modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
google/ncsnpp-ffhq-1024
0595d4b416a9f0df356d347ffd7e2d965d995d73
2022-07-21T15:03:54.000Z
[ "diffusers", "arxiv:2011.13456", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ncsnpp-ffhq-1024
79
2
diffusers
5,100
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Score-Based Generative Modeling through Stochastic Differential Equations (SDE) **Paper**: [Score-Based Generative Modeling through Stochastic Differential Equations](https://arxiv.org/abs/2011.13456) **Authors**: Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole **Abstract**: *Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.* ## Inference *SDE* models can use **continous** noise schedulers such as: - [scheduling_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_sde_ve.py) for inference. See the following code: ```python # !pip install diffusers from diffusers import DiffusionPipeline model_id = "google/ncsnpp-ffhq-1024" # load model and scheduler sde_ve = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = sde_ve()["sample"] # save image image[0].save("sde_ve_generated_image.png") ``` Please take a look at [pipeline_score_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py) for more details on how to write your own denoising loop. For more information generally on how to use `diffusers` for inference, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Samples 1. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_0.png" alt="drawing" width="512"/> 2. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_1.png" alt="drawing" width="512"/> 3. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_2.png" alt="drawing" width="512"/> 4. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_3.png" alt="drawing" width="512"/>
pinot/wav2vec2-large-xls-r-300m-j-roman-colab
8bdac2ba3a7395b5e0a37a96588e5628abd6e9a1
2022-07-28T22:28:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pinot
null
pinot/wav2vec2-large-xls-r-300m-j-roman-colab
79
null
transformers
5,101
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-j-roman-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-j-roman-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2233 - Wer: 0.1437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3479 | 1.22 | 400 | 1.6349 | 0.3868 | | 0.8621 | 2.45 | 800 | 1.0185 | 0.2346 | | 0.5421 | 3.67 | 1200 | 0.7549 | 0.1868 | | 0.3932 | 4.89 | 1600 | 0.7893 | 0.1811 | | 0.332 | 6.12 | 2000 | 0.9318 | 0.1919 | | 0.2902 | 7.34 | 2400 | 0.8263 | 0.1839 | | 0.2542 | 8.56 | 2800 | 0.8491 | 0.1829 | | 0.2355 | 9.79 | 3200 | 0.8820 | 0.1805 | | 0.2206 | 11.01 | 3600 | 0.9183 | 0.1748 | | 0.2041 | 12.23 | 4000 | 0.9131 | 0.1725 | | 0.1878 | 13.46 | 4400 | 0.9075 | 0.1699 | | 0.1733 | 14.68 | 4800 | 0.8456 | 0.1665 | | 0.1746 | 15.9 | 5200 | 0.9353 | 0.1745 | | 0.1671 | 17.13 | 5600 | 0.9318 | 0.1713 | | 0.1641 | 18.35 | 6000 | 0.8804 | 0.1661 | | 0.1578 | 19.57 | 6400 | 0.9849 | 0.1795 | | 0.1534 | 20.8 | 6800 | 1.0036 | 0.1637 | | 0.1484 | 22.02 | 7200 | 0.9618 | 0.1722 | | 0.1431 | 23.24 | 7600 | 0.9947 | 0.1680 | | 0.139 | 24.46 | 8000 | 0.9923 | 0.1729 | | 0.134 | 25.69 | 8400 | 1.0015 | 0.1641 | | 0.1298 | 26.91 | 8800 | 0.9930 | 0.1704 | | 0.1253 | 28.13 | 9200 | 0.9977 | 0.1605 | | 0.1178 | 29.36 | 9600 | 0.9756 | 0.1653 | | 0.1178 | 30.58 | 10000 | 1.1122 | 0.1784 | | 0.1165 | 31.8 | 10400 | 0.9883 | 0.1655 | | 0.1073 | 33.03 | 10800 | 1.1286 | 0.1677 | | 0.1121 | 34.25 | 11200 | 1.0406 | 0.1660 | | 0.1081 | 35.47 | 11600 | 1.0976 | 0.1678 | | 0.109 | 36.7 | 12000 | 1.0915 | 0.1722 | | 0.1027 | 37.92 | 12400 | 1.1167 | 0.1712 | | 0.0925 | 39.14 | 12800 | 1.1598 | 0.1693 | | 0.0913 | 40.37 | 13200 | 1.0712 | 0.1640 | | 0.0895 | 41.59 | 13600 | 1.1692 | 0.1745 | | 0.0908 | 42.81 | 14000 | 1.1248 | 0.1641 | | 0.0905 | 44.04 | 14400 | 1.0523 | 0.1678 | | 0.0864 | 45.26 | 14800 | 1.0261 | 0.1626 | | 0.0843 | 46.48 | 15200 | 1.0746 | 0.1676 | | 0.0759 | 47.71 | 15600 | 1.1035 | 0.1596 | | 0.0758 | 48.93 | 16000 | 1.0977 | 0.1622 | | 0.0743 | 50.15 | 16400 | 1.1203 | 0.1677 | | 0.0826 | 51.38 | 16800 | 1.0983 | 0.1651 | | 0.0743 | 52.6 | 17200 | 1.1452 | 0.1622 | | 0.0713 | 53.82 | 17600 | 1.0882 | 0.1623 | | 0.0651 | 55.05 | 18000 | 1.0588 | 0.1608 | | 0.0669 | 56.27 | 18400 | 1.1332 | 0.1600 | | 0.0626 | 57.49 | 18800 | 1.0747 | 0.1562 | | 0.0646 | 58.72 | 19200 | 1.0585 | 0.1599 | | 0.0639 | 59.94 | 19600 | 1.0106 | 0.1543 | | 0.0603 | 61.16 | 20000 | 1.0875 | 0.1585 | | 0.0551 | 62.39 | 20400 | 1.1273 | 0.1537 | | 0.0553 | 63.61 | 20800 | 1.1376 | 0.1577 | | 0.052 | 64.83 | 21200 | 1.1429 | 0.1553 | | 0.0506 | 66.06 | 21600 | 1.0872 | 0.1577 | | 0.0495 | 67.28 | 22000 | 1.0954 | 0.1488 | | 0.0483 | 68.5 | 22400 | 1.1397 | 0.1524 | | 0.0421 | 69.72 | 22800 | 1.2144 | 0.1581 | | 0.0457 | 70.95 | 23200 | 1.1581 | 0.1532 | | 0.0405 | 72.17 | 23600 | 1.2150 | 0.1566 | | 0.0409 | 73.39 | 24000 | 1.1176 | 0.1508 | | 0.0386 | 74.62 | 24400 | 1.2018 | 0.1526 | | 0.0374 | 75.84 | 24800 | 1.2548 | 0.1494 | | 0.0376 | 77.06 | 25200 | 1.2161 | 0.1486 | | 0.033 | 78.29 | 25600 | 1.1607 | 0.1558 | | 0.0339 | 79.51 | 26000 | 1.1557 | 0.1498 | | 0.0355 | 80.73 | 26400 | 1.1234 | 0.1490 | | 0.031 | 81.96 | 26800 | 1.1778 | 0.1473 | | 0.0301 | 83.18 | 27200 | 1.1594 | 0.1441 | | 0.0292 | 84.4 | 27600 | 1.2036 | 0.1482 | | 0.0256 | 85.63 | 28000 | 1.2334 | 0.1463 | | 0.0259 | 86.85 | 28400 | 1.2072 | 0.1469 | | 0.0271 | 88.07 | 28800 | 1.1843 | 0.1456 | | 0.0241 | 89.3 | 29200 | 1.1712 | 0.1445 | | 0.0223 | 90.52 | 29600 | 1.2059 | 0.1433 | | 0.0213 | 91.74 | 30000 | 1.2231 | 0.1452 | | 0.0212 | 92.97 | 30400 | 1.1980 | 0.1438 | | 0.0223 | 94.19 | 30800 | 1.2148 | 0.1459 | | 0.0185 | 95.41 | 31200 | 1.2190 | 0.1437 | | 0.0202 | 96.64 | 31600 | 1.2051 | 0.1437 | | 0.0188 | 97.86 | 32000 | 1.2154 | 0.1438 | | 0.0183 | 99.08 | 32400 | 1.2233 | 0.1437 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Giuliano/places
81b8df40e05d96dfad040f54da85a2df0151dea9
2021-07-02T18:31:41.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Giuliano
null
Giuliano/places
78
null
transformers
5,102
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: places results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # places Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Beach ![Beach](images/Beach.jpg) #### City ![City](images/City.jpg) #### Forest ![Forest](images/Forest.jpg)
Gunulhona/tbstmodel
07b6891f8b2c6d855e27d2d660844f7aa8af0330
2021-12-29T01:23:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Gunulhona
null
Gunulhona/tbstmodel
78
null
transformers
5,103
Entry not found
Helsinki-NLP/opus-mt-lg-en
b75b8c1f7d54cec6d83b364581dfef355c191327
2021-09-10T13:54:39.000Z
[ "pytorch", "marian", "text2text-generation", "lg", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lg-en
78
1
transformers
5,104
--- tags: - translation license: apache-2.0 --- ### opus-mt-lg-en * source languages: lg * target languages: en * OPUS readme: [lg-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lg-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lg-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lg.en | 32.6 | 0.480 | | Tatoeba.lg.en | 5.4 | 0.243 |
Helsinki-NLP/opus-mt-pl-ar
0284a0a28fef5f4a87984e1887a6fd64cdb58604
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "pl", "ar", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pl-ar
78
null
transformers
5,105
--- language: - pl - ar tags: - translation license: apache-2.0 --- ### pol-ara * source group: Polish * target group: Arabic * OPUS readme: [pol-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-ara/README.md) * model: transformer * source language(s): pol * target language(s): ara arz * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.pol.ara | 20.4 | 0.491 | ### System Info: - hf_name: pol-ara - source_languages: pol - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'ar'] - src_constituents: {'pol'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-ara/opus-2020-07-03.test.txt - src_alpha3: pol - tgt_alpha3: ara - short_pair: pl-ar - chrF2_score: 0.491 - bleu: 20.4 - brevity_penalty: 0.9590000000000001 - ref_len: 1028.0 - src_name: Polish - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: pl - tgt_alpha2: ar - prefer_old: False - long_pair: pol-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-zh-it
436e288f84955869e282784cfb0af0552f4bed30
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "zh", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zh-it
78
null
transformers
5,106
--- language: - zh - it tags: - translation license: apache-2.0 --- ### zho-ita * source group: Chinese * target group: Italian * OPUS readme: [zho-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ita/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Hira cmn_Kana cmn_Latn lzh lzh_Hang lzh_Hani lzh_Hira lzh_Yiii wuu_Bopo wuu_Hani wuu_Latn yue_Hani * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.ita | 27.9 | 0.508 | ### System Info: - hf_name: zho-ita - source_languages: zho - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'it'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: ita - short_pair: zh-it - chrF2_score: 0.508 - bleu: 27.9 - brevity_penalty: 0.935 - ref_len: 19684.0 - src_name: Chinese - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: it - prefer_old: False - long_pair: zho-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
NhatPham/vit-base-patch16-224-recylce-ft
e9c0a3e0c5bc0717971d554a13a02aec201f6866
2022-05-27T07:50:32.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
NhatPham
null
NhatPham/vit-base-patch16-224-recylce-ft
78
null
transformers
5,107
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ## labels - 0: Object - 1: Recycle - 2: Non-Recycle # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1510 - Accuracy: 0.9443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 60 - eval_batch_size: 60 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 240 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1438 | 1.0 | 150 | 0.1645 | 0.9353 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
SEBIS/code_trans_t5_small_code_comment_generation_java_transfer_learning_finetune
06d544ab76d8a7fc6e79fce7fac4f75c25d72da4
2021-06-23T09:57:45.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_comment_generation_java_transfer_learning_finetune
78
null
transformers
5,108
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/code%20comment%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 750,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SkolkovoInstitute/bart-base-detox
d0177c30f5da99f6e5056a498f71201b8bd41c07
2022-05-18T18:35:54.000Z
[ "pytorch", "bart", "text2text-generation", "en", "transformers", "detoxification", "autotrain_compatible" ]
text2text-generation
false
SkolkovoInstitute
null
SkolkovoInstitute/bart-base-detox
78
null
transformers
5,109
--- language: - en tags: - detoxification licenses: - cc-by-nc-sa --- **Model Overview** This is the model presented in the paper ["ParaDetox: Detoxification with Parallel Data"](https://aclanthology.org/2022.acl-long.469/). The model itself is [BART (base)](https://huggingface.co/facebook/bart-base) model trained on parallel detoxification dataset ParaDetox achiving SOTA results for detoxification task. More details, code and data can be found [here](https://github.com/skoltech-nlp/paradetox). **How to use** ```python from transformers import BartForConditionalGeneration, AutoTokenizer base_model_name = 'facebook/bart-base' model_name = 'SkolkovoInstitute/bart-base-detox' tokenizer = AutoTokenizer.from_pretrained(base_model_name) model = BartForConditionalGeneration.from_pretrained(model_name) ``` **Citation** ``` @inproceedings{logacheva-etal-2022-paradetox, title = "{P}ara{D}etox: Detoxification with Parallel Data", author = "Logacheva, Varvara and Dementieva, Daryna and Ustyantsev, Sergey and Moskovskiy, Daniil and Dale, David and Krotova, Irina and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.469", pages = "6804--6818", abstract = "We present a novel pipeline for the collection of parallel data for the detoxification task. We collect non-toxic paraphrases for over 10,000 English toxic sentences. We also show that this pipeline can be used to distill a large existing corpus of paraphrases to get toxic-neutral sentence pairs. We release two parallel corpora which can be used for the training of detoxification models. To the best of our knowledge, these are the first parallel datasets for this task.We describe our pipeline in detail to make it fast to set up for a new language or domain, thus contributing to faster and easier development of new parallel resources.We train several detoxification models on the collected data and compare them with several baselines and state-of-the-art unsupervised approaches. We conduct both automatic and manual evaluations. All models trained on parallel data outperform the state-of-the-art unsupervised models by a large margin. This suggests that our novel datasets can boost the performance of detoxification systems.", } ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
andi611/bert-large-uncased-whole-word-masking-ner-conll2003
dc687912d610f00c92910c775ec1d31f17134901
2021-10-05T16:13:52.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/bert-large-uncased-whole-word-masking-ner-conll2003
78
null
transformers
5,110
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: bert-large-uncased-whole-word-masking-ner-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9886888970085945 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-ner-conll2003 This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9527 - Recall: 0.9569 - F1: 0.9548 - Accuracy: 0.9887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4071 | 1.0 | 877 | 0.0584 | 0.9306 | 0.9418 | 0.9362 | 0.9851 | | 0.0482 | 2.0 | 1754 | 0.0594 | 0.9362 | 0.9491 | 0.9426 | 0.9863 | | 0.0217 | 3.0 | 2631 | 0.0550 | 0.9479 | 0.9584 | 0.9531 | 0.9885 | | 0.0103 | 4.0 | 3508 | 0.0592 | 0.9527 | 0.9569 | 0.9548 | 0.9887 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
black/simple_kitchen
2b141f3569aa0bb39337c4691d5ca9cd8d2302db
2021-08-19T14:26:04.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
black
null
black/simple_kitchen
78
null
transformers
5,111
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: simple_kitchen results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7222222089767456 --- # simple_kitchen Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### best kitchen island ![best kitchen island](images/best_kitchen_island.jpg) #### kitchen cabinet ![kitchen cabinet](images/kitchen_cabinet.jpg) #### kitchen countertop ![kitchen countertop](images/kitchen_countertop.jpg)
facebook/convnext-xlarge-224-22k
fc6b9974e8ce68f2880a5ff3589a90556e34e332
2022-02-26T12:20:17.000Z
[ "pytorch", "tf", "convnext", "image-classification", "dataset:imagenet-21k", "arxiv:2201.03545", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/convnext-xlarge-224-22k
78
null
transformers
5,112
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (xlarge-sized model) ConvNeXT model trained on ImageNet-22k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-xlarge-224-22k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-xlarge-224-22k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 22k ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
firebolt/llama_or_what2
eeaf4ce35822e82b6e55ff6d96730444fc41373f
2021-07-31T19:52:32.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
firebolt
null
firebolt/llama_or_what2
78
null
transformers
5,113
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: llama_or_what2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4166666567325592 --- # llama_or_what2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### alpaca ![alpaca](images/alpaca.jpg) #### guanaco ![guanaco](images/guanaco.jpg) #### llama ![llama](images/llama.jpg) #### vicuna ![vicuna](images/vicuna.jpg)
mmoradi/Robust-Biomed-RoBERTa-SemanticSimilarity
215a7ecbbfe7d585fb1c4b4c692e88b02656f2a2
2021-10-07T10:35:43.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mmoradi
null
mmoradi/Robust-Biomed-RoBERTa-SemanticSimilarity
78
1
transformers
5,114
Entry not found
nateraw/rare-puppers
799e0a1833084ef4db11afadce85b0dedc509a84
2021-07-01T18:21:41.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/rare-puppers
78
1
transformers
5,115
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9583333134651184 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Base
c6e1ca8b53c20e96e637e276ab9e3d6d754ebfd3
2021-06-20T19:01:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nreimers
null
nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Base
78
null
transformers
5,116
# MiniLMv2 This is a MiniLMv2 model from: [https://github.com/microsoft/unilm](https://github.com/microsoft/unilm/tree/master/minilm)
sentence-transformers/gtr-t5-xxl
1431e7c1a9f4bf061070434127e055edce49313b
2022-02-09T11:14:39.000Z
[ "pytorch", "t5", "en", "arxiv:2112.07899", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/gtr-t5-xxl
78
null
sentence-transformers
5,117
--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/gtr-t5-xxl This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model was specifically trained for the task of sematic search. This model was converted from the Tensorflow model [gtr-xxl-1](https://tfhub.dev/google/gtr/gtr-xxl/1) to PyTorch. When using this model, have a look at the publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results. The model uses only the encoder from a T5-11B model. The weights are stored in FP16. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/gtr-t5-xxl') embeddings = model.encode(sentences) print(embeddings) ``` The model requires sentence-transformers version 2.2.0 or newer. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/gtr-t5-xxl) ## Citing & Authors If you find this model helpful, please cite the respective publication: [Large Dual Encoders Are Generalizable Retrievers](https://arxiv.org/abs/2112.07899)
lazyturtl/digital
cd165e98717597209f812cc588edd09fe6f79fcc
2022-03-24T04:28:50.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
lazyturtl
null
lazyturtl/digital
78
null
transformers
5,118
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: digital results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8974359035491943 --- # digital ## Example Images #### ansys ![ansys](images/ansys.jpeg) #### blender ![blender](images/blender.jpeg) #### roblox ![roblox](images/roblox.jpeg) #### sketchup ![sketchup](images/sketchup.jpeg)
thapasushil/vit-base-cifar10
72f36dc15652adfefe90a6bb97d2100c99ff40cf
2022-04-12T17:16:29.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
thapasushil
null
thapasushil/vit-base-cifar10
78
null
transformers
5,119
--- license: apache-2.0 tags: - image-classification - generated_from_trainer model-index: - name: vit-base-cifar10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-cifar10 This model is a fine-tuned version of [nateraw/vit-base-patch16-224-cifar10](https://huggingface.co/nateraw/vit-base-patch16-224-cifar10) on the cifar10-upside-down dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2348 - eval_accuracy: 0.9134 - eval_runtime: 157.4172 - eval_samples_per_second: 127.051 - eval_steps_per_second: 1.988 - epoch: 0.02 - step: 26 ## Model description Vision Transformer ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
daveni/upside_down_classifier
2c08ec90176988347efe236bdacff435171361ab
2022-04-10T12:08:07.000Z
[ "pytorch", "vit", "image-classification", "dataset:cifar100", "transformers" ]
image-classification
false
daveni
null
daveni/upside_down_classifier
78
null
transformers
5,120
--- datasets: - cifar100 widget: - src: https://huggingface.co/daveni/upside_down_classifier/resolve/main/meme_upside_down.jpg example_title: Upside down example - src: https://huggingface.co/daveni/upside_down_classifier/resolve/main/meme.jpg example_title: Original example --- # Upside Down Classifier
jemole/swin-tiny-patch4-window7-224-finetuned-eurosat
a1f41811e33e1ab6efd30a6a89e049fe151cb48c
2022-04-24T13:53:19.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
jemole
null
jemole/swin-tiny-patch4-window7-224-finetuned-eurosat
78
null
transformers
5,121
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.975925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0800 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2442 | 1.0 | 190 | 0.1605 | 0.9481 | | 0.1529 | 2.0 | 380 | 0.0800 | 0.9759 | | 0.151 | 3.0 | 570 | 0.0681 | 0.9759 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
driboune/skin_type
08f21724116d7f2f661e03166df00176da24ffb9
2022-05-02T08:08:40.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
driboune
null
driboune/skin_type
78
null
transformers
5,122
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: skin_type results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8222222328186035 --- # skin_type Aiming for fairness in image classification for humans, knowing the skin type of subjects is relevant to make sure the model performs correctly on all skin types. Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dark skin ![dark skin](images/dark_skin.jpg) #### light skin ![light skin](images/light_skin.jpg)
ipvikas/rare-puppers
593bb29831fef62d847eb7f487c39eead3df6b08
2022-05-15T12:47:13.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
ipvikas
null
ipvikas/rare-puppers
78
null
transformers
5,123
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9552238583564758 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
Ahmed9275/ALL-94.5
9da59ee89aef0f1937aeeb061b7d31e93892a3cf
2022-05-06T01:39:35.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Ahmed9275
null
Ahmed9275/ALL-94.5
78
null
transformers
5,124
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL-94.5 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9452415704727173 --- # ALL-94.5 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
AykeeSalazar/vc-bantai-vit-withoutAMBI
53431cc0db9ae3b3639b691837ab8b79ec5131ac
2022-05-22T06:14:09.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
AykeeSalazar
null
AykeeSalazar/vc-bantai-vit-withoutAMBI
78
null
transformers
5,125
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder model-index: - name: vc-bantai-vit-withoutAMBI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2578 - eval_accuracy: 0.9533 - eval_runtime: 31.6691 - eval_samples_per_second: 130.443 - eval_steps_per_second: 2.052 - epoch: 270.26 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Vemi/orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat
88895aa12954d1b7de1581a592bd0404aaef56dc
2022-05-23T02:56:12.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "model-index" ]
image-classification
false
Vemi
null
Vemi/orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat
78
null
transformers
5,126
--- tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9230769230769231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # orchid219_ft_vit-large-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [gary109/orchid219_ft_vit-large-patch16-224-in21k](https://huggingface.co/gary109/orchid219_ft_vit-large-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9545 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.5728 | 0.96 | 17 | 2.1936 | 0.8718 | | 1.6005 | 1.96 | 34 | 1.2044 | 0.9359 | | 0.9764 | 2.96 | 51 | 0.9545 | 0.9231 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
promobot/labse-ru
77e6b16ebb486181db603cac424ce3d3048becf1
2022-06-07T06:42:01.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "ru", "transformers", "sentence-similarity", "license:apache-2.0" ]
feature-extraction
false
promobot
null
promobot/labse-ru
78
0
transformers
5,127
--- language: ["ru"] pipeline_tag: feature-extraction tags: - feature-extraction - sentence-similarity license: apache-2.0 ---
nvidia/stt_de_conformer_ctc_large
38c37994f4b424d5307f8ad4cc8955154c0914d6
2022-07-01T01:46:17.000Z
[ "nemo", "de", "dataset:VoxPopuli (DE)", "dataset:Multilingual LibriSpeech", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "CTC", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "Riva", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_de_conformer_ctc_large
78
3
nemo
5,128
--- language: - de library_name: nemo datasets: - VoxPopuli (DE) - Multilingual LibriSpeech - mozilla-foundation/common_voice_7_0 thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard - Riva license: cc-by-4.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: stt_de_conformer_ctc_large results: - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 config: de split: test args: language: de metrics: - name: Test WER type: wer value: 6.68 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: de split: test args: language: de metrics: - name: Test WER type: wer value: 4.63 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: VoxPopuli type: VoxPopuli metrics: - name: Test WER type: wer value: 10.51 --- # NVIDIA Conformer-CTC Large (de) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-de-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | This model transcribes speech in lowercase German alphabet including spaces, and is trained on several thousand hours of German speech data. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details. It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva). ## Usage The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_de_conformer_ctc_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_de_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 kHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ### Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech: - VoxPopuli (DE) - Multilingual Librispeech (MLS DE) - 1500 hours subset - Mozilla Common Voice (v7.0) Note: older versions of the model may have trained on smaller set of datasets. ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | MCV7.0 dev | MCV7.0 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test | |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|------------|----------------| | 1.5.0 | SentencePiece Unigram | 128 | 5.84 | 6.68 | 3.85 | 4.63 | 12.56 | 10.51 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
Akari/albert-base-v2-finetuned-squad
cc24dc48164a747296f80f831cc9353e2470705e
2021-12-02T05:36:13.000Z
[ "pytorch", "tensorboard", "albert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Akari
null
Akari/albert-base-v2-finetuned-squad
77
1
transformers
5,129
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8695 | 1.0 | 8248 | 0.8813 | | 0.6333 | 2.0 | 16496 | 0.8042 | | 0.4372 | 3.0 | 24744 | 0.9492 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.7.1 - Datasets 1.15.1 - Tokenizers 0.10.3
DaNLP/da-bert-hatespeech-classification
19fdf618a20faf5f8a16cb7c14b02f72d33df94b
2021-11-15T14:48:18.000Z
[ "pytorch", "tf", "bert", "text-classification", "da", "dataset:social media", "transformers", "hatespeech", "license:cc-by-sa-4.0" ]
text-classification
false
DaNLP
null
DaNLP/da-bert-hatespeech-classification
77
null
transformers
5,130
--- language: - da tags: - bert - pytorch - hatespeech license: cc-by-sa-4.0 datasets: - social media metrics: - f1 widget: - text: "Senile gamle idiot" --- # Danish BERT for hate speech classification The BERT HateSpeech model classifies offensive Danish text into 4 categories: * `Særlig opmærksomhed` (special attention, e.g. threat) * `Personangreb` (personal attack) * `Sprogbrug` (offensive language) * `Spam & indhold` (spam) This model is intended to be used after the [BERT HateSpeech detection model](https://huggingface.co/DaNLP/da-bert-hatespeech-detection). It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#bertdr) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("DaNLP/da-bert-hatespeech-classification") tokenizer = BertTokenizer.from_pretrained("DaNLP/da-bert-hatespeech-classification") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
Helsinki-NLP/opus-mt-ru-sl
5e8617a9d176263e6617a703ee5c6748ce9a701f
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "sl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-sl
77
null
transformers
5,131
--- language: - ru - sl tags: - translation license: apache-2.0 --- ### rus-slv * source group: Russian * target group: Slovenian * OPUS readme: [rus-slv](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-slv/README.md) * model: transformer-align * source language(s): rus * target language(s): slv * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-slv/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-slv/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-slv/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.slv | 32.3 | 0.492 | ### System Info: - hf_name: rus-slv - source_languages: rus - target_languages: slv - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-slv/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'sl'] - src_constituents: {'rus'} - tgt_constituents: {'slv'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-slv/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-slv/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: slv - short_pair: ru-sl - chrF2_score: 0.49200000000000005 - bleu: 32.3 - brevity_penalty: 0.992 - ref_len: 2135.0 - src_name: Russian - tgt_name: Slovenian - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: sl - prefer_old: False - long_pair: rus-slv - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-rw-en
61ede64e3ceefce455d41fc85749314baa49a0ee
2021-09-10T14:02:47.000Z
[ "pytorch", "marian", "text2text-generation", "rw", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-rw-en
77
null
transformers
5,132
--- tags: - translation license: apache-2.0 --- ### opus-mt-rw-en * source languages: rw * target languages: en * OPUS readme: [rw-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/rw-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/rw-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/rw-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/rw-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.rw.en | 37.3 | 0.530 | | Tatoeba.rw.en | 49.8 | 0.643 |
Neto71/sea_mammals
fcc3edae3c90e7e2421a7fa5f692c41428dfb475
2021-07-05T13:14:43.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Neto71
null
Neto71/sea_mammals
77
null
transformers
5,133
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: sea_mammals results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8472222089767456 --- # sea_mammals Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### blue whale ![blue whale](images/blue_whale.jpg) #### dolphin ![dolphin](images/dolphin.jpg) #### orca whale ![orca whale](images/orca_whale.jpg)
Sena/flowers
7a080c96ceca25dcff4cf40f5677242d7f4074fa
2021-07-04T14:10:45.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Sena
null
Sena/flowers
77
null
transformers
5,134
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: flowers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6041666865348816 --- # flowers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### karanfil ![karanfil](images/karanfil.jpg) #### leylak ![leylak](images/leylak.jpg) #### menekse ![menekse](images/menekse.jpg) #### nergis ![nergis](images/nergis.jpg) #### zambak ![zambak](images/zambak.jpg)
TransQuest/monotransquest-hter-en_any
bf27886d123a86dc6de009c08860b0af880ffb89
2021-10-24T18:41:16.000Z
[ "pytorch", "xlm-roberta", "text-classification", "en-multilingual", "transformers", "Quality Estimation", "monotransquest", "HTER", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-hter-en_any
77
null
transformers
5,135
--- language: en-multilingual tags: - Quality Estimation - monotransquest - HTER license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_any", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
airKlizz/mt5-base-wikinewssum-french
55180f3c443ac6d1c489a3a73757b3086c174093
2021-12-24T14:42:37.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-french
77
null
transformers
5,136
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-french results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-french This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0917 - Rouge1: 12.0984 - Rouge2: 5.7289 - Rougel: 9.9245 - Rougelsum: 11.0697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:| | No log | 1.0 | 549 | 2.3203 | 11.5172 | 4.9352 | 9.3617 | 10.4605 | | No log | 2.0 | 1098 | 2.2057 | 11.8469 | 5.2369 | 9.6452 | 10.8337 | | No log | 3.0 | 1647 | 2.1525 | 11.9096 | 5.4027 | 9.7648 | 10.9315 | | 3.1825 | 4.0 | 2196 | 2.1307 | 12.0782 | 5.5848 | 9.9614 | 11.1081 | | 3.1825 | 5.0 | 2745 | 2.1172 | 11.9821 | 5.6042 | 9.8216 | 11.0077 | | 3.1825 | 6.0 | 3294 | 2.1012 | 12.0845 | 5.6834 | 9.9119 | 11.0741 | | 3.1825 | 7.0 | 3843 | 2.0964 | 12.1296 | 5.7271 | 9.9495 | 11.1227 | | 2.3376 | 8.0 | 4392 | 2.0917 | 12.0984 | 5.7289 | 9.9245 | 11.0697 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
castorini/mdpr-passage-nq
d0edbcc0c8a55011086e4c2ab73a99c412d0a819
2021-08-20T15:21:30.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
castorini
null
castorini/mdpr-passage-nq
77
1
transformers
5,137
Entry not found
echarlaix/bart-base-cnn-r2-18.7-d23-hybrid
89e3e2f99f0ceafaa00ee86e5cff969010b8c5cf
2021-08-20T09:58:11.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:cnn_dailymail", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
echarlaix
null
echarlaix/bart-base-cnn-r2-18.7-d23-hybrid
77
null
transformers
5,138
--- language: en license: apache-2.0 tags: - summarization datasets: - cnn_dailymail metrics: - R1 - R2 - RL --- ## facebook/bart-base model fine-tuned on CNN/DailyMail This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the linear layers contains **23%** of the original weights. The model contains **45%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). <div class="graph"><script src="/echarlaix/bart-base-cnn-r2-18.7-d23-hybrid/raw/main/model_card/density_info.js" id="4348cd46-05bd-4e27-b565-6693f9e0b03e"></script></div> ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/facebook/bart-base). A side-effect of block pruning is that some of the attention heads are completely removed: 61 heads were removed on a total of 216 (28.2%). ## Details of the CNN/DailyMail dataset | Dataset | Split | # samples | | ------------- | ----- | --------- | | CNN/DailyMail | train | 287K | | CNN/DailyMail | eval | 13K | ### Results | Metric | # Value | | ----------- | --------- | | **Rouge 1** | **41.43** | | **Rouge 2** | **18.72** | | **Rouge L** | **38.35** |
facebook/wav2vec2-base-10k-voxpopuli-ft-en
328f7961ee96d2db3af8bbd22c685f5dd96f9692
2021-07-06T01:49:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-en
77
null
transformers
5,139
--- language: en tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in en (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-en") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-en") # load dataset ds = load_dataset("common_voice", "en", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
indobenchmark/indobert-lite-large-p2
14818646c71e898fe71351d12a1dc9fe1bf39ba5
2020-12-11T21:45:59.000Z
[ "pytorch", "tf", "albert", "feature-extraction", "id", "dataset:Indo4B", "arxiv:2009.05387", "transformers", "indobert", "indobenchmark", "indonlu", "license:mit" ]
feature-extraction
false
indobenchmark
null
indobenchmark/indobert-lite-large-p2
77
null
transformers
5,140
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase2 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p2") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
lincoln/barthez-squadFR-fquad-piaf-question-generation
0e0ece03c9519ae7ae097714d10e8a203b34b34d
2021-10-11T15:24:58.000Z
[ "pytorch", "mbart", "text2text-generation", "fr", "dataset:squadFR", "dataset:fquad", "dataset:piaf", "arxiv:2010.12321", "transformers", "seq2seq", "barthez", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lincoln
null
lincoln/barthez-squadFR-fquad-piaf-question-generation
77
2
transformers
5,141
--- language: - fr license: mit pipeline_tag: "text2text-generation" datasets: - squadFR - fquad - piaf metrics: - bleu - rouge widget: - text: "La science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées de nombreuses données structurelles et non structurées.\ Elle est souvent associée aux <hl>données massives et à l'analyse des données<hl>." tags: - seq2seq - barthez --- # Génération de question à partir d'un contexte Le modèle est _fine tuné_ à partir du modèle [moussaKam/barthez](https://huggingface.co/moussaKam/barthez) afin de générer des questions à partir d'un paragraphe et d'une suite de token. La suite de token représente la réponse sur laquelle la question est basée. Input: _Les projecteurs peuvent être utilisées pour \<hl\>illuminer\<hl\> des terrains de jeu extérieurs_ Output: _À quoi servent les projecteurs sur les terrains de jeu extérieurs?_ ## Données d'apprentissage La base d'entrainement est la concatenation des bases SquadFR, [fquad](https://huggingface.co/datasets/fquad), [piaf](https://huggingface.co/datasets/piaf). L'input est le context et nous avons entouré à l'aide du token spécial **\<hl\>** les réponses. Volumétrie (nombre de triplet contexte/réponse/question): * train: 98 211 * test: 12 277 * valid: 12 776 ## Entrainement L'apprentissage s'est effectué sur une carte Tesla V100. * Batch size: 20 * Weight decay: 0.01 * Learning rate: 3x10-5 (décroit linéairement) * < 24h d'entrainement * Paramètres par défaut de la classe [TrainingArguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments) * Total steps: 56 000 <img src=""> La loss represente des "sauts" à cause de la reprise de l'entrainement à deux reprises. Cela induit une modification du learning rate et explique la forme de la courbe. ## Résultats Les questions générées sont évaluées sur les métrique BLEU et ROUGE. Ce sont des métriques approximative pour la génération de texte. <img src=""> <img src=""> ## Tokenizer Le tokenizer de départ est [BarthezTokenizer](https://huggingface.co/transformers/model_doc/barthez.html) auquel ont été rajouté les tokens spéciaux \<sep\> et \<hl\>. ## Utilisation _Le modèle est un POC, nous garantissons pas ses performances_ ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import Text2TextGenerationPipeline model_name = 'lincoln/barthez-squadFR-fquad-piaf-question-generation' loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) nlp = Text2TextGenerationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp("Les projecteurs peuvent être utilisées pour <hl>illuminer<hl> des terrains de jeu extérieurs") # >>> [{'generated_text': 'À quoi servent les projecteurs sur les terrains de jeu extérieurs?'}] ``` ```py from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import Text2TextGenerationPipeline model_name = 'lincoln/barthez-squadFR-fquad-piaf-question-generation' loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) text = "Les Etats signataires de la convention sur la diversité biologique des Nations unies doivent parvenir, lors de la COP15, qui s’ouvre <hl>lundi<hl>, à un nouvel accord mondial pour enrayer la destruction du vivant au cours de la prochaine décennie." inputs = loaded_tokenizer(text, return_tensors='pt') out = loaded_model.generate( input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, num_beams=16, num_return_sequences=16, length_penalty=10 ) questions = [] for question in out: questions.append(loaded_tokenizer.decode(question, skip_special_tokens=True)) for q in questions: print(q) # Quand se tient la conférence des Nations Unies sur la diversité biologique? # Quand a lieu la conférence des Nations Unies sur la diversité biologique? # Quand se tient la conférence sur la diversité biologique des Nations unies? # Quand se tient la conférence de la diversité biologique des Nations unies? # Quand a lieu la conférence sur la diversité biologique des Nations unies? # Quand a lieu la conférence de la diversité biologique des Nations unies? # Quand se tient la conférence des Nations unies sur la diversité biologique? # Quand a lieu la conférence des Nations unies sur la diversité biologique? # Quand se tient la conférence sur la diversité biologique des Nations Unies? # Quand se tient la conférence des Nations Unies sur la diversité biologique? # Quand se tient la conférence de la diversité biologique des Nations Unies? # Quand la COP15 a-t-elle lieu? # Quand la COP15 a-t-elle lieu? # Quand se tient la conférence sur la diversité biologique? # Quand s'ouvre la COP15,? # Quand s'ouvre la COP15? ``` ## Citation Model based on: paper: https://arxiv.org/abs/2010.12321 \ github: https://github.com/moussaKam/BARThez ``` @article{eddine2020barthez, title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model}, author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2010.12321}, year={2020} } ```
macedonizer/hr-roberta-base
16cb3b1be4f0e27db649b0e9fb789ec4a29493aa
2021-09-22T08:58:43.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "hr", "dataset:wiki-hr", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
macedonizer
null
macedonizer/hr-roberta-base
77
1
transformers
5,142
--- language: - hr thumbnail: https://huggingface.co/macedonizer/hr-roberta-base/ivo-andric.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-hr --- # HR-RoBERTa base model Pretrained model on Macedonian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/hr-roberta-base') \ unmasker("Zagrab je \\<mask\\> glavni grad Hrvatske.") \ [ {'sequence': 'Zagreb je glavni grad Hrvatske.', 'score': 0.8750431537628174, 'token': 2026, 'token_str': ' glavni'}, {'sequence': 'Zagreb je najveći grad Hrvatske.', 'score': 0.060711536556482315, 'token': 2474, 'token_str': ' najveći'}, {'sequence': 'Zagreb je prvi grad Hrvatske.', 'score': 0.005241130944341421, 'token': 780, 'token_str': ' prvi'}, {'sequence': 'Zagreb je jedini grad Hrvatske.', 'score': 0.004663003608584404, 'token': 3280, 'token_str': ' jedini'}, {'sequence': 'Zagreb je treći grad Hrvatske.', 'score': 0.003771631745621562, 'token': 3236, 'token_str': ' treći' ] \ Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/hr-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/hr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
nateraw/baked-goods
7a9e8cc833a401404a6f752336275c94423f7479
2021-06-30T07:11:09.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/baked-goods
77
null
transformers
5,143
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baked-goods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # baked-goods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cake ![cake](images/cake.jpg) #### cookie ![cookie](images/cookie.jpg) #### pie ![pie](images/pie.jpg)
nateraw/ex-for-evan
7b15f15ff925539baa48729cedd6dd1d78dd138f
2021-09-18T22:20:05.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/ex-for-evan
77
null
transformers
5,144
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ex-for-evan results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9791666865348816 --- # ex-for-evan Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cheetah ![cheetah](images/cheetah.jpg) #### elephant ![elephant](images/elephant.jpg) #### giraffe ![giraffe](images/giraffe.jpg) #### rhino ![rhino](images/rhino.jpg)
nateraw/vit-base-beans-demo-v2
224661166c75ca3a6f14c79ade1848723a9f9ede
2021-08-27T17:33:08.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:beans", "transformers", "other-image-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nateraw
null
nateraw/vit-base-beans-demo-v2
77
null
transformers
5,145
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo-v2 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0099 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0705 | 1.54 | 100 | 0.0562 | 0.9925 | | 0.0123 | 3.08 | 200 | 0.0124 | 1.0 | | 0.008 | 4.62 | 300 | 0.0099 | 1.0 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ozcangundes/wav2vec2-large-xlsr-53-turkish
2993cf6895d0369dbddb96a28f0bafda2cc60343
2021-04-02T14:54:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ozcangundes
null
ozcangundes/wav2vec2-large-xlsr-53-turkish
77
1
transformers
5,146
--- language: - tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Ozcan Gundes XLSR Wav2Vec2 Large Turkish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 29.62 --- # Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\’\\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.62 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1hesw9z_kFFINT93jBvGuFspOLrHx10AE?usp=sharing)
peterbonnesoeur/Visual_transformer_chihuahua_cookies
0d64f408539e5983424b945386bbd2f10c154bea
2021-07-02T11:29:45.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
peterbonnesoeur
null
peterbonnesoeur/Visual_transformer_chihuahua_cookies
77
null
transformers
5,147
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Visual_transformer_chihuahua_cookies results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # Visual_transformer_chihuahua_cookies Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chihuahua ![chihuahua](images/chihuahua.jpg) #### cookies ![cookies](images/cookies.jpg) #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
sberbank-ai/ruclip-vit-base-patch16-224
bfba4ada5bd6bc10d1b4e42deef0770f5c38388e
2022-01-09T21:34:11.000Z
[ "pytorch", "transformers" ]
null
false
sberbank-ai
null
sberbank-ai/ruclip-vit-base-patch16-224
77
null
transformers
5,148
# ruclip-vit-base-patch16-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `150M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `512` * Transformer Heads: `8` * Image Size: `224` * Vision Layers: `12` * Vision Width: `768` * Vision Patch Size: `16` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-base-patch16-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.552 | | CIFAR10 | acc | 0.810 | | CIFAR100 | acc | 0.496 | | Birdsnap | acc | 0.117 | | SUN397 | acc | 0.462 | | Stanford Cars | acc | 0.487 | | DTD | acc | 0.401 | | MNIST | acc | 0.464 | | STL10 | acc | 0.932 | | PCam | acc | 0.505 | | CLEVR | acc | 0.128 | | Rendered SST2 | acc | 0.527 | | ImageNet | acc | 0.401 | | FGVC Aircraft | mean-per-class | 0.043 | | Oxford Pets | mean-per-class | 0.595 | | Caltech101 | mean-per-class | 0.775 | | Flowers102 | mean-per-class | 0.388 | | HatefulMemes | roc-auc | 0.516 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)
simonlevine/clinical-longformer
ff576e64e4a788b329bd75987e18240ed5752f22
2021-05-20T21:25:09.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonlevine
null
simonlevine/clinical-longformer
77
null
transformers
5,149
- You'll need to instantiate a special RoBERTa class. Though technically a "Longformer", the elongated RoBERTa model will still need to be pulled in as such. - To do so, use the following classes: ```python class RobertaLongSelfAttention(LongformerSelfAttention): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, ): return super().forward(hidden_states, attention_mask=attention_mask, output_attentions=output_attentions) class RobertaLongForMaskedLM(RobertaForMaskedLM): def __init__(self, config): super().__init__(config) for i, layer in enumerate(self.roberta.encoder.layer): # replace the `modeling_bert.BertSelfAttention` object with `LongformerSelfAttention` layer.attention.self = RobertaLongSelfAttention(config, layer_id=i) ``` - Then, pull the model as ```RobertaLongForMaskedLM.from_pretrained('simonlevine/bioclinical-roberta-long')``` - Now, it can be used as usual. Note you may get untrained weights warnings. - Note that you can replace ```RobertaForMaskedLM``` with a different task-specific RoBERTa from Huggingface, such as RobertaForSequenceClassification.
meame2010/rare-puppers
566d1b12a7ae078d04bbf59dc491c23ee4e4ad1e
2022-03-07T00:03:06.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
meame2010
null
meame2010/rare-puppers
77
null
transformers
5,150
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.644444465637207 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dog drinking water ![dog drinking water](images/dog_drinking_water.jpg) #### dog eating food ![dog eating food](images/dog_eating_food.jpg) #### dog playing toy ![dog playing toy](images/dog_playing_toy.jpg) #### dog sleeping ![dog sleeping](images/dog_sleeping.jpg)
Thanakrit/wangchanberta-th-QA
a84118efcaac38c79f30b93d44e4a375de3fcaf6
2022-03-26T13:49:54.000Z
[ "pytorch", "camembert", "question-answering", "thai", "th", "dataset:thaiqa_squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Thanakrit
null
Thanakrit/wangchanberta-th-QA
77
null
transformers
5,151
--- tags: - generated_from_trainer language: - thai - th datasets: - thaiqa_squad model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-th-squad results: [] widget: - text: "เฝิง เส้าเฟิง รับบทอะไรใน The Palace" context: "เฝิง เส้าเฟิง เฝิง เส้าเฟิง หรือ วิลเลี่ยม เฝิง (; ชื่อภาษาอังกฤษ: William Feng, Feng Shaofeng) เป็นนักแสดงที่มีชื่อเสียงจากเรื่อง \"White Vengeance\" และ\"Prince of Lan Ling\" เกิดเมื่อวันที่ 7 ตุลาคม ค.ศ. 1978ประวัติ ประวัติ. ดังเปรี้ยงปร้างเพียงชั่วคืน หลังจากกระโดดมารับบท \"องค์ชาย 8\" ในซีรีส์เจาะเวลาทะลุมิติเรื่อง \"The Palace\" คู่กับหยางมี่ในปี 2011 จนตอนนี้เฝิงเส้าเฟิงกลายเป็นพระเอกที่ถูกพูดถึงมากที่สุดคนหนึ่งของวงการบันเทิง และกลายเป็นแบบฉบับของชายหนุ่มที่สาวๆ ใฝ่ฝันถึง เพราะนอกจากหน้าตาที่หล่อเหลาแล้ว ชาติตระกูลของเขาก็ยังไม่ธรรมดาอีกด้วย เฝิงเส้าเฟิง เป็นลูกชายหัวแก้วหัวแหวนของนักธุรกิจอุตสาหกรรมสิ่งทอรายใหญ่ของจีน ครอบครัวเขามีโรงงานตั้งอยู่ที่เวินโจว กว่างโจว และฝูโจว ทรัพย์สินโดยรวมทั้งสิ้นไม่ต่ำกว่าพันล้านหยวน และเขาก็เป็นทายาทเพียงคนเดียวของตระกูล แต่เพราะเฝิงเส้าเฟิงใฝ่ฝันที่จะเข้าสู่วงการบันเทิง จึงได้เลือกที่จะเรียนการแสดงที่มหาวิทยาลัย shanghai theatre academy หลังจากเรียนจบก็มีโอกาสคลุกคลีทำงานอยู่ในวงการบันเทิงมากว่า 10 ปี กระทั่งประสบความสำเร็จอย่างทุกวันนี้ แถมได้ข่าวว่าเขากำลังอินเลิฟอยู่กับ \"หนีหนี\" นางเอกเรื่อง \"Flowers Of War\" หนังระดับรางวัลของผู้กำกับจางอี้โหมวอีกด้วยผลงานด้านภาพยนตร์ภาพยนตร์ละครโทรทัศน์" - text: "ดึกแล้วคุณขา เป็นภาพยนตร์แนวใด" context: "ดึกแล้วคุณขา ดึกแล้วคุณขา (Bangkok Time) เป็นภาพยนตร์ไทยที่กำกับโดยสันติ แต้พานิช ออกฉายในปี พ.ศ. 2550 โดยฉายแบบจำกัดโรงที่โรงภาพยนตร์ลิโด้ ดึกแล้วคุณขา เป็นภาพยนตร์รัก โรแมนติก มีเนื้อหาเกี่ยวกับรักสามเส้า ของชายสองหญิงหนึ่งที่เป็นคนทำงานกลางคืน คือ พ่อค้าขายของปลอมริมถนนสีลม (รับบทโดย อรรถพร ธีมากร) ชายหนุ่มบริการทางโทรศัพท์ (รับบทโดย อนันดา เอเวอริ่งแฮม) และนางพยาบาลที่ต้องเข้าเวรกะดึก (รับบทโดย ดุสิตา อนุชิตชาญชัย) ภาพยนตร์เรื่องนี้เข้าฉายใน Bangkok Film Festival 2007 และ Vancouver International Film Festival 2007 ในสาขา Dragon and Tiger Award" - text: "แอนนา ฟาริส เกิดเมื่อไร" context: "แอนนา ฟาริส แอนนา เคย์ ฟาริส (; เกิด 29 พฤศจิกายน ค.ศ. 1976) เป็นนักแสดงแะนักร้องชาวอเมริกัน ฟาริสปรากฏในภาพยนตร์ซีรีส์เรื่อง Scary Movie ในภาพยนตร์เรื่อง The Hot Chick (2002), Lost in Translation (2003), และ My Super Ex-Girlfriend (2006) ในปี 2008 เธอแสดงในเรื่อง The House Bunny ที่เธอได้รับการเสนอชื่อเข้าชิงรางวัลเอ็มทีวีมูวี่อวอร์ดส ผลงานภาพยนตร์หลัง ๆ ของเธออย่างเช่น Young Americans, Frequently Asked Questions About Time Travel, Yogi Bear, และ Observe and Report เธอยังพากย์เสียงให้กับภาพยนตร์แอนิเมชันเรื่อง Cloudy with a Chance of Meatballs และ" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-th-QA This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the thaiqa_squad dataset. language: - th Code for fine-tune Model [github](https://github.com/KillM0nGerZ/WangchanBERTa-for-QuestionAnswering.git)
osanseviero/llama-alpaca-snake
56d73fd4594b1aaa96869f0c8cc4792656b50402
2022-04-01T09:45:01.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "llama-leaderboard", "model-index" ]
image-classification
false
osanseviero
null
osanseviero/llama-alpaca-snake
77
null
transformers
5,152
--- tags: - image-classification - pytorch - huggingpics - llama-leaderboard metrics: - accuracy model-index: - name: llama-alpaca-snake results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7910447716712952 --- # llama-alpaca-snake Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### alpaca ![alpaca](images/alpaca.jpg) #### llamas ![llamas](images/llamas.jpg) #### snake ![snake](images/snake.jpg)
jmarshall/rare-puppers
d3eba330bc27b280adc819729eebcbd1ddd32aad
2022-04-20T14:45:23.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
jmarshall
null
jmarshall/rare-puppers
77
null
transformers
5,153
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9402984976768494 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
Ahmed9275/ALL-2
609860d67be98a48e1073c55db9da3afc6004422
2022-04-28T02:07:25.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Ahmed9275
null
Ahmed9275/ALL-2
77
1
transformers
5,154
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL-2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9855383038520813 --- # ALL-2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
firas-spanioli/beer-whisky-wine-detection
1421666a41dafec2956a1d94e7b56083134fdbee
2022-05-11T11:38:38.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
firas-spanioli
null
firas-spanioli/beer-whisky-wine-detection
77
null
transformers
5,155
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: beer-whisky-wine-detection results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # beer-whisky-wine-detection Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### beer ![beer](images/beer.jpg) #### whisky ![whisky](images/whisky.jpg) #### wine ![wine](images/wine.jpg)
utkarshsaboo45/ClearlyDefinedLicenseSummarizer
954497f0c6592506a9223a87160e9e38dc8cc95a
2022-05-27T23:18:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
utkarshsaboo45
null
utkarshsaboo45/ClearlyDefinedLicenseSummarizer
77
null
transformers
5,156
--- license: mit ---
smc/electric_pole_type_classification
14ee7ca59552f2118afe5e796dca834eb281eefd
2022-05-23T20:11:01.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
smc
null
smc/electric_pole_type_classification
77
1
transformers
5,157
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: electric_pole_type_classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8571428656578064 --- # electric_pole_type_classification Classify your electric pole images R200, H, R300, Portico, Poste, Tripode
Gods/discord_test
787e73cc2b5e10ab663f407787042253828a4aa2
2022-06-27T13:26:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gods
null
Gods/discord_test
77
null
transformers
5,158
Entry not found
robingeibel/reformer-finetuned
10f24ed84d07de39a3f4d9a30df5c386a367a87f
2022-07-04T07:11:33.000Z
[ "pytorch", "tensorboard", "reformer", "fill-mask", "dataset:big_patent", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
robingeibel
null
robingeibel/reformer-finetuned
77
null
transformers
5,159
--- tags: - generated_from_trainer datasets: - big_patent model-index: - name: reformer-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reformer-finetuned This model is a fine-tuned version of ["google/reformer-crime-and-punishment"](https://huggingface.co/google/reformer-crime-and-punishment) on the big_patent dataset, wikipedia, and arxiv. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0 | 1.0 | 29934 | 0.0000 | | 0.0 | 2.0 | 59868 | 0.0000 | | 0.0 | 3.0 | 89802 | 0.0000 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aftabhussain/Tomato_Leaf_Classifier
d1b535f6a8f2c556e358236ab0dbe1c5087ff0e3
2021-09-13T04:14:44.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Aftabhussain
null
Aftabhussain/Tomato_Leaf_Classifier
76
null
transformers
5,160
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Tomato_Leaf_Classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # Tomato_Leaf_Classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bacterial_spot ![Bacterial_spot](images/Bacterial_spot.JPG) #### Healthy ![Healthy](images/Healthy.JPG)
DeepPavlov/roberta-large-winogrande
74b9e8bb2314ca9f440eb14de45fa3a29ae0f5dc
2021-12-24T14:20:49.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:winogrande", "arxiv:1907.11692", "transformers" ]
text-classification
false
DeepPavlov
null
DeepPavlov/roberta-large-winogrande
76
null
transformers
5,161
--- language: - en datasets: - winogrande widget: - text: "The roof of Rachel's home is old and falling apart, while Betty's is new. The home value of </s> Rachel is lower." - text: "The wooden doors at my friends work are worse than the wooden desks at my work, because the </s> desks material is cheaper." - text: "Postal Service were to reduce delivery frequency. </s> The postal service could deliver less frequently." - text: "I put the cake away in the refrigerator. It has a lot of butter in it. </s> The cake has a lot of butter in it." --- # RoBERTa Large model fine-tuned on Winogrande This model was fine-tuned on Winogrande dataset (XL size) in sequence classification task format, meaning that original pairs of sentences with corresponding options filled in were separated, shuffled and classified independently of each other. ## Model description ## Intended use & limitations ### How to use ## Training data [WinoGrande-XL](https://huggingface.co/datasets/winogrande) reformatted the following way: 1. Each sentence was split on "`_`" placeholder symbol. 2. Each option was concatenated with the second part of the split, thus transforming each example into two text segment pairs. 3. Text segment pairs corresponding to correct and incorrect options were marked with `True` and `False` labels accordingly. 4. Text segment pairs were shuffled thereafter. For example, ```json { "answer": "2", "option1": "plant", "option2": "urn", "sentence": "The plant took up too much room in the urn, because the _ was small." } ``` becomes ```json { "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "plant was small.", "label": false } ``` and ```json { "sentence1": "The plant took up too much room in the urn, because the ", "sentence2": "urn was small.", "label": true } ``` These sentence pairs are then treated as independent examples. ### BibTeX entry and citation info ```bibtex @article{sakaguchi2019winogrande, title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin}, journal={arXiv preprint arXiv:1907.10641}, year={2019} } @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Emanuel/twitter-emotion-deberta-v3-base
c83e7be5802e7f2687eedff0786491ea6e8e43ea
2022-07-13T12:37:26.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Emanuel
null
Emanuel/twitter-emotion-deberta-v3-base
76
null
transformers
5,162
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: twitter-emotion-deberta-v3-base results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.937 --- # twitter-emotion-deberta-v3-base This model is a fine-tuned version of [DeBERTa-v3](https://huggingface.co/microsoft/deberta-v3-base). It achieves the following results on the evaluation set: - Loss: 0.1474 - Accuracy: 0.937 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 80 - eval_batch_size: 80 - lr_scheduler_type: linear - num_epochs: 6.0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3
JorgeSarry/est5-summarize
994786697eef7d23732b20f8875c0b7e52428baa
2021-10-03T18:22:58.000Z
[ "pytorch", "mt5", "text2text-generation", "es", "transformers", "autotrain_compatible" ]
text2text-generation
false
JorgeSarry
null
JorgeSarry/est5-summarize
76
null
transformers
5,163
--- language: es --- This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings trained on 60k Spanish MLSum for summarization. You can use it with the command "summarize:"
LilaBoualili/bert-vanilla
923ae4df2a59683465eb6520158ca0b27b6f02eb
2021-05-18T21:27:42.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/bert-vanilla
76
null
transformers
5,164
At its core it uses a BERT-Base model (bert-base-uncased) fine-tuned on the MS MARCO passage classification task. It can be loaded using the TF/AutoModelForSequenceClassification classes. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
akivo4ka/ruGPT3medium_psy
8282334d7ddd903306ad1631ef43a59e5aecf776
2021-05-21T12:41:38.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
akivo4ka
null
akivo4ka/ruGPT3medium_psy
76
null
transformers
5,165
Entry not found
asafaya/albert-xlarge-arabic
3530341360b689496bee04eb743a2c37a7043a34
2022-02-11T13:52:49.000Z
[ "pytorch", "tf", "albert", "fill-mask", "ar", "dataset:oscar", "dataset:wikipedia", "transformers", "masked-lm", "autotrain_compatible" ]
fill-mask
false
asafaya
null
asafaya/albert-xlarge-arabic
76
null
transformers
5,166
--- language: ar datasets: - oscar - wikipedia tags: - ar - masked-lm --- # Arabic-ALBERT Xlarge Arabic edition of ALBERT Xlarge pretrained language model _If you use any of these models in your work, please cite this work as:_ ``` @software{ali_safaya_2020_4718724, author = {Ali Safaya}, title = {Arabic-ALBERT}, month = aug, year = 2020, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.4718724}, url = {https://doi.org/10.5281/zenodo.4718724} } ``` ## Pretraining data The models were pretrained on ~4.4 Billion words: - Arabic version of [OSCAR](https://oscar-corpus.com/) (unshuffled version of the corpus) - filtered from [Common Crawl](http://commoncrawl.org/) - Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html) __Notes on training data:__ - Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER. - Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters do not have upper or lower case, there is no cased and uncased version of the model. - The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too. ## Pretraining details - These models were trained using Google ALBERT's github [repository](https://github.com/google-research/albert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc). - Our pretraining procedure follows training settings of bert with some changes: trained for 7M training steps with batchsize of 64, instead of 125K with batchsize of 4096. ## Models | | albert-base | albert-large | albert-xlarge | |:---:|:---:|:---:|:---:| | Hidden Layers | 12 | 24 | 24 | | Attention heads | 12 | 16 | 32 | | Hidden size | 768 | 1024 | 2048 | ## Results For further details on the models performance or any other queries, please refer to [Arabic-ALBERT](https://github.com/KUIS-AI-Lab/Arabic-ALBERT/) ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel # loading the tokenizer tokenizer = AutoTokenizer.from_pretrained("kuisailab/albert-xlarge-arabic") # loading the model model = AutoModelForMaskedLM.from_pretrained("kuisailab/albert-xlarge-arabic") ``` ## Acknowledgement Thanks to Google for providing free TPU for the training process and for Huggingface for hosting these models on their servers 😊
castorini/ance-dpr-question-multi
f977e296f80af577fc70728f5d45917e57f6ef3c
2021-04-21T01:36:24.000Z
[ "pytorch", "dpr", "feature-extraction", "arxiv:2007.00808", "transformers" ]
feature-extraction
false
castorini
null
castorini/ance-dpr-question-multi
76
null
transformers
5,167
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
chinhon/pegasus-newsroom-headline_writer
2a18c38965b0016f5b451ebc0009b8d9b6815e39
2021-10-28T11:13:58.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/pegasus-newsroom-headline_writer
76
2
transformers
5,168
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-headline_writer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-headline_writer This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3988 - Rouge1: 41.8748 - Rouge2: 23.1947 - Rougel: 35.6263 - Rougelsum: 35.7355 - Gen Len: 34.1266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5784 | 1.0 | 31200 | 1.4287 | 41.4257 | 22.9355 | 35.3299 | 35.4648 | 34.4677 | | 1.3501 | 2.0 | 62400 | 1.3955 | 41.9119 | 23.1912 | 35.6698 | 35.7479 | 33.8672 | | 1.2417 | 3.0 | 93600 | 1.3988 | 41.8748 | 23.1947 | 35.6263 | 35.7355 | 34.1266 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
dog/rare-puppers
a947e18c081a4a980f0e0b71dfba55a2ca482c31
2021-11-10T03:41:31.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
dog
null
dog/rare-puppers
76
null
transformers
5,169
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8651685118675232 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### husky ![husky](images/husky.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shibu inu ![shibu inu](images/shibu_inu.jpg)
eliwill/rare-puppers
3d4139fb96a966fe8fb18664ff423204b59da83c
2022-01-08T01:40:43.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
eliwill
null
eliwill/rare-puppers
76
null
transformers
5,170
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4895833432674408 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### algebra ![algebra](images/algebra.jpg) #### arithmetic ![arithmetic](images/arithmetic.jpg) #### calculus ![calculus](images/calculus.jpg) #### geometry ![geometry](images/geometry.jpg) #### trigonometry ![trigonometry](images/trigonometry.jpg)
filipafcastro/beer_vs_wine
c82ba21b4808761433e14f5f8d894f66a184a0a4
2021-11-05T10:55:21.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
filipafcastro
null
filipafcastro/beer_vs_wine
76
null
transformers
5,171
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: beer_vs_wine results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9777777791023254 --- # beer_vs_wine Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### beer ![beer](images/beer.jpg) #### wine ![wine](images/wine.jpg)
gaetangate/bart-large_genrl_lcquad2
cee4f63bb6449eb54b64e677acbd17432d613685
2022-04-05T15:10:15.000Z
[ "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
gaetangate
null
gaetangate/bart-large_genrl_lcquad2
76
null
transformers
5,172
--- license: apache-2.0 --- This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
gustavecortal/gpt-neo-2.7B-8bit
c4cdf336f9dbf6fd96d152927d52f64f59ca788f
2022-03-04T10:33:18.000Z
[ "pytorch", "gpt_neo", "text-generation", "en", "dataset:The Pile", "transformers", "causal-lm", "license:mit" ]
text-generation
false
gustavecortal
null
gustavecortal/gpt-neo-2.7B-8bit
76
3
transformers
5,173
--- language: en license: mit tags: - causal-lm datasets: - The Pile --- ### Quantized EleutherAI/gpt-neo-2.7B with 8-bit weights This is a version of [EleutherAI's GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-2.7B) with 2.7 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit). Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9) ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Links * [EleutherAI](https://www.eleuther.ai) * [Hivemind](https://training-transformers-together.github.io/) * [Gustave Cortal](https://twitter.com/gustavecortal)
huggingtweets/barackobama
6214faa24a909765d32267eefd454765cc7d94fe
2022-07-05T22:19:20.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/barackobama
76
null
transformers
5,174
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1329647526807543809/2SGvnHYV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Barack Obama</div> <div style="text-align: center; font-size: 14px;">@barackobama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Barack Obama. | Data | Barack Obama | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 334 | | Short tweets | 22 | | Tweets kept | 2894 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9f9to7y9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barackobama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3xlun3ts) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3xlun3ts/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/barackobama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/vit-base-patch16-224_finetuned-pneumothorax
2afcf5cc3699938505192630ae862faecc3b250b
2021-09-15T08:43:39.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers" ]
image-classification
false
mrm8488
null
mrm8488/vit-base-patch16-224_finetuned-pneumothorax
76
1
transformers
5,175
Entry not found
nateraw/huggingpics-package-demo-2
5db84577de0048ff5aca0370ac3a40ef3461334f
2021-11-09T21:00:52.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "generated_from_trainer", "license:apache-2.0" ]
image-classification
false
nateraw
null
nateraw/huggingpics-package-demo-2
76
null
transformers
5,176
--- license: apache-2.0 tags: - image-classification - huggingpics - generated_from_trainer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huggingpics-package-demo-2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3761 - Acc: 0.9403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0328 | 1.0 | 24 | 0.9442 | 0.7463 | | 0.8742 | 2.0 | 48 | 0.7099 | 0.9403 | | 0.6451 | 3.0 | 72 | 0.5050 | 0.9403 | | 0.508 | 4.0 | 96 | 0.3761 | 0.9403 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Tokenizers 0.10.3
nateraw/rare-puppers-new-auth
b0164e59c4986fea737a7abb22caf034d8a15492
2021-12-10T20:51:18.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/rare-puppers-new-auth
76
null
transformers
5,177
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers-new-auth results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.89552241563797 --- # rare-puppers-new-auth Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
osanseviero/taco_or_what
3d8b91acef7f4fa758c1e1b5ad2d424c915bba42
2021-07-03T18:39:20.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
osanseviero
null
osanseviero/taco_or_what
76
null
transformers
5,178
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: taco_or_what results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5148809552192688 --- # taco_or_what Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### burrito ![burrito](images/burrito.jpg) #### fajitas ![fajitas](images/fajitas.jpg) #### kebab ![kebab](images/kebab.jpg) #### quesadilla ![quesadilla](images/quesadilla.jpg) #### taco ![taco](images/taco.jpg)
speechbrain/asr-wav2vec2-transformer-aishell
97ae797c492da87b5934c4990119f2c77ed1d411
2021-12-15T10:44:05.000Z
[ "en", "dataset:aishell", "arxiv:2106.04624", "speechbrain", "automatic-speech-recognition", "CTC", "Attention", "Transformers", "wav2vec2", "pytorch", "license:apache-2.0" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-transformer-aishell
76
3
speechbrain
5,179
--- language: "en" thumbnail: tags: - automatic-speech-recognition - CTC - Attention - Transformers - wav2vec2 - pytorch - speechbrain license: "apache-2.0" datasets: - aishell metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Transformer for AISHELL + wav2vec2 (Mandarin Chinese) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on AISHELL +wav2vec2 (Mandarin Chinese) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Dev CER | Test CER | GPUs | Full Results | |:-------------:|:--------------:|:--------------:|:--------:|:--------:| | 05-03-21 | 5.19 | 5.58 | 2xV100 32GB | [Google Drive](https://drive.google.com/drive/folders/1zlTBib0XEwWeyhaXDXnkqtPsIBI18Uzs?usp=sharing)| ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. - Acoustic model made of a wav2vec2 encoder and a joint decoder with CTC + transformer. Hence, the decoding also incorporates the CTC probabilities. To Train this system from scratch, [see our SpeechBrain recipe](https://github.com/speechbrain/speechbrain/tree/develop/recipes/AISHELL-1/ASR/transformer). The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in English) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-transformer-aishell", savedir="pretrained_models/asr-wav2vec2-transformer-aishell") asr_model.transcribe_file("speechbrain/asr-wav2vec2-transformer-aishell/example_mandarin.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain (Commit hash: '480dde87'). To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/AISHELL-1/ASR/transformer/ python train.py hparams/train_ASR_transformer_with_wav2vect.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1P3w5BnwLDxMHFQrkCZ5RYBZ1WsQHKFZr?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
textattack/distilbert-base-uncased-MRPC
aeb733e21ed436844c6d9f9398a27c23f8e81be4
2020-07-06T16:30:12.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-uncased-MRPC
76
null
transformers
5,180
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8578431372549019, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
lazyturtl/roomidentifier
5669106b99d6e461909ac1147664b726b43a5caa
2022-03-30T04:10:41.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
lazyturtl
null
lazyturtl/roomidentifier
76
null
transformers
5,181
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: roomidentifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # roomidentifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bathroom ![Bathroom](images/Bathroom.jpg) #### Bedroom ![Bedroom](images/Bedroom.jpg) #### DinningRoom ![DinningRoom](images/DinningRoom.jpg) #### Kitchen ![Kitchen](images/Kitchen.jpg) #### LivingRoom ![LivingRoom](images/LivingRoom.jpg)
dimbyTa/rock-challenge-ViT-two-by-two
abad62db83cf90d89a350907e571836fddf9636d
2022-04-20T11:19:22.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
dimbyTa
null
dimbyTa/rock-challenge-ViT-two-by-two
76
null
transformers
5,182
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rock-challenge-ViT-two-by-two results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9663800001144409 --- # rock-challenge-ViT-two-by-two Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### fines ![fines](images/fines.png) #### large ![large](images/large.png) #### medium ![medium](images/medium.png) #### pellets ![pellets](images/pellets.png)
lazyturtl/blocks
c0280c6a366a0760cbe8052901c7399cd6bea738
2022-04-12T06:15:12.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
lazyturtl
null
lazyturtl/blocks
76
null
transformers
5,183
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: blocks results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4444444477558136 --- # blocks Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### blue color ![blue color](images/blue_color.jpg) #### cyan color ![cyan color](images/cyan_color.jpg) #### green color ![green color](images/green_color.jpg) #### orange color ![orange color](images/orange_color.jpg) #### red color ![red color](images/red_color.jpg) #### yellow color ![yellow color](images/yellow_color.jpg)
domluna/vit-base-patch16-224-in21k-shiba-inu-detector
3017918814cd5d14745f1137114ab3ff14c0f1b5
2022-04-25T02:16:24.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
domluna
null
domluna/vit-base-patch16-224-in21k-shiba-inu-detector
76
1
transformers
5,184
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-shiba-inu-detector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-shiba-inu-detector This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on dataset with 4 dog types including Shiba Inu. It achieves the following results on the evaluation set: - Loss: 0.6511 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 1.3875 | 0.1667 | | No log | 1.94 | 8 | 1.2712 | 0.7833 | | 1.4176 | 2.94 | 12 | 1.0972 | 0.9 | | 1.4176 | 3.94 | 16 | 0.9365 | 0.95 | | 1.0144 | 4.94 | 20 | 0.7836 | 0.9833 | | 1.0144 | 5.94 | 24 | 0.6511 | 1.0 | | 1.0144 | 6.94 | 28 | 0.5329 | 1.0 | | 0.6329 | 7.94 | 32 | 0.4403 | 1.0 | | 0.6329 | 8.94 | 36 | 0.3777 | 1.0 | | 0.3821 | 9.94 | 40 | 0.3273 | 1.0 | | 0.3821 | 10.94 | 44 | 0.2886 | 1.0 | | 0.3821 | 11.94 | 48 | 0.2622 | 1.0 | | 0.2655 | 12.94 | 52 | 0.2397 | 1.0 | | 0.2655 | 13.94 | 56 | 0.2250 | 1.0 | | 0.202 | 14.94 | 60 | 0.2152 | 1.0 | | 0.202 | 15.94 | 64 | 0.2074 | 1.0 | | 0.202 | 16.94 | 68 | 0.2003 | 1.0 | | 0.1785 | 17.94 | 72 | 0.1960 | 1.0 | | 0.1785 | 18.94 | 76 | 0.1936 | 1.0 | | 0.1618 | 19.94 | 80 | 0.1930 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
plantdoctor/swin-tiny-patch4-window7-224-plant-doctor
01b8844d54d553e95f86c175599b5100ed255183
2022-04-22T12:31:55.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
plantdoctor
null
plantdoctor/swin-tiny-patch4-window7-224-plant-doctor
76
null
transformers
5,185
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-plant-doctor results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9982930298719772 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-plant-doctor This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0043 - Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0643 | 1.0 | 3954 | 0.0218 | 0.9933 | | 0.0536 | 2.0 | 7908 | 0.0103 | 0.9966 | | 0.018 | 3.0 | 11862 | 0.0043 | 0.9983 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu115 - Datasets 2.1.0 - Tokenizers 0.12.1
Shitao/msmarco_doc_encoder
2226e2fe8719ffce9563be0e61de6a48d77897e5
2022-04-24T17:13:20.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
Shitao
null
Shitao/msmarco_doc_encoder
76
null
transformers
5,186
--- license: apache-2.0 ---
karthiksv/vit-base-patch16-224-cifar10
3874803225193f8c386df2874d2dc3bb0f81284a
2022-06-30T02:05:56.000Z
[ "pytorch", "vit", "image-classification", "dataset:cifar10", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
karthiksv
null
karthiksv/vit-base-patch16-224-cifar10
76
null
transformers
5,187
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - cifar10 model-index: - name: vit-base-patch16-224-cifar10 results: - task: type: image-classification name: Image Classification dataset: name: cifar10 type: cifar10 config: plain_text split: test metrics: - name: Accuracy type: accuracy value: 0.1004 verified: true - name: Precision Macro type: precision value: 0.07725693204097324 verified: true - name: Precision Micro type: precision value: 0.1004 verified: true - name: Precision Weighted type: precision value: 0.07725693204097323 verified: true - name: Recall Macro type: recall value: 0.1004 verified: true - name: Recall Micro type: recall value: 0.1004 verified: true - name: Recall Weighted type: recall value: 0.1004 verified: true - name: F1 Macro type: f1 value: 0.07942008420616108 verified: true - name: F1 Micro type: f1 value: 0.1004 verified: true - name: F1 Weighted type: f1 value: 0.07942008420616108 verified: true - name: loss type: loss value: 2.3154706954956055 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
matteopilotto/vit-base-patch16-224-in21k-snacks
54e537f1b0706a837fac7718b047a3c6563deb22
2022-06-27T22:19:35.000Z
[ "pytorch", "vit", "image-classification", "dataset:Matthijs/snacks", "transformers", "model-index" ]
image-classification
false
matteopilotto
null
matteopilotto/vit-base-patch16-224-in21k-snacks
76
0
transformers
5,188
--- datasets: - Matthijs/snacks model-index: - name: matteopilotto/vit-base-patch16-224-in21k-snacks results: - task: type: image-classification name: Image Classification dataset: name: Matthijs/snacks type: Matthijs/snacks config: default split: test metrics: - name: Accuracy type: accuracy value: 0.8928571428571429 verified: true - name: Precision Macro type: precision value: 0.8990033704680036 verified: true - name: Precision Micro type: precision value: 0.8928571428571429 verified: true - name: Precision Weighted type: precision value: 0.8972398709051788 verified: true - name: Recall Macro type: recall value: 0.8914608843537415 verified: true - name: Recall Micro type: recall value: 0.8928571428571429 verified: true - name: Recall Weighted type: recall value: 0.8928571428571429 verified: true - name: F1 Macro type: f1 value: 0.892544821273258 verified: true - name: F1 Micro type: f1 value: 0.8928571428571429 verified: true - name: F1 Weighted type: f1 value: 0.8924168605019522 verified: true - name: loss type: loss value: 0.479541540145874 verified: true --- # Vision Transformer fine-tuned on `Matthijs/snacks` dataset Vision Transformer (ViT) model pre-trained on ImageNet-21k and fine-tuned on [**Matthijs/snacks**](https://huggingface.co/datasets/Matthijs/snacks) for 5 epochs using various data augmentation transformations from `torchvision`. The model achieves a **94.97%** and **94.43%** accuracy on the validation and test set, respectively. ## Data augmentation pipeline The code block below shows the various transformations applied during pre-processing to augment the original dataset. The augmented images where generated on-the-fly with the `set_transform` method. ```python from transformers import ViTFeatureExtractor from torchvision.transforms import ( Compose, Normalize, Resize, RandomResizedCrop, RandomHorizontalFlip, RandomAdjustSharpness, ToTensor ) checkpoint = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(checkpoint) # transformations on the training set train_aug_transforms = Compose([ RandomResizedCrop(size=feature_extractor.size), RandomHorizontalFlip(p=0.5), RandomAdjustSharpness(sharpness_factor=5, p=0.5), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) # transformations on the validation/test set valid_aug_transforms = Compose([ Resize(size=(feature_extractor.size, feature_extractor.size)), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) ```
smc/electric_2
de004ab1cf73d68cf0b265f387fbbe0e6eb2e205
2022-05-21T14:38:26.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
smc
null
smc/electric_2
76
null
transformers
5,189
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: electric pole classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- Find whether an electric pole has a transformer or not
smc/PANDA_ViT
af0e45d80b2cba0c8f41b91275f8f5dc18dbfb8e
2022-05-23T21:41:42.000Z
[ "pytorch", "vit", "image-classification", "transformers", "model-index" ]
image-classification
false
smc
null
smc/PANDA_ViT
76
1
transformers
5,190
--- tags: - image-classification - pytorch metrics: - accuracy - Cohen's Kappa model-index: - name: PANDA_ViT results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.47959184646606445 - name: Quadratic Cohen's Kappa type: Quadratic Cohen's Kappa value: 0.5590880513191223 --- # PANDA_ViT An attempt to use a ViT for medical image classification (ISUP grading in prostate histopathology images). Currently uses a tiled and concatenated WSI as input Example Images (1152,1152,3) 36 WSI patches: ISUP 0: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c02d3bb3a62519b31c63d0301c6843e_0.jpeg"> ISUP 1: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0cee71ab57422e04f76e09ef2186fcd5_1.jpeg"> ISUP 2: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/00bbc1482301d16de3ff63238cfd0b34_2.jpeg"> ISUP 3: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c5c2d16c0f2e399b7be641e7e7f66d9_3.jpeg"> ISUP 4: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c88d7c7033e2048b1068e208b105270_4.jpeg"> ISUP 5: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/00c15b23b30a5ba061358d9641118904_5.jpeg">
MSaudTahir/wav2vec2-large-xls-r-300m-urdu-proj
390172a68e39e1c18d658c53d3fbee6597372759
2022-06-02T16:12:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
MSaudTahir
null
MSaudTahir/wav2vec2-large-xls-r-300m-urdu-proj
76
null
transformers
5,191
Entry not found
Gadmz/censor-testing-performance
2e32fd073d97437af0fe8969c500454db38485bc
2022-07-01T08:14:00.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Gadmz
null
Gadmz/censor-testing-performance
76
null
transformers
5,192
Entry not found
neulab/gpt2-med-finetuned-wikitext103
91221bfd6dda5d4d17e7855e4883398d135cf28f
2022-07-14T15:38:04.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:2201.12431", "transformers" ]
text-generation
false
neulab
null
neulab/gpt2-med-finetuned-wikitext103
76
null
transformers
5,193
This is a `gpt2-medium` model, finetuned on the Wikitext-103 dataset. It achieves a perplexity of **11.55** using a "sliding window" context, using the `run_clm.py` script at [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers). | Base LM: | `distilgpt2` | `gpt2` | | :--- | ----: | ---: | | base perplexity | 18.25 | 14.84 | | + kNN-LM | 15.03 | 12.57 | | + RetoMaton | **14.70** | **12.46** | This model was released as part of the paper ["Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval"](https://arxiv.org/pdf/2201.12431.pdf) (ICML'2022). For more information, see: [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers) If you use this model, please cite: ``` @inproceedings{alon2022neuro, title={Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval}, author={Alon, Uri and Xu, Frank and He, Junxian and Sengupta, Sudipta and Roth, Dan and Neubig, Graham}, booktitle={International Conference on Machine Learning}, pages={468--485}, year={2022}, organization={PMLR} } ```
FinanceInc/finbert-pretrain
e02aba19bb507a85dde57ab60972de6e35f1efff
2022-07-27T20:43:33.000Z
[ "pytorch", "bert", "fill-mask", "unk", "arxiv:2006.08097", "transformers", "autotrain", "pre-trained", "finbert", "autotrain_compatible" ]
fill-mask
false
FinanceInc
null
FinanceInc/finbert-pretrain
76
null
transformers
5,194
--- tags: - autotrain - pre-trained - finbert - fill-mask language: unk widget: - text: Tesla remains one of the highest [MASK] stocks on the market. Meanwhile, Aurora Innovation is a pre-revenue upstart that shows promise. - text: Asian stocks [MASK] from a one-year low on Wednesday as U.S. share futures and oil recovered from the previous day's selloff, but uncertainty over the impact of the Omicron - text: U.S. stocks were set to rise on Monday, led by [MASK] in Apple which neared $3 trillion in market capitalization, while investors braced for a Federal Reserve meeting later this week. --- `FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. ### Pre-training It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens. - Corporate Reports 10-K & 10-Q: 2.5B tokens - Earnings Call Transcripts: 1.3B tokens - Analyst Reports: 1.1B tokens The entire training is done using an **NVIDIA DGX-1** machine. The server has 4 Tesla P100 GPUs, providing a total of 128 GB of GPU memory. This machine enables us to train the BERT models using a batch size of 128. We utilize Horovord framework for multi-GPU training. Overall, the total time taken to perform pretraining for one model is approximately **2 days**. More details on `FinBERT`'s pre-training process can be found at: https://arxiv.org/abs/2006.08097 `FinBERT` can be further fine-tuned on downstream tasks. Specifically, we have fine-tuned `FinBERT` on an analyst sentiment classification task, and the fine-tuned model is shared at [https://huggingface.co/demo-org/auditor_review_model](https://huggingface.co/demo-org/auditor_review_model) ### Usage Load the model directly from Transformers: ``` from transformers import AutoModelForMaskedLM model = AutoModelForMaskedLM.from_pretrained("demo-org/finbert-pretrain", use_auth_token=True) ``` ### Questions Please contact the Data Science COE if you have more questions about this pre-trained model ### Demo Model This model card is for demo purposes. The original model card for this model is [https://huggingface.co/yiyanghkust/finbert-pretrain](https://huggingface.co/yiyanghkust/finbert-pretrain).
GKLMIP/bert-myanmar-base-uncased
f3d5ba16658848bcc4d202fbe0ae47b487a5032b
2021-10-11T04:58:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-myanmar-base-uncased
75
null
transformers
5,195
The Usage of tokenizer for Myanmar is same as Laos in https://github.com/GKLMIP/Pretrained-Models-For-Laos. If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Huang, Xiuwen and Cai, Xiaonan and Lin, Nankai", title="Pre-trained Models and Evaluation Data for the Myanmar Language", booktitle="The 28th International Conference on Neural Information Processing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GroNLP/bert-base-dutch-cased-upos-alpino
98205e755bc716e04a7ff642441b3d1c6427b2cc
2021-05-18T20:24:46.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "nl", "arxiv:2105.02855", "transformers", "BERTje", "pos", "autotrain_compatible" ]
token-classification
false
GroNLP
null
GroNLP/bert-base-dutch-cased-upos-alpino
75
null
transformers
5,196
--- language: nl tags: - BERTje - pos --- Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling # Adapting Monolingual Models: Data can be Scarce when Language Similarity is High This model is part of this paper + code: - 📝 [Paper](https://arxiv.org/abs/2105.02855) - 💻 [Code](https://github.com/wietsedv/low-resource-adapt) ## Models The best fine-tuned models for Gronings and West Frisian are available on the HuggingFace model hub: ### Lexical layers These models are identical to [BERTje](https://github.com/wietsedv/bertje), but with different lexical layers (`bert.embeddings.word_embeddings`). - 🤗 [`GroNLP/bert-base-dutch-cased`](https://huggingface.co/GroNLP/bert-base-dutch-cased) (Dutch; source language) - 🤗 [`GroNLP/bert-base-dutch-cased-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-frisian) (West Frisian) ### POS tagging These models share the same fine-tuned Transformer layers + classification head, but with the retrained lexical layers from the models above. - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino) (Dutch) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-frisian) (West Frisian)
Helsinki-NLP/opus-mt-de-ms
74314972252fa3c9de984265d92fb00269ae65e3
2021-01-18T08:01:36.000Z
[ "pytorch", "marian", "text2text-generation", "de", "ms", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-ms
75
null
transformers
5,197
--- language: - de - ms tags: - translation license: apache-2.0 --- ### deu-msa * source group: German * target group: Malay (macrolanguage) * OPUS readme: [deu-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-msa/README.md) * model: transformer-align * source language(s): deu * target language(s): ind zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.deu.msa | 34.0 | 0.607 | ### System Info: - hf_name: deu-msa - source_languages: deu - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'ms'] - src_constituents: {'deu'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-msa/opus-2020-06-17.test.txt - src_alpha3: deu - tgt_alpha3: msa - short_pair: de-ms - chrF2_score: 0.607 - bleu: 34.0 - brevity_penalty: 0.9540000000000001 - ref_len: 3729.0 - src_name: German - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: de - tgt_alpha2: ms - prefer_old: False - long_pair: deu-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-vi-ru
0a51430ce05344bff0300a65e896536de0f52cbb
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-vi-ru
75
null
transformers
5,198
--- language: - vi - ru tags: - translation license: apache-2.0 --- ### vie-rus * source group: Vietnamese * target group: Russian * OPUS readme: [vie-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-rus/README.md) * model: transformer-align * source language(s): vie * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.rus | 16.9 | 0.331 | ### System Info: - hf_name: vie-rus - source_languages: vie - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'ru'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: rus - short_pair: vi-ru - chrF2_score: 0.331 - bleu: 16.9 - brevity_penalty: 0.878 - ref_len: 2207.0 - src_name: Vietnamese - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: ru - prefer_old: False - long_pair: vie-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
cardiffnlp/bertweet-base-hate
5d8e3b7a6ac951864f36757914847bf59c4306f7
2021-05-20T14:46:38.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/bertweet-base-hate
75
null
transformers
5,199