples
gpl-2.0
shenzebang/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
gregreen/bayestar
scripts/compareColorsGridded.py
1
12495
#!/usr/bin/env python # -*- coding: utf-8 -*- # # compareColorsGridded.py # # Copyright 2013 Greg Green <greg@greg-UX31A> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # import numpy as np import scipy, scipy.stats, scipy.special import h5py import time import argparse, sys, os import matplotlib.pyplot as plt import matplotlib as mplib from matplotlib.colors import LinearSegmentedColormap from mpl_toolkits.axes_grid1 import Grid from matplotlib.ticker import MaxNLocator, AutoMinorLocator, FormatStrFormatter import hdf5io class TStellarModel: def __init__(self, fname): self.load(fname) def load(self, fname): f = open(fname, 'r') row = [] for l in f: line = l.rstrip().lstrip() if len(line) == 0: # Empty line continue if line[0] == '#': # Comment continue data = line.split() if len(data) < 6: txt = 'Error reading in stellar templates.\n' txt += 'The following line does not have the correct number of entries (6 expected):\n' txt += line raise Exception(txt) row.append([float(s) for s in data]) f.close() template = np.array(row, dtype='f8') fields = ['Mr', 'FeH', 'gr', 'ri', 'iz', 'zy'] dtype = [(field, 'f8') for field in fields] self.data = np.empty(len(template), dtype=dtype) for i,field in enumerate(fields): self.data[field][:] = template[:,i] self.FeH = np.unique(self.data['FeH']) def get_isochrone(self, FeH): if FeH >= np.max(self.FeH): FeH_eval = np.max(self.FeH) idx = (self.data['FeH'] == FeH_eval) return self.data[idx] elif FeH <= np.min(self.FeH): FeH_eval = np.min(self.FeH) idx = (self.data['FeH'] == FeH_eval) return self.data[idx] else: k = np.arange(self.FeH.size) #print np.where(FeH > self.FeH, k, -1) #print self.FeH idx = np.max(np.where(FeH > self.FeH, k, -1)) FeH_eval = [self.FeH[idx], self.FeH[idx+1]] a = float(FeH_eval[1] - FeH) / float(FeH_eval[1] - FeH_eval[0]) idx = (self.data['FeH'] == FeH_eval[0]) d1 = self.data[idx] idx = (self.data['FeH'] == FeH_eval[1]) d2 = self.data[idx] if np.any(d1['Mr'] != d2['Mr']): raise Exception('Expected Mr samples to be the same for each metallicity.') fields = ['Mr', 'FeH', 'gr', 'ri', 'iz', 'zy'] dtype = [(field, 'f8') for field in fields] ret = np.empty(len(d1), dtype=dtype) #print FeH_eval #print a for field in fields: ret[field][:] = a * d1[field][:] + (1. - a) * d2[field][:] return ret def read_photometry(fname, pixel): f = h5py.File(fname, 'r') dset = f['/photometry/pixel %d-%d' % (pixel[0], pixel[1])] # Load in photometry from selected target l = dset.attrs['l'] b = dset.attrs['b'] mags = dset['mag'][:] errs = dset['err'][:] EBV_SFD = dset['EBV'][:] f.close() return mags, errs, EBV_SFD, l, b def read_inferences(fname, pix_idx): f = h5py.File(fname, 'r') dtype = [('lnZ','f8'), ('conv',np.bool), ('DM','f8'), ('EBV','f8'), ('Mr','f8'), ('FeH','f8')] ret = None dset = '/pixel %d-%d/stellar chains' % (pix_idx[0], pix_idx[1]) try: lnZ = f[dset].attrs['ln(Z)'][:] conv = f[dset].attrs['converged'][:].astype(np.bool) best = f[dset][:, 1, 1:] ret = np.empty(len(lnZ), dtype=dtype) ret['lnZ'] = lnZ ret['conv'] = conv ret['EBV'] = best[:,0] ret['DM'] = best[:,1] ret['Mr'] = best[:,2] ret['FeH'] = best[:,3] except: print 'Dataset "%s" does not exist.' % dset return ret def get_reddening_vector(): return np.array([3.172, 2.271, 1.682, 1.322, 1.087]) def dereddened_mags(mags, EBV): R = get_reddening_vector() if type(EBV) == float: R.shape = (1, R.size) R = np.repeat(R, len(mags), axis=0) return mags - EBV * R elif type(EBV) == np.ndarray: return mags - np.einsum('i,j->ij', EBV, R) else: raise TypeError('EBV has unexpected type: %s' % type(EBV)) def plot_cluster(ax, template, mags): pass class KnotLogger: def __init__(self, ax, marker='+', c='r', s=4): self.ax = ax self.cid = ax.figure.canvas.mpl_connect('button_press_event', self) self.x = [] self.y = [] self.marker = marker self.c = c self.s = s def __call__(self, event): if event.inaxes != self.ax: return self.x.append(event.xdata) self.y.append(event.ydata) if self.marker != None: event.inaxes.scatter([event.xdata], [event.ydata], marker=self.marker, s=self.s, c=self.c) self.ax.figure.canvas.draw() def get_knots(self): return self.x, self.y def main(): parser = argparse.ArgumentParser(prog='compareColorsGridded.py', description='Compare photometric colors to model colors.', add_help=True) parser.add_argument('--templates', '-t', type=str, required=True, help='Stellar templates (in ASCII format).') parser.add_argument('--photometry', '-ph', type=str, required=True, help='Bayestar input file with photometry.') parser.add_argument('--bayestar', '-bayes', type=str, default=None, help='Bayestar output file with inferences.') parser.add_argument('--color', '-c', type=str, default='lnZ', choices=('lnZ', 'conv', 'EBV', 'DM', 'Mr', 'FeH'), help='Field by which to color stars.') #parser.add_argument('--name', '-n', type=str, required=True, # help='Region name.') parser.add_argument('--pixel', '-pix', type=int, nargs=2, required=True, help='HEALPix nside and pixel index.') parser.add_argument('--output', '-o', type=str, default=None, help='Plot filename.') parser.add_argument('--show', '-sh', action='store_true', help='Show plot.') if 'python' in sys.argv[0]: offset = 2 else: offset = 1 args = parser.parse_args(sys.argv[offset:]) templates = TStellarModel(args.templates) color_names = ['gr', 'ri', 'iz', 'zy'] lnZ_max = 0. Delta_lnZ = 15. # Load photometry ret = read_photometry(args.photometry, args.pixel) if ret == None: print 'Pixel not found.' return 0 mags, errs, EBV, l, b = ret mags = dereddened_mags(mags, EBV) colors = -np.diff(mags, axis=1) #print ' name: %s' % (args.name) print ' (l, b): %.2f, %.2f' % (l, b) print ' E(B-V)_SFD: %.4f' % (np.percentile(EBV, 95.)) print ' # of stars: %d' % (len(mags)) # Load bayestar inferences params = None vmin, vmax = None, None if args.bayestar != None: params = read_inferences(args.bayestar, args.pixel) idx = np.isfinite(params['lnZ']) n_rejected = np.sum(params['lnZ'] < np.percentile(params['lnZ'][idx], 95.) - 15.) pct_rejected = 100. * float(n_rejected) / np.float(len(params)) n_nonconv = np.sum(~params['conv']) pct_nonconv = 100. * float(n_nonconv) / float(len(params)) if args.color != None: vmin, vmax = np.percentile(params[args.color], [2., 98.]) print vmin, vmax print ' # rejected: %d (%.2f %%)' % (n_rejected, pct_rejected) print ' # nonconverged: %d (%.2f %%)' % (n_nonconv, pct_nonconv) print ' ln(Z_max): %.2f' % (np.max(params['lnZ'][idx])) print ' ln(Z_95): %.2f' % (np.percentile(params['lnZ'][idx], 95.)) # Compute mask for each color idx = [] for i in xrange(4): idx.append( (mags[:,i] > 10.) & (mags[:,i] < 28.) & (mags[:,i+1] > 10.) & (mags[:,i+1] < 28.) ) # Compute display limits for each color lim = np.empty((4,2), dtype='f8') for i in xrange(4): lim[i,0], lim[i,1] = np.percentile(colors[idx[i],i], [2., 98.]) w = np.reshape(np.diff(lim, axis=1), (4,)) lim[:,0] -= 0.15 * w lim[:,1] += 0.15 * w lim_bounds = np.array([[-0.2, 1.6], [-0.3, 2.0], [-0.2, 1.1], [-0.15, 0.45]]) for i in xrange(4): lim[i,0] = max(lim[i,0], lim_bounds[i,0]) lim[i,1] = min(lim[i,1], lim_bounds[i,1]) # Set matplotlib style attributes mplib.rc('text', usetex=True) mplib.rc('xtick.major', size=6) mplib.rc('xtick.minor', size=4) mplib.rc('ytick.major', size=6) mplib.rc('ytick.minor', size=4) mplib.rc('xtick', direction='in') mplib.rc('ytick', direction='in') mplib.rc('axes', grid=False) # Set up figure fig = plt.figure(figsize=(6,6), dpi=150) axgrid = Grid(fig, 111, nrows_ncols=(3,3), axes_pad=0.0, add_all=False, label_mode='L') cdict = {'red': ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 0., 0.), (1., 0., 0.)), 'blue': ((0., 0., 0.), (1., 1., 1.))} br_cmap = LinearSegmentedColormap('br1', cdict) #plt.register_cmap(br_cmap) logger = [] cbar_ret = None # Grid of axes for row in xrange(3): color_y = colors[:,row+1] for col in xrange(row+1): color_x = colors[:,col] idx_xy = idx[col] & idx[row+1] #print colors.shape #print color_x.shape #print idx_xy.shape ax = axgrid[3*row + col] fig.add_axes(ax) logger.append(KnotLogger(ax, s=25)) # Empirical c = 'k' if (params != None) and (args.color != None): #print params[args.color].shape c = params[args.color][idx_xy] cbar_ret = ax.scatter(color_x[idx_xy], color_y[idx_xy], c=c, #cmap=br_cmap, vmin=vmin, vmax=vmax, s=3., alpha=0.30, edgecolor='none') #idx_rej = lnZ < lnZ_max - Delta_lnZ #idx_tmp = idx_xy & ~idx_rej #ax.scatter(color_x[idx_tmp], color_y[idx_tmp], # c='b', s=1.5, alpha=0.15, edgecolor='none') #idx_tmp = idx_xy & idx_rej #ax.scatter(color_x[idx_tmp], color_y[idx_tmp], # c='r', s=1.5, alpha=0.15, edgecolor='none') # Model cx, cy = color_names[col], color_names[row+1] for FeH in np.linspace(-2.5, 0., 30): isochrone = templates.get_isochrone(FeH) ax.plot(isochrone[cx], isochrone[cy], 'k-', lw=1., alpha=0.03) ax.set_xlim(lim[col]) ax.set_ylim(lim[row+1]) # Format x-axes for i,c in enumerate(color_names[:-1]): color_label = r'$%s - %s$' % (c[0], c[1]) ax = axgrid[6+i] ax.set_xlabel(color_label, fontsize=16) ax.xaxis.set_major_locator(MaxNLocator(nbins=4)) ax.xaxis.set_minor_locator(AutoMinorLocator()) # Format y-axes for i,c in enumerate(color_names[1:]): color_label = r'$%s - %s$' % (c[0], c[1]) ax = axgrid[3*i] ax.set_ylabel(color_label, fontsize=16) ax.yaxis.set_major_locator(MaxNLocator(nbins=4)) ax.yaxis.set_minor_locator(AutoMinorLocator()) # Colorbar x_0 = 0.10 y_0 = 0.10 x_1 = 0.98 y_1 = 0.98 fig.subplots_adjust(bottom=y_0, top=y_1, left=x_0, right=x_1) #right=0.85) w = (x_1 - x_0) / 3. h = (y_1 - y_0) / 3. cx = x_0 + 2.3*w cy = y_0 + h + 0.02 cw = 0.05 ch = 2. * h - 0.02 if (params != None) and (args.color != None): cax = fig.add_axes([cx, cy, cw, ch]) norm = mplib.colors.Normalize(vmin=vmax, vmax=vmax) mappable = mplib.cm.ScalarMappable(norm=norm)#cmap=br_cmap, norm=norm) mappable.set_array(np.array([vmin, vmax])) fig.colorbar(cbar_ret, cax=cax)#, ticks=[0., -3., -6., -9., -12., -15.]) cax.yaxis.set_label_position('right') cax.yaxis.tick_right() cax.set_ylabel(r'$\mathrm{ln} \left( Z \right)$', rotation='vertical', fontsize=16) # Information on l.o.s. txt = '$\ell = %.2f^{\circ}$\n' % l txt += '$b = %.2f^{\circ}$\n' % b txt += '$\mathrm{E} \! \left( B \! - \! V \\right) = %.3f$' % (np.median(EBV)) fig.text(x_0 + 1.1*w, y_0 + 2.5*h, txt, fontsize=14, ha='left', va='center') if args.output != None: fig.savefig(args.output, dpi=300) if args.show: plt.show() for i,log in enumerate(logger): x, y = log.get_knots() if len(x) != 0: print '' print 'Axis %d:' % (i + 1) print x print y return 0 if __name__ == '__main__': main()
gpl-2.0
rohanp/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
jairideout/scikit-bio
skbio/stats/distance/_anosim.py
12
8664
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from functools import partial import numpy as np from scipy.stats import rankdata from ._base import (_preprocess_input, _run_monte_carlo_stats, _build_results) from skbio.util._decorator import experimental @experimental(as_of="0.4.0") def anosim(distance_matrix, grouping, column=None, permutations=999): """Test for significant differences between groups using ANOSIM. Analysis of Similarities (ANOSIM) is a non-parametric method that tests whether two or more groups of objects (e.g., samples) are significantly different based on a categorical factor. The ranks of the distances in the distance matrix are used to calculate an R statistic, which ranges between -1 (anti-grouping) to +1 (strong grouping), with an R value of 0 indicating random grouping. Statistical significance is assessed via a permutation test. The assignment of objects to groups (`grouping`) is randomly permuted a number of times (controlled via `permutations`). An R statistic is computed for each permutation and the p-value is the proportion of permuted R statisics that are equal to or greater than the original (unpermuted) R statistic. Parameters ---------- distance_matrix : DistanceMatrix Distance matrix containing distances between objects (e.g., distances between samples of microbial communities). grouping : 1-D array_like or pandas.DataFrame Vector indicating the assignment of objects to groups. For example, these could be strings or integers denoting which group an object belongs to. If `grouping` is 1-D ``array_like``, it must be the same length and in the same order as the objects in `distance_matrix`. If `grouping` is a ``DataFrame``, the column specified by `column` will be used as the grouping vector. The ``DataFrame`` must be indexed by the IDs in `distance_matrix` (i.e., the row labels must be distance matrix IDs), but the order of IDs between `distance_matrix` and the ``DataFrame`` need not be the same. All IDs in the distance matrix must be present in the ``DataFrame``. Extra IDs in the ``DataFrame`` are allowed (they are ignored in the calculations). column : str, optional Column name to use as the grouping vector if `grouping` is a ``DataFrame``. Must be provided if `grouping` is a ``DataFrame``. Cannot be provided if `grouping` is 1-D ``array_like``. permutations : int, optional Number of permutations to use when assessing statistical significance. Must be greater than or equal to zero. If zero, statistical significance calculations will be skipped and the p-value will be ``np.nan``. Returns ------- pandas.Series Results of the statistical test, including ``test statistic`` and ``p-value``. See Also -------- permanova Notes ----- See [1]_ for the original method reference. The general algorithm and interface are similar to ``vegan::anosim``, available in R's vegan package [2]_. The p-value will be ``np.nan`` if `permutations` is zero. References ---------- .. [1] Clarke, KR. "Non-parametric multivariate analyses of changes in community structure." Australian journal of ecology 18.1 (1993): 117-143. .. [2] http://cran.r-project.org/web/packages/vegan/index.html Examples -------- Load a 4x4 distance matrix and grouping vector denoting 2 groups of objects: >>> from skbio import DistanceMatrix >>> dm = DistanceMatrix([[0, 1, 1, 4], ... [1, 0, 3, 2], ... [1, 3, 0, 3], ... [4, 2, 3, 0]], ... ['s1', 's2', 's3', 's4']) >>> grouping = ['Group1', 'Group1', 'Group2', 'Group2'] Run ANOSIM using 99 permutations to calculate the p-value: >>> import numpy as np >>> # make output deterministic; not necessary for normal use >>> np.random.seed(0) >>> from skbio.stats.distance import anosim >>> anosim(dm, grouping, permutations=99) method name ANOSIM test statistic name R sample size 4 number of groups 2 test statistic 0.25 p-value 0.67 number of permutations 99 Name: ANOSIM results, dtype: object The return value is a ``pandas.Series`` object containing the results of the statistical test. To suppress calculation of the p-value and only obtain the R statistic, specify zero permutations: >>> anosim(dm, grouping, permutations=0) method name ANOSIM test statistic name R sample size 4 number of groups 2 test statistic 0.25 p-value NaN number of permutations 0 Name: ANOSIM results, dtype: object You can also provide a ``pandas.DataFrame`` and a column denoting the grouping instead of a grouping vector. The following ``DataFrame``'s ``Group`` column specifies the same grouping as the vector we used in the previous examples: >>> # make output deterministic; not necessary for normal use >>> np.random.seed(0) >>> import pandas as pd >>> df = pd.DataFrame.from_dict( ... {'Group': {'s2': 'Group1', 's3': 'Group2', 's4': 'Group2', ... 's5': 'Group3', 's1': 'Group1'}}) >>> anosim(dm, df, column='Group', permutations=99) method name ANOSIM test statistic name R sample size 4 number of groups 2 test statistic 0.25 p-value 0.67 number of permutations 99 Name: ANOSIM results, dtype: object The results match the first example above. Note that when providing a ``DataFrame``, the ordering of rows and/or columns does not affect the grouping vector that is extracted. The ``DataFrame`` must be indexed by the distance matrix IDs (i.e., the row labels must be distance matrix IDs). If IDs (rows) are present in the ``DataFrame`` but not in the distance matrix, they are ignored. The previous example's ``s5`` ID illustrates this behavior: note that even though the ``DataFrame`` had 5 objects, only 4 were used in the test (see the "Sample size" row in the results above to confirm this). Thus, the ``DataFrame`` can be a superset of the distance matrix IDs. Note that the reverse is not true: IDs in the distance matrix *must* be present in the ``DataFrame`` or an error will be raised. """ sample_size, num_groups, grouping, tri_idxs, distances = _preprocess_input( distance_matrix, grouping, column) divisor = sample_size * ((sample_size - 1) / 4) ranked_dists = rankdata(distances, method='average') test_stat_function = partial(_compute_r_stat, tri_idxs, ranked_dists, divisor) stat, p_value = _run_monte_carlo_stats(test_stat_function, grouping, permutations) return _build_results('ANOSIM', 'R', sample_size, num_groups, stat, p_value, permutations) def _compute_r_stat(tri_idxs, ranked_dists, divisor, grouping): """Compute ANOSIM R statistic (between -1 and +1).""" # Create a matrix where True means that the two objects are in the same # group. This ufunc requires that grouping is a numeric vector (e.g., it # won't work with a grouping vector of strings). grouping_matrix = np.equal.outer(grouping, grouping) # Extract upper triangle from the grouping matrix. It is important to # extract the values in the same order that the distances are extracted # from the distance matrix (see ranked_dists). Extracting the upper # triangle (excluding the diagonal) preserves this order. grouping_tri = grouping_matrix[tri_idxs] # within r_W = np.mean(ranked_dists[grouping_tri]) # between r_B = np.mean(ranked_dists[np.invert(grouping_tri)]) return (r_B - r_W) / divisor
bsd-3-clause
geodynamics/specfem2d
EXAMPLES/paper_axisymmetry_example/processAmplitudes.py
2
1604
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Thu Oct 1 15:05:59 2015 Small script to process transmission losses data @author: bottero """ from __future__ import (absolute_import, division, print_function) import argparse # To deal with arguments : # https://docs.python.org/2/library/argparse.html import numpy as np # NumPy (multidimensional arrays, linear algebra, ...) import matplotlib.pyplot as plt parser = argparse.ArgumentParser( description='Small script to process transmission losses data') parser.add_argument('files', nargs='+', type=argparse.FileType('r'), help='files to be plotted') parser.add_argument('--ref', type=float, default=1.0, help='reference amplitude') parser.add_argument('--source_vel', type=float, default=1500.0, help='source medium velocity') parser.add_argument('--noplot', action='store_true', help='do not display any curves') parser.add_argument('-v','--verbose', action='store_true', help='show more details') args = parser.parse_args() for seismo in args.files: # Loop on the files given print(seismo.name) data = np.loadtxt(seismo) # Load the seismogram X = data[:, 0] # First column is range amplitudes = data[:, 1] # Second column is amplitude TL=-10*np.log10(amplitudes/args.ref) # (2.0*args.source_vel**2)**2 if not args.noplot: plt.figure() plt.plot(X,TL,'b') #,marker,linestyle=linestyle,color = (r,g,b),markersize=marker_size) plt.gca().invert_yaxis() plt.show() np.savetxt(seismo.name+"Losses",np.dstack((X,TL))[0])
gpl-3.0
equialgo/scikit-learn
sklearn/neural_network/tests/test_stochastic_optimizers.py
146
4310
import numpy as np from sklearn.neural_network._stochastic_optimizers import (BaseOptimizer, SGDOptimizer, AdamOptimizer) from sklearn.utils.testing import (assert_array_equal, assert_true, assert_false, assert_equal) shapes = [(4, 6), (6, 8), (7, 8, 9)] def test_base_optimizer(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = BaseOptimizer(params, lr) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_no_momentum(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = SGDOptimizer(params, lr, momentum=0, nesterov=False) grads = [np.random.random(shape) for shape in shapes] expected = [param - lr * grad for param, grad in zip(params, grads)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=False) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_trigger_stopping(): params = [np.zeros(shape) for shape in shapes] lr = 2e-6 optimizer = SGDOptimizer(params, lr, lr_schedule='adaptive') assert_false(optimizer.trigger_stopping('', False)) assert_equal(lr / 5, optimizer.learning_rate) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_nesterovs_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=True) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] updates = [momentum * update - lr * grad for update, grad in zip(updates, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_adam_optimizer(): params = [np.zeros(shape) for shape in shapes] lr = 0.001 epsilon = 1e-8 for beta_1 in np.arange(0.9, 1.0, 0.05): for beta_2 in np.arange(0.995, 1.0, 0.001): optimizer = AdamOptimizer(params, lr, beta_1, beta_2, epsilon) ms = [np.random.random(shape) for shape in shapes] vs = [np.random.random(shape) for shape in shapes] t = 10 optimizer.ms = ms optimizer.vs = vs optimizer.t = t - 1 grads = [np.random.random(shape) for shape in shapes] ms = [beta_1 * m + (1 - beta_1) * grad for m, grad in zip(ms, grads)] vs = [beta_2 * v + (1 - beta_2) * (grad ** 2) for v, grad in zip(vs, grads)] learning_rate = lr * np.sqrt(1 - beta_2 ** t) / (1 - beta_1**t) updates = [-learning_rate * m / (np.sqrt(v) + epsilon) for m, v in zip(ms, vs)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param)
bsd-3-clause
misgeatgit/opencog
opencog/python/spatiotemporal/temporal_events/relation_formulas.py
33
19534
from math import fabs, sqrt, floor from numpy import convolve, NINF as NEGATIVE_INFINITY, PINF as POSITIVE_INFINITY import numpy from scipy.stats.distributions import uniform_gen from spatiotemporal.temporal_events.util import calculate_bounds_of_probability_distribution from spatiotemporal.temporal_interval_handling import calculateCenterMass from spatiotemporal.time_intervals import TimeInterval from utility.functions import FunctionPiecewiseLinear, FunctionHorizontalLinear, integral, FUNCTION_ZERO, almost_equals DECOMPOSITION_PRECISION = 10 ** 14 __author__ = 'keyvan' TEMPORAL_RELATIONS = { 'p': 'precedes', 'm': 'meets', 'o': 'overlaps', 'F': 'finished by', 'D': 'contains', 's': 'starts', 'e': 'equals', 'S': 'started by', 'd': 'during', 'f': 'finishes', 'O': 'overlapped by', 'M': 'met by', 'P': 'preceded by' } class TemporalRelation(dict): all_relations = 'pmoFDseSdfOMP' _type = None _list = None _vector = None @staticmethod def from_list(list_object): relation = TemporalRelation() for i, name in enumerate(TemporalRelation.all_relations): value = list_object[i] if not isinstance(value, (int, float)): value = float(value) relation[name] = value return relation def to_list(self): if self._list is None: self._list = [] for name in self.all_relations: self._list.append(self[name]) return self._list def to_vector(self): if self._vector is None: _list = self.to_list() self._vector = numpy.array(_list) return self._vector @property def type(self): if self._type is None: self._type = ''.join([name for name in TemporalRelation.all_relations if self[name] > 0]) return self._type def __setitem__(self, relation_name, value): if relation_name not in TemporalRelation.all_relations: raise AttributeError("'{0}' is not a valid Allen relation'".format(relation_name)) dict.__setitem__(self, relation_name, floor(value * DECOMPOSITION_PRECISION) / DECOMPOSITION_PRECISION) def __repr__(self): return 'TemporalRelation({0})'.format(self.type) def __str__(self): return repr(self) def __hash__(self): return hash(tuple(self.to_list())) class BaseRelationFormula(object): def __init__(self): self.bounds = {} def duration_of(self, dist): a, b = self.bounds_of(dist) return fabs(a - b) def bounds_of(self, dist): # if dist in self.bounds: # return self.bounds[dist] bounds = calculate_bounds_of_probability_distribution(dist) self.bounds[dist] = bounds return bounds def before_point(self, point_1_value, point_2_value): return 0 def same_point(self, point_1_value, point_2_value): return 1 - fabs(self.before_point(point_1_value, point_2_value) - self.after_point(point_1_value, point_2_value)) def after_point(self, point_1_value, point_2_value): return self.before_point(point_2_value, point_1_value) def before_integral_bounds(self, dist_1, dist_2): return calculate_bounds_of_probability_distribution(dist_1) def same_integral_bounds(self, dist_1, dist_2): dist_1_a, dist_1_b = calculate_bounds_of_probability_distribution(dist_1) dist_2_a, dist_2_b = calculate_bounds_of_probability_distribution(dist_2) return max(dist_1_a, dist_2_a), min(dist_1_b, dist_2_b) def after_integral_bounds(self, dist_1, dist_2): return calculate_bounds_of_probability_distribution(dist_2) def before(self, dist_1, dist_2): return integral(lambda x: self.before_point(dist_1.pdf(x), dist_2.pdf(x)), *self.before_integral_bounds(dist_1, dist_2)) def same(self, dist_1, dist_2): return integral(lambda x: self.same_point(dist_1.pdf(x), dist_2.pdf(x)), *self.same_integral_bounds(dist_1, dist_2)) def after(self, dist_1, dist_2): return integral(lambda x: self.after_point(dist_1.pdf(x), dist_2.pdf(x)), *self.after_integral_bounds(dist_1, dist_2)) def compare(self, dist_1, dist_2): """ returns before, same and after """ return self.before(dist_1, dist_2), self.same(dist_1, dist_2), self.after(dist_1, dist_2) class FormulaCreator(object): def __init__(self, relation_formula): self.relation_formula = relation_formula def temporal_relations_between(self, temporal_event_1, temporal_event_2): dist_1_beginning, dist_1_ending = temporal_event_1.distribution_beginning, temporal_event_1.distribution_ending dist_2_beginning, dist_2_ending = temporal_event_2.distribution_beginning, temporal_event_2.distribution_ending self.relation_formula.bounds[dist_1_beginning] = temporal_event_1.a, temporal_event_1.beginning self.relation_formula.bounds[dist_1_ending] = temporal_event_1.ending, temporal_event_1.b self.relation_formula.bounds[dist_2_beginning] = temporal_event_2.a, temporal_event_2.beginning self.relation_formula.bounds[dist_2_ending] = temporal_event_2.ending, temporal_event_2.b combinations = [ (dist_1_beginning, dist_2_beginning), (dist_1_beginning, dist_2_ending), (dist_1_ending, dist_2_beginning), (dist_1_ending, dist_2_ending) ] return self.calculate_relations(combinations) def calculate_relations(self, combinations=None): """ Calculates the values of the 13 relations based on the before, same, and after values of the combinations between the beginning and ending distributions of the two intervals obtained, e.g. from the DecompositionFitter. :param combinations: the 4 combinations between beginning and ending distribution :return: a dictionary containing the 13 relations as keys and their degrees as values """ if combinations is None: combinations = self.relation_formula.combinations dist_1_beginning, dist_2_beginning = combinations[0] dist_1_ending, dist_2_ending = combinations[3] before = {} same = {} after = {} # iterates over the 4 combinations between beginning and ending for key in combinations: before[key], same[key], after[key] = self.relation_formula.compare(*key) result = TemporalRelation() result['p'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ before[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['m'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ same[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['o'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['F'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['D'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['s'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['e'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['S'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['d'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['f'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['O'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['M'] = after[dist_1_beginning, dist_2_beginning] * same[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['P'] = after[dist_1_beginning, dist_2_beginning] * after[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] return result class RelationFormulaConvolution(BaseRelationFormula): def function_convolution_uniform(self, bounds_1, bounds_2, probability=None): a1, b1 = bounds_1 a2, b2 = bounds_2 length_1 = fabs(a1 - b1) length_2 = fabs(a2 - b2) convolution_bounds_a, convolution_bounds_b = a1 - b2, b1 - a2 trapezium_0, trapezium_1 = convolution_bounds_a, convolution_bounds_a + min(length_2, length_1) trapezium_2, trapezium_3 = trapezium_1 + fabs(length_1 - length_2), convolution_bounds_b #assert trapezium_2 + min(length_2, length_1) == trapezium_3 if probability is None: probability = min(1 / length_1, 1 / length_2) result = FunctionPiecewiseLinear( {trapezium_0: 0, trapezium_1: probability, trapezium_2: probability, trapezium_3: 0}, FUNCTION_ZERO) result.is_normalised = True return result def function_convolution(self, dist_1, dist_2, bins=50): a_1, b_1, a_2, b_2 = 0, 0, 0, 0 if dist_1 in self.bounds: a_1, b_1 = self.bounds[dist_1] else: a_1, b_1 = calculate_bounds_of_probability_distribution(dist_1) self.bounds[dist_1] = a_1, b_1 if dist_2 in self.bounds: a_2, b_2 = self.bounds[dist_2] else: a_2, b_2 = calculate_bounds_of_probability_distribution(dist_2) self.bounds[dist_2] = a_2, b_2 if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen, uniform_gen): return self.function_convolution_uniform((a_1, b_1), (a_2, b_2)) convolution_bounds_a, convolution_bounds_b = min(a_1, a_2), max(b_1, b_2) delta = fabs(convolution_bounds_a - convolution_bounds_b) / bins convolution_interval = TimeInterval(convolution_bounds_a, convolution_bounds_b, bins) x = [dist_1.pdf(t) for t in convolution_interval] y = [dist_2.pdf(t) for t in reversed(convolution_interval)] c = convolve(x, y) dictionary_convolution = {} for t in xrange(len(c)): dictionary_convolution[delta * t] = c[t] bias = calculateCenterMass(dictionary_convolution)[0] + dist_2.mean() - dist_1.mean() dictionary_convolution_biased = {} for t in dictionary_convolution: dictionary_convolution_biased[t - bias] = dictionary_convolution[t] convolution_function = FunctionPiecewiseLinear(dictionary_convolution_biased, FunctionHorizontalLinear(0)) return convolution_function.normalised() def calculate_similarity(self, dist_1, dist_2): if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen, uniform_gen): length_dist_1 = self.duration_of(dist_1) length_dist_2 = self.duration_of(dist_2) return min(length_dist_1, length_dist_2) / sqrt(length_dist_1 * length_dist_2) dist_1_mean, dist_2_mean = dist_1.mean(), dist_2.mean() dist_1_transformed = lambda t: dist_1.pdf(t + dist_1_mean) dist_2_transformed = lambda t: dist_2.pdf(t + dist_2_mean) geometric_mean = lambda t: sqrt(dist_1_transformed(t) * dist_2_transformed(t)) return integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY) def compare(self, dist_1, dist_2): convolution = self.function_convolution(dist_1, dist_2) before = integral(convolution, NEGATIVE_INFINITY, 0) after = integral(convolution, 0, POSITIVE_INFINITY) similarity = self.calculate_similarity(dist_1, dist_2) correlation = 1 - fabs(before - after) same = similarity * correlation return before, same, after class RelationFormulaGeometricMean(BaseRelationFormula): def compare(self, dist_1, dist_2): dist_1_interval = TimeInterval(*self.bounds_of(dist_1)) dist_2_interval = TimeInterval(*self.bounds_of(dist_2)) dictionary_input_output = {} for time_step in dist_1_interval + dist_2_interval: dictionary_input_output[time_step] = sqrt(dist_1.pdf(time_step) * dist_2.pdf(time_step)) geometric_mean = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO) same = integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY) dist_1_mean, dist_1_skewness, dist_1_kurtosis = dist_1.stats(moments='msk') dist_1_standard_deviation = dist_1.std() dist_2_mean, dist_2_skewness, dist_2_kurtosis = dist_2.stats(moments='msk') dist_2_standard_deviation = dist_2.std() distance = fabs(dist_1_standard_deviation - dist_2_standard_deviation) + fabs(dist_1_skewness - dist_2_skewness) distance += fabs(dist_1_kurtosis - dist_2_kurtosis) delta = dist_1_mean - dist_2_mean non_same_portion = 1.0 - same portion_after, portion_before = 1.0, 0.0 if almost_equals(distance, 0): if delta < 0: portion_after, portion_before = 0.0, 1.0 else: dist_1_standardized_pdf = lambda x: dist_1.pdf(dist_1_standard_deviation * x + dist_1_mean) dist_2_standardized_pdf = lambda x: dist_2.pdf(dist_2_standard_deviation * x + dist_2_mean) geometric_mean = lambda t: sqrt(dist_1_standardized_pdf(t) * dist_2_standardized_pdf(t)) geometric_mean_scaled = lambda p: geometric_mean(p / distance) geometric_mean_scaled_length = max(self.duration_of(dist_1), self.duration_of(dist_2)) dictionary_input_output = {} for time_step in TimeInterval(-geometric_mean_scaled_length / 2.0, geometric_mean_scaled_length / 2.0): dictionary_input_output[time_step] = geometric_mean_scaled(time_step) geometric_mean_scaled = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO) portion_after = integral(geometric_mean_scaled, NEGATIVE_INFINITY, delta) portion_before = integral(geometric_mean_scaled, delta, POSITIVE_INFINITY) after = portion_after / (portion_after + portion_before) * non_same_portion return 1.0 - same - after, same, after if __name__ == '__main__': import matplotlib.pyplot as plt from scipy.stats import norm, uniform, expon from spatiotemporal.temporal_events import TemporalEvent, TemporalEventPiecewiseLinear import matplotlib.pyplot as plt figure_number = 1 for event_1, event_2 in [ ( TemporalEvent(uniform(loc=3, scale=2), uniform(loc=7, scale=9)), TemporalEvent(uniform(loc=0, scale=10), uniform(loc=13, scale=2)) ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=3, scale=2)), # TemporalEvent(uniform(loc=3, scale=2), uniform(loc=6, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=8, scale=5), uniform(loc=15, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=3, scale=2), uniform(loc=13, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=7), uniform(loc=8, scale=7)), # TemporalEvent(uniform(loc=4, scale=1), uniform(loc=11, scale=2)), # ), # # ( # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=0, scale=11), uniform(loc=13, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=8), uniform(loc=6, scale=8)), # TemporalEvent(uniform(loc=0, scale=22), uniform(loc=13, scale=8)) # ), # # ( # TemporalEvent(uniform(loc=2, scale=2), uniform(loc=7, scale=2)), # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=2), uniform(loc=4, scale=2)), # TemporalEvent(uniform(loc=6, scale=2), uniform(loc=9, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=3), uniform(loc=15, scale=2)), # TemporalEvent(uniform(loc=5, scale=2), uniform(loc=9, scale=3)) # ), # # ( # TemporalEvent(uniform(loc=5, scale=3), uniform(loc=9, scale=2)), # TemporalEvent(uniform(loc=1, scale=2), uniform(loc=15, scale=3)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=10, scale=2)), # TemporalEvent(uniform(loc=15, scale=2), uniform(loc=25, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=15, scale=2), uniform(loc=25, scale=2)), # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=10, scale=2)) # ), # # ( # TemporalEvent(norm(loc=1, scale=4.5), expon(loc=30, scale=2)), # TemporalEvent(norm(loc=25, scale=4.5), expon(loc=60, scale=2)) # ), # # ( # TemporalEvent(expon(loc=1, scale=4.5), norm(loc=30, scale=2)), # TemporalEvent(expon(loc=25, scale=4.5), norm(loc=60, scale=2)) # ), # # ( # TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {6: 1, 7: 0.9, 8: 0.6, 9: 0.1, 10: 0}), # TemporalEventPiecewiseLinear({7.5: 0, 8.5: 0.1, 9.5: 0.3, 10.5: 0.7, 11.5: 1}, # {13: 1, 14.5: 0.9, 15.3: 0.6, 17: 0.1, 20: 0}) # ), ]: temporal_relations = event_1 * event_2 print '\nFigure' + str(figure_number) print '----------------------' print sum(temporal_relations.values()) for p in 'pmoFDseSdfOMP': print p, temporal_relations[p] figure_number += 1 event_1.plot(show_distributions=True).ylim(ymin=-0.1, ymax=1.1) event_2.plot(show_distributions=True).figure() plt.show()
agpl-3.0
rs2/pandas
pandas/tests/series/apply/test_series_apply.py
1
29438
from collections import Counter, defaultdict from itertools import chain import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, isna import pandas._testing as tm from pandas.core.base import SpecificationError class TestSeriesApply: def test_apply(self, datetime_series): with np.errstate(all="ignore"): tm.assert_series_equal( datetime_series.apply(np.sqrt), np.sqrt(datetime_series) ) # element-wise apply import math tm.assert_series_equal( datetime_series.apply(math.exp), np.exp(datetime_series) ) # empty series s = Series(dtype=object, name="foo", index=pd.Index([], name="bar")) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) # check all metadata (GH 9322) assert s is not rs assert s.index is rs.index assert s.dtype == rs.dtype assert s.name == rs.name # index but no data s = Series(index=[1, 2, 3], dtype=np.float64) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) def test_apply_same_length_inference_bug(self): s = Series([1, 2]) def f(x): return (x, x + 1) result = s.apply(f) expected = s.map(f) tm.assert_series_equal(result, expected) s = Series([1, 2, 3]) result = s.apply(f) expected = s.map(f) tm.assert_series_equal(result, expected) def test_apply_dont_convert_dtype(self): s = Series(np.random.randn(10)) def f(x): return x if x > 0 else np.nan result = s.apply(f, convert_dtype=False) assert result.dtype == object def test_with_string_args(self, datetime_series): for arg in ["sum", "mean", "min", "max", "std"]: result = datetime_series.apply(arg) expected = getattr(datetime_series, arg)() assert result == expected def test_apply_args(self): s = Series(["foo,bar"]) result = s.apply(str.split, args=(",",)) assert result[0] == ["foo", "bar"] assert isinstance(result[0], list) def test_series_map_box_timestamps(self): # GH#2689, GH#2627 ser = Series(pd.date_range("1/1/2000", periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! ser.map(func) ser.apply(func) def test_apply_box(self): # ufunc will not be boxed. Same test cases as the test_map_box vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")] s = pd.Series(vals) assert s.dtype == "datetime64[ns]" # boxed value must be Timestamp instance res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") exp = pd.Series(["Timestamp_1_None", "Timestamp_2_None"]) tm.assert_series_equal(res, exp) vals = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), ] s = pd.Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") exp = pd.Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"]) tm.assert_series_equal(res, exp) # timedelta vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")] s = pd.Series(vals) assert s.dtype == "timedelta64[ns]" res = s.apply(lambda x: f"{type(x).__name__}_{x.days}") exp = pd.Series(["Timedelta_1", "Timedelta_2"]) tm.assert_series_equal(res, exp) # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = pd.Series(vals) assert s.dtype == "Period[M]" res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}") exp = pd.Series(["Period_M", "Period_M"]) tm.assert_series_equal(res, exp) def test_apply_datetimetz(self): values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize( "Asia/Tokyo" ) s = pd.Series(values, name="XX") result = s.apply(lambda x: x + pd.offsets.Day()) exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize( "Asia/Tokyo" ) exp = pd.Series(exp_values, name="XX") tm.assert_series_equal(result, exp) # change dtype # GH 14506 : Returned dtype changed from int32 to int64 result = s.apply(lambda x: x.hour) exp = pd.Series(list(range(24)) + [0], name="XX", dtype=np.int64) tm.assert_series_equal(result, exp) # not vectorized def f(x): if not isinstance(x, pd.Timestamp): raise ValueError return str(x.tz) result = s.map(f) exp = pd.Series(["Asia/Tokyo"] * 25, name="XX") tm.assert_series_equal(result, exp) def test_apply_dict_depr(self): tsdf = pd.DataFrame( np.random.randn(10, 3), columns=["A", "B", "C"], index=pd.date_range("1/1/2000", periods=10), ) msg = "nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): tsdf.A.agg({"foo": ["sum", "mean"]}) def test_apply_categorical(self): values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True) ser = pd.Series(values, name="XX", index=list("abcdefg")) result = ser.apply(lambda x: x.lower()) # should be categorical dtype when the number of categories are # the same values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True) exp = pd.Series(values, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) tm.assert_categorical_equal(result.values, exp.values) result = ser.apply(lambda x: "A") exp = pd.Series(["A"] * 7, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) assert result.dtype == object @pytest.mark.parametrize("series", [["1-1", "1-1", np.NaN], ["1-1", "1-2", np.NaN]]) def test_apply_categorical_with_nan_values(self, series): # GH 20714 bug fixed in: GH 24275 s = pd.Series(series, dtype="category") result = s.apply(lambda x: x.split("-")[0]) result = result.astype(object) expected = pd.Series(["1", "1", np.NaN], dtype="category") expected = expected.astype(object) tm.assert_series_equal(result, expected) def test_apply_empty_integer_series_with_datetime_index(self): # GH 21245 s = pd.Series([], index=pd.date_range(start="2018-01-01", periods=0), dtype=int) result = s.apply(lambda x: x) tm.assert_series_equal(result, s) class TestSeriesAggregate: def test_transform(self, string_series): # transforming functions with np.errstate(all="ignore"): f_sqrt = np.sqrt(string_series) f_abs = np.abs(string_series) # ufunc result = string_series.apply(np.sqrt) expected = f_sqrt.copy() tm.assert_series_equal(result, expected) # list-like result = string_series.apply([np.sqrt]) expected = f_sqrt.to_frame().copy() expected.columns = ["sqrt"] tm.assert_frame_equal(result, expected) result = string_series.apply(["sqrt"]) tm.assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both functions per # series and then concatting expected = pd.concat([f_sqrt, f_abs], axis=1) expected.columns = ["sqrt", "absolute"] result = string_series.apply([np.sqrt, np.abs]) tm.assert_frame_equal(result, expected) # dict, provide renaming expected = pd.concat([f_sqrt, f_abs], axis=1) expected.columns = ["foo", "bar"] expected = expected.unstack().rename("series") result = string_series.apply({"foo": np.sqrt, "bar": np.abs}) tm.assert_series_equal(result.reindex_like(expected), expected) def test_transform_and_agg_error(self, string_series): # we are trying to transform with an aggregator msg = "cannot combine transform and aggregation" with pytest.raises(ValueError, match=msg): with np.errstate(all="ignore"): string_series.agg(["sqrt", "max"]) msg = "cannot perform both aggregation and transformation" with pytest.raises(ValueError, match=msg): with np.errstate(all="ignore"): string_series.agg({"foo": np.sqrt, "bar": "sum"}) def test_demo(self): # demonstration tests s = Series(range(6), dtype="int64", name="series") result = s.agg(["min", "max"]) expected = Series([0, 5], index=["min", "max"], name="series") tm.assert_series_equal(result, expected) result = s.agg({"foo": "min"}) expected = Series([0], index=["foo"], name="series") tm.assert_series_equal(result, expected) # nested renaming msg = "nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): s.agg({"foo": ["min", "max"]}) def test_multiple_aggregators_with_dict_api(self): s = Series(range(6), dtype="int64", name="series") # nested renaming msg = "nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): s.agg({"foo": ["min", "max"], "bar": ["sum", "mean"]}) def test_agg_apply_evaluate_lambdas_the_same(self, string_series): # test that we are evaluating row-by-row first # before vectorized evaluation result = string_series.apply(lambda x: str(x)) expected = string_series.agg(lambda x: str(x)) tm.assert_series_equal(result, expected) result = string_series.apply(str) expected = string_series.agg(str) tm.assert_series_equal(result, expected) def test_with_nested_series(self, datetime_series): # GH 2316 # .agg with a reducer and a transform, what to do result = datetime_series.apply( lambda x: Series([x, x ** 2], index=["x", "x^2"]) ) expected = DataFrame({"x": datetime_series, "x^2": datetime_series ** 2}) tm.assert_frame_equal(result, expected) result = datetime_series.agg(lambda x: Series([x, x ** 2], index=["x", "x^2"])) tm.assert_frame_equal(result, expected) def test_replicate_describe(self, string_series): # this also tests a result set that is all scalars expected = string_series.describe() result = string_series.apply( { "count": "count", "mean": "mean", "std": "std", "min": "min", "25%": lambda x: x.quantile(0.25), "50%": "median", "75%": lambda x: x.quantile(0.75), "max": "max", } ) tm.assert_series_equal(result, expected) def test_reduce(self, string_series): # reductions with named functions result = string_series.agg(["sum", "mean"]) expected = Series( [string_series.sum(), string_series.mean()], ["sum", "mean"], name=string_series.name, ) tm.assert_series_equal(result, expected) def test_non_callable_aggregates(self): # test agg using non-callable series attributes s = Series([1, 2, None]) # Calling agg w/ just a string arg same as calling s.arg result = s.agg("size") expected = s.size assert result == expected # test when mixed w/ callable reducers result = s.agg(["size", "count", "mean"]) expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5}) tm.assert_series_equal(result[expected.index], expected) @pytest.mark.parametrize( "series, func, expected", chain( tm.get_cython_table_params( Series(dtype=np.float64), [ ("sum", 0), ("max", np.nan), ("min", np.nan), ("all", True), ("any", False), ("mean", np.nan), ("prod", 1), ("std", np.nan), ("var", np.nan), ("median", np.nan), ], ), tm.get_cython_table_params( Series([np.nan, 1, 2, 3]), [ ("sum", 6), ("max", 3), ("min", 1), ("all", True), ("any", True), ("mean", 2), ("prod", 6), ("std", 1), ("var", 1), ("median", 2), ], ), tm.get_cython_table_params( Series("a b c".split()), [ ("sum", "abc"), ("max", "c"), ("min", "a"), ("all", "c"), # see GH12863 ("any", "a"), ], ), ), ) def test_agg_cython_table(self, series, func, expected): # GH21224 # test reducing functions in # pandas.core.base.SelectionMixin._cython_table result = series.agg(func) if tm.is_number(expected): assert np.isclose(result, expected, equal_nan=True) else: assert result == expected @pytest.mark.parametrize( "series, func, expected", chain( tm.get_cython_table_params( Series(dtype=np.float64), [ ("cumprod", Series([], Index([]), dtype=np.float64)), ("cumsum", Series([], Index([]), dtype=np.float64)), ], ), tm.get_cython_table_params( Series([np.nan, 1, 2, 3]), [ ("cumprod", Series([np.nan, 1, 2, 6])), ("cumsum", Series([np.nan, 1, 3, 6])), ], ), tm.get_cython_table_params( Series("a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))] ), ), ) def test_agg_cython_table_transform(self, series, func, expected): # GH21224 # test transforming functions in # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum) result = series.agg(func) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "series, func, expected", chain( tm.get_cython_table_params( Series("a b c".split()), [ ("mean", TypeError), # mean raises TypeError ("prod", TypeError), ("std", TypeError), ("var", TypeError), ("median", TypeError), ("cumprod", TypeError), ], ) ), ) def test_agg_cython_table_raises(self, series, func, expected): # GH21224 with pytest.raises(expected): # e.g. Series('a b'.split()).cumprod() will raise series.agg(func) def test_series_apply_no_suffix_index(self): # GH36189 s = pd.Series([4] * 3) result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()]) expected = pd.Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"]) tm.assert_series_equal(result, expected) class TestSeriesMap: def test_map(self, datetime_series): index, data = tm.getMixedTypeDict() source = Series(data["B"], index=data["C"]) target = Series(data["C"][:4], index=data["D"][:4]) merged = target.map(source) for k, v in merged.items(): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in merged.items(): assert v == source[target[k]] # function result = datetime_series.map(lambda x: x * 2) tm.assert_series_equal(result, datetime_series * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(["a", "b", "c", "d"]) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(["b", "c", "d", "e"])) c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(["a", "b", "c", "d"]) b = Series( ["B", "C", "D", "E"], dtype="category", index=pd.CategoricalIndex(["b", "c", "d", "e"]), ) c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"])) exp = Series( pd.Categorical([np.nan, "B", "C", "D"], categories=["B", "C", "D", "E"]) ) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, "B", "C", "D"]) tm.assert_series_equal(a.map(c), exp) def test_map_empty(self, index): if isinstance(index, MultiIndex): pytest.skip("Initializing a Series from a MultiIndex is not supported") s = Series(index) result = s.map({}) expected = pd.Series(np.nan, index=s.index) tm.assert_series_equal(result, expected) def test_map_compat(self): # related GH 8024 s = Series([True, True, False], index=[1, 2, 3]) result = s.map({True: "foo", False: "bar"}) expected = Series(["foo", "foo", "bar"], index=[1, 2, 3]) tm.assert_series_equal(result, expected) def test_map_int(self): left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4}) right = Series({1: 11, 2: 22, 3: 33}) assert left.dtype == np.float_ assert issubclass(right.dtype.type, np.integer) merged = left.map(right) assert merged.dtype == np.float_ assert isna(merged["d"]) assert not isna(merged["c"]) def test_map_type_inference(self): s = Series(range(3)) s2 = s.map(lambda x: np.where(x == 0, 0, 1)) assert issubclass(s2.dtype.type, np.integer) def test_map_decimal(self, string_series): from decimal import Decimal result = string_series.map(lambda x: Decimal(str(x))) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_map_na_exclusion(self): s = Series([1.5, np.nan, 3, np.nan, 5]) result = s.map(lambda x: x * 2, na_action="ignore") exp = s * 2 tm.assert_series_equal(result, exp) def test_map_dict_with_tuple_keys(self): """ Due to new MultiIndex-ing behaviour in v0.14.0, dicts with tuple keys passed to map were being converted to a multi-index, preventing tuple values from being mapped properly. """ # GH 18496 df = pd.DataFrame({"a": [(1,), (2,), (3, 4), (5, 6)]}) label_mappings = {(1,): "A", (2,): "B", (3, 4): "A", (5, 6): "B"} df["labels"] = df["a"].map(label_mappings) df["expected_labels"] = pd.Series(["A", "B", "A", "B"], index=df.index) # All labels should be filled now tm.assert_series_equal(df["labels"], df["expected_labels"], check_names=False) def test_map_counter(self): s = Series(["a", "b", "c"], index=[1, 2, 3]) counter = Counter() counter["b"] = 5 counter["c"] += 1 result = s.map(counter) expected = Series([0, 5, 1], index=[1, 2, 3]) tm.assert_series_equal(result, expected) def test_map_defaultdict(self): s = Series([1, 2, 3], index=["a", "b", "c"]) default_dict = defaultdict(lambda: "blank") default_dict[1] = "stuff" result = s.map(default_dict) expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"]) tm.assert_series_equal(result, expected) def test_map_dict_na_key(self): # https://github.com/pandas-dev/pandas/issues/17648 # Checks that np.nan key is appropriately mapped s = Series([1, 2, np.nan]) expected = Series(["a", "b", "c"]) result = s.map({1: "a", 2: "b", np.nan: "c"}) tm.assert_series_equal(result, expected) def test_map_dict_subclass_with_missing(self): """ Test Series.map with a dictionary subclass that defines __missing__, i.e. sets a default value (GH #15999). """ class DictWithMissing(dict): def __missing__(self, key): return "missing" s = Series([1, 2, 3]) dictionary = DictWithMissing({3: "three"}) result = s.map(dictionary) expected = Series(["missing", "missing", "three"]) tm.assert_series_equal(result, expected) def test_map_dict_subclass_without_missing(self): class DictWithoutMissing(dict): pass s = Series([1, 2, 3]) dictionary = DictWithoutMissing({3: "three"}) result = s.map(dictionary) expected = Series([np.nan, np.nan, "three"]) tm.assert_series_equal(result, expected) def test_map_abc_mapping(self, non_dict_mapping_subclass): # https://github.com/pandas-dev/pandas/issues/29733 # Check collections.abc.Mapping support as mapper for Series.map s = Series([1, 2, 3]) not_a_dictionary = non_dict_mapping_subclass({3: "three"}) result = s.map(not_a_dictionary) expected = Series([np.nan, np.nan, "three"]) tm.assert_series_equal(result, expected) def test_map_abc_mapping_with_missing(self, non_dict_mapping_subclass): # https://github.com/pandas-dev/pandas/issues/29733 # Check collections.abc.Mapping support as mapper for Series.map class NonDictMappingWithMissing(non_dict_mapping_subclass): def __missing__(self, key): return "missing" s = Series([1, 2, 3]) not_a_dictionary = NonDictMappingWithMissing({3: "three"}) result = s.map(not_a_dictionary) # __missing__ is a dict concept, not a Mapping concept, # so it should not change the result! expected = Series([np.nan, np.nan, "three"]) tm.assert_series_equal(result, expected) def test_map_box(self): vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")] s = pd.Series(vals) assert s.dtype == "datetime64[ns]" # boxed value must be Timestamp instance res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") exp = pd.Series(["Timestamp_1_None", "Timestamp_2_None"]) tm.assert_series_equal(res, exp) vals = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), ] s = pd.Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") exp = pd.Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"]) tm.assert_series_equal(res, exp) # timedelta vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")] s = pd.Series(vals) assert s.dtype == "timedelta64[ns]" res = s.apply(lambda x: f"{type(x).__name__}_{x.days}") exp = pd.Series(["Timedelta_1", "Timedelta_2"]) tm.assert_series_equal(res, exp) # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = pd.Series(vals) assert s.dtype == "Period[M]" res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}") exp = pd.Series(["Period_M", "Period_M"]) tm.assert_series_equal(res, exp) def test_map_categorical(self): values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True) s = pd.Series(values, name="XX", index=list("abcdefg")) result = s.map(lambda x: x.lower()) exp_values = pd.Categorical( list("abbabcd"), categories=list("dcba"), ordered=True ) exp = pd.Series(exp_values, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) tm.assert_categorical_equal(result.values, exp_values) result = s.map(lambda x: "A") exp = pd.Series(["A"] * 7, name="XX", index=list("abcdefg")) tm.assert_series_equal(result, exp) assert result.dtype == object with pytest.raises(NotImplementedError): s.map(lambda x: x, na_action="ignore") def test_map_datetimetz(self): values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize( "Asia/Tokyo" ) s = pd.Series(values, name="XX") # keep tz result = s.map(lambda x: x + pd.offsets.Day()) exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize( "Asia/Tokyo" ) exp = pd.Series(exp_values, name="XX") tm.assert_series_equal(result, exp) # change dtype # GH 14506 : Returned dtype changed from int32 to int64 result = s.map(lambda x: x.hour) exp = pd.Series(list(range(24)) + [0], name="XX", dtype=np.int64) tm.assert_series_equal(result, exp) with pytest.raises(NotImplementedError): s.map(lambda x: x, na_action="ignore") # not vectorized def f(x): if not isinstance(x, pd.Timestamp): raise ValueError return str(x.tz) result = s.map(f) exp = pd.Series(["Asia/Tokyo"] * 25, name="XX") tm.assert_series_equal(result, exp) @pytest.mark.parametrize( "vals,mapping,exp", [ (list("abc"), {np.nan: "not NaN"}, [np.nan] * 3 + ["not NaN"]), (list("abc"), {"a": "a letter"}, ["a letter"] + [np.nan] * 3), (list(range(3)), {0: 42}, [42] + [np.nan] * 3), ], ) def test_map_missing_mixed(self, vals, mapping, exp): # GH20495 s = pd.Series(vals + [np.nan]) result = s.map(mapping) tm.assert_series_equal(result, pd.Series(exp)) @pytest.mark.parametrize( "dti,exp", [ ( Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])), DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"), ), ( tm.makeTimeSeries(nper=30), DataFrame(np.repeat([[1, 2]], 30, axis=0), dtype="int64"), ), ], ) def test_apply_series_on_date_time_index_aware_series(self, dti, exp): # GH 25959 # Calling apply on a localized time series should not cause an error index = dti.tz_localize("UTC").index result = pd.Series(index).apply(lambda x: pd.Series([1, 2])) tm.assert_frame_equal(result, exp) def test_apply_scaler_on_date_time_index_aware_series(self): # GH 25959 # Calling apply on a localized time series should not cause an error series = tm.makeTimeSeries(nper=30).tz_localize("UTC") result = pd.Series(series.index).apply(lambda x: 1) tm.assert_series_equal(result, pd.Series(np.ones(30), dtype="int64")) def test_map_float_to_string_precision(self): # GH 13228 ser = pd.Series(1 / 3) result = ser.map(lambda val: str(val)).to_dict() expected = {0: "0.3333333333333333"} assert result == expected def test_map_with_invalid_na_action_raises(self): # https://github.com/pandas-dev/pandas/issues/32815 s = pd.Series([1, 2, 3]) msg = "na_action must either be 'ignore' or None" with pytest.raises(ValueError, match=msg): s.map(lambda x: x, na_action="____") def test_apply_to_timedelta(self): list_of_valid_strings = ["00:00:01", "00:00:02"] a = pd.to_timedelta(list_of_valid_strings) b = Series(list_of_valid_strings).apply(pd.to_timedelta) # FIXME: dont leave commented-out # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b) list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT] a = pd.to_timedelta(list_of_strings) # noqa b = Series(list_of_strings).apply(pd.to_timedelta) # noqa # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b)
bsd-3-clause
CompPhysics/ComputationalPhysics
doc/Programs/LecturePrograms/programs/StatPhys/python/L2ising.py
2
2185
from __future__ import division import matplotlib.pyplot as plt import numpy as np import math, sys def periodic (i, limit, add): return (i+limit+add) % limit def monteCarlo(Energies, temp, NSpins, MCcycles): #Setup spin matrix, initialize to ground state spin_matrix = np.zeros( (NSpins,NSpins), np.int8) + 1 E = M = 0.0 #Setup array for possible energy changes w = np.zeros(17,np.float64) for de in range(-8,9,4): #include +8 w[de+8] = math.exp(-de/temp) #Calculate initial magnetization: M = spin_matrix.sum() #Calculate initial energy for j in range(NSpins): for i in range(NSpins): E -= spin_matrix.item(i,j)*\ (spin_matrix.item(periodic(i,NSpins,-1),j) + spin_matrix.item(i,periodic(j,NSpins,1))) #Start metropolis MonteCarlo computation for i in range(MCcycles): #Metropolis #Loop over all spins, pick a random spin each time for s in range(NSpins**2): x = int(np.random.random()*NSpins) y = int(np.random.random()*NSpins) deltaE = 2*spin_matrix.item(x,y)*\ (spin_matrix.item(periodic(x,NSpins,-1), y) +\ spin_matrix.item(periodic(x,NSpins,1), y) +\ spin_matrix.item(x, periodic(y,NSpins,-1)) +\ spin_matrix.item(x, periodic(y,NSpins,1))) if np.random.random() <= w[deltaE+8]: #Accept! spin_matrix[x,y] *= -1 E += deltaE #Update expectation values Energies[i] += E # Main program # Define number of spins NSpins = 2 # Define number of Monte Carlo cycles MCcycles = 1000 # temperature steps, initial temperature, final temperature Temp = 1.0 # Declare arrays that hold averages Energies = np.zeros(MCcycles) # Obtain the energies to construct the diagram monteCarlo(Energies,Temp,NSpins,MCcycles) n, bins, patches = plt.hist(Energies, 100, facecolor='red') plt.xlabel('$E$') plt.ylabel('Energy distribution P(E)') plt.title(r'Energy distribution at $k_BT=2.5$') plt.axis([-9, 9, 0, 1000]) plt.grid(True) plt.show()
cc0-1.0
wlamond/scikit-learn
benchmarks/bench_lasso.py
111
3364
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import matplotlib.pyplot as plt alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) plt.figure('scikit-learn LASSO benchmark results') plt.subplot(211) plt.plot(list_n_samples, lasso_results, 'b-', label='Lasso') plt.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') plt.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) plt.legend(loc='upper left') plt.xlabel('number of samples') plt.ylabel('Time (s)') plt.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) plt.subplot(212) plt.plot(list_n_features, lasso_results, 'b-', label='Lasso') plt.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') plt.title('%d samples, alpha=%s' % (n_samples, alpha)) plt.legend(loc='upper left') plt.xlabel('number of features') plt.ylabel('Time (s)') plt.axis('tight') plt.show()
bsd-3-clause
jvbalen/catchy
feature_transforms.py
1
7757
from __future__ import division, print_function import numpy as np import pandas as pd import scipy.stats as stats import sklearn.neighbors as nn import utils data_dir = '' def compute(segment_dict, features): """ Args: segment_dict (dict): dictionary of song segments, containing a list of segment ids (values) for a set of unique song identifiers (keys). """ data_dict = {} # compute features for feature in features: print('computing ' + feature + '...') feature_name, first_order_aggregates, second_order_aggregates = parse_feature(feature) corpus_features = [] for song_id in segment_dict.keys(): song_features = [] for segment in segment_dict[song_id]: raw_features = utils.read_feature([data_dir, feature_name, segment], skip_cols='auto') segment_features = first_order(raw_features, first_order_aggregates, verbose=False) song_features.append(segment_features) if 'song' in second_order_aggregates: song_features = second_order(song_features, second_order_aggregates, verbose=False) corpus_features.extend(song_features) if 'corpus' in second_order_aggregates: # print(' in: len(corpus_features) = {}, corpus_features[0] = {}'.format(len(corpus_features), corpus_features[0])) corpus_features = second_order(corpus_features, second_order_aggregates, verbose=False) # print(' out: len(corpus_features) = {}, corpus_features[0] = {}'.format(len(corpus_features), corpus_features[0])) data_dict[feature] = np.squeeze(corpus_features) # add segment ids song_ids = [] segments = [] for song_id in segment_dict.keys(): for segment in segment_dict[song_id]: song_ids.append(song_id) segments.append(segment) data_dict['song.id'] = np.array(song_ids) data_dict['segment.id'] = np.array(segments) # convert to dataframe return pd.DataFrame(data_dict) # FEATURE COMPUTATION def parse_feature(feature): """ Parse feature string into (feature name, [1st order aggregates], [2nd order aggregates]). 'Grammar': - feature name and aggregates are separated by dots, e.g. 'mfcc.entropy' - feature name is first and contains no dots - first order and second order aggregates are separated by one of 2 keywords: 'corpus' or 'song' Ex.: >>> parse_features('loudness.mean.song.pdf.log') ('loudness', ['mean'], ['song', 'pdf', 'log']) """ s = np.array(feature.split('.')) split_points = (s == 'corpus') | (s == 'song') split_points = np.nonzero(split_points)[0] if any(split_points) else [len(s)] return s[0], s[1:split_points[0]].tolist(), s[split_points[-1]:].tolist() def first_order(feature, aggregates, verbose=False): if not type(aggregates) is list: aggregates = [aggregates] for aggregate in aggregates: if verbose: print(' first order computation: ' + aggregate) if aggregate == 'log': feature = np.log(feature) elif aggregate == 'sqrt': feature = np.sqrt(feature) elif aggregate == 'minlog': feature = np.log(1 - feature) elif aggregate == 'minsqrt': feature = np.sqrt(1 - feature) elif aggregate == 'mean': # feature = np.mean(feature, axis=0) feature = np.nanmean(feature, axis=0) elif aggregate == 'var': feature = np.var(feature, axis=0) elif aggregate == 'std': # feature = np.std(feature, axis=0) feature = np.nanstd(feature, axis=0) elif aggregate == 'stdmean': feature = np.hstack([np.mean(feature, axis=0), np.std(feature, axis=0)]) elif aggregate == 'cov': feature = np.flatten(np.cov(feature, axis=0)) elif aggregate == 'totvar': feature = np.array([np.mean(np.var(feature, axis=0))]) elif aggregate == 'totstd': feature = np.array([np.mean(np.std(feature, axis=0))]) elif aggregate == 'entropy': feature = feature.flatten() feature = np.array([stats.entropy(feature)]) elif aggregate == 'normentropy': feature = feature.flatten() feature = np.array([stats.entropy(feature) / np.log(feature.size)]) elif aggregate == 'information': feature = - np.log(feature) return feature def second_order(features, aggregates, verbose=False): if not type(aggregates) is list: aggregates = [aggregates] features = np.asarray(features) for aggregate in aggregates: if verbose and not (aggregate == 'song' or aggregate == 'corpus'): print(' second order computation ({}): {}'.format(aggregates[0], aggregate)) if aggregate == 'log': features = np.log(features) elif aggregate == 'sqrt': features = np.sqrt(features) elif aggregate == 'square': features = np.array(features)**2 elif aggregate == 'minlog': features = np.log(1 - np.array(features)) elif aggregate == 'minsqrt': features = np.sqrt(1 - np.array(features)) elif aggregate == 'logit': features = np.log(np.array(features)) - np.log(1 - np.array(features)) elif aggregate == 'kld': m = np.sum(features, axis=0) m /= np.sum(m) features = [stats.entropy(f.flatten(), m.flatten()) for f in features] elif aggregate == 'tau': m = np.sum(features, axis=0) m /= np.sum(m) features = [stats.kendalltau(f.flatten(), m.flatten())[0] for f in features] elif aggregate == 'dot': m = np.sum(features, axis=0) features = [np.dot(f.flatten(), m.flatten()) for f in features] elif aggregate == 'corr': m = np.sum(features, axis=0) features = [np.correlate(f.flatten(), m.flatten()) for f in features] elif aggregate == 'crossentropy' or aggregate == 'information': m = np.sum(features, axis=0) m = m.flatten()/np.sum(m) features = [-np.nansum(np.log(m) * f.flatten()/np.sum(f)) for f in features] elif aggregate == 'pdf': n, d = features.shape finite_rows = np.all(np.isfinite(features), axis=1) features = features[finite_rows] s = np.std(features) bw_factor = n**(-1./(5))*s if d == 1 and s > 0.0 else 1.0 kde = nn.KernelDensity(bandwidth=bw_factor) kde.fit(features) scores = kde.score_samples(features) features = np.zeros((n,)) features[finite_rows] = np.exp(scores) elif aggregate == 'indeppdf': # above for independent dimensions: fit each dim and add log scores kde = nn.KernelDensity(bandwidth=1.0) scores = np.zeros(len(features)) for feat_dim in features.T: feat_dim = feat_dim.reshape([-1, 1]) kde.fit(feat_dim) scores += kde.score_samples(feat_dim) features = np.exp(scores) elif aggregate == 'cdf': f0 = np.min(features) kde = stats.gaussian_kde(features) features = [kde.integrate_box(f0, f) for f in features] elif aggregate == 'rank': features = (np.argsort(np.argsort(features)) + 0.5) * (1.0 / len(features)) # features = [np.squeeze(f) for f in features] return features
mit
perryjohnson/biplaneblade
lib/poly_utils.py
1
3838
"""Preprocessing tools to cut polygons and write their new coordinates. Author: Perry Roth-Johnson Last modified: March 14, 2014 """ import matplotlib.pyplot as plt from shapely.geometry import Polygon, Point, LineString from descartes import PolygonPatch # cut up the layer polygons to prepare for grid generation def cut_polygon(original, bounding, ext_label, area_threshold=1.0e-08): """Cut the original layer polygon with the bounding polygon.""" try: p_new = original.intersection(bounding) except: raise Warning("The original polygon does not intersect the bounding polygon!") # check if extra negligibly small polygons were created if p_new.geom_type != 'Polygon': fmt = " In '{0}' region, found a non-Polygon made of {1} polygons. " print fmt.format(ext_label,len(p_new.geoms)) print ' -> area threshold set to', area_threshold good_poly_index = None num_good_polys_found = 0 for i,p in enumerate(p_new.geoms): fmt2 = ' polygon[{0}]: area={1:5.3e}, centroid=({2:.4},{3:.4})' print fmt2.format(i,p.area,p.centroid.xy[0][0],p.centroid.xy[1][0]) if p.area > area_threshold: # only keep polygons with significant area good_poly_index = i num_good_polys_found += 1 print ' ...keep polygon[{0}]!'.format(i) else: # throw out any polygon with insignificant area print ' ...throw out polygon[{0}]'.format(i) # overwrite p_new with the good polygon if num_good_polys_found > 1: raise Warning("More than 1 good polygon found. Check bounding polygon coords!") try: p_new = p_new.geoms[good_poly_index] except TypeError: raise Warning("The original polygon does not intersect the bounding polygon!") return p_new def plot_polygon(p, face_color, edge_color='r'): """Plot a polygon on the current axes.""" # get the current axes, so we can add polygons to the plot ax = plt.gcf().gca() patch = PolygonPatch(p, fc=face_color, ec=edge_color, alpha=0.8) ax.add_patch(patch) def cut_plot_and_write_alt_layer(part, material, ext_label, b_polygon, area_threshold=1.0e-08, airfoil=None): """Cut, plot, and write a polygon for an alternate layer. Parameters ---------- part : object, the structural part containing the material layer to be cut material : str, the name of the material layer to be cut ext_label : str, extension label to name the new layer created from the cut b_polygon : shapely.polygon object, the bounding polygon area_threshold : float, polygons with areas smaller than this threshold will be thrown out airfoil : str, set to either 'lower' or 'upper', to designate which airfoil should be cut in a biplane station (default=None for monoplane stations) """ l = part.layer[material] # cut polygon p_new = cut_polygon(l.polygon, b_polygon, ext_label, area_threshold) # plot polygon plot_polygon(p_new, l.face_color) # save alt layer as an attribute of this part new_layer_name = material + ', ' + ext_label l.parent_part.add_new_layer(new_layer_name, p_new, material) new_layer = part.alt_layer[new_layer_name] # write polygon exterior to text file in `station_path` new_layer.write_polygon_edges(airfoil=airfoil) # find and plot the corners of the new layer new_layer.find_corners(b_polygon) plot_corners(new_layer.corners) def plot_corners(list_of_corners): ax = plt.gca() for corner in list_of_corners: ax.scatter(corner.x, corner.y, s=40, alpha=0.8, zorder=100)
gpl-3.0
alexchao56/sklearn-theano
sklearn_theano/feature_extraction/caffe/caffemodel.py
2
15223
"""Makes .caffemodel files readable for sklearn-theano""" from __future__ import print_function import os import numpy as np from collections import OrderedDict import theano import theano.tensor as T from ...datasets import get_dataset_dir, download def _get_caffe_dir(): """Function to find caffe installation. First checks for pycaffe. If not present, checks for $CAFFE_DIR environment variable.""" try: import caffe from os.path import dirname caffe_dir = dirname(dirname(dirname(caffe.__file__))) except ImportError: caffe_dir = os.environ.get("CAFFE_DIR", None) return caffe_dir def _compile_caffe_protobuf(caffe_proto=None, proto_src_dir=None, python_out_dir=None): """Compiles protocol buffer to python_out_dir""" if caffe_proto is None: caffe_dir = _get_caffe_dir() if caffe_dir is None: # No CAFFE_DIR found, neither could pycaffe be imported. # Search for caffe.proto locally caffe_dataset_dir = get_dataset_dir('caffe') caffe_proto = os.path.join(caffe_dataset_dir, 'caffe.proto') if os.path.exists(caffe_proto): # Found caffe.proto, everything fine pass else: print("Downloading caffe.proto") url = ('https://raw.githubusercontent.com/' 'BVLC/caffe/master/src/caffe/proto/caffe.proto') download(url, caffe_proto, progress_update_percentage=1) # raise ValueError("Cannot find $CAFFE_DIR environment variable" # " specifying location of Caffe files." # " Nor does there seem to be pycaffe. Please" # " provide path to caffe.proto file in the" # " caffe_proto kwarg, e.g. " # "/home/user/caffe/src/caffe/proto/caffe.proto") else: caffe_proto = os.path.join(caffe_dir, "src", "caffe", "proto", "caffe.proto") if not os.path.exists(caffe_proto): raise ValueError( ("Could not find {pf}. Please specify the correct" " caffe.proto file in the caffe_proto kwarg" " e.g. /home/user/caffe/src/caffe/proto/caffe.proto").format( pf=caffe_proto)) if proto_src_dir is None: proto_src_dir = os.path.dirname(caffe_proto) if python_out_dir is None: python_out_dir = os.path.dirname(os.path.abspath(__file__)) protoc_command = ("protoc -I={srcdir}" " --python_out={outdir} {protofile}").format( srcdir=proto_src_dir, outdir=python_out_dir, protofile=caffe_proto) import commands status, output = commands.getstatusoutput(protoc_command) if status != 0: raise Exception( "Error executing protoc: code {c}, message {m}".format( c=status, m=output)) def _get_caffe_pb2(): from ...models.bvlc_googlenet import caffe_pb2 return caffe_pb2 def _open_caffe_model(caffemodel_file): """Opens binary format .caffemodel files. Returns protobuf object.""" caffe_pb2 = _get_caffe_pb2() try: open(caffemodel_file, 'r', encoding="latin1").close() f = open(caffemodel_file, 'r', encoding="latin1") except TypeError: # Python 2 does not have encoding arg f = open(caffemodel_file, 'rb') binary_content = f.read() from IPython import embed; embed() raise ValueError() protobuf = caffe_pb2.NetParameter() protobuf.ParseFromString(binary_content) return protobuf def _blob_to_ndarray(blob): """Converts a caffe protobuf blob into an ndarray""" dimnames = ["num", "channels", "height", "width"] data = np.array(blob.data) shape = tuple([getattr(blob, dimname) for dimname in dimnames]) return data.reshape(shape) LAYER_PROPERTIES = dict( DATA=None, CONVOLUTION=('blobs', ('convolution_param', 'stride'), ('convolution_param', 'stride_h'), ('convolution_param', 'stride_w'), ('convolution_param', 'pad'), ('convolution_param', 'pad_h'), ('convolution_param', 'pad_w')), RELU=None, POOLING=(('pooling_param', 'kernel_size'), ('pooling_param', 'kernel_h'), ('pooling_param', 'kernel_w'), ('pooling_param', 'stride'), ('pooling_param', 'stride_h'), ('pooling_param', 'stride_w'), ('pooling_param', 'pad'), ('pooling_param', 'pad_h'), ('pooling_param', 'pad_w'), ('pooling_param', 'pool') ), SPLIT=None, LRN=(('lrn_param', 'local_size'), ('lrn_param', 'alpha'), ('lrn_param', 'beta'), ('lrn_param', 'norm_region')), CONCAT=(('concat_param', 'concat_dim'),), INNER_PRODUCT=('blobs',), SOFTMAX_LOSS=None, DROPOUT=None ) def _get_property(obj, property_path): if isinstance(property_path, tuple): if len(property_path) == 1: return getattr(obj, property_path[0]) else: return _get_property(getattr(obj, property_path[0]), property_path[1:]) else: return getattr(obj, property_path) def _parse_caffe_model(caffe_model): caffe_pb2 = _get_caffe_pb2() # need to remove this dependence on pb here try: _layer_types = caffe_pb2.LayerParameter.LayerType.items() except AttributeError: _layer_types = caffe_pb2.V1LayerParameter.LayerType.items() # create a dictionary that indexes both ways, number->name, name->number layer_types = dict(_layer_types) for v, k in _layer_types: layer_types[k] = v if not hasattr(caffe_model, "layers"): # Consider it a filename caffe_model = _open_caffe_model(caffe_model) layers_raw = caffe_model.layers parsed = [] for layer in layers_raw: # standard properties ltype = layer_types[layer.type] layer_descriptor = dict(type=ltype, name=layer.name, top_blobs=tuple(layer.top), bottom_blobs=tuple(layer.bottom)) parsed.append(layer_descriptor) # specific properties specifics = LAYER_PROPERTIES[ltype] if specifics is None: continue for param in specifics: if param == 'blobs': layer_descriptor['blobs'] = map(_blob_to_ndarray, layer.blobs) else: param_name = '__'.join(param) param_value = _get_property(layer, param) layer_descriptor[param_name] = param_value return parsed from sklearn_theano.base import (Convolution, Relu, MaxPool, FancyMaxPool, LRN, Feedforward, ZeroPad, CaffePool) def parse_caffe_model(caffe_model, float_dtype='float32', verbose=0): if isinstance(caffe_model, str) or not isinstance(caffe_model, list): parsed_caffe_model = _parse_caffe_model(caffe_model) else: parsed_caffe_model = caffe_model layers = OrderedDict() inputs = OrderedDict() blobs = OrderedDict() for i, layer in enumerate(parsed_caffe_model): layer_type = layer['type'] layer_name = layer['name'] top_blobs = layer['top_blobs'] bottom_blobs = layer['bottom_blobs'] layer_blobs = layer.get('blobs', None) if verbose > 0: print("%d\t%s\t%s" % (i, layer_type, layer_name)) if layer_type == 'DATA': # DATA layers contain input data in top_blobs, create input # variables, float for 'data' and int for 'label' for data_blob_name in top_blobs: if data_blob_name == 'label': blobs['label'] = T.ivector() inputs['label'] = blobs['label'] else: blobs[data_blob_name] = T.tensor4(dtype=float_dtype) inputs[data_blob_name] = blobs[data_blob_name] elif layer_type == 'CONVOLUTION': # CONVOLUTION layers take input from bottom_blob, convolve with # layer_blobs[0], and add bias layer_blobs[1] stride = layer['convolution_param__stride'] stride_h = max(layer['convolution_param__stride_h'], stride) stride_w = max(layer['convolution_param__stride_w'], stride) if stride_h > 1 or stride_w > 1: subsample = (stride_h, stride_w) else: subsample = None pad = layer['convolution_param__pad'] pad_h = max(layer['convolution_param__pad_h'], pad) pad_w = max(layer['convolution_param__pad_w'], pad) conv_filter = layer_blobs[0].astype(float_dtype)[..., ::-1, ::-1] conv_bias = layer_blobs[1].astype(float_dtype).ravel() convolution_input = blobs[bottom_blobs[0]] convolution = Convolution(conv_filter, biases=conv_bias, activation=None, subsample=subsample, input_dtype=float_dtype) # If padding is specified, need to pad. In practice, I think # caffe prevents padding that would make the filter see only # zeros, so technically this can also be obtained by sensibly # cropping a border_mode=full convolution. However, subsampling # may then be off by 1 and would have to be done separately :/ if pad_h > 0 or pad_w > 0: zp = ZeroPad((pad_h, pad_w)) zp._build_expression(convolution_input) expression = zp.expression_ layers[layer_name] = (zp, convolution) else: layers[layer_name] = convolution expression = convolution_input convolution._build_expression(expression) expression = convolution.expression_ # if subsample is not None: # expression = expression[:, :, ::subsample[0], # ::subsample[1]] blobs[top_blobs[0]] = expression elif layer_type == "RELU": # RELU layers take input from bottom_blobs, set everything # negative to zero and write the result to top_blobs relu_input = blobs[bottom_blobs[0]] relu = Relu() relu._build_expression(relu_input) layers[layer_name] = relu blobs[top_blobs[0]] = relu.expression_ elif layer_type == "POOLING": # POOLING layers take input from bottom_blobs, perform max # pooling according to stride and kernel size information # and write the result to top_blobs pooling_input = blobs[bottom_blobs[0]] kernel_size = layer['pooling_param__kernel_size'] kernel_h = max(layer['pooling_param__kernel_h'], kernel_size) kernel_w = max(layer['pooling_param__kernel_w'], kernel_size) stride = layer['pooling_param__stride'] stride_h = max(layer['pooling_param__stride_h'], stride) stride_w = max(layer['pooling_param__stride_w'], stride) pad = layer['pooling_param__pad'] pad_h = max(layer['pooling_param__pad_h'], pad) pad_w = max(layer['pooling_param__pad_w'], pad) pool_types = {0: 'max', 1: 'avg'} pool_type = pool_types[layer['pooling_param__pool']] # print "POOL TYPE is %s" % pool_type # pooling = FancyMaxPool((kernel_h, kernel_w), # (stride_h, stride_w), # ignore_border=False) pooling = CaffePool((kernel_h, kernel_w), (stride_h, stride_w), (pad_h, pad_w), pool_type=pool_type) pooling._build_expression(pooling_input) layers[layer_name] = pooling blobs[top_blobs[0]] = pooling.expression_ elif layer_type == "DROPOUT": # DROPOUT may figure in some networks, but it is only relevant # at the learning stage, not at the prediction stage. pass elif layer_type == "SOFTMAX_LOSS": softmax_input = blobs[bottom_blobs[0]] # have to write our own softmax expression, because of shape # issues si = softmax_input.reshape((softmax_input.shape[0], softmax_input.shape[1], -1)) shp = (si.shape[0], 1, si.shape[2]) exp = T.exp(si - si.max(axis=1).reshape(shp)) softmax_expression = (exp / exp.sum(axis=1).reshape(shp) ).reshape(softmax_input.shape) layers[layer_name] = "SOFTMAX" blobs[top_blobs[0]] = softmax_expression elif layer_type == "SPLIT": split_input = blobs[bottom_blobs[0]] for top_blob in top_blobs: blobs[top_blob] = split_input # Should probably make a class to be able to add to layers layers[layer_name] = "SPLIT" elif layer_type == "LRN": # Local normalization layer lrn_input = blobs[bottom_blobs[0]] lrn_factor = layer['lrn_param__alpha'] lrn_exponent = layer['lrn_param__beta'] axis = {0:'channels'}[layer['lrn_param__norm_region']] nsize = layer['lrn_param__local_size'] lrn = LRN(nsize, lrn_factor, lrn_exponent, axis=axis) lrn._build_expression(lrn_input) layers[layer_name] = lrn blobs[top_blobs[0]] = lrn.expression_ elif layer_type == "CONCAT": input_expressions = [blobs[bottom_blob] for bottom_blob in bottom_blobs] axis = layer['concat_param__concat_dim'] output_expression = T.concatenate(input_expressions, axis=axis) blobs[top_blobs[0]] = output_expression layers[layer_name] = "CONCAT" elif layer_type == "INNER_PRODUCT": weights = layer_blobs[0].astype(float_dtype) biases = layer_blobs[1].astype(float_dtype).squeeze() fully_connected_input = blobs[bottom_blobs[0]] # fc_layer = Feedforward(weights, biases, activation=None) fc_layer = Convolution(weights.transpose((2, 3, 0, 1)), biases, activation=None) fc_layer._build_expression(fully_connected_input) layers[layer_name] = fc_layer blobs[top_blobs[0]] = fc_layer.expression_ else: raise ValueError('layer type %s is not known to sklearn-theano' % layer_type) return layers, blobs, inputs
bsd-3-clause
calliope-project/calliope
calliope/time/funcs.py
1
13849
""" Copyright (C) since 2013 Calliope contributors listed in AUTHORS. Licensed under the Apache 2.0 License (see LICENSE file). funcs.py ~~~~~~~~ Functions to process time series data. """ import logging import datetime import numpy as np import pandas as pd import xarray as xr from calliope import exceptions from calliope.time import clustering logger = logging.getLogger(__name__) def get_daily_timesteps(data, check_uniformity=False): daily_timesteps = [ data.timestep_resolution.loc[i].values for i in np.unique(data.timesteps.to_index().strftime("%Y-%m-%d")) ] if check_uniformity: if not np.all(daily_timesteps == daily_timesteps[0]): raise exceptions.ModelError( "For clustering, timestep resolution must be uniform." ) return daily_timesteps[0] def normalized_copy(data): """ Normalize timeseries data, using the maximum across all regions and timesteps. Parameters ---------- data : xarray Dataset Dataset with all non-time dependent variables removed Returns ------- ds : xarray Dataset Copy of `data`, with the absolute taken and normalized to 0-1 """ ds = data.copy(deep=True) # Work off a copy for var in ds.data_vars: ds[var] = abs(ds[var] / abs(ds[var]).groupby("techs").max(..., skipna=True)) return ds def _copy_non_t_vars(data0, data1): """Copies non-t-indexed variables from data0 into data1, then returns data1""" non_t_vars = [ varname for varname, vardata in data0.data_vars.items() if "timesteps" not in vardata.dims ] # Manually copy over variables not in `timesteps`. If we don't do this, # these vars get polluted with a superfluous `timesteps` dimension for v in non_t_vars: data1[v] = data0[v] return data1 def _combine_datasets(data0, data1): """Concatenates data0 and data1 along the time dimension""" data_new = xr.concat([data0, data1], dim="timesteps") # Ensure time dimension is ordered data_new = data_new.loc[{"timesteps": data_new.timesteps.to_index().sort_values()}] return data_new def _drop_timestep_vars(data, timesteps): timeseries_data = data.copy(deep=True) # Save all coordinates, to ensure they can be added back in after clustering data_coords = data.copy().coords del data_coords["timesteps"] if timesteps is not None: timeseries_data = timeseries_data.loc[{"timesteps": timesteps}] timeseries_data = timeseries_data.drop_vars( [ varname for varname, vardata in data.data_vars.items() if "timesteps" not in vardata.dims ] ) return timeseries_data, data_coords def apply_clustering( data, timesteps, clustering_func, how, normalize=True, scale_clusters="mean", storage_inter_cluster=True, model_run=None, **kwargs, ): """ Apply the given clustering function to the given data. Parameters ---------- data : xarray.Dataset timesteps : pandas.DatetimeIndex or list of timesteps or None clustering_func : str Name of clustering function. Can be `file=....csv:column_name` if loading custom clustering. Custom clustering index = timeseries days. If no column_name, the CSV file must have only one column of data. how : str How to map clusters to data. 'mean' or 'closest'. normalize : bool, optional If True (default), data is normalized before clustering is applied, using :func:`~calliope.time.funcs.normalized_copy`. scale_clusters : str or None, default = 'mean' Scale the results of clustering such that the clusters match the metric given by scale_clusters. For example, 'mean' scales along each loc_tech and variable to match inputs and outputs. Other options for matching include 'sum', 'max', and 'min'. If None, no scaling occurs. **kwargs : optional Arguments passed to clustering_func. Returns ------- data_new_scaled : xarray.Dataset """ assert how in ["mean", "closest"] daily_timesteps = get_daily_timesteps(data, check_uniformity=True) timesteps_per_day = len(daily_timesteps) # get a copy of the dataset with only timeseries variables, # and get all coordinates of the original dataset, to reinstate later data_to_cluster, data_coords = _drop_timestep_vars(data, timesteps) data_to_cluster = data_to_cluster.drop_vars( ["timestep_weights", "timestep_resolution"] ) for dim in data_to_cluster.dims: data_to_cluster[dim] = data[dim] with pd.option_context("mode.use_inf_as_na", True): if normalize: data_normalized = normalized_copy(data_to_cluster) else: data_normalized = data_to_cluster if "file=" in clustering_func: file = clustering_func.split("=")[1] if ":" in file: file, column = file.rsplit(":", 1) else: column = None df = model_run.timeseries_data[file] if isinstance(df, pd.Series) and column is not None: exceptions.warn( "{} given as time clustering column, but only one column to " "choose from in {}.".format(column, file) ) clusters = df.resample("1D").mean() elif isinstance(df, pd.DataFrame) and column is None: raise exceptions.ModelError( "No time clustering column given, but multiple columns found in " "{0}. Choose one column and add it to {1} as {1}:name_of_column.".format( file, clustering_func ) ) elif isinstance(df, pd.DataFrame) and column not in df.columns: raise KeyError( "time clustering column {} not found in {}.".format(column, file) ) elif isinstance(df, pd.DataFrame): clusters = ( df.loc[:, column].dropna().groupby(pd.Grouper(freq="1D")).unique() ) # Check there weren't instances of more than one cluster assigned to a day # or days with no information assigned if any([len(i) == 0 for i in clusters.values]): raise exceptions.ModelError( "Missing cluster days in `{}:{}`.".format(file, column) ) elif any([len(i) > 1 for i in clusters.values]): raise exceptions.ModelError( "More than one cluster value assigned to a day in `{}:{}`. " "Unique clusters per day: {}".format(file, column, clusters) ) else: clusters.loc[:] = [i[0] for i in clusters.values] else: result = clustering.get_clusters( data_normalized, clustering_func, timesteps_per_day=timesteps_per_day, **kwargs, ) clusters = result[0] # Ignore other stuff returned data_new = clustering.map_clusters_to_data( data_to_cluster, clusters, how=how, daily_timesteps=daily_timesteps, storage_inter_cluster=storage_inter_cluster, ) # It's now safe to add the original coordinates back in (preserving all the # loc_tech sets that aren't used to index a variable in the DataArray) data_new.update(data_coords) data_new = _copy_non_t_vars(data, data_new) if timesteps is not None: data_new = _copy_non_t_vars(data, data_new) data_new = _combine_datasets(data.drop_sel(timesteps=timesteps), data_new) data_new = _copy_non_t_vars(data, data_new) # Scale the new/combined data so that the mean for each (loc_tech, variable) # combination matches that from the original data data_new_scaled = data_new.copy(deep=True) if scale_clusters: data_vars_in_t = [ v for v in data_new.data_vars if "timesteps" in data_new[v].dims and "timestep_" not in v and v != "clusters" ] for var in data_vars_in_t: scale = getattr(data[var], scale_clusters)(dim="timesteps") / getattr( data_new[var], scale_clusters )(dim="timesteps") data_new_scaled[var] = data_new[var] * scale.fillna(0) lookup_clusters(data_new_scaled) return data_new_scaled def resample(data, timesteps, resolution): """ Function to resample timeseries data from the input resolution (e.g. 1H), to the given resolution (e.g. 2H) Parameters ---------- data : xarray.Dataset calliope model data, containing only timeseries data variables timesteps : str or list; optional If given, apply resampling to a subset of the timeseries data resolution : str time resolution of the output data, given in Pandas time frequency format. E.g. 1H = 1 hour, 1W = 1 week, 1M = 1 month, 1T = 1 minute. Multiples allowed. """ def _resample(var, how): return getattr(var.resample(timesteps=resolution, keep_attrs=True), how)( "timesteps" ) # get a copy of the dataset with only timeseries variables, # and get all coordinates of the original dataset, to reinstate later data_new, data_coords = _drop_timestep_vars(data, timesteps) # First create a new resampled dataset of the correct size by # using first-resample, which should be a quick way to achieve this data_rs = _resample(data_new, how="first") for var in data_rs.data_vars: if var in ["timestep_resolution", "resource"]: data_rs[var] = _resample(data_new[var], how="sum") else: try: data_rs[var] = _resample(data_new[var], how="mean") except TypeError: # If the var has a datatype of strings, it can't be resampled logger.error( "Dropping {} because it has a {} data type when integer or " "float is expected for timeseries resampling.".format( var, data_rs[var].dtype ) ) data_rs = data_rs.drop_vars(var) # Get rid of the filled-in NaN timestamps data_rs = data_rs.dropna(dim="timesteps", how="all") data_rs.attrs["allow_operate_mode"] = 1 # Resampling still permits operational mode # It's now safe to add the original coordinates back in (preserving all the # loc_tech sets that aren't used to index a variable in the DataArray) data_rs.update(data_coords) data_rs = _copy_non_t_vars(data, data_rs) # add back in non timeseries data if timesteps is not None: # Combine leftover parts of passed in data with new data data_rs = _combine_datasets(data.drop_sel(timesteps=timesteps), data_rs) data_rs = _copy_non_t_vars(data, data_rs) # Having timesteps with different lengths does not permit operational mode data_rs.attrs["allow_operate_mode"] = 0 return data_rs def drop(data, timesteps): """ Drop timesteps from data, adjusting the timestep weight of remaining timesteps accordingly. Returns updated dataset. Parameters ---------- data : xarray.Dataset Calliope model data. timesteps : str or list or other iterable Pandas-compatible timestep strings. """ # Turn timesteps into a pandas datetime index for subsetting, which also # checks whether they are actually valid try: timesteps_pd = pd.to_datetime(timesteps) except Exception as e: raise exceptions.ModelError("Invalid timesteps: {}".format(timesteps)) # 'Distribute weight' of the dropped timesteps onto the remaining ones dropped_weight = data.timestep_weights.loc[{"timesteps": timesteps_pd}].sum() data = data.drop_sel(timesteps=timesteps_pd) data["timestep_weights"] = data["timestep_weights"] + ( dropped_weight / len(data["timestep_weights"]) ) return data def lookup_clusters(dataset): """ For any given timestep in a time clustered model, get: 1. the first and last timestep of the cluster, 2. the last timestep of the cluster corresponding to a date in the original timeseries """ data_dict_first = dict(dims=["timesteps"], data=[]) data_dict_last = dict(dims=["timesteps"], data=[]) for timestep in dataset.timesteps: t = pd.to_datetime(timestep.item()).date().strftime("%Y-%m-%d") timestep_first = dataset.timesteps.loc[t][0] timestep_last = dataset.timesteps.loc[t][-1] if timestep == timestep_first: data_dict_first["data"].append(1) data_dict_last["data"].append(timestep_last.values) else: data_dict_first["data"].append(0) data_dict_last["data"].append(None) dataset["lookup_cluster_first_timestep"] = xr.DataArray.from_dict(data_dict_first) dataset["lookup_cluster_last_timestep"] = xr.DataArray.from_dict(data_dict_last) if "datesteps" in dataset.dims: last_timesteps = dict(dims=["datesteps"], data=[]) cluster_date = dataset.timestep_cluster.to_pandas().resample("1D").mean() for datestep in dataset.datesteps.to_index(): cluster = dataset.lookup_datestep_cluster.loc[ datestep.strftime("%Y-%m-%d") ].item() last_timesteps["data"].append( datetime.datetime.combine( cluster_date[cluster_date == cluster].index[0].date(), dataset.timesteps.to_index().time[-1], ) ) dataset["lookup_datestep_last_cluster_timestep"] = xr.DataArray.from_dict( last_timesteps ) return dataset
apache-2.0
rkmaddox/mne-python
mne/viz/_figure.py
2
113753
# -*- coding: utf-8 -*- """Figure classes for MNE-Python's 2D plots. Class Hierarchy --------------- MNEFigParams Container object, attached to MNEFigure by default. Sets close_key='escape' plus whatever other key-value pairs are passed to its constructor. matplotlib.figure.Figure โ”” MNEFigure โ”œ MNEBrowseFigure Interactive figure for scrollable data. โ”‚ Generated by: โ”‚ - raw.plot() โ”‚ - epochs.plot() โ”‚ - ica.plot_sources(raw) โ”‚ - ica.plot_sources(epochs) โ”‚ โ”œ MNEAnnotationFigure GUI for adding annotations to Raw โ”‚ โ”œ MNESelectionFigure GUI for spatial channel selection. raw.plot() โ”‚ and epochs.plot() will generate one of these โ”‚ alongside an MNEBrowseFigure when โ”‚ group_by == 'selection' or 'position' โ”‚ โ”” MNELineFigure Interactive figure for non-scrollable data. Generated by: - raw.plot_psd() - evoked.plot() TODO Not yet implemented - evoked.plot_white() TODO Not yet implemented - evoked.plot_joint() TODO Not yet implemented """ # Authors: Daniel McCloy <[email protected]> # # License: Simplified BSD from contextlib import contextmanager import platform from copy import deepcopy from itertools import cycle from functools import partial from collections import OrderedDict import numpy as np from matplotlib.figure import Figure from .epochs import plot_epochs_image from .ica import (_create_properties_layout, _fast_plot_ica_properties, _prepare_data_ica_properties) from .utils import (plt_show, plot_sensors, _setup_plot_projector, _events_off, _set_window_title, _merge_annotations, DraggableLine, _get_color_list, logger, _validate_if_list_of_axes, _plot_psd) from ..defaults import _handle_default from ..utils import set_config, _check_option, _check_sphere, Bunch from ..annotations import _sync_onset from ..time_frequency import psd_welch, psd_multitaper from ..io.pick import (pick_types, _picks_to_idx, channel_indices_by_type, _DATA_CH_TYPES_SPLIT, _DATA_CH_TYPES_ORDER_DEFAULT, _VALID_CHANNEL_TYPES, _FNIRS_CH_TYPES_SPLIT) # CONSTANTS (inches) ANNOTATION_FIG_PAD = 0.1 ANNOTATION_FIG_MIN_H = 2.9 # fixed part, not including radio buttons/labels ANNOTATION_FIG_W = 5.0 ANNOTATION_FIG_CHECKBOX_COLUMN_W = 0.5 class MNEFigParams: """Container object for MNE figure parameters.""" def __init__(self, **kwargs): # default key to close window self.close_key = 'escape' vars(self).update(**kwargs) class MNEFigure(Figure): """Base class for 2D figures & dialogs; wraps matplotlib.figure.Figure.""" def __init__(self, **kwargs): from matplotlib import rcParams # figsize is the only kwarg we pass to matplotlib Figure() figsize = kwargs.pop('figsize', None) super().__init__(figsize=figsize) # things we'll almost always want defaults = dict(fgcolor=rcParams['axes.edgecolor'], bgcolor=rcParams['axes.facecolor']) for key, value in defaults.items(): if key not in kwargs: kwargs[key] = value # add our param object self.mne = MNEFigParams(**kwargs) def _close(self, event): """Handle close events.""" # remove references from parent fig to child fig is_child = getattr(self.mne, 'parent_fig', None) is not None is_named = getattr(self.mne, 'fig_name', None) is not None if is_child: self.mne.parent_fig.mne.child_figs.remove(self) if is_named: setattr(self.mne.parent_fig.mne, self.mne.fig_name, None) def _keypress(self, event): """Handle keypress events.""" if event.key == self.mne.close_key: from matplotlib.pyplot import close close(self) elif event.key == 'f11': # full screen self.canvas.manager.full_screen_toggle() def _buttonpress(self, event): """Handle buttonpress events.""" pass def _pick(self, event): """Handle matplotlib pick events.""" pass def _resize(self, event): """Handle window resize events.""" pass def _add_default_callbacks(self, **kwargs): """Remove some matplotlib default callbacks and add MNE-Python ones.""" # Remove matplotlib default keypress catchers default_callbacks = list( self.canvas.callbacks.callbacks.get('key_press_event', {})) for callback in default_callbacks: self.canvas.callbacks.disconnect(callback) # add our event callbacks callbacks = dict(resize_event=self._resize, key_press_event=self._keypress, button_press_event=self._buttonpress, close_event=self._close, pick_event=self._pick) callbacks.update(kwargs) callback_ids = dict() for event, callback in callbacks.items(): callback_ids[event] = self.canvas.mpl_connect(event, callback) # store callback references so they aren't garbage-collected self.mne._callback_ids = callback_ids def _get_dpi_ratio(self): """Get DPI ratio (to handle hi-DPI screens).""" dpi_ratio = 1. for key in ('_dpi_ratio', '_device_scale'): dpi_ratio = getattr(self.canvas, key, dpi_ratio) return dpi_ratio def _get_size_px(self): """Get figure size in pixels.""" dpi_ratio = self._get_dpi_ratio() return self.get_size_inches() * self.dpi / dpi_ratio def _inch_to_rel(self, dim_inches, horiz=True): """Convert inches to figure-relative distances.""" fig_w, fig_h = self.get_size_inches() w_or_h = fig_w if horiz else fig_h return dim_inches / w_or_h class MNEAnnotationFigure(MNEFigure): """Interactive dialog figure for annotations.""" def _close(self, event): """Handle close events (via keypress or window [x]).""" parent = self.mne.parent_fig # disable span selector parent.mne.ax_main.selector.active = False # clear hover line parent._remove_annotation_hover_line() # disconnect hover callback callback_id = parent.mne._callback_ids['motion_notify_event'] parent.canvas.callbacks.disconnect(callback_id) # do all the other cleanup activities super()._close(event) def _keypress(self, event): """Handle keypress events.""" text = self.label.get_text() key = event.key if key == self.mne.close_key: from matplotlib.pyplot import close close(self) elif key == 'backspace': text = text[:-1] elif key == 'enter': self.mne.parent_fig._add_annotation_label(event) return elif len(key) > 1 or key == ';': # ignore modifier keys return else: text = text + key self.label.set_text(text) self.canvas.draw() def _radiopress(self, event): """Handle Radiobutton clicks for Annotation label selection.""" # update which button looks active buttons = self.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] idx = labels.index(buttons.value_selected) self._set_active_button(idx) # update click-drag rectangle color color = buttons.circles[idx].get_edgecolor() selector = self.mne.parent_fig.mne.ax_main.selector selector.rect.set_color(color) selector.rectprops.update(dict(facecolor=color)) def _click_override(self, event): """Override MPL radiobutton click detector to use transData.""" ax = self.mne.radio_ax buttons = ax.buttons if (buttons.ignore(event) or event.button != 1 or event.inaxes != ax): return pclicked = ax.transData.inverted().transform((event.x, event.y)) distances = {} for i, (p, t) in enumerate(zip(buttons.circles, buttons.labels)): if (t.get_window_extent().contains(event.x, event.y) or np.linalg.norm(pclicked - p.center) < p.radius): distances[i] = np.linalg.norm(pclicked - p.center) if len(distances) > 0: closest = min(distances, key=distances.get) buttons.set_active(closest) def _set_active_button(self, idx): """Set active button in annotation dialog figure.""" buttons = self.mne.radio_ax.buttons with _events_off(buttons): buttons.set_active(idx) for circle in buttons.circles: circle.set_facecolor(self.mne.parent_fig.mne.bgcolor) # active circle gets filled in, partially transparent color = list(buttons.circles[idx].get_edgecolor()) color[-1] = 0.5 buttons.circles[idx].set_facecolor(color) self.canvas.draw() class MNESelectionFigure(MNEFigure): """Interactive dialog figure for channel selections.""" def _close(self, event): """Handle close events.""" from matplotlib.pyplot import close self.mne.parent_fig.mne.child_figs.remove(self) self.mne.fig_selection = None # selection fig & main fig tightly integrated; closing one closes both close(self.mne.parent_fig) def _keypress(self, event): """Handle keypress events.""" if event.key in ('up', 'down', 'b'): self.mne.parent_fig._keypress(event) else: # check for close key super()._keypress(event) def _radiopress(self, event): """Handle RadioButton clicks for channel selection groups.""" selections_dict = self.mne.parent_fig.mne.ch_selections buttons = self.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] this_label = buttons.value_selected parent = self.mne.parent_fig if this_label == 'Custom' and not len(selections_dict['Custom']): with _events_off(buttons): buttons.set_active(self.mne.old_selection) return # clicking a selection cancels butterfly mode if parent.mne.butterfly: parent._toggle_butterfly() with _events_off(buttons): buttons.set_active(labels.index(this_label)) parent._update_selection() def _set_custom_selection(self): """Set custom selection by lasso selector.""" chs = self.lasso.selection parent = self.mne.parent_fig buttons = self.mne.radio_ax.buttons if not len(chs): return labels = [label.get_text() for label in buttons.labels] inds = np.in1d(parent.mne.ch_names, chs) parent.mne.ch_selections['Custom'] = inds.nonzero()[0] buttons.set_active(labels.index('Custom')) def _style_radio_buttons_butterfly(self): """Handle RadioButton state for keyboard interactions.""" # Show all radio buttons as selected when in butterfly mode parent = self.mne.parent_fig buttons = self.mne.radio_ax.buttons color = (buttons.activecolor if parent.mne.butterfly else parent.mne.bgcolor) for circle in buttons.circles: circle.set_facecolor(color) # when leaving butterfly mode, make most-recently-used selection active if not parent.mne.butterfly: with _events_off(buttons): buttons.set_active(self.mne.old_selection) # update the sensors too parent._update_highlighted_sensors() class MNEBrowseFigure(MNEFigure): """Interactive figure with scrollbars, for data browsing.""" def __init__(self, inst, figsize, ica=None, xlabel='Time (s)', **kwargs): from matplotlib.colors import to_rgba_array from matplotlib.ticker import (FixedLocator, FixedFormatter, FuncFormatter, NullFormatter) from matplotlib.patches import Rectangle from matplotlib.widgets import Button from matplotlib.transforms import blended_transform_factory from mpl_toolkits.axes_grid1.axes_size import Fixed from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from .. import BaseEpochs from ..io import BaseRaw from ..preprocessing import ICA super().__init__(figsize=figsize, inst=inst, ica=ica, **kwargs) # what kind of data are we dealing with? if isinstance(ica, ICA): self.mne.instance_type = 'ica' elif isinstance(inst, BaseRaw): self.mne.instance_type = 'raw' elif isinstance(inst, BaseEpochs): self.mne.instance_type = 'epochs' else: raise TypeError('Expected an instance of Raw, Epochs, or ICA, ' f'got {type(inst)}.') self.mne.ica_type = None if self.mne.instance_type == 'ica': if isinstance(self.mne.ica_inst, BaseRaw): self.mne.ica_type = 'raw' elif isinstance(self.mne.ica_inst, BaseEpochs): self.mne.ica_type = 'epochs' self.mne.is_epochs = 'epochs' in (self.mne.instance_type, self.mne.ica_type) # things that always start the same self.mne.ch_start = 0 self.mne.projector = None self.mne.projs_active = np.array([p['active'] for p in self.mne.projs]) self.mne.whitened_ch_names = list() self.mne.use_noise_cov = self.mne.noise_cov is not None self.mne.zorder = dict(patch=0, grid=1, ann=2, events=3, bads=4, data=5, mag=6, grad=7, scalebar=8, vline=9) # additional params for epochs (won't affect raw / ICA) self.mne.epoch_traces = list() self.mne.bad_epochs = list() # annotations self.mne.annotations = list() self.mne.hscroll_annotations = list() self.mne.annotation_segments = list() self.mne.annotation_texts = list() self.mne.new_annotation_labels = list() self.mne.annotation_segment_colors = dict() self.mne.annotation_hover_line = None self.mne.draggable_annotations = False # lines self.mne.event_lines = None self.mne.event_texts = list() self.mne.vline_visible = False # scalings self.mne.scale_factor = 0.5 if self.mne.butterfly else 1. self.mne.scalebars = dict() self.mne.scalebar_texts = dict() # ancillary child figures self.mne.child_figs = list() self.mne.fig_help = None self.mne.fig_proj = None self.mne.fig_histogram = None self.mne.fig_selection = None self.mne.fig_annotation = None # MAIN AXES: default sizes (inches) # XXX simpler with constrained_layout? (when it's no longer "beta") l_margin = 1. r_margin = 0.1 b_margin = 0.45 t_margin = 0.25 scroll_width = 0.25 hscroll_dist = 0.25 vscroll_dist = 0.1 help_width = scroll_width * 2 # MAIN AXES: default margins (figure-relative coordinates) left = self._inch_to_rel(l_margin - vscroll_dist - help_width) right = 1 - self._inch_to_rel(r_margin) bottom = self._inch_to_rel(b_margin, horiz=False) top = 1 - self._inch_to_rel(t_margin, horiz=False) width = right - left height = top - bottom position = [left, bottom, width, height] # Main axes must be a subplot for subplots_adjust to work (so user can # adjust margins). That's why we don't use the Divider class directly. ax_main = self.add_subplot(1, 1, 1, position=position) self.subplotpars.update(left=left, bottom=bottom, top=top, right=right) div = make_axes_locatable(ax_main) # this only gets shown in zen mode self.mne.zen_xlabel = ax_main.set_xlabel(xlabel) self.mne.zen_xlabel.set_visible(not self.mne.scrollbars_visible) # SCROLLBARS ax_hscroll = div.append_axes(position='bottom', size=Fixed(scroll_width), pad=Fixed(hscroll_dist)) ax_vscroll = div.append_axes(position='right', size=Fixed(scroll_width), pad=Fixed(vscroll_dist)) ax_hscroll.get_yaxis().set_visible(False) ax_hscroll.set_xlabel(xlabel) ax_vscroll.set_axis_off() # HORIZONTAL SCROLLBAR PATCHES (FOR MARKING BAD EPOCHS) if self.mne.is_epochs: epoch_nums = self.mne.inst.selection for ix, _ in enumerate(epoch_nums): start = self.mne.boundary_times[ix] width = np.diff(self.mne.boundary_times[ix:ix + 2])[0] ax_hscroll.add_patch( Rectangle((start, 0), width, 1, color='none', zorder=self.mne.zorder['patch'])) # add epoch boundaries & center epoch numbers between boundaries midpoints = np.convolve(self.mne.boundary_times, np.ones(2), mode='valid') / 2 # both axes, major ticks: gridlines for _ax in (ax_main, ax_hscroll): _ax.xaxis.set_major_locator( FixedLocator(self.mne.boundary_times[1:-1])) _ax.xaxis.set_major_formatter(NullFormatter()) grid_kwargs = dict(color=self.mne.fgcolor, axis='x', zorder=self.mne.zorder['grid']) ax_main.grid(linewidth=2, linestyle='dashed', **grid_kwargs) ax_hscroll.grid(alpha=0.5, linewidth=0.5, linestyle='solid', **grid_kwargs) # main axes, minor ticks: ticklabel (epoch number) for every epoch ax_main.xaxis.set_minor_locator(FixedLocator(midpoints)) ax_main.xaxis.set_minor_formatter(FixedFormatter(epoch_nums)) # hscroll axes, minor ticks: up to 20 ticklabels (epoch numbers) ax_hscroll.xaxis.set_minor_locator( FixedLocator(midpoints, nbins=20)) ax_hscroll.xaxis.set_minor_formatter( FuncFormatter(lambda x, pos: self._get_epoch_num_from_time(x))) # hide some ticks ax_main.tick_params(axis='x', which='major', bottom=False) ax_hscroll.tick_params(axis='x', which='both', bottom=False) # VERTICAL SCROLLBAR PATCHES (COLORED BY CHANNEL TYPE) ch_order = self.mne.ch_order for ix, pick in enumerate(ch_order): this_color = (self.mne.ch_color_bad if self.mne.ch_names[pick] in self.mne.info['bads'] else self.mne.ch_color_dict) if isinstance(this_color, dict): this_color = this_color[self.mne.ch_types[pick]] ax_vscroll.add_patch( Rectangle((0, ix), 1, 1, color=this_color, zorder=self.mne.zorder['patch'])) ax_vscroll.set_ylim(len(ch_order), 0) ax_vscroll.set_visible(not self.mne.butterfly) # SCROLLBAR VISIBLE SELECTION PATCHES sel_kwargs = dict(alpha=0.3, linewidth=4, clip_on=False, edgecolor=self.mne.fgcolor) vsel_patch = Rectangle((0, 0), 1, self.mne.n_channels, facecolor=self.mne.bgcolor, **sel_kwargs) ax_vscroll.add_patch(vsel_patch) hsel_facecolor = np.average( np.vstack((to_rgba_array(self.mne.fgcolor), to_rgba_array(self.mne.bgcolor))), axis=0, weights=(3, 1)) # 75% foreground, 25% background hsel_patch = Rectangle((self.mne.t_start, 0), self.mne.duration, 1, facecolor=hsel_facecolor, **sel_kwargs) ax_hscroll.add_patch(hsel_patch) ax_hscroll.set_xlim(self.mne.first_time, self.mne.first_time + self.mne.n_times / self.mne.info['sfreq']) # VLINE vline_color = (0., 0.75, 0.) vline_kwargs = dict(visible=False, zorder=self.mne.zorder['vline']) if self.mne.is_epochs: x = np.arange(self.mne.n_epochs) vline = ax_main.vlines( x, 0, 1, colors=vline_color, **vline_kwargs) vline.set_transform(blended_transform_factory(ax_main.transData, ax_main.transAxes)) vline_hscroll = None else: vline = ax_main.axvline(0, color=vline_color, **vline_kwargs) vline_hscroll = ax_hscroll.axvline(0, color=vline_color, **vline_kwargs) vline_text = ax_hscroll.text( self.mne.first_time, 1.2, '', fontsize=10, ha='right', va='bottom', color=vline_color, **vline_kwargs) # HELP BUTTON: initialize in the wrong spot... ax_help = div.append_axes(position='left', size=Fixed(help_width), pad=Fixed(vscroll_dist)) # HELP BUTTON: ...move it down by changing its locator loc = div.new_locator(nx=0, ny=0) ax_help.set_axes_locator(loc) # HELP BUTTON: make it a proper button with _patched_canvas(ax_help.figure): self.mne.button_help = Button(ax_help, 'Help') # PROJ BUTTON ax_proj = None if len(self.mne.projs) and not inst.proj: proj_button_pos = [ 1 - self._inch_to_rel(r_margin + scroll_width), # left self._inch_to_rel(b_margin, horiz=False), # bottom self._inch_to_rel(scroll_width), # width self._inch_to_rel(scroll_width, horiz=False) # height ] loc = div.new_locator(nx=4, ny=0) ax_proj = self.add_axes(proj_button_pos) ax_proj.set_axes_locator(loc) with _patched_canvas(ax_help.figure): self.mne.button_proj = Button(ax_proj, 'Prj') # INIT TRACES self.mne.trace_kwargs = dict(antialiased=True, linewidth=0.5) self.mne.traces = ax_main.plot( np.full((1, self.mne.n_channels), np.nan), **self.mne.trace_kwargs) # SAVE UI ELEMENT HANDLES vars(self.mne).update( ax_main=ax_main, ax_help=ax_help, ax_proj=ax_proj, ax_hscroll=ax_hscroll, ax_vscroll=ax_vscroll, vsel_patch=vsel_patch, hsel_patch=hsel_patch, vline=vline, vline_hscroll=vline_hscroll, vline_text=vline_text) def _close(self, event): """Handle close events (via keypress or window [x]).""" from matplotlib.pyplot import close # write out bad epochs (after converting epoch numbers to indices) if self.mne.instance_type == 'epochs': bad_ixs = np.in1d(self.mne.inst.selection, self.mne.bad_epochs).nonzero()[0] self.mne.inst.drop(bad_ixs) # write bad channels back to instance (don't do this for proj; # proj checkboxes are for viz only and shouldn't modify the instance) if self.mne.instance_type in ('raw', 'epochs'): self.mne.inst.info['bads'] = self.mne.info['bads'] logger.info( f"Channels marked as bad: {self.mne.info['bads'] or 'none'}") # ICA excludes elif self.mne.instance_type == 'ica': self.mne.ica.exclude = [self.mne.ica._ica_names.index(ch) for ch in self.mne.info['bads']] # write window size to config size = ','.join(self.get_size_inches().astype(str)) set_config('MNE_BROWSE_RAW_SIZE', size, set_env=False) # Clean up child figures (don't pop(), child figs remove themselves) while len(self.mne.child_figs): fig = self.mne.child_figs[-1] close(fig) def _resize(self, event): """Handle resize event for mne_browse-style plots (Raw/Epochs/ICA).""" old_width, old_height = self.mne.fig_size_px new_width, new_height = self._get_size_px() new_margins = _calc_new_margins( self, old_width, old_height, new_width, new_height) self.subplots_adjust(**new_margins) # zen mode bookkeeping self.mne.zen_w *= old_width / new_width self.mne.zen_h *= old_height / new_height self.mne.fig_size_px = (new_width, new_height) self.canvas.draw_idle() def _hover(self, event): """Handle motion event when annotating.""" if (event.button is not None or event.xdata is None or event.inaxes != self.mne.ax_main): return if not self.mne.draggable_annotations: self._remove_annotation_hover_line() return from matplotlib.patheffects import Stroke, Normal for coll in self.mne.annotations: if coll.contains(event)[0]: path = coll.get_paths() assert len(path) == 1 path = path[0] color = coll.get_edgecolors()[0] ylim = self.mne.ax_main.get_ylim() # are we on the left or right edge? _l = path.vertices[:, 0].min() _r = path.vertices[:, 0].max() x = _l if abs(event.xdata - _l) < abs(event.xdata - _r) else _r mask = path.vertices[:, 0] == x def drag_callback(x0): path.vertices[mask, 0] = x0 # create or update the DraggableLine hover_line = self.mne.annotation_hover_line if hover_line is None: line = self.mne.ax_main.plot([x, x], ylim, color=color, linewidth=2, pickradius=5.)[0] hover_line = DraggableLine( line, self._modify_annotation, drag_callback) else: hover_line.set_x(x) hover_line.drag_callback = drag_callback # style the line line = hover_line.line patheff = [Stroke(linewidth=4, foreground=color, alpha=0.5), Normal()] line.set_path_effects(patheff if line.contains(event)[0] else patheff[1:]) self.mne.ax_main.selector.active = False self.mne.annotation_hover_line = hover_line self.canvas.draw_idle() return self._remove_annotation_hover_line() def _keypress(self, event): """Handle keypress events.""" key = event.key n_channels = self.mne.n_channels if self.mne.is_epochs: last_time = self.mne.n_times / self.mne.info['sfreq'] else: last_time = self.mne.inst.times[-1] # scroll up/down if key in ('down', 'up', 'shift+down', 'shift+up'): key = key.split('+')[-1] direction = -1 if key == 'up' else 1 # butterfly case if self.mne.butterfly: return # group_by case elif self.mne.fig_selection is not None: buttons = self.mne.fig_selection.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] current_label = buttons.value_selected current_idx = labels.index(current_label) selections_dict = self.mne.ch_selections penult = current_idx < (len(labels) - 1) pre_penult = current_idx < (len(labels) - 2) has_custom = selections_dict.get('Custom', None) is not None def_custom = len(selections_dict.get('Custom', list())) up_ok = key == 'up' and current_idx > 0 down_ok = key == 'down' and ( pre_penult or (penult and not has_custom) or (penult and has_custom and def_custom)) if up_ok or down_ok: buttons.set_active(current_idx + direction) # normal case else: ceiling = len(self.mne.ch_order) - n_channels ch_start = self.mne.ch_start + direction * n_channels self.mne.ch_start = np.clip(ch_start, 0, ceiling) self._update_picks() self._update_vscroll() self._redraw() # scroll left/right elif key in ('right', 'left', 'shift+right', 'shift+left'): old_t_start = self.mne.t_start direction = 1 if key.endswith('right') else -1 if self.mne.is_epochs: denom = 1 if key.startswith('shift') else self.mne.n_epochs else: denom = 1 if key.startswith('shift') else 4 t_max = last_time - self.mne.duration t_start = self.mne.t_start + direction * self.mne.duration / denom self.mne.t_start = np.clip(t_start, self.mne.first_time, t_max) if self.mne.t_start != old_t_start: self._update_hscroll() self._redraw(annotations=True) # scale traces elif key in ('=', '+', '-'): scaler = 1 / 1.1 if key == '-' else 1.1 self.mne.scale_factor *= scaler self._redraw(update_data=False) # change number of visible channels elif (key in ('pageup', 'pagedown') and self.mne.fig_selection is None and not self.mne.butterfly): new_n_ch = n_channels + (1 if key == 'pageup' else -1) self.mne.n_channels = np.clip(new_n_ch, 1, len(self.mne.ch_order)) # add new chs from above if we're at the bottom of the scrollbar ch_end = self.mne.ch_start + self.mne.n_channels if ch_end > len(self.mne.ch_order) and self.mne.ch_start > 0: self.mne.ch_start -= 1 self._update_vscroll() # redraw only if changed if self.mne.n_channels != n_channels: self._update_picks() self._update_trace_offsets() self._redraw(annotations=True) # change duration elif key in ('home', 'end'): dur_delta = 1 if key == 'end' else -1 if self.mne.is_epochs: self.mne.n_epochs = np.clip(self.mne.n_epochs + dur_delta, 1, len(self.mne.inst)) min_dur = len(self.mne.inst.times) / self.mne.info['sfreq'] dur_delta *= min_dur else: min_dur = 3 * np.diff(self.mne.inst.times[:2])[0] old_dur = self.mne.duration new_dur = self.mne.duration + dur_delta self.mne.duration = np.clip(new_dur, min_dur, last_time) if self.mne.duration != old_dur: if self.mne.t_start + self.mne.duration > last_time: self.mne.t_start = last_time - self.mne.duration self._update_hscroll() self._redraw(annotations=True) elif key == '?': # help window self._toggle_help_fig(event) elif key == 'a': # annotation mode self._toggle_annotation_fig() elif key == 'b' and self.mne.instance_type != 'ica': # butterfly mode self._toggle_butterfly() elif key == 'd': # DC shift self.mne.remove_dc = not self.mne.remove_dc self._redraw() elif key == 'h' and self.mne.instance_type == 'epochs': # histogram self._toggle_epoch_histogram() elif key == 'j' and len(self.mne.projs): # SSP window self._toggle_proj_fig() elif key == 'J' and len(self.mne.projs): self._toggle_proj_checkbox(event, toggle_all=True) elif key == 'p': # toggle draggable annotations self._toggle_draggable_annotations(event) if self.mne.fig_annotation is not None: checkbox = self.mne.fig_annotation.mne.drag_checkbox with _events_off(checkbox): checkbox.set_active(0) elif key == 's': # scalebars self._toggle_scalebars(event) elif key == 'w': # toggle noise cov whitening if self.mne.noise_cov is not None: self.mne.use_noise_cov = not self.mne.use_noise_cov self._update_projector() self._update_yaxis_labels() # add/remove italics self._redraw() elif key == 'z': # zen mode: hide scrollbars and buttons self._toggle_scrollbars() self._redraw(update_data=False) else: # check for close key / fullscreen toggle super()._keypress(event) def _buttonpress(self, event): """Handle mouse clicks.""" butterfly = self.mne.butterfly annotating = self.mne.fig_annotation is not None ax_main = self.mne.ax_main inst = self.mne.inst # ignore middle clicks, scroll wheel events, and clicks outside axes if event.button not in (1, 3) or event.inaxes is None: return elif event.button == 1: # left-click (primary) # click in main axes if (event.inaxes == ax_main and not annotating): if self.mne.instance_type == 'epochs' or not butterfly: for line in self.mne.traces + self.mne.epoch_traces: if line.contains(event)[0]: if self.mne.instance_type == 'epochs': self._toggle_bad_epoch(event) else: idx = self.mne.traces.index(line) self._toggle_bad_channel(idx) return self._show_vline(event.xdata) # butterfly / not on data trace self._redraw(update_data=False, annotations=False) return # click in vertical scrollbar elif event.inaxes == self.mne.ax_vscroll: if self.mne.fig_selection is not None: self._change_selection_vscroll(event) elif self._check_update_vscroll_clicked(event): self._redraw() # click in horizontal scrollbar elif event.inaxes == self.mne.ax_hscroll: if self._check_update_hscroll_clicked(event): self._redraw(annotations=True) # click on proj button elif event.inaxes == self.mne.ax_proj: self._toggle_proj_fig(event) # click on help button elif event.inaxes == self.mne.ax_help: self._toggle_help_fig(event) else: # right-click (secondary) if annotating: if any(c.contains(event)[0] for c in ax_main.collections): xdata = event.xdata - self.mne.first_time start = _sync_onset(inst, inst.annotations.onset) end = start + inst.annotations.duration ann_idx = np.where((xdata > start) & (xdata < end))[0] for idx in sorted(ann_idx)[::-1]: # only remove visible annotation spans descr = inst.annotations[idx]['description'] if self.mne.visible_annotations[descr]: inst.annotations.delete(idx) self._remove_annotation_hover_line() self._draw_annotations() self.canvas.draw_idle() elif event.inaxes == ax_main: self._toggle_vline(False) def _pick(self, event): """Handle matplotlib pick events.""" from matplotlib.text import Text if self.mne.butterfly: return # clicked on channel name if isinstance(event.artist, Text): ch_name = event.artist.get_text() ind = self.mne.ch_names[self.mne.picks].tolist().index(ch_name) if event.mouseevent.button == 1: # left click self._toggle_bad_channel(ind) elif event.mouseevent.button == 3: # right click self._create_ch_context_fig(ind) def _new_child_figure(self, fig_name, **kwargs): """Instantiate a new MNE dialog figure (with event listeners).""" fig = _figure(toolbar=False, parent_fig=self, fig_name=fig_name, **kwargs) fig._add_default_callbacks() self.mne.child_figs.append(fig) if isinstance(fig_name, str): setattr(self.mne, fig_name, fig) return fig def _create_ch_context_fig(self, idx): """Show context figure; idx is index of **visible** channels.""" inst = self.mne.instance_type pick = self.mne.picks[idx] if inst == 'raw': self._create_ch_location_fig(pick) elif inst == 'ica': self._create_ica_properties_fig(pick) else: self._create_epoch_image_fig(pick) def _create_ch_location_fig(self, pick): """Show channel location figure.""" from .utils import _channel_type_prettyprint ch_name = self.mne.ch_names[pick] ch_type = self.mne.ch_types[pick] if ch_type not in _DATA_CH_TYPES_SPLIT: return # create figure and axes fig = self._new_child_figure(figsize=(4, 4), fig_name=None, window_title=f'Location of {ch_name}') ax = fig.add_subplot(111) title = f'{ch_name} position ({_channel_type_prettyprint[ch_type]})' _ = plot_sensors(self.mne.info, ch_type=ch_type, axes=ax, title=title, kind='select') # highlight desired channel & disable interactivity inds = np.in1d(fig.lasso.ch_names, [ch_name]) fig.lasso.disconnect() fig.lasso.alpha_other = 0.3 fig.lasso.linewidth_selected = 3 fig.lasso.style_sensors(inds) plt_show(fig=fig) def _create_ica_properties_fig(self, idx): """Show ICA properties for the selected component.""" ch_name = self.mne.ch_names[idx] if ch_name not in self.mne.ica._ica_names: # for EOG chans: do nothing return pick = self.mne.ica._ica_names.index(ch_name) fig = self._new_child_figure(figsize=(7, 6), fig_name=None, window_title=f'{ch_name} properties') fig, axes = _create_properties_layout(fig=fig) if not hasattr(self.mne, 'data_ica_properties'): # Precompute epoch sources only once self.mne.data_ica_properties = _prepare_data_ica_properties( self.mne.ica_inst, self.mne.ica) _fast_plot_ica_properties( self.mne.ica, self.mne.ica_inst, picks=pick, axes=axes, precomputed_data=self.mne.data_ica_properties) def _create_epoch_image_fig(self, pick): """Show epochs image for the selected channel.""" from matplotlib.gridspec import GridSpec ch_name = self.mne.ch_names[pick] fig = self._new_child_figure(figsize=(6, 4), fig_name=None, window_title=f'Epochs image ({ch_name})') gs = GridSpec(nrows=3, ncols=10) fig.add_subplot(gs[:2, :9]) fig.add_subplot(gs[2, :9]) fig.add_subplot(gs[:2, 9]) plot_epochs_image(self.mne.inst, picks=pick, fig=fig) def _toggle_epoch_histogram(self): """Show or hide peak-to-peak histogram of channel amplitudes.""" if self.mne.fig_histogram is None: self._create_epoch_histogram() plt_show(fig=self.mne.fig_histogram) else: from matplotlib.pyplot import close close(self.mne.fig_histogram) def _create_epoch_histogram(self): """Create peak-to-peak histogram of channel amplitudes.""" epochs = self.mne.inst data = OrderedDict() ptp = np.ptp(epochs.get_data(), axis=2) for ch_type in ('eeg', 'mag', 'grad'): if ch_type in epochs: data[ch_type] = ptp.T[self.mne.ch_types == ch_type].ravel() units = _handle_default('units') titles = _handle_default('titles') colors = _handle_default('color') scalings = _handle_default('scalings') title = 'Histogram of peak-to-peak amplitudes' figsize = (4, 1 + 1.5 * len(data)) fig = self._new_child_figure(figsize=figsize, fig_name='fig_histogram', window_title=title) for ix, (_ch_type, _data) in enumerate(data.items()): ax = fig.add_subplot(len(data), 1, ix + 1) ax.set(title=titles[_ch_type], xlabel=units[_ch_type], ylabel='Count') # set histogram bin range based on rejection thresholds reject = None _range = None if epochs.reject is not None and _ch_type in epochs.reject: reject = epochs.reject[_ch_type] * scalings[_ch_type] _range = (0., reject * 1.1) # plot it ax.hist(_data * scalings[_ch_type], bins=100, color=colors[_ch_type], range=_range) if reject is not None: ax.plot((reject, reject), (0, ax.get_ylim()[1]), color='r') # finalize fig.suptitle(title, y=0.99) kwargs = dict(bottom=fig._inch_to_rel(0.5, horiz=False), top=1 - fig._inch_to_rel(0.5, horiz=False), left=fig._inch_to_rel(0.75), right=1 - fig._inch_to_rel(0.25)) fig.subplots_adjust(hspace=0.7, **kwargs) self.mne.fig_histogram = fig plt_show(fig=fig) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # HELP DIALOG # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_help_fig(self): """Create help dialog window.""" text = {key: val for key, val in self._get_help_text().items() if val is not None} keys = '' vals = '' for key, val in text.items(): newsection = '\n' if key.startswith('_') else '' key = key[1:] if key.startswith('_') else key newlines = '\n' * len(val.split('\n')) # handle multiline values keys += f'{newsection}{key} {newlines}' vals += f'{newsection}{val}\n' # calc figure size n_lines = len(keys.split('\n')) longest_key = max(len(k) for k in text.keys()) longest_val = max(max(len(w) for w in v.split('\n')) if '\n' in v else len(v) for v in text.values()) width = (longest_key + longest_val) / 12 height = (n_lines) / 5 # create figure and axes fig = self._new_child_figure(figsize=(width, height), fig_name='fig_help', window_title='Help') ax = fig.add_axes((0.01, 0.01, 0.98, 0.98)) ax.set_axis_off() kwargs = dict(va='top', linespacing=1.5, usetex=False) ax.text(0.42, 1, keys, ma='right', ha='right', **kwargs) ax.text(0.42, 1, vals, ma='left', ha='left', **kwargs) def _toggle_help_fig(self, event): """Show/hide the help dialog window.""" if self.mne.fig_help is None: self._create_help_fig() plt_show(fig=self.mne.fig_help) else: from matplotlib.pyplot import close close(self.mne.fig_help) def _get_help_text(self): """Generate help dialog text; `None`-valued entries removed later.""" inst = self.mne.instance_type is_raw = inst == 'raw' is_epo = inst == 'epochs' is_ica = inst == 'ica' has_proj = bool(len(self.mne.projs)) # adapt keys to different platforms is_mac = platform.system() == 'Darwin' dur_keys = ('fn + โ†', 'fn + โ†’') if is_mac else ('Home', 'End') ch_keys = ('fn + โ†‘', 'fn + โ†“') if is_mac else ('Page up', 'Page down') # adapt descriptions to different instance types ch_cmp = 'component' if is_ica else 'channel' ch_epo = 'epoch' if is_epo else 'channel' ica_bad = 'Mark/unmark component for exclusion' dur_vals = ([f'Show {n} epochs' for n in ('fewer', 'more')] if self.mne.is_epochs else [f'Show {d} time window' for d in ('shorter', 'longer')]) ch_vals = [f'{inc_dec} number of visible {ch_cmp}s' for inc_dec in ('Increase', 'Decrease')] lclick_data = ica_bad if is_ica else f'Mark/unmark bad {ch_epo}' lclick_name = (ica_bad if is_ica else 'Mark/unmark bad channel') rclick_name = dict(ica='Show diagnostics for component', epochs='Show imageplot for channel', raw='Show channel location')[inst] # TODO not yet implemented # ldrag = ('Show spectrum plot for selected time span;\nor (in ' # 'annotation mode) add annotation') if inst== 'raw' else None ldrag = 'add annotation (in annotation mode)' if is_raw else None noise_cov = (None if self.mne.noise_cov is None else 'Toggle signal whitening') scrl = '1 epoch' if self.mne.is_epochs else 'ยผ window' # below, value " " is a hack to make "\n".split(value) have length 1 help_text = OrderedDict([ ('_NAVIGATION', ' '), ('โ†’', f'Scroll {scrl} right (scroll full window with Shift + โ†’)'), ('โ†', f'Scroll {scrl} left (scroll full window with Shift + โ†)'), (dur_keys[0], dur_vals[0]), (dur_keys[1], dur_vals[1]), ('โ†‘', f'Scroll up ({ch_cmp}s)'), ('โ†“', f'Scroll down ({ch_cmp}s)'), (ch_keys[0], ch_vals[0]), (ch_keys[1], ch_vals[1]), ('_SIGNAL TRANSFORMATIONS', ' '), ('+ or =', 'Increase signal scaling'), ('-', 'Decrease signal scaling'), ('b', 'Toggle butterfly mode' if not is_ica else None), ('d', 'Toggle DC removal' if is_raw else None), ('w', noise_cov), ('_USER INTERFACE', ' '), ('a', 'Toggle annotation mode' if is_raw else None), ('h', 'Toggle peak-to-peak histogram' if is_epo else None), ('j', 'Toggle SSP projector window' if has_proj else None), ('shift+j', 'Toggle all SSPs'), ('p', 'Toggle draggable annotations' if is_raw else None), ('s', 'Toggle scalebars' if not is_ica else None), ('z', 'Toggle scrollbars'), ('F11', 'Toggle fullscreen' if not is_mac else None), ('?', 'Open this help window'), ('esc', 'Close focused figure or dialog window'), ('_MOUSE INTERACTION', ' '), (f'Left-click {ch_cmp} name', lclick_name), (f'Left-click {ch_cmp} data', lclick_data), ('Left-click-and-drag on plot', ldrag), ('Left-click on plot background', 'Place vertical guide'), ('Right-click on plot background', 'Clear vertical guide'), ('Right-click on channel name', rclick_name) ]) return help_text # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ANNOTATIONS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_annotation_fig(self): """Create the annotation dialog window.""" from matplotlib.widgets import Button, SpanSelector, CheckButtons from mpl_toolkits.axes_grid1.axes_size import Fixed from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable # make figure labels = np.array(sorted(set(self.mne.inst.annotations.description))) radio_button_h = self._compute_annotation_figsize(len(labels)) figsize = (ANNOTATION_FIG_W, ANNOTATION_FIG_MIN_H + radio_button_h) fig = self._new_child_figure(figsize=figsize, FigureClass=MNEAnnotationFigure, fig_name='fig_annotation', window_title='Annotations') # make main axes left = fig._inch_to_rel(ANNOTATION_FIG_PAD) bottom = fig._inch_to_rel(ANNOTATION_FIG_PAD, horiz=False) width = 1 - 2 * left height = 1 - 2 * bottom fig.mne.radio_ax = fig.add_axes((left, bottom, width, height), frame_on=False, aspect='equal') div = make_axes_locatable(fig.mne.radio_ax) # append show/hide checkboxes at right fig.mne.show_hide_ax = div.append_axes( position='right', size=Fixed(ANNOTATION_FIG_CHECKBOX_COLUMN_W), pad=Fixed(ANNOTATION_FIG_PAD), aspect='equal', sharey=fig.mne.radio_ax) # populate w/ radio buttons & labels self._update_annotation_fig() # append instructions at top instructions_ax = div.append_axes(position='top', size=Fixed(1), pad=Fixed(5 * ANNOTATION_FIG_PAD)) # XXX when we support a newer matplotlib (something >3.0) the # instructions can have inline bold formatting: # instructions = '\n'.join( # [r'$\mathbf{Leftโ€click~&~drag~on~plot:}$ create/modify annotation', # noqa E501 # r'$\mathbf{Rightโ€click~on~plot~annotation:}$ delete annotation', # r'$\mathbf{Type~in~annotation~window:}$ modify new label name', # r'$\mathbf{Enter~(or~click~button):}$ add new label to list', # r'$\mathbf{Esc:}$ exit annotation mode & close this window']) instructions = '\n'.join( ['Left click & drag on plot: create/modify annotation', 'Right click on annotation highlight: delete annotation', 'Type in this window: modify new label name', 'Enter (or click button): add new label to list', 'Esc: exit annotation mode & close this dialog window']) instructions_ax.text(0, 1, instructions, va='top', ha='left', linespacing=1.7, usetex=False) # force use of MPL mathtext parser instructions_ax.set_axis_off() # append text entry axes at bottom text_entry_ax = div.append_axes(position='bottom', size=Fixed(3 * ANNOTATION_FIG_PAD), pad=Fixed(ANNOTATION_FIG_PAD)) text_entry_ax.text(0.4, 0.5, 'New label:', va='center', ha='right', weight='bold') fig.label = text_entry_ax.text(0.5, 0.5, 'BAD_', va='center', ha='left') text_entry_ax.set_axis_off() # append button at bottom button_ax = div.append_axes(position='bottom', size=Fixed(3 * ANNOTATION_FIG_PAD), pad=Fixed(ANNOTATION_FIG_PAD)) fig.button = Button(button_ax, 'Add new label') fig.button.on_clicked(self._add_annotation_label) plt_show(fig=fig) # add "draggable" checkbox drag_ax_height = 3 * ANNOTATION_FIG_PAD drag_ax = div.append_axes('bottom', size=Fixed(drag_ax_height), pad=Fixed(ANNOTATION_FIG_PAD), aspect='equal') checkbox = CheckButtons(drag_ax, labels=('Draggable edges?',), actives=(self.mne.draggable_annotations,)) checkbox.on_clicked(self._toggle_draggable_annotations) fig.mne.drag_checkbox = checkbox # reposition & resize axes width_in, height_in = fig.get_size_inches() width_ax = fig._inch_to_rel(width_in - ANNOTATION_FIG_CHECKBOX_COLUMN_W - 3 * ANNOTATION_FIG_PAD) aspect = width_ax / fig._inch_to_rel(drag_ax_height) drag_ax.set_xlim(0, aspect) drag_ax.set_axis_off() # reposition & resize checkbox & label rect = checkbox.rectangles[0] _pad, _size = (0.2, 0.6) rect.set_bounds(_pad, _pad, _size, _size) lines = checkbox.lines[0] for line, direction in zip(lines, (1, -1)): line.set_xdata((_pad, _pad + _size)[::direction]) line.set_ydata((_pad, _pad + _size)) text = checkbox.labels[0] text.set(position=(3 * _pad + _size, 0.45), va='center') for artist in lines + (rect, text): artist.set_transform(drag_ax.transData) # setup interactivity in plot window col = ('#ff0000' if len(fig.mne.radio_ax.buttons.circles) < 1 else fig.mne.radio_ax.buttons.circles[0].get_edgecolor()) # TODO: we would like useblit=True here, but it behaves oddly when the # first span is dragged (subsequent spans seem to work OK) selector = SpanSelector(self.mne.ax_main, self._select_annotation_span, 'horizontal', minspan=0.1, useblit=False, rectprops=dict(alpha=0.5, facecolor=col)) self.mne.ax_main.selector = selector self.mne._callback_ids['motion_notify_event'] = \ self.canvas.mpl_connect('motion_notify_event', self._hover) def _toggle_visible_annotations(self, event): """Enable/disable display of annotations on a per-label basis.""" checkboxes = self.mne.show_hide_annotation_checkboxes labels = [t.get_text() for t in checkboxes.labels] actives = checkboxes.get_status() self.mne.visible_annotations = dict(zip(labels, actives)) self._redraw(update_data=False, annotations=True) def _toggle_draggable_annotations(self, event): """Enable/disable draggable annotation edges.""" self.mne.draggable_annotations = not self.mne.draggable_annotations def _get_annotation_labels(self): """Get the unique labels in the raw object and added in the UI.""" return sorted(set(self.mne.inst.annotations.description) | set(self.mne.new_annotation_labels)) def _update_annotation_fig(self): """Draw or redraw the radio buttons and annotation labels.""" from matplotlib.widgets import RadioButtons, CheckButtons # define shorthand variables fig = self.mne.fig_annotation ax = fig.mne.radio_ax labels = self._get_annotation_labels() # compute new figsize radio_button_h = self._compute_annotation_figsize(len(labels)) fig.set_size_inches(ANNOTATION_FIG_W, ANNOTATION_FIG_MIN_H + radio_button_h, forward=True) # populate center axes with labels & radio buttons ax.clear() title = 'Existing labels:' if len(labels) else 'No existing labels' ax.set_title(title, size=None, loc='left') ax.buttons = RadioButtons(ax, labels) # adjust xlim to keep equal aspect & full width (keep circles round) aspect = (ANNOTATION_FIG_W - ANNOTATION_FIG_CHECKBOX_COLUMN_W - 3 * ANNOTATION_FIG_PAD) / radio_button_h ax.set_xlim((0, aspect)) # style the buttons & adjust spacing radius = 0.15 circles = ax.buttons.circles for circle, label in zip(circles, ax.buttons.labels): circle.set_transform(ax.transData) center = ax.transData.inverted().transform( ax.transAxes.transform((0.1, 0))) circle.set_center((center[0], circle.center[1])) circle.set_edgecolor( self.mne.annotation_segment_colors[label.get_text()]) circle.set_linewidth(4) circle.set_radius(radius / len(labels)) # style the selected button if len(labels): fig._set_active_button(0) # add event listeners ax.buttons.disconnect_events() # clear MPL default listeners ax.buttons.on_clicked(fig._radiopress) ax.buttons.connect_event('button_press_event', fig._click_override) # now do the show/hide checkboxes show_hide_ax = fig.mne.show_hide_ax show_hide_ax.clear() show_hide_ax.set_axis_off() aspect = ANNOTATION_FIG_CHECKBOX_COLUMN_W / radio_button_h show_hide_ax.set(xlim=(0, aspect), ylim=(0, 1)) # ensure new labels have checkbox values check_values = {label: False for label in labels} check_values.update(self.mne.visible_annotations) # existing checks actives = [check_values[label] for label in labels] # regenerate checkboxes checkboxes = CheckButtons(ax=fig.mne.show_hide_ax, labels=labels, actives=actives) checkboxes.on_clicked(self._toggle_visible_annotations) # add title, hide labels show_hide_ax.set_title('show/\nhide ', size=None, loc='right') for label in checkboxes.labels: label.set_visible(False) # fix aspect and right-align if len(labels) == 1: bounds = (0.05, 0.375, 0.25, 0.25) # undo MPL special case checkboxes.rectangles[0].set_bounds(bounds) for line, step in zip(checkboxes.lines[0], (1, -1)): line.set_xdata((bounds[0], bounds[0] + bounds[2])) line.set_ydata((bounds[1], bounds[1] + bounds[3])[::step]) for rect in checkboxes.rectangles: rect.set_transform(show_hide_ax.transData) bbox = rect.get_bbox() bounds = (aspect, bbox.ymin, -bbox.width, bbox.height) rect.set_bounds(bounds) rect.set_clip_on(False) for line in np.array(checkboxes.lines).ravel(): line.set_transform(show_hide_ax.transData) line.set_xdata(aspect + 0.05 - np.array(line.get_xdata())) # store state self.mne.visible_annotations = check_values self.mne.show_hide_annotation_checkboxes = checkboxes def _toggle_annotation_fig(self): """Show/hide the annotation dialog window.""" if self.mne.fig_annotation is None: self._create_annotation_fig() else: from matplotlib.pyplot import close close(self.mne.fig_annotation) def _compute_annotation_figsize(self, n_labels): """Adapt size of Annotation UI to accommodate the number of buttons. self._create_annotation_fig() implements the following: Fixed part of height: 0.1 top margin 1.0 instructions 0.5 padding below instructions --- (variable-height axis for label list, returned by this method) 0.1 padding above text entry 0.3 text entry 0.1 padding above button 0.3 button 0.1 padding above checkbox 0.3 checkbox 0.1 bottom margin ------------------------------------------ 2.9 total fixed height """ return max(ANNOTATION_FIG_PAD, 0.7 * n_labels) def _add_annotation_label(self, event): """Add new annotation description.""" text = self.mne.fig_annotation.label.get_text() self.mne.new_annotation_labels.append(text) self._setup_annotation_colors() self._update_annotation_fig() # automatically activate new label's radio button idx = [label.get_text() for label in self.mne.fig_annotation.mne.radio_ax.buttons.labels].index(text) self.mne.fig_annotation._set_active_button(idx) # simulate a click on the radiobutton โ†’ update the span selector color self.mne.fig_annotation._radiopress(event=None) # reset the text entry box's text self.mne.fig_annotation.label.set_text('BAD_') def _setup_annotation_colors(self): """Set up colors for annotations; init some annotation vars.""" segment_colors = getattr(self.mne, 'annotation_segment_colors', dict()) labels = self._get_annotation_labels() colors, red = _get_color_list(annotations=True) color_cycle = cycle(colors) for key, color in segment_colors.items(): if color != red and key in labels: next(color_cycle) for idx, key in enumerate(labels): if key in segment_colors: continue elif key.lower().startswith('bad') or \ key.lower().startswith('edge'): segment_colors[key] = red else: segment_colors[key] = next(color_cycle) self.mne.annotation_segment_colors = segment_colors # init a couple other annotation-related variables self.mne.visible_annotations = {label: True for label in labels} self.mne.show_hide_annotation_checkboxes = None def _select_annotation_span(self, vmin, vmax): """Handle annotation span selector.""" onset = _sync_onset(self.mne.inst, vmin, True) - self.mne.first_time duration = vmax - vmin buttons = self.mne.fig_annotation.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] active_idx = labels.index(buttons.value_selected) _merge_annotations(onset, onset + duration, labels[active_idx], self.mne.inst.annotations) # if adding a span with an annotation label that is hidden, show it if not self.mne.visible_annotations[buttons.value_selected]: self.mne.show_hide_annotation_checkboxes.set_active(active_idx) self._redraw(update_data=False, annotations=True) def _remove_annotation_hover_line(self): """Remove annotation line from the plot and reactivate selector.""" if self.mne.annotation_hover_line is not None: self.mne.annotation_hover_line.remove() self.mne.annotation_hover_line = None self.mne.ax_main.selector.active = True self.canvas.draw() def _modify_annotation(self, old_x, new_x): """Modify annotation.""" segment = np.array(np.where(self.mne.annotation_segments == old_x)) if segment.shape[1] == 0: return raw = self.mne.inst annotations = raw.annotations first_time = self.mne.first_time idx = [segment[0][0], segment[1][0]] onset = _sync_onset(raw, self.mne.annotation_segments[idx[0]][0], True) ann_idx = np.where(annotations.onset == onset - first_time)[0] if idx[1] == 0: # start of annotation onset = _sync_onset(raw, new_x, True) - first_time duration = annotations.duration[ann_idx] + old_x - new_x else: # end of annotation onset = annotations.onset[ann_idx] duration = _sync_onset(raw, new_x, True) - onset - first_time if duration < 0: onset += duration duration *= -1. _merge_annotations(onset, onset + duration, annotations.description[ann_idx], annotations, ann_idx) self._draw_annotations() self._remove_annotation_hover_line() self.canvas.draw_idle() def _clear_annotations(self): """Clear all annotations from the figure.""" for annot in list(self.mne.annotations): annot.remove() self.mne.annotations.remove(annot) for annot in list(self.mne.hscroll_annotations): annot.remove() self.mne.hscroll_annotations.remove(annot) for text in list(self.mne.annotation_texts): text.remove() self.mne.annotation_texts.remove(text) def _draw_annotations(self): """Draw (or redraw) the annotation spans.""" self._clear_annotations() self._update_annotation_segments() segments = self.mne.annotation_segments times = self.mne.times ax = self.mne.ax_main ylim = ax.get_ylim() for idx, (start, end) in enumerate(segments): descr = self.mne.inst.annotations.description[idx] segment_color = self.mne.annotation_segment_colors[descr] kwargs = dict(color=segment_color, alpha=0.3, zorder=self.mne.zorder['ann']) if self.mne.visible_annotations[descr]: # draw all segments on ax_hscroll annot = self.mne.ax_hscroll.fill_betweenx((0, 1), start, end, **kwargs) self.mne.hscroll_annotations.append(annot) # draw only visible segments on ax_main visible_segment = np.clip([start, end], times[0], times[-1]) if np.diff(visible_segment) > 0: annot = ax.fill_betweenx(ylim, *visible_segment, **kwargs) self.mne.annotations.append(annot) xy = (visible_segment.mean(), ylim[1]) text = ax.annotate(descr, xy, xytext=(0, 9), textcoords='offset points', ha='center', va='baseline', color=segment_color) self.mne.annotation_texts.append(text) def _update_annotation_segments(self): """Update the array of annotation start/end times.""" segments = list() raw = self.mne.inst if len(raw.annotations): for idx, annot in enumerate(raw.annotations): annot_start = _sync_onset(raw, annot['onset']) annot_end = annot_start + max(annot['duration'], 1 / self.mne.info['sfreq']) segments.append((annot_start, annot_end)) self.mne.annotation_segments = np.array(segments) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # CHANNEL SELECTION GUI # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_selection_fig(self): """Create channel selection dialog window.""" from matplotlib.colors import to_rgb from matplotlib.widgets import RadioButtons from matplotlib.gridspec import GridSpec # make figure fig = self._new_child_figure(figsize=(3, 7), FigureClass=MNESelectionFigure, fig_name='fig_selection', window_title='Channel selection') # XXX when matplotlib 3.3 is min version, replace this with # XXX gs = fig.add_gridspec(15, 1) gs = GridSpec(nrows=15, ncols=1) # add sensor plot at top fig.mne.sensor_ax = fig.add_subplot(gs[:5]) plot_sensors(self.mne.info, kind='select', ch_type='all', title='', axes=fig.mne.sensor_ax, ch_groups=self.mne.group_by, show=False) fig.subplots_adjust(bottom=0.01, top=0.99, left=0.01, right=0.99) # style the sensors so the selection is easier to distinguish fig.lasso.linewidth_selected = 2 self._update_highlighted_sensors() # add radio button axes radio_ax = fig.add_subplot(gs[5:-3], frame_on=False, aspect='equal') fig.mne.radio_ax = radio_ax selections_dict = self.mne.ch_selections selections_dict.update(Custom=np.array([], dtype=int)) # for lasso labels = list(selections_dict) # make & style the radio buttons activecolor = to_rgb(self.mne.fgcolor) + (0.5,) radio_ax.buttons = RadioButtons(radio_ax, labels, activecolor=activecolor) fig.mne.old_selection = 0 for circle in radio_ax.buttons.circles: circle.set_radius(0.25 / len(labels)) circle.set_linewidth(2) circle.set_edgecolor(self.mne.fgcolor) fig._style_radio_buttons_butterfly() # add instructions at bottom instructions = ( 'To use a custom selection, first click-drag on the sensor plot ' 'to "lasso" the sensors you want to select, or hold Ctrl while ' 'clicking individual sensors. Holding Ctrl while click-dragging ' 'allows a lasso selection adding to (rather than replacing) the ' 'existing selection.') instructions_ax = fig.add_subplot(gs[-3:], frame_on=False) instructions_ax.text(0.04, 0.08, instructions, va='bottom', ha='left', ma='left', wrap=True) instructions_ax.set_axis_off() # add event listeners radio_ax.buttons.on_clicked(fig._radiopress) fig.canvas.mpl_connect('lasso_event', fig._set_custom_selection) def _change_selection_vscroll(self, event): """Handle clicks on vertical scrollbar when using selections.""" buttons = self.mne.fig_selection.mne.radio_ax.buttons labels = [label.get_text() for label in buttons.labels] offset = 0 selections_dict = self.mne.ch_selections for idx, label in enumerate(labels): offset += len(selections_dict[label]) if event.ydata < offset: with _events_off(buttons): buttons.set_active(idx) self.mne.fig_selection._radiopress(event) return def _update_selection(self): """Update visible channels based on selection dialog interaction.""" selections_dict = self.mne.ch_selections fig = self.mne.fig_selection buttons = fig.mne.radio_ax.buttons label = buttons.value_selected labels = [_label.get_text() for _label in buttons.labels] self.mne.fig_selection.mne.old_selection = labels.index(label) self.mne.picks = selections_dict[label] self.mne.n_channels = len(self.mne.picks) self._update_highlighted_sensors() # if "Vertex" is defined, some channels appear twice, so if # "Vertex" is selected, ch_start should be the *first* match; # otherwise it should be the *last* match (since "Vertex" is # always the first selection group, if it exists). index = 0 if label == 'Vertex' else -1 ch_order = np.concatenate(list(selections_dict.values())) ch_start = np.where(ch_order == self.mne.picks[0])[0][index] self.mne.ch_start = ch_start self._update_trace_offsets() self._update_vscroll() self._redraw(annotations=True) def _make_butterfly_selections_dict(self): """Make an altered copy of the selections dict for butterfly mode.""" from ..utils import _get_stim_channel selections_dict = deepcopy(self.mne.ch_selections) # remove potential duplicates for selection_group in ('Vertex', 'Custom'): selections_dict.pop(selection_group, None) # if present, remove stim channel from non-misc selection groups stim_ch = _get_stim_channel(None, self.mne.info, raise_error=False) if len(stim_ch): stim_pick = self.mne.ch_names.tolist().index(stim_ch[0]) for _sel, _picks in selections_dict.items(): if _sel != 'Misc': stim_mask = np.in1d(_picks, [stim_pick], invert=True) selections_dict[_sel] = np.array(_picks)[stim_mask] return selections_dict def _update_highlighted_sensors(self): """Update the sensor plot to show what is selected.""" inds = np.in1d(self.mne.fig_selection.lasso.ch_names, self.mne.ch_names[self.mne.picks]).nonzero()[0] self.mne.fig_selection.lasso.select_many(inds) def _update_bad_sensors(self, pick, mark_bad): """Update the sensor plot to reflect (un)marked bad channels.""" # replicate plotting order from plot_sensors(), to get index right sensor_picks = list() ch_indices = channel_indices_by_type(self.mne.info) for this_type in _DATA_CH_TYPES_SPLIT: if this_type in self.mne.ch_types: sensor_picks.extend(ch_indices[this_type]) sensor_idx = np.in1d(sensor_picks, pick).nonzero()[0] # change the sensor color fig = self.mne.fig_selection fig.lasso.ec[sensor_idx, 0] = float(mark_bad) # change R of RGBA array fig.lasso.collection.set_edgecolors(fig.lasso.ec) fig.canvas.draw_idle() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # PROJECTORS & BAD CHANNELS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _create_proj_fig(self): """Create the projectors dialog window.""" from matplotlib.widgets import Button, CheckButtons projs = self.mne.projs labels = [p['desc'] for p in projs] for ix, active in enumerate(self.mne.projs_active): if active: labels[ix] += ' (already applied)' # make figure width = max([4.5, max([len(label) for label in labels]) / 8 + 0.5]) height = (len(projs) + 1) / 6 + 1.5 fig = self._new_child_figure(figsize=(width, height), fig_name='fig_proj', window_title='SSP projection vectors') # pass through some proj fig keypresses to the parent fig.canvas.mpl_connect( 'key_press_event', lambda ev: self._keypress(ev) if ev.key in 'jJ' else None) # make axes offset = (1 / 6 / height) position = (0, offset, 1, 0.8 - offset) ax = fig.add_axes(position, frame_on=False, aspect='equal') # make title first_line = ('Projectors already applied to the data are dimmed.\n' if any(self.mne.projs_active) else '') second_line = 'Projectors marked with "X" are active on the plot.' ax.set_title(f'{first_line}{second_line}') # draw checkboxes checkboxes = CheckButtons(ax, labels=labels, actives=self.mne.projs_on) # gray-out already applied projectors for label, rect, lines in zip(checkboxes.labels, checkboxes.rectangles, checkboxes.lines): if label.get_text().endswith('(already applied)'): label.set_color('0.5') rect.set_edgecolor('0.7') [x.set_color('0.7') for x in lines] rect.set_linewidth(1) # add "toggle all" button ax_all = fig.add_axes((0.25, 0.01, 0.5, offset), frame_on=True) fig.mne.proj_all = Button(ax_all, 'Toggle all') # add event listeners checkboxes.on_clicked(self._toggle_proj_checkbox) fig.mne.proj_all.on_clicked(partial(self._toggle_proj_checkbox, toggle_all=True)) # save params fig.mne.proj_checkboxes = checkboxes # show figure self.mne.fig_proj.canvas.draw() plt_show(fig=self.mne.fig_proj, warn=False) def _toggle_proj_fig(self, event=None): """Show/hide the projectors dialog window.""" if self.mne.fig_proj is None: self._create_proj_fig() else: from matplotlib.pyplot import close close(self.mne.fig_proj) def _toggle_proj_checkbox(self, event, toggle_all=False): """Perform operations when proj boxes clicked.""" on = self.mne.projs_on applied = self.mne.projs_active fig = self.mne.fig_proj new_state = (np.full_like(on, not all(on)) if toggle_all else np.array(fig.mne.proj_checkboxes.get_status())) # update Xs when toggling all if fig is not None: if toggle_all: with _events_off(fig.mne.proj_checkboxes): for ix in np.where(on != new_state)[0]: fig.mne.proj_checkboxes.set_active(ix) # don't allow disabling already-applied projs with _events_off(fig.mne.proj_checkboxes): for ix in np.where(applied)[0]: if not new_state[ix]: fig.mne.proj_checkboxes.set_active(ix) new_state[applied] = True # update the data if necessary if not np.array_equal(on, new_state): self.mne.projs_on = new_state self._update_projector() self._redraw() def _update_projector(self): """Update the data after projectors (or bads) have changed.""" inds = np.where(self.mne.projs_on)[0] # doesn't include "active" projs # copy projs from full list (self.mne.projs) to info object self.mne.info['projs'] = [deepcopy(self.mne.projs[ix]) for ix in inds] # compute the projection operator proj, wh_chs = _setup_plot_projector(self.mne.info, self.mne.noise_cov, True, self.mne.use_noise_cov) self.mne.whitened_ch_names = list(wh_chs) self.mne.projector = proj def _toggle_bad_channel(self, idx): """Mark/unmark bad channels; `idx` is index of *visible* channels.""" pick = self.mne.picks[idx] ch_name = self.mne.ch_names[pick] # add/remove from bads list bads = self.mne.info['bads'] marked_bad = ch_name not in bads if marked_bad: bads.append(ch_name) color = self.mne.ch_color_bad else: while ch_name in bads: # to make sure duplicates are removed bads.remove(ch_name) color = self.mne.ch_colors[idx] self.mne.info['bads'] = bads # update sensor color (if in selection mode) if self.mne.fig_selection is not None: self._update_bad_sensors(pick, marked_bad) # update vscroll color vscroll_idx = (self.mne.ch_order == pick).nonzero()[0] for _idx in vscroll_idx: self.mne.ax_vscroll.patches[_idx].set_color(color) # redraw self._update_projector() self._redraw() def _toggle_bad_epoch(self, event): """Mark/unmark bad epochs.""" epoch_num = self._get_epoch_num_from_time(event.xdata) epoch_ix = self.mne.inst.selection.tolist().index(epoch_num) if epoch_num in self.mne.bad_epochs: self.mne.bad_epochs.remove(epoch_num) color = 'none' else: self.mne.bad_epochs.append(epoch_num) self.mne.bad_epochs.sort() color = self.mne.epoch_color_bad self.mne.ax_hscroll.patches[epoch_ix].set_color(color) self._redraw(update_data=False) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SCROLLBARS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _update_zen_mode_offsets(self): """Compute difference between main axes edges and scrollbar edges.""" self.mne.fig_size_px = self._get_size_px() self.mne.zen_w = (self.mne.ax_vscroll.get_position().xmax - self.mne.ax_main.get_position().xmax) self.mne.zen_h = (self.mne.ax_main.get_position().ymin - self.mne.ax_hscroll.get_position().ymin) def _toggle_scrollbars(self): """Show or hide scrollbars (A.K.A. zen mode).""" self._update_zen_mode_offsets() # grow/shrink main axes to take up space from (or make room for) # scrollbars. We can't use ax.set_position() because axes are # locatable, so we use subplots_adjust should_show = not self.mne.scrollbars_visible margins = {side: getattr(self.subplotpars, side) for side in ('left', 'bottom', 'right', 'top')} # if should_show, bottom margin moves up; right margin moves left margins['bottom'] += (1 if should_show else -1) * self.mne.zen_h margins['right'] += (-1 if should_show else 1) * self.mne.zen_w self.subplots_adjust(**margins) # handle x-axis label self.mne.zen_xlabel.set_visible(not should_show) # show/hide other UI elements for elem in ('ax_hscroll', 'ax_vscroll', 'ax_proj', 'ax_help'): if elem == 'ax_vscroll' and self.mne.butterfly: continue # sometimes we don't have a proj button (ax_proj) if getattr(self.mne, elem, None) is not None: getattr(self.mne, elem).set_visible(should_show) self.mne.scrollbars_visible = should_show def _update_vscroll(self): """Update the vertical scrollbar (channel) selection indicator.""" self.mne.vsel_patch.set_xy((0, self.mne.ch_start)) self.mne.vsel_patch.set_height(self.mne.n_channels) self._update_yaxis_labels() def _update_hscroll(self): """Update the horizontal scrollbar (time) selection indicator.""" self.mne.hsel_patch.set_xy((self.mne.t_start, 0)) self.mne.hsel_patch.set_width(self.mne.duration) def _check_update_hscroll_clicked(self, event): """Handle clicks on horizontal scrollbar.""" time = event.xdata - self.mne.duration / 2 max_time = (self.mne.n_times / self.mne.info['sfreq'] + self.mne.first_time - self.mne.duration) time = np.clip(time, self.mne.first_time, max_time) if self.mne.is_epochs: ix = np.searchsorted(self.mne.boundary_times[1:], time) time = self.mne.boundary_times[ix] if self.mne.t_start != time: self.mne.t_start = time self._update_hscroll() return True return False def _check_update_vscroll_clicked(self, event): """Update vscroll patch on click, return True if location changed.""" new_ch_start = np.clip( int(round(event.ydata - self.mne.n_channels / 2)), 0, len(self.mne.ch_order) - self.mne.n_channels) if self.mne.ch_start != new_ch_start: self.mne.ch_start = new_ch_start self._update_picks() self._update_vscroll() return True return False # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SCALEBARS & Y-AXIS LABELS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _show_scalebars(self): """Add channel scale bars.""" for offset, pick in zip(self.mne.trace_offsets, self.mne.picks): this_name = self.mne.ch_names[pick] this_type = self.mne.ch_types[pick] if (this_type not in self.mne.scalebars and this_type != 'stim' and this_type in self.mne.scalings and this_type in getattr(self.mne, 'units', {}) and this_type in getattr(self.mne, 'unit_scalings', {}) and this_name not in self.mne.info['bads'] and this_name not in self.mne.whitened_ch_names): x = (self.mne.times[0] + self.mne.first_time,) * 2 denom = 4 if self.mne.butterfly else 2 y = tuple(np.array([-1, 1]) / denom + offset) self._draw_one_scalebar(x, y, this_type) def _hide_scalebars(self): """Remove channel scale bars.""" for bar in self.mne.scalebars.values(): bar.remove() for text in self.mne.scalebar_texts.values(): text.remove() self.mne.scalebars = dict() self.mne.scalebar_texts = dict() def _toggle_scalebars(self, event): """Show/hide the scalebars.""" if self.mne.scalebars_visible: self._hide_scalebars() else: self._update_picks() self._show_scalebars() # toggle self.mne.scalebars_visible = not self.mne.scalebars_visible self._redraw(update_data=False) def _draw_one_scalebar(self, x, y, ch_type): """Draw a scalebar.""" from .utils import _simplify_float color = '#AA3377' # purple kwargs = dict(color=color, zorder=self.mne.zorder['scalebar']) scaler = 1 if self.mne.butterfly else 2 inv_norm = (scaler * self.mne.scalings[ch_type] * self.mne.unit_scalings[ch_type] / self.mne.scale_factor) bar = self.mne.ax_main.plot(x, y, lw=4, **kwargs)[0] label = f'{_simplify_float(inv_norm)} {self.mne.units[ch_type]} ' text = self.mne.ax_main.text(x[1], y[1], label, va='baseline', ha='right', size='xx-small', **kwargs) self.mne.scalebars[ch_type] = bar self.mne.scalebar_texts[ch_type] = text def _update_yaxis_labels(self): """Change the y-axis labels.""" if self.mne.butterfly and self.mne.fig_selection is not None: exclude = ('Vertex', 'Custom') ticklabels = list(self.mne.ch_selections) keep_mask = np.in1d(ticklabels, exclude, invert=True) ticklabels = [t.replace('Left-', 'L-').replace('Right-', 'R-') for t in ticklabels] # avoid having to rotate labels ticklabels = np.array(ticklabels)[keep_mask] elif self.mne.butterfly: _, ixs, _ = np.intersect1d(_DATA_CH_TYPES_ORDER_DEFAULT, self.mne.ch_types, return_indices=True) ixs.sort() ticklabels = np.array(_DATA_CH_TYPES_ORDER_DEFAULT)[ixs] else: ticklabels = self.mne.ch_names[self.mne.picks] texts = self.mne.ax_main.set_yticklabels(ticklabels, picker=True) for text in texts: sty = ('italic' if text.get_text() in self.mne.whitened_ch_names else 'normal') text.set_style(sty) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DATA TRACES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _toggle_butterfly(self): """Enter or leave butterfly mode.""" self.mne.ax_vscroll.set_visible(self.mne.butterfly) self.mne.butterfly = not self.mne.butterfly self.mne.scale_factor *= 0.5 if self.mne.butterfly else 2. self._update_picks() self._update_trace_offsets() self._redraw(annotations=True) if self.mne.fig_selection is not None: self.mne.fig_selection._style_radio_buttons_butterfly() def _update_picks(self): """Compute which channel indices to show.""" if self.mne.butterfly and self.mne.ch_selections is not None: selections_dict = self._make_butterfly_selections_dict() self.mne.picks = np.concatenate(tuple(selections_dict.values())) elif self.mne.butterfly: self.mne.picks = np.arange(self.mne.ch_names.shape[0]) else: _slice = slice(self.mne.ch_start, self.mne.ch_start + self.mne.n_channels) self.mne.picks = self.mne.ch_order[_slice] self.mne.n_channels = len(self.mne.picks) def _get_epoch_num_from_time(self, time): epoch_nums = self.mne.inst.selection return epoch_nums[np.searchsorted(self.mne.boundary_times[1:], time)] def _load_data(self, start=None, stop=None): """Retrieve the bit of data we need for plotting.""" if 'raw' in (self.mne.instance_type, self.mne.ica_type): return self.mne.inst[:, start:stop] else: ix = np.searchsorted(self.mne.boundary_times, self.mne.t_start) item = slice(ix, ix + self.mne.n_epochs) data = np.concatenate(self.mne.inst.get_data(item=item), axis=-1) times = np.arange(len(self.mne.inst) * len(self.mne.inst.times) )[start:stop] / self.mne.info['sfreq'] return data, times def _update_data(self): """Update self.mne.data after user interaction.""" from ..filter import _overlap_add_filter, _filtfilt # update time start_sec = self.mne.t_start - self.mne.first_time stop_sec = start_sec + self.mne.duration if self.mne.is_epochs: start, stop = np.round(np.array([start_sec, stop_sec]) * self.mne.info['sfreq']).astype(int) else: start, stop = self.mne.inst.time_as_index((start_sec, stop_sec)) # get the data data, times = self._load_data(start, stop) # apply projectors if self.mne.projector is not None: data = self.mne.projector @ data # get only the channels we're displaying picks = self.mne.picks data = data[picks] # remove DC if self.mne.remove_dc: data -= data.mean(axis=1, keepdims=True) # filter (with same defaults as raw.filter()) if self.mne.filter_coefs is not None: starts, stops = self.mne.filter_bounds mask = (starts < stop) & (stops > start) starts = np.maximum(starts[mask], start) - start stops = np.minimum(stops[mask], stop) - start for _start, _stop in zip(starts, stops): _picks = np.where(np.in1d(picks, self.mne.picks_data))[0] if len(_picks) == 0: break this_data = data[_picks, _start:_stop] if isinstance(self.mne.filter_coefs, np.ndarray): # FIR this_data = _overlap_add_filter( this_data, self.mne.filter_coefs, copy=False) else: # IIR this_data = _filtfilt( this_data, self.mne.filter_coefs, None, 1, False) data[_picks, _start:_stop] = this_data # scale the data for display in a 1-vertical-axis-unit slot this_names = self.mne.ch_names[picks] this_types = self.mne.ch_types[picks] stims = this_types == 'stim' white = np.logical_and(np.in1d(this_names, self.mne.whitened_ch_names), np.in1d(this_names, self.mne.info['bads'], invert=True)) norms = np.vectorize(self.mne.scalings.__getitem__)(this_types) norms[stims] = data[stims].max(axis=-1) norms[white] = self.mne.scalings['whitened'] norms[norms == 0] = 1 data /= 2 * norms[:, np.newaxis] self.mne.data = data self.mne.times = times def _update_trace_offsets(self): """Compute viewport height and adjust offsets.""" # simultaneous selection and butterfly modes if self.mne.butterfly and self.mne.ch_selections is not None: self._update_picks() selections_dict = self._make_butterfly_selections_dict() n_offsets = len(selections_dict) sel_order = list(selections_dict) offsets = np.array([]) for pick in self.mne.picks: for sel in sel_order: if pick in selections_dict[sel]: offsets = np.append(offsets, sel_order.index(sel)) # butterfly only elif self.mne.butterfly: unique_ch_types = set(self.mne.ch_types) n_offsets = len(unique_ch_types) ch_type_order = [_type for _type in _DATA_CH_TYPES_ORDER_DEFAULT if _type in unique_ch_types] offsets = np.array([ch_type_order.index(ch_type) for ch_type in self.mne.ch_types]) # normal mode else: n_offsets = self.mne.n_channels offsets = np.arange(n_offsets, dtype=float) # update ylim, ticks, vertline, and scrollbar patch ylim = (n_offsets - 0.5, -0.5) # inverted y axis โ†’ new chs at bottom self.mne.ax_main.set_ylim(ylim) self.mne.ax_main.set_yticks(np.unique(offsets)) self.mne.vsel_patch.set_height(self.mne.n_channels) # store new offsets, update axis labels self.mne.trace_offsets = offsets self._update_yaxis_labels() def _draw_traces(self): """Draw (or redraw) the channel data.""" from matplotlib.colors import to_rgba_array from matplotlib.patches import Rectangle # clear scalebars if self.mne.scalebars_visible: self._hide_scalebars() # get info about currently visible channels picks = self.mne.picks ch_names = self.mne.ch_names[picks] ch_types = self.mne.ch_types[picks] bad_bool = np.in1d(ch_names, self.mne.info['bads']) # colors good_ch_colors = [self.mne.ch_color_dict[_type] for _type in ch_types] ch_colors = to_rgba_array( [self.mne.ch_color_bad if _bad else _color for _bad, _color in zip(bad_bool, good_ch_colors)]) self.mne.ch_colors = np.array(good_ch_colors) # use for unmarking bads labels = self.mne.ax_main.yaxis.get_ticklabels() if self.mne.butterfly: for label in labels: label.set_color(self.mne.fgcolor) else: for label, color in zip(labels, ch_colors): label.set_color(color) # decim decim = np.ones_like(picks) data_picks_mask = np.in1d(picks, self.mne.picks_data) decim[data_picks_mask] = self.mne.decim # decim can vary by channel type, so compute different `times` vectors decim_times = {decim_value: self.mne.times[::decim_value] + self.mne.first_time for decim_value in set(decim)} # add more traces if needed n_picks = len(picks) if n_picks > len(self.mne.traces): n_new_chs = n_picks - len(self.mne.traces) new_traces = self.mne.ax_main.plot(np.full((1, n_new_chs), np.nan), **self.mne.trace_kwargs) self.mne.traces.extend(new_traces) # remove extra traces if needed extra_traces = self.mne.traces[n_picks:] for trace in extra_traces: trace.remove() self.mne.traces = self.mne.traces[:n_picks] # check for bad epochs time_range = (self.mne.times + self.mne.first_time)[[0, -1]] if self.mne.instance_type == 'epochs': epoch_ix = np.searchsorted(self.mne.boundary_times, time_range) epoch_ix = np.arange(epoch_ix[0], epoch_ix[1]) epoch_nums = self.mne.inst.selection[epoch_ix[0]:epoch_ix[-1] + 1] visible_bad_epochs = epoch_nums[ np.in1d(epoch_nums, self.mne.bad_epochs).nonzero()] while len(self.mne.epoch_traces): self.mne.epoch_traces.pop(-1).remove() # handle custom epoch colors (for autoreject integration) if self.mne.epoch_colors is None: # shape: n_traces ร— RGBA โ†’ n_traces ร— n_epochs ร— RGBA custom_colors = np.tile(ch_colors[:, None, :], (1, self.mne.n_epochs, 1)) else: custom_colors = np.empty((len(self.mne.picks), self.mne.n_epochs, 4)) for ii, _epoch_ix in enumerate(epoch_ix): this_colors = self.mne.epoch_colors[_epoch_ix] custom_colors[:, ii] = to_rgba_array([this_colors[_ch] for _ch in picks]) # override custom color on bad epochs for _bad in visible_bad_epochs: _ix = epoch_nums.tolist().index(_bad) _cols = np.array([self.mne.epoch_color_bad, self.mne.ch_color_bad])[bad_bool.astype(int)] custom_colors[:, _ix] = to_rgba_array(_cols) # update traces ylim = self.mne.ax_main.get_ylim() for ii, line in enumerate(self.mne.traces): this_name = ch_names[ii] this_type = ch_types[ii] this_offset = self.mne.trace_offsets[ii] this_times = decim_times[decim[ii]] this_data = this_offset - self.mne.data[ii] * self.mne.scale_factor this_data = this_data[..., ::decim[ii]] # clip if self.mne.clipping == 'clamp': this_data = np.clip(this_data, -0.5, 0.5) elif self.mne.clipping is not None: clip = self.mne.clipping * (0.2 if self.mne.butterfly else 1) bottom = max(this_offset - clip, ylim[1]) height = min(2 * clip, ylim[0] - bottom) rect = Rectangle(xy=np.array([time_range[0], bottom]), width=time_range[1] - time_range[0], height=height, transform=self.mne.ax_main.transData) line.set_clip_path(rect) # prep z order is_bad_ch = this_name in self.mne.info['bads'] this_z = self.mne.zorder['bads' if is_bad_ch else 'data'] if self.mne.butterfly and not is_bad_ch: this_z = self.mne.zorder.get(this_type, this_z) # plot each trace multiple times to get the desired epoch coloring. # use masked arrays to plot discontinuous epochs that have the same # color in a single plot() call. if self.mne.instance_type == 'epochs': this_colors = custom_colors[ii] for cix, color in enumerate(np.unique(this_colors, axis=0)): bool_ixs = (this_colors == color).all(axis=1) mask = np.zeros_like(this_times, dtype=bool) _starts = self.mne.boundary_times[epoch_ix][bool_ixs] _stops = self.mne.boundary_times[epoch_ix + 1][bool_ixs] for _start, _stop in zip(_starts, _stops): _mask = np.logical_and(_start < this_times, this_times <= _stop) mask = mask | _mask _times = np.ma.masked_array(this_times, mask=~mask) # always use the existing traces first if cix == 0: line.set_xdata(_times) line.set_ydata(this_data) line.set_color(color) line.set_zorder(this_z) else: # make new traces as needed _trace = self.mne.ax_main.plot( _times, this_data, color=color, zorder=this_z, **self.mne.trace_kwargs) self.mne.epoch_traces.extend(_trace) else: line.set_xdata(this_times) line.set_ydata(this_data) line.set_color(ch_colors[ii]) line.set_zorder(this_z) # update xlim self.mne.ax_main.set_xlim(*time_range) # draw scalebars maybe if self.mne.scalebars_visible: self._show_scalebars() # redraw event lines if self.mne.event_times is not None: self._draw_event_lines() def _redraw(self, update_data=True, annotations=False): """Redraw (convenience method for frequently grouped actions).""" if update_data: self._update_data() if self.mne.vline_visible and self.mne.is_epochs: # prevent flickering _ = self._recompute_epochs_vlines(None) self._draw_traces() if annotations and not self.mne.is_epochs: self._draw_annotations() self.canvas.draw_idle() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # EVENT LINES AND MARKER LINES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def _draw_event_lines(self): """Draw the event lines and their labels.""" from matplotlib.colors import to_rgba_array from matplotlib.collections import LineCollection if self.mne.event_nums is not None: mask = np.logical_and(self.mne.event_times >= self.mne.times[0], self.mne.event_times <= self.mne.times[-1]) this_event_times = self.mne.event_times[mask] this_event_nums = self.mne.event_nums[mask] n_visible_events = len(this_event_times) colors = to_rgba_array([self.mne.event_color_dict[n] for n in this_event_nums]) # create event lines ylim = self.mne.ax_main.get_ylim() xs = np.repeat(this_event_times, 2) ys = np.tile(ylim, n_visible_events) segs = np.vstack([xs, ys]).T.reshape(n_visible_events, 2, 2) event_lines = LineCollection(segs, linewidths=0.5, colors=colors, zorder=self.mne.zorder['events']) self.mne.ax_main.add_collection(event_lines) self.mne.event_lines = event_lines # create event labels while len(self.mne.event_texts): self.mne.event_texts.pop().remove() for _t, _n, _c in zip(this_event_times, this_event_nums, colors): label = self.mne.event_id_rev.get(_n, _n) this_text = self.mne.ax_main.annotate( label, (_t, ylim[1]), ha='center', va='baseline', color=self.mne.fgcolor, xytext=(0, 2), textcoords='offset points', fontsize=8) self.mne.event_texts.append(this_text) def _recompute_epochs_vlines(self, xdata): """Recompute vline x-coords for epochs plots (after scrolling, etc).""" # special case: changed view duration w/ "home" or "end" key # (no click event, hence no xdata) if xdata is None: xdata = np.array(self.mne.vline.get_segments())[0, 0, 0] # compute the (continuous) times for the lines on each epoch epoch_dur = np.diff(self.mne.boundary_times[:2])[0] rel_time = xdata % epoch_dur abs_time = self.mne.times[0] xs = np.arange(self.mne.n_epochs) * epoch_dur + abs_time + rel_time segs = np.array(self.mne.vline.get_segments()) # recreate segs from scratch in case view duration changed # (i.e., handle case when n_segments != n_epochs) segs = np.tile([[0.], [1.]], (len(xs), 1, 2)) # y values segs[..., 0] = np.tile(xs[:, None], 2) # x values self.mne.vline.set_segments(segs) return rel_time def _show_vline(self, xdata): """Show the vertical line(s).""" if self.mne.is_epochs: # convert xdata to be epoch-relative (for the text) rel_time = self._recompute_epochs_vlines(xdata) xdata = rel_time + self.mne.inst.times[0] else: self.mne.vline.set_xdata(xdata) self.mne.vline_hscroll.set_xdata(xdata) self.mne.vline_text.set_text(f'{xdata:0.2f} s ') self._toggle_vline(True) def _toggle_vline(self, visible): """Show or hide the vertical line(s).""" for artist in (self.mne.vline, self.mne.vline_hscroll, self.mne.vline_text): if artist is not None: artist.set_visible(visible) self.draw_artist(artist) self.mne.vline_visible = visible self.canvas.draw_idle() class MNELineFigure(MNEFigure): """Interactive figure for non-scrolling line plots.""" def __init__(self, inst, n_axes, figsize, **kwargs): super().__init__(figsize=figsize, inst=inst, **kwargs) # AXES: default margins (inches) l_margin = 0.8 r_margin = 0.2 b_margin = 0.65 t_margin = 0.35 # AXES: default margins (figure-relative coordinates) left = self._inch_to_rel(l_margin) right = 1 - self._inch_to_rel(r_margin) bottom = self._inch_to_rel(b_margin, horiz=False) top = 1 - self._inch_to_rel(t_margin, horiz=False) # AXES: make subplots axes = [self.add_subplot(n_axes, 1, 1)] for ix in range(1, n_axes): axes.append(self.add_subplot(n_axes, 1, ix + 1, sharex=axes[0])) self.subplotpars.update(left=left, bottom=bottom, top=top, right=right, hspace=0.4) # save useful things self.mne.ax_list = axes def _resize(self, event): """Handle resize event.""" old_width, old_height = self.mne.fig_size_px new_width, new_height = self._get_size_px() new_margins = _calc_new_margins( self, old_width, old_height, new_width, new_height) self.subplots_adjust(**new_margins) self.mne.fig_size_px = (new_width, new_height) def _figure(toolbar=True, FigureClass=MNEFigure, **kwargs): """Instantiate a new figure.""" from matplotlib import rc_context from matplotlib.pyplot import figure title = kwargs.pop('window_title', None) # extract title before init rc = dict() if toolbar else dict(toolbar='none') with rc_context(rc=rc): fig = figure(FigureClass=FigureClass, **kwargs) if title is not None: _set_window_title(fig, title) # add event callbacks fig._add_default_callbacks() return fig def _browse_figure(inst, **kwargs): """Instantiate a new MNE browse-style figure.""" from .utils import _get_figsize_from_config figsize = kwargs.pop('figsize', _get_figsize_from_config()) fig = _figure(inst=inst, toolbar=False, FigureClass=MNEBrowseFigure, figsize=figsize, **kwargs) # initialize zen mode (can't do in __init__ due to get_position() calls) fig.canvas.draw() fig._update_zen_mode_offsets() fig._resize(None) # needed for MPL >=3.4 # if scrollbars are supposed to start hidden, set to True and then toggle if not fig.mne.scrollbars_visible: fig.mne.scrollbars_visible = True fig._toggle_scrollbars() return fig def _line_figure(inst, axes=None, picks=None, **kwargs): """Instantiate a new line figure.""" from matplotlib.axes import Axes # if picks is None, only show data channels allowed_ch_types = (_DATA_CH_TYPES_SPLIT if picks is None else _VALID_CHANNEL_TYPES) # figure out expected number of axes ch_types = np.array(inst.get_channel_types()) if picks is not None: ch_types = ch_types[picks] n_axes = len(np.intersect1d(ch_types, allowed_ch_types)) # handle user-provided axes if axes is not None: if isinstance(axes, Axes): axes = [axes] _validate_if_list_of_axes(axes, n_axes) fig = axes[0].get_figure() else: figsize = kwargs.pop('figsize', (10, 2.5 * n_axes + 1)) fig = _figure(inst=inst, toolbar=True, FigureClass=MNELineFigure, figsize=figsize, n_axes=n_axes, **kwargs) fig.mne.fig_size_px = fig._get_size_px() # can't do in __init__ axes = fig.mne.ax_list return fig, axes def _psd_figure(inst, proj, picks, axes, area_mode, tmin, tmax, fmin, fmax, n_jobs, color, area_alpha, dB, estimate, average, spatial_colors, xscale, line_alpha, sphere, window, **kwargs): """Instantiate a new power spectral density figure.""" from .. import BaseEpochs from ..io import BaseRaw # triage kwargs for different PSD methods (rawโ†’welch, epochsโ†’multitaper) welch_kwargs = ('n_fft', 'n_overlap', 'reject_by_annotation') multitaper_kwargs = ('bandwidth', 'adaptive', 'low_bias', 'normalization') psd_kwargs = dict() for kw in welch_kwargs + multitaper_kwargs: if kw in kwargs: psd_kwargs[kw] = kwargs.pop(kw) if isinstance(inst, BaseRaw): psd_func = partial(psd_welch, window=window) elif isinstance(inst, BaseEpochs): psd_func = psd_multitaper else: raise TypeError('Expected an instance of Raw or Epochs, got ' f'{type(inst)}.') # arg checking if np.isfinite(fmax) and (fmax > inst.info['sfreq'] / 2): raise ValueError( f'Requested fmax ({fmax} Hz) must not exceed ยฝ the sampling ' f'frequency of the data ({0.5 * inst.info["sfreq"]}).') _check_option('area_mode', area_mode, [None, 'std', 'range']) _check_option('xscale', xscale, ('log', 'linear')) sphere = _check_sphere(sphere, inst.info) picks = _picks_to_idx(inst.info, picks) titles = _handle_default('titles', None) units = _handle_default('units', None) scalings = _handle_default('scalings', None) # containers picks_list = list() units_list = list() titles_list = list() scalings_list = list() psd_list = list() # initialize figure fig, axes = _line_figure(inst, axes, picks, **kwargs) # split picks, units, etc, for each subplot (picks_list, units_list, scalings_list, titles_list ) = _split_picks_by_type(inst, picks, units, scalings, titles) del picks # don't add ylabels & titles if figure has unexpected number of axes make_label = len(axes) == len(fig.axes) # Plot Frequency [Hz] xlabel only on the last axis xlabels_list = [False] * (len(axes) - 1) + [True] # compute PSDs for picks in picks_list: psd, freqs = psd_func(inst, tmin=tmin, tmax=tmax, picks=picks, fmin=fmin, fmax=fmax, proj=proj, n_jobs=n_jobs, **psd_kwargs) if isinstance(inst, BaseEpochs): psd = np.mean(psd, axis=0) psd_list.append(psd) # plot _plot_psd(inst, fig, freqs, psd_list, picks_list, titles_list, units_list, scalings_list, axes, make_label, color, area_mode, area_alpha, dB, estimate, average, spatial_colors, xscale, line_alpha, sphere, xlabels_list) return fig def _split_picks_by_type(inst, picks, units, scalings, titles): """Separate picks, units, etc, for plotting on separate subplots.""" picks_list = list() units_list = list() scalings_list = list() titles_list = list() # if picks is None, only show data channels allowed_ch_types = (_DATA_CH_TYPES_SPLIT if picks is None else _VALID_CHANNEL_TYPES) for ch_type in allowed_ch_types: pick_kwargs = dict(meg=False, ref_meg=False, exclude=[]) if ch_type in ('mag', 'grad'): pick_kwargs['meg'] = ch_type elif ch_type in _FNIRS_CH_TYPES_SPLIT: pick_kwargs['fnirs'] = ch_type else: pick_kwargs[ch_type] = True these_picks = pick_types(inst.info, **pick_kwargs) these_picks = np.intersect1d(these_picks, picks) if len(these_picks) > 0: picks_list.append(these_picks) units_list.append(units[ch_type]) scalings_list.append(scalings[ch_type]) titles_list.append(titles[ch_type]) if len(picks_list) == 0: raise RuntimeError('No data channels found') return picks_list, units_list, scalings_list, titles_list def _calc_new_margins(fig, old_width, old_height, new_width, new_height): """Compute new figure-relative values to maintain fixed-size margins.""" new_margins = dict() for side in ('left', 'right', 'bottom', 'top'): ratio = ((old_width / new_width) if side in ('left', 'right') else (old_height / new_height)) rel_dim = getattr(fig.subplotpars, side) if side in ('right', 'top'): new_margins[side] = 1 - ratio * (1 - rel_dim) else: new_margins[side] = ratio * rel_dim # gh-8304: don't allow resizing too small if (new_margins['bottom'] < new_margins['top'] and new_margins['left'] < new_margins['right']): return(new_margins) @contextmanager def _patched_canvas(fig): old_canvas = fig.canvas if fig.canvas is None: # XXX old MPL (at least 3.0.3) does this for Agg fig.canvas = Bunch(mpl_connect=lambda event, callback: None) try: yield finally: fig.canvas = old_canvas
bsd-3-clause
soazig/project-epsilon-1
code/utils/scripts/correlation_script.py
4
2353
# - compatibility with Python 3 from __future__ import print_function # print('me') instead of print 'me' from __future__ import division # 1/2 == 0.5, not 0 from __future__ import absolute_import import sys sys.path.append(".././utils") # - import common modules import numpy as np import matplotlib.pyplot as plt from find_activated_voxel_functions import * from convolution_normal_script import X_matrix import nibabel as nib from scipy.ndimage import gaussian_filter from matplotlib import colors import matplotlib # import events2neural from stimuli module from stimuli import events2neural import nibabel as nib #import load data modules from load_BOLD import * location_of_data="../../data/ds005/" location_of_plot = "../../plots/" # Load the sub001 run001 image data = load_img(1,1) data = gaussian_filter(data, [2, 2, 2, 0]) # Get the number of volumes n_trs = data.shape[-1] #nice map nice_cmap_values = np.loadtxt('actc.txt') nice_cmap = colors.ListedColormap(nice_cmap_values, 'actc') # Identify the TR (time between scans) TR = 2 # Call the events2neural function to generate the on-off values for each volume task_name = location_of_data +"sub001/model/model001/onsets/task001_run001/cond002.txt" task = np.loadtxt(task_name) time_course = events2neural(task, TR, n_trs) # Make a single brain volume-size array of all zero to hold the correlations correlations = np.zeros(data.shape[:-1]) # Loop over all voxel indices on the first, then second, then third dimension # Extract the voxel time courses at each voxel coordinate in the image # Get the correlation between the voxel time course and neural prediction # Fill in the value in the correlations array for i in range(data.shape[0]): for j in range(data.shape[1]): for k in range(data.shape[2]): vox_values = data[i, j, k] correlations[i, j, k] = np.corrcoef(time_course, vox_values)[1, 0] #set up the label font size matplotlib.rc('xtick', labelsize=5) matplotlib.rc('ytick', labelsize=5) # Plot the correlations array for i in range(34): plt.subplot(5,7,i+1) plt.imshow(correlations[:,:,i],cmap = nice_cmap, alpha=0.5) plt.title("Slice"+str(i+1), fontsize=5) plt.tight_layout() plt.suptitle("Subject 1 Run 1 Correlation in Condition 2 for Different Slices\n") plt.colorbar() plt.savefig(location_of_plot+"correlation_s1r1c2")
bsd-3-clause
wangyum/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py
9
67662
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNLinearCombinedEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib from tensorflow.python.training import session_run_hook from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util def _assert_metrics_in_range(keys, metrics): epsilon = 0.00001 # Added for floating point edge cases. for key in keys: estimator_test_utils.assert_in_range(0.0 - epsilon, 1.0 + epsilon, key, metrics) class _CheckCallsHead(head_lib.Head): """Head that checks whether head_ops is called.""" def __init__(self): self._head_ops_called_times = 0 @property def logits_dimension(self): return 1 def create_model_fn_ops( self, mode, features, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" self._head_ops_called_times += 1 loss = losses.mean_squared_error(labels, logits) return model_fn.ModelFnOps( mode, predictions={'loss': loss}, loss=loss, train_op=train_op_fn(loss), eval_metric_ops={'loss': loss}) @property def head_ops_called_times(self): return self._head_ops_called_times class _StepCounterHook(session_run_hook.SessionRunHook): """Counts the number of training steps.""" def __init__(self): self._steps = 0 def after_run(self, run_context, run_values): del run_context, run_values self._steps += 1 @property def steps(self): return self._steps class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'dnn_feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn_linear_combined._dnn_linear_combined_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'dnn_feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep language embeddings constant, whereas wire # embeddings will be trained. 'embedding_lr_multipliers': { embedding_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } with ops.Graph().as_default(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) training_util.create_global_step() model_ops = dnn_linear_combined._dnn_linear_combined_model_fn( features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') language_initial_value = sess.run(language_var) for _ in range(2): _, language_value = sess.run([model_ops.train_op, language_var]) self.assertAllClose(language_value, language_initial_value) # We could also test that wire_value changed, but that test would be flaky. class DNNLinearCombinedEstimatorTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedEstimator) def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedEstimator( head=_CheckCallsHead(), linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testCheckCallsHead(self): """Tests binary classification using matrix data as input.""" head = _CheckCallsHead() iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10))] estimator = dnn_linear_combined.DNNLinearCombinedEstimator( head, linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(1, head.head_ops_called_times) estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(2, head.head_ops_called_times) estimator.predict(input_fn=test_data.iris_input_multiclass_fn) self.assertEqual(3, head.head_ops_called_times) class DNNLinearCombinedClassifierTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedClassifier) def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testNoDnnHiddenUnits(self): def _input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') with self.assertRaisesRegexp( ValueError, 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified'): classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[age, language]) classifier.fit(input_fn=_input_fn, steps=2) def testSyncReplicasOptimizerUnsupported(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] sync_optimizer = sync_replicas_optimizer.SyncReplicasOptimizer( opt=adagrad.AdagradOptimizer(learning_rate=0.1), replicas_to_aggregate=1, total_num_replicas=1) sync_hook = sync_optimizer.make_session_run_hook(is_chief=True) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=sync_optimizer) with self.assertRaisesRegexp( ValueError, 'SyncReplicasOptimizer is not supported in DNNLinearCombined model'): classifier.fit( input_fn=test_data.iris_input_multiclass_fn, steps=100, monitors=[sync_hook]) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[embedding_language], dnn_hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, dnn_feature_columns=feature_columns, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertTrue(callable(classifier.params['input_layer_partitioner'])) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testLogisticRegression_TensorData(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column(cont_features[i], test_data.get_quantile_based_buckets( iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] embedding_features = [ feature_column.embedding_column( sparse_features[0], dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=sparse_features, dnn_feature_columns=embedding_features, dnn_hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testMultiClass(self): """Tests multi-class classification using matrix data as input. Please see testLogisticRegression_TensorData() for how to use Tensor data as input instead. """ iris = base.load_iris() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=bucketized_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=[language_column], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy',), scores) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} labels = constant_op.constant([[1], [0], [0], [0]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(0.562, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels def _input_fn_eval(): # 4 rows, with different weights. features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(1.06, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x). labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByObject(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByString(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer='Ftrl', dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad') classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByFunction(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] def _optimizer_exp_decay(): global_step = training_util.get_global_step() learning_rate = learning_rate_decay.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) return adagrad.AdagradOptimizer(learning_rate=learning_rate) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=_optimizer_exp_decay, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=_optimizer_exp_decay) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testPredict(self): """Tests weight column in evaluation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32)} return features, labels def _input_fn_predict(): y = input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=1) features = {'x': y} return features classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=100) probs = list(classifier.predict_proba(input_fn=_input_fn_predict)) self.assertAllClose([[0.75, 0.25]] * 4, probs, 0.05) classes = list(classifier.predict_classes(input_fn=_input_fn_predict)) self.assertListEqual([0] * 4, classes) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) # Test the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testVariableQuery(self): """Tests get_variable_names and get_variable_value.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=500) var_names = classifier.get_variable_names() self.assertGreater(len(var_names), 3) for name in var_names: classifier.get_variable_value(name) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[ feature_column.real_valued_column('age'), language, ], dnn_feature_columns=[ feature_column.embedding_column( language, dimension=1), ], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets classifier.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=True) classifier.fit(input_fn=_input_fn_train, steps=1000) self.assertIn('binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) # logodds(0.75) = 1.09861228867 self.assertAlmostEqual( 1.0986, float(classifier.get_variable_value( 'binary_logistic_head/centered_bias_weight')[0]), places=2) def testDisableCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=False) classifier.fit(input_fn=_input_fn_train, steps=500) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testGlobalStepLinearOnly(self): """Tests global step update for linear-only model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNOnly(self): """Tests global step update for dnn-only model.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNLinearCombinedBug(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=False) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) # Expected is 100, but because of the global step increment bug, this is 51. self.assertEqual(51, step_counter.steps) def testGlobalStepDNNLinearCombinedBugFixed(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=True) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testLinearOnly(self): """Tests that linear-only instantiation works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/age/weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/age/weight'))) self.assertEquals( 100, len(classifier.get_variable_value('linear/language/weights'))) def testLinearOnlyOneFeature(self): """Tests that linear-only instantiation works for one feature only.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 99) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/bias_weight'))) self.assertEquals( 99, len(classifier.get_variable_value('linear/language/weights'))) def testDNNOnly(self): """Tests that DNN-only instantiation works.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=1000) classifier.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) self.assertNotIn('linear/bias_weight', variable_names) self.assertNotIn('linear/feature_BUCKETIZED/weight', variable_names) def testDNNWeightsBiasesNames(self): """Tests the names of DNN weights and biases in the checkpoints.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=5) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) class DNNLinearCombinedRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) scores = regressor.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=1) self.assertIn('loss', scores.keys()) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=10) classifier.evaluate(input_fn=_input_fn, steps=1) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) regressor.predict_scores(input_fn=_input_fn, as_iterable=False) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor.predict_scores(input_fn=predict_input_fn, as_iterable=True) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testExport(self): """Tests export model for servo.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = _input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets regressor.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testTrainSaveLoad(self): """Tests regression with restarting training / evaluate.""" def _input_fn(num_epochs=None): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = { 'x': input_lib.limit_epochs( constant_op.constant([[100.], [3.], [2.], [2.]]), num_epochs=num_epochs) } return features, labels model_dir = tempfile.mkdtemp() # pylint: disable=g-long-lambda new_regressor = lambda: dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor = new_regressor() regressor.fit(input_fn=_input_fn, steps=10) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor = new_regressor() predictions2 = list(regressor.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testLinearOnly(self): """Tests linear-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDNNOnly(self): """Tests DNN-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testNoneFeatureEngineeringFn(self): def input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels def feature_engineering_fn(features, labels): _, _ = features, labels labels = constant_op.constant([[1000.], [30.], [20.], [20.]]) features = {'x': constant_op.constant([[1000.], [30.], [20.], [20.]])} return features, labels estimator_with_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1), feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=100) estimator_without_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) estimator_without_fe_fn.fit(input_fn=input_fn, steps=100) # predictions = y prediction_with_fe_fn = next( estimator_with_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(1000., prediction_with_fe_fn, delta=10.0) prediction_without_fe_fn = next( estimator_without_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(100., prediction_without_fe_fn, delta=1.0) if __name__ == '__main__': test.main()
apache-2.0
ryfeus/lambda-packs
Keras_tensorflow_nightly/source2.7/tensorflow/contrib/learn/__init__.py
17
2736
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """High level API for learning (DEPRECATED). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. See the @{$python/contrib.learn} guide. @@BaseEstimator @@Estimator @@Trainable @@Evaluable @@KMeansClustering @@ModeKeys @@ModelFnOps @@MetricSpec @@PredictionKey @@DNNClassifier @@DNNEstimator @@DNNRegressor @@DNNLinearCombinedRegressor @@DNNLinearCombinedEstimator @@DNNLinearCombinedClassifier @@DynamicRnnEstimator @@LinearClassifier @@LinearEstimator @@LinearRegressor @@LogisticRegressor @@StateSavingRnnEstimator @@SVM @@SKCompat @@Head @@multi_class_head @@multi_label_head @@binary_svm_head @@regression_head @@poisson_regression_head @@multi_head @@no_op_train_fn @@Experiment @@ExportStrategy @@TaskType @@NanLossDuringTrainingError @@RunConfig @@evaluate @@infer @@run_feeds @@run_n @@train @@extract_dask_data @@extract_dask_labels @@extract_pandas_data @@extract_pandas_labels @@extract_pandas_matrix @@infer_real_valued_columns_from_input @@infer_real_valued_columns_from_input_fn @@read_batch_examples @@read_batch_features @@read_batch_record_features @@read_keyed_batch_examples @@read_keyed_batch_examples_shared_queue @@read_keyed_batch_features @@read_keyed_batch_features_shared_queue @@InputFnOps @@ProblemType @@build_parsing_serving_input_fn @@make_export_strategy """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn import * # pylint: enable=wildcard-import from tensorflow.contrib.learn.python.learn import learn_runner_lib as learn_runner from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = ['datasets', 'head', 'io', 'learn_runner', 'models', 'monitors', 'NotFittedError', 'ops', 'preprocessing', 'utils', 'graph_actions'] remove_undocumented(__name__, _allowed_symbols)
mit
rs2/pandas
pandas/tests/indexes/multi/test_setops.py
1
11439
import numpy as np import pytest import pandas as pd from pandas import MultiIndex, Series import pandas._testing as tm @pytest.mark.parametrize("case", [0.5, "xxx"]) @pytest.mark.parametrize( "method", ["intersection", "union", "difference", "symmetric_difference"] ) def test_set_ops_error_cases(idx, case, sort, method): # non-iterable input msg = "Input must be Index or array-like" with pytest.raises(TypeError, match=msg): getattr(idx, method)(case, sort=sort) @pytest.mark.parametrize("klass", [MultiIndex, np.array, Series, list]) def test_intersection_base(idx, sort, klass): first = idx[2::-1] # first 3 elements reversed second = idx[:5] if klass is not MultiIndex: second = klass(second.values) intersect = first.intersection(second, sort=sort) if sort is None: expected = first.sort_values() else: expected = first tm.assert_index_equal(intersect, expected) msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.intersection([1, 2, 3], sort=sort) @pytest.mark.arm_slow @pytest.mark.parametrize("klass", [MultiIndex, np.array, Series, list]) def test_union_base(idx, sort, klass): first = idx[::-1] second = idx[:5] if klass is not MultiIndex: second = klass(second.values) union = first.union(second, sort=sort) if sort is None: expected = first.sort_values() else: expected = first tm.assert_index_equal(union, expected) msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.union([1, 2, 3], sort=sort) def test_difference_base(idx, sort): second = idx[4:] answer = idx[:4] result = idx.difference(second, sort=sort) if sort is None: answer = answer.sort_values() assert result.equals(answer) tm.assert_index_equal(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = idx.difference(case, sort=sort) tm.assert_index_equal(result, answer) msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): idx.difference([1, 2, 3], sort=sort) def test_symmetric_difference(idx, sort): first = idx[1:] second = idx[:-1] answer = idx[[-1, 0]] result = first.symmetric_difference(second, sort=sort) if sort is None: answer = answer.sort_values() tm.assert_index_equal(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.symmetric_difference(case, sort=sort) tm.assert_index_equal(result, answer) msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.symmetric_difference([1, 2, 3], sort=sort) def test_multiindex_symmetric_difference(): # GH 13490 idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=["a", "b"]) result = idx ^ idx assert result.names == idx.names idx2 = idx.copy().rename(["A", "B"]) result = idx ^ idx2 assert result.names == [None, None] def test_empty(idx): # GH 15270 assert not idx.empty assert idx[:0].empty def test_difference(idx, sort): first = idx result = first.difference(idx[-3:], sort=sort) vals = idx[:-3].values if sort is None: vals = sorted(vals) expected = MultiIndex.from_tuples(vals, sortorder=0, names=idx.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == idx.names tm.assert_index_equal(result, expected) # empty difference: reflexive result = idx.difference(idx, sort=sort) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # empty difference: superset result = idx[-3:].difference(idx, sort=sort) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # empty difference: degenerate result = idx[:0].difference(idx, sort=sort) expected = idx[:0] assert result.equals(expected) assert result.names == idx.names # names not the same chunklet = idx[-3:] chunklet.names = ["foo", "baz"] result = first.difference(chunklet, sort=sort) assert result.names == (None, None) # empty, but non-equal result = idx.difference(idx.sortlevel(1)[0], sort=sort) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values, sort=sort) assert result.equals(first[:0]) # name from empty array result = first.difference([], sort=sort) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([("foo", "one")], sort=sort) expected = pd.MultiIndex.from_tuples( [("bar", "one"), ("baz", "two"), ("foo", "two"), ("qux", "one"), ("qux", "two")] ) expected.names = first.names assert first.names == result.names msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.difference([1, 2, 3, 4, 5], sort=sort) def test_difference_sort_special(): # GH-24959 idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) # sort=None, the default result = idx.difference([]) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="Not implemented.") def test_difference_sort_special_true(): # TODO decide on True behaviour idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) result = idx.difference([], sort=True) expected = pd.MultiIndex.from_product([[0, 1], ["a", "b"]]) tm.assert_index_equal(result, expected) def test_difference_sort_incomparable(): # GH-24959 idx = pd.MultiIndex.from_product([[1, pd.Timestamp("2000"), 2], ["a", "b"]]) other = pd.MultiIndex.from_product([[3, pd.Timestamp("2000"), 4], ["c", "d"]]) # sort=None, the default # MultiIndex.difference deviates here from other difference # implementations in not catching the TypeError msg = "'<' not supported between instances of 'Timestamp' and 'int'" with pytest.raises(TypeError, match=msg): result = idx.difference(other) # sort=False result = idx.difference(other, sort=False) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="Not implemented.") def test_difference_sort_incomparable_true(): # TODO decide on True behaviour # # sort=True, raises idx = pd.MultiIndex.from_product([[1, pd.Timestamp("2000"), 2], ["a", "b"]]) other = pd.MultiIndex.from_product([[3, pd.Timestamp("2000"), 4], ["c", "d"]]) with pytest.raises(TypeError): idx.difference(other, sort=True) def test_union(idx, sort): piece1 = idx[:5][::-1] piece2 = idx[3:] the_union = piece1.union(piece2, sort=sort) if sort is None: tm.assert_index_equal(the_union, idx.sort_values()) assert tm.equalContents(the_union, idx) # corner case, pass self or empty thing: the_union = idx.union(idx, sort=sort) assert the_union is idx the_union = idx.union(idx[:0], sort=sort) assert the_union is idx # FIXME: dont leave commented-out # won't work in python 3 # tuples = _index.values # result = _index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(idx) # assert ('foo', 'one') in result # assert 'B' in result # result2 = _index.union(other) # assert result.equals(result2) def test_intersection(idx, sort): piece1 = idx[:5][::-1] piece2 = idx[3:] the_int = piece1.intersection(piece2, sort=sort) if sort is None: tm.assert_index_equal(the_int, idx[3:5]) assert tm.equalContents(the_int, idx[3:5]) # corner case, pass self the_int = idx.intersection(idx, sort=sort) assert the_int is idx # empty intersection: disjoint empty = idx[:2].intersection(idx[2:], sort=sort) expected = idx[:0] assert empty.equals(expected) # FIXME: dont leave commented-out # can't do in python 3 # tuples = _index.values # result = _index & tuples # assert result.equals(tuples) def test_intersect_equal_sort(): # GH-24959 idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) tm.assert_index_equal(idx.intersection(idx, sort=False), idx) tm.assert_index_equal(idx.intersection(idx, sort=None), idx) @pytest.mark.xfail(reason="Not implemented.") def test_intersect_equal_sort_true(): # TODO decide on True behaviour idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) sorted_ = pd.MultiIndex.from_product([[0, 1], ["a", "b"]]) tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) @pytest.mark.parametrize("slice_", [slice(None), slice(0)]) def test_union_sort_other_empty(slice_): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) # default, sort=None other = idx[slice_] tm.assert_index_equal(idx.union(other), idx) # MultiIndex does not special case empty.union(idx) # tm.assert_index_equal(other.union(idx), idx) # sort=False tm.assert_index_equal(idx.union(other, sort=False), idx) @pytest.mark.xfail(reason="Not implemented.") def test_union_sort_other_empty_sort(slice_): # TODO decide on True behaviour # # sort=True idx = pd.MultiIndex.from_product([[1, 0], ["a", "b"]]) other = idx[:0] result = idx.union(other, sort=True) expected = pd.MultiIndex.from_product([[0, 1], ["a", "b"]]) tm.assert_index_equal(result, expected) def test_union_sort_other_incomparable(): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.MultiIndex.from_product([[1, pd.Timestamp("2000")], ["a", "b"]]) # default, sort=None with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1]) tm.assert_index_equal(result, idx) # sort=False result = idx.union(idx[:1], sort=False) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="Not implemented.") def test_union_sort_other_incomparable_sort(): # TODO decide on True behaviour # # sort=True idx = pd.MultiIndex.from_product([[1, pd.Timestamp("2000")], ["a", "b"]]) with pytest.raises(TypeError, match="Cannot compare"): idx.union(idx[:1], sort=True) def test_union_non_object_dtype_raises(): # GH#32646 raise NotImplementedError instead of less-informative error mi = pd.MultiIndex.from_product([["a", "b"], [1, 2]]) idx = mi.levels[1] msg = "Can only union MultiIndex with MultiIndex or Index of tuples" with pytest.raises(NotImplementedError, match=msg): mi.union(idx) @pytest.mark.parametrize( "method", ["union", "intersection", "difference", "symmetric_difference"] ) def test_setops_disallow_true(method): idx1 = pd.MultiIndex.from_product([["a", "b"], [1, 2]]) idx2 = pd.MultiIndex.from_product([["b", "c"], [1, 2]]) with pytest.raises(ValueError, match="The 'sort' keyword only takes"): getattr(idx1, method)(idx2, sort=True)
bsd-3-clause
vlas-sokolov/pyspeckit
pyspeckit/spectrum/Spectrum1D.py
7
9758
# Licensed under a 3-clause BSD style license - see LICENSE.rst # This module implements the Spectrum1D class. It is eventually supposed to migrate to astropy core # Python packages from abc import ABCMeta, abstractmethod, abstractproperty from copy import copy, deepcopy # External packages import numpy as np # Local packages from astropy.nddata import NDData class SpectrumErrorArray(object): """ Represents the error axis of a Spectrum object .. warning:: This is skeleton code! Spectral data errors can be represented in a variety of ways, e.g. 1-sigma errors, inverse variance, variance, etc. In order to provide generic functionality, the error data must carry with it some metadata and operations that help handle transformations of the error array. Parameters ---------- array : `~numpy.ndarray` The error values Notes ----- This class is abstract and can only be subclassed and used by classes that will access its API. """ # This is an abstract class and can only be subclassed. __metaclass__ = ABCMeta def __init__(self, values): self.values = values @abstractmethod def interpolate(self, new_dispersion): pass class InverseVarianceErrorArray(SpectrumErrorArray): # ... def interpolate(self, new_dispersion): pass class VarianceErrorArray(SpectrumErrorArray): # ... def interpolate(self, new_dispersion): pass class Spectrum1DBase(NDData): """ Base class for Spectrum1D objects. .. warning:: This is skeleton code! `Spectrum1DBase` is a stripped-down superclass of the Spectrum1D object that allows for creation of a Spectrum-like object **without** an internal dispersion array. This allows for the possibility of creating a SpectrumCollection type class that could contain many spectra that share the same dispersion axis (e.g. SDSS spectra from the same plate). Parameters ---------- flux : `~numpy.ndarray` The flux data as an array Notes ----- This class should be 'private' in that it should really only be subclassed and used by Spectrum1D and SpectrumCollection """ def __init__(self): pass # not yet implemented @property def spectrum1DBase(self): """ This method returns an object equivalent to this spectrum but as a Spectrum1DBase object, i.e. without a dispersion array. It is left to subclasses to handle this in more detail (e.g., see Spectrum1D). """ return self class Spectrum1D(Spectrum1DBase): """ Class for 1-dimensional Spectrum objects. .. warning:: This is skeleton code! `Spectrum1D` provides a container for 1-dimensional spectral data as well as generic operations for this data. Parameters ---------- flux : `~numpy.ndarray` The flux data as an array dispersion : `~numpy.ndarray` An array of data representing the dispersion axis of the spectral data, e.g. wavelength, frequency, energy, velocity, etc. <NDData parameters...> Notes ----- """ # This is an abstract class and can only be subclassed. __metaclass__ = ABCMeta @property def spectrum1DBase(self): """ Return a new Spectrum1DBase object from this spectrum. This basically is the same thing but without the dispersion array, but we'll see how this develops. """ # There will be a better way to do this, but this is the general idea. # Basically I want to create a Spectrum1DBase object from a Spectrum1D object. spectrum_copy = deepcopy(self) spectrum_copy.dispersion = None return spectrum_copy def slice_dispersion(self, start=None, end=None): """ Slices the data arrays based on values in the dispersion array Parameters ---------- start : any numeric type, optional The minimum value in the dispersion axis to slice on end : any numeric type, optional The maximum value in the dispersion axis to slice on """ pass def slice_pixel(self, start=None, end=None): """ Slices the data arrays on pixel index (e.g. array index) Parameters ---------- start : int, optional The starting index to slice the arrays on end : int, optional The ending index to slice the arrays on Notes ----- This is equivalent to slicing each array like array[start:end] """ pass def interpolate_linear(self, new_dispersion): """ Uses linear interpolation to resample the internal arrays onto the specified dispersion axis. Parameters ---------- new_dispersion : `~numpy.ndarray` The new dispersion array to interpolate on to """ pass def interpolate_bspline(self, new_dispersion): """ Uses B-spline interpolation to resample the internal arrays onto the specified dispersion axis. Parameters ---------- new_dispersion : `~numpy.ndarray` The new dispersion array to interpolate on to """ pass def smooth_boxcar(self, width): """ Uses boxcar smoothing to smooth the internal arrays. Parameters ---------- width : integer The boxcar width in pixels. Reference: <a href="http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.boxcar.html" target="_blank">scipy.signal.boxcar</a> """ # I don't know if this is really the proper way to do this... should be tested!! from scipy.signal import convolve, boxcar self.flux = convolve(self.flux, boxcar(M=width)) def smooth_custom(self): """ Allows for a user defined smoothing operation. This is simply a template function meant to be overwritten by a custom function e.g.: def so_smooth(self): # Do something with flux, dispersion, error spectrumObject.custom_smooth = so_smooth spectrumObject.custom_smooth() """ pass def plot(self, **kwargs): """ Plotting utility for the spectrum. Parameters ---------- axes : `~matplotlib.pyplot.Axes`, optional A matplotlib Axes() object to plot the spectrum on filename : str, optional A filename to save the plot to show_error : bool, optional Decide whether to use the error data when plotting Usage ----- s = Spectrum1D(...) s.plot() - Attempt to display the object on screen using matplotlib's `show()` command. s.plot(axes=ax) - Plot the data onto the specified Axes() object. s.plot(axes=ax) - Plot the data onto the specified Axes() object. s.plot(filename="myPlot.png") - Plot the data onto a new figure and save to the specified filename and path (default path if not specified). The format of the file will be deduced from the extension (e.g. ps, png, pdf). Notes ----- Where it makes sense (i.e. not conflicting), multiple parameters can be specified. For example, s.plot(filename="myPlot.pdf", axes=ax) will both write a file to the disk and return a matplotlib.Axes() object. """ pass class Spectrum1DCollection(object): """ A collection object for spectra that share the same dispersion information. """ def __init__(self): self.spectra = list() self.dispersion = None def append(self, spectrum): """ Add a spectrum (of type Spectrum1D or Spectrum1DBase) to this collection. """ self.spectra.append(new_spectrum.spectrum1DBase) def len(self): return len(self.spectra) @property def dispersion(self): return self.dispersion @dispersion.setter def dispersion(self, new_dispersion): """ Set the dispersion array to be used for all spectra in this collection. The dispersion argument accepts both a numpy array and a Spectrum1D object. When the latter is specified, the dispersion is extracted from the object. """ if is_instance(new_dispersion, Spectrum1D): self.dispersion = new_dispersion.dispersion elif is_instance(new_dispersion, list): self.dispersion = np.array(new_dispersion) elif is_instance(new_dispersion, np.array): self.dispersion = new_dispersion else: raise ValueError("The dispersion specified could is not a known type. Should be a list, a numpy array, or a Spectrum1D object.") # Add other types that unambiguously define a dispersion array.
mit
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/matplotlib/tests/test_dviread.py
15
1788
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from nose.tools import assert_equal import matplotlib.dviread as dr import os.path original_find_tex_file = dr.find_tex_file def setup(): dr.find_tex_file = lambda x: x def teardown(): dr.find_tex_file = original_find_tex_file def test_PsfontsMap(): filename = os.path.join( os.path.dirname(__file__), 'baseline_images', 'dviread', 'test.map') fontmap = dr.PsfontsMap(filename) # Check all properties of a few fonts for n in [1, 2, 3, 4, 5]: key = 'TeXfont%d' % n entry = fontmap[key] assert_equal(entry.texname, key) assert_equal(entry.psname, 'PSfont%d' % n) if n not in [3, 5]: assert_equal(entry.encoding, 'font%d.enc' % n) elif n == 3: assert_equal(entry.encoding, 'enc3.foo') # We don't care about the encoding of TeXfont5, which specifies # multiple encodings. if n not in [1, 5]: assert_equal(entry.filename, 'font%d.pfa' % n) else: assert_equal(entry.filename, 'font%d.pfb' % n) if n == 4: assert_equal(entry.effects, {'slant': -0.1, 'extend': 2.2}) else: assert_equal(entry.effects, {}) # Some special cases entry = fontmap['TeXfont6'] assert_equal(entry.filename, None) assert_equal(entry.encoding, None) entry = fontmap['TeXfont7'] assert_equal(entry.filename, None) assert_equal(entry.encoding, 'font7.enc') entry = fontmap['TeXfont8'] assert_equal(entry.filename, 'font8.pfb') assert_equal(entry.encoding, None) entry = fontmap['TeXfont9'] assert_equal(entry.filename, '/absolute/font9.pfb')
mit
kinverarity1/sa-groundwater-wells
waterconnect_gw/wells.py
2
26493
import collections import csv from datetime import datetime, date, time, timedelta import re def parse_well_identifiers(well_ids): '''Parse a string and return list of possible well IDs. Args: well_ids (str): a comma-separated list of possible well IDs. Returns: a list, each item is a dictionary containing a key and the ID, e.g. >>> parse_well_identifiers('6528-393') [{'unit_no': 652800393}] Note that unit numbers are converted to the "long" format. >>> parse_well_identifiers('14856') [{'permit_no': 14856}, {'dh_no': 14856}] Note that 14856 returns two results because it matches the regular expressions for both permit numbers and drillhole numbers. It could refer to two different wells - without knowing more information we don't know any better. >>> parse_well_identifiers('YAT110, 652800393,SLE69') [{'obswell_no': 'YAT110'}, {'unit_no': '6528-393'}, {'obswell_no': 'SLE069'}] Note that SLE69 is converted to SLE069 - always three digits for the sequence number. ''' results = [] well_id_patterns = { 'unit_no': [ # Unit numbers r'(\d{4})(\d{5})', # 652800393 (map no. is 6528, seq. no. is 393) r'(\d{4})-(\d+)', # 6528-393 (map no. is 6528, seq. no is 393) ], 'permit_no': [ # Permit numbers r'(\d{4,6})', # 14856 r'[Pp][Nn]\.??[ -]?(\d{4,6})' # PN14856, pn14856, Pn-14856, p. 14856 ], 'dh_no': [ # Drillhole numbers r'(\d{4,6})', # 28083 ], 'obswell_no': [ # Obswell numbers. r'([a-zA-Z]{3})[ -]?(\d{1,3})' ] } for each in well_ids.split(','): each = each.strip() for ptype, patterns in well_id_patterns.items(): for pattern in patterns: m = re.match(pattern, each) if m: if len(m.group(0)) < len(each): break if ptype == 'unit_no': map_no, seq_no = m.group(1, 2) seq_no = int(seq_no) results.append({ptype: '%s-%s' % (map_no, seq_no)}) break elif ptype == 'obswell_no': results.append({ptype: '%s%03.0f' % (m.group(1), float(m.group(2)))}) break else: results.append({ptype: m.group(1)}) break return results def ldicts2table(ldicts, keys=None): '''Convert a list of dicts to a "table". Args: ldicts (list): a list, each item is a dict, with the values being single objects. Each dict should have the same keys. keys (list): optional, these keys will be used as the keys for the output table. If keys is None, then the keys in the first dict in ldicts will be used. Returns: table (a dict with 1D lists as values) ''' if len(ldicts) == 0: return {} if keys is None and len(ldicts) > 0: keys = ldicts[0].keys() table = collections.OrderedDict() for key in keys: table[key] = [] for row in ldicts: for key in keys: table[key].append(row[key]) return table def table2ldicts(table, keys=None): '''Convert a table to a list of dicts -- see below. Args: table (dict): the keys are the column headings. Each value is a one-dimensional list. All value lists are the same length. keys (list): optional, keys to be used for each dict in ldicts; if keys is None, the keys of table will be used. Returns: ldicts (see docstring for ldicts2table(...) for explanation. ''' if keys is None: keys = list(table.keys()) ldicts = [] values = list(table.values()) if len(values) > 0: # no of records n = len(values[0]) # no of keys (from the first record) for i in range(n): row = collections.OrderedDict() for key in keys: row[key] = table[key][i] ldicts.append(row) return ldicts def to_csv(fileobj, ldicts=None, table=None): '''Write either a list of dicts or a table to a CSV file. Args: fileobj (file-like object): file to write CSV data to. ldicts (list of dicts): optional, list of dicts table (dict): optional, dict of lists ''' assert (not ldicts is None) and (not table is None) if ldicts is None: ldicts = table2ldicts(table) if len(ldicts): writer = csv.DictWriter(fileobj, ldicts[0].keys(), lineterminator='\n') writer.writeheader() for row in ldicts: writer.writerow(row) def to_df(table, index='UnitNumber'): '''Convert a table (dict of lists) to a pandas DataFrame. Args: table (dict): dict of lists index (str): key to the value in table which should be used as the index column for the DataFrame. Returns: pandas.DataFrame. ''' import pandas as pd df = pd.DataFrame(table) if index in table.keys(): df = df.set_index(index) return df def summary_table(wells): '''Get a table of summary information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' table = collections.OrderedDict() keys = [ 'UnitNumber', 'DRILLHOLE_NO', 'DH_NAME', 'DH_OTHER_NAME', 'OBSWELL_NO', 'AMG_EASTING', 'AMG_NORTHING', 'AMG_ZONE', 'LON', 'LAT', 'DrillDate', 'Depth', 'ORIG_DRILLED_DEPTH', 'LATEST_OPEN_DEPTH', 'LATEST_OPEN_DEPTH_DATE', 'CasedTo', 'LATEST_MIN_DIAM', 'LATEST_REF_ELEVATION', 'DrillClass', 'DrillClassTT', 'DrillStatus', 'DrillStatusTT', 'PURPOSE_CODE', 'PURPOSE_CODETT', 'Aquifer', 'AquiferTT', 'SWL', 'LATEST_RSWL', 'LATEST_EC', 'TDS', 'Yield', 'SALINITY_STATUS', 'STAND_WATER_LEVEL_STATUS', 'LATEST_SAL_DATE', 'LATEST_SWL_DATE', 'LATEST_YIELD_DATE', 'GROUP_CODE', 'HUNDRED_NAME', 'NRM_REGION_CODE', 'PRESCRIBED_WELL_AREA_CODE', ] for key in keys: table[key] = [] for well in wells: for key in keys: table[key].append(well['summary'][0].get(key, '')) return table def drillers_log(well): '''Get a table of drillers log information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'DRILLER_DEPTH_FROM', 'DRILLER_DEPTH_TO', 'LITHO_DRILLER_CODE', 'LITHO_DESC', 'GEOL_LOGGING_DATE', 'GEOL_LOGGER_NAME', 'DRILLHOLE_NO', 'LOG_NO',] summary = well['summary'][0] drillers_logs = well['drillers_log'] ldicts = [] for drillers_log in drillers_logs: rowbase = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'GEOL_LOGGING_DATE': drillers_log.get('GEOL_LOGGING_DATE', ''), 'GEOL_LOGGER_NAME': drillers_log.get('GEOL_LOGGER_NAME', ''), 'DRILLHOLE_NO': drillers_log.get('DRILLHOLE_NO', ''), 'LOG_NO': drillers_log.get('LOG_NO', ''), } if len(drillers_log['details']): for item in drillers_log['details']: row = dict(rowbase) row['DRILLER_DEPTH_FROM'] = item.get('DRILLER_DEPTH_FROM', '') row['DRILLER_DEPTH_TO'] = item.get('DRILLER_DEPTH_TO', '') row['LITHO_DRILLER_CODE'] = item.get('LITHO_DRILLER_CODE', '') row['LITHO_DESC'] = item.get('LITHO_DESC', '') ldicts.append(row) return ldicts2table(ldicts, columns) def lith_log(well): '''Get a table of lithological log information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'LITHO_DEPTH_FROM', 'LITHO_DEPTH_TO', 'LITHO_CODE_MAJOR', # 'LITHO_APPROVED_CODE1', 'LITHO_CODE_MINOR', # 'LITHO_APPROVED_CODE2', 'LITHO_DESC', 'DRILLHOLE_NO',] summary = well['summary'][0] lith_logs = well['lith_log'] ldicts = [] if len(lith_logs): for unit in lith_logs: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'LITHO_DEPTH_FROM': unit.get('LITHO_DEPTH_FROM', ''), 'LITHO_DEPTH_TO': unit.get('LITHO_DEPTH_TO', ''), 'LITHO_CODE_MAJOR': unit.get('LITHO_APPROVED_CODE1', ''), 'LITHO_CODE_MINOR': unit.get('LITHO_APPROVED_CODE2', ''), 'LITHO_DESC': unit.get('LITHO_DESC', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def strat_log(well): '''Get a table of stratigraphic log information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'STRAT_DEPTH_FROM', 'STRAT_DEPTH_TO', 'STRAT_UNIT_NO', 'MAP_SYMBOL', 'GIS_CODE', 'STRAT_NAME', 'STRAT_DESC', 'THICKNESS_MAX', 'STRAT_UNIT_USAGE_CODE', 'DRILLHOLE_NO',] ldicts = [] summary = well['summary'][0] strat_logs = well['strat_log'] if len(strat_logs): for strat_log in strat_logs: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'STRAT_DEPTH_FROM': strat_log.get('STRAT_DEPTH_FROM', ''), 'STRAT_DEPTH_TO': strat_log.get('STRAT_DEPTH_TO', ''), 'STRAT_UNIT_NO': strat_log.get('STRAT_UNIT_NO', ''), 'MAP_SYMBOL': strat_log.get('MAP_SYMBOL', ''), 'GIS_CODE': strat_log.get('GIS_CODE', ''), 'STRAT_NAME': strat_log.get('STRAT_NAME', ''), 'STRAT_DESC': strat_log.get('STRAT_DESC', ''), 'THICKNESS_MAX': strat_log.get('THICKNESS_MAX', ''), 'STRAT_UNIT_USAGE_CODE': strat_log.get('STRAT_UNIT_USAGE_CODE', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def hydrostrat_log(well): '''Get a table of hydrostratigraphic log information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'HYDRO_DEPTH_FROM', 'HYDRO_DEPTH_TO', 'MAP_SYMBOL', 'STRAT_NAME', 'HYDRO_SUBUNIT_DESC', 'HYDRO_SUBUNIT_CODE', 'HYDRO_DEPTH_TO_GREATER_FLAG', 'HYDRO_INT_NO', 'STRAT_UNIT_NO', 'DRILLHOLE_NO',] ldicts = [] summary = well['summary'][0] hydrostrat_logs = well['hydrostrat_log'] if len(hydrostrat_logs): units = [] for unit in hydrostrat_logs: units.append(unit) if len(unit['extra']) > 0: units += unit['extra'] for unit in units: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'HYDRO_DEPTH_FROM': unit.get('HYDRO_DEPTH_FROM', ''), 'HYDRO_DEPTH_TO': unit.get('HYDRO_DEPTH_TO', ''), 'MAP_SYMBOL': unit.get('MAP_SYMBOL', ''), 'STRAT_NAME': unit.get('STRAT_NAME', ''), 'HYDRO_SUBUNIT_DESC': unit.get('HYDRO_SUBUNIT_DESC', ''), 'HYDRO_SUBUNIT_CODE': unit.get('HYDRO_SUBUNIT_CODE', ''), 'HYDRO_DEPTH_TO_GREATER_FLAG': unit.get('HYDRO_DEPTH_TO_GREATER_FLAG', ''), 'HYDRO_INT_NO': unit.get('HYDRO_INT_NO', ''), 'STRAT_UNIT_NO': unit.get('STRAT_UNIT_NO', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def completion_datesort(record): '''Return the completion date from a record, suitable for sorting. Args: record (dict): a completion record. Returns: datetime object. ''' if 'COMPLETION_DATE' in record: return datetime.strptime(record['COMPLETION_DATE'], '%Y-%m-%d') else: return datetime(1800, 1, 1) def water_cuts(well): '''Get a table of water cut information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'DRILLHOLE_NO', 'EVENT_TYPE', 'DATE', 'DEPTH_TO_WATER', 'DEPTH_FROM', 'DEPTH_TO', 'WELL_YIELD', 'EC', 'TDS', 'MEAS_NO', 'EXTR_METHOD_CODE', 'SAMPLE_TYPE', 'COMPL_TOTAL_DEPTH', 'COMPL_FINAL_DEPTH', 'COMPL_CURRENT_DEPTH', 'COMPLETION_DATE', 'COMPLETION_COMMENTS', 'PERMIT_NO', ] ldicts = [] summary = well['summary'][0] completions = well['construction'] completions.sort(key=completion_datesort) if len(completions): records = [] compl_date_found = False for compl in completions: for record in compl['water_cut']: record['EVENT_TYPE'] = compl.get('CONSTRN_FLAG', '') if record['EVENT_TYPE'] == 'C': record['EVENT_TYPE'] = 'Construction' elif record['EVENT_TYPE'] == 'S': record['EVENT_TYPE'] = 'Survey' record['COMPL_FINAL_DEPTH'] = compl.get('FINAL_DPTH', '') record['COMPL_TOTAL_DEPTH'] = compl.get('TOTAL_DPTH', '') record['COMPL_CURRENT_DEPTH'] = compl.get('CURRENT_DPTH', '') record['COMPLETION_DATE'] = compl.get('COMPLETION_DATE', '') record['COMPLETION_COMMENTS'] = compl.get('COMMENTS', '') record['PERMIT_NO'] = compl.get('PERMIT_NO', '') records.append(record) if len(records) > 0: for record in records: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'DATE': record.get('WATER_CUT_DATE', ''), 'DEPTH_TO_WATER': record.get('DEPTH_TO_WATER', ''), 'DEPTH_FROM': record.get('WATER_CUT_DEPTH_FROM', ''), 'DEPTH_TO': record.get('WATER_CUT_DEPTH_TO', ''), 'WELL_YIELD': record.get('WELL_YIELD', ''), 'EC': record.get('EC', ''), 'TDS': record.get('TDS', ''), 'MEAS_NO': record.get('WATER_CUT_MEAS_NO', ''), 'EXTR_METHOD_CODE': record.get('EXTR_METHOD_CODE', ''), 'SAMPLE_TYPE': record.get('SAMPLE_TYPE', ''), 'EVENT_TYPE': record.get('EVENT_TYPE', ''), 'COMPL_TOTAL_DEPTH': record.get('COMPL_TOTAL_DEPTH', ''), 'COMPL_FINAL_DEPTH': record.get('COMPL_FINAL_DEPTH', ''), 'COMPL_CURRENT_DEPTH': record.get('COMPL_CURRENT_DEPTH', ''), 'COMPLETION_DATE': record.get('COMPLETION_DATE', ''), 'COMPLETION_COMMENTS': record.get('COMPLETION_COMMENTS', ''), 'PERMIT_NO': record.get('PERMIT_NO', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def drilling_record(well): '''Get a table of drilling information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'DRILLHOLE_NO', 'EVENT_TYPE', 'DEPTH_FROM', 'DEPTH_TO', 'DRILL_METH', 'DIAM', 'DRILL_COMMENTS', 'COMPL_TOTAL_DEPTH', 'COMPL_FINAL_DEPTH', 'COMPL_CURRENT_DEPTH', 'COMPLETION_DATE', 'COMPLETION_COMMENTS', 'PERMIT_NO', ] ldicts = [] summary = well['summary'][0] completions = well['construction'] completions.sort(key=completion_datesort) if len(completions): records = [] compl_date_found = False for compl in completions: for record in compl['drilling']: record['EVENT_TYPE'] = compl.get('CONSTRN_FLAG', '') if record['EVENT_TYPE'] == 'C': record['EVENT_TYPE'] = 'Construction' elif record['EVENT_TYPE'] == 'S': record['EVENT_TYPE'] = 'Survey' record['COMPL_FINAL_DEPTH'] = compl.get('FINAL_DPTH', '') record['COMPL_TOTAL_DEPTH'] = compl.get('TOTAL_DPTH', '') record['COMPL_CURRENT_DEPTH'] = compl.get('CURRENT_DPTH', '') record['COMPLETION_DATE'] = compl.get('COMPLETION_DATE', '') record['COMPLETION_COMMENTS'] = compl.get('COMMENTS', '') record['PERMIT_NO'] = compl.get('PERMIT_NO', '') records.append(record) if len(records) > 0: for record in records: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'DEPTH_FROM': record.get('DRILL_FR', ''), 'DEPTH_TO': record.get('DRILL_TO', ''), 'DRILL_METH': record.get('DRILL_METH', ''), 'DIAM': record.get('DIAM', ''), 'DRILL_COMMENTS': record.get('COMMENTS', ''), 'EVENT_TYPE': record.get('EVENT_TYPE', ''), 'COMPL_TOTAL_DEPTH': record.get('COMPL_TOTAL_DEPTH', ''), 'COMPL_FINAL_DEPTH': record.get('COMPL_FINAL_DEPTH', ''), 'COMPL_CURRENT_DEPTH': record.get('COMPL_CURRENT_DEPTH', ''), 'COMPLETION_DATE': record.get('COMPLETION_DATE', ''), 'COMPLETION_COMMENTS': record.get('COMPLETION_COMMENTS', ''), 'PERMIT_NO': record.get('PERMIT_NO', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def casing_record(well): '''Get a table of casing/construction information from a list of well JSON data. Args: wells (list of dicts): e.g. a list of data from JSON files. ''' columns = [ 'UnitNumber', 'OBSNUMBER', 'DH_NAME', 'DRILLHOLE_NO', 'EVENT_TYPE', 'CASE_FROM', 'CASE_TO', 'CASE_MATERIAL', 'CASE_DIAM', 'APERTURE', 'PZONE_TYPE_CODE', 'CEMENT_FROM', 'CEMENT_TO', 'CEMENT_TYPE', 'COMMENTS', 'COMPL_TOTAL_DEPTH', 'COMPL_FINAL_DEPTH', 'COMPL_CURRENT_DEPTH', 'COMPLETION_DATE', 'COMPLETION_COMMENTS', 'PERMIT_NO', ] ldicts = [] summary = well['summary'][0] completions = well['construction'] completions.sort(key=completion_datesort) if len(completions): records = [] compl_date_found = False for compl in completions: for record in compl['casing']: record['EVENT_TYPE'] = compl.get('CONSTRN_FLAG', '') if record['EVENT_TYPE'] == 'C': record['EVENT_TYPE'] = 'Construction' elif record['EVENT_TYPE'] == 'S': record['EVENT_TYPE'] = 'Survey' record['COMPL_FINAL_DEPTH'] = compl.get('FINAL_DPTH', '') record['COMPL_TOTAL_DEPTH'] = compl.get('TOTAL_DPTH', '') record['COMPL_CURRENT_DEPTH'] = compl.get('CURRENT_DPTH', '') record['COMPLETION_DATE'] = compl.get('COMPLETION_DATE', '') record['COMPLETION_COMMENTS'] = compl.get('COMMENTS', '') record['PERMIT_NO'] = compl.get('PERMIT_NO', '') records.append(record) for record in compl['production_zone']: record['EVENT_TYPE'] = compl.get('CONSTRN_FLAG', '') if record['EVENT_TYPE'] == 'C': record['EVENT_TYPE'] = 'Construction' elif record['EVENT_TYPE'] == 'S': record['EVENT_TYPE'] = 'Survey' record['COMPL_FINAL_DEPTH'] = compl.get('FINAL_DPTH', '') record['COMPL_TOTAL_DEPTH'] = compl.get('TOTAL_DPTH', '') record['COMPL_CURRENT_DEPTH'] = compl.get('CURRENT_DPTH', '') record['COMPLETION_DATE'] = compl.get('COMPLETION_DATE', '') record['COMPLETION_COMMENTS'] = compl.get('COMMENTS', '') record['PERMIT_NO'] = compl.get('PERMIT_NO', '') record['CASE_DIAM'] = record.get('PZONE_DIAM', '') record['CASE_FR'] = record.get('PZONE_FR', '') record['CASE_TO'] = record.get('PZONE_TO', '') record['CASE_MTRL'] = record.get('PZONE_MTRL', '') records.append(record) if len(records) > 0: for record in records: row = { 'UnitNumber': summary['UnitNumber'], 'OBSNUMBER': summary.get('OBSWELL_NO', ''), 'DH_NAME': summary.get('DH_NAME', ''), 'DRILLHOLE_NO': summary.get('DRILLHOLE_NO', ''), 'CASE_DIAM': record.get('CASE_DIAM', ''), 'CASE_FROM': record.get('CASE_FR', ''), 'CASE_MATERIAL': record.get('CASE_MTRL', ''), 'CASE_TO': record.get('CASE_TO', ''), 'CEMENT_FROM': record.get('CEM_FR', ''), 'CEMENT_TO': record.get('CEM_TO', ''), 'CEMENT_TYPE': record.get('CEM_TYPE', ''), 'COMMENTS': record.get('COMMENTS', ''), 'APERTURE': record.get('APERTURE', ''), 'PZONE_TYPE_CODE': record.get('PZONE_TYPE_CODE', ''), 'EVENT_TYPE': record.get('EVENT_TYPE', ''), 'COMPL_TOTAL_DEPTH': record.get('COMPL_TOTAL_DEPTH', ''), 'COMPL_FINAL_DEPTH': record.get('COMPL_FINAL_DEPTH', ''), 'COMPL_CURRENT_DEPTH': record.get('COMPL_CURRENT_DEPTH', ''), 'COMPLETION_DATE': record.get('COMPLETION_DATE', ''), 'COMPLETION_COMMENTS': record.get('COMPLETION_COMMENTS', ''), 'PERMIT_NO': record.get('PERMIT_NO', ''), } ldicts.append(row) return ldicts2table(ldicts, columns) def append_tables(*tables): '''Append tables together. Args: table (dict): a dict of lists Returns: table (all tables passed, with values appended together) ''' if len(tables) > 1: table = tables[0] ldict = table2ldicts(table) for t in tables[1:]: l = table2ldicts(t) ldict += l return ldicts2table(ldict) else: return tables[0] def json2csv_script_entry(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--dhno-column", default="DHNO", help="column with drillhole numbers") parser.add_argument("-i", "--input-table", help="Input CSV or Excel file") parser.add_argument("-j", "--json-path", help="Location of JSON files") parser.add_argument("-o", "--output-path", help="Output path for CSV files") args = parser.parse_args(sys.argv[1:]) assert os.path.isfile(args.input_table) input_data = read(args.input_table) output_path = os.path.abspath(args.output_path) if not os.path.isdir(output_path): os.makedirs(output_path) assert os.path.isdir(output_path) dhnos = {int(d) for d in input_data[args.dhno_column].values} csv_types = { 'casing': casing_record, 'drillers_log': drillers_log, 'drilling': drilling_record, 'hydrostrat_log': hydrostrat_log, 'lith_log': lith_log, 'strat_log': strat_log, 'water_cut': water_cuts, } data = {} for csv_type in csv_types.keys(): data[csv_type] = [] well_list = [] for jsonfn in glob.glob(os.path.join(args.json_path, '*.json')): with open(jsonfn, 'r') as f: well = json.load(f) # print(sorted(well['summary'][0].keys())) if int(well['summary'][0]['DRILLHOLE_NO']) in dhnos: for i, (csv_type, func) in enumerate(csv_types.items()): try: t = func(well) l = table2ldicts(t) data[csv_type] += l except: print('%s %s' % (csv_type, l)) raise well_list.append(well) for typ, l in data.items(): with open(os.path.join(args.output_path, '%s.csv' % typ), 'w') as f: to_csv(f, ldicts=data[typ]) table = summary_table(well_list) with open(os.path.join(args.output_path, 'summary.csv'), 'w') as f: to_csv(f, table=table)
mit
fergalbyrne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backend_bases.py
69
69740
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes suh as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. """ from __future__ import division import os, warnings, time import numpy as np import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms import matplotlib.widgets as widgets from matplotlib import rcParams class RendererBase: """An abstract base class to handle drawing/rendering operations. The following methods *must* be implemented in the backend: * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_text` * :meth:`get_text_width_height_descent` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None def open_group(self, s): """ Open a grouping element with label *s*. Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def close_group(self, s): """ Close a grouping element with label *s* Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. *gc* the :class:`GraphicsContextBase` instance *marker_trans* is an affine transform applied to the marker. *trans* is an affine transform applied to the path. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. """ tpath = trans.transform_path(path) for vertices, codes in tpath.iter_segments(): if len(vertices): x,y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ Draws a collection of paths, selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to draw_path. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transform)) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): path, transform = path_id transform = transforms.Affine2D(transform.get_matrix()).translate(xo, yo) self.draw_path(gc, path, transform, rgbFace) def draw_quad_mesh(self, master_transform, cliprect, clippath, clippath_trans, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, showedges): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if showedges: edgecolors = np.array([[0.0, 0.0, 0.0, 1.0]], np.float_) linewidths = np.array([1.0], np.float_) else: edgecolors = facecolors linewidths = np.array([0.0], np.float_) return self.draw_path_collection( master_transform, cliprect, clippath, clippath_trans, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None]) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in xrange(N): path = paths[i % Npaths] if Ntransforms: transform = all_transforms[i % Ntransforms] yield path, transform + master_transform def _iter_collection(self, path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc = self.new_gc() gc.set_clip_rectangle(cliprect) if clippath is not None: clippath = transforms.TransformedPath(clippath, clippath_trans) gc.set_clip_path(clippath) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc.set_linewidth(0.0) xo, yo = 0, 0 for i in xrange(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: gc.set_foreground(edgecolors[i % Nedgecolors]) if Nlinewidths: gc.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc.set_dashes(*linestyles[i % Nlinestyles]) if rgbFace is not None and len(rgbFace)==4: gc.set_alpha(rgbFace[-1]) rgbFace = rgbFace[:3] gc.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc, rgbFace def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the image instance into the current axes; *x* is the distance in pixels from the left hand side of the canvas. *y* the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom *im* the :class:`matplotlib._image.Image` instance *bbox* a :class:`matplotlib.transforms.Bbox` instance for clipping, or None """ raise NotImplementedError def option_image_nocomposite(self): """ overwrite this method for renderers that do not necessarily want to rescale and composite raster images. (like SVG) """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): raise NotImplementedError def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text instance *gc* the :class:`GraphicsContextBase` instance *x* the x location of the text in display coords *y* the y location of the text in display coords *s* a :class:`matplotlib.text.Text` instance *prop* a :class:`matplotlib.font_manager.FontProperties` instance *angle* the rotation angle in degrees **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ raise NotImplementedError def flipy(self): """ Return true if y small numbers are top for renderer Is used for drawing text (:mod:`matplotlib.text`) and images (:mod:`matplotlib.image`) only """ return True def get_canvas_width_height(self): 'return the canvas width and height in display coords' return 1, 1 def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height, and the offset from the bottom to the baseline (descent), in display coords of the string s with :class:`~matplotlib.font_manager.FontProperties` prop """ raise NotImplementedError def new_gc(self): """ Return an instance of a :class:`GraphicsContextBase` """ return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units *points* a float or a numpy array of float return points converted to pixels You need to override this function (unless your backend doesn't have a dpi, eg, postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 """ return points def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): pass def stop_rasterizing(self): pass class GraphicsContextBase: """ An abstract base class that provides color, line styles, etc... """ # a mapping from dash styles to suggested offset, dash pairs dashd = { 'solid' : (None, None), 'dashed' : (0, (6.0, 6.0)), 'dashdot' : (0, (3.0, 5.0, 1.0, 5.0)), 'dotted' : (0, (1.0, 3.0)), } def __init__(self): self._alpha = 1.0 self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'miter' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0) self._hatch = None self._url = None self._snap = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._url = gc._url self._snap = gc._snap def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_antialiased(self): "Return true if the object should try to do antialiased rendering" return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting') """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a :class:`~matplotlib.transforms.Bbox` instance """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash information as an offset dashlist tuple. The dash list is a even size list that gives the ink on, ink off in pixels. See p107 of to PostScript `BLUEBOOK <http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF>`_ for more info. Default value is None """ return self._dashes def get_joinstyle(self): """ Return the line join style as one of ('miter', 'round', 'bevel') """ return self._joinstyle def get_linestyle(self, style): """ Return the linestyle: one of ('solid', 'dashed', 'dashdot', 'dotted'). """ return self._linestyle def get_linewidth(self): """ Return the line width in points as a scalar """ return self._linewidth def get_rgb(self): """ returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color string, or a rgb tuple """ return self._rgb def get_url(self): """ returns a url if one is set, None otherwise """ return self._url def get_snap(self): """ returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends """ self._alpha = alpha def set_antialiased(self, b): """ True if object should be drawn with antialiased rendering """ # use 0, 1 to make life easier on extension code trying to read the gc if b: self._antialiased = 1 else: self._antialiased = 0 def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ assert path is None or isinstance(path, transforms.TransformedPath) self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. *dash_offset* is the offset (usually 0). *dash_list* specifies the on-off sequence as points. ``(None, None)`` specifies a solid line """ self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGB=False): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. The :class:`GraphicsContextBase` converts colors to rgb internally. If you know the color is rgb already, you can set ``isRGB=True`` to avoid the performace hit of the conversion """ if isRGB: self._rgb = fg else: self._rgb = colors.colorConverter.to_rgba(fg) def set_graylevel(self, frac): """ Set the foreground color to be a gray level with *frac* """ self._rgb = (frac, frac, frac) def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): """ Set the linewidth in points """ self._linewidth = w def set_linestyle(self, style): """ Set the linestyle to be one of ('solid', 'dashed', 'dashdot', 'dotted'). """ try: offset, dashes = self.dashd[style] except: raise ValueError('Unrecognized linestyle: %s' % style) self._linestyle = style self.set_dashes(offset, dashes) def set_url(self, url): """ Sets the url for links in compatible backends """ self._url = url def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """ Sets the hatch style for filling """ self._hatch = hatch def get_hatch(self): """ Gets the current hatch style """ return self._hatch class Event: """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values *name* the event name *canvas* the FigureCanvas instance generating the event *guiEvent* the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas,guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class IdleEvent(Event): """ An event triggered by the GUI backend when it is idle -- useful for passive animation """ pass class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In addition to the :class:`Event` attributes, the following event attributes are defined: *renderer* the :class:`RendererBase` instance for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: *width* width of the canvas in pixels *height* height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class LocationEvent(Event): """ A event that has a screen location The following additional attributes are defined and shown with their default values In addition to the :class:`Event` attributes, the following event attributes are defined: *x* x position - pixels from left of canvas *y* y position - pixels from bottom of canvas *inaxes* the :class:`~matplotlib.axes.Axes` instance if mouse is over axes *xdata* x coord of mouse in data coords *ydata* y coord of mouse in data coords """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords # the last event that was triggered before this one lastevent = None def __init__(self, name, canvas, x, y,guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas,guiEvent=guiEvent) self.x = x self.y = y if x is None or y is None: # cannot check if event was in axes if no x,y info self.inaxes = None self._update_enter_leave() return # Find all axes containing the mouse axes_list = [a for a in self.canvas.figure.get_axes() if a.in_axes(self)] if len(axes_list) == 0: # None found self.inaxes = None self._update_enter_leave() return elif (len(axes_list) > 1): # Overlap, get the highest zorder axCmp = lambda _x,_y: cmp(_x.zorder, _y.zorder) axes_list.sort(axCmp) self.inaxes = axes_list[-1] # Use the highest zorder else: # Just found one hit self.inaxes = axes_list[0] try: xdata, ydata = self.inaxes.transData.inverted().transform_point((x, y)) except ValueError: self.xdata = None self.ydata = None else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes!=self.inaxes: # process axes enter/leave events if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *button* button pressed None, 1, 2, 3, 'up', 'down' (up and down are used for scroll events) *key* the key pressed: None, chr(range(255), 'shift', 'win', or 'control' *step* number of scroll steps (positive for 'up', negative for 'down') Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = fig.canvas.mpl_connect('button_press_event', on_press) """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas button = None # button pressed None, 1, 2, 3 inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords step = None # scroll steps for scroll events def __init__(self, name, canvas, x, y, button=None, key=None, step=0, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.button = button self.key = key self.step = step class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus *mouseevent* the :class:`MouseEvent` that generated the pick *artist* the :class:`~matplotlib.artist.Artist` picked other extra class dependent attrs -- eg a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Example usage:: line, = ax.plot(rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): thisline = event.artist xdata, ydata = thisline.get_data() ind = event.ind print 'on pick line:', zip(xdata[ind], ydata[ind]) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *key* the key pressed: None, chr(range(255), shift, win, or control This interface may change slightly when better support for modifier keys is included. Example usage:: def on_key(event): print 'you pressed', event.key, event.xdata, event.ydata cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase: """ The canvas the figure renders into. Public attributes *figure* A :class:`matplotlib.figure.Figure` instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event' ] def __init__(self, figure): figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry(self.events) self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event',self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event',self.pick) if False: ## highlight the artists that are hit self.mpl_connect('motion_notify_event',self.onHilite) ## delete the artists that are clicked on #self.mpl_disconnect(self.button_pick_id) #self.mpl_connect('button_press_event',self.onRemove) def onRemove(self, ev): """ Mouse event processor which removes the top artist under the cursor. Connect this to the 'mouse_press_event' using:: canvas.mpl_connect('mouse_press_event',canvas.onRemove) """ def sort_artists(artists): # This depends on stable sort and artists returned # from get_children in z order. L = [ (h.zorder, h) for h in artists ] L.sort() return [ h for zorder, h in L ] # Find the top artist under the cursor under = sort_artists(self.figure.hitlist(ev)) h = None if under: h = under[-1] # Try deleting that artist, or its parent if you # can't delete the artist while h: print "Removing",h if h.remove(): self.draw_idle() break parent = None for p in under: if h in p.get_children(): parent = p break h = parent def onHilite(self, ev): """ Mouse event processor which highlights the artists under the cursor. Connect this to the 'motion_notify_event' using:: canvas.mpl_connect('motion_notify_event',canvas.onHilite) """ if not hasattr(self,'_active'): self._active = dict() under = self.figure.hitlist(ev) enter = [a for a in under if a not in self._active] leave = [a for a in self._active if a not in under] print "within:"," ".join([str(x) for x in under]) #print "entering:",[str(a) for a in enter] #print "leaving:",[str(a) for a in leave] # On leave restore the captured colour for a in leave: if hasattr(a,'get_color'): a.set_color(self._active[a]) elif hasattr(a,'get_edgecolor'): a.set_edgecolor(self._active[a][0]) a.set_facecolor(self._active[a][1]) del self._active[a] # On enter, capture the color and repaint the artist # with the highlight colour. Capturing colour has to # be done first in case the parent recolouring affects # the child. for a in enter: if hasattr(a,'get_color'): self._active[a] = a.get_color() elif hasattr(a,'get_edgecolor'): self._active[a] = (a.get_edgecolor(),a.get_facecolor()) else: self._active[a] = None for a in enter: if hasattr(a,'get_color'): a.set_color('red') elif hasattr(a,'get_edgecolor'): a.set_edgecolor('red') a.set_facecolor('lightblue') else: self._active[a] = None self.draw_idle() def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """ blit the canvas in bbox (default entire canvas) """ pass def resize(self, w, h): """ set the canvas size in pixels """ pass def draw_event(self, renderer): """ This method will be call all functions connected to the 'draw_event' with a :class:`DrawEvent` """ s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """ This method will be call all functions connected to the 'resize_event' with a :class:`ResizeEvent` """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) def key_press_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_press_event' with a :class:`KeyEvent` """ self._key = key s = 'key_press_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_release_event' with a :class:`KeyEvent` """ s = 'key_release_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas *guiEvent* the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None def enter_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when entering canvas *guiEvent* the native UI event that generated the mpl event """ event = Event('figure_enter_event', self, guiEvent) self.callbacks.process('figure_enter_event', event) def idle_event(self, guiEvent=None): 'call when GUI is idle' s = 'idle_event' event = IdleEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) def draw(self, *args, **kwargs): """ Render the :class:`~matplotlib.figure.Figure` """ pass def draw_idle(self, *args, **kwargs): """ :meth:`draw` only if idle; defaults to draw but backends can overrride """ self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ pass def get_width_height(self): """ return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) filetypes = { 'emf': 'Enhanced Metafile', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'png': 'Portable Network Graphics', 'ps' : 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } # All of these print_* functions do a lazy import because # a) otherwise we'd have cyclical imports, since all of these # classes inherit from FigureCanvasBase # b) so we don't import a bunch of stuff the user may never use def print_emf(self, *args, **kwargs): from backends.backend_emf import FigureCanvasEMF # lazy import emf = self.switch_backends(FigureCanvasEMF) return emf.print_emf(*args, **kwargs) def print_eps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_eps(*args, **kwargs) def print_pdf(self, *args, **kwargs): from backends.backend_pdf import FigureCanvasPdf # lazy import pdf = self.switch_backends(FigureCanvasPdf) return pdf.print_pdf(*args, **kwargs) def print_png(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(*args, **kwargs) def print_ps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_ps(*args, **kwargs) def print_raw(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_raw(*args, **kwargs) print_bmp = print_rgb = print_raw def print_svg(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svg(*args, **kwargs) def print_svgz(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svgz(*args, **kwargs) def get_supported_filetypes(self): return self.filetypes def get_supported_filetypes_grouped(self): groupings = {} for ext, name in self.filetypes.items(): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', format=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Arguments are: *filename* can also be a file object on image backends *orientation* only currently applies to PostScript printing. *dpi* the dots per inch to save the figure in; if None, use savefig.dpi *facecolor* the facecolor of the figure *edgecolor* the edgecolor of the figure *orientation* ' landscape' | 'portrait' (not supported on all backends) *format* when set, forcibly set the file format to save to """ if format is None: if cbook.is_string_like(filename): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if cbook.is_string_like(filename): filename = filename.rstrip('.') + '.' + format format = format.lower() method_name = 'print_%s' % format if (format not in self.filetypes or not hasattr(self, method_name)): formats = self.filetypes.keys() formats.sort() raise ValueError( 'Format "%s" is not supported.\n' 'Supported formats: ' '%s.' % (format, ', '.join(formats))) if dpi is None: dpi = rcParams['savefig.dpi'] origDPI = self.figure.dpi origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.dpi = dpi self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) try: result = getattr(self, method_name)( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, **kwargs) finally: self.figure.dpi = origDPI self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) #self.figure.canvas.draw() ## seems superfluous return result def get_default_filetype(self): raise NotImplementedError def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def switch_backends(self, FigureCanvasClass): """ instantiate an instance of FigureCanvasClass This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = canvas.mpl_connect('button_press_event', on_press) """ return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ disconnect callback id cid Example usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def flush_events(self): """ Flush the GUI events for the figure. Implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop(self,timeout): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This is implemented only for backends with GUIs. """ raise NotImplementedError def stop_event_loop(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This is implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop_default(self,timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This function provides default event loop functionality based on time.sleep that is meant to be used until event loop functions for each of the GUI backends can be written. As such, it throws a deprecated warning. Call signature:: start_event_loop_default(self,timeout=0) This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. """ str = "Using default event loop until function specific" str += " to this GUI is implemented" warnings.warn(str,DeprecationWarning) if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter*timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop_default(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. Call signature:: stop_event_loop_default(self) """ self._looping = False class FigureManagerBase: """ Helper class for matlab mode, wraps everything up into a neat bundle Public attibutes: *canvas* A :class:`FigureCanvasBase` instance *num* The figure nuamber """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num self.canvas.mpl_connect('key_press_event', self.key_press) def destroy(self): pass def full_screen_toggle (self): pass def resize(self, w, h): 'For gui backends: resize window in pixels' pass def key_press(self, event): # these bindings happen whether you are over an axes or not #if event.key == 'q': # self.destroy() # how cruel to have to destroy oneself! # return if event.key == 'f': self.full_screen_toggle() # *h*ome or *r*eset mnemonic elif event.key == 'h' or event.key == 'r' or event.key == "home": self.canvas.toolbar.home() # c and v to enable left handed quick navigation elif event.key == 'left' or event.key == 'c' or event.key == 'backspace': self.canvas.toolbar.back() elif event.key == 'right' or event.key == 'v': self.canvas.toolbar.forward() # *p*an mnemonic elif event.key == 'p': self.canvas.toolbar.pan() # z*o*om mnemonic elif event.key == 'o': self.canvas.toolbar.zoom() elif event.key == 's': self.canvas.toolbar.save_figure(self.canvas.toolbar) if event.inaxes is None: return # the mouse has to be over an axes to trigger these if event.key == 'g': event.inaxes.grid() self.canvas.draw() elif event.key == 'l': ax = event.inaxes scale = ax.get_yscale() if scale=='log': ax.set_yscale('linear') ax.figure.canvas.draw() elif scale=='linear': ax.set_yscale('log') ax.figure.canvas.draw() elif event.key is not None and (event.key.isdigit() and event.key!='0') or event.key=='a': # 'a' enables all axes if event.key!='a': n=int(event.key)-1 for i, a in enumerate(self.canvas.figure.get_axes()): if event.x is not None and event.y is not None and a.in_axes(event): if event.key=='a': a.set_navigate(True) else: a.set_navigate(i==n) def show_popup(self, msg): """ Display message in a popup -- GUI only """ pass def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ pass # cursors class Cursors: #namespace HAND, POINTER, SELECT_REGION, MOVE = range(4) cursors = Cursors() class NavigationToolbar2: """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`dynamic_update` (optional) dynamically update the window while navigating :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self # a dict from axes index to a list of view limits self._views = cbook.Stack() self._positions = cbook.Stack() # stack of subplot positions self._xypress = None # the location and axis info at the time of the press self._idPress = None self._idRelease = None self._active = None self._lastCursor = None self._init_toolbar() self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) self._button_pressed = None # determined by the button pressed at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): 'display a message on toolbar or in status bar' pass def back(self, *args): 'move back up the view lim stack' self._views.back() self._positions.back() self.set_history_buttons() self._update_view() def dynamic_update(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): 'draw a rectangle rubberband to indicate zoom limits' pass def forward(self, *args): 'move forward in the view lim stack' self._views.forward() self._positions.forward() self.set_history_buttons() self._update_view() def home(self, *args): 'restore the original view' self._views.home() self._positions.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def mouse_move(self, event): #print 'mouse_move', event.button if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if self._active=='ZOOM': if self._lastCursor != cursors.SELECT_REGION: self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = self._xypress[0] self.draw_rubberband(event, x, y, lastx, lasty) elif (self._active=='PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except ValueError: pass except OverflowError: pass else: if len(self.mode): self.set_message('%s : %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self,*args): 'Activate the pan/zoom tool. pan with left button, zoom with right' # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): 'this will be called whenver a mouse button is pressed' pass def press_pan(self, event): 'the press mouse button in pan/zoom mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) and a.get_navigate(): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): 'the press mouse button in zoom to rect mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) \ and a.get_navigate() and a.can_zoom(): self._xypress.append(( x, y, a, i, a.viewLim.frozen(), a.transData.frozen())) self.press(event) def push_current(self): 'push the current view limits and position onto the stack' lims = []; pos = [] for a in self.canvas.figure.get_axes(): xmin, xmax = a.get_xlim() ymin, ymax = a.get_ylim() lims.append( (xmin, xmax, ymin, ymax) ) # Store both the original and modified positions pos.append( ( a.get_position(True).frozen(), a.get_position().frozen() ) ) self._views.push(lims) self._positions.push(pos) self.set_history_buttons() def release(self, event): 'this will be called whenever mouse button is released' pass def release_pan(self, event): 'the release mouse button callback in pan/zoom mode' self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed=None self.push_current() self.release(event) self.draw() def drag_pan(self, event): 'the drag callback in pan/zoom mode' for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.dynamic_update() def release_zoom(self, event): 'the release mouse button callback in zoom to rect mode' if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = cur_xypress # ignore singular clicks - 5 pixels is a threshold if abs(x-lastx)<5 or abs(y-lasty)<5: self._xypress = None self.release(event) self.draw() return x0, y0, x1, y1 = lim.extents # zoom to rect inverse = a.transData.inverted() lastx, lasty = inverse.transform_point( (lastx, lasty) ) x, y = inverse.transform_point( (x, y) ) Xmin,Xmax=a.get_xlim() Ymin,Ymax=a.get_ylim() # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a,la): twinx=True if a.get_shared_y_axes().joined(a,la): twiny=True last_a.append(a) if twinx: x0, x1 = Xmin, Xmax else: if Xmin < Xmax: if x<lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 < Xmin: x0=Xmin if x1 > Xmax: x1=Xmax else: if x>lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 > Xmin: x0=Xmin if x1 < Xmax: x1=Xmax if twiny: y0, y1 = Ymin, Ymax else: if Ymin < Ymax: if y<lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 < Ymin: y0=Ymin if y1 > Ymax: y1=Ymax else: if y>lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 > Ymin: y0=Ymin if y1 < Ymax: y1=Ymax if self._button_pressed == 1: a.set_xlim((x0, x1)) a.set_ylim((y0, y1)) elif self._button_pressed == 3: if a.get_xscale()=='log': alpha=np.log(Xmax/Xmin)/np.log(x1/x0) rx1=pow(Xmin/x0,alpha)*Xmin rx2=pow(Xmax/x0,alpha)*Xmin else: alpha=(Xmax-Xmin)/(x1-x0) rx1=alpha*(Xmin-x0)+Xmin rx2=alpha*(Xmax-x0)+Xmin if a.get_yscale()=='log': alpha=np.log(Ymax/Ymin)/np.log(y1/y0) ry1=pow(Ymin/y0,alpha)*Ymin ry2=pow(Ymax/y0,alpha)*Ymin else: alpha=(Ymax-Ymin)/(y1-y0) ry1=alpha*(Ymin-y0)+Ymin ry2=alpha*(Ymax-y0)+Ymin a.set_xlim((rx1, rx2)) a.set_ylim((ry1, ry2)) self.draw() self._xypress = None self._button_pressed = None self.push_current() self.release(event) def draw(self): 'redraw the canvases, update the locators' for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw() def _update_view(self): '''update the viewlim and position from the view and position stack for each axes ''' lims = self._views() if lims is None: return pos = self._positions() if pos is None: return for i, a in enumerate(self.canvas.figure.get_axes()): xmin, xmax, ymin, ymax = lims[i] a.set_xlim((xmin, xmax)) a.set_ylim((ymin, ymax)) # Restore both the original and modified positions a.set_position( pos[i][0], 'original' ) a.set_position( pos[i][1], 'active' ) self.draw() def save_figure(self, *args): 'save the current figure' raise NotImplementedError def set_cursor(self, cursor): """ Set the current cursor to one of the :class:`Cursors` enums values """ pass def update(self): 'reset the axes stack' self._views.clear() self._positions.clear() self.set_history_buttons() def zoom(self, *args): 'activate zoom to rect mode' if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress=self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease=self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'Zoom to rect mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): 'enable or disable back/forward button' pass
agpl-3.0
ghost9023/DeepLearningPythonStudy
DeepLearning/DeepLearning/07_Deep_LeeYS/Week_1/4. Single-Layer NN/2_3) ReLU Function.py
1
3897
###################ReLU ํ•จ์ˆ˜ #########KEYWORD########## #saturated : ํ•จ์ˆ˜์˜ ์ถœ๋ ฅ๊ฐ’์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒƒ. ์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜๋‚˜ ๊ณ„๋‹จ ํ•จ์ˆ˜๋Š” ์ถœ๋ ฅ๊ฐ’์ด ๋ฌด์กฐ๊ฑด 0์—์„œ 1์ด๊ธฐ ๋•Œ๋ฌธ์— saturate ํ•˜๋‹ค๊ณ  ํ•˜๊ณ  # ReLU ํ•จ์ˆ˜๋Š” x๊ฐ’์ด ์ปค์งˆ ๋•Œ ์ถœ๋ ฅ๊ฐ’๋„ ์ปค์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋ ‡์ง€ ์•Š๋‹ค๊ณ  ํ•œ๋‹ค. #ReLU #PReLU #ELU ########################## #ReLU ํ•จ์ˆ˜์—์„œ Re๋Š” Rectified๋กœ ์ •๋ฅ˜๋œ ์ด๋ผ๋Š” ๋œป. #์ด๋Š” ์ „๊ธฐํšŒ๋กœ์ชฝ ์šฉ์–ด๋กœ ํŠน์ • ๊ฐ’ ์ดํ•˜์—์„  ํšŒ๋กœ๊ฐ€ ๋ฐ˜์‘ํ•˜์ง€ ์•Š๋‹ค๊ฐ€ ํ•ด๋‹น ๊ฐ’ ์ด์ƒ์—์„  ๊ฐ’์ด ์ปค์งˆ์ˆ˜๋ก ํฌ๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธ. #ReLU ํ•จ์ˆ˜ ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด๋ฉด ReLUํ•จ์ˆ˜๊ฐ€ ์™œ ReLU ํ•จ์ˆ˜๋กœ ๋ถˆ๋ฆฌ๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ReLU ํ•จ์ˆ˜์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๊ธฐ ์ „ ReLU ํ•จ์ˆ˜์˜ ํ•จ์ˆ˜์‹์„ ์‚ดํŽด๋ณด์ž. # |-------- x (x > 0) # | # h(x) = - # | # |-------- 0 (x <= 0) #ReLUํ•จ์ˆ˜๋Š” 0๋ณด๋‹ค ์ž‘์€ ์ž…๋ ฅ ๊ฐ’์— ๋Œ€ํ•ด์„  0์œผ๋กœ ๋ฐ˜์‘ํ•˜์ง€ ์•Š๋‹ค๊ฐ€ #0์ด ๋„˜๋Š” ๊ฐ’์ด ์ž…๋ ฅ๋˜๋ฉด ์ถœ๋ ฅ๊ฐ’์ด ์ ์  ์ปค์ง€๋Š” ํ˜•ํƒœ. #๊ทธ๋ž˜ํ”„ import numpy as np import matplotlib.pylab as plt def ReLU(x): return np.maximum(0,x) x=np.arange(-5.0,5.0,0.1) y=ReLU(x) plt.plot(x,y) plt.ylim(-1,5) plt.show() #ReLU๋Š” ์ตœ๊ทผ ๋ช‡ ๋…„ ๊ฐ„ ๊ฐ€์žฅ ์ธ๊ธฐ ์žˆ๋Š” activation ํ•จ์ˆ˜์ด๋‹ค. ์ด ํ•จ์ˆ˜๋Š” f(x)=max(0,x)์˜ ๊ผด๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋Š” x > 0 ์ด๋ฉด ๊ธฐ์šธ๊ธฐ๊ฐ€ 1์ธ ์ง์„ ์ด๊ณ  #x<0 ์ด๋ฉด ์ถœ๋ ฅ๊ฐ’์€ ํ•ญ์ƒ 0์ด๋‹ค. ์‹œ๊ทธ๋ชจ์ด๋“œ๋‚˜ tanh ํ•จ์ˆ˜์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ์‹œ๊ทธ๋ชจ์ด๋“œ์˜ ์ˆ˜๋ ด์†๋„๊ฐ€ ๋งค์šฐ ๋น ๋ฅธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ. ์ด๋Š” ํ•จ์ˆ˜๊ฐ€ #saturatedํ•˜์ง€ ์•Š๊ณ  ์„ ํ˜•์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋‚˜ํƒ€๋‚œ๋‹ค. ์‹œ๊ทธ๋ชจ์ด๋“œ์™€ tanh๋Š” exp()์— ์˜ํ•ด ๋ฏธ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ ๋น„์šฉ์ด ๋“ค์ง€๋งŒ, #ReLU๋Š” ๋ณ„๋‹ค๋ฅธ ๋น„์šฉ์ด ๋“ค์ง€ ์•Š๋Š”๋‹ค.(๋ฏธ๋ถ„๋„ 0 ํ˜น์€ 1) #ReLU์˜ ํฐ ๋‹จ์ ์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•™์Šตํ•  ๋•Œ ๋‰ด๋Ÿฐ๋“ค์ด ์ฃฝ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. x < 0์ผ๋•Œ ๊ธฐ์šธ๊ธฐ๊ฐ€ 0์ด๊ธฐ ๋•Œ๋ฌธ์— ๋งŒ์•ฝ ์ž…๋ ฅ๊ฐ’์ด 0๋ณด๋‹ค ์ž‘๋‹ค๋ฉด ๋‰ด๋Ÿฐ์ด ์ฃฝ์–ด๋ฒ„๋ฆด์ˆ˜ ์žˆ์œผ๋ฉฐ #๋” ์ด์ƒ ๊ฐ’์ด ์—…๋ฐ์ดํŠธ ๋˜์ง€ ์•Š๊ฒŒ ๋œ๋‹ค. #์ด ReLU ํ•จ์ˆ˜ ๋˜ํ•œ 0 ์ดํ•˜์˜ ์ž…๋ ฅ๊ฐ’์—์„œ ์•„์˜ˆ ๋ฐ˜์‘ํ•˜์ง€ ์•Š๋Š” ์ ์ด ๋ฌธ์ œ๊ฐ€ ๋  ๋•Œ๊ฐ€ ์žˆ๋‹ค. #์ด๋ฅผ ๋ณด์™„ํ•œ Parametric ReLU ํ•จ์ˆ˜๋ผ๋Š” ๊ฒƒ์„ ์‚ฌ์šฉํ•˜๊ธฐ๋„ ํ•œ๋‹ค. #PReLU ํ•จ์ˆ˜์˜ ํ•จ์ˆ˜์‹๊ณผ ๊ทธ๋ž˜ํ”„๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค. # |---- x ( x > 0 ) # | # h(x)= -- # | # |---- ay (x <= 0,0 < a ) #PRelu์˜ ์žฅ์  #ReLU ํ•จ์ˆ˜์˜ ์žฅ์ ์„ ๊ทธ๋Œ€๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. #ReLU ํ•จ์ˆ˜์˜ ์ž…๋ ฅ๊ฐ’์ด 0๋ณด๋‹ค ์ž‘์„ ๋•Œ์˜ ์•ฝ์ (4๋ฒˆ)์„ ๋ณด์™„ํ–ˆ๋‹ค. #๋‹จ์  #exp() ํ•จ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ด์•ผํ•˜๋ฏ€๋กœ ์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜์˜ 3๋ฒˆ ์•ฝ์ ๊ณผ ๋น„์Šทํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. #dying ReLU. ์ฆ‰, ReLU x < 0 ์ธ ๊ฒฝ์šฐ ํ•ญ์ƒ ํ•จ์ˆ˜ ๊ฐ’์ด 0์ด์ง€๋งŒ PReLU๋Š” ์ž‘์€ ๊ธฐ์šธ๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์ฃฝ์ง€ ์•Š๊ฒŒํ•œ๋‹ค. #์ด๊ฒƒ์€ f(x)=max(ax,x)๋กœ ํ‘œํ˜„ํ•˜๋ฉฐ ์ด ๋•Œ a๋Š” ๋งค์šฐ ์ž‘์€ ๊ฐ’์ด๋‹ค. #๋ช‡๋ช‡ ๊ฒฝ์šฐ์— ์ด ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ด๋ฃจ์—ˆ๋‹ค๋Š” ๋ณด๊ณ ๊ฐ€ ์žˆ์ง€๋งŒ ๋ชจ๋“  ๊ฒฝ์šฐ์— ํ•ด๋‹นํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ์ง์ ‘ ๊ฒฝํ—˜ํ•ด๋ณด๊ณ  ํŒ๋‹จํ•ด์•ผํ•œ๋‹ค. # ELUํ•จ์ˆ˜. # 1) PReLU ํ•จ์ˆ˜์™€ ์žฅ์  ๋‹จ์ ์ด ๊ฐ™๋‹ค. # |------ x if x>0 # | # f(x) = - # | # |------ ์•ŒํŒŒ(e^x-1) if x <= 0 #ReLU ํ•จ์ˆ˜๋“ค๊ณผ์˜ ๋น„๊ต ๊ทธ๋ฆผ๊ณผ ๊ณต์‹์„ ๋ณด๋ฉด ์•Œ๊ฒ ์ง€๋งŒ ELU๋Š” ReLU์˜ ์ž„๊ณ„๊ฐ’์„ -1๋กœ ๋‚ฎ์ถ˜ ํ•จ์ˆ˜๋ฅผ exp()๋กœ ์ด์šฉํ•˜์—ฌ ๊ทผ์‚ฌํ•œ ๊ฒƒ. #ELU์˜ ํŠน์ง•์€ ReLU์˜ ์žฅ์ ์„ ๋ชจ๋‘ ํฌํ•จํ•˜๊ณ  ์—ญ์‹œ dying ReLU ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€์œผ๋ฉฐ ์ถœ๋ ฅ๊ฐ’์ด ๊ฑฐ์˜ zero-centered์— ๊ฐ€๊น๋‹ค. ํ•˜์ง€๋งŒ #ReLU, PReLU์™€ ๋‹ฌ๋ฆฌ exp()๋ฅผ ๊ณ„์‚ฐํ•ด์•ผํ•˜๋Š” ๋น„์šฉ์ด ๋“ ๋‹ค. #์ •๋ฆฌํ•˜์ž๋ฉด ๊ณต๋ถ€ํ•˜๋Š” ๊ณผ์ •์—์„  ์‹œ๊ทธ๋ชจ์ด๋“œ์™€ ReLUํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๊ณต๋ถ€ํ•˜๊ณ  ์‹ค์ œ ์‹ ๊ฒฝ๋ง์„ ์„ค๊ณ„ํ•  ๋• #ReLU์™€ PReLU ํ•จ์ˆ˜๋ฅผ ํ™œ์„ฑ ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ.
mit
Jimmy-Morzaria/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaรซl Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
fzalkow/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
mhdella/scikit-learn
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/matplotlib/testing/jpl_units/__init__.py
21
3240
#======================================================================= """ This is a sample set of units for use with testing unit conversion of matplotlib routines. These are used because they use very strict enforcement of unitized data which will test the entire spectrum of how unitized data might be used (it is not always meaningful to convert to a float without specific units given). UnitDbl is essentially a unitized floating point number. It has a minimal set of supported units (enough for testing purposes). All of the mathematical operation are provided to fully test any behaviour that might occur with unitized data. Remeber that unitized data has rules as to how it can be applied to one another (a value of distance cannot be added to a value of time). Thus we need to guard against any accidental "default" conversion that will strip away the meaning of the data and render it neutered. Epoch is different than a UnitDbl of time. Time is something that can be measured where an Epoch is a specific moment in time. Epochs are typically referenced as an offset from some predetermined epoch. A difference of two epochs is a Duration. The distinction between a Duration and a UnitDbl of time is made because an Epoch can have different frames (or units). In the case of our test Epoch class the two allowed frames are 'UTC' and 'ET' (Note that these are rough estimates provided for testing purposes and should not be used in production code where accuracy of time frames is desired). As such a Duration also has a frame of reference and therefore needs to be called out as different that a simple measurement of time since a delta-t in one frame may not be the same in another. """ #======================================================================= from __future__ import (absolute_import, division, print_function, unicode_literals) import six from .Duration import Duration from .Epoch import Epoch from .UnitDbl import UnitDbl from .Duration import Duration from .Epoch import Epoch from .UnitDbl import UnitDbl from .StrConverter import StrConverter from .EpochConverter import EpochConverter from .UnitDblConverter import UnitDblConverter from .UnitDblFormatter import UnitDblFormatter #======================================================================= __version__ = "1.0" __all__ = [ 'register', 'Duration', 'Epoch', 'UnitDbl', 'UnitDblFormatter', ] #======================================================================= def register(): """Register the unit conversion classes with matplotlib.""" import matplotlib.units as mplU mplU.registry[ str ] = StrConverter() mplU.registry[ Epoch ] = EpochConverter() mplU.registry[ UnitDbl ] = UnitDblConverter() #======================================================================= # Some default unit instances # Distances m = UnitDbl( 1.0, "m" ) km = UnitDbl( 1.0, "km" ) mile = UnitDbl( 1.0, "mile" ) # Angles deg = UnitDbl( 1.0, "deg" ) rad = UnitDbl( 1.0, "rad" ) # Time sec = UnitDbl( 1.0, "sec" ) min = UnitDbl( 1.0, "min" ) hr = UnitDbl( 1.0, "hour" ) day = UnitDbl( 24.0, "hour" ) sec = UnitDbl( 1.0, "sec" )
mit