modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
luca-martial/DialoGPT-Elon
afa2ffff96344dbe63d95f6b03451ce9459502d0
2021-06-10T09:35:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
luca-martial
null
luca-martial/DialoGPT-Elon
4,891
2
transformers
900
--- tags: - conversational --- # DialoGPT-Elon: Chat with Elon Musk This is an attempt to create an AI replica of Elon Musk. The bot's conversation abilities come from Microsoft's [DialoGPT conversational model](https://huggingface.co/microsoft/DialoGPT-medium) fine-tuned on conversation transcripts of Elon's interviews on [Clubhouse](https://zamesin.me/clubhouse-elon-musk-interview/), the [Lex Fridman podcast](https://lexfridman.com/wordpress/wp-content/uploads/2019/11/elon_musk_lex_fridman_2_transcript.pdf) and the [Joe Rogan Experience](https://www.kaggle.com/christianlillelund/joe-rogan-experience-1169-elon-musk). I also built a Discord AI bot that makes use of this model. Check out my [GitHub repo](https://github.com/luca-martial/elon-bot)!
smilegate-ai/kor_unsmile
f597423eeff8e6da99cad85cbe3a81adf5225637
2022-03-28T01:34:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
smilegate-ai
null
smilegate-ai/kor_unsmile
4,882
3
transformers
901
Entry not found
Helsinki-NLP/opus-mt-en-cs
7cba4a7e3daff13c48fc2fcd740ef0711b1dd075
2021-09-09T21:34:42.000Z
[ "pytorch", "marian", "text2text-generation", "en", "cs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-cs
4,879
null
transformers
902
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-cs * source languages: en * target languages: cs * OPUS readme: [en-cs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-cs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-cs/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-cs/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-cs/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.en.cs | 22.8 | 0.507 | | news-test2008.en.cs | 20.7 | 0.485 | | newstest2009.en.cs | 21.8 | 0.500 | | newstest2010.en.cs | 22.1 | 0.505 | | newstest2011.en.cs | 23.2 | 0.507 | | newstest2012.en.cs | 20.8 | 0.482 | | newstest2013.en.cs | 24.7 | 0.514 | | newstest2015-encs.en.cs | 24.9 | 0.527 | | newstest2016-encs.en.cs | 26.7 | 0.540 | | newstest2017-encs.en.cs | 22.7 | 0.503 | | newstest2018-encs.en.cs | 22.9 | 0.504 | | newstest2019-encs.en.cs | 24.9 | 0.518 | | Tatoeba.en.cs | 46.1 | 0.647 |
uer/chinese_roberta_L-2_H-128
b24cec74c68f494dc7ee8f05959ac3aee598cf78
2022-07-15T08:09:56.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-2_H-128
4,866
1
transformers
903
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
uer/pegasus-base-chinese-cluecorpussmall
50bb33cb078e9a08c56c8b65513ddc46cb9665ae
2022-07-15T08:18:04.000Z
[ "pytorch", "tf", "pegasus", "text2text-generation", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "transformers", "autotrain_compatible" ]
text2text-generation
false
uer
null
uer/pegasus-base-chinese-cluecorpussmall
4,853
1
transformers
904
--- language: zh datasets: CLUECorpusSmall widget: - text: "内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。" --- # Chinese Pegasus ## Model description This model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). You can download the set of Chinese PEGASUS models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | ----------------- | :----------------------------: | | **PEGASUS-Base** | [**L=12/H=768 (Base)**][base] | | **PEGASUS-Large** | [**L=16/H=1024 (Large)**][large] | ## How to use You can use this model directly with a pipeline for text2text generation (take the case of PEGASUS-Base): ```python >>> from transformers import BertTokenizer, PegasusForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> model = PegasusForConditionalGeneration.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。", max_length=50, do_sample=False) [{'generated_text': '书 的 质 量 很 好 。'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512. Taking the case of PEGASUS-Base ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --data_processor gsg --sentence_selection_strategy random ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/pegasus/base_config.json \ --output_model_path models/cluecorpussmall_pegasus_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 8 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_pegasus_from_uer_to_huggingface.py --input_model_path cluecorpussmall_pegasus_base_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @inproceedings{zhang2020pegasus, title={Pegasus: Pre-training with extracted gap-sentences for abstractive summarization}, author={Zhang, Jingqing and Zhao, Yao and Saleh, Mohammad and Liu, Peter}, booktitle={International Conference on Machine Learning}, pages={11328--11339}, year={2020}, organization={PMLR} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [base]:https://huggingface.co/uer/pegasus-base-chinese-cluecorpussmall [large]:https://huggingface.co/uer/pegasus-large-chinese-cluecorpussmall
dbmdz/bert-base-italian-cased
bcecdad25ce7cdd99c58c4e504ab97e6ff7222cf
2021-05-19T14:59:44.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "it", "dataset:wikipedia", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-base-italian-cased
4,818
2
transformers
905
--- language: it license: mit datasets: - wikipedia --- # 🤗 + 📚 dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models 🎉 # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
papluca/xlm-roberta-base-language-detection
f793746a8fff7a83f266fa0df91064727c8c76a2
2021-11-25T12:41:12.000Z
[ "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:1911.02116", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
papluca
null
papluca/xlm-roberta-base-language-detection
4,816
11
transformers
906
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-language-detection results: [] --- # xlm-roberta-base-language-detection This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset. ## Model description This model is an XLM-RoBERTa transformer model with a classification head on top (i.e. a linear layer on top of the pooled output). For additional information please refer to the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) model card or to the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al. ## Intended uses & limitations You can directly use this model as a language detector, i.e. for sequence classification tasks. Currently, it supports the following 20 languages: `arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)` ## Training and evaluation data The model was fine-tuned on the [Language Identification](https://huggingface.co/datasets/papluca/language-identification#additional-information) dataset, which consists of text sequences in 20 languages. The training set contains 70k samples, while the validation and test sets 10k each. The average accuracy on the test set is **99.6%** (this matches the average macro/weighted F1-score being the test set perfectly balanced). A more detailed evaluation is provided by the following table. | Language | Precision | Recall | F1-score | support | |:--------:|:---------:|:------:|:--------:|:-------:| |ar |0.998 |0.996 |0.997 |500 | |bg |0.998 |0.964 |0.981 |500 | |de |0.998 |0.996 |0.997 |500 | |el |0.996 |1.000 |0.998 |500 | |en |1.000 |1.000 |1.000 |500 | |es |0.967 |1.000 |0.983 |500 | |fr |1.000 |1.000 |1.000 |500 | |hi |0.994 |0.992 |0.993 |500 | |it |1.000 |0.992 |0.996 |500 | |ja |0.996 |0.996 |0.996 |500 | |nl |1.000 |1.000 |1.000 |500 | |pl |1.000 |1.000 |1.000 |500 | |pt |0.988 |1.000 |0.994 |500 | |ru |1.000 |0.994 |0.997 |500 | |sw |1.000 |1.000 |1.000 |500 | |th |1.000 |0.998 |0.999 |500 | |tr |0.994 |0.992 |0.993 |500 | |ur |1.000 |1.000 |1.000 |500 | |vi |0.992 |1.000 |0.996 |500 | |zh |1.000 |1.000 |1.000 |500 | ### Benchmarks As a baseline to compare `xlm-roberta-base-language-detection` against, we have used the Python [langid](https://github.com/saffsd/langid.py) library. Since it comes pre-trained on 97 languages, we have used its `.set_languages()` method to constrain the language set to our 20 languages. The average accuracy of langid on the test set is **98.5%**. More details are provided by the table below. | Language | Precision | Recall | F1-score | support | |:--------:|:---------:|:------:|:--------:|:-------:| |ar |0.990 |0.970 |0.980 |500 | |bg |0.998 |0.964 |0.981 |500 | |de |0.992 |0.944 |0.967 |500 | |el |1.000 |0.998 |0.999 |500 | |en |1.000 |1.000 |1.000 |500 | |es |1.000 |0.968 |0.984 |500 | |fr |0.996 |1.000 |0.998 |500 | |hi |0.949 |0.976 |0.963 |500 | |it |0.990 |0.980 |0.985 |500 | |ja |0.927 |0.988 |0.956 |500 | |nl |0.980 |1.000 |0.990 |500 | |pl |0.986 |0.996 |0.991 |500 | |pt |0.950 |0.996 |0.973 |500 | |ru |0.996 |0.974 |0.985 |500 | |sw |1.000 |1.000 |1.000 |500 | |th |1.000 |0.996 |0.998 |500 | |tr |0.990 |0.968 |0.979 |500 | |ur |0.998 |0.996 |0.997 |500 | |vi |0.971 |0.990 |0.980 |500 | |zh |1.000 |1.000 |1.000 |500 | ## Training procedure Fine-tuning was done via the `Trainer` API. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results The validation results on the `valid` split of the Language Identification dataset are summarised here below. | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2492 | 1.0 | 1094 | 0.0149 | 0.9969 | 0.9969 | | 0.0101 | 2.0 | 2188 | 0.0103 | 0.9977 | 0.9977 | In short, it achieves the following results on the validation set: - Loss: 0.0101 - Accuracy: 0.9977 - F1: 0.9977 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Rostlab/prot_t5_xxl_uniref50
31a40d7b55caf68d7a8a8dfd913b779b99dc09a9
2021-03-30T19:25:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rostlab
null
Rostlab/prot_t5_xxl_uniref50
4,800
null
transformers
907
Entry not found
dandelin/vilt-b32-finetuned-vqa
a08ecc15918f6aa056ff01b5397f10bd718af96b
2022-07-29T13:47:48.000Z
[ "pytorch", "vilt", "arxiv:2102.03334", "transformers", "visual-question-answering", "license:apache-2.0" ]
visual-question-answering
false
dandelin
null
dandelin/vilt-b32-finetuned-vqa
4,795
3
transformers
908
--- tags: - visual-question-answering license: apache-2.0 widget: - text: "What animal is it?" src: "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg" - text: "Where is it?" src: "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg" --- # Vision-and-Language Transformer (ViLT), fine-tuned on VQAv2 Vision-and-Language Transformer (ViLT) model fine-tuned on [VQAv2](https://visualqa.org/). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for visual question answering. ### How to use Here is how to use this model in PyTorch: ```python from transformers import ViltProcessor, ViltForQuestionAnswering import requests from PIL import Image # prepare image + question url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) text = "How many cats are there?" processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
Salesforce/codegen-350M-mono
a268ccf6c2f3f6c8eb582bbea2411d750253864f
2022-06-28T17:46:25.000Z
[ "pytorch", "codegen", "text-generation", "arxiv:2203.13474", "transformers", "license:bsd-3-clause" ]
text-generation
false
Salesforce
null
Salesforce/codegen-350M-mono
4,795
1
transformers
909
--- license: bsd-3-clause --- # CodeGen (CodeGen-Mono 350M) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-Mono 350M** in the paper, where "Mono" means the model is initialized with *CodeGen-Multi 350M* and further pre-trained on a Python programming language dataset, and "350M" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-Mono 350M) was firstly initialized with *CodeGen-Multi 350M*, and then pre-trained on BigPython dataset. The data consists of 71.7B tokens of Python programming language. See Section 2.1 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
microsoft/deberta-v2-xxlarge-mnli
8f8b43ddfc6f5e93a7abd1d1506d606b080a4c06
2021-05-21T20:08:40.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta", "deberta-mnli", "license:mit" ]
text-classification
false
microsoft
null
microsoft/deberta-v2-xxlarge-mnli
4,792
1
transformers
910
--- language: en tags: - deberta - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa V2 XXLarge model fine-tuned with MNLI task, 48 layers, 1536 hidden size. Total parameters 1.5B. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=rte output_dir="ds_results" num_gpus=8 batch_size=4 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge-mnli \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=rte python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge-mnli \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
Langboat/mengzi-t5-base
fbd9c58ba8e1a5393668fbdfe477ec70267c01e7
2021-10-21T12:33:28.000Z
[ "pytorch", "t5", "text2text-generation", "zh", "arxiv:2110.06696", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Langboat
null
Langboat/mengzi-t5-base
4,775
15
transformers
911
--- language: - zh license: apache-2.0 --- # Mengzi-T5 model (Chinese) Pretrained model on 300G Chinese corpus. [Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696) ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Langboat/mengzi-t5-base") model = T5ForConditionalGeneration.from_pretrained("Langboat/mengzi-t5-base") ``` ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. ``` @misc{zhang2021mengzi, title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese}, author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou}, year={2021}, eprint={2110.06696}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
yiyanghkust/finbert-fls
443586dc31c765c0aaf1c4daaed8cf3643c92fa5
2022-06-10T23:20:05.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "financial-text-analysis", "forward-looking-statement" ]
text-classification
false
yiyanghkust
null
yiyanghkust/finbert-fls
4,754
3
transformers
912
--- language: "en" tags: - financial-text-analysis - forward-looking-statement widget: - text: "We expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs. " --- Forward-looking statements (FLS) inform investors of managers’ beliefs and opinions about firm's future events or results. Identifying forward-looking statements from corporate reports can assist investors in financial analysis. FinBERT-FLS is a FinBERT model fine-tuned on 3,500 manually annotated sentences from Management Discussion and Analysis section of annual reports of Russell 3000 firms. **Input**: A financial text. **Output**: Specific-FLS , Non-specific FLS, or Not-FLS. # How to use You can use this model with Transformers pipeline for forward-looking statement classification. ```python # tested in transformers==4.18.0 from transformers import BertTokenizer, BertForSequenceClassification, pipeline finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-fls',num_labels=3) tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-fls') nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer) results = nlp('We expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.') print(results) # [{'label': 'Specific FLS', 'score': 0.77278733253479}] ``` Visit [FinBERT.AI](https://finbert.ai/) for more details on the recent development of FinBERT.
stas/t5-very-small-random
988f491d1f2b837d47895885d96b1d4992a25d0e
2021-04-21T02:34:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/t5-very-small-random
4,736
null
transformers
913
This is a tiny random t5 model used for testing See `t5-make-very-small-model.py` for how it was created.
transformersbook/bert-base-uncased-finetuned-clinc
795b076da71dc236dde692338e21560cbbffa6e4
2022-02-05T16:38:54.000Z
[ "pytorch", "jax", "bert", "text-classification", "arxiv:1909.02027", "transformers" ]
text-classification
false
transformersbook
null
transformersbook/bert-base-uncased-finetuned-clinc
4,715
null
transformers
914
# Intent Detection with BERT This model was trained on the [CLINC150](https://arxiv.org/abs/1909.02027) dataset for customer intent detection. The dataset can be found on the [Hub](https://huggingface.co/datasets/clinc_oos). The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb).
bigscience/bloom-6b3
94a4acd1e473db402c72df105b31d05c46632e5d
2022-07-13T09:02:39.000Z
[ "pytorch", "jax", "bloom", "feature-extraction", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu", "arxiv:1909.08053", "arxiv:2110.02861", "arxiv:2108.12409", "transformers", "license:bigscience-bloom-rail-1.0", "text-generation" ]
text-generation
false
bigscience
null
bigscience/bloom-6b3
4,706
2
transformers
915
--- license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu pipeline_tag: text-generation --- # <span style="color:red"><b>WARNING:</b> This is an <b>intermediary checkpoint</b>. It is not fully trained yet. You might want to use [Bloom-1B3](https://huggingface.co/bigscience/bloom-1b3) if you want a model that has completed training.</span> <h1 style='text-align: center '>BLOOM LM</h1> <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2> <h3 style='text-align: center '>Model Card</h3> <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> Version 1.0 / 26.May.2022 ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors) ## Model Details ### Basics *This section provides information for anyone who wants to know about the model.* <details> <summary>Click to expand</summary> <br/> **Developed by:** BigScience ([website](https://bigscience.huggingface.co)) * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)* **Model Type:** Transformer-based Language Model **Version:** 1.0.0 **Languages:** Multiple; see [training data](#training-data) **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license)) **Release Date Estimate:** Monday, 11.July.2022 **Send Questions to:** [email protected] **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022 **Funded by:** * The French government. * Hugging Face ([website](https://huggingface.co)). * Organizations of contributors. *(Further breakdown of organizations forthcoming.)* </details> ### Technical Specifications *This section provides information for people who work on model development.* <details> <summary>Click to expand</summary><br/> Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training. **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)): * Decoder-only architecture * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf)) * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions * 6.3B billion parameters: * 30 layers, 32 attention heads * Hidden layers are 4096-dimensional * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization)) **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)). **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)). * Hardware: 384 A100 80GB GPUs (48 nodes): * Additional 32 A100 80GB GPUs (4 nodes) in reserve * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links * CPU: AMD * CPU memory: 512GB per node * GPU memory: 640GB per node * Inter-node connect: Omni-Path Architecture (OPA) * NCCL-communications network: a fully dedicated subnet * Disc IO network: shared network with other types of nodes * Software: * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed)) * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed)) * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch)) * apex ([Github link](https://github.com/NVIDIA/apex)) #### **Training** _In progress._ Current training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/) - Checkpoint size: - Bf16 weights: 329GB - Full checkpoint with optimizer states: 2.3TB - Training throughput: About 150 TFLOP per GPU per second - Number of epochs: 1 (*current target*) - Dates: - Started 11th March, 2022 11:42am PST - Estimated end: 5th July, 2022 - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments) - Server training location: Île-de-France, France #### **Tokenization** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using: - A byte-level Byte Pair Encoding (BPE) algorithm - A simple pre-tokenization rule, no normalization - A vocabulary size of 250,680 It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language. </details> ### Environmental Impact <details> <summary>Click to expand</summary><br/> The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing. **Estimated carbon emissions:** *(Forthcoming upon completion of training.)* **Estimated electricity usage:** *(Forthcoming upon completion of training.)* </details> <p>&nbsp;</p> ## Uses *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It provides information for anyone considering using the model or who is affected by the model.* <details> <summary>Click to expand</summary><br/> ### Intended Use This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive. #### **Direct Use** - Text generation - Exploring characteristics of language generated by a language model - Examples: Cloze tests, counterfactuals, generations with reframings #### **Downstream Use** - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization ### Misuse and Out-of-scope Use *This section addresses what users ought not do with the model.* See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases. #### **Out-of-scope Uses** Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct. ##### Out-of-scope Uses Include: - Usage in biomedical domains, political and legal domains, or finance domains - Usage for evaluating or scoring individuals, such as for employment, education, or credit - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct #### **Misuse** Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes: - Spam generation - Disinformation and influence operations - Disparagement and defamation - Harassment and abuse - [Deception](#deception) - Unconsented impersonation and imitation - Unconsented surveillance - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license) ### Intended Users #### **Direct Users** - General Public - Researchers - Students - Educators - Engineers/developers - Non-commercial entities - Community advocates, including human and civil rights groups #### Indirect Users - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use) - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license) #### Others Affected (Parties Prenantes) - People and groups referred to by the LLM - People and groups exposed to outputs of, or decisions based on, the LLM - People and groups whose original work is included in the LLM </details> <p>&nbsp;</p> ## Training Data *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.* <details> <summary>Click to expand</summary><br/> Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus). Training data includes: - 45 natural languages - 12 programming languages - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.) #### **Languages** The pie chart shows the distribution of languages in training data. ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true) The following table shows the further distribution of Niger-Congo and Indic languages in the training data. <details> <summary>Click to expand</summary><br/> | Niger Congo | Percentage | | Indic | Percentage | |----------------|------------ |------ |-----------|------------| | Chi Tumbuka | 0.00002 | | Assamese | 0.01 | | Kikuyu | 0.00004 | | Odia | 0.04 | | Bambara | 0.00004 | | Gujarati | 0.04 | | Akan | 0.00007 | | Marathi | 0.05 | | Xitsonga | 0.00007 | | Punjabi | 0.05 | | Sesotho | 0.00007 | | Kannada | 0.06 | | Chi Chewa | 0.0001 | | Nepali | 0.07 | | Setswana | 0.0002 | | Telugu | 0.09 | | Northern Sotho | 0.0002 | | Malayalam | 0.10 | | Fon | 0.0002 | | Urdu | 0.10 | | Kirundi | 0.0003 | | Tamil | 0.20 | | Wolof | 0.0004 | | Bengali | 0.50 | | Kuganda | 0.0004 | | Hindi | 0.70 | | Chi Shona | 0.001 | | Isi Zulu | 0.001 | | Igbo | 0.001 | | Xhosa | 0.001 | | Kinyarwanda | 0.003 | | Yoruba | 0.006 | | Swahili | 0.02 | </details> The following table shows the distribution of programming languages. <details> <summary>Click to expand</summary><br/> | Extension | Language | Number of files | |----------------|------------|-----------------| | java | Java | 5,407,724 | | php | PHP | 4,942,186 | | cpp | C++ | 2,503,930 | | py | Python | 2,435,072 | | js | JavaScript | 1,905,518 | | cs | C# | 1,577,347 | | rb | Ruby | 6,78,413 | | cc | C++ | 443,054 | | hpp | C++ | 391,048 | | lua | Lua | 352,317 | | go | GO | 227,763 | | ts | TypeScript | 195,254 | | C | C | 134,537 | | scala | Scala | 92,052 | | hh | C++ | 67,161 | | H | C++ | 55,899 | | tsx | TypeScript | 33,107 | | rs | Rust | 29,693 | | phpt | PHP | 9,702 | | c++ | C++ | 1,342 | | h++ | C++ | 791 | | php3 | PHP | 540 | | phps | PHP | 270 | | php5 | PHP | 166 | | php4 | PHP | 29 | </details> </details> <p>&nbsp;</p> ## Risks and Limitations *This section identifies foreseeable harms and misunderstandings.* <details> <summary>Click to expand</summary><br/> Model may: - Overrepresent some viewpoints and underrepresent others - Contain stereotypes - Contain [personal information](#personal-data-and-information) - Generate: - Hateful, abusive, or violent language - Discriminatory or prejudicial language - Content that may not be appropriate for all settings, including sexual content - Make errors, including producing incorrect information as if it were factual - Generate irrelevant or repetitive outputs </details> <p>&nbsp;</p> ## Evaluation *This section describes the evaluation protocols and provides the results.* <details> <summary>Click to expand</summary><br/> ### Metrics *This section describes the different ways performance is calculated and why.* Includes: | Metric | Why chosen | |--------------------|--------------------------------------------------------------------| | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training | | Cross Entropy [Loss](#loss) | Standard objective for language models. | And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_ ### Factors *This section lists some different aspects of what BLOOM models. Its focus is on those aspects that are likely to give rise to high variance in model behavior.* - Language, such as English or Yoruba - Domain, such as newswire or stories - Demographic characteristics, such as gender or nationality ### Results *Results are based on the [Factors](#factors) and [Metrics](#metrics).* **Train-time Evaluation:** As of 25.May.2022, 15:00 PST: - Training Loss: 2.0 - Validation Loss: 2.2 - Perplexity: 8.9 (More evaluation scores forthcoming at the end of model training.) </details> <p>&nbsp;</p> ## Recommendations *This section provides information on warnings and potential mitigations.* <details> <summary>Click to expand</summary><br/> - Indirect users should be made aware when the content they're working with is created by the LLM. - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary. - Models pretrained with the LLM should include an updated Model Card. - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments. </details> <p>&nbsp;</p> ## Glossary and Calculations *This section defines common terms and how metrics are calculated.* <details> <summary>Click to expand</summary><br/> - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/). - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf). - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf). - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm). - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf)) - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated. </details> <p>&nbsp;</p> ## More Information <details> <summary>Click to expand</summary><br/> ### Dataset Creation Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling ### Technical Specifications Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md ### Initial Results Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book </details> <p>&nbsp;</p> ## Model Card Authors *Ordered roughly chronologically and by amount of time spent.* Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay
Helsinki-NLP/opus-mt-ine-en
bd46b80a8dfef9dcd1a1201bbe2807bdec97ad9b
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ine-en
4,704
null
transformers
916
--- language: - ca - es - os - ro - fy - cy - sc - is - yi - lb - an - sq - fr - ht - rm - ps - af - uk - sl - lt - bg - be - gd - si - en - br - mk - or - mr - ru - fo - co - oc - pl - gl - nb - bn - id - hy - da - gv - nl - pt - hi - as - kw - ga - sv - gu - wa - lv - el - it - hr - ur - nn - de - cs - ine tags: - translation license: apache-2.0 --- ### ine-eng * source group: Indo-European languages * target group: English * OPUS readme: [ine-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-eng/README.md) * model: transformer * source language(s): afr aln ang_Latn arg asm ast awa bel bel_Latn ben bho bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus san_Deva scn sco sgs sin slv snd_Arab spa sqi srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-hineng.hin.eng | 11.2 | 0.375 | | newsdev2016-enro-roneng.ron.eng | 35.5 | 0.614 | | newsdev2017-enlv-laveng.lav.eng | 25.1 | 0.542 | | newsdev2019-engu-gujeng.guj.eng | 16.0 | 0.420 | | newsdev2019-enlt-liteng.lit.eng | 24.0 | 0.522 | | newsdiscussdev2015-enfr-fraeng.fra.eng | 30.1 | 0.550 | | newsdiscusstest2015-enfr-fraeng.fra.eng | 33.4 | 0.572 | | newssyscomb2009-ceseng.ces.eng | 24.0 | 0.520 | | newssyscomb2009-deueng.deu.eng | 25.7 | 0.526 | | newssyscomb2009-fraeng.fra.eng | 27.9 | 0.550 | | newssyscomb2009-itaeng.ita.eng | 31.4 | 0.574 | | newssyscomb2009-spaeng.spa.eng | 28.3 | 0.555 | | news-test2008-deueng.deu.eng | 24.0 | 0.515 | | news-test2008-fraeng.fra.eng | 24.5 | 0.524 | | news-test2008-spaeng.spa.eng | 25.5 | 0.533 | | newstest2009-ceseng.ces.eng | 23.3 | 0.516 | | newstest2009-deueng.deu.eng | 23.2 | 0.512 | | newstest2009-fraeng.fra.eng | 27.3 | 0.545 | | newstest2009-itaeng.ita.eng | 30.3 | 0.567 | | newstest2009-spaeng.spa.eng | 27.9 | 0.549 | | newstest2010-ceseng.ces.eng | 23.8 | 0.523 | | newstest2010-deueng.deu.eng | 26.2 | 0.545 | | newstest2010-fraeng.fra.eng | 28.6 | 0.562 | | newstest2010-spaeng.spa.eng | 31.4 | 0.581 | | newstest2011-ceseng.ces.eng | 24.2 | 0.521 | | newstest2011-deueng.deu.eng | 23.9 | 0.522 | | newstest2011-fraeng.fra.eng | 29.5 | 0.570 | | newstest2011-spaeng.spa.eng | 30.3 | 0.570 | | newstest2012-ceseng.ces.eng | 23.5 | 0.516 | | newstest2012-deueng.deu.eng | 24.9 | 0.529 | | newstest2012-fraeng.fra.eng | 30.0 | 0.568 | | newstest2012-ruseng.rus.eng | 29.9 | 0.565 | | newstest2012-spaeng.spa.eng | 33.3 | 0.593 | | newstest2013-ceseng.ces.eng | 25.6 | 0.531 | | newstest2013-deueng.deu.eng | 27.7 | 0.545 | | newstest2013-fraeng.fra.eng | 30.0 | 0.561 | | newstest2013-ruseng.rus.eng | 24.4 | 0.514 | | newstest2013-spaeng.spa.eng | 30.8 | 0.577 | | newstest2014-csen-ceseng.ces.eng | 27.7 | 0.558 | | newstest2014-deen-deueng.deu.eng | 27.7 | 0.545 | | newstest2014-fren-fraeng.fra.eng | 32.2 | 0.592 | | newstest2014-hien-hineng.hin.eng | 16.7 | 0.450 | | newstest2014-ruen-ruseng.rus.eng | 27.2 | 0.552 | | newstest2015-encs-ceseng.ces.eng | 25.4 | 0.518 | | newstest2015-ende-deueng.deu.eng | 28.8 | 0.552 | | newstest2015-enru-ruseng.rus.eng | 25.6 | 0.527 | | newstest2016-encs-ceseng.ces.eng | 27.0 | 0.540 | | newstest2016-ende-deueng.deu.eng | 33.5 | 0.592 | | newstest2016-enro-roneng.ron.eng | 32.8 | 0.591 | | newstest2016-enru-ruseng.rus.eng | 24.8 | 0.523 | | newstest2017-encs-ceseng.ces.eng | 23.7 | 0.510 | | newstest2017-ende-deueng.deu.eng | 29.3 | 0.556 | | newstest2017-enlv-laveng.lav.eng | 18.9 | 0.486 | | newstest2017-enru-ruseng.rus.eng | 28.0 | 0.546 | | newstest2018-encs-ceseng.ces.eng | 24.9 | 0.521 | | newstest2018-ende-deueng.deu.eng | 36.0 | 0.604 | | newstest2018-enru-ruseng.rus.eng | 23.8 | 0.517 | | newstest2019-deen-deueng.deu.eng | 31.5 | 0.570 | | newstest2019-guen-gujeng.guj.eng | 12.1 | 0.377 | | newstest2019-lten-liteng.lit.eng | 26.6 | 0.555 | | newstest2019-ruen-ruseng.rus.eng | 27.5 | 0.541 | | Tatoeba-test.afr-eng.afr.eng | 59.0 | 0.724 | | Tatoeba-test.ang-eng.ang.eng | 9.9 | 0.254 | | Tatoeba-test.arg-eng.arg.eng | 41.6 | 0.487 | | Tatoeba-test.asm-eng.asm.eng | 22.8 | 0.392 | | Tatoeba-test.ast-eng.ast.eng | 36.1 | 0.521 | | Tatoeba-test.awa-eng.awa.eng | 11.6 | 0.280 | | Tatoeba-test.bel-eng.bel.eng | 42.2 | 0.597 | | Tatoeba-test.ben-eng.ben.eng | 45.8 | 0.598 | | Tatoeba-test.bho-eng.bho.eng | 34.4 | 0.518 | | Tatoeba-test.bre-eng.bre.eng | 24.4 | 0.405 | | Tatoeba-test.bul-eng.bul.eng | 50.8 | 0.660 | | Tatoeba-test.cat-eng.cat.eng | 51.2 | 0.677 | | Tatoeba-test.ces-eng.ces.eng | 47.6 | 0.641 | | Tatoeba-test.cor-eng.cor.eng | 5.4 | 0.214 | | Tatoeba-test.cos-eng.cos.eng | 61.0 | 0.675 | | Tatoeba-test.csb-eng.csb.eng | 22.5 | 0.394 | | Tatoeba-test.cym-eng.cym.eng | 34.7 | 0.522 | | Tatoeba-test.dan-eng.dan.eng | 56.2 | 0.708 | | Tatoeba-test.deu-eng.deu.eng | 44.9 | 0.625 | | Tatoeba-test.dsb-eng.dsb.eng | 21.0 | 0.383 | | Tatoeba-test.egl-eng.egl.eng | 6.9 | 0.221 | | Tatoeba-test.ell-eng.ell.eng | 62.1 | 0.741 | | Tatoeba-test.enm-eng.enm.eng | 22.6 | 0.466 | | Tatoeba-test.ext-eng.ext.eng | 33.2 | 0.496 | | Tatoeba-test.fao-eng.fao.eng | 28.1 | 0.460 | | Tatoeba-test.fas-eng.fas.eng | 9.6 | 0.306 | | Tatoeba-test.fra-eng.fra.eng | 50.3 | 0.661 | | Tatoeba-test.frm-eng.frm.eng | 30.0 | 0.457 | | Tatoeba-test.frr-eng.frr.eng | 15.2 | 0.301 | | Tatoeba-test.fry-eng.fry.eng | 34.4 | 0.525 | | Tatoeba-test.gcf-eng.gcf.eng | 18.4 | 0.317 | | Tatoeba-test.gla-eng.gla.eng | 24.1 | 0.400 | | Tatoeba-test.gle-eng.gle.eng | 52.2 | 0.671 | | Tatoeba-test.glg-eng.glg.eng | 50.5 | 0.669 | | Tatoeba-test.glv-eng.glv.eng | 5.7 | 0.189 | | Tatoeba-test.gos-eng.gos.eng | 19.2 | 0.378 | | Tatoeba-test.got-eng.got.eng | 0.1 | 0.022 | | Tatoeba-test.grc-eng.grc.eng | 0.9 | 0.095 | | Tatoeba-test.gsw-eng.gsw.eng | 23.9 | 0.390 | | Tatoeba-test.guj-eng.guj.eng | 28.0 | 0.428 | | Tatoeba-test.hat-eng.hat.eng | 44.2 | 0.567 | | Tatoeba-test.hbs-eng.hbs.eng | 51.6 | 0.666 | | Tatoeba-test.hif-eng.hif.eng | 22.3 | 0.451 | | Tatoeba-test.hin-eng.hin.eng | 41.7 | 0.585 | | Tatoeba-test.hsb-eng.hsb.eng | 46.4 | 0.590 | | Tatoeba-test.hye-eng.hye.eng | 40.4 | 0.564 | | Tatoeba-test.isl-eng.isl.eng | 43.8 | 0.605 | | Tatoeba-test.ita-eng.ita.eng | 60.7 | 0.735 | | Tatoeba-test.jdt-eng.jdt.eng | 5.5 | 0.091 | | Tatoeba-test.kok-eng.kok.eng | 7.8 | 0.205 | | Tatoeba-test.ksh-eng.ksh.eng | 15.8 | 0.284 | | Tatoeba-test.kur-eng.kur.eng | 11.6 | 0.232 | | Tatoeba-test.lad-eng.lad.eng | 30.7 | 0.484 | | Tatoeba-test.lah-eng.lah.eng | 11.0 | 0.286 | | Tatoeba-test.lat-eng.lat.eng | 24.4 | 0.432 | | Tatoeba-test.lav-eng.lav.eng | 47.2 | 0.646 | | Tatoeba-test.lij-eng.lij.eng | 9.0 | 0.287 | | Tatoeba-test.lit-eng.lit.eng | 51.7 | 0.670 | | Tatoeba-test.lld-eng.lld.eng | 22.4 | 0.369 | | Tatoeba-test.lmo-eng.lmo.eng | 26.1 | 0.381 | | Tatoeba-test.ltz-eng.ltz.eng | 39.8 | 0.536 | | Tatoeba-test.mai-eng.mai.eng | 72.3 | 0.758 | | Tatoeba-test.mar-eng.mar.eng | 32.0 | 0.554 | | Tatoeba-test.mfe-eng.mfe.eng | 63.1 | 0.822 | | Tatoeba-test.mkd-eng.mkd.eng | 49.5 | 0.638 | | Tatoeba-test.msa-eng.msa.eng | 38.6 | 0.566 | | Tatoeba-test.multi.eng | 45.6 | 0.615 | | Tatoeba-test.mwl-eng.mwl.eng | 40.4 | 0.767 | | Tatoeba-test.nds-eng.nds.eng | 35.5 | 0.538 | | Tatoeba-test.nep-eng.nep.eng | 4.9 | 0.209 | | Tatoeba-test.nld-eng.nld.eng | 54.2 | 0.694 | | Tatoeba-test.non-eng.non.eng | 39.3 | 0.573 | | Tatoeba-test.nor-eng.nor.eng | 50.9 | 0.663 | | Tatoeba-test.oci-eng.oci.eng | 19.6 | 0.386 | | Tatoeba-test.ori-eng.ori.eng | 16.2 | 0.364 | | Tatoeba-test.orv-eng.orv.eng | 13.6 | 0.288 | | Tatoeba-test.oss-eng.oss.eng | 9.4 | 0.301 | | Tatoeba-test.pan-eng.pan.eng | 17.1 | 0.389 | | Tatoeba-test.pap-eng.pap.eng | 57.0 | 0.680 | | Tatoeba-test.pdc-eng.pdc.eng | 41.6 | 0.526 | | Tatoeba-test.pms-eng.pms.eng | 13.7 | 0.333 | | Tatoeba-test.pol-eng.pol.eng | 46.5 | 0.632 | | Tatoeba-test.por-eng.por.eng | 56.4 | 0.710 | | Tatoeba-test.prg-eng.prg.eng | 2.3 | 0.193 | | Tatoeba-test.pus-eng.pus.eng | 3.2 | 0.194 | | Tatoeba-test.roh-eng.roh.eng | 17.5 | 0.420 | | Tatoeba-test.rom-eng.rom.eng | 5.0 | 0.237 | | Tatoeba-test.ron-eng.ron.eng | 51.4 | 0.670 | | Tatoeba-test.rue-eng.rue.eng | 26.0 | 0.447 | | Tatoeba-test.rus-eng.rus.eng | 47.8 | 0.634 | | Tatoeba-test.san-eng.san.eng | 4.0 | 0.195 | | Tatoeba-test.scn-eng.scn.eng | 45.1 | 0.440 | | Tatoeba-test.sco-eng.sco.eng | 41.9 | 0.582 | | Tatoeba-test.sgs-eng.sgs.eng | 38.7 | 0.498 | | Tatoeba-test.sin-eng.sin.eng | 29.7 | 0.499 | | Tatoeba-test.slv-eng.slv.eng | 38.2 | 0.564 | | Tatoeba-test.snd-eng.snd.eng | 12.7 | 0.342 | | Tatoeba-test.spa-eng.spa.eng | 53.2 | 0.687 | | Tatoeba-test.sqi-eng.sqi.eng | 51.9 | 0.679 | | Tatoeba-test.stq-eng.stq.eng | 9.0 | 0.391 | | Tatoeba-test.swe-eng.swe.eng | 57.4 | 0.705 | | Tatoeba-test.swg-eng.swg.eng | 18.0 | 0.338 | | Tatoeba-test.tgk-eng.tgk.eng | 24.3 | 0.413 | | Tatoeba-test.tly-eng.tly.eng | 1.1 | 0.094 | | Tatoeba-test.ukr-eng.ukr.eng | 48.0 | 0.639 | | Tatoeba-test.urd-eng.urd.eng | 27.2 | 0.471 | | Tatoeba-test.vec-eng.vec.eng | 28.0 | 0.398 | | Tatoeba-test.wln-eng.wln.eng | 17.5 | 0.320 | | Tatoeba-test.yid-eng.yid.eng | 26.9 | 0.457 | | Tatoeba-test.zza-eng.zza.eng | 1.7 | 0.131 | ### System Info: - hf_name: ine-eng - source_languages: ine - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] - src_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.test.txt - src_alpha3: ine - tgt_alpha3: eng - short_pair: ine-en - chrF2_score: 0.615 - bleu: 45.6 - brevity_penalty: 0.997 - ref_len: 71872.0 - src_name: Indo-European languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: ine - tgt_alpha2: en - prefer_old: False - long_pair: ine-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
hf-internal-testing/tiny-albert
de839e2e6aa81798e2ac85a8ac414da41862e23a
2021-07-16T01:27:09.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hf-internal-testing
null
hf-internal-testing/tiny-albert
4,675
null
transformers
917
This is a tiny-albert random model to be used for basic testing.
microsoft/beit-base-patch16-224
f73f827d08788b563c0b7a3eb04169a77e79a588
2022-01-28T10:18:01.000Z
[ "pytorch", "jax", "beit", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2106.08254", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
microsoft
null
microsoft/beit-base-patch16-224
4,633
1
transformers
918
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet - imagenet-21k --- # BEiT (base-sized model, fine-tuned on ImageNet-1k) BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches. Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import BeitFeatureExtractor, BeitForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254). ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```@article{DBLP:journals/corr/abs-2106-08254, author = {Hangbo Bao and Li Dong and Furu Wei}, title = {BEiT: {BERT} Pre-Training of Image Transformers}, journal = {CoRR}, volume = {abs/2106.08254}, year = {2021}, url = {https://arxiv.org/abs/2106.08254}, archivePrefix = {arXiv}, eprint = {2106.08254}, timestamp = {Tue, 29 Jun 2021 16:55:04 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
facebook/wmt19-en-ru
a96448f0cef6a0b22c8f73f6f0e74b610efe806f
2020-12-11T21:39:58.000Z
[ "pytorch", "fsmt", "text2text-generation", "en", "ru", "dataset:wmt19", "arxiv:1907.06616", "transformers", "translation", "wmt19", "facebook", "license:apache-2.0", "autotrain_compatible" ]
translation
false
facebook
null
facebook/wmt19-en-ru
4,623
1
transformers
919
--- language: - en - ru tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu thumbnail: https://huggingface.co/front/thumbnails/facebook.png --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for en-ru. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-en-ru" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "Machine learning is great, isn't it?" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # Машинное обучение - это здорово, не так ли? ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- en-ru | [36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724) | 33.47 The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Facebook FAIR's WMT19 News Translation Task Submission}, author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle={Proc. of WMT}, } ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints)
indolem/indobertweet-base-uncased
32e28c05b47e33b6675d2670a1745c50a65e987a
2021-09-18T01:24:17.000Z
[ "pytorch", "bert", "fill-mask", "id", "dataset:Twitter 2021", "arxiv:2109.04607", "transformers", "Twitter", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
indolem
null
indolem/indobertweet-base-uncased
4,614
3
transformers
920
--- language: - id tags: - Twitter license: apache-2.0 datasets: - Twitter 2021 widget: - text: "guweehh udh ga' paham lg sm [MASK]" --- # IndoBERTweet 🐦 ## 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. [_IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization_](https://arxiv.org/pdf/2109.04607.pdf). In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (**EMNLP 2021**), Dominican Republic (virtual). ## 2. About [IndoBERTweet](https://github.com/indolem/IndoBERTweet) is the first large-scale pretrained model for Indonesian Twitter that is trained by extending a monolingually trained Indonesian BERT model with additive domain-specific vocabulary. In this paper, we show that initializing domain-specific vocabulary with average-pooling of BERT subword embeddings is more efficient than pretraining from scratch, and more effective than initializing based on word2vec projections. ## 3. Pretraining Data We crawl Indonesian tweets over a 1-year period using the official Twitter API, from December 2019 to December 2020, with 60 keywords covering 4 main topics: economy, health, education, and government. We obtain in total of **409M word tokens**, two times larger than the training data used to pretrain [IndoBERT](https://aclanthology.org/2020.coling-main.66.pdf). Due to Twitter policy, this pretraining data will not be released to public. ## 4. How to use Load model and tokenizer (tested with transformers==3.5.1) ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("indolem/indobertweet-base-uncased") model = AutoModel.from_pretrained("indolem/indobertweet-base-uncased") ``` **Preprocessing Steps:** * lower-case all words * converting user mentions and URLs into @USER and HTTPURL, respectively * translating emoticons into text using the [emoji package](https://pypi.org/project/emoji/). ## 5. Results over 7 Indonesian Twitter Datasets <table> <col> <colgroup span="2"></colgroup> <colgroup span="2"></colgroup> <tr> <th rowspan="2">Models</td> <th colspan="2" scope="colgroup">Sentiment</th> <th colspan="1" scope="colgroup">Emotion</th> <th colspan="2" scope="colgroup">Hate Speech</th> <th colspan="2" scope="colgroup">NER</th> <th rowspan="2" scope="colgroup">Average</th> </tr> <tr> <th scope="col">IndoLEM</th> <th scope="col">SmSA</th> <th scope="col">EmoT</th> <th scope="col">HS1</th> <th scope="col">HS2</th> <th scope="col">Formal</th> <th scope="col">Informal</th> </tr> <tr> <td scope="row">mBERT</td> <td>76.6</td> <td>84.7</td> <td>67.5</td> <td>85.1</td> <td>75.1</td> <td>85.2</td> <td>83.2</td> <td>79.6</td> </tr> <tr> <td scope="row">malayBERT</td> <td>82.0</td> <td>84.1</td> <td>74.2</td> <td>85.0</td> <td>81.9</td> <td>81.9</td> <td>81.3</td> <td>81.5</td> </tr> <tr> <td scope="row">IndoBERT (Willie, et al., 2020)</td> <td>84.1</td> <td>88.7</td> <td>73.3</td> <td>86.8</td> <td>80.4</td> <td>86.3</td> <td>84.3</td> <td>83.4</td> </tr> <tr> <td scope="row">IndoBERT (Koto, et al., 2020)</td> <td>84.1</td> <td>87.9</td> <td>71.0</td> <td>86.4</td> <td>79.3</td> <td>88.0</td> <td><b>86.9</b></td> <td>83.4</td> </tr> <tr> <td scope="row">IndoBERTweet (1M steps from scratch)</td> <td>86.2</td> <td>90.4</td> <td>76.0</td> <td><b>88.8</b></td> <td><b>87.5</b></td> <td><b>88.1</b></td> <td>85.4</td> <td>86.1</td> </tr> <tr> <td scope="row">IndoBERT + Voc adaptation + 200k steps</td> <td><b>86.6</b></td> <td><b>92.7</b></td> <td><b>79.0</b></td> <td>88.4</td> <td>84.0</td> <td>87.7</td> <td><b>86.9</b></td> <td><b>86.5</b></td> </tr> </table> ## Citation If you use our work, please cite: ```bibtex @inproceedings{koto2021indobertweet, title={IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization}, author={Fajri Koto and Jey Han Lau and Timothy Baldwin}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021)}, year={2021} } ```
yjernite/bart_eli5
38797dd2ef06f5542c6f7db853518703f6b3da21
2021-03-09T22:31:11.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:eli5", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
yjernite
null
yjernite/bart_eli5
4,594
3
transformers
921
--- language: en license: apache-2.0 datasets: - eli5 --- ## BART ELI5 Read the article at https://yjernite.github.io/lfqa.html and try the demo at https://huggingface.co/qa/
nboost/pt-tinybert-msmarco
b0de5c59e4779c149295b9bd0e5988a8f2cd2be7
2021-05-20T01:28:00.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
nboost
null
nboost/pt-tinybert-msmarco
4,590
null
transformers
922
Entry not found
setu4993/LaBSE
082cccca1eea3e0fab80749de8e8aded21bec253
2021-12-05T06:10:07.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "af", "am", "ar", "as", "az", "be", "bg", "bn", "bo", "bs", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "he", "hi", "hmn", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "or", "pa", "pl", "pt", "ro", "ru", "rw", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tk", "tl", "tr", "tt", "ug", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu", "dataset:CommonCrawl", "dataset:Wikipedia", "arxiv:2007.01852", "transformers", "sentence_embedding", "multilingual", "google", "sentence-similarity", "license:apache-2.0" ]
feature-extraction
false
setu4993
null
setu4993/LaBSE
4,587
18
transformers
923
--- language: - af - am - ar - as - az - be - bg - bn - bo - bs - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - haw - he - hi - hmn - hr - ht - hu - hy - id - ig - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - or - pa - pl - pt - ro - ru - rw - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - ug - uk - ur - uz - vi - wo - xh - yi - yo - zh - zu tags: - bert - sentence_embedding - multilingual - google - sentence-similarity license: apache-2.0 datasets: - CommonCrawl - Wikipedia --- # LaBSE ## Model description Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval. - Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE). - Paper: [arXiv](https://arxiv.org/abs/2007.01852). - Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2). - Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). - Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt). This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/ec3a019159a54ed6493181a64486c2808c01f216/tests/test_conversion.py#L31). ## Usage Using the model: ```python import torch from transformers import BertModel, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE") model = BertModel.from_pretrained("setu4993/LaBSE") model = model.eval() english_sentences = [ "dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.", ] english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) with torch.no_grad(): english_outputs = model(**english_inputs) ``` To get the sentence embeddings, use the pooler output: ```python english_embeddings = english_outputs.pooler_output ``` Output for other languages: ```python italian_sentences = [ "cane", "I cuccioli sono carini.", "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.", ] japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"] italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True) japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True) with torch.no_grad(): italian_outputs = model(**italian_inputs) japanese_outputs = model(**japanese_inputs) italian_embeddings = italian_outputs.pooler_output japanese_embeddings = japanese_outputs.pooler_output ``` For similarity between sentences, an L2-norm is recommended before calculating the similarity: ```python import torch.nn.functional as F def similarity(embeddings_1, embeddings_2): normalized_embeddings_1 = F.normalize(embeddings_1, p=2) normalized_embeddings_2 = F.normalize(embeddings_2, p=2) return torch.matmul( normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) ) print(similarity(english_embeddings, italian_embeddings)) print(similarity(english_embeddings, japanese_embeddings)) print(similarity(italian_embeddings, japanese_embeddings)) ``` ## Details Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852). ### BibTeX entry and citation info ```bibtex @misc{feng2020languageagnostic, title={Language-agnostic BERT Sentence Embedding}, author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang}, year={2020}, eprint={2007.01852}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
uer/roberta-base-finetuned-cluener2020-chinese
312ce0cd10634f238c0cd3205fa6905933394564
2022-02-20T07:51:53.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "zh", "transformers", "autotrain_compatible" ]
token-classification
false
uer
null
uer/roberta-base-finetuned-cluener2020-chinese
4,582
6
transformers
924
--- language: zh widget: - text: "江苏警方通报特斯拉冲进店铺" --- # Chinese RoBERTa-Base Model for NER ## Model description The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese). ## How to use You can use this model directly with a pipeline for token classification : ```python >>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline >>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> ner = pipeline('ner', model=model, tokenizer=tokenizer) >>> ner("江苏警方通报特斯拉冲进店铺") [ {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7}, {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9} ] ``` ## Training data [CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/cluener2020/train.tsv \ --dev_path datasets/cluener2020/dev.tsv \ --label2id_path datasets/cluener2020/label2id.json \ --output_model_path models/cluener2020_ner_model.bin \ --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{xu2020cluener2020, title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese}, author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei}, journal={arXiv preprint arXiv:2001.04351}, year={2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
Babelscape/wikineural-multilingual-ner
65382ee6df6c881a23b02fee6337dbde658ba24c
2022-02-19T07:32:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
false
Babelscape
null
Babelscape/wikineural-multilingual-ner
4,576
5
transformers
925
--- annotations_creators: - machine-generated language_creators: - machine-generated widget: - text: "My name is Wolfgang and I live in Berlin." - text: "George Washington went to Washington." - text: "Mi nombre es Sarah y vivo en Londres." - text: "Меня зовут Симона, и я живу в Риме." tags: - named-entity-recognition datasets: - Babelscape/wikineural language: - de - en - es - fr - it - nl - pl - pt - ru license: - cc-by-nc-sa-4.0 pretty_name: wikineural-dataset source_datasets: - original task_categories: - structure-prediction task_ids: - named-entity-recognition --- ## Model Description - **Summary:** mBERT model fine-tuned for 3 epochs on the recently-introduced WikiNEuRal dataset for Multilingual NER. The system supports the 9 languages covered by WikiNEuRal (de, en, es, fr, it, nl, pl, pt, ru), and it was trained on all 9 languages jointly. For a stronger baseline system (mBERT + Bi-LSTM + CRF) look at the official repository. - **Official Repository:** [https://github.com/Babelscape/wikineural](https://github.com/Babelscape/wikineural) - **Paper:** [https://aclanthology.org/wikineural](https://aclanthology.org/2021.findings-emnlp.215/) #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner") model = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Wolfgang and I live in Berlin" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is trained on WikiNEuRal, a state-of-the-art dataset for Multilingual NER automatically derived from Wikipedia. Therefore, it may not generalize well on all textual genres (e.g. news). On the other hand, models trained only on news articles (e.g. only on CoNLL03) have been proven to obtain much lower scores on encyclopedic articles. To obtain a more robust system, we encourage to train a system on the combination of WikiNEuRal + CoNLL. ## Licensing Information Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents and models belongs to the original copyright holders. ## Citation Information ```bibtex @inproceedings{tedeschi-etal-2021-wikineural-combined, title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}", author = "Tedeschi, Simone and Maiorca, Valentino and Campolungo, Niccol{\`o} and Cecconi, Francesco and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.215", pages = "2521--2533", abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.", } ```
cl-tohoku/bert-base-japanese-char-whole-word-masking
fa5374ac8a5b2c6d3f5f8e156a9892cdf687201d
2021-09-23T13:45:26.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
cl-tohoku
null
cl-tohoku/bert-base-japanese-char-whole-word-masking
4,575
2
transformers
926
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 仙台は「[MASK]の都」と呼ばれている。 --- # BERT base Japanese (character tokenization, whole word masking enabled) This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the IPA dictionary, followed by character-level tokenization. Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective. The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v1.0). ## Model architecture The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads. ## Training Data The model is trained on Japanese Wikipedia as of September 1, 2019. To generate the training corpus, [WikiExtractor](https://github.com/attardi/wikiextractor) is used to extract plain texts from a dump file of Wikipedia articles. The text files used for the training are 2.6GB in size, consisting of approximately 17M sentences. ## Tokenization The texts are first tokenized by [MeCab](https://taku910.github.io/mecab/) morphological parser with the IPA dictionary and then split into characters. The vocabulary size is 4000. ## Training The model is trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For the training of the MLM (masked language modeling) objective, we introduced the **Whole Word Masking** in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once. ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). ## Acknowledgments For training models, we used Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
Helsinki-NLP/opus-mt-en-ro
6d32771161c298fb3164c208e48fea050a85ab65
2021-09-09T21:38:44.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ro", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ro
4,543
null
transformers
927
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ro * source languages: en * target languages: ro * OPUS readme: [en-ro](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ro/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ro/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ro/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ro/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2016-enro.en.ro | 30.8 | 0.592 | | newstest2016-enro.en.ro | 28.8 | 0.571 | | Tatoeba.en.ro | 45.3 | 0.670 |
CAMeL-Lab/bert-base-arabic-camelbert-mix-ner
40b8059a6f3bfbb49d64038e131f49b93cc37417
2021-10-17T11:13:00.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-ner
4,522
1
transformers
928
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT-Mix NER Model ## Model description **CAMeLBERT-Mix NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678). "* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-mix-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
KoboldAI/fairseq-dense-125M
ee40bc27509c93cd551f2791bb9d462bbab4d450
2022-02-01T22:48:03.000Z
[ "pytorch", "xglm", "text-generation", "transformers" ]
text-generation
false
KoboldAI
null
KoboldAI/fairseq-dense-125M
4,511
null
transformers
929
Entry not found
ltgoslo/norbert2
afb829e3d0b861bd5f8cda6522b32ca0b097d7eb
2022-02-15T16:01:58.000Z
[ "pytorch", "tf", "bert", "fill-mask", "no", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
ltgoslo
null
ltgoslo/norbert2
4,511
3
transformers
930
--- language: no license: cc-by-4.0 pipeline_tag: fill-mask tags: - norwegian - bert thumbnail: https://raw.githubusercontent.com/ltgoslo/NorBERT/main/Norbert.png widget: - text: "Nå ønsker de seg en [MASK] bolig. " --- ## Quickstart **Release 2.0** (February 7, 2022) Trained on the very large corpus of Norwegian (C4 + NCC, about 15 billion word tokens). Features a 50 000 words vocabulary and was trained using Whole Word Masking. Download the model here: * Cased Norwegian BERT Base 2.0 (NorBERT 2): [221.zip](http://vectors.nlpl.eu/repository/20/221.zip) More about NorBERT training corpora, training procedure and evaluation benchmarks: http://norlm.nlpl.eu/ Associated code: https://github.com/ltgoslo/NorBERT Check this paper for more details: _Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja Øvrelid, Stephan Oepen. [Large-Scale Contextualised Language Modelling for Norwegian](https://aclanthology.org/2021.nodalida-main.4/), NoDaLiDa'21 (2021)_ NorBERT was trained as a part of NorLM, a joint initiative of the projects [EOSC-Nordic](https://www.eosc-nordic.eu/) (European Open Science Cloud), coordinated by the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo. The computations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.
Helsinki-NLP/opus-mt-en-fi
627fe90df5c335be61521cd89c68f62e2bdce050
2021-09-09T21:35:17.000Z
[ "pytorch", "marian", "text2text-generation", "en", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-fi
4,505
null
transformers
931
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-fi * source languages: en * target languages: fi * OPUS readme: [en-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-fi/README.md) * dataset: opus+bt-news * model: transformer * pre-processing: normalization + SentencePiece * download original weights: [opus+bt-news-2020-03-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-fi/opus+bt-news-2020-03-21.zip) * test set translations: [opus+bt-news-2020-03-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-fi/opus+bt-news-2020-03-21.test.txt) * test set scores: [opus+bt-news-2020-03-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-fi/opus+bt-news-2020-03-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2019-enfi.en.fi | 25.7 | 0.578 |
facebook/blenderbot-1B-distill
a10c0a628734b4cd46da57520bd35c7ca8965201
2021-06-17T12:02:20.000Z
[ "pytorch", "blenderbot", "text2text-generation", "en", "dataset:blended_skill_talk", "arxiv:1907.06616", "transformers", "convAI", "conversational", "facebook", "license:apache-2.0", "autotrain_compatible" ]
conversational
false
facebook
null
facebook/blenderbot-1B-distill
4,497
9
transformers
932
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- ## Model description + Paper: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/1907.06616) + [Original PARLAI Code](https://parl.ai/projects/recipes/) ### Abstract Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, both asking and answering questions, and displaying knowledge, empathy and personality appropriately, depending on the situation. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter neural models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
indigo-ai/BERTino
4539d128176da9bbadf98ab813c9acaf68e8d8f1
2021-09-22T08:51:24.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "it", "transformers", "DISTILbert", "Italian", "license:mit", "autotrain_compatible" ]
fill-mask
false
indigo-ai
null
indigo-ai/BERTino
4,468
5
transformers
933
--- language: it tags: - DISTILbert - Italian license: mit widget: - text: Vado al [MASK] a fare la spesa - text: Vado al parco a guardare le [MASK] - text: Il cielo è [MASK] di stelle. --- # BERTino: an Italian DistilBERT model This repository hosts BERTino, an Italian DistilBERT model pre-trained by [indigo.ai](https://indigo.ai/en/) on a large general-domain Italian corpus. BERTino is task-agnostic and can be fine-tuned for every downstream task. ### Corpus The pre-training corpus that we used is the union of the [Paisa](https://www.corpusitaliano.it/) and [ItWaC](https://corpora.dipintra.it/public/run.cgi/corp_info?corpname=itwac_full) corpora. The final corpus counts 14 millions of sentences for a total of 12 GB of text. ### Downstream Results To validate the pre-training that we conducted, we evaluated BERTino on the [Italian ParTUT](https://universaldependencies.org/treebanks/it_partut/index.html), [Italian ISDT](https://universaldependencies.org/treebanks/it_isdt/index.html), [Italian WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) and multi-class sentence classification tasks. We report for comparison results obtained by the [teacher model](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) fine-tuned in the same tasks and for the same number of epochs. **Italian ISDT:** | Model | F1 score | Fine-tuning time | Evaluation time | |--------------|----------|------------------|-----------------| | BERTino | 0,9801 | 9m, 4s | 3s | | Teacher | 0,983 | 16m, 28s | 5s | **Italian ParTUT:** | Model | F1 score | Fine-tuning time | Evaluation time | |--------------|----------|------------------|-----------------| | BERTino | 0,9268 | 1m, 18s | 1s | | Teacher | 0,9688 | 2m, 18s | 1s | **Italian WikiNER:** | Model | F1 score | Fine-tuning time | Evaluation time | |--------------|----------|------------------|-----------------| | BERTino | 0,9038 | 35m, 35s | 3m, 1s | | Teacher | 0,9178 | 67m, 8s | 5m, 16s | **Multi-class sentence classification:** | Model | F1 score | Fine-tuning time | Evaluation time | |--------------|----------|------------------|-----------------| | BERTino | 0,7788 | 4m, 40s | 6s | | Teacher | 0,7986 | 8m, 52s | 9s |
microsoft/unispeech-sat-base
ca010627e5d232d9179ebdcd615eaa02cea382ed
2021-11-05T12:41:05.000Z
[ "pytorch", "unispeech-sat", "pretraining", "en", "dataset:librispeech_asr", "arxiv:2110.05752", "transformers", "speech" ]
null
false
microsoft
null
microsoft/unispeech-sat-base
4,458
null
transformers
934
--- language: - en datasets: - librispeech_asr tags: - speech --- # UniSpeech-SAT-Base [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The base model pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on: - 960 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Usage This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on task such as speaker verification, speaker identification, and speaker diarization. **Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence of phonemes before fine-tuning. ## Speech Recognition To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition). ## Speech Classification To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification). ## Speaker Verification TODO ## Speaker Diarization TODO # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
hf-internal-testing/tiny-xlm-roberta
915669c23332981bc5936cf93abbd395f487ac38
2021-07-16T01:27:42.000Z
[ "pytorch", "xlm-roberta", "text-generation", "transformers" ]
text-generation
false
hf-internal-testing
null
hf-internal-testing/tiny-xlm-roberta
4,446
null
transformers
935
This is a tiny random {mname_tiny} model to be used for basic testing
HooshvareLab/bert-base-parsbert-uncased
d73a0e2c7492c33bd5819bcdb23eba207404dd19
2021-05-18T20:47:21.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "arxiv:2005.12515", "transformers", "autotrain_compatible" ]
fill-mask
false
HooshvareLab
null
HooshvareLab/bert-base-parsbert-uncased
4,431
4
transformers
936
## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) --- ## Introduction This model is pre-trained on a large Persian corpus with various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 2M documents. A large subset of this corpus was crawled manually. As a part of ParsBERT methodology, an extensive pre-processing combining POS tagging and WordPiece segmentation was carried out to bring the corpus into a proper format. This process produces more than 40M true sentences. ## Evaluation ParsBERT is evaluated on three NLP downstream tasks: Sentiment Analysis (SA), Text Classification, and Named Entity Recognition (NER). For this matter and due to insufficient resources, two large datasets for SA and two for text classification were manually composed, which are available for public use and benchmarking. ParsBERT outperformed all other language models, including multilingual BERT and other hybrid deep learning models for all tasks, improving the state-of-the-art performance in Persian language modeling. ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. ### Sentiment Analysis (SA) task | Dataset | ParsBERT | mBERT | DeepSentiPers | |:--------------------------:|:---------:|:-----:|:-------------:| | Digikala User Comments | 81.74* | 80.74 | - | | SnappFood User Comments | 88.12* | 87.87 | - | | SentiPers (Multi Class) | 71.11* | - | 69.33 | | SentiPers (Binary Class) | 92.13* | - | 91.98 | ### Text Classification (TC) task | Dataset | ParsBERT | mBERT | |:-----------------:|:--------:|:-----:| | Digikala Magazine | 93.59* | 90.72 | | Persian News | 97.19* | 95.79 | ### Named Entity Recognition (NER) task | Dataset | ParsBERT | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |:-------:|:--------:|:--------:|:----------:|:--------------:|:----------:|:----------------:|:------------:| | PEYMA | 93.10* | 86.64 | - | 90.59 | - | 84.00 | - | | ARMAN | 98.79* | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 | **If you tested ParsBERT on a public dataset and you want to add your results to the table above, open a pull request or contact us. Also make sure to have your code available online so we can add it as a reference** ## How to use ### TensorFlow 2.0 ```python from transformers import AutoConfig, AutoTokenizer, TFAutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") model = AutoModel.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") text = "ما در هوشواره معتقدیم با انتقال صحیح دانش و آگاهی، همه افراد می‌توانند از ابزارهای هوشمند استفاده کنند. شعار ما هوش مصنوعی برای همه است." tokenizer.tokenize(text) >>> ['ما', 'در', 'هوش', '##واره', 'معتقدیم', 'با', 'انتقال', 'صحیح', 'دانش', 'و', 'اگاهی', '،', 'همه', 'افراد', 'میتوانند', 'از', 'ابزارهای', 'هوشمند', 'استفاده', 'کنند', '.', 'شعار', 'ما', 'هوش', 'مصنوعی', 'برای', 'همه', 'است', '.'] ``` ### Pytorch ```python from transformers import AutoConfig, AutoTokenizer, AutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") model = AutoModel.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") ``` ## NLP Tasks Tutorial Coming soon stay tuned ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) ## Releases ### Release v0.1 (May 27, 2019) This is the first version of our ParsBERT based on BERT<sub>BASE</sub>
arampacha/roberta-tiny
f55131409ab048f087bf793ad4009b8a463e8a7b
2022-05-20T22:07:50.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
arampacha
null
arampacha/roberta-tiny
4,425
null
transformers
937
# roberta-tiny Tiny untrained model for testing purposes
dumitrescustefan/bert-base-romanian-uncased-v1
9eb44d518953103bdc9f088217ec978c6ec9a9e4
2021-11-02T15:26:10.000Z
[ "pytorch", "jax", "bert", "ro", "transformers" ]
null
false
dumitrescustefan
null
dumitrescustefan/bert-base-romanian-uncased-v1
4,422
3
transformers
938
--- language: ro --- # bert-base-romanian-uncased-v1 The BERT **base**, **uncased** model for Romanian, trained on a 15GB corpus, version ![v1.0](https://img.shields.io/badge/v1.0-21%20Apr%202020-ff6666) ### How to use ```python from transformers import AutoTokenizer, AutoModel import torch # load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1", do_lower_case=True) model = AutoModel.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1") # tokenize a sentence and run through the model input_ids = torch.tensor(tokenizer.encode("Acesta este un test.", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) # get encoding last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple ``` Remember to always sanitize your text! Replace ``s`` and ``t`` cedilla-letters to comma-letters with : ``` text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **NOT** trained on cedilla ``s`` and ``t``s. If you don't, you will have decreased performance due to <UNK>s and increased number of tokens per word. ### Evaluation Evaluation is performed on Universal Dependencies [Romanian RRT](https://universaldependencies.org/treebanks/ro_rrt/index.html) UPOS, XPOS and LAS, and on a NER task based on [RONEC](https://github.com/dumitrescustefan/ronec). Details, as well as more in-depth tests not shown here, are given in the dedicated [evaluation page](https://github.com/dumitrescustefan/Romanian-Transformers/tree/master/evaluation/README.md). The baseline is the [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) model ``bert-base-multilingual-(un)cased``, as at the time of writing it was the only available BERT model that works on Romanian. | Model | UPOS | XPOS | NER | LAS | |--------------------------------|:-----:|:------:|:-----:|:-----:| | bert-base-multilingual-uncased | 97.65 | 95.72 | 83.91 | 87.65 | | bert-base-romanian-uncased-v1 | **98.18** | **96.84** | **85.26** | **89.61** | ### Corpus The model is trained on the following corpora (stats in the table below are after cleaning): | Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) | |----------- |:--------: |:--------: |:--------: |:--------: | | OPUS | 55.05 | 635.04 | 4.045 | 3.8 | | OSCAR | 33.56 | 1725.82 | 11.411 | 11 | | Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 | | **Total** | **90.15** | **2421.33** | **15.867** | **15.2** | #### Acknowledgements - We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!
cardiffnlp/twitter-roberta-base-hate
82cfd645130b125b8e8de63d90b0376620a0bfbd
2021-05-20T15:02:45.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/twitter-roberta-base-hate
4,413
3
transformers
939
# Twitter-roBERTa-base for Hate Speech Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='hate' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-hate 0.9168 2) hate 0.0832 ```
gogamza/kobart-base-v1
d7e64abd841bc1fa5d2939d14161124c51f29e8b
2021-11-11T07:43:48.000Z
[ "pytorch", "bart", "feature-extraction", "ko", "transformers", "license:mit" ]
feature-extraction
false
gogamza
null
gogamza/kobart-base-v1
4,384
null
transformers
940
--- language: ko tags: - bart license: mit --- ## KoBART-base-v1 ```python from transformers import PreTrainedTokenizerFast, BartModel tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v1') model = BartModel.from_pretrained('gogamza/kobart-base-v1') ```
Helsinki-NLP/opus-mt-hu-en
62599d9d6eca96022d26974486779623f09ebc9c
2021-09-09T22:10:51.000Z
[ "pytorch", "marian", "text2text-generation", "hu", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hu-en
4,372
null
transformers
941
--- tags: - translation license: apache-2.0 --- ### opus-mt-hu-en * source languages: hu * target languages: en * OPUS readme: [hu-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.en | 52.9 | 0.683 |
monologg/biobert_v1.1_pubmed
3abac4e8d78fbeb1ccdfa0079dcfe678f3337e0a
2021-05-19T23:50:54.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/biobert_v1.1_pubmed
4,366
1
transformers
942
Entry not found
Salesforce/grappa_large_jnt
0d2500a00f3a4b71addaf09a0c1abe30788362dd
2021-05-20T12:23:41.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Salesforce
null
Salesforce/grappa_large_jnt
4,361
1
transformers
943
Entry not found
nreimers/albert-small-v2
18045fa83de53fd7d4548fdc2473862914cbc7d5
2021-05-31T12:26:52.000Z
[ "pytorch", "albert", "feature-extraction", "transformers" ]
feature-extraction
false
nreimers
null
nreimers/albert-small-v2
4,351
null
transformers
944
# albert-small-v2 This is a 6 layer version of [albert-base-v2](https://huggingface.co/albert-base-v2).
EMBEDDIA/crosloengual-bert
750255b6915cf42623143690d8ea79ceab8ee2e8
2021-05-18T18:21:38.000Z
[ "pytorch", "jax", "bert", "fill-mask", "hr", "sl", "en", "multilingual", "arxiv:2006.07890", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
EMBEDDIA
null
EMBEDDIA/crosloengual-bert
4,336
1
transformers
945
--- language: - hr - sl - en - multilingual license: cc-by-4.0 --- # CroSloEngual BERT CroSloEngual BERT is a trilingual model, using bert-base architecture, trained on Croatian, Slovenian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't. Evaluation is presented in our article: ``` @Inproceedings{ulcar-robnik2020finest, author = "Ulčar, M. and Robnik-Šikonja, M.", year = 2020, title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models", editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A", booktitle = "Text, Speech, and Dialogue {TSD 2020}", series = "Lecture Notes in Computer Science", volume = 12284, publisher = "Springer", url = "https://doi.org/10.1007/978-3-030-58323-1_11", } ``` The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
microsoft/wavlm-base-plus-sv
feb593a6c23c1cc3d9510425c29b0a14d2b07b1e
2022-03-25T10:39:41.000Z
[ "pytorch", "wavlm", "audio-xvector", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.13900", "transformers", "speech" ]
null
false
microsoft
null
microsoft/wavlm-base-plus-sv
4,325
4
transformers
946
--- language: - en tags: - speech --- # WavLM-Base-Plus for Speaker Verification [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Fine-tuning details The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss [X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf) # Usage ## Speaker Verification ```python from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-plus-sv') model = WavLMForXVector.from_pretrained('microsoft/wavlm-base-plus-sv') # audio files are decoded on the fly audio = [x["array"] for x in dataset[:2]["audio"]] inputs = feature_extractor(audio, padding=True, return_tensors="pt") embeddings = model(**inputs).embeddings embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() # the resulting embeddings can be used for cosine similarity-based retrieval cosine_sim = torch.nn.CosineSimilarity(dim=-1) similarity = cosine_sim(embeddings[0], embeddings[1]) threshold = 0.86 # the optimal threshold is dataset-dependent if similarity < threshold: print("Speakers are not the same!") ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
sampathkethineedi/industry-classification
9914232048445adee24e4d4683c4d1873a9bafb4
2020-07-16T15:27:38.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "en", "transformers", "tensorflow", "industry", "buisiness", "description", "multi-class", "classification" ]
text-classification
false
sampathkethineedi
null
sampathkethineedi/industry-classification
4,322
3
transformers
947
--- language: "en" thumbnail: "https://huggingface.co/sampathkethineedi" tags: - distilbert - pytorch - tensorflow - text-classification - industry - buisiness - description - multi-class - classification liscence: "mit" inference: false --- # industry-classification ## Model description DistilBERT Model to classify a business description into one of **62 industry tags**. Trained on 7000 samples of Business Descriptions and associated labels of companies in India. ## How to use PyTorch and TF models available ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("sampathkethineedi/industry-classification") model = AutoModelForSequenceClassification.from_pretrained("sampathkethineedi/industry-classification") industry_tags = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) industry_tags("Stellar Capital Services Limited is an India-based non-banking financial company ... loan against property, management consultancy, personal loans and unsecured loans.") '''Ouput''' [{'label': 'Consumer Finance', 'score': 0.9841355681419373}] ``` ## Limitations and bias Training data is only for Indian companies
monologg/kobigbird-bert-base
ceacda477e20abef2c929adfa4a07c6f811323be
2021-11-05T01:27:29.000Z
[ "pytorch", "big_bird", "fill-mask", "ko", "transformers", "korean", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/kobigbird-bert-base
4,319
11
transformers
948
--- language: ko tags: - korean mask_token: "[MASK]" widget: - text: 대한민국의 수도는 [MASK] 입니다. --- # KoBigBird <img src="https://user-images.githubusercontent.com/28896432/140442206-e34b02d5-e279-47e5-9c2a-db1278b1c14d.png" width="200"/> Pretrained BigBird Model for Korean (**kobigbird-bert-base**) ## About BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. Model is warm started from Korean BERT’s checkpoint. ## How to use *NOTE:* Use `BertTokenizer` instead of BigBirdTokenizer. (`AutoTokenizer` will load `BertTokenizer`) ```python from transformers import AutoModel, AutoTokenizer # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = AutoModel.from_pretrained("monologg/kobigbird-bert-base") # you can change `attention_type` to full attention like this: model = AutoModel.from_pretrained("monologg/kobigbird-bert-base", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = AutoModel.from_pretrained("monologg/kobigbird-bert-base", block_size=16, num_random_blocks=2) tokenizer = AutoTokenizer.from_pretrained("monologg/kobigbird-bert-base") text = "한국어 BigBird 모델을 공개합니다!" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
Hate-speech-CNERG/dehatebert-mono-spanish
2b9664ac59ee7f0b054fc0b1433cbedff3c2bdba
2021-09-25T14:00:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "es", "arxiv:2004.06465", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/dehatebert-mono-spanish
4,307
2
transformers
949
--- language: es license: apache-2.0 --- This model is used detecting **hatespeech** in **Spanish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.740287 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
nferruz/ProtGPT2
959b229096b77edeb7656373bf9e379a3b6458ea
2022-05-25T09:31:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nferruz
null
nferruz/ProtGPT2
4,302
11
transformers
950
# **ProtGPT2** ProtGPT2 ([preprint](https://www.biorxiv.org/content/10.1101/2022.03.09.483666v1)) is a language model that speaks the protein language and can be used for de novo protein design and engineering. ProtGPT2 generated sequences conserve natural proteins' critical features (amino acid propensities, secondary structural content, and globularity) while exploring unseen regions of the protein space. ## **Model description** ProtGPT2 is based on the GPT2 Transformer architecture and contains 36 layers with a model dimensionality of 1280, totalling 738 million parameters. ProtGPT2 is a decoder-only transformer model pre-trained on the protein space, database UniRef50 (version 2021_04). The pre-training was done on the raw sequences without FASTA headers. Details of training and datasets can be found here: https://huggingface.co/datasets/nferruz/UR50_2021_04 ProtGPT2 was trained in a self-supervised fashion, i.e., the raw sequence data was used during training without including the annotation of sequences. In particular, ProtGPT2 was trained using a causal modelling objective, in which the model is trained to predict the next token (or, in this case, oligomer) in the sequence. By doing so, the model learns an internal representation of proteins and is able to <em>speak</em> the protein language. ### **How to use ProtGPT2** ProtGPT2 can be used with the HuggingFace transformer python package. Detailed installation instructions can be found here: https://huggingface.co/docs/transformers/installation Since ProtGPT2 has been trained on the classical language model objective, it excels at generating protein sequences. It can be used to generate sequences in a zero-shot fashion or to generate sequences of a particular type after finetuning on a user-defined dataset. **Example 1: Generating _de novo_ proteins in a zero-shot fashion** In the example below, ProtGPT2 generates sequences that follow the amino acid 'M'. Any other amino acid, oligomer, fragment, or protein of choice can be selected instead. The model will generate the most probable sequences that follow the input. Alternatively, the input field can also be left empty and it will choose the starting tokens. ``` >>> from transformers import pipeline >>> protgpt2 = pipeline('text-generation', model="nferruz/ProtGPT2") >>> sequences = protgpt2("M", max_length=100, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0) >>> for seq in sequences: print(seq): {'generated_text': 'MINDLLDISRIISGKMTLDRAEVNLTAIARQVVEEQRQAAEAKSIQLLCSTPDTNHYVFG\nDFDRLKQTLWNLLSNAVKFTPSGGTVELELGYNAEGMEVYVKDSGIGIDPAFLPYVFDRF\nRQSDAADSRNYGGLGLGLAIVKHLLDLHEGNVSAQSEGFGKGATFTVLLPLKPLKRELAA\nVNRHTAVQQSAPLNDNLAGMKILIVEDRPDTNEMVSYILEEAGAIVETAESGAAALTSLK\nSYSPDLVLSDIGMPMMDGYEMIEYIREWKTTKGG'} {'generated_text': 'MQGDSSISSSNRMFT\nLCKPLTVANETSTLSTTRNSKSNKRVSKQRVNLAESPERNAPSPASIKTNETEEFSTIKT\nTNNEVLGYEPNYVSYDFVPMEKCNLCNENCSIELASLNEETFVKKTICCHECRKKAIENA\nENNNTKGSAVSNNSVTSSSGRKKIIVSGSQILRNLDSLTSSKSNISTLLNPNHLAKLAKN\nGNLSSLSSLQSSASSISKSSSTSSTPTTSPKVSSPTNSPSSSPINSPTP'} {'generated_text': 'M\nSTHVSLENTLASLQATFFSLEARHTALETQLLSTRTELAATKQELVRVQAEISRADAQAQ\nDLKAQILTLKEKADQAEVEAAAATQRAEESQAALEAQTAELAQLRLEKQAPQHVAEEGDP\nQPAAPTTQAQSPVTSAAAAASSAASAEPSKPELTFPAYTKRKPPTITHAPKAPTKVALNP\nSTLSTSGSGGGAKADPTPTTPVPSSSAGLIPKALRLPPPVTPAASGAKPAPSARSKLRGP\nDAPLSPSTQS'} {'generated_text': 'MVLLSTGPLPILFLGPSLAELNQKYQVVSDTLLRFTNTV\nTFNTLKFLGSDS\n'} {'generated_text': 'M\nNNDEQPFIMSTSGYAGNTTSSMNSTSDFNTNNKSNTWSNRFSNFIAYFSGVGWFIGAISV\nIFFIIYVIVFLSRKTKPSGQKQYSRTERNNRDVDSIKRANYYG\n'} {'generated_text': 'M\nEAVYSFTITETGTGTVEVTPLDRTISGADIVYPPDTACVPLTVQPVINANGTWTLGSGCT\nGHFSVDTTGHVNCLTGGFGAAGVHTVIYTVETPYSGNSFAVIDVNVTEPSGPGDGGNGNG\nDRGDGPDNGGGNNPGPDPDPSTPPPPGDCSSPLPVVCSDRDCADFDTQAQVQIYLDRYGG\nTCDLDGNHDGTPCENLPNNSGGQSSDSGNGGGNPGTGSTHQVVTGDCLWNIASRNNGQGG\nQAWPALLAANNESITNP'} {'generated_text': 'M\nGLTTSGGARGFCSLAVLQELVPRPELLFVIDRAFHSGKHAVDMQVVDQEGLGDGVATLLY\nAHQGLYTCLLQAEARLLGREWAAVPALEPNFMESPLIALPRQLLEGLEQNILSAYGSEWS\nQDVAEPQGDTPAALLATALGLHEPQQVAQRRRQLFEAAEAALQAIRASA\n'} {'generated_text': 'M\nGAAGYTGSLILAALKQNPDIAVYALNRNDEKLKDVCGQYSNLKGQVCDLSNESQVEALLS\nGPRKTVVNLVGPYSFYGSRVLNACIEANCHYIDLTGEVYWIPQMIKQYHHKAVQSGARIV\nPAVGFDSTPAELGSFFAYQQCREKLKKAHLKIKAYTGQSGGASGGTILTMIQHGIENGKI\nLREIRSMANPREPQSDFKHYKEKTFQDGSASFWGVPFVMKGINTPVVQRSASLLKKLYQP\nFDYKQCFSFSTLLNSLFSYIFNAI'} {'generated_text': 'M\nKFPSLLLDSYLLVFFIFCSLGLYFSPKEFLSKSYTLLTFFGSLLFIVLVAFPYQSAISAS\nKYYYFPFPIQFFDIGLAENKSNFVTSTTILIFCFILFKRQKYISLLLLTVVLIPIISKGN\nYLFIILILNLAVYFFLFKKLYKKGFCISLFLVFSCIFIFIVSKIMYSSGIEGIYKELIFT\nGDNDGRFLIIKSFLEYWKDNLFFGLGPSSVNLFSGAVSGSFHNTYFFIFFQSGILGAFIF\nLLPFVYFFISFFKDNSSFMKLF'} {'generated_text': 'M\nRRAVGNADLGMEAARYEPSGAYQASEGDGAHGKPHSLPFVALERWQQLGPEERTLAEAVR\nAVLASGQYLLGEAVRRFETAVAAWLGVPFALGVASGTAALTLALRAYGVGPGDEVIVPAI\nTFIATSNAITAAGARPVLVDIDPSTWNMSVASLAARLTPKTKAILAVHLWGQPVDMHPLL\nDIAAQANLAVIEDCAQALGASIAGTKVGTFGDAAAFSFYPTKNMTTGEGGMLVTNARDLA\nQAARMLRSHGQDPPTAYMHSQVGFN'} ``` **Example 2: Finetuning on a set of user-defined sequences** This alternative option to the zero-shot generation permits introducing direction in the generation process. User-defined training and validation files containing the sequences of interest are provided to the model. After a short update of the model's weights, ProtGPT2 will generate sequences that follow the input properties. To create the validation and training file, it is necessary to (1) substitute the FASTA headers for each sequence with the expression "<|endoftext|>" and (2) split the originating dataset into training and validation files (this is often done with the ratio 90/10, 80/20 or 95/5). Then, to finetune the model to the input sequences, we can use the example below. Here we show a learning rate of 1e-06, but ideally, the learning rate should be optimised in separate runs. After training, the finetuned model will be stored in the ./output folder. Lastly, ProtGPT2 can generate the tailored sequences as shown in Example 1: ``` python run_clm.py --model_name_or_path nferruz/ProtGPT2 --train_file training.txt --validation_file validation.txt --tokenizer_name nferruz/ProtGPT2 --do_train --do_eval --output_dir output --learning_rate 1e-06 ``` The HuggingFace script run_clm.py can be found here: https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py ### **Training specs** The model was trained on 128 NVIDIA A100 GPUs for 50 epochs, using a block size of 512, and a total batch size of 1024 (65,536 tokens per batch). The optimizer used was Adam (beta1 = 0.9, beta2 = 0.999) with a learning rate of 1e-3.
microsoft/layoutlm-base-cased
91acf0f93186fbcebb9f80c2e2259754f0ef922b
2021-09-27T05:55:31.000Z
[ "pytorch", "layoutlm", "arxiv:1912.13318", "transformers" ]
null
false
microsoft
null
microsoft/layoutlm-base-cased
4,301
5
transformers
951
# LayoutLM **Multimodal (text + layout/format + image) pre-training for document AI** [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://aka.ms/layoutlm) ## Model description LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers) ## Different Tokenizer Note that LayoutLM-Cased requires a different tokenizer, based on RobertaTokenizer. You can initialize it as follows: ~~~ from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('microsoft/layoutlm-base-cased') ~~~ ## Citation If you find LayoutLM useful in your research, please cite the following paper: ``` latex @misc{xu2019layoutlm, title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding}, author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou}, year={2019}, eprint={1912.13318}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
nateraw/vit-base-beans
cecf50fd479911ff2b12b74d85347bbaf91a3e1c
2022-07-08T07:04:19.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "en", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nateraw
null
nateraw/vit-base-beans
4,300
3
transformers
952
--- language: en license: apache-2.0 tags: - generated_from_trainer - image-classification datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg example_title: Angular Leaf Spot - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit-base-beans results: - task: type: image-classification name: Image Classification dataset: type: beans name: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 - task: type: image-classification name: Image Classification dataset: name: beans type: beans config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9453125 verified: true - name: Precision Macro type: precision value: 0.9453325082933705 verified: true - name: Precision Micro type: precision value: 0.9453125 verified: true - name: Precision Weighted type: precision value: 0.9452605321507761 verified: true - name: Recall Macro type: recall value: 0.945736434108527 verified: true - name: Recall Micro type: recall value: 0.9453125 verified: true - name: Recall Weighted type: recall value: 0.9453125 verified: true - name: F1 Macro type: f1 value: 0.9451827242524917 verified: true - name: F1 Micro type: f1 value: 0.9453125 verified: true - name: F1 Weighted type: f1 value: 0.944936150332226 verified: true - name: loss type: loss value: 0.26030588150024414 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0942 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2809 | 1.0 | 130 | 0.2287 | 0.9699 | | 0.1097 | 2.0 | 260 | 0.1676 | 0.9624 | | 0.1027 | 3.0 | 390 | 0.0942 | 0.9774 | | 0.0923 | 4.0 | 520 | 0.1104 | 0.9699 | | 0.1726 | 5.0 | 650 | 0.1030 | 0.9699 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
cross-encoder/ms-marco-MiniLM-L-4-v2
1f1ab0943a42a52afd702e7e8337bec985c189ea
2021-08-05T08:39:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
cross-encoder
null
cross-encoder/ms-marco-MiniLM-L-4-v2
4,278
null
transformers
953
--- license: apache-2.0 --- # Cross-Encoder for MS Marco This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('model_name') tokenizer = AutoTokenizer.from_pretrained('model_name') features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print(scores) ``` ## Usage with SentenceTransformers The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` ## Performance In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec | | ------------- |:-------------| -----| --- | | **Version 2 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000 | cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100 | cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500 | cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800 | cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960 | **Version 1 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 | **Other models** | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340 | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330 | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720 Note: Runtime was computed on a V100 GPU.
junnyu/roformer_chinese_base
f780ca57e5eab4627f334bed71a8e5a353b33d69
2022-01-04T11:46:28.000Z
[ "pytorch", "tf", "jax", "roformer", "fill-mask", "zh", "arxiv:2104.09864", "transformers", "tf2.0", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/roformer_chinese_base
4,264
8
transformers
954
--- language: zh tags: - roformer - pytorch - tf2.0 widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
nlpaueb/bert-base-uncased-eurlex
77adac5a840314c4d688f565a925db1bdd2e87e7
2022-04-28T14:44:15.000Z
[ "pytorch", "tf", "jax", "bert", "en", "transformers", "legal", "license:cc-by-sa-4.0", "fill-mask" ]
fill-mask
false
nlpaueb
null
nlpaueb/bert-base-uncased-eurlex
4,251
4
transformers
955
--- language: en pipeline_tag: fill-mask license: cc-by-sa-4.0 thumbnail: https://i.ibb.co/p3kQ7Rw/Screenshot-2020-10-06-at-12-16-36-PM.png tags: - legal widget: - text: "Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products." --- # LEGAL-BERT: The Muppets straight out of Law School <img align="left" src="https://i.ibb.co/p3kQ7Rw/Screenshot-2020-10-06-at-12-16-36-PM.png" width="100"/> LEGAL-BERT is a family of BERT models for the legal domain, intended to assist legal NLP research, computational law, and legal technology applications. To pre-train the different variations of LEGAL-BERT, we collected 12 GB of diverse English legal text from several fields (e.g., legislation, court cases, contracts) scraped from publicly available resources. Sub-domain variants (CONTRACTS-, EURLEX-, ECHR-) and/or general LEGAL-BERT perform better than using BERT out of the box for domain-specific tasks.<br> This is the sub-domain variant pre-trained on EU legislation. <br/><br/> --- I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras and I. Androutsopoulos. "LEGAL-BERT: The Muppets straight out of Law School". In Findings of Empirical Methods in Natural Language Processing (EMNLP 2020) (Short Papers), to be held online, 2020. (https://aclanthology.org/2020.findings-emnlp.261) --- ## Pre-training corpora The pre-training corpora of LEGAL-BERT include: * 116,062 documents of EU legislation, publicly available from EURLEX (http://eur-lex.europa.eu), the repository of EU Law running under the EU Publication Office. * 61,826 documents of UK legislation, publicly available from the UK legislation portal (http://www.legislation.gov.uk). * 19,867 cases from the European Court of Justice (ECJ), also available from EURLEX. * 12,554 cases from HUDOC, the repository of the European Court of Human Rights (ECHR) (http://hudoc.echr.coe.int/eng). * 164,141 cases from various courts across the USA, hosted in the Case Law Access Project portal (https://case.law). * 76,366 US contracts from EDGAR, the database of US Securities and Exchange Commission (SECOM) (https://www.sec.gov/edgar.shtml). ## Pre-training details * We trained BERT using the official code provided in Google BERT's GitHub repository (https://github.com/google-research/bert). * We released a model similar to the English BERT-BASE model (12-layer, 768-hidden, 12-heads, 110M parameters). * We chose to follow the same training set-up: 1 million training steps with batches of 256 sequences of length 512 with an initial learning rate 1e-4. * We were able to use a single Google Cloud TPU v3-8 provided for free from [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc), while also utilizing [GCP research credits](https://edu.google.com/programs/credits/research). Huge thanks to both Google programs for supporting us! ## Models list | Model name | Model Path | Training corpora | | ------------------- | ------------------------------------ | ------------------- | | CONTRACTS-BERT-BASE | `nlpaueb/bert-base-uncased-contracts` | US contracts | | EURLEX-BERT-BASE | `nlpaueb/bert-base-uncased-eurlex` | EU legislation | | ECHR-BERT-BASE | `nlpaueb/bert-base-uncased-echr` | ECHR cases | | LEGAL-BERT-BASE * | `nlpaueb/legal-bert-base-uncased` | All | | LEGAL-BERT-SMALL | `nlpaueb/legal-bert-small-uncased` | All | \* LEGAL-BERT-BASE is the model referred to as LEGAL-BERT-SC in Chalkidis et al. (2020); a model trained from scratch in the legal corpora mentioned below using a newly created vocabulary by a sentence-piece tokenizer trained on the very same corpora. \*\* As many of you expressed interest in the LEGAL-BERT-FP models (those relying on the original BERT-BASE checkpoint), they have been released in Archive.org (https://archive.org/details/legal_bert_fp), as these models are secondary and possibly only interesting for those who aim to dig deeper in the open questions of Chalkidis et al. (2020). ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nlpaueb/bert-base-uncased-eurlex") model = AutoModel.from_pretrained("nlpaueb/bert-base-uncased-eurlex") ``` ## Use LEGAL-BERT variants as Language Models | Corpus | Model | Masked token | Predictions | | --------------------------------- | ---------------------------------- | ------------ | ------------ | | | **BERT-BASE-UNCASED** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('new', '0.09'), ('current', '0.04'), ('proposed', '0.03'), ('marketing', '0.03'), ('joint', '0.02') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.32'), ('rape', '0.22'), ('abuse', '0.14'), ('death', '0.04'), ('violence', '0.03') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('farm', '0.25'), ('livestock', '0.08'), ('draft', '0.06'), ('domestic', '0.05'), ('wild', '0.05') | | **CONTRACTS-BERT-BASE** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('letter', '0.38'), ('dealer', '0.04'), ('employment', '0.03'), ('award', '0.03'), ('contribution', '0.02') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('death', '0.39'), ('imprisonment', '0.07'), ('contempt', '0.05'), ('being', '0.03'), ('crime', '0.02') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | (('domestic', '0.18'), ('laboratory', '0.07'), ('household', '0.06'), ('personal', '0.06'), ('the', '0.04') | | **EURLEX-BERT-BASE** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('supply', '0.11'), ('cooperation', '0.08'), ('service', '0.07'), ('licence', '0.07'), ('distribution', '0.05') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.66'), ('death', '0.07'), ('imprisonment', '0.07'), ('murder', '0.04'), ('rape', '0.02') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('live', '0.43'), ('pet', '0.28'), ('certain', '0.05'), ('fur', '0.03'), ('the', '0.02') | | **ECHR-BERT-BASE** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('second', '0.24'), ('latter', '0.10'), ('draft', '0.05'), ('bilateral', '0.05'), ('arbitration', '0.04') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.99'), ('death', '0.01'), ('inhuman', '0.00'), ('beating', '0.00'), ('rape', '0.00') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('pet', '0.17'), ('all', '0.12'), ('slaughtered', '0.10'), ('domestic', '0.07'), ('individual', '0.05') | | **LEGAL-BERT-BASE** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('settlement', '0.26'), ('letter', '0.23'), ('dealer', '0.04'), ('master', '0.02'), ('supplemental', '0.02') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '1.00'), ('detention', '0.00'), ('arrest', '0.00'), ('rape', '0.00'), ('death', '0.00') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('live', '0.67'), ('beef', '0.17'), ('farm', '0.03'), ('pet', '0.02'), ('dairy', '0.01') | | **LEGAL-BERT-SMALL** | | (Contracts) | This [MASK] Agreement is between General Motors and John Murray . | employment | ('license', '0.09'), ('transition', '0.08'), ('settlement', '0.04'), ('consent', '0.03'), ('letter', '0.03') | (ECHR) | The applicant submitted that her husband was subjected to treatment amounting to [MASK] whilst in the custody of Adana Security Directorate | torture | ('torture', '0.59'), ('pain', '0.05'), ('ptsd', '0.05'), ('death', '0.02'), ('tuberculosis', '0.02') | (EURLEX) | Establishing a system for the identification and registration of [MASK] animals and regarding the labelling of beef and beef products . | bovine | ('all', '0.08'), ('live', '0.07'), ('certain', '0.07'), ('the', '0.07'), ('farm', '0.05') ## Evaluation on downstream tasks Consider the experiments in the article "LEGAL-BERT: The Muppets straight out of Law School". Chalkidis et al., 2020, (https://aclanthology.org/2020.findings-emnlp.261) ## Author - Publication ``` @inproceedings{chalkidis-etal-2020-legal, title = "{LEGAL}-{BERT}: The Muppets straight out of Law School", author = "Chalkidis, Ilias and Fergadiotis, Manos and Malakasiotis, Prodromos and Aletras, Nikolaos and Androutsopoulos, Ion", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", doi = "10.18653/v1/2020.findings-emnlp.261", pages = "2898--2904" } ``` ## About Us [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr) develops algorithms, models, and systems that allow computers to process and generate natural language texts. The group's current research interests include: * question answering systems for databases, ontologies, document collections, and the Web, especially biomedical question answering, * natural language generation from databases and ontologies, especially Semantic Web ontologies, text classification, including filtering spam and abusive content, * information extraction and opinion mining, including legal text analytics and sentiment analysis, * natural language processing tools for Greek, for example parsers and named-entity recognizers, machine learning in natural language processing, especially deep learning. The group is part of the Information Processing Laboratory of the Department of Informatics of the Athens University of Economics and Business. [Ilias Chalkidis](https://iliaschalkidis.github.io) on behalf of [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr) | Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) |
bert-large-cased-whole-word-masking
8b5d59881077680d99e2cac339412f20a180bd45
2021-05-18T16:30:05.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
null
null
bert-large-cased-whole-word-masking
4,250
1
transformers
956
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT large model (cased) whole word masking Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English. Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same. The training is identical -- each masked WordPiece token is predicted independently. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. This model has the following configuration: - 24-layer - 1024 hidden dimension - 16 attention heads - 336M parameters. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking') >>> unmasker("Hello I'm a [MASK] model.") [ { "sequence":"[CLS] Hello I'm a fashion model. [SEP]", "score":0.1474294513463974, "token":4633, "token_str":"fashion" }, { "sequence":"[CLS] Hello I'm a magazine model. [SEP]", "score":0.05430116504430771, "token":2435, "token_str":"magazine" }, { "sequence":"[CLS] Hello I'm a male model. [SEP]", "score":0.039395421743392944, "token":2581, "token_str":"male" }, { "sequence":"[CLS] Hello I'm a former model. [SEP]", "score":0.036936815828084946, "token":1393, "token_str":"former" }, { "sequence":"[CLS] Hello I'm a professional model. [SEP]", "score":0.03663451969623566, "token":1848, "token_str":"professional" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking') model = BertModel.from_pretrained("bert-large-cased-whole-word-masking") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking') model = TFBertModel.from_pretrained("bert-large-cased-whole-word-masking") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-large-cased-whole-word-masking') >>> unmasker("The man worked as a [MASK].") [ { "sequence":"[CLS] The man worked as a carpenter. [SEP]", "score":0.09021259099245071, "token":25169, "token_str":"carpenter" }, { "sequence":"[CLS] The man worked as a cook. [SEP]", "score":0.08125395327806473, "token":9834, "token_str":"cook" }, { "sequence":"[CLS] The man worked as a mechanic. [SEP]", "score":0.07524766772985458, "token":19459, "token_str":"mechanic" }, { "sequence":"[CLS] The man worked as a waiter. [SEP]", "score":0.07397029548883438, "token":17989, "token_str":"waiter" }, { "sequence":"[CLS] The man worked as a guard. [SEP]", "score":0.05848982185125351, "token":3542, "token_str":"guard" } ] >>> unmasker("The woman worked as a [MASK].") [ { "sequence":"[CLS] The woman worked as a maid. [SEP]", "score":0.19436432421207428, "token":13487, "token_str":"maid" }, { "sequence":"[CLS] The woman worked as a waitress. [SEP]", "score":0.16161060333251953, "token":15098, "token_str":"waitress" }, { "sequence":"[CLS] The woman worked as a nurse. [SEP]", "score":0.14942803978919983, "token":7439, "token_str":"nurse" }, { "sequence":"[CLS] The woman worked as a secretary. [SEP]", "score":0.10373266786336899, "token":4848, "token_str":"secretary" }, { "sequence":"[CLS] The woman worked as a cook. [SEP]", "score":0.06384387612342834, "token":9834, "token_str":"cook" } ] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy ---------------------------------------- | :-------------: | :----------------: BERT-Large, Cased (Whole Word Masking) | 92.9/86.7 | 86.46 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
google/fnet-base
d764d799e9bb72d0429a64d1512416a47e2246b3
2021-10-31T07:33:21.000Z
[ "pytorch", "rust", "fnet", "pretraining", "en", "dataset:c4", "arxiv:2105.03824", "transformers", "license:apache-2.0" ]
null
false
google
null
google/fnet-base
4,247
6
transformers
957
--- language: en tags: - fnet license: apache-2.0 datasets: - c4 --- # FNet base model Pretrained model on English language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in [this paper](https://arxiv.org/abs/2105.03824) and first released in [this repository](https://github.com/google-research/google-research/tree/master/f_net). This model is cased: it makes a difference between english and English. The model achieves 0.58 accuracy on MLM objective and 0.80 on NSP objective. Disclaimer: This model card has been written by [gchhablani](https://huggingface.co/gchhablani). ## Model description FNet is a transformers model with attention replaced with fourier transforms. Hence, the inputs do not contain an `attention_mask`. It is pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the FNet model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=fnet) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ## Training data The FNet model was pretrained on [C4](https://huggingface.co/datasets/c4), a cleaned version of the Common Crawl dataset. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining FNet-base was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results FNet-base was fine-tuned and evaluated on the validation data of the [GLUE benchamrk](https://huggingface.co/datasets/glue). The results of the official model (written in Flax) can be seen in Table 1 on page 7 of [the official paper](https://arxiv.org/abs/2105.03824). For comparison, this model (ported to PyTorch) was fine-tuned and evaluated using the [official Hugging Face GLUE evaluation scripts](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification#glue-tasks) alongside [bert-base-cased](https://hf.co/models/bert-base-cased) for comparison. The training was done on a single 16GB NVIDIA Tesla V100 GPU. For MRPC/WNLI, the models were trained for 5 epochs, while for other tasks, the models were trained for 3 epochs. A sequence length of 512 was used with batch size 16 and learning rate 2e-5. The following table summarizes the results for [fnet-base](https://huggingface.co/google/fnet-base) (called *FNet (PyTorch) - Reproduced*) and [bert-base-cased](https://hf.co/models/bert-base-cased) (called *Bert (PyTorch) - Reproduced*) in terms of **fine-tuning** speed. The format is *hour:min:seconds*. **Note** that the authors compared **pre-traning** speed in [the official paper](https://arxiv.org/abs/2105.03824) instead. | Task/Model | FNet-base (PyTorch) |Bert-base (PyTorch)| |:----:|:-----------:|:----:| | MNLI-(m/mm) | [06:40:55](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | [09:52:33](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli)| | QQP | [06:21:16](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | [09:25:01](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | | QNLI | [01:48:22](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | [02:40:22](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli)| | SST-2 | [01:09:27](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | [01:42:17](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2)| | CoLA | [00:09:47](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | [00:14:20](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola)| | STS-B | [00:07:09](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | [00:10:24](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb)| | MRPC | [00:07:48](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | [00:11:12](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc)| | RTE | [00:03:24](https://huggingface.co/gchhablani/fnet-base-finetuned-rte) | [00:04:51](https://huggingface.co/gchhablani/bert-base-cased-finetuned-rte)| | WNLI | [00:02:37](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | [00:03:23](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli)| | SUM | 16:30:45 | 24:23:56 | On average the PyTorch version of FNet-base requires *ca.* 32% less time for GLUE fine-tuning on GPU. The following table summarizes the results for [fnet-base](https://huggingface.co/google/fnet-base) (called *FNet (PyTorch) - Reproduced*) and [bert-base-cased](https://hf.co/models/bert-base-cased) (called *Bert (PyTorch) - Reproduced*) in terms of performance and compares it to the reported performance of the official FNet-base model (called *FNet (Flax) - Official*). Note that the training hyperparameters of the reproduced models were not the same as the official model, so the performance may differ significantly for some tasks (for example: CoLA). | Task/Model | Metric | FNet-base (PyTorch) | Bert-base (PyTorch) | FNet-Base (Flax - official) | |:----:|:-----------:|:----:|:-----------:|:----:| | MNLI-(m/mm) | Accuracy or Match/Mismatch | [76.75](https://huggingface.co/gchhablani/fnet-base-finetuned-mnli) | [84.10](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mnli) | 72/73 | | QQP | mean(Accuracy,F1) | [86.5](https://huggingface.co/gchhablani/fnet-base-finetuned-qqp) | [89.26](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qqp) | 83 | | QNLI | Accuracy | [84.39](https://huggingface.co/gchhablani/fnet-base-finetuned-qnli) | [90.99](https://huggingface.co/gchhablani/bert-base-cased-finetuned-qnli) | 80 | | SST-2 | Accuracy | [89.45](https://huggingface.co/gchhablani/fnet-base-finetuned-sst2) | [92.32](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) | 95 | | CoLA | Matthews corr or Accuracy | [35.94](https://huggingface.co/gchhablani/fnet-base-finetuned-cola) | [59.57](https://huggingface.co/gchhablani/bert-base-cased-finetuned-cola) | 69 | | STS-B | Spearman corr. | [82.19](https://huggingface.co/gchhablani/fnet-base-finetuned-stsb) | [88.98](https://huggingface.co/gchhablani/bert-base-cased-finetuned-stsb) | 79 | | MRPC | mean(F1/Accuracy) | [81.15](https://huggingface.co/gchhablani/fnet-base-finetuned-mrpc) | [88.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-mrpc) | 76 | | RTE | Accuracy | [62.82](https://huggingface.co/gchhablani/fnet-base-finetuned-rte) | [67.15](https://huggingface.co/gchhablani/bert-base-cased-finetuned-rte) | 63 | | WNLI | Accuracy | [54.93](https://huggingface.co/gchhablani/fnet-base-finetuned-wnli) | [46.48](https://huggingface.co/gchhablani/bert-base-cased-finetuned-wnli) | - | | Avg | - | 72.7 | 78.6 | 76.7 | We can see that FNet-base achieves around 93% of BERT-base's performance on average. For more details, please refer to the checkpoints linked with the scores. On overview of all fine-tuned checkpoints of the following table can be accessed [here](https://huggingface.co/models?other=fnet-bert-base-comparison). ### How to use You can use this model directly with a pipeline for masked language modeling: **Note: The mask filling pipeline doesn't work exactly as the original model performs masking after converting to tokens. In masking pipeline an additional space is added after the [MASK].** ```python >>> from transformers import FNetForMaskedLM, FNetTokenizer, pipeline >>> tokenizer = FNetTokenizer.from_pretrained("google/fnet-base") >>> model = FNetForMaskedLM.from_pretrained("google/fnet-base") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker("Hello I'm a [MASK] model.") [ {"sequence": "hello i'm a new model.", "score": 0.12073223292827606, "token": 351, "token_str": "new"}, {"sequence": "hello i'm a first model.", "score": 0.08501081168651581, "token": 478, "token_str": "first"}, {"sequence": "hello i'm a next model.", "score": 0.060546260327100754, "token": 1037, "token_str": "next"}, {"sequence": "hello i'm a last model.", "score": 0.038265593349933624, "token": 813, "token_str": "last"}, {"sequence": "hello i'm a sister model.", "score": 0.033868927508592606, "token": 6232, "token_str": "sister"}, ] ``` Here is how to use this model to get the features of a given text in PyTorch: **Note: You must specify the maximum sequence length to be 512 and truncate/pad to the same length because the original model has no attention mask and considers all the hidden states during forward pass.** ```python from transformers import FNetTokenizer, FNetModel tokenizer = FNetTokenizer.from_pretrained("google/fnet-base") model = FNetModel.from_pretrained("google/fnet-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt', padding='max_length', truncation=True, max_length=512) output = model(**encoded_input) ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-03824, author = {James Lee{-}Thorp and Joshua Ainslie and Ilya Eckstein and Santiago Onta{\~{n}}{\'{o}}n}, title = {FNet: Mixing Tokens with Fourier Transforms}, journal = {CoRR}, volume = {abs/2105.03824}, year = {2021}, url = {https://arxiv.org/abs/2105.03824}, archivePrefix = {arXiv}, eprint = {2105.03824}, timestamp = {Fri, 14 May 2021 12:13:30 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-03824.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## Contributions Thanks to [@gchhablani](https://huggingface.co/gchhablani) for adding this model.
hfl/chinese-macbert-large
1cf2677c782975600ce58e2961656b1b29eddbae
2021-05-19T19:14:18.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
hfl
null
hfl/chinese-macbert-large
4,240
4
transformers
958
--- language: - zh tags: - bert license: "apache-2.0" --- <p align="center"> <br> <img src="https://github.com/ymcui/MacBERT/raw/master/pics/banner.png" width="500"/> <br> </p> <p align="center"> <a href="https://github.com/ymcui/MacBERT/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/ymcui/MacBERT.svg?color=blue&style=flat-square"> </a> </p> # Please use 'Bert' related functions to load this model! This repository contains the resources in our paper **"Revisiting Pre-trained Models for Chinese Natural Language Processing"**, which will be published in "[Findings of EMNLP](https://2020.emnlp.org)". You can read our camera-ready paper through [ACL Anthology](#) or [arXiv pre-print](https://arxiv.org/abs/2004.13922). **[Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)** *Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu* You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Introduction **MacBERT** is an improved BERT with novel **M**LM **a**s **c**orrection pre-training task, which mitigates the discrepancy of pre-training and fine-tuning. Instead of masking with [MASK] token, which never appears in the fine-tuning stage, **we propose to use similar words for the masking purpose**. A similar word is obtained by using [Synonyms toolkit (Wang and Hu, 2017)](https://github.com/chatopera/Synonyms), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement. Here is an example of our pre-training task. | | Example | | -------------- | ----------------- | | **Original Sentence** | we use a language model to predict the probability of the next word. | | **MLM** | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . | | **Whole word masking** | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . | | **N-gram masking** | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . | | **MLM as correction** | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . | Except for the new pre-training task, we also incorporate the following techniques. - Whole Word Masking (WWM) - N-gram masking - Sentence-Order Prediction (SOP) **Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.** For more technical details, please check our paper: [Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922) ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
jonatasgrosman/wav2vec2-large-xlsr-53-dutch
9e474f681b88972e3a9e5065877e4cfca8b599e2
2022-07-27T23:36:29.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "transformers", "audio", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/wav2vec2-large-xlsr-53-dutch
4,195
null
transformers
959
--- language: nl license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - nl - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Dutch by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 15.72 - name: Test CER type: cer value: 5.35 - name: Test WER (+LM) type: wer value: 12.84 - name: Test CER (+LM) type: cer value: 4.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Dev WER type: wer value: 35.79 - name: Dev CER type: cer value: 17.67 - name: Dev WER (+LM) type: wer value: 31.54 - name: Dev CER (+LM) type: cer value: 16.37 --- # Fine-tuned XLSR-53 large model for speech recognition in Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-dutch") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "nl" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | DE ABORIGINALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË. | DE ABBORIGENALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË | | MIJN TOETSENBORD ZIT VOL STOF. | MIJN TOETSENBORD ZIT VOL STOF | | ZE HAD DE BANK BESCHADIGD MET HAAR SKATEBOARD. | ZE HAD DE BANK BESCHADIGD MET HAAR SCHEETBOORD | | WAAR LAAT JIJ JE ONDERHOUD DOEN? | WAAR LAAT JIJ HET ONDERHOUD DOEN | | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QWERTY TOETSENBORD. | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QUERTITOETSEMBORD | | DE TAMPONS ZIJN OP. | DE TAPONT ZIJN OP | | MARIJKE KENT OLIVIER NU AL MEER DAN TWEE JAAR. | MAARRIJKEN KENT OLIEVIER NU AL MEER DAN TWEE JAAR | | HET VOEREN VAN BROOD AAN EENDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN. | HET VOEREN VAN BEUROT AAN EINDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN | | PARKET MOET JE STOFZUIGEN, TEGELS MOET JE DWEILEN. | PARKET MOET JE STOF ZUIGEN MAAR TEGELS MOET JE DWEILEN | | IN ONZE BUURT KENT IEDEREEN ELKAAR. | IN ONZE BUURT KENT IEDEREEN ELKAAR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset mozilla-foundation/common_voice_6_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-dutch, title={Fine-tuned {XLSR}-53 large model for speech recognition in {D}utch}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch}}, year={2021} } ```
hf-internal-testing/tiny-vilt-random-vqa
f923b0b312e4ded9ed2c3e2128f54c6b46742331
2022-05-16T14:49:45.000Z
[ "pytorch", "vilt", "question-answering", "arxiv:2102.03334", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
hf-internal-testing
null
hf-internal-testing/tiny-vilt-random-vqa
4,185
null
transformers
960
--- license: apache-2.0 --- A tiny randomly-initialized [ViLT](https://arxiv.org/abs/2102.03334) used for unit tests in the Transformers VQA pipeline
lysandre/tiny-vit-random
4108f68f9fe6e09c515d9c22c4453a5c892ec97f
2021-05-05T14:04:37.000Z
[ "pytorch", "vit", "image-classification", "transformers" ]
image-classification
false
lysandre
null
lysandre/tiny-vit-random
4,157
null
transformers
961
Entry not found
jeniya/BERTOverflow
0361ca9842fd3f88b2e4eea1626d56c2e1265bce
2021-05-19T20:47:17.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
jeniya
null
jeniya/BERTOverflow
4,155
2
transformers
962
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). We would like to thank [Wuwei Lan](https://lanwuwei.github.io/) for helping us in training this model. #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("jeniya/BERTOverflow") model = AutoModelForTokenClassification.from_pretrained("jeniya/BERTOverflow") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
Helsinki-NLP/opus-mt-cs-en
186ab5dff3e18ca970a492525c0ca4b398d525ab
2021-09-09T21:29:22.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cs-en
4,148
null
transformers
963
--- tags: - translation license: apache-2.0 --- ### opus-mt-cs-en * source languages: cs * target languages: en * OPUS readme: [cs-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2014-csen.cs.en | 34.1 | 0.612 | | newstest2015-encs.cs.en | 30.4 | 0.565 | | newstest2016-encs.cs.en | 31.8 | 0.584 | | newstest2017-encs.cs.en | 28.7 | 0.556 | | newstest2018-encs.cs.en | 30.3 | 0.566 | | Tatoeba.cs.en | 58.0 | 0.721 |
monologg/bert-base-cased-goemotions-ekman
77ca9484d57dfd55bca8ec15b503ce7485d207e9
2021-05-19T23:47:57.000Z
[ "pytorch", "bert", "transformers" ]
null
false
monologg
null
monologg/bert-base-cased-goemotions-ekman
4,133
2
transformers
964
Entry not found
peterchou/simbert-chinese-base
6a6ebb9f9d9b2264a8a012f96de01067f304476d
2021-06-07T05:21:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
peterchou
null
peterchou/simbert-chinese-base
4,118
2
transformers
965
Entry not found
facebook/data2vec-text-base
bd0db19c3500ee7a0b626791db67fa6e9fda9a0b
2022-04-18T16:03:20.000Z
[ "pytorch", "data2vec-text", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2202.03555", "arxiv:1806.02847", "transformers", "exbert", "license:mit" ]
feature-extraction
false
facebook
null
facebook/data2vec-text-base
4,111
5
transformers
966
--- language: en tags: - exbert license: mit datasets: - bookcorpus - wikipedia --- # Data2Vec-Text base model Pretrained model on English language using the *data2vec* objective. It was introduced in [this paper](https://arxiv.org/abs/2202.03555) and first released in [this repository](https://github.com/pytorch/fairseq/tree/main/examples/data2vec). This model is case-sensitive: it makes a difference between english and English. Disclaimer: The team releasing Data2Vec-Text did not write a model card for this model so this model card has been written by the Hugging Face team. ## Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). ## Abstract *While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a selfdistillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.* ## Intended uses & limitations The model is intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=data2vec-text) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ## Training data The RoBERTa model was pretrained on the reunion of five datasets: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books; - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ; - [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news articles crawled between September 2016 and February 2019. - [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to train GPT-2, - [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas. Together theses datasets weight 160GB of text. ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2202.03555, doi = {10.48550/ARXIV.2202.03555}, url = {https://arxiv.org/abs/2202.03555}, author = {Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael}, keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
uer/roberta-base-chinese-extractive-qa
d5e37a8228fa9d396ff4b093c21e8f0082ff11e1
2022-02-20T07:50:56.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "zh", "transformers", "autotrain_compatible" ]
question-answering
false
uer
null
uer/roberta-base-chinese-extractive-qa
4,104
12
transformers
967
--- language: zh widget: - text: "著名诗歌《假如生活欺骗了你》的作者是" context: "普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。" --- # Chinese RoBERTa-Base Model for QA ## Model description The model is used for extractive question answering. You can download the model from the link [roberta-base-chinese-extractive-qa](https://huggingface.co/uer/roberta-base-chinese-extractive-qa). ## How to use You can use the model directly with a pipeline for extractive question answering: ```python >>> from transformers import AutoModelForQuestionAnswering,AutoTokenizer,pipeline >>> model = AutoModelForQuestionAnswering.from_pretrained('uer/roberta-base-chinese-extractive-qa') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-chinese-extractive-qa') >>> QA = pipeline('question-answering', model=model, tokenizer=tokenizer) >>> QA_input = {'question': "著名诗歌《假如生活欺骗了你》的作者是",'context': "普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。"} >>> QA(QA_input) {'score': 0.9766426682472229, 'start': 0, 'end': 3, 'answer': '普希金'} ``` ## Training data Training data comes from three sources: [cmrc2018](https://github.com/ymcui/cmrc2018), [webqa](https://spaces.ac.cn/archives/4338), and [laisi](https://www.kesci.com/home/competition/5d142d8cbb14e6002c04e14a/content/0). We only use the train set of three datasets. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 run_cmrc.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path extractive_qa.json \ --dev_path datasets/cmrc2018/dev.json \ --output_model_path models/extractive_qa_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512 ``` Finally, we convert the fine-tuned model into Huggingface's format: ``` python3 scripts/convert_bert_extractive_qa_from_uer_to_huggingface.py --input_model_path extractive_qa_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
JamesStratford/Pidrow-bot-DialoGPT-Large
93c968f2e1170bd410e447cde821057310bbfe27
2022-07-04T21:54:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
JamesStratford
null
JamesStratford/Pidrow-bot-DialoGPT-Large
4,095
null
transformers
968
--- tags: - conversational --- # Pidrow bot - large
vinai/phobert-large
6d9abcb5c5a28afca335255baace25ef76c1d5bf
2022-06-08T04:44:41.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2003.00744", "transformers", "autotrain_compatible" ]
fill-mask
false
vinai
null
vinai/phobert-large
4,084
1
transformers
969
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam): - Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance. - PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744): @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} } **Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software. For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)!
IlyaGusev/news_tg_rubert
074a7437d070e8fefd0e10890d418fb26a409403
2021-06-16T19:43:26.000Z
[ "pytorch", "ru", "license:apache-2.0" ]
null
false
IlyaGusev
null
IlyaGusev/news_tg_rubert
4,066
null
null
970
--- language: - ru license: apache-2.0 --- # NewsTgRuBERT Training script: https://github.com/dialogue-evaluation/Russian-News-Clustering-and-Headline-Generation/blob/main/train_mlm.py
Hate-speech-CNERG/bert-base-uncased-hatexplain
e487c81b768c7532bf474bd5e486dedea4cf3848
2021-05-25T09:53:05.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:hatexplain", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/bert-base-uncased-hatexplain
4,064
5
transformers
971
--- language: en license: apache-2.0 datasets: - hatexplain --- The model is used for classifying a text as **Hatespeech**, **Offensive**, or **Normal**. The model is trained using data from Gab and Twitter and *Human Rationales* were included as part of the training data to boost the performance. The dataset and models are available here: https://github.com/punyajoy/HateXplain **For more details about our paper** Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee "[HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection)". Accepted at AAAI 2021. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{mathew2020hatexplain, title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection}, author={Mathew, Binny and Saha, Punyajoy and Yimam, Seid Muhie and Biemann, Chris and Goyal, Pawan and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2012.10289}, year={2020} } ~~~
sentence-transformers/quora-distilbert-multilingual
43c541d8cdd793eed04a9c2d66c6f971198681da
2022-06-15T20:31:58.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/quora-distilbert-multilingual
4,048
null
sentence-transformers
972
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/quora-distilbert-multilingual This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/quora-distilbert-multilingual') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/quora-distilbert-multilingual') model = AutoModel.from_pretrained('sentence-transformers/quora-distilbert-multilingual') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/quora-distilbert-multilingual) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
mrm8488/spanbert-finetuned-squadv2
5cc65f623285da8704169ac2d88cb8941db5520c
2021-05-20T00:56:45.000Z
[ "pytorch", "jax", "bert", "question-answering", "en", "arxiv:1907.10529", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/spanbert-finetuned-squadv2
4,041
2
transformers
973
--- language: en thumbnail: --- # SpanBERT (spanbert-base-cased) fine-tuned on SQuAD v2 [SpanBERT](https://github.com/facebookresearch/SpanBERT) created by [Facebook Research](https://github.com/facebookresearch) and fine-tuned on [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. ## Details of SpanBERT [SpanBERT: Improving Pre-training by Representing and Predicting Spans](https://arxiv.org/abs/1907.10529) ## Details of the downstream task (Q&A) - Dataset [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD2.0 | train | 130k | | SQuAD2.0 | eval | 12.3k | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py) ## Results: | Metric | # Value | | ------ | --------- | | **EM** | **78.80** | | **F1** | **82.22** | ### Raw metrics: ```json { "exact": 78.80064010780762, "f1": 82.22801347271162, "total": 11873, "HasAns_exact": 78.74493927125506, "HasAns_f1": 85.60951483831069, "HasAns_total": 5928, "NoAns_exact": 78.85618166526493, "NoAns_f1": 78.85618166526493, "NoAns_total": 5945, "best_exact": 78.80064010780762, "best_exact_thresh": 0.0, "best_f1": 82.2280134727116, "best_f1_thresh": 0.0 } ``` ## Comparison: | Model | EM | F1 score | | ----------------------------------------------------------------------------------------- | --------- | --------- | | [SpanBert official repo](https://github.com/facebookresearch/SpanBERT#pre-trained-models) | - | 83.6\* | | [spanbert-finetuned-squadv2](https://huggingface.co/mrm8488/spanbert-finetuned-squadv2) | **78.80** | **82.22** | ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/spanbert-finetuned-squadv2", tokenizer="mrm8488/spanbert-finetuned-squadv2" ) qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) # Output: {'answer': 'Manuel Romero','end': 13,'score': 6.836378586818937e-09, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
valhalla/longformer-base-4096-finetuned-squadv1
159b6205769b6f41a68d8d190af8d5df43ef16ca
2021-02-10T16:35:40.000Z
[ "pytorch", "tf", "rust", "longformer", "question-answering", "dataset:squad_v1", "arxiv:2004.05150", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
valhalla
null
valhalla/longformer-base-4096-finetuned-squadv1
4,034
5
transformers
974
--- datasets: - squad_v1 license: mit --- # LONGFORMER-BASE-4096 fine-tuned on SQuAD v1 This is longformer-base-4096 model fine-tuned on SQuAD v1 dataset for question answering task. [Longformer](https://arxiv.org/abs/2004.05150) model created by Iz Beltagy, Matthew E. Peters, Arman Coha from AllenAI. As the paper explains it > `Longformer` is a BERT-like model for long documents. The pre-trained model can handle sequences with upto 4096 tokens. ## Model Training This model was trained on google colab v100 GPU. You can find the fine-tuning colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing). Few things to keep in mind while training longformer for QA task, by default longformer uses sliding-window local attention on all tokens. But For QA, all question tokens should have global attention. For more details on this please refer the paper. The `LongformerForQuestionAnswering` model automatically does that for you. To allow it to do that 1. The input sequence must have three sep tokens, i.e the sequence should be encoded like this ` <s> question</s></s> context</s>`. If you encode the question and answer as a input pair, then the tokenizer already takes care of that, you shouldn't worry about it. 2. `input_ids` should always be a batch of examples. ## Results |Metric | # Value | |-------------|---------| | Exact Match | 85.1466 | | F1 | 91.5415 | ## Model in Action 🚀 ```python import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering, tokenizer = AutoTokenizer.from_pretrained("valhalla/longformer-base-4096-finetuned-squadv1") model = AutoModelForQuestionAnswering.from_pretrained("valhalla/longformer-base-4096-finetuned-squadv1") text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." question = "What has Huggingface done ?" encoding = tokenizer(question, text, return_tensors="pt") input_ids = encoding["input_ids"] # default is local attention everywhere # the forward method will automatically set global attention on question tokens attention_mask = encoding["attention_mask"] start_scores, end_scores = model(input_ids, attention_mask=attention_mask) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # output => democratized NLP ``` The `LongformerForQuestionAnswering` isn't yet supported in `pipeline` . I'll update this card once the support has been added. > Created with ❤️ by Suraj Patil [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/patil-suraj/) [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/psuraj28)
Jonesy/DialoGPT-small_JT
15890d5e6e8b1966ef6b5ef1ff5c37c27acceda0
2021-10-15T18:56:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jonesy
null
Jonesy/DialoGPT-small_JT
4,033
null
transformers
975
--- tags: - conversational --- # Johnny Test DialoGPT Model
pranavpsv/gpt2-genre-story-generator
d617d856b2aae05be1c253a2e9daf8c99f1d9c6d
2021-05-23T11:02:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
pranavpsv
null
pranavpsv/gpt2-genre-story-generator
4,020
6
transformers
976
# GPT2 Genre Based Story Generator ## Model description GPT2 fine-tuned on genre-based story generation. ## Intended uses Used to generate stories based on user inputted genre and starting prompts. ## How to use #### Supported Genres superhero, action, drama, horror, thriller, sci_fi #### Input text format \<BOS> \<genre> Some optional text... **Example**: \<BOS> \<sci_fi> After discovering time travel, ```python # Example of usage from transformers import pipeline story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator") print(story_gen("<BOS> <superhero> Batman")) ``` ## Training data Initialized with pre-trained weights of "gpt2" checkpoint. Fine-tuned the model on stories of various genres.
mrm8488/longformer-base-4096-finetuned-squadv2
d11ef97abccc471765cb85c8ffb1ca0de878adf5
2022-07-23T01:27:36.000Z
[ "pytorch", "tf", "longformer", "question-answering", "en", "dataset:squad_v2", "arxiv:2004.05150", "transformers", "QA", "long context", "Q&A", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/longformer-base-4096-finetuned-squadv2
4,015
3
transformers
977
--- language: en datasets: - squad_v2 tags: - QA - long context - Q&A --- # Longformer-base-4096 fine-tuned on SQuAD v2 [Longformer-base-4096 model](https://huggingface.co/allenai/longformer-base-4096) fine-tuned on [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. ## Longformer-base-4096 [Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. `longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096. Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ Dataset ID: ```squad_v2``` from [HuggingFace/Datasets](https://github.com/huggingface/datasets) | Dataset | Split | # samples | | -------- | ----- | --------- | | squad_v2 | train | 130319 | | squad_v2 | valid | 11873 | How to load it from [datasets](https://github.com/huggingface/datasets) ```python !pip install datasets from datasets import load_dataset dataset = load_dataset('squad_v2') ``` Check out more about this dataset and others in [Datasets Viewer](https://huggingface.co/datasets/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this one](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing) ## Model in Action 🚀 ```python import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2" tokenizer = AutoTokenizer.from_pretrained(ckpt) model = AutoModelForQuestionAnswering.from_pretrained(ckpt) text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." question = "What has Huggingface done ?" encoding = tokenizer(question, text, return_tensors="pt") input_ids = encoding["input_ids"] # default is local attention everywhere # the forward method will automatically set global attention on question tokens attention_mask = encoding["attention_mask"] start_scores, end_scores = model(input_ids, attention_mask=attention_mask) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # output => democratized NLP ``` ## Usage with HF `pipleine` ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2" tokenizer = AutoTokenizer.from_pretrained(ckpt) model = AutoModelForQuestionAnswering.from_pretrained(ckpt) qa = pipeline("question-answering", model=model, tokenizer=tokenizer) text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." question = "What has Huggingface done?" qa({"question": question, "context": text}) ``` If given the same context we ask something that is not there, the output for **no answer** will be ```<s>``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/Y8Y3VYYE)
valhalla/bart-large-finetuned-squadv1
39066834d88b80b83e85b88e37471cee02e1a8c7
2021-06-14T10:20:35.000Z
[ "pytorch", "jax", "bart", "question-answering", "dataset:squad", "arxiv:1910.13461", "transformers", "autotrain_compatible" ]
question-answering
false
valhalla
null
valhalla/bart-large-finetuned-squadv1
4,012
1
transformers
978
--- datasets: - squad --- # BART-LARGE finetuned on SQuADv1 This is bart-large model finetuned on SQuADv1 dataset for question answering task ## Model details BART was propsed in the [paper](https://arxiv.org/abs/1910.13461) **BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension**. BART is a seq2seq model intended for both NLG and NLU tasks. To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top hidden state of the decoder as a representation for each word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD. Another notable thing about BART is that it can handle sequences with upto 1024 tokens. | Param | #Value | |---------------------|--------| | encoder layers | 12 | | decoder layers | 12 | | hidden size | 4096 | | num attetion heads | 16 | | on disk size | 1.63GB | ## Model training This model was trained on google colab v100 GPU. You can find the fine-tuning colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1I5cK1M_0dLaf5xoewh6swcm5nAInfwHy?usp=sharing). ## Results The results are actually slightly worse than given in the paper. In the paper the authors mentioned that bart-large achieves 88.8 EM and 94.6 F1 | Metric | #Value | |--------|--------| | EM | 86.8022| | F1 | 92.7342| ## Model in Action 🚀 ```python3 from transformers import BartTokenizer, BartForQuestionAnswering import torch tokenizer = BartTokenizer.from_pretrained('valhalla/bart-large-finetuned-squadv1') model = BartForQuestionAnswering.from_pretrained('valhalla/bart-large-finetuned-squadv1') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by Suraj Patil [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/patil-suraj/) [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/psuraj28)
jjzha/jobbert-base-cased
e6fcd777778602f9cdfd0f9a0fdff14e4e643a1f
2022-07-26T08:14:26.000Z
[ "pytorch", "bert", "fill-mask", "en", "transformers", "JobBERT", "job postings", "autotrain_compatible" ]
fill-mask
false
jjzha
null
jjzha/jobbert-base-cased
4,005
3
transformers
979
--- language: - en tags: - JobBERT - job postings --- # JobBERT This is the JobBERT model from: Mike Zhang, Kristian Nørgaard Jensen, Sif Dam Sonniks, and Barbara Plank. __SkillSpan: Hard and Soft Skill Extraction from Job Postings__. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. This model is continuously pre-trained from a `bert-base-cased` checkpoint on ~3.2M sentences from job postings. More information can be found in the paper. If you use this model, please cite the following paper: ``` @inproceedings{zhang-etal-2022-skillspan, title = "{S}kill{S}pan: Hard and Soft Skill Extraction from {E}nglish Job Postings", author = "Zhang, Mike and Jensen, Kristian N{\o}rgaard and Sonniks, Sif and Plank, Barbara", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.366", pages = "4962--4984", abstract = "Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.", } ```
mrm8488/bert-italian-finedtuned-squadv1-it-alfa
829047a5ce1a8ef73bde97666eff10b8e128b42e
2021-05-20T00:24:19.000Z
[ "pytorch", "jax", "bert", "question-answering", "it", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-italian-finedtuned-squadv1-it-alfa
4,001
5
transformers
980
--- language: it thumbnail: --- # Italian BERT fine-tuned on SQuAD_it v1 [Italian BERT base cased](https://huggingface.co/dbmdz/bert-base-italian-cased) fine-tuned on [italian SQuAD](https://github.com/crux82/squad-it) for **Q&A** downstream task. ## Details of Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the OPUS corpora collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the OSCAR corpus. Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. More in its official [model card](https://huggingface.co/dbmdz/bert-base-italian-cased) Created by [Stefan](https://huggingface.co/stefan-it) at [MDZ](https://huggingface.co/dbmdz) ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ [Italian SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian. **The dataset contains more than 60,000 question/answer pairs derived from the original English dataset.** The dataset is split into training and test sets to support the replicability of the benchmarking of QA systems: - `SQuAD_it-train.json`: it contains training examples derived from the original SQuAD 1.1 trainig material. - `SQuAD_it-test.json`: it contains test/benchmarking examples derived from the origial SQuAD 1.1 development material. More details about SQuAD-it can be found in [Croce et al. 2018]. The original paper can be found at this [link](https://link.springer.com/chapter/10.1007/978-3-030-03840-3_29). ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py) ## Results 📝 | Metric | # Value | | ------ | --------- | | **EM** | **62.51** | | **F1** | **74.16** | ### Raw metrics ```json { "exact": 62.5180707057432, "f1": 74.16038329042492, "total": 7609, "HasAns_exact": 62.5180707057432, "HasAns_f1": 74.16038329042492, "HasAns_total": 7609, "best_exact": 62.5180707057432, "best_exact_thresh": 0.0, "best_f1": 74.16038329042492, "best_f1_thresh": 0.0 } ``` ## Comparison ⚖️ | Model | EM | F1 score | | -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | | [DrQA-it trained on SQuAD-it ](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 | | This one | **62.51** | **74.16** | ## Model in action 🚀 Fast usage with **pipelines** 🧪 ```python from transformers import pipeline nlp_qa = pipeline( 'question-answering', model='mrm8488/bert-italian-finedtuned-squadv1-it-alfa', tokenizer='mrm8488/bert-italian-finedtuned-squadv1-it-alfa' ) nlp_qa( { 'question': 'Per quale lingua stai lavorando?', 'context': 'Manuel Romero è colaborando attivamente con HF / trasformatori per il trader del poder de las últimas ' + 'técnicas di procesamiento de lenguaje natural al idioma español' } ) # Output: {'answer': 'español', 'end': 174, 'score': 0.9925341537498156, 'start': 168} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain Dataset citation <details> @InProceedings{10.1007/978-3-030-03840-3_29, author="Croce, Danilo and Zelenanska, Alexandra and Basili, Roberto", editor="Ghidini, Chiara and Magnini, Bernardo and Passerini, Andrea and Traverso, Paolo", title="Neural Learning for Question Answering in Italian", booktitle="AI*IA 2018 -- Advances in Artificial Intelligence", year="2018", publisher="Springer International Publishing", address="Cham", pages="389--402", isbn="978-3-030-03840-3" } </detail>
facebook/wav2vec2-xlsr-53-espeak-cv-ft
2c733782da5604684829819a5eb744c193fe9398
2021-12-10T17:18:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "multi-lingual", "dataset:common_voice", "arxiv:2109.11680", "transformers", "speech", "audio", "phoneme-recognition", "license:apache-2.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-xlsr-53-espeak-cv-ft
3,995
5
transformers
981
--- language: multi-lingual datasets: - common_voice tags: - speech - audio - automatic-speech-recognition - phoneme-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac license: apache-2.0 --- # Wav2Vec2-Large-XLSR-53 finetuned on multi-lingual Common Voice This checkpoint leverages the pretrained checkpoint [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) and is fine-tuned on [CommonVoice](https://huggingface.co/datasets/common_voice) to recognize phonetic labels in multiple languages. When using the model make sure that your speech input is sampled at 16kHz. Note that the model outputs a string of phonetic labels. A dictionary mapping phonetic labels to words has to be used to map the phonetic output labels to output words. [Paper: Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) Authors: Qiantong Xu, Alexei Baevski, Michael Auli **Abstract** Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech recognition systems without any labeled data. However, in many cases there is labeled data available for related languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by mapping phonemes of the training languages to the target language using articulatory features. Experiments show that this simple method significantly outperforms prior work which introduced task-specific architectures and used only part of a monolingually pretrained model. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # retrieve logits with torch.no_grad(): logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) # => should give ['m ɪ s t ɚ k w ɪ l t ɚ ɪ z ð ɪ ɐ p ɑː s əl l ʌ v ð ə m ɪ d əl k l æ s ɪ z æ n d w iː aʊ ɡ l æ d t ə w ɛ l k ə m h ɪ z ɡ ɑː s p ə'] ```
microsoft/trocr-base-stage1
5c48f939de25655eeca55d31e7893ada48d300d9
2022-07-01T07:36:00.000Z
[ "pytorch", "vision-encoder-decoder", "arxiv:2109.10282", "transformers", "trocr", "image-to-text" ]
image-to-text
false
microsoft
null
microsoft/trocr-base-stage1
3,987
4
transformers
982
--- tags: - trocr - image-to-text --- # TrOCR (base-sized model, pre-trained only) TrOCR pre-trained only model. It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr). Disclaimer: The team releasing TrOCR did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens. ## Intended uses & limitations You can use the raw model for optical character recognition (OCR) on single text-line images. See the [model hub](https://huggingface.co/models?search=microsoft/trocr) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-stage1') model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-stage1') # training pixel_values = processor(image, return_tensors="pt").pixel_values # Batch size 1 decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) ``` ### BibTeX entry and citation info ```bibtex @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ckiplab/gpt2-base-chinese
5b35975016d00703e7d812b9197ea81f295b65c3
2022-05-10T03:28:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "zh", "transformers", "lm-head", "license:gpl-3.0" ]
text-generation
false
ckiplab
null
ckiplab/gpt2-base-chinese
3,972
5
transformers
983
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - lm-head - gpt2 - zh license: gpl-3.0 --- # CKIP GPT2 Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/gpt2-base-chinese') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
gsarti/biobert-nli
4fe2765eca1ae00a266615626313a94192701870
2021-05-19T17:45:15.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
gsarti
null
gsarti/biobert-nli
3,959
1
transformers
984
# BioBERT-NLI This is the model [BioBERT](https://github.com/dmis-lab/biobert) [1] fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [2]. The model uses the original BERT wordpiece vocabulary and was trained using the **average pooling strategy** and a **softmax loss**. **Base model**: `monologg/biobert_v1.1_pubmed` from HuggingFace's `AutoModel`. **Training time**: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks. **Parameters**: | Parameter | Value | |------------------|-------| | Batch size | 64 | | Training steps | 30000 | | Warmup steps | 1450 | | Lowercasing | False | | Max. Seq. Length | 128 | **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of a general BERT base model obtained with the same procedure to verify their similarity. | Model | Score | |-------------------------------|-------------| | `biobert-nli` (this) | 73.40 | | `gsarti/scibert-nli` | 74.50 | | `bert-base-nli-mean-tokens`[3]| 77.12 | An example usage for similarity-based scientific paper retrieval is provided in the [Covid Papers Browser](https://github.com/gsarti/covid-papers-browser) repository. **References:** [1] J. Lee et al, [BioBERT: a pre-trained biomedical language representation model for biomedical text mining](https://academic.oup.com/bioinformatics/article/36/4/1234/5566506) [2] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/) [3] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
b0df630d23e5aa5f8a326017605337f6d0863ecd
2021-10-17T11:15:54.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
3,952
4
transformers
985
--- language: - ar license: apache-2.0 widget: - text: "أنا بخير" --- # CAMeLBERT-DA SA Model ## Model description **CAMeLBERT-DA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
izumi-lab/electra-base-japanese-discriminator
9a50f726d330062f6055f9db584820796839f53c
2022-03-19T09:43:01.000Z
[ "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "arxiv:2003.10555", "transformers", "license:cc-by-sa-4.0" ]
null
false
izumi-lab
null
izumi-lab/electra-base-japanese-discriminator
3,952
1
transformers
986
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA base Japanese discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA base in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 768 dimensions of hidden states, and 12 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA base in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 512 tokens per instance, 256 instances per batch, and 766k training steps. The size of the generator is 1/3 of the size of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2022additional-fin, title={事前学習と追加事前学習による金融言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Training and Additional Pre-Training Financial Language Model}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第28回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 28}, pages={132-137}, year={2022} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
facebook/deit-small-patch16-224
164deee347853469b97442b3817f22eece80c7e3
2022-07-13T11:41:40.000Z
[ "pytorch", "tf", "vit", "image-classification", "dataset:imagenet-1k", "arxiv:2012.12877", "arxiv:2006.03677", "transformers", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/deit-small-patch16-224
3,945
1
transformers
987
--- license: apache-2.0 tags: - image-classification datasets: - imagenet-1k --- # Data-efficient Image Transformer (small-sized model) Data-efficient Image Transformer (DeiT) model pre-trained and fine-tuned on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Touvron et al. and first released in [this repository](https://github.com/facebookresearch/deit). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman. Disclaimer: The team releasing DeiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This model is actually a more efficiently trained Vision Transformer (ViT). The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained and fine-tuned on a large collection of images in a supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=facebook/deit) to look for fine-tuned versions on a task that interests you. ### How to use Since this model is a more efficiently trained ViT model, you can plug it into ViTModel or ViTForImageClassification. Note that the model expects the data to be prepared using DeiTFeatureExtractor. Here we use AutoFeatureExtractor, which will automatically use the appropriate feature extractor given the model name. Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-small-patch16-224') model = ViTForImageClassification.from_pretrained('facebook/deit-small-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon. ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L78). At inference time, images are resized/rescaled to the same resolution (256x256), center-cropped at 224x224 and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining The model was trained on a single 8-GPU node for 3 days. Training resolution is 224. For all hyperparameters (such as batch size and learning rate) we refer to table 9 of the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |---------------------------------------|-------------------------|-------------------------|----------|------------------------------------------------------------------| | DeiT-tiny | 72.2 | 91.1 | 5M | https://huggingface.co/facebook/deit-tiny-patch16-224 | | **DeiT-small** | **79.9** | **95.0** | **22M** | **https://huggingface.co/facebook/deit-small-patch16-224** | | DeiT-base | 81.8 | 95.6 | 86M | https://huggingface.co/facebook/deit-base-patch16-224 | | DeiT-tiny distilled | 74.5 | 91.9 | 6M | https://huggingface.co/facebook/deit-tiny-distilled-patch16-224 | | DeiT-small distilled | 81.2 | 95.4 | 22M | https://huggingface.co/facebook/deit-small-distilled-patch16-224 | | DeiT-base distilled | 83.4 | 96.5 | 87M | https://huggingface.co/facebook/deit-base-distilled-patch16-224 | | DeiT-base 384 | 82.9 | 96.2 | 87M | https://huggingface.co/facebook/deit-base-patch16-384 | | DeiT-base distilled 384 (1000 epochs) | 85.2 | 97.2 | 88M | https://huggingface.co/facebook/deit-base-distilled-patch16-384 | Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{touvron2021training, title={Training data-efficient image transformers & distillation through attention}, author={Hugo Touvron and Matthieu Cord and Matthijs Douze and Francisco Massa and Alexandre Sablayrolles and Hervé Jégou}, year={2021}, eprint={2012.12877}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
monologg/kocharelectra-base-discriminator
bb615f43065306f6d155448d717c90f2367810b1
2020-05-27T17:34:11.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
monologg
null
monologg/kocharelectra-base-discriminator
3,939
null
transformers
988
Entry not found
KETI-AIR/ke-t5-base
3fdf631a2986e928ad8b22863f9da16da74d9906
2021-06-23T02:50:50.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KETI-AIR
null
KETI-AIR/ke-t5-base
3,933
2
transformers
989
Entry not found
sachaarbonel/bert-italian-cased-finetuned-pos
aaa6d3c06defeaac28cd16ccc4206e4e83b741b8
2021-05-19T00:47:05.000Z
[ "pytorch", "jax", "bert", "token-classification", "it", "dataset:xtreme", "transformers", "autotrain_compatible" ]
token-classification
false
sachaarbonel
null
sachaarbonel/bert-italian-cased-finetuned-pos
3,925
2
transformers
990
--- language: it datasets: - xtreme --- # Italian-Bert (Italian Bert) + POS 🎃🏷 This model is a fine-tuned on [xtreme udpos Italian](https://huggingface.co/nlp/viewer/?dataset=xtreme&config=udpos.Italian) version of [Bert Base Italian](https://huggingface.co/dbmdz/bert-base-italian-cased) for **POS** downstream task. ## Details of the downstream task (POS) - Dataset - [Dataset: xtreme udpos Italian](https://huggingface.co/nlp/viewer/?dataset=xtreme&config=udpos.Italian) 📚 | Dataset | # Examples | | ---------------------- | ----- | | Train | 716 K | | Dev | 85 K | - [Fine-tune on NER script provided by @stefan-it](https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py) - Labels covered: ``` ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X ``` ## Metrics on evaluation set 🧾 | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **97.25** | Precision | **97.15** | | Recall | **97.36** | ## Model in action 🔨 Example of usage ```python from transformers import pipeline nlp_pos = pipeline( "ner", model="sachaarbonel/bert-italian-cased-finetuned-pos", tokenizer=( 'sachaarbonel/bert-spanish-cased-finetuned-pos', {"use_fast": False} )) text = 'Roma è la Capitale d'Italia.' nlp_pos(text) ''' Output: -------- [{'entity': 'PROPN', 'index': 1, 'score': 0.9995346665382385, 'word': 'roma'}, {'entity': 'AUX', 'index': 2, 'score': 0.9966597557067871, 'word': 'e'}, {'entity': 'DET', 'index': 3, 'score': 0.9994786977767944, 'word': 'la'}, {'entity': 'NOUN', 'index': 4, 'score': 0.9995198249816895, 'word': 'capitale'}, {'entity': 'ADP', 'index': 5, 'score': 0.9990894198417664, 'word': 'd'}, {'entity': 'PART', 'index': 6, 'score': 0.57159024477005, 'word': "'"}, {'entity': 'PROPN', 'index': 7, 'score': 0.9994804263114929, 'word': 'italia'}, {'entity': 'PUNCT', 'index': 8, 'score': 0.9772886633872986, 'word': '.'}] ''' ``` Yeah! Not too bad 🎉 > Created by [Sacha Arbonel/@sachaarbonel](https://twitter.com/sachaarbonel) | [LinkedIn](https://www.linkedin.com/in/sacha-arbonel) > Made with <span style="color: #e25555;">&hearts;</span> in Paris
indobenchmark/indobert-base-p2
94b4e0a82081fa57f227fcc2024d1ea89b57ac1f
2021-05-19T20:24:07.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "id", "dataset:Indo4B", "arxiv:2009.05387", "transformers", "indobert", "indobenchmark", "indonlu", "license:mit" ]
feature-extraction
false
indobenchmark
null
indobenchmark/indobert-base-p2
3,920
null
transformers
991
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT Base Model (phase2 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-base-p2") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
inokufu/flaubert-base-uncased-xnli-sts
e4fcf0bc37d8d55fbbe1cc8096eaeaa4057d2560
2022-02-18T16:50:56.000Z
[ "pytorch", "flaubert", "feature-extraction", "fr", "dataset:xnli", "dataset:stsb_multi_mt", "arxiv:1809.05053", "sentence-transformers", "sentence-similarity", "transformers", "xnli", "stsb_multi_mt" ]
sentence-similarity
false
inokufu
null
inokufu/flaubert-base-uncased-xnli-sts
3,915
2
sentence-transformers
992
--- pipeline_tag: sentence-similarity language: fr tags: - sentence-similarity - transformers - fr - flaubert - sentence-transformers - feature-extraction - xnli - stsb_multi_mt datasets: - xnli - stsb_multi_mt --- # inokufu/flaubert-base-uncased-xnli-sts This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Details This model is based on the French flaubert-base-uncased pre-trained model [1, 2]. It was then fine-tuned on a natural language inference task (XNLI) [3]. This task consists in training the model to recognize relations between sentences (contradiction, neutral, implication). It was then fine-tuned on a text semantic similarity task (on STS-fr data) [4]. This task consists in training the model to estimate the similarity between two sentences. This fine-tuning process allows our model to have a semantic representation of words that is much better than the one proposed by the base model. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Apprendre le python", "Devenir expert en comptabilité"] model = SentenceTransformer('inokufu/flaubert-base-uncased-xnli-sts') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Apprendre le python", "Devenir expert en comptabilité"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('inokufu/flaubert-base-uncased-xnli-sts') model = AutoModel.from_pretrained('inokufu/flaubert-base-uncased-xnli-sts') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS (fr) score: 83.07% ## Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: FlaubertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## References [1] https://hal.archives-ouvertes.fr/hal-02784776v3/document <br> [2] https://huggingface.co/flaubert/flaubert_base_uncased <br> [3] https://arxiv.org/abs/1809.05053 <br> [4] https://huggingface.co/datasets/stsb_multi_mt <br>
hireddivas/dialoGPT-small-sonic2
313bb626a1abb8a416bc552909c060057227ffb7
2022-07-30T04:00:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hireddivas
null
hireddivas/dialoGPT-small-sonic2
3,896
null
transformers
993
--- tags: - conversational --- GPT-2 chatbot - talk to Sonic (improved?)
izumi-lab/electra-small-japanese-fin-discriminator
1bcdc65cbe828ebc2d33a369b4c51f8ffa2da1a9
2022-03-19T09:39:07.000Z
[ "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "dataset:securities reports", "dataset:summaries of financial results", "arxiv:2003.10555", "transformers", "finance", "license:cc-by-sa-4.0" ]
null
false
izumi-lab
null
izumi-lab/electra-small-japanese-fin-discriminator
3,892
null
transformers
994
--- language: ja license: cc-by-sa-4.0 tags: - finance datasets: - wikipedia - securities reports - summaries of financial results widget: - text: 流動[MASK]は1億円となりました。 --- # ELECTRA small Japanese finance discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is the same of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
twmkn9/albert-base-v2-squad2
eb613ac0a88a507c701b46de597aff50a1089dc1
2020-12-11T22:02:54.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
twmkn9
null
twmkn9/albert-base-v2-squad2
3,881
2
transformers
995
This model is [ALBERT base v2](https://huggingface.co/albert-base-v2) trained on SQuAD v2 as: ``` export SQUAD_DIR=../../squad2 python3 run_squad.py --model_type albert --model_name_or_path albert-base-v2 --do_train --do_eval --overwrite_cache --do_lower_case --version_2_with_negative --save_steps 100000 --train_file $SQUAD_DIR/train-v2.0.json --predict_file $SQUAD_DIR/dev-v2.0.json --per_gpu_train_batch_size 8 --num_train_epochs 3 --learning_rate 3e-5 --max_seq_length 384 --doc_stride 128 --output_dir ./tmp/albert_fine/ ``` Performance on a dev subset is close to the original paper: ``` Results: { 'exact': 78.71010200723923, 'f1': 81.89228117126069, 'total': 6078, 'HasAns_exact': 75.39518900343643, 'HasAns_f1': 82.04167868004215, 'HasAns_total': 2910, 'NoAns_exact': 81.7550505050505, 'NoAns_f1': 81.7550505050505, 'NoAns_total': 3168, 'best_exact': 78.72655478775913, 'best_exact_thresh': 0.0, 'best_f1': 81.90873395178066, 'best_f1_thresh': 0.0 } ``` We are hopeful this might save you time, energy, and compute. Cheers!
google/bert_uncased_L-8_H-512_A-8
53b17ea0d90728ac770dfd13fcb3abdc75e4f4bf
2021-05-19T17:35:53.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
null
false
google
null
google/bert_uncased_L-8_H-512_A-8
3,858
1
transformers
996
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
Helsinki-NLP/opus-mt-en-da
9786126ba34f1f86636af779ef13557bd9d1b246
2021-09-09T21:34:51.000Z
[ "pytorch", "marian", "text2text-generation", "en", "da", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-da
3,853
1
transformers
997
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-da * source languages: en * target languages: da * OPUS readme: [en-da](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-da/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-da/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-da/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-da/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.da | 60.4 | 0.745 |
wtrClover/DialoGPT-small-TwilightBot
c586ae8e0122f0287427a2087cf67fe5c55bc51b
2022-01-28T00:29:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
wtrClover
null
wtrClover/DialoGPT-small-TwilightBot
3,838
null
transformers
998
--- tags: - conversational --- # MLP DialoGPT Model based on Twilight Sparkle
castorini/doc2query-t5-base-msmarco
53926b5364548f0c81b39a31723184d3664aaf06
2021-11-24T17:57:59.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/doc2query-t5-base-msmarco
3,832
5
transformers
999
For more information, check [doc2query.ai](http://doc2query.ai)