modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
facebook/convnext-large-384
55a95313fa52934fa7b4d8e646aa0ac574eda4ef
2022-02-26T12:16:55.000Z
[ "pytorch", "tf", "convnext", "image-classification", "dataset:imagenet-1k", "arxiv:2201.03545", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/convnext-large-384
85
null
transformers
4,900
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (large-sized model) ConvNeXT model trained on ImageNet-1k at resolution 384x384. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-large-384") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-large-384") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
facebook/wav2vec2-xls-r-300m-en-to-15
eca5ea600a8570ea1744fe5bd13f8b1ce505a656
2022-05-26T22:27:20.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "multilingual", "en", "de", "tr", "fa", "sv", "mn", "zh", "cy", "ca", "sl", "et", "id", "ar", "ta", "lv", "ja", "dataset:common_voice", "dataset:multilingual_librispeech", "dataset:covost2", "arxiv:2111.09296", "transformers", "speech", "xls_r", "xls_r_translation", "license:apache-2.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-xls-r-300m-en-to-15
85
null
transformers
4,901
--- language: - multilingual - en - de - tr - fa - sv - mn - zh - cy - ca - sl - et - id - ar - ta - lv - ja datasets: - common_voice - multilingual_librispeech - covost2 tags: - speech - xls_r - xls_r_translation - automatic-speech-recognition pipeline_tag: automatic-speech-recognition license: apache-2.0 widget: - example_title: English src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 --- # Wav2Vec2-XLS-R-300M-EN-15 Facebook's Wav2Vec2 XLS-R fine-tuned for **Speech Translation.** ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png) This is a [SpeechEncoderDecoderModel](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html) model. The encoder was warm-started from the [**`facebook/wav2vec2-xls-r-300m`**](https://huggingface.co/facebook/wav2vec2-xls-r-300m) checkpoint and the decoder from the [**`facebook/mbart-large-50`**](https://huggingface.co/facebook/mbart-large-50) checkpoint. Consequently, the encoder-decoder model was fine-tuned on 15 `en` -> `{lang}` translation pairs of the [Covost2 dataset](https://huggingface.co/datasets/covost2). The model can translate from spoken `en` (Engish) to the following written languages `{lang}`: `en` -> {`de`, `tr`, `fa`, `sv-SE`, `mn`, `zh-CN`, `cy`, `ca`, `sl`, `et`, `id`, `ar`, `ta`, `lv`, `ja`} For more information, please refer to Section *5.1.1* of the [official XLS-R paper](https://arxiv.org/abs/2111.09296). ## Usage ### Demo The model can be tested on [**this space**](https://huggingface.co/spaces/facebook/XLS-R-300m-EN-15). You can select the target language, record some audio in English, and then sit back and see how well the checkpoint can translate the input. ### Example As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. You can use the model directly via the ASR pipeline. By default, the checkpoint will translate spoken English to written German. To change the written target language, you need to pass the correct `forced_bos_token_id` to `generate(...)` to condition the decoder on the correct target language. To select the correct `forced_bos_token_id` given your choosen language id, please make use of the following mapping: ```python MAPPING = { "de": 250003, "tr": 250023, "fa": 250029, "sv": 250042, "mn": 250037, "zh": 250025, "cy": 250007, "ca": 250005, "sl": 250052, "et": 250006, "id": 250032, "ar": 250001, "ta": 250044, "lv": 250017, "ja": 250012, } ``` As an example, if you would like to translate to Swedish, you can do the following: ```python from datasets import load_dataset from transformers import pipeline # select correct `forced_bos_token_id` forced_bos_token_id = MAPPING["sv"] # replace following lines to load an audio file of your choice librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") audio_file = librispeech_en[0]["file"] asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-300m-en-to-15", feature_extractor="facebook/wav2vec2-xls-r-300m-en-to-15") translation = asr(audio_file, forced_bos_token_id=forced_bos_token_id) ``` or step-by-step as follows: ```python import torch from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel from datasets import load_dataset model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") processor = Speech2Text2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # select correct `forced_bos_token_id` forced_bos_token_id = MAPPING["sv"] inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["array"]["sampling_rate"], return_tensors="pt") generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"], forced_bos_token_id=forced_bos_token) transcription = processor.batch_decode(generated_ids) ``` ## Results `en` -> `{lang}` See the row of **XLS-R (0.3B)** for the performance on [Covost2](https://huggingface.co/datasets/covost2) for this model. ![results image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/English-%3EX.png) ## More XLS-R models for `{lang}` -> `en` Speech Translation - [Wav2Vec2-XLS-R-300M-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-300m-en-to-15) - [Wav2Vec2-XLS-R-1B-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-1b-en-to-15) - [Wav2Vec2-XLS-R-2B-EN-15](https://huggingface.co/facebook/wav2vec2-xls-r-2b-en-to-15) - [Wav2Vec2-XLS-R-2B-22-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16)
hfl/chinese-electra-small-discriminator
f59e9653eb2382d76ca1a45b782897158d828f26
2021-03-03T01:39:00.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
null
false
hfl
null
hfl/chinese-electra-small-discriminator
85
1
transformers
4,902
--- language: - zh license: "apache-2.0" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
michaelbenayoun/vit-base-beans
b724a7366b1467f6f5e53b978b44c4c08d6c23cc
2021-12-17T09:17:23.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:cifar10", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
michaelbenayoun
null
michaelbenayoun/vit-base-beans
85
null
transformers
4,903
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6224 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 2.1333 - Accuracy: 0.6224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1678 | 0.02 | 100 | 2.1333 | 0.6224 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.2.dev0 - Tokenizers 0.10.2
mrm8488/bert2bert_shared-spanish-finetuned-muchocine-review-summarization
266f7ece730f283e5f979c18056f53fc4896a31f
2021-05-07T09:26:36.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "es", "transformers", "summarization", "films", "cinema", "autotrain_compatible" ]
summarization
false
mrm8488
null
mrm8488/bert2bert_shared-spanish-finetuned-muchocine-review-summarization
85
null
transformers
4,904
--- tags: - summarization - films - cinema language: es widget: - text: "Es la película que con más ansia he esperado, dado el precedente de las dos anteriores entregas, esta debía ser la joya de la corona, el mejor film jamás realizado… Pero cuando salí del cine estaba decepcionado, me leí el libro antes de ver la película (cosa que no hice con las otras dos) y sentí que Peter me falló. Le faltaba algo, habían obviado demasiadas cosas y no salía Saruman, algo incomprensible dada la importancia que se le dio en las anteriores películas. La película parecía incompleta y realmente lo estaba. Me pareció la peor de la trilogía. Volví a ver el film y esta vez en su versión extendida y mentalizado ya de que no podía ser igual que el libro y mi opinión cambio. Es la mejor de la trilogía en todos los aspectos y para mi gusto el mejor film que jamás se ha hecho. A pesar de sus casi 240 minutos el ritmo no decae sino que aumenta en algo que solo lo he visto hacer a Peter Jackson, las palabras de Tolkien cobra vida y con gran lirismo el film avanza hacía su clímax final. La impecable banda sonora te transporta los sentimientos que el maestro Jackson te quiere transmitir. Aquella noche de 2003 en el teatro Kodak de L.A los oscars dieron justicia a una trilogía que injustamente fue tratada hasta esa noche. En conjunto gano 17 oscars, pero en mi opinión se quedaron bastante cortos. El tiempo pondrá a esta trilogía como clásico imperecedero, una lección de cómo realizar una superproducción, los mensajes que transmiten, los bellos escenarios que presentan, un cuento al fin y al cabo pero convertido en obra de arte. Genialidad en todos los sentidos, no os dejéis engañar por los que duramente critican a esta trilogía y sino mirar lo que ellos llaman buen cine…" ---
nates-test-org/convit_base
ec61081b76678a0c3c53d4d6bd64305598a6da09
2021-10-29T04:40:37.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/convit_base
85
null
timm
4,905
--- tags: - image-classification - timm library_tag: timm --- # Model card for convit_base
speechbrain/urbansound8k_ecapa
ac8b73ec8c5fd158447654a33101fe236e048bd9
2022-05-30T14:34:29.000Z
[ "en", "dataset:Urbansound8k", "arxiv:2106.04624", "speechbrain", "embeddings", "Sound", "Keywords", "Keyword Spotting", "pytorch", "ECAPA-TDNN", "TDNN", "Command Recognition", "audio-classification", "license:apache-2.0" ]
audio-classification
false
speechbrain
null
speechbrain/urbansound8k_ecapa
85
3
speechbrain
4,906
--- language: "en" thumbnail: tags: - speechbrain - embeddings - Sound - Keywords - Keyword Spotting - pytorch - ECAPA-TDNN - TDNN - Command Recognition - audio-classification license: "apache-2.0" datasets: - Urbansound8k metrics: - Accuracy --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Sound Recognition with ECAPA embeddings on UrbanSoudnd8k This repository provides all the necessary tools to perform sound recognition with SpeechBrain using a model pretrained on UrbanSound8k. You can download the dataset [here](https://urbansounddataset.weebly.com/urbansound8k.html) The provided system can recognize the following 10 keywords: ``` dog_bark, children_playing, air_conditioner, street_music, gun_shot, siren, engine_idling, jackhammer, drilling, car_horn ``` For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is: | Release | Accuracy 1-fold (%) |:-------------:|:--------------:| | 04-06-21 | 75.5 | ## Pipeline description This system is composed of a ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Sound Recognition ```python import torchaudio from speechbrain.pretrained import EncoderClassifier classifier = EncoderClassifier.from_hparams(source="speechbrain/urbansound8k_ecapa", savedir="pretrained_models/gurbansound8k_ecapa") out_prob, score, index, text_lab = classifier.classify_file('speechbrain/urbansound8k_ecapa/dog_bark.wav') print(text_lab) ``` The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (8cab8b0c). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/UrbanSound8k/SoundClassification python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sItfg_WNuGX6h2dCs8JTGq2v2QoNTaUg?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA ```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` #### Referencing UrbanSound ```@inproceedings{Salamon:UrbanSound:ACMMM:14, Author = {Salamon, J. and Jacoby, C. and Bello, J. P.}, Booktitle = {22nd {ACM} International Conference on Multimedia (ACM-MM'14)}, Month = {Nov.}, Pages = {1041--1044}, Title = {A Dataset and Taxonomy for Urban Sound Research}, Year = {2014}} ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
uer/t5-v1_1-small-chinese-cluecorpussmall
4695f4326f388432eed807b081822a18795ec17d
2022-07-15T08:22:12.000Z
[ "pytorch", "tf", "jax", "mt5", "text2text-generation", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "transformers", "autotrain_compatible" ]
text2text-generation
false
uer
null
uer/t5-v1_1-small-chinese-cluecorpussmall
85
null
transformers
4,907
--- language: zh datasets: CLUECorpusSmall widget: - text: "作为电子extra0的平台,京东绝对是领先者。如今的刘强extra1已经是身价过extra2的老板。" --- # Chinese T5 Version 1.1 ## Model description This is the set of Chinese T5 Version 1.1 models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). **Version 1.1** Chinese T5 Version 1.1 includes the following improvements compared to our Chinese T5 model: - GEGLU activation in feed-forward hidden layer, rather than ReLU - Dropout was turned off in pre-training - no parameter sharing between embedding and classifier layer You can download the set of Chinese T5 Version 1.1 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | ----------------- | :----------------------------: | | **T5-v1_1-Small** | [**L=8/H=512 (Small)**][small] | | **T5-v1_1-Base** | [**L=12/H=768 (Base)**][base] | In T5 Version 1.1, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with `<extra_id_0>`, `<extra_id_1>`, … up to `<extra_id_99>`. However, `<extra_id_xxx>` is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace `<extra_id_xxx>` with `extraxxx` in vocabulary and BertTokenizer regards `extraxxx` as one sentinel token. ## How to use You can use this model directly with a pipeline for text2text generation (take the case of T5-v1_1-Small): ```python >>> from transformers import BertTokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/t5-v1_1-small-chinese-cluecorpussmall") >>> model = MT5ForConditionalGeneration.from_pretrained("uer/t5-v1_1-small-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) [{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of T5-v1_1-Small Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5-v1_1_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5-v1_1_seq128_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --config_path models/t5-v1_1/small_config.json \ --output_model_path models/cluecorpussmall_t5-v1_1_small_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-3 --batch_size 64 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5-v1_1_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5-v1_1_seq512_dataset.pt \ --pretrained_model_path models/cluecorpussmall_t5-v1_1_small_seq128_model.bin-1000000 \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --config_path models/t5-v1_1/small_config.json \ --output_model_path models/cluecorpussmall_t5-v1_1_small_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-4 --batch_size 16 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 \ --type t5-v1_1 ``` ### BibTeX entry and citation info ``` @article{2020t5, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, journal = {Journal of Machine Learning Research}, pages = {1-67}, year = {2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [small]:https://huggingface.co/uer/t5-v1_1-small-chinese-cluecorpussmall [base]:https://huggingface.co/uer/t5-v1_1-base-chinese-cluecorpussmall
wietsedv/wav2vec2-large-xlsr-53-frisian
8c02c12454880a55cb031de9744245649fd0e70f
2021-03-28T20:09:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fy-NL", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
wietsedv
null
wietsedv/wav2vec2-large-xlsr-53-frisian
85
null
transformers
4,908
--- language: fy-NL datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Frisian XLSR Wav2Vec2 Large 53 by Wietse de Vries results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fy-NL type: common_voice args: fy-NL metrics: - name: Test WER type: wer value: 16.25 --- # Wav2Vec2-Large-XLSR-53-Frisian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Frisian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fy-NL", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian") model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Frisian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fy-NL", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian") model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\'\“\%\‘\”]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 16.25 % ## Training The Common Voice `train` and `validation` datasets were used for training.
yuvraj/summarizer-cnndm
4dfc2c9a7a656985c0b7415509cfdd26550e8306
2020-12-11T22:04:58.000Z
[ "pytorch", "bart", "text2text-generation", "en", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
yuvraj
null
yuvraj/summarizer-cnndm
85
null
transformers
4,909
--- language: "en" tags: - summarization --- ​ # Summarization ​ ## Model description ​ BartForConditionalGeneration model fine tuned for summarization on 10000 samples from the cnn-dailymail dataset ​ ## How to use ​ PyTorch model available ​ ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline ​ tokenizer = AutoTokenizer.from_pretrained("yuvraj/summarizer-cnndm") AutoModelWithLMHead.from_pretrained("yuvraj/summarizer-cnndm") ​ summarizer = pipeline('summarization', model=model, tokenizer=tokenizer) summarizer("<Text to be summarized>") ​ ## Limitations and bias Trained on a small dataset
zhiheng-huang/bert-base-uncased-embedding-relative-key-query
a3126b4d74e3edf3eea4280d186ac7ad4dbc4753
2021-05-20T09:45:59.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhiheng-huang
null
zhiheng-huang/bert-base-uncased-embedding-relative-key-query
85
null
transformers
4,910
Entry not found
kevinjesse/graphcodebert-MT4TS
ee7bbf8909df6ab4b82e3229dfff0b5b4c9cc8c0
2022-03-09T11:39:30.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kevinjesse
null
kevinjesse/graphcodebert-MT4TS
85
null
transformers
4,911
Entry not found
hafidber/rare-puppers
aba4ab1fac86f7f7bb5958dd7e8c12ce14ec051b
2022-04-06T17:53:06.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
hafidber
null
hafidber/rare-puppers
85
null
transformers
4,912
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9552238583564758 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
malteos/gpt2-wechsel-german-ds-meg
6961d2febd4a803e925a3acc7034548f32e6bc5c
2022-05-05T19:41:22.000Z
[ "pytorch", "gpt2", "text-generation", "de", "transformers", "license:mit" ]
text-generation
false
malteos
null
malteos/gpt2-wechsel-german-ds-meg
85
null
transformers
4,913
--- license: mit language: de widget: - text: "In einer schockierenden Entdeckung fanden Wissenschaftler eine Herde Einhörner, die in einem abgelegenen, zuvor unerforschten Tal in den Anden lebten." --- # Replication of [gpt2-wechsel-german](https://huggingface.co/benjamin/gpt2-wechsel-german) - trained with [BigScience's DeepSpeed-Megatron-LM code base](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - 22hrs on 4xA100 GPUs (~ 80 TFLOPs / GPU) - stopped after 100k steps - less than a single epoch on `oscar_unshuffled_deduplicated_de` (excluding validation set; original model was trained for 75 epochs on less data) - bf16 - zero stage 1 - tp/pp = 1 ## Evaluation | Model | PPL | |---|---| | `gpt2-wechsel-german-ds-meg` | **26.4** | | `gpt2-wechsel-german` | 26.8 | | `gpt2` (retrained from scratch) | 27.63 | ## License MIT
ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT
8ff6b1072af538faea974122ed66e9870d9c1ec2
2022-06-14T16:29:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ajtamayoh
null
ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT
85
null
transformers
4,914
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NER_EHR_Spanish_model_Mulitlingual_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER_EHR_Spanish_model_Mulitlingual_BERT This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the DisTEMIST shared task 2022 dataset. It achieves the following results on the evaluation set: - Loss: 0.2603 - Precision: 0.5637 - Recall: 0.5801 - F1: 0.5718 - Accuracy: 0.9534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 71 | 0.2060 | 0.5017 | 0.5540 | 0.5266 | 0.9496 | | No log | 2.0 | 142 | 0.2163 | 0.5363 | 0.5433 | 0.5398 | 0.9495 | | No log | 3.0 | 213 | 0.2245 | 0.5521 | 0.5356 | 0.5438 | 0.9514 | | No log | 4.0 | 284 | 0.2453 | 0.5668 | 0.5985 | 0.5822 | 0.9522 | | No log | 5.0 | 355 | 0.2433 | 0.5657 | 0.5579 | 0.5617 | 0.9530 | | No log | 6.0 | 426 | 0.2553 | 0.5762 | 0.5762 | 0.5762 | 0.9536 | | No log | 7.0 | 497 | 0.2603 | 0.5637 | 0.5801 | 0.5718 | 0.9534 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
malmarjeh/mbert2mbert-arabic-text-summarization
d575c9342bd733da408d31286672ec2fbe568b63
2022-06-29T12:54:31.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "ar", "transformers", "Multilingual BERT", "BERT2BERT", "MSA", "Arabic Text Summarization", "Arabic News Title Generation", "Arabic Paraphrasing", "autotrain_compatible" ]
text2text-generation
false
malmarjeh
null
malmarjeh/mbert2mbert-arabic-text-summarization
85
null
transformers
4,915
--- language: - ar tags: - Multilingual BERT - BERT2BERT - MSA - Arabic Text Summarization - Arabic News Title Generation - Arabic Paraphrasing --- # An Arabic abstractive text summarization model A BERT2BERT-based model whose parameters are initialized with mBERT weights and which has been fine-tuned on a dataset of 84,764 paragraph-summary pairs. More details on the fine-tuning of this model will be released later. The model can be used as follows: ```python from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline from arabert.preprocess import ArabertPreprocessor model_name="malmarjeh/mbert2mbert-arabic-text-summarization" preprocessor = ArabertPreprocessor(model_name="") tokenizer = BertTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer) text = "شهدت مدينة طرابلس، مساء أمس الأربعاء، احتجاجات شعبية وأعمال شغب لليوم الثالث على التوالي، وذلك بسبب تردي الوضع المعيشي والاقتصادي. واندلعت مواجهات عنيفة وعمليات كر وفر ما بين الجيش اللبناني والمحتجين استمرت لساعات، إثر محاولة فتح الطرقات المقطوعة، ما أدى إلى إصابة العشرات من الطرفين." text = preprocessor.preprocess(text) result = pipeline(text, pad_token_id=tokenizer.eos_token_id, num_beams=3, repetition_penalty=3.0, max_length=200, length_penalty=1.0, no_repeat_ngram_size = 3)[0]['generated_text'] result >>> 'احتجاجات في طرابلس على خلفية مواجهات عنيفة بين الجيش اللبناني والمحتجين' ``` ## Contact: **Mohammad Bani Almarjeh**: [Linkedin](https://www.linkedin.com/in/mohammad-bani-almarjeh/) | <[email protected]>
gustavhartz/roberta-base-cuad-finetuned
b801aecb08c8e28c07b03e162226d93e804b6661
2022-06-27T11:58:31.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
gustavhartz
null
gustavhartz/roberta-base-cuad-finetuned
85
null
transformers
4,916
# Finetuned legal contract review QA model based 👩‍⚖️ 📑 Best model presented in the master thesis [*Exploring CUAD using RoBERTa span-selection QA models for legal contract review*](https://github.com/gustavhartz/transformers-legal-tasks) for QA on the Contract Understanding Atticus Dataset. Full training logic and associated thesis available through link. Outperform the most popular HF cuad model [Rakib/roberta-base-on-cuad](hello.com) and is the best model for CUAD on Hugging Face 26/06/2022 | **Model name** | **Top 1 Has Ans F1** | **Top 3 Has Ans F1** | |-----------------------------------------|----------------------|----------------------| | gustavhartz/roberta-base-cuad-finetuned | 85.68 | 94.06 | | Rakib/roberta-base-on-cuad | 81.26 | 92.48 | For questions etc. go through the Github repo :) ### Citation If you found the code of thesis helpful you can please cite it :) ``` @thesis{ha2022, author = {Hartz, Gustav Selfort}, title = {Exploring CUAD using RoBERTa span-selection QA models for legal contract review}, language = {English}, format = {thesis}, year = {2022}, publisher = {DTU Department of Applied Mathematics and Computer Science} } ```
alistairmcleay/UBAR-distilgpt2
f5d4fa573db863e37138ea73cb37e61a294850a9
2022-06-26T14:10:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:wtfpl" ]
text-generation
false
alistairmcleay
null
alistairmcleay/UBAR-distilgpt2
85
null
transformers
4,917
--- license: wtfpl ---
ebelenwaf/canbert
f1bcf409d524839b6ab581dcc93f9635e5311e8e
2022-07-17T03:39:02.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
ebelenwaf
null
ebelenwaf/canbert
85
null
transformers
4,918
--- tags: - generated_from_trainer model-index: - name: canbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canbert This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
tinkoff-ai/ruDialoGPT-small
aaf0936bedf44fcc834ee1ae91372af02f69f280
2022-07-19T20:27:35.000Z
[ "pytorch", "gpt2", "ru", "arxiv:2001.09977", "transformers", "conversational", "license:mit", "text-generation" ]
text-generation
false
tinkoff-ai
null
tinkoff-ai/ruDialoGPT-small
85
null
transformers
4,919
--- license: mit pipeline_tag: text-generation widget: - text: "@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@" example_title: "how r u" - text: "@@ПЕРВЫЙ@@ что ты делал на выходных? @@ВТОРОЙ@@" example_title: "wyd" language: - ru tags: - conversational --- This generation model is based on [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2). It's trained on large corpus of dialog data and can be used for buildning generative conversational agents The model was trained with context size 3 On a private validation set we calculated metrics introduced in [this paper](https://arxiv.org/pdf/2001.09977.pdf): - Sensibleness: Crowdsourcers were asked whether model's response makes sense given the context - Specificity: Crowdsourcers were asked whether model's response is specific for given context, in other words we don't want our model to give general and boring responses - SSA which is the average of two metrics above (Sensibleness Specificity Average) | | sensibleness | specificity | SSA | |:----------------------------------------------------|---------------:|--------------:|------:| | [tinkoff-ai/ruDialoGPT-small](https://huggingface.co/tinkoff-ai/ruDialoGPT-small) | 0.64 | 0.5 | 0.57 | | [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) | 0.78 | 0.69 | 0.735 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-small') model = AutoModelWithLMHead.from_pretrained('tinkoff-ai/ruDialoGPT-small') inputs = tokenizer('@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@', return_tensors='pt') generated_token_ids = model.generate( **inputs, top_k=10, top_p=0.95, num_beams=3, num_return_sequences=3, do_sample=True, no_repeat_ngram_size=2, temperature=1.2, repetition_penalty=1.2, length_penalty=1.0, eos_token_id=50257, max_new_tokens=40 ) context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids] context_with_response ```
nvidia/stt_ca_conformer_transducer_large
b07d20c46f0610ba8051db55674fcc36d438b7d7
2022-07-22T18:34:11.000Z
[ "nemo", "ca", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "Transducer", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_ca_conformer_transducer_large
85
1
nemo
4,920
--- language: - ca library_name: nemo datasets: - mozilla-foundation/common_voice_9_0 thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 model-index: - name: stt_ca_conformer_transducer_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 9.0 type: mozilla-foundation/common_voice_9_0 config: ca split: test args: language: ca metrics: - name: Test WER type: wer value: 3.85 --- # NVIDIA Conformer-Transducer Large (Catalan) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-ca-lightgrey#model-badge)](#datasets) This model transcribes speech into lowercase Catalan alphabet including spaces, dashes and apostrophes, and is trained on around 1023 hours of Catalan speech data. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## Usage The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_ca_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_ca_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16 kHz mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). The vocabulary we use contains 44 characters: ```python [' ', "'", '-', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '·', 'à', 'á', 'ç', 'è', 'é', 'í', 'ï', 'ñ', 'ò', 'ó', 'ú', 'ü', 'ı', '–', '—'] ``` Full config can be found inside the .nemo files. ### Datasets All the models in this collection are trained on MCV-9.0 Catalan dataset, which contains around 1203 hours training, 28 hours of development and 27 hours of testing speech audios. ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | Dev WER| Test WER| Train Dataset | |---------|-----------------------|-----------------|--------|---------|-----------------| | 1.11.0 | SentencePiece Unigram | 128 |4.43 | 3.85 | MCV-9.0 Train set| ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## Deployment with NVIDIA Riva [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva). Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
Akashpb13/Swahili_xlsr
8aa8e010d6a3f1f049fa8fefd8ecc4de57ef00fe
2022-03-23T18:28:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sw", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/Swahili_xlsr
84
null
transformers
4,921
--- language: - sw license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sw datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Swahili_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sw metrics: - name: Test WER type: wer value: 0.11763625454589981 - name: Test CER type: cer value: 0.02884228669922436 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: kmr metrics: - name: Test WER type: wer value: 0.11763625454589981 - name: Test CER type: cer value: 0.02884228669922436 --- # Akashpb13/Swahili_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset. It achieves the following results on the evaluation set (which is 10 percent of train data set merged with dev datasets): - Loss: 0.159032 - Wer: 0.187934 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv and dev.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 4.810000 | 2.168847 | 0.995747 | | 1000 | 0.564200 | 0.209411 | 0.303485 | | 1500 | 0.217700 | 0.153959 | 0.239534 | | 2000 | 0.150700 | 0.139901 | 0.216327 | | 2500 | 0.119400 | 0.137543 | 0.208828 | | 3000 | 0.099500 | 0.140921 | 0.203045 | | 3500 | 0.087100 | 0.138835 | 0.199649 | | 4000 | 0.074600 | 0.141297 | 0.195844 | | 4500 | 0.066600 | 0.148560 | 0.194127 | | 5000 | 0.060400 | 0.151214 | 0.194388 | | 5500 | 0.054400 | 0.156072 | 0.192187 | | 6000 | 0.051100 | 0.154726 | 0.190322 | | 6500 | 0.048200 | 0.159847 | 0.189538 | | 7000 | 0.046400 | 0.158727 | 0.188307 | | 7500 | 0.046500 | 0.159032 | 0.187934 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Swahili_xlsr --dataset mozilla-foundation/common_voice_8_0 --config sw --split test ```
Frodnar/bee-likes
58dd1beead6c58c97840cae6cbd6c1ee298056f0
2021-07-02T14:47:21.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Frodnar
null
Frodnar/bee-likes
84
null
transformers
4,922
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: bee-likes results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8333333134651184 --- # bee-likes Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bee ![bee](images/bee.jpg) #### hoverfly ![hoverfly](images/hoverfly.jpg) #### wasp ![wasp](images/wasp.jpg)
HScomcom/gpt2-MyLittlePony
30475d509fbf395c2a120673a3886f47bc3e4731
2021-05-21T10:09:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
HScomcom
null
HScomcom/gpt2-MyLittlePony
84
1
transformers
4,923
The model that generates the My little pony script Fine tuning data: [Kaggle](https://www.kaggle.com/liury123/my-little-pony-transcript?select=clean_dialog.csv) API page: [Ainize](https://ainize.ai/fpem123/GPT2-MyLittlePony) Demo page: [End point](https://master-gpt2-my-little-pony-fpem123.endpoint.ainize.ai/) ### Model information Base model: gpt-2 large Epoch: 30 Train runtime: 4943.9641 secs Loss: 0.0291 ###===Teachable NLP=== To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
Helsinki-NLP/opus-mt-ja-nl
c2caa48f4d8dc2123fbab467998cd32fe4d79a17
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-nl
84
null
transformers
4,924
--- language: - ja - nl tags: - translation license: apache-2.0 --- ### jpn-nld * source group: Japanese * target group: Dutch * OPUS readme: [jpn-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-nld/README.md) * model: transformer-align * source language(s): jpn jpn_Hani jpn_Hira jpn_Kana jpn_Latn * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.nld | 34.7 | 0.534 | ### System Info: - hf_name: jpn-nld - source_languages: jpn - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'nl'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-nld/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: nld - short_pair: ja-nl - chrF2_score: 0.534 - bleu: 34.7 - brevity_penalty: 0.938 - ref_len: 25849.0 - src_name: Japanese - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: nl - prefer_old: False - long_pair: jpn-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ko-ru
2050b5c2ba3981c9b135ff58febaca447efc75ad
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-ru
84
null
transformers
4,925
--- language: - ko - ru tags: - translation license: apache-2.0 --- ### kor-rus * source group: Korean * target group: Russian * OPUS readme: [kor-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-rus/README.md) * model: transformer-align * source language(s): kor_Hang kor_Latn * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.rus | 30.3 | 0.514 | ### System Info: - hf_name: kor-rus - source_languages: kor - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'ru'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-rus/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: rus - short_pair: ko-ru - chrF2_score: 0.514 - bleu: 30.3 - brevity_penalty: 0.961 - ref_len: 1382.0 - src_name: Korean - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: ru - prefer_old: False - long_pair: kor-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-swc-fr
831ee59763b34c0bf2ecf27bcf966e74f16b2363
2021-09-11T10:47:54.000Z
[ "pytorch", "marian", "text2text-generation", "swc", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-swc-fr
84
null
transformers
4,926
--- tags: - translation license: apache-2.0 --- ### opus-mt-swc-fr * source languages: swc * target languages: fr * OPUS readme: [swc-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/swc-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/swc-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/swc-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/swc-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.swc.fr | 28.6 | 0.470 |
JuliusAlphonso/distilbert-plutchik
034821c7b7614e228473d28b35ea937d5e1341e6
2021-06-19T22:06:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
JuliusAlphonso
null
JuliusAlphonso/distilbert-plutchik
84
1
transformers
4,927
Labels are based on Plutchik's model of emotions and may be combined: ![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png)
KoichiYasuoka/bert-base-japanese-upos
e9077f5b327b42da14e3c5d60f529331a68f9eed
2022-05-23T21:50:57.000Z
[ "pytorch", "bert", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-base-japanese-upos
84
1
transformers
4,928
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # bert-base-japanese-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(s,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
arbml/wav2vec2-large-xlsr-dialect-classification
7d2493de4078502088aebc858be597c98d2cb31d
2021-07-05T18:15:15.000Z
[ "pytorch", "jax", "wav2vec2", "transformers" ]
null
false
arbml
null
arbml/wav2vec2-large-xlsr-dialect-classification
84
null
transformers
4,929
Entry not found
andrejmiscic/simcls-scorer-cnndm
87f46dbe5b7337432287c0460b614ee0c8ec21c3
2021-10-16T20:39:39.000Z
[ "pytorch", "roberta", "feature-extraction", "en", "dataset:cnn_dailymail", "arxiv:2106.01890", "arxiv:1602.06023", "transformers", "simcls" ]
feature-extraction
false
andrejmiscic
null
andrejmiscic/simcls-scorer-cnndm
84
null
transformers
4,930
--- language: - en tags: - simcls datasets: - cnn_dailymail --- # SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of CNN/DailyMail ([paper](https://arxiv.org/abs/1602.06023), [datasets](https://huggingface.co/datasets/cnn_dailymail)). It should be used in conjunction with [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Bart, generator_path="facebook/bart-large-cnn", scorer_path="andrejmiscic/simcls-scorer-cnndm") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | BART | 44.16 | 21.28 | 40.90 | | **SimCLS paper** | --- | --- | --- | | Origin | 44.39 | 21.21 | 41.28 | | Min | 33.17 | 11.67 | 30.77 | | Max | 54.36 | 28.73 | 50.77 | | Random | 43.98 | 20.06 | 40.94 | | **SimCLS** | 46.67 | 22.15 | 43.54 | | **Our results** | --- | --- | --- | | Origin | 44.41, [44.18, 44.63] | 21.05, [20.80, 21.29] | 41.53, [41.30, 41.75] | | Min | 33.43, [33.25, 33.62] | 10.97, [10.82, 11.12] | 30.57, [30.40, 30.74] | | Max | 53.87, [53.67, 54.08] | 29.72, [29.47, 29.98] | 51.13, [50.92, 51.34] | | Random | 43.94, [43.73, 44.16] | 20.09, [19.86, 20.31] | 41.06, [40.85, 41.27] | | **SimCLS** | 46.53, [46.32, 46.75] | 22.14, [21.91, 22.37] | 43.56, [43.34, 43.78] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
bloomberg/KBIR
482e240f241d6a78157e5592e77d20e7536d4a81
2022-07-27T22:11:56.000Z
[ "pytorch", "roberta", "arxiv:2112.08547", "transformers", "license:apache-2.0" ]
null
false
bloomberg
null
bloomberg/KBIR
84
1
transformers
4,931
--- license: apache-2.0 --- # Keyphrase Boundary Infilling with Replacement (KBIR) The KBIR model as described in Learning Rich Representations of Keyphrases from Text (https://arxiv.org/pdf/2112.08547.pdf) builds on top of the RoBERTa architecture by adding an Infilling head and a Replacement Classification head that is used during pre-training. However, these heads are not used during the downstream evaluation of the model and we only leverage the pre-trained embeddings. Discarding the heads thereby allows us to be compatible with all AutoModel classes that RoBERTa supports. We provide examples on how to perform downstream evaluation on some of the tasks reported in the paper. ## Downstream Evaluation ### Keyphrase Extraction ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("midas/semeval2017_ke_tagged") ``` Reported Results: | Model | Inspec | SE10 | SE17 | |-----------------------|--------|-------|-------| | RoBERTa+BiLSTM-CRF | 59.5 | 27.8 | 50.8 | | RoBERTa+TG-CRF | 60.4 | 29.7 | 52.1 | | SciBERT+Hypernet-CRF | 62.1 | 36.7 | 54.4 | | RoBERTa+Hypernet-CRF | 62.3 | 34.8 | 53.3 | | RoBERTa-extended-CRF* | 62.09 | 40.61 | 52.32 | | KBI-CRF* | 62.61 | 40.81 | 59.7 | | KBIR-CRF* | 62.72 | 40.15 | 62.56 | ### Named Entity Recognition ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("conll2003") ``` Reported Results: | Model | F1 | |---------------------------------|-------| | LSTM-CRF (Lample et al., 2016) | 91.0 | | ELMo (Peters et al., 2018) | 92.2 | | BERT (Devlin et al., 2018) | 92.8 | | (Akbik et al., 2019) | 93.1 | | (Baevski et al., 2019) | 93.5 | | LUKE (Yamada et al., 2020) | 94.3 | | LUKE w/o entity attention | 94.1 | | RoBERTa (Yamada et al., 2020) | 92.4 | | RoBERTa-extended* | 92.54 | | KBI* | 92.73 | | KBIR* | 92.97 | ### Question Answering ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR") model = AutoModelForQuestionAnswering.from_pretrained("bloomberg/KBIR") from datasets import load_dataset dataset = load_dataset("squad") ``` Reported Results: | Model | EM | F1 | |------------------------|-------|-------| | BERT | 84.2 | 91.1 | | XLNet | 89.0 | 94.5 | | ALBERT | 89.3 | 94.8 | | LUKE | 89.8 | 95.0 | | LUKE w/o entity attention | 89.2 | 94.7 | | RoBERTa | 88.9 | 94.6 | | RoBERTa-extended* | 88.88 | 94.55 | | KBI* | 88.97 | 94.7 | | KBIR* | 89.04 | 94.75 | ## Any other classification task As mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with. We encourage you to try fine-tuning KBIR on different datasets and report the downstream results. ## Contact For any questions contact [email protected]
dbernsohn/t5_wikisql_SQL2en
0807b341e3b442a8564a351b31460df88800d71b
2021-01-18T14:24:14.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:wikisql", "transformers", "autotrain_compatible" ]
text2text-generation
false
dbernsohn
null
dbernsohn/t5_wikisql_SQL2en
84
null
transformers
4,932
# t5_wikisql_SQL2en --- language: en datasets: - wikisql --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **SQL** to **English** **translation** text2text mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_SQL2en") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_SQL2en") ``` You can then use this model to translate SQL queries into plain english. ```python query = "SELECT people FROM peoples where age > 10" input_text = f"translate SQL to English: {query} </s>" features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # Output: "What people are older than 10?" ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/SQLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
inywer/DialoGPT-medium-leirbag
27ba149d0e4dbfd239716323d31c66ad9d4b7229
2021-10-06T02:28:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
inywer
null
inywer/DialoGPT-medium-leirbag
84
null
transformers
4,933
--- tags: - conversational --- # leirbag DialoGPT Model
ismgar01/vit-base-cats-vs-dogs
c1701cbf400293e32966a1f93b39011e095bb198
2021-11-08T09:10:58.000Z
[ "pytorch", "vit", "image-classification", "dataset:cats_vs_dogs", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
ismgar01
null
ismgar01/vit-base-cats-vs-dogs
84
null
transformers
4,934
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: vit-base-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9937357630979499 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-cats-vs-dogs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0182 - Accuracy: 0.9937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1177 | 1.0 | 622 | 0.0473 | 0.9832 | | 0.057 | 2.0 | 1244 | 0.0362 | 0.9883 | | 0.0449 | 3.0 | 1866 | 0.0261 | 0.9886 | | 0.066 | 4.0 | 2488 | 0.0248 | 0.9923 | | 0.0328 | 5.0 | 3110 | 0.0182 | 0.9937 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
maxpe/bertin-roberta-base-spanish_semeval18_emodetection
9acb474fee50b951bc0c18c439b9c33abf4f6565
2021-10-27T15:21:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
maxpe
null
maxpe/bertin-roberta-base-spanish_semeval18_emodetection
84
null
transformers
4,935
# BERTIN-roBERTa-base-Spanish_SemEval18_Emodetection This is a BERTIN-roBERTa-base-Spanish model trained on ~3500 tweets in Spanish annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751). Run the classifier on the test set of the competition: ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModel from torch.utils.data import DataLoader import torch import pandas as pd # choose GPU when available device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained("bertin-project/bertin-roberta-base-spanish",model_max_length=512) # build custom model with classification layer on top and a dropout layer before class RobertaClass(torch.nn.Module): def __init__(self): super(RobertaClass, self).__init__() self.l1 = AutoModel.from_pretrained("bertin-project/bertin-roberta-base-spanish",return_dict=False) self.l2 = torch.nn.Dropout(0.3) self.l3 = torch.nn.Linear(768, 11) def forward(self, input_ids, attention_mask): _, output_1= self.l1(input_ids=input_ids, attention_mask=attention_mask) output_2 = self.l2(output_1) output = self.l3(output_2) return output model_name="bertin-roberta-base-spanish_semeval18_emodetection/pytorch_model.bin" model=RobertaClass() model.load_state_dict(torch.load(model_name,map_location=torch.device(device))) model.eval() # run on more than 1 GPU model = torch.nn.DataParallel(model) model.to(device) twnames=['anger','anticipation','disgust','fear','joy','love','optimism','pessimism','sadness','surprise','trust'] # load from hugging face dataset hub testset_raw = load_dataset('sem_eval_2018_task_1','subtask5.spanish',split='test') # remove old columns testset=testset_raw.remove_columns(twnames+["ID"]) # tokenize testset_tokenized = testset.map(lambda e: tokenizer(e['Tweet'], truncation=True, padding='max_length'), batched=True) testset_tokenized=testset_tokenized.remove_columns("Tweet") testset_tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask']) outfile="predicted_2018-E-c-Es-test-gold.txt" MAX_LEN = 512 VALID_BATCH_SIZE = 8 # set batch size according to available RAM # VALID_BATCH_SIZE = 1000 # set num_workers for parallel processing inference_params = {'batch_size': VALID_BATCH_SIZE, 'shuffle': False, # 'num_workers': 1 } inference_loader = DataLoader(testset_tokenized, **inference_params) open(outfile,"w").close() with torch.no_grad(): # change lines for progress manager # for _, data in tqdm(enumerate(inference_loader, 0),total=len(inference_loader)): for _, data in enumerate(inference_loader, 0): outputs = model(input_ids=data['input_ids'],attention_mask=data['attention_mask']) fin_outputs=torch.sigmoid(outputs).cpu().detach().numpy().tolist() pd.DataFrame(fin_outputs).to_csv(outfile,index=False,header=False,sep="\t",mode='a') # # dataset from file (one text per line) # from datasets import Dataset # with open(linesoftextfile,"rb") as textfile: # textdict={"text":[x.decode().rstrip("\n") for x in textfile.readlines()]} # inference_dataset=Dataset.from_dict(textdict) # del(textdict) ```
nateraw/pasta-pizza-ravioli
077bc96649cc6b8a35bc1471d2f82dc791cd8abe
2021-06-30T07:10:53.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/pasta-pizza-ravioli
84
null
transformers
4,936
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pasta-pizza-ravioli results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # pasta-pizza-ravioli Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### pasta ![pasta](images/pasta.jpg) #### pizza ![pizza](images/pizza.jpg) #### ravioli ![ravioli](images/ravioli.jpg)
pierreguillou/ner-bert-base-cased-pt-lenerbr
4ca0a39767b49788a93b59b632b19f614d12e26c
2021-12-29T19:32:39.000Z
[ "pytorch", "bert", "token-classification", "pt", "dataset:lener_br", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
pierreguillou
null
pierreguillou/ner-bert-base-cased-pt-lenerbr
84
null
transformers
4,937
--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.8926146010186757 - name: Precision type: precision value: 0.8810222036028488 - name: Recall type: recall value: 0.9045161290322581 - name: Accuracy type: accuracy value: 0.9759397808828684 - name: Loss type: loss value: 0.18803243339061737 widget: - text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos." - text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." - text: "Dispõe sobre o estágio de estudantes; altera a redação do art. 428 da Consolidação das Leis do Trabalho – CLT, aprovada pelo Decreto-Lei no 5.452, de 1o de maio de 1943, e a Lei no 9.394, de 20 de dezembro de 1996; revoga as Leis nos 6.494, de 7 de dezembro de 1977, e 8.859, de 23 de março de 1994, o parágrafo único do art. 82 da Lei no 9.394, de 20 de dezembro de 1996, e o art. 6o da Medida Provisória no 2.164-41, de 24 de agosto de 2001; e dá outras providências." --- ## (BERT base) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.8926146010186757 - **precision**: 0.8810222036028488 - **recall**: 0.9045161290322581 - **accuracy**: 0.9759397808828684 - **loss**: 0.18803243339061737 Check as well the [large version of this model](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) with a f1 of 0.908. **Note**: the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task improved a bit the model quality. To prove it, here are the results of the NER model finetuned from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) (a non-specialized language model): - **f1**: 0.8716487228203504 - **precision**: 0.8559286898839138 - **recall**: 0.8879569892473118 - **accuracy**: 0.9755893153732458 - **loss**: 0.1133928969502449 ## Blog post [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Widget & App You can test this model into the widget of this page. Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Notebook The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. ### Hyperparameters #### batch, learning rate... - per_device_batch_size = 2 - gradient_accumulation_steps = 2 - learning_rate = 2e-5 - num_train_epochs = 10 - weight_decay = 0.01 - optimizer = AdamW - betas = (0.9,0.999) - epsilon = 1e-08 - lr_scheduler_type = linear - seed = 7 #### save model & load best model - save_total_limit = 2 - logging_steps = 300 - eval_steps = logging_steps - evaluation_strategy = 'steps' - logging_strategy = 'steps' - save_strategy = 'steps' - save_steps = logging_steps - load_best_model_at_end = True - fp16 = True #### get best model through a metric - metric_for_best_model = 'eval_f1' - greater_is_better = True ### Training results ```` Num examples = 7828 Num Epochs = 10 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 19570 Step Training Loss Validation Loss Precision Recall F1 Accuracy 300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802 600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079 900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243 1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849 1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184 1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342 2100 0.044500 0.208459 0.887150 0.816559 0.850392 0.960535 2400 0.029400 0.136352 0.867821 0.851398 0.859531 0.970271 2700 0.025000 0.165837 0.814881 0.878495 0.845493 0.961235 3000 0.038400 0.120629 0.811719 0.893763 0.850768 0.971506 3300 0.026200 0.175094 0.823435 0.882581 0.851983 0.962957 3600 0.025600 0.178438 0.881095 0.886022 0.883551 0.963689 3900 0.041000 0.134648 0.789035 0.916129 0.847846 0.967681 4200 0.026700 0.130178 0.821275 0.903226 0.860303 0.972313 4500 0.018500 0.139294 0.844016 0.875054 0.859255 0.971140 4800 0.020800 0.197811 0.892504 0.873118 0.882705 0.965883 5100 0.019300 0.161239 0.848746 0.888172 0.868012 0.967849 5400 0.024000 0.139131 0.837507 0.913333 0.873778 0.970591 5700 0.018400 0.157223 0.899754 0.864731 0.881895 0.970210 6000 0.023500 0.137022 0.883018 0.873333 0.878149 0.973243 6300 0.009300 0.181448 0.840490 0.900860 0.869628 0.968290 6600 0.019200 0.173125 0.821316 0.896559 0.857290 0.966736 6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245 7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037 7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468 7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771 8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567 8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578 8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365 9000 0.006000 0.143512 0.847795 0.905591 0.875741 0.972892 9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673 9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028 9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546 10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113 10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570 10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094 11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744 11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854 11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530 12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414 12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669 12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679 12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927 13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795 13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231 13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961 14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127 14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584 14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045 15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155 15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258 15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765 15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907 16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100 16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485 16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704 17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765 17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835 17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283 18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060 18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572 18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298 18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344 19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109 19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186 ```` ### Validation metrics by Named Entity ```` Num examples = 1177 {'JURISPRUDENCIA': {'f1': 0.7016574585635359, 'number': 657, 'precision': 0.6422250316055625, 'recall': 0.7732115677321156}, 'LEGISLACAO': {'f1': 0.8839681133746677, 'number': 571, 'precision': 0.8942652329749103, 'recall': 0.8739054290718039}, 'LOCAL': {'f1': 0.8253968253968254, 'number': 194, 'precision': 0.7368421052631579, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8934049079754601, 'number': 1340, 'precision': 0.918769716088328, 'recall': 0.8694029850746269}, 'PESSOA': {'f1': 0.982653539615565, 'number': 1072, 'precision': 0.9877474081055608, 'recall': 0.9776119402985075}, 'TEMPO': {'f1': 0.9657657657657657, 'number': 816, 'precision': 0.9469964664310954, 'recall': 0.9852941176470589}, 'overall_accuracy': 0.9725722644643211, 'overall_f1': 0.8926146010186757, 'overall_precision': 0.8810222036028488, 'overall_recall': 0.9045161290322581} ````
prajjwal1/albert-base-v1-mnli
293306660f028a76fd36eb0991565b7843bffa8a
2021-10-05T17:54:14.000Z
[ "pytorch", "albert", "text-classification", "arxiv:2110.01518", "transformers" ]
text-classification
false
prajjwal1
null
prajjwal1/albert-base-v1-mnli
84
null
transformers
4,938
If you use the model, please consider citing this paper ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pucpr/clinicalnerpt-pharmacologic
e74bbc595ad467d1b3e9658db6f3fd87092900df
2021-10-13T09:33:40.000Z
[ "pytorch", "bert", "token-classification", "pt", "dataset:SemClinBr", "transformers", "autotrain_compatible" ]
token-classification
false
pucpr
null
pucpr/clinicalnerpt-pharmacologic
84
4
transformers
4,939
--- language: "pt" widget: - text: "COMO ESQUEMA DE MEDICAÇÃO PARA ICC PRESCRITO NO ALTA, RECEBE FUROSEMIDA 40 BID, ISOSSORBIDA 40 TID, DIGOXINA 0,25 /D, CAPTOPRIL 50 TID E ESPIRONOLACTONA 25 /D." - text: "ESTAVA EM USO DE FUROSEMIDA 40 BID, DIGOXINA 0,25 /D, SINVASTATINA 40 /NOITE, CAPTOPRIL 50 TID, ISOSSORBIDA 20 TID, AAS 100 /D E ESPIRONOLACTONA 25 /D." datasets: - SemClinBr thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt"> # Portuguese Clinical NER - Pharmacologic The Pharmacologic NER model is part of the [BioBERTpt project](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/), where 13 models of clinical entities (compatible with UMLS) were trained. All NER model from "pucpr" user was trained from the Brazilian clinical corpus [SemClinBr](https://github.com/HAILab-PUCPR/SemClinBr), with 10 epochs and IOB2 format, from BioBERTpt(all) model. ## Acknowledgements This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. ## Citation ``` @inproceedings{schneider-etal-2020-biobertpt, title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition", author = "Schneider, Elisa Terumi Rubel and de Souza, Jo{\~a}o Vitor Andrioli and Knafou, Julien and Oliveira, Lucas Emanuel Silva e and Copara, Jenny and Gumiel, Yohan Bonescki and Oliveira, Lucas Ferro Antunes de and Paraiso, Emerson Cabrera and Teodoro, Douglas and Barra, Cl{\'a}udia Maria Cabral Moro", booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7", pages = "65--72", abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.", } ``` ## Questions? Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
osanseviero/llama-horse-zebra
f133fc1416b4aa73a8ef5bb5869a0dc22f145a1d
2022-05-12T18:58:48.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "llama-leaderboard", "model-index" ]
image-classification
false
osanseviero
null
osanseviero/llama-horse-zebra
84
null
transformers
4,940
--- tags: - image-classification - pytorch - huggingpics - llama-leaderboard inference: false metrics: - accuracy model-index: - name: llama-horse-zebras results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # llama-horse-zebra Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### horse ![horse](images/horse.jpg) #### llama ![llama](images/llama.jpg) #### zebra ![zebra](images/zebra.jpg)
ybelkada/japanese-roberta-question-answering
4306006321c17a1a8d040201db2cd1e4de61e54e
2022-04-08T11:38:39.000Z
[ "pytorch", "roberta", "question-answering", "ja", "dataset:SkelterLabsInc/JaQuAD", "transformers", "extractive-qa", "license:cc-by-sa-3.0", "autotrain_compatible" ]
null
false
ybelkada
null
ybelkada/japanese-roberta-question-answering
84
null
transformers
4,941
--- license: cc-by-sa-3.0 language: ja tags: - question-answering - extractive-qa pipeline_tag: - None datasets: - SkelterLabsInc/JaQuAD metrics: - Exact match - F1 score --- # RoBERTa base Japanese - JaQuAD ## Description A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD). Please refer [RoBERTa base Japanese](https://huggingface.co/rinna/japanese-roberta-base) for details about the pre-training model. The codes for the fine-tuning are available [on this notebook](https://huggingface.co/ybelkada/japanese-roberta-question-answering/blob/main/roberta_ja_qa.ipynb) ## Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?' context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。' model = AutoModelForQuestionAnswering.from_pretrained( 'ybelkada/japanese-roberta-question-answering') tokenizer = AutoTokenizer.from_pretrained( 'ybelkada/japanese-roberta-question-answering') inputs = tokenizer( question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits # Get the most likely beginning of answer with the argmax of the score. answer_start = torch.argmax(answer_start_scores) # Get the most likely end of answer with the argmax of the score. # 1 is added to `answer_end` because the index pointed by score is inclusive. answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) # answer = 'スコットランド' ``` ## License The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license. ## Miscellaneous The Q&A widget does not work on that model. Tried also with ```Pipeline``` and I was able to reproduce the error, needs a further investigation
Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned
9dca1cc8c6eede5293bcf45bb78f56d49a959a57
2022-05-26T12:42:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2006.11477", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Finnish-NLP
null
Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned
84
3
transformers
4,942
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-base-fi-voxpopuli-v2-finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fi metrics: - name: Test WER type: wer value: 5.93 - name: Test CER type: cer value: 1.40 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 13.99 - name: Test CER type: cer value: 6.07 --- # Wav2Vec2-base-fi-voxpopuli-v2 for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-base-fi-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fi-voxpopuli-v2) for Finnish ASR. The model has been fine-tuned with 276.7 hours of Finnish transcribed speech data. Wav2Vec2 was introduced in [this paper](https://arxiv.org/abs/2006.11477) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. ## Model description [Wav2vec2-base-fi-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-base-fi-voxpopuli-v2) is Facebook AI's pretrained model for Finnish speech. It is pretrained on 14.2k hours of unlabeled Finnish speech from [VoxPopuli V2 dataset](https://github.com/facebookresearch/voxpopuli/) with the wav2vec 2.0 objective. This model is fine-tuned version of the pretrained model for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 276.7 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 9.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) | 10.80 h | 3.90 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.94 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.73 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.40 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.94 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained on a Tesla V100 GPU, sponsored by Hugging Face & OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-base-fi-voxpopuli-v2` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.575 | 0.33 | 500 | 0.7454 | 0.7048 | | 0.5838 | 0.66 | 1000 | 0.2377 | 0.2608 | | 0.5692 | 1.0 | 1500 | 0.2014 | 0.2244 | | 0.5112 | 1.33 | 2000 | 0.1885 | 0.2013 | | 0.4857 | 1.66 | 2500 | 0.1881 | 0.2120 | | 0.4821 | 1.99 | 3000 | 0.1603 | 0.1894 | | 0.4531 | 2.32 | 3500 | 0.1594 | 0.1865 | | 0.4411 | 2.65 | 4000 | 0.1641 | 0.1874 | | 0.4437 | 2.99 | 4500 | 0.1545 | 0.1874 | | 0.4191 | 3.32 | 5000 | 0.1565 | 0.1770 | | 0.4158 | 3.65 | 5500 | 0.1696 | 0.1867 | | 0.4032 | 3.98 | 6000 | 0.1561 | 0.1746 | | 0.4003 | 4.31 | 6500 | 0.1432 | 0.1749 | | 0.4059 | 4.64 | 7000 | 0.1390 | 0.1690 | | 0.4019 | 4.98 | 7500 | 0.1291 | 0.1646 | | 0.3811 | 5.31 | 8000 | 0.1485 | 0.1755 | | 0.3955 | 5.64 | 8500 | 0.1351 | 0.1659 | | 0.3562 | 5.97 | 9000 | 0.1328 | 0.1614 | | 0.3646 | 6.3 | 9500 | 0.1329 | 0.1584 | | 0.351 | 6.64 | 10000 | 0.1342 | 0.1554 | | 0.3408 | 6.97 | 10500 | 0.1422 | 0.1509 | | 0.3562 | 7.3 | 11000 | 0.1309 | 0.1528 | | 0.3335 | 7.63 | 11500 | 0.1305 | 0.1506 | | 0.3491 | 7.96 | 12000 | 0.1365 | 0.1560 | | 0.3538 | 8.29 | 12500 | 0.1293 | 0.1512 | | 0.3338 | 8.63 | 13000 | 0.1328 | 0.1511 | | 0.3509 | 8.96 | 13500 | 0.1304 | 0.1520 | | 0.3431 | 9.29 | 14000 | 0.1360 | 0.1517 | | 0.3309 | 9.62 | 14500 | 0.1328 | 0.1514 | | 0.3252 | 9.95 | 15000 | 0.1316 | 0.1498 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 9.0 but most of our previous models include the Common Voice 7.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned --dataset google/fleurs --config fi_fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish
72cda0634358fb4cb11da6c09cea9fad6f0cf073
2022-05-26T12:37:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2006.11477", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Finnish-NLP
null
Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish
84
null
transformers
4,943
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_9_0 model-index: - name: wav2vec2-large-uralic-voxpopuli-v2-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9_0 args: fi metrics: - name: Test WER type: wer value: 4.13 - name: Test CER type: cer value: 0.92 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 12.44 - name: Test CER type: cer value: 5.77 --- # Wav2vec2-large-uralic-voxpopuli-v2 for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) for Finnish ASR. The model has been fine-tuned with 276.7 hours of Finnish transcribed speech data. Wav2Vec2 was introduced in [this paper](https://arxiv.org/abs/2006.11477) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. ## Model description [Wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) is Facebook AI's pretrained model for uralic language family (Finnish, Estonian, Hungarian) speech. It is pretrained on 42.5k hours of unlabeled Finnish, Estonian and Hungarian speech from [VoxPopuli V2 dataset](https://github.com/facebookresearch/voxpopuli/) with the wav2vec 2.0 objective. This model is fine-tuned version of the pretrained model for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 276.7 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 9.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) | 10.80 h | 3.90 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.94 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.73 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.40 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.94 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained on a Tesla V100 GPU, sponsored by Hugging Face & OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-large-uralic-voxpopuli-v2` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9421 | 0.17 | 500 | 0.8633 | 0.8870 | | 0.572 | 0.33 | 1000 | 0.1650 | 0.1829 | | 0.5149 | 0.5 | 1500 | 0.1416 | 0.1711 | | 0.4884 | 0.66 | 2000 | 0.1265 | 0.1605 | | 0.4729 | 0.83 | 2500 | 0.1205 | 0.1485 | | 0.4723 | 1.0 | 3000 | 0.1108 | 0.1403 | | 0.443 | 1.16 | 3500 | 0.1175 | 0.1439 | | 0.4378 | 1.33 | 4000 | 0.1083 | 0.1482 | | 0.4313 | 1.49 | 4500 | 0.1110 | 0.1398 | | 0.4182 | 1.66 | 5000 | 0.1024 | 0.1418 | | 0.3884 | 1.83 | 5500 | 0.1032 | 0.1395 | | 0.4034 | 1.99 | 6000 | 0.0985 | 0.1318 | | 0.3735 | 2.16 | 6500 | 0.1008 | 0.1355 | | 0.4174 | 2.32 | 7000 | 0.0970 | 0.1361 | | 0.3581 | 2.49 | 7500 | 0.0968 | 0.1297 | | 0.3783 | 2.66 | 8000 | 0.0881 | 0.1284 | | 0.3827 | 2.82 | 8500 | 0.0921 | 0.1352 | | 0.3651 | 2.99 | 9000 | 0.0861 | 0.1298 | | 0.3684 | 3.15 | 9500 | 0.0844 | 0.1270 | | 0.3784 | 3.32 | 10000 | 0.0870 | 0.1248 | | 0.356 | 3.48 | 10500 | 0.0828 | 0.1214 | | 0.3524 | 3.65 | 11000 | 0.0878 | 0.1218 | | 0.3879 | 3.82 | 11500 | 0.0874 | 0.1216 | | 0.3521 | 3.98 | 12000 | 0.0860 | 0.1210 | | 0.3527 | 4.15 | 12500 | 0.0818 | 0.1184 | | 0.3529 | 4.31 | 13000 | 0.0787 | 0.1185 | | 0.3114 | 4.48 | 13500 | 0.0852 | 0.1202 | | 0.3495 | 4.65 | 14000 | 0.0807 | 0.1187 | | 0.34 | 4.81 | 14500 | 0.0796 | 0.1162 | | 0.3646 | 4.98 | 15000 | 0.0782 | 0.1149 | | 0.3004 | 5.14 | 15500 | 0.0799 | 0.1142 | | 0.3167 | 5.31 | 16000 | 0.0847 | 0.1123 | | 0.3249 | 5.48 | 16500 | 0.0837 | 0.1171 | | 0.3202 | 5.64 | 17000 | 0.0749 | 0.1109 | | 0.3104 | 5.81 | 17500 | 0.0798 | 0.1093 | | 0.3039 | 5.97 | 18000 | 0.0810 | 0.1132 | | 0.3157 | 6.14 | 18500 | 0.0847 | 0.1156 | | 0.3133 | 6.31 | 19000 | 0.0833 | 0.1140 | | 0.3203 | 6.47 | 19500 | 0.0838 | 0.1113 | | 0.3178 | 6.64 | 20000 | 0.0907 | 0.1141 | | 0.3182 | 6.8 | 20500 | 0.0938 | 0.1143 | | 0.3 | 6.97 | 21000 | 0.0854 | 0.1133 | | 0.3151 | 7.14 | 21500 | 0.0859 | 0.1109 | | 0.2963 | 7.3 | 22000 | 0.0832 | 0.1122 | | 0.3099 | 7.47 | 22500 | 0.0865 | 0.1103 | | 0.322 | 7.63 | 23000 | 0.0833 | 0.1105 | | 0.3064 | 7.8 | 23500 | 0.0865 | 0.1078 | | 0.2964 | 7.97 | 24000 | 0.0859 | 0.1096 | | 0.2869 | 8.13 | 24500 | 0.0872 | 0.1100 | | 0.315 | 8.3 | 25000 | 0.0869 | 0.1099 | | 0.3003 | 8.46 | 25500 | 0.0878 | 0.1105 | | 0.2947 | 8.63 | 26000 | 0.0884 | 0.1084 | | 0.297 | 8.8 | 26500 | 0.0891 | 0.1102 | | 0.3049 | 8.96 | 27000 | 0.0863 | 0.1081 | | 0.2957 | 9.13 | 27500 | 0.0846 | 0.1083 | | 0.2908 | 9.29 | 28000 | 0.0848 | 0.1059 | | 0.2955 | 9.46 | 28500 | 0.0846 | 0.1085 | | 0.2991 | 9.62 | 29000 | 0.0839 | 0.1081 | | 0.3112 | 9.79 | 29500 | 0.0832 | 0.1071 | | 0.29 | 9.96 | 30000 | 0.0828 | 0.1075 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 9.0 but most of our previous models include the Common Voice 7.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish --dataset google/fleurs --config fi_fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
lgodwangl/sent_chineses
04493d425c3208347b9bf368f864d8c9a2deda7f
2022-07-11T22:04:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
lgodwangl
null
lgodwangl/sent_chineses
84
null
transformers
4,944
Entry not found
czearing/article-title-generator
511d2f366414670c9d01631dd6484c2f810f5c3e
2022-06-28T20:08:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
czearing
null
czearing/article-title-generator
84
1
transformers
4,945
--- license: mit --- ## Article Title Generator The model is based on the T5 language model and trained using a large collection of Medium articles. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("czearing/article-title-generator") model = AutoModel.from_pretrained("czearing/article-title-generator") ``` ## License MIT
Jeevesh8/goog_bert_ft_cola-5
35852e6ca1901ddbb5307dc9aea597c42c241812
2022-06-29T17:31:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-5
84
null
transformers
4,946
Entry not found
knkarthick/TOPIC-SUMMARY
dd97e38f6bef8952181b7c5e8d4d514af813c1b6
2022-07-11T05:49:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
knkarthick
null
knkarthick/TOPIC-SUMMARY
84
null
transformers
4,947
Entry not found
AhmedSSoliman/MarianCG-NL-to-Code
6336d7b6b6b03cbc7a9f9135ee687e660a47a69f
2022-06-29T15:53:49.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AhmedSSoliman
null
AhmedSSoliman/MarianCG-NL-to-Code
83
null
transformers
4,948
--- widget: - text: "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]" - text: "check if all elements in list `mylist` are identical" - text: "enable debug mode on flask application `app`" - text: "getting the length of `my_tuple`" - text: 'find all files in directory "/mydir" with extension ".txt"' --- # MarianCG: A TRANSFORMER MODEL FOR AUTOMATIC CODE GENERATION This model is to improve the solving of the code generation problem and implement a transformer model that can work with high accurate results. We implemented MarianCG transformer model which is a code generation model that can be able to generate code from natural language. This work declares the impact of using Marian machine translation model for solving the problem of code generation. In our implementation we prove that a machine translation model can be operated and working as a code generation model.Finally, we set the new contributors and state-of-the-art on CoNaLa reaching a BLEU score of 30.92 in the code generation problem with CoNaLa dataset. CoNaLa Dataset for Code Generation is available at https://huggingface.co/datasets/AhmedSSoliman/CoNaLa This is the model is avialable on the huggingface hub https://huggingface.co/AhmedSSoliman/MarianCG-NL-to-Code ```python # Model and Tokenizer from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # model_name = "AhmedSSoliman/MarianCG-NL-to-Code" model = AutoModelForSeq2SeqLM.from_pretrained("AhmedSSoliman/MarianCG-NL-to-Code") tokenizer = AutoTokenizer.from_pretrained("AhmedSSoliman/MarianCG-NL-to-Code") # Input (Natural Language) and Output (Python Code) NL_input = "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]" output = model.generate(**tokenizer(NL_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt")) output_code = tokenizer.decode(output[0], skip_special_tokens=True) ``` This model is available in spaces using gradio at: https://huggingface.co/spaces/AhmedSSoliman/MarianCG-NL-to-Code --- Tasks: - Translation - Code Generation - Text2Text Generation - Text Generation ---
Finnish-NLP/roberta-large-finnish
4efd90ea2c50928d27bd43a20a19b956852288d4
2022-06-13T16:13:07.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1907.11692", "transformers", "finnish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Finnish-NLP
null
Finnish-NLP/roberta-large-finnish
83
1
transformers
4,949
--- language: - fi license: apache-2.0 tags: - finnish - roberta datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia widget: - text: "Moikka olen <mask> kielimalli." --- # RoBERTa large model for Finnish Pretrained RoBERTa model on Finnish language using a masked language modeling (MLM) objective. RoBERTa was introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it makes a difference between finnish and Finnish. ## Model description Finnish RoBERTa is a transformers model pretrained on a large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the RoBERTa model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Finnish-NLP/roberta-large-finnish') >>> unmasker("Moikka olen <mask> kielimalli.") [{'sequence': 'Moikka olen hyvä kielimalli.', 'score': 0.1535797119140625, 'token': 767, 'token_str': ' hyvä'}, {'sequence': 'Moikka olen paras kielimalli.', 'score': 0.04795042425394058, 'token': 2888, 'token_str': ' paras'}, {'sequence': 'Moikka olen huono kielimalli.', 'score': 0.04251479730010033, 'token': 3217, 'token_str': ' huono'}, {'sequence': 'Moikka olen myös kielimalli.', 'score': 0.027469098567962646, 'token': 520, 'token_str': ' myös'}, {'sequence': 'Moikka olen se kielimalli.', 'score': 0.013878575526177883, 'token': 358, 'token_str': ' se'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish') model = RobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish') model = TFRobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish', from_pt=True) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training data This Finnish RoBERTa model was pretrained on the combination of five datasets: - [mc4](https://huggingface.co/datasets/mc4), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 78GB of text. ## Training procedure ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 2 epochs with a sequence length of 128 and continuing for one more epoch with a sequence length of 512. The optimizer used is Adafactor with a learning rate of 2e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), learning rate warmup for 1500 steps and linear decay of the learning rate after. ## Evaluation results Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length. When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) and to our previous [Finnish RoBERTa-large](https://huggingface.co/flax-community/RoBERTa-large-finnish) trained during the Hugging Face JAX/Flax community week: | | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length | |----------------------------------------|----------|---------------------|---------------------|----------------------| |Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 | |TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |**94.90** |**95.49** |**76.07** | |flax-community/RoBERTa-large-finnish |87.72 |94.42 |95.06 |73.67 | To conclude, this model improves on our previous [Finnish RoBERTa-large](https://huggingface.co/flax-community/RoBERTa-large-finnish) model trained during the Hugging Face JAX/Flax community week but is still slightly (~ 1%) losing to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) - Tommi Vehviläinen [Hugging Face profile](https://huggingface.co/Tommi) Feel free to contact us for more details 🤗
HHousen/household-rooms
c80d9567f40da3d988bb01232ee66bc11c2a941f
2022-02-12T06:21:05.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
HHousen
null
HHousen/household-rooms
83
null
transformers
4,950
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: household-rooms results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8482142686843872 --- # household-rooms Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bathroom ![bathroom](images/bathroom.jpg) #### bedroom ![bedroom](images/bedroom.jpg) #### dining room ![dining room](images/dining_room.jpg) #### kitchen ![kitchen](images/kitchen.jpg) #### living room ![living room](images/living_room.jpg)
Helsinki-NLP/opus-mt-ko-de
23a6fdbbed8020e0c787c25c7aeeb9f435963fe6
2021-09-10T13:54:01.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-de
83
null
transformers
4,951
--- tags: - translation license: apache-2.0 --- ### opus-mt-ko-de * source languages: ko * target languages: de * OPUS readme: [ko-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ko-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ko-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ko-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ko-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ko.de | 30.2 | 0.523 |
Helsinki-NLP/opus-mt-ru-es
717eeb22c5017551f217849d8b5e2cf91398e336
2021-09-10T14:02:21.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-es
83
null
transformers
4,952
--- tags: - translation license: apache-2.0 --- ### opus-mt-ru-es * source languages: ru * target languages: es * OPUS readme: [ru-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/ru-es/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-es/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-es/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2012.ru.es | 26.1 | 0.527 | | newstest2013.ru.es | 28.2 | 0.538 | | Tatoeba.ru.es | 49.4 | 0.675 |
Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
1aea373089cef8598efd159039b525a06e7ebbcc
2022-06-18T20:14:43.000Z
[ "pytorch", "gptj", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
83
2
sentence-transformers
4,953
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-5.8B-weightedmean-nli-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters: ``` {'batch_size': 6} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9394, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0001 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9395, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTJModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
baykenney/bert-base-gpt2detector-topk40
07f08704e25e432c02d081f85a94fb92beed3cb3
2021-05-19T12:10:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-base-gpt2detector-topk40
83
null
transformers
4,954
Entry not found
colorfulscoop/bert-base-ja
bba3cc734a1a068222249c4634ff4ea06bb07605
2021-09-23T13:46:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "ja", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0", "fill-mask" ]
fill-mask
false
colorfulscoop
null
colorfulscoop/bert-base-ja
83
null
transformers
4,955
--- language: ja datasets: wikipedia pipeline_tag: fill-mask widget: - text: 得意な科目は[MASK]です。 license: cc-by-sa-4.0 --- # BERT base Japanese model This repository contains a BERT base model trained on Japanese Wikipedia dataset. ## Training data [Japanese Wikipedia](https://ja.wikipedia.org/wiki/Wikipedia:データベースダウンロード) dataset as of June 20, 2021 which is released under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/) is used for training. The dataset is splitted into three subsets - train, valid and test. Both tokenizer and model are trained with the train split. ## Model description The model architecture is the same as BERT base model (hidden_size: 768, num_hidden_layers: 12, num_attention_heads: 12, max_position_embeddings: 512) except for a vocabulary size. The vocabulary size is set to 32,000 instead of an original size of 30,522. For the model, `transformers.BertForPreTraining` is used. ## Tokenizer description [SentencePiece](https://github.com/google/sentencepiece) tokenizer is used as a tokenizer for this model. While training, the tokenizer model was trained with 1,000,000 samples which were extracted from the train split. The vocabulary size is set to 32,000. A `add_dummy_prefix` option is set to `True` because words are not separated by whitespaces in Japanese. After training, the model is imported to `transformers.DebertaV2Tokenizer` because it supports SentencePiece models and its behavior is consistent when `use_fast` option is set to `True` or `False`. **Note:** The meaning of "consistent" here is as follows. For example, AlbertTokenizer provides AlbertTokenizer and AlbertTokenizerFast. Fast model is used as default. However, the tokenization behavior between them is different and a behavior this mdoel expects is the verions of not fast. Although `use_fast=False` option passing to AutoTokenier or pipeline solves this problem to force to use not fast version of the tokenizer, this option cannot be passed to config.json or model card. Therefore unexpected behavior happens when using Inference API. To avoid this kind of problems, `transformers.DebertaV2Tokenizer` is used in this model. ## Training Training details are as follows. * gradient update is every 256 samples (batch size: 8, accumulate_grad_batches: 32) * gradient clip norm is 1.0 * Learning rate starts from 0 and linearly increased to 0.0001 in the first 10,000 steps * The training set contains around 20M samples. Because 80k * 256 ~ 20M, 1 epochs has around 80k steps. Trainind was conducted on Ubuntu 18.04.5 LTS with one RTX 2080 Ti. The training continued until validation loss got worse. Totally the number of training steps were around 214k. The test set loss was 2.80 . Training code is available in [a GitHub repository](https://github.com/colorfulscoop/bert-ja). ## Usage First, install dependecies. ```sh $ pip install torch==1.8.0 transformers==4.8.2 sentencepiece==0.1.95 ``` Then use `transformers.pipeline` to try mask fill task. ```sh >>> import transformers >>> pipeline = transformers.pipeline("fill-mask", "colorfulscoop/bert-base-ja", revision="v1.0") >>> pipeline("専門として[MASK]を専攻しています") [{'sequence': '専門として工学を専攻しています', 'score': 0.03630176931619644, 'token': 3988, 'token_str': '工学'}, {'sequence': '専門として政治学を専攻しています', 'score': 0.03547220677137375, 'token': 22307, 'token_str': '政治学'}, {'sequence': '専門として教育を専攻しています', 'score': 0.03162326663732529, 'token': 414, 'token_str': '教育'}, {'sequence': '専門として経済学を専攻しています', 'score': 0.026036914438009262, 'token': 6814, 'token_str': '経済学'}, {'sequence': '専門として法学を専攻しています', 'score': 0.02561848610639572, 'token': 10810, 'token_str': '法学'}] ``` Note: specifying a `revision` option is recommended to keep reproducibility when downloading a model via `transformers.pipeline` or `transformers.AutoModel.from_pretrained` . ## License Copyright (c) 2021 Colorful Scoop All the models included in this repository are licensed under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). **Disclaimer:** The model potentially has possibility that it generates similar texts in the training data, texts not to be true, or biased texts. Use of the model is at your sole risk. Colorful Scoop makes no warranty or guarantee of any outputs from the model. Colorful Scoop is not liable for any trouble, loss, or damage arising from the model output. --- This model utilizes the following data as training data * **Name:** ウィキペディア (Wikipedia): フリー百科事典 * **Credit:** https://ja.wikipedia.org/ * **License:** [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/) * **Link:** https://ja.wikipedia.org/
danyaljj/gpt2_question_generation_given_paragraph_answer
ee45d524ee2eb7ac062b15a8ad66f1065bf9ad01
2021-06-17T18:27:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt2_question_generation_given_paragraph_answer
83
null
transformers
4,956
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph_answer") input_ids = tokenizer.encode("There are two apples on the counter. A: apples Q:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. A: apples Q: What is the name of the counter ```
ibombonato/vit-age-classifier
bc39c91226024da05693ce11422eb79d6c538443
2022-02-10T22:06:51.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
ibombonato
null
ibombonato/vit-age-classifier
83
null
transformers
4,957
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit-age-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8364999890327454 --- # vit-age-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
juanfiguera/ice_cream
c16725e9d0943dd5ddbb2230569f8dd5b7f59836
2021-09-10T02:59:58.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
juanfiguera
null
juanfiguera/ice_cream
83
null
transformers
4,958
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ice_cream results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5166666507720947 --- # ice_cream Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chocolate ice cream ![chocolate ice cream](images/chocolate_ice_cream.jpg) #### vanilla ice cream ![vanilla ice cream](images/vanilla_ice_cream.jpg)
kiri-ai/distiluse-base-multilingual-cased-et
4cc7064dcd075214b9417ad6092e5769c1119570
2020-12-11T21:48:24.000Z
[ "pytorch", "distilbert", "feature-extraction", "et", "transformers" ]
feature-extraction
false
kiri-ai
null
kiri-ai/distiluse-base-multilingual-cased-et
83
null
transformers
4,959
--- language: et --- ## Model Description This model is based off **Sentence-Transformer's** `distiluse-base-multilingual-cased` multilingual model that has been extended to understand sentence embeddings in Estonian. ## Sentence-Transformers This model can be imported directly via the SentenceTransformers package as shown below: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('kiri-ai/distiluse-base-multilingual-cased-et') sentences = ['Here is a sample sentence','Another sample sentence'] embeddings = model.encode(sentences) print("Sentence embeddings:") print(embeddings) ``` ## Fine-tuning The fine-tuning and training processes were inspired by [sbert's](https://www.sbert.net/) multilingual training techniques which are available [here](https://www.sbert.net/examples/training/multilingual/README.html). The documentation shows and explains the step-by-step process of using parallel sentences to train models in a different language. ### Resources The model was fine-tuned on English-Estonian parallel sentences taken from [OPUS](http://opus.nlpl.eu/) and [ParaCrawl](https://paracrawl.eu/).
manueltonneau/clinicalcovid-bert-base-cased
feaed908d09e54f65f098c04b09b51584626c096
2020-06-02T11:52:31.000Z
[ "pytorch", "transformers" ]
null
false
manueltonneau
null
manueltonneau/clinicalcovid-bert-base-cased
83
null
transformers
4,960
Entry not found
mariagrandury/roberta-base-finetuned-sms-spam-detection
ed7a6c34f9a6041c3a0881fea29eb27e0838dd27
2022-02-22T11:54:07.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:sms_spam", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mariagrandury
null
mariagrandury/roberta-base-finetuned-sms-spam-detection
83
1
transformers
4,961
--- license: mit tags: - generated_from_trainer datasets: - sms_spam metrics: - accuracy model-index: - name: roberta-base-finetuned-sms-spam-detection results: - task: name: Text Classification type: text-classification dataset: name: sms_spam type: sms_spam args: plain_text metrics: - name: Accuracy type: accuracy value: 0.998 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sms-spam-detection This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the sms_spam dataset. It achieves the following results on the evaluation set: - Loss: 0.0133 - Accuracy: 0.998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0363 | 1.0 | 250 | 0.0156 | 0.996 | | 0.0147 | 2.0 | 500 | 0.0133 | 0.998 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
mrm8488/t5-base-finetuned-wikiSQL-sql-to-en
88935a5332548e7660ee2f1a9f9f846ef4020800
2020-12-11T21:56:17.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:wikisql", "arxiv:1910.10683", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-wikiSQL-sql-to-en
83
1
transformers
4,962
--- language: en datasets: - wikisql --- # T5-base fine-tuned on WikiSQL for SQL to English translation [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [WikiSQL](https://github.com/salesforce/WikiSQL) for **SQL** to **English** **translation** task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the Dataset 📚 Dataset ID: ```wikisql``` from [Huggingface/NLP](https://huggingface.co/nlp/viewer/?dataset=wikisql) | Dataset | Split | # samples | | -------- | ----- | --------- | | wikisql | train | 56355 | | wikisql | valid | 14436 | How to load it from [nlp](https://github.com/huggingface/nlp) ```python train_dataset = nlp.load_dataset('wikisql', split=nlp.Split.TRAIN) valid_dataset = nlp.load_dataset('wikisql', split=nlp.Split.VALIDATION) ``` Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this Colab Notebook](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) created by [Suraj Patil](https://github.com/patil-suraj), so all credits to him! ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL-sql-to-en") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL-sql-to-en") def get_explanation(query): input_text = "translate Sql to English: %s </s>" % query features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) query = "SELECT COUNT Params form model where location=HF-Hub" get_explanation(query) # output: 'How many parameters form model for HF-hub?' ``` Play with it in a Colab: <img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
nates-test-org/convit_tiny
6627075ee4777ed2a2bac509b900c115ef003e25
2021-10-29T04:46:42.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/convit_tiny
83
null
timm
4,963
--- tags: - image-classification - timm library_tag: timm --- # Model card for convit_tiny
persiannlp/mt5-large-parsinlu-sentiment-analysis
0a6e33f37de3e8ae666e2eb5a9ca1ed33042e248
2021-09-23T16:20:21.000Z
[ "pytorch", "mt5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "transformers", "sentiment", "sentiment-analysis", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-large-parsinlu-sentiment-analysis
83
null
transformers
4,964
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-large-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/parsbert-base-parsinlu-multiple-choice
a97e11816584b3eea9b17eeaff63dc00ec824a47
2021-09-23T16:20:53.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "fa", "multilingual", "dataset:parsinlu", "transformers", "parsbert", "persian", "farsi", "license:cc-by-nc-sa-4.0", "text-classification" ]
text-classification
false
persiannlp
null
persiannlp/parsbert-base-parsinlu-multiple-choice
83
null
transformers
4,965
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - parsbert - persian - farsi pipeline_tag: text-classification license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a parsbert-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/parsbert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
sreeramajay/pollution
6e4c26a68b8195ef8003d249813d79934b149b94
2021-07-03T07:05:10.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
sreeramajay
null
sreeramajay/pollution
83
1
transformers
4,966
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pollution results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7129629850387573 --- # pollution Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### air pollution ![air pollution](images/air_pollution_new.jpg) #### land pollution ![land pollution](images/land_pollution.jpg) #### water pollution ![water pollution](images/water_pollution.jpg)
thak123/goan-fish-fry
f6aac0b124bd6f6f2e2c57cc4920927d35762bb3
2021-07-02T10:46:53.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
thak123
null
thak123/goan-fish-fry
83
null
transformers
4,967
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: goan-fish-fry results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4583333432674408 --- # goan-fish-fry Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### king fish fry ![king fish fry](images/king_fish_fry.jpg) #### mackerel fry ![mackerel fry](images/mackerel_fry.jpg) #### pomfret fry ![pomfret fry](images/pomfret_fry.jpg) #### prawn fish fry ![prawn fish fry](images/prawn_fish_fry.jpg) #### squid fish fry ![squid fish fry](images/squid_fish_fry.jpg)
vivekRahul/animal_classifier_huggingface
aed061da9fc2e8c7c0fc54061e80d0688fb91d20
2021-07-25T06:02:38.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
vivekRahul
null
vivekRahul/animal_classifier_huggingface
83
null
transformers
4,968
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal_classifier_huggingface results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9910714030265808 --- # animal_classifier_huggingface Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### elephant ![elephant](images/elephant.jpg) #### lion ![lion](images/lion.jpg) #### tiger ![tiger](images/tiger.jpg)
hamedkhaledi/persain-flair-pos
1b18d8db47f93b5efc969cad8718dcd4a6748108
2022-03-27T22:26:53.000Z
[ "pytorch", "fa", "dataset:UPC-2017", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
hamedkhaledi
null
hamedkhaledi/persain-flair-pos
83
1
flair
4,969
--- tags: - flair - token-classification - sequence-tagger-model language: fa datasets: - UPC-2017 widget: - text: "تمام ایران یک تابستان تنوری را تجربه میکند ." --- ## Persian Part-of-Speech Tagging in Flair This is the part-of-speech tagging model for Persian that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **??** (UPC-2017) List of Tags in UPC: | **tag** | **meaning** | |:--------:|:-----------------------:| | ADJ | adjective | | ADJ_CMPR | Comparative adjective | | ADJ_INO | Participle adjective | | ADJ_SUP | Superlative adjective | | ADJ_VOC | Vocative adjective | | ADV | Adverb | | ADV_COMP | Adverb of comparison | | ADV_I | Adverb of interrogation | | ADV_LOC | Adverb of location | | ADV_NEG | Adverb of negation | | ADV_TIME | Adverb of time | | CLITIC | Accusative marker | | CON | Conjunction | | DELM | Delimiter | | DET | Determiner | | FW | Foreign Word | | INT | Interjection | | N_PL | Plural noun | | N_SING | Singular noun | | NUM | Numeral | | N_VOC | Vocative noun | | P | Preposition | | PREV | Preverbal particle | | PRO | Pronoun | | SYM | Symbol | | V_AUX | Auxiliary verb | | V_PA | Past tense verb | | V_PP | Past participle verb | | V_PRS | Present tense verb | | V_SUB | Subjunctive verb | --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("hamedkhaledi/persain-flair-pos") # make example sentence sentence = Sentence("تمام ایران یک تابستان تنوری را تجربه میکند .") tagger.predict(sentence) # print result print(sentence.to_tagged_string()) ``` This yields the following output: ``` تمام <DET> ایران <N_SING> یک <NUM> تابستان <N_SING> تنوری <ADJ> را <CLITIC> تجربه <N_SING> میکند <V_PRS> . <DELM> ```
mojians/E2E-QA-Mining
7f23cc4e5b8ba5ebb90d79fa2c7ab629708fa69d
2022-04-10T02:34:53.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad", "transformers", "question-generation", "question-answer mining", "license:mit", "autotrain_compatible" ]
text2text-generation
false
mojians
null
mojians/E2E-QA-Mining
83
1
transformers
4,970
--- datasets: - squad tags: - question-generation - question-answer mining widget: - text: "context: The English name 'Normans' comes from the French words Normans/Normanz, plural of Normant, modern French normand, which is itself borrowed from Old Low Franconian Nortmann 'Northman' or directly from Old Norse Norðmaðr, Latinized variously as Nortmannus, Normannus, or Nordmannus (recorded in Medieval Latin, 9th century) to mean 'Norseman, Viking'. generate questions and answers:" inference: parameters: min_length: 50 license: mit --- # Model name ## Model description This model mines the question-answer pairs from a given context in an end2end fashion. It takes a context as an input and generates a list of questions and answers as an output. It is based on a pre-trained `t5-small` model and uses a prompt enigneering technique to train. #### How to use The model takes the context (with prompt) as an input sequence and will generate question-answer pairs as an output sequence. The max sequence length is 512 tokens. Inputs should be organized into the following format: ``` context: context text here. generate questions and answers: ``` The input sequence can then be encoded and passed as the `input_ids` argument in the model's `generate()` method. You can try out the demo in the [E2E-QA-mining space app](https://huggingface.co/spaces/mojians/E2E-QA-mining) #### Limitations and bias The model is limited to generating questions in the same style as those found in [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/), The generated questions can potentially be leading or reflect biases that are present in the context. If the context is too short or completely absent, or if the context and answer do not match, the generated question is likely to be incoherent. ## Training data The model was fine-tuned on a dataset made up of several well-known QA datasets ([SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)) ## Source and Citation Please find our code and cite us in this repo [https://github.com/jian-mo/E2E-QA-Mining](https://github.com/jian-mo/E2E-QA-Mining)
jaygala24/finetuned-vit-base-patch16-224-upside-down-detector
6d3e260801fa016711309ddda6a6a0f73a5c0c10
2022-04-02T15:24:57.000Z
[ "pytorch", "vit", "image-classification", "transformers", "accelerator", "license:apache-2.0", "model-index" ]
image-classification
false
jaygala24
null
jaygala24/finetuned-vit-base-patch16-224-upside-down-detector
83
null
transformers
4,971
--- license: apache-2.0 tags: - accelerator metrics: - accuracy model-index: - name: finetuned-vit-base-patch16-224-upside-down-detector results: [] widget: - src: https://huggingface.co/jaygala24/finetuned-vit-base-patch16-224-upside-down-detector/resolve/main/original.jpg example_title: original - src: https://huggingface.co/jaygala24/finetuned-vit-base-patch16-224-upside-down-detector/resolve/main/upside_down.jpg example_title: upside_down --- # finetuned-vit-base-patch16-224-upside-down-detector This model is a fine-tuned version of [vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the custom image orientation dataset adapted from the [beans](https://huggingface.co/datasets/beans) dataset. It achieves the following results on the evaluation set: - Accuracy: 0.8947 ## Training and evaluation data The custom dataset for image orientation adapted from [beans](https://huggingface.co/datasets/beans) dataset contains a total of 2,590 image samples with 1,295 original and 1,295 upside down. The model was fine-tuned on the train subset and evaluated on validation and test subsets. The dataset splits are listed below: | Split | # examples | |:----------:|:----------:| | train | 2068 | | validation | 133 | | test | 128 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32 - num_epochs: 5 ### Training results | Epoch | Accuracy | |:----------:|:----------:| | 0 | 0.8609 | | 1 | 0.8835 | | 2 | 0.8571 | | 3 | 0.8941 | | 4 | 0.8941 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu111 - Pytorch/XLA 1.9 - Datasets 2.0.0 - Tokenizers 0.12.0
yangy50/garbage-classification
9bfbbceba2d807df5c8c6f1546ffa48086eb28b2
2022-04-25T22:55:50.000Z
[ "pytorch", "vit", "image-classification", "arxiv:2010.11929", "transformers" ]
image-classification
false
yangy50
null
yangy50/garbage-classification
83
null
transformers
4,972
# Garbage Classification ## Overview ### Backgroud Garbage classification refers to the separation of several types of different categories in accordance with the environmental impact of the use of the value of the composition of garbage components and the requirements of existing treatment methods. The significance of garbage classification: 1. Garbage classification reduces the mutual pollution between different garbage, which is beneficial to the recycling of materials. 2. Garbage classification is conducive to reducing the final waste disposal volume. 3. Garbage classification is conducive to enhancing the degree of social civilization. ### Dataset The garbage classification dataset is from Kaggle. There are totally 2467 pictures in this dataset. And this model is an image classification model for this dataset. There are 6 classes for this dataset, which are cardboard (393), glass (491), metal (400), paper(584), plastic (472), and trash(127). ### Model The model is based on the [ViT](https://huggingface.co/google/vit-base-patch16-224-in21k) model, which is short for the Vision Transformer. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), which was introduced in June 2021 by a team of researchers at Google Brain. And first released in [this repository](https://github.com/rwightman/pytorch-image-models). I trained this model with PyTorch. I think the most different thing between using the transformer to train on an image and on a text is in the tokenizing step. There are 3 steps to tokenize the image: 1. Split an image into a grid of sub-image patches 2. Embed each patch with a linear projection 3. Each embedded patch becomes a token, and the resulting sequence of embedded patches is the sequence you pass to the model. I trained the model with 10 epochs, and I use Adam as the optimizer. The accuracy on the test set is 95%. ## Huggingface Space Huggingface space is [here](https://huggingface.co/yangy50/garbage-classification). ## Huggingface Model Card Huggingface model card is [here](https://huggingface.co/yangy50/garbage-classification/tree/main). ## Critical Analysis 1. Next step: build a CNN model on this dataset and compare the accuracy and training time for these two models. 2. Didn’t use the Dataset package to store the image data. Want to find out how to use the Dataset package to handle image data. ## Resource Links [vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) [Garbage dataset](https://huggingface.co/cardiffnlp/twitter-roberta-base) [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) ## Code Demo [Code Demo](https://github.com/yuechen-yang/garbage-classification) is inside this repo ## Repo In this repo ## Video Recording
naver/splade-cocondenser-selfdistil
0f718e09b0540c68c15c5c2b50de731b6e89090a
2022-05-11T08:02:55.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:ms_marco", "arxiv:2205.04733", "transformers", "splade", "query-expansion", "document-expansion", "bag-of-words", "passage-retrieval", "knowledge-distillation", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
naver
null
naver/splade-cocondenser-selfdistil
83
5
transformers
4,973
--- license: cc-by-nc-sa-4.0 language: "en" tags: - splade - query-expansion - document-expansion - bag-of-words - passage-retrieval - knowledge-distillation datasets: - ms_marco --- ## SPLADE CoCondenser SelfDistil SPLADE model for passage retrieval. For additional details, please visit: * paper: https://arxiv.org/abs/2205.04733 * code: https://github.com/naver/splade | | MRR@10 (MS MARCO dev) | R@1000 (MS MARCO dev) | | --- | --- | --- | | `splade-cocondenser-selfdistil` | 37.6 | 98.4 | ## Citation If you use our checkpoint, please cite our work: ``` @misc{https://doi.org/10.48550/arxiv.2205.04733, doi = {10.48550/ARXIV.2205.04733}, url = {https://arxiv.org/abs/2205.04733}, author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, Stéphane}, keywords = {Information Retrieval (cs.IR), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
nateraw/vit-base-food101
977c7a15b0a1d5775c412d99325894474f695b74
2022-05-10T03:40:35.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers" ]
image-classification
false
nateraw
null
nateraw/vit-base-food101
83
null
transformers
4,974
Entry not found
YSU/aspram
1d31728083d761274b65cd8e6d0b520eaea453ba
2022-05-19T12:24:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hy", "hy-AM", "hye", "dataset:mozilla-foundation/common_voice_9_0", "dataset:google/fleurs", "dataset:mc4", "transformers", "mozilla-foundation/common_voice_9_0", "google/fleurs", "license:apache-2.0" ]
automatic-speech-recognition
false
YSU
null
YSU/aspram
83
2
transformers
4,975
--- language: - hy - hy-AM - hye license: apache-2.0 tags: - automatic-speech-recognition - hy - mozilla-foundation/common_voice_9_0 - google/fleurs models: - facebook/wav2vec2-xls-r-2b datasets: - mozilla-foundation/common_voice_9_0 - google/fleurs - mc4 task_categories: - automatic-speech-recognition - speech-processing task_ids: - speech-recognition --- # Automatic SPeech Recognition for ArMenian TODO Model details
drhyrum/bert-tiny-torch-vuln
753c3cb70db0705e814b400330028ad5335246d3
2022-07-07T19:17:08.000Z
[ "pytorch", "bert", "en", "arxiv:1908.08962", "arxiv:2110.01518", "transformers", "BERT", "MNLI", "NLI", "transformer", "pre-training", "license:mit" ]
null
false
drhyrum
null
drhyrum/bert-tiny-torch-vuln
83
1
transformers
4,976
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini) [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) Other models to check out: - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
arminmehrabian/distilgpt2-finetuned-wikitext2-agu
596eefbc2b8f3f223849e9afff5abe16c5b69cc5
2022-07-30T04:08:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
arminmehrabian
null
arminmehrabian/distilgpt2-finetuned-wikitext2-agu
83
1
transformers
4,977
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2-agu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2-agu This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.7357 | 1.0 | 13655 | 3.6781 | | 3.5721 | 2.0 | 27310 | 3.5302 | | 3.4961 | 3.0 | 40965 | 3.4658 | | 3.4406 | 4.0 | 54620 | 3.4242 | | 3.4043 | 5.0 | 68275 | 3.3943 | | 3.3789 | 6.0 | 81930 | 3.3726 | | 3.3576 | 7.0 | 95585 | 3.3538 | | 3.3389 | 8.0 | 109240 | 3.3389 | | 3.3151 | 9.0 | 122895 | 3.3270 | | 3.314 | 5.0 | 136545 | 3.3226 | | 3.3044 | 6.0 | 163854 | 3.3124 | | 3.2931 | 7.0 | 191163 | 3.3078 | | 3.2874 | 8.0 | 218472 | 3.3055 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
nielsr/donut-base
905659914224a88ac7f934281c333befd3fbd649
2022-07-26T09:09:36.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
nielsr
null
nielsr/donut-base
83
null
transformers
4,978
Entry not found
ckb/c-deobfuscate-mt
2afcaa6025db3e1fad3d276ec71949eda6b26483
2022-07-29T02:49:31.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ckb
null
ckb/c-deobfuscate-mt
83
null
transformers
4,979
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: c-deobfuscate-mt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c-deobfuscate-mt This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5207 - eval_bleu: 65.8038 - eval_gen_len: 266.6 - eval_runtime: 13.5258 - eval_samples_per_second: 1.109 - eval_steps_per_second: 0.148 - epoch: 40.0 - step: 960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
Amrrs/south-indian-foods
757e34748641041c8c7a88c2235fb3cdab6ceacb
2021-07-20T18:22:24.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Amrrs
null
Amrrs/south-indian-foods
82
null
transformers
4,980
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: south-indian-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # south-indian-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dosai ![dosai](images/dosai.jpg) #### idiyappam ![idiyappam](images/idiyappam.jpg) #### idli ![idli](images/idli.jpg) #### puttu ![puttu](images/puttu.jpg) #### vadai ![vadai](images/vadai.jpg)
Davlan/bert-base-multilingual-cased-finetuned-amharic
90283498970edd0fe6af2f094f5f25d61e525ebd
2021-06-02T12:37:53.000Z
[ "pytorch", "bert", "fill-mask", "am", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-amharic
82
null
transformers
4,981
Hugging Face's logo --- language: am datasets: --- # bert-base-multilingual-cased-finetuned-amharic ## Model description **bert-base-multilingual-cased-finetuned-amharic** is a **Amharic BERT** model obtained by replacing mBERT vocabulary by amharic vocabulary because the language was not supported, and fine-tuning **bert-base-multilingual-cased** model on Amharic language texts. It provides **better performance** than the multilingual Amharic on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Amharic corpus using Amharic vocabulary. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-amharic') >>> unmasker("የአሜሪካ የአፍሪካ ቀንድ ልዩ መልዕክተኛ ጄፈሪ ፌልትማን በአራት አገራት የሚያደጉትን [MASK] መጀመራቸውን የአሜሪካ የውጪ ጉዳይ ሚንስቴር አስታወቀ።") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Amharic CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | am_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 0.0 | 60.89 ### BibTeX entry and citation info By David Adelani ``` ```
Helsinki-NLP/opus-mt-fr-id
03aa1793243ef305e007d30388744fb59b95051b
2021-09-09T21:54:31.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "id", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-id
82
null
transformers
4,982
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-id * source languages: fr * target languages: id * OPUS readme: [fr-id](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-id/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-id/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-id/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-id/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fr.id | 37.2 | 0.636 |
Helsinki-NLP/opus-mt-it-ar
894b5e96a86f86b7ac1594fc14b247df05e0ee1e
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "it", "ar", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-ar
82
null
transformers
4,983
--- language: - it - ar tags: - translation license: apache-2.0 --- ### ita-ara * source group: Italian * target group: Arabic * OPUS readme: [ita-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ara/README.md) * model: transformer * source language(s): ita * target language(s): ara * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.ara | 21.9 | 0.517 | ### System Info: - hf_name: ita-ara - source_languages: ita - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'ar'] - src_constituents: {'ita'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.test.txt - src_alpha3: ita - tgt_alpha3: ara - short_pair: it-ar - chrF2_score: 0.517 - bleu: 21.9 - brevity_penalty: 0.95 - ref_len: 1161.0 - src_name: Italian - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: it - tgt_alpha2: ar - prefer_old: False - long_pair: ita-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ja-ru
46386a5e83ca1df32e809077547aea08198f9317
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-ru
82
null
transformers
4,984
--- language: - ja - ru tags: - translation license: apache-2.0 --- ### jpn-rus * source group: Japanese * target group: Russian * OPUS readme: [jpn-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-rus/README.md) * model: transformer-align * source language(s): jpn jpn_Bopo jpn_Hani jpn_Hira jpn_Kana jpn_Latn jpn_Yiii * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.rus | 23.2 | 0.441 | ### System Info: - hf_name: jpn-rus - source_languages: jpn - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'ru'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-rus/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: rus - short_pair: ja-ru - chrF2_score: 0.441 - bleu: 23.2 - brevity_penalty: 0.9740000000000001 - ref_len: 70820.0 - src_name: Japanese - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: ru - prefer_old: False - long_pair: jpn-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-vi-fr
d2d4e2e848ae77f77103428f6fe797bd5f9904e8
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-vi-fr
82
null
transformers
4,985
--- language: - vi - fr tags: - translation license: apache-2.0 --- ### vie-fra * source group: Vietnamese * target group: French * OPUS readme: [vie-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-fra/README.md) * model: transformer-align * source language(s): vie * target language(s): fra * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.fra | 34.2 | 0.544 | ### System Info: - hf_name: vie-fra - source_languages: vie - target_languages: fra - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-fra/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'fr'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'fra'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: fra - short_pair: vi-fr - chrF2_score: 0.544 - bleu: 34.2 - brevity_penalty: 0.955 - ref_len: 11519.0 - src_name: Vietnamese - tgt_name: French - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: fr - prefer_old: False - long_pair: vie-fra - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
LeBenchmark/wav2vec2-FR-3K-large
84bcdf4e561f53723623cd139dc70462380072ae
2021-11-26T20:35:33.000Z
[ "pytorch", "jax", "wav2vec2", "feature-extraction", "fr", "transformers", "license:apache-2.0" ]
feature-extraction
false
LeBenchmark
null
LeBenchmark/wav2vec2-FR-3K-large
82
null
transformers
4,986
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 3K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French dataset containing spontaneous, read and broadcasted speech. For more information on the different benchmark that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Task Agnostic and Task Specific Self-Supervised Learning from Speech with LeBenchmark](https://openreview.net/pdf?id=TSvj5dmuSd) ## Model and data descriptions We release four different models that can be found under our HuggingFace organisation. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (*S*) and medium (*M*) corpus. A larger one shoud come later. In short: - [wav2vec2-FR-M-Large](#): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-M-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-M-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-S-Large](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-S-Base](https://huggingface.co/LeBenchmark/wav2vec2-FR-S-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the apache-2.0 licence. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpus that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` Reference to come ```
Narrativa/mbart-large-50-finetuned-opus-en-pt-translation
6558673ba6383ba816acf621d9cc6be5751460f6
2021-06-21T11:07:11.000Z
[ "pytorch", "mbart", "text2text-generation", "en", "pt", "dataset:opus100", "dataset:opusbook", "arxiv:2008.00401", "arxiv:2004.11867", "transformers", "translation", "autotrain_compatible" ]
translation
false
Narrativa
null
Narrativa/mbart-large-50-finetuned-opus-en-pt-translation
82
1
transformers
4,987
--- language: - en - pt datasets: - opus100 - opusbook tags: - translation metrics: - bleu --- # mBART-large-50 fine-tuned onpus100 and opusbook for English to Portuguese translation. [mBART-50](https://huggingface.co/facebook/mbart-large-50/) large fine-tuned on [opus100](https://huggingface.co/datasets/viewer/?dataset=opus100) dataset for **NMT** downstream task. # Details of mBART-50 🧠 mBART-50 is a multilingual Sequence-to-Sequence model pre-trained using the "Multilingual Denoising Pretraining" objective. It was introduced in [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper. mBART-50 is a multilingual Sequence-to-Sequence model. It was created to show that multilingual translation models can be created through multilingual fine-tuning. Instead of fine-tuning on one direction, a pre-trained model is fine-tuned many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below. **Multilingual Denoising Pretraining**: The model incorporates N languages by concatenating data: `D = {D1, ..., DN }` where each Di is a collection of monolingual documents in language `i`. The source documents are noised using two schemes, first randomly shuffling the original sentences' order, and second a novel in-filling scheme, where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text. 35% of each instance's words are masked by random sampling a span length according to a Poisson distribution `(λ = 3.5)`. The decoder input is the original text with one position offset. A language id symbol `LID` is used as the initial token to predict the sentence. ## Details of the downstream task (NMT) - Dataset 📚 - **Homepage:** [Link](http://opus.nlpl.eu/opus-100.php) - **Repository:** [GitHub](https://github.com/EdinburghNLP/opus-100-corpus) - **Paper:** [ARXIV](https://arxiv.org/abs/2004.11867) ### Dataset Summary OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English). Languages were selected based on the volume of parallel data available in OPUS. ### Languages OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k. ## Dataset Structure ### Data Fields - `src_tag`: `string` text in source language - `tgt_tag`: `string` translation of source language in target language ### Data Splits The dataset is split into training, development, and test portions. Data was prepared by randomly sampled up to 1M sentence pairs per language pair for training and up to 2000 each for development and test. To ensure that there was no overlap (at the monolingual sentence level) between the training and development/test data, they applied a filter during sampling to exclude sentences that had already been sampled. Note that this was done cross-lingually so that, for instance, an English sentence in the Portuguese-English portion of the training data could not occur in the Hindi-English test set. ## Test set metrics 🧾 We got a **BLEU score of 20.61** ## Model in Action 🚀 ```sh git clone https://github.com/huggingface/transformers.git pip install -q ./transformers ``` ```python from transformers import MBart50TokenizerFast, MBartForConditionalGeneration ckpt = 'Narrativa/mbart-large-50-finetuned-opus-en-pt-translation' tokenizer = MBart50TokenizerFast.from_pretrained(ckpt) model = MBartForConditionalGeneration.from_pretrained(ckpt).to("cuda") tokenizer.src_lang = 'en_XX' def translate(text): inputs = tokenizer(text, return_tensors='pt') input_ids = inputs.input_ids.to('cuda') attention_mask = inputs.attention_mask.to('cuda') output = model.generate(input_ids, attention_mask=attention_mask, forced_bos_token_id=tokenizer.lang_code_to_id['pt_XX']) return tokenizer.decode(output[0], skip_special_tokens=True) translate('here your English text to be translated to Portuguese...') ``` Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
Narrativa/mbart-large-50-finetuned-opus-pt-en-translation
764997c29e8d47c7d23c77fb0339a75a0d2fd722
2021-06-21T11:16:19.000Z
[ "pytorch", "mbart", "text2text-generation", "pt", "en", "dataset:opus100", "dataset:opusbook", "arxiv:2008.00401", "arxiv:2004.11867", "transformers", "translation", "autotrain_compatible" ]
translation
false
Narrativa
null
Narrativa/mbart-large-50-finetuned-opus-pt-en-translation
82
null
transformers
4,988
--- language: - pt - en datasets: - opus100 - opusbook tags: - translation metrics: - bleu --- # mBART-large-50 fine-tuned onpus100 and opusbook for Portuguese to English translation. [mBART-50](https://huggingface.co/facebook/mbart-large-50/) large fine-tuned on [opus100](https://huggingface.co/datasets/viewer/?dataset=opus100) dataset for **NMT** downstream task. # Details of mBART-50 🧠 mBART-50 is a multilingual Sequence-to-Sequence model pre-trained using the "Multilingual Denoising Pretraining" objective. It was introduced in [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper. mBART-50 is a multilingual Sequence-to-Sequence model. It was created to show that multilingual translation models can be created through multilingual fine-tuning. Instead of fine-tuning on one direction, a pre-trained model is fine-tuned many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below. **Multilingual Denoising Pretraining**: The model incorporates N languages by concatenating data: `D = {D1, ..., DN }` where each Di is a collection of monolingual documents in language `i`. The source documents are noised using two schemes, first randomly shuffling the original sentences' order, and second a novel in-filling scheme, where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text. 35% of each instance's words are masked by random sampling a span length according to a Poisson distribution `(λ = 3.5)`. The decoder input is the original text with one position offset. A language id symbol `LID` is used as the initial token to predict the sentence. ## Details of the downstream task (NMT) - Dataset 📚 - **Homepage:** [Link](http://opus.nlpl.eu/opus-100.php) - **Repository:** [GitHub](https://github.com/EdinburghNLP/opus-100-corpus) - **Paper:** [ARXIV](https://arxiv.org/abs/2004.11867) ### Dataset Summary OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English). Languages were selected based on the volume of parallel data available in OPUS. ### Languages OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k. ## Dataset Structure ### Data Fields - `src_tag`: `string` text in source language - `tgt_tag`: `string` translation of source language in target language ### Data Splits The dataset is split into training, development, and test portions. Data was prepared by randomly sampled up to 1M sentence pairs per language pair for training and up to 2000 each for development and test. To ensure that there was no overlap (at the monolingual sentence level) between the training and development/test data, they applied a filter during sampling to exclude sentences that had already been sampled. Note that this was done cross-lingually so that, for instance, an English sentence in the Portuguese-English portion of the training data could not occur in the Hindi-English test set. ## Test set metrics 🧾 We got a **BLEU score of 26.12** ## Model in Action 🚀 ```sh git clone https://github.com/huggingface/transformers.git pip install -q ./transformers ``` ```python from transformers import MBart50TokenizerFast, MBartForConditionalGeneration ckpt = 'Narrativa/mbart-large-50-finetuned-opus-pt-en-translation' tokenizer = MBart50TokenizerFast.from_pretrained(ckpt) model = MBartForConditionalGeneration.from_pretrained(ckpt).to("cuda") tokenizer.src_lang = 'pt_XX' def translate(text): inputs = tokenizer(text, return_tensors='pt') input_ids = inputs.input_ids.to('cuda') attention_mask = inputs.attention_mask.to('cuda') output = model.generate(input_ids, attention_mask=attention_mask, forced_bos_token_id=tokenizer.lang_code_to_id['en_XX']) return tokenizer.decode(output[0], skip_special_tokens=True) translate('here your Portuguese text to be translated to English...') ``` Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
SkelterLabsInc/bert-base-japanese-jaquad
7bd5402cab37743c5c989e0773e92cf8089a8c5a
2022-02-04T02:39:25.000Z
[ "pytorch", "bert", "question-answering", "ja", "dataset:SkelterLabsInc/JaQuAD", "arxiv:2202.01764", "transformers", "extractive-qa", "license:cc-by-sa-3.0", "autotrain_compatible" ]
null
false
SkelterLabsInc
null
SkelterLabsInc/bert-base-japanese-jaquad
82
1
transformers
4,989
--- license: cc-by-sa-3.0 language: ja tags: - question-answering - extractive-qa pipeline_tag: - None datasets: - SkelterLabsInc/JaQuAD metrics: - Exact match - F1 score --- # BERT base Japanese - JaQuAD ## Description A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD). Please refer [BERT base Japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) for details about the pre-training model. The codes for the fine-tuning are available at [SkelterLabsInc/JaQuAD](https://github.com/SkelterLabsInc/JaQuAD) ## Evaluation results On the development set. ```shell {"f1": 77.35, "exact_match": 61.01} ``` On the test set. ```shell {"f1": 78.92, "exact_match": 63.38} ``` ## Usage ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?' context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。' model = AutoModelForQuestionAnswering.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') tokenizer = AutoTokenizer.from_pretrained( 'SkelterLabsInc/bert-base-japanese-jaquad') inputs = tokenizer( question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits # Get the most likely beginning of answer with the argmax of the score. answer_start = torch.argmax(answer_start_scores) # Get the most likely end of answer with the argmax of the score. # 1 is added to `answer_end` because the index pointed by score is inclusive. answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) # answer = 'スコットランド' ``` ## License The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license. ## Citation ```bibtex @misc{so2022jaquad, title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}}, author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho}, year={2022}, eprint={2202.01764}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
SriramSridhar78/sriram-car-classifier
acd0d25f394630bd42d8588bf95cee633f7fdff3
2022-01-26T16:04:18.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SriramSridhar78
null
SriramSridhar78/sriram-car-classifier
82
1
transformers
4,990
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: sriram-car-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8271908164024353 --- # sriram-car-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### AM_General_Hummer_SUV_2000 ![AM_General_Hummer_SUV_2000](images/AM_General_Hummer_SUV_2000.jpg) #### Acura_Integra_Type_R_2001 ![Acura_Integra_Type_R_2001](images/Acura_Integra_Type_R_2001.jpg) #### Acura_RL_Sedan_2012 ![Acura_RL_Sedan_2012](images/Acura_RL_Sedan_2012.jpg) #### Acura_TL_Sedan_2012 ![Acura_TL_Sedan_2012](images/Acura_TL_Sedan_2012.jpg) #### Acura_TL_Type-S_2008 ![Acura_TL_Type-S_2008](images/Acura_TL_Type-S_2008.jpg) #### Acura_TSX_Sedan_2012 ![Acura_TSX_Sedan_2012](images/Acura_TSX_Sedan_2012.jpg) #### Acura_ZDX_Hatchback_2012 ![Acura_ZDX_Hatchback_2012](images/Acura_ZDX_Hatchback_2012.jpg) #### Aston_Martin_V8_Vantage_Convertible_2012 ![Aston_Martin_V8_Vantage_Convertible_2012](images/Aston_Martin_V8_Vantage_Convertible_2012.jpg) #### Aston_Martin_V8_Vantage_Coupe_2012 ![Aston_Martin_V8_Vantage_Coupe_2012](images/Aston_Martin_V8_Vantage_Coupe_2012.jpg) #### Aston_Martin_Virage_Convertible_2012 ![Aston_Martin_Virage_Convertible_2012](images/Aston_Martin_Virage_Convertible_2012.jpg) #### Aston_Martin_Virage_Coupe_2012 ![Aston_Martin_Virage_Coupe_2012](images/Aston_Martin_Virage_Coupe_2012.jpg) #### Audi_100_Sedan_1994 ![Audi_100_Sedan_1994](images/Audi_100_Sedan_1994.jpg) #### Audi_100_Wagon_1994 ![Audi_100_Wagon_1994](images/Audi_100_Wagon_1994.jpg) #### Audi_A5_Coupe_2012 ![Audi_A5_Coupe_2012](images/Audi_A5_Coupe_2012.jpg) #### Audi_R8_Coupe_2012 ![Audi_R8_Coupe_2012](images/Audi_R8_Coupe_2012.jpg) #### Audi_RS_4_Convertible_2008 ![Audi_RS_4_Convertible_2008](images/Audi_RS_4_Convertible_2008.jpg) #### Audi_S4_Sedan_2007 ![Audi_S4_Sedan_2007](images/Audi_S4_Sedan_2007.jpg) #### Audi_S4_Sedan_2012 ![Audi_S4_Sedan_2012](images/Audi_S4_Sedan_2012.jpg) #### Audi_S5_Convertible_2012 ![Audi_S5_Convertible_2012](images/Audi_S5_Convertible_2012.jpg) #### Audi_S5_Coupe_2012 ![Audi_S5_Coupe_2012](images/Audi_S5_Coupe_2012.jpg) #### Audi_S6_Sedan_2011 ![Audi_S6_Sedan_2011](images/Audi_S6_Sedan_2011.jpg) #### Audi_TTS_Coupe_2012 ![Audi_TTS_Coupe_2012](images/Audi_TTS_Coupe_2012.jpg) #### Audi_TT_Hatchback_2011 ![Audi_TT_Hatchback_2011](images/Audi_TT_Hatchback_2011.jpg) #### Audi_TT_RS_Coupe_2012 ![Audi_TT_RS_Coupe_2012](images/Audi_TT_RS_Coupe_2012.jpg) #### Audi_V8_Sedan_1994 ![Audi_V8_Sedan_1994](images/Audi_V8_Sedan_1994.jpg) #### BMW_1_Series_Convertible_2012 ![BMW_1_Series_Convertible_2012](images/BMW_1_Series_Convertible_2012.jpg) #### BMW_1_Series_Coupe_2012 ![BMW_1_Series_Coupe_2012](images/BMW_1_Series_Coupe_2012.jpg) #### BMW_3_Series_Sedan_2012 ![BMW_3_Series_Sedan_2012](images/BMW_3_Series_Sedan_2012.jpg) #### BMW_3_Series_Wagon_2012 ![BMW_3_Series_Wagon_2012](images/BMW_3_Series_Wagon_2012.jpg) #### BMW_6_Series_Convertible_2007 ![BMW_6_Series_Convertible_2007](images/BMW_6_Series_Convertible_2007.jpg) #### BMW_ActiveHybrid_5_Sedan_2012 ![BMW_ActiveHybrid_5_Sedan_2012](images/BMW_ActiveHybrid_5_Sedan_2012.jpg) #### BMW_M3_Coupe_2012 ![BMW_M3_Coupe_2012](images/BMW_M3_Coupe_2012.jpg) #### BMW_M5_Sedan_2010 ![BMW_M5_Sedan_2010](images/BMW_M5_Sedan_2010.jpg) #### BMW_M6_Convertible_2010 ![BMW_M6_Convertible_2010](images/BMW_M6_Convertible_2010.jpg) #### BMW_X3_SUV_2012 ![BMW_X3_SUV_2012](images/BMW_X3_SUV_2012.jpg) #### BMW_X5_SUV_2007 ![BMW_X5_SUV_2007](images/BMW_X5_SUV_2007.jpg) #### BMW_X6_SUV_2012 ![BMW_X6_SUV_2012](images/BMW_X6_SUV_2012.jpg) #### BMW_Z4_Convertible_2012 ![BMW_Z4_Convertible_2012](images/BMW_Z4_Convertible_2012.jpg) #### Bentley_Arnage_Sedan_2009 ![Bentley_Arnage_Sedan_2009](images/Bentley_Arnage_Sedan_2009.jpg) #### Bentley_Continental_Flying_Spur_Sedan_2007 ![Bentley_Continental_Flying_Spur_Sedan_2007](images/Bentley_Continental_Flying_Spur_Sedan_2007.jpg) #### Bentley_Continental_GT_Coupe_2007 ![Bentley_Continental_GT_Coupe_2007](images/Bentley_Continental_GT_Coupe_2007.jpg) #### Bentley_Continental_GT_Coupe_2012 ![Bentley_Continental_GT_Coupe_2012](images/Bentley_Continental_GT_Coupe_2012.jpg) #### Bentley_Continental_Supersports_Conv._Convertible_2012 ![Bentley_Continental_Supersports_Conv._Convertible_2012](images/Bentley_Continental_Supersports_Conv._Convertible_2012.jpg) #### Bentley_Mulsanne_Sedan_2011 ![Bentley_Mulsanne_Sedan_2011](images/Bentley_Mulsanne_Sedan_2011.jpg) #### Bugatti_Veyron_16.4_Convertible_2009 ![Bugatti_Veyron_16.4_Convertible_2009](images/Bugatti_Veyron_16.4_Convertible_2009.jpg) #### Bugatti_Veyron_16.4_Coupe_2009 ![Bugatti_Veyron_16.4_Coupe_2009](images/Bugatti_Veyron_16.4_Coupe_2009.jpg) #### Buick_Enclave_SUV_2012 ![Buick_Enclave_SUV_2012](images/Buick_Enclave_SUV_2012.jpg) #### Buick_Rainier_SUV_2007 ![Buick_Rainier_SUV_2007](images/Buick_Rainier_SUV_2007.jpg) #### Buick_Regal_GS_2012 ![Buick_Regal_GS_2012](images/Buick_Regal_GS_2012.jpg) #### Buick_Verano_Sedan_2012 ![Buick_Verano_Sedan_2012](images/Buick_Verano_Sedan_2012.jpg) #### Cadillac_CTS-V_Sedan_2012 ![Cadillac_CTS-V_Sedan_2012](images/Cadillac_CTS-V_Sedan_2012.jpg) #### Cadillac_Escalade_EXT_Crew_Cab_2007 ![Cadillac_Escalade_EXT_Crew_Cab_2007](images/Cadillac_Escalade_EXT_Crew_Cab_2007.jpg) #### Cadillac_SRX_SUV_2012 ![Cadillac_SRX_SUV_2012](images/Cadillac_SRX_SUV_2012.jpg) #### Chevrolet_Avalanche_Crew_Cab_2012 ![Chevrolet_Avalanche_Crew_Cab_2012](images/Chevrolet_Avalanche_Crew_Cab_2012.jpg) #### Chevrolet_Camaro_Convertible_2012 ![Chevrolet_Camaro_Convertible_2012](images/Chevrolet_Camaro_Convertible_2012.jpg) #### Chevrolet_Cobalt_SS_2010 ![Chevrolet_Cobalt_SS_2010](images/Chevrolet_Cobalt_SS_2010.jpg) #### Chevrolet_Corvette_Convertible_2012 ![Chevrolet_Corvette_Convertible_2012](images/Chevrolet_Corvette_Convertible_2012.jpg) #### Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007 ![Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007](images/Chevrolet_Corvette_Ron_Fellows_Edition_Z06_2007.jpg) #### Chevrolet_Corvette_ZR1_2012 ![Chevrolet_Corvette_ZR1_2012](images/Chevrolet_Corvette_ZR1_2012.jpg) #### Chevrolet_Express_Cargo_Van_2007 ![Chevrolet_Express_Cargo_Van_2007](images/Chevrolet_Express_Cargo_Van_2007.jpg) #### Chevrolet_Express_Van_2007 ![Chevrolet_Express_Van_2007](images/Chevrolet_Express_Van_2007.jpg) #### Chevrolet_HHR_SS_2010 ![Chevrolet_HHR_SS_2010](images/Chevrolet_HHR_SS_2010.jpg) #### Chevrolet_Impala_Sedan_2007 ![Chevrolet_Impala_Sedan_2007](images/Chevrolet_Impala_Sedan_2007.jpg) #### Chevrolet_Malibu_Hybrid_Sedan_2010 ![Chevrolet_Malibu_Hybrid_Sedan_2010](images/Chevrolet_Malibu_Hybrid_Sedan_2010.jpg) #### Chevrolet_Malibu_Sedan_2007 ![Chevrolet_Malibu_Sedan_2007](images/Chevrolet_Malibu_Sedan_2007.jpg) #### Chevrolet_Monte_Carlo_Coupe_2007 ![Chevrolet_Monte_Carlo_Coupe_2007](images/Chevrolet_Monte_Carlo_Coupe_2007.jpg) #### Chevrolet_Silverado_1500_Classic_Extended_Cab_2007 ![Chevrolet_Silverado_1500_Classic_Extended_Cab_2007](images/Chevrolet_Silverado_1500_Classic_Extended_Cab_2007.jpg) #### Chevrolet_Silverado_1500_Extended_Cab_2012 ![Chevrolet_Silverado_1500_Extended_Cab_2012](images/Chevrolet_Silverado_1500_Extended_Cab_2012.jpg) #### Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012 ![Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012](images/Chevrolet_Silverado_1500_Hybrid_Crew_Cab_2012.jpg) #### Chevrolet_Silverado_1500_Regular_Cab_2012 ![Chevrolet_Silverado_1500_Regular_Cab_2012](images/Chevrolet_Silverado_1500_Regular_Cab_2012.jpg) #### Chevrolet_Silverado_2500HD_Regular_Cab_2012 ![Chevrolet_Silverado_2500HD_Regular_Cab_2012](images/Chevrolet_Silverado_2500HD_Regular_Cab_2012.jpg) #### Chevrolet_Sonic_Sedan_2012 ![Chevrolet_Sonic_Sedan_2012](images/Chevrolet_Sonic_Sedan_2012.jpg) #### Chevrolet_Tahoe_Hybrid_SUV_2012 ![Chevrolet_Tahoe_Hybrid_SUV_2012](images/Chevrolet_Tahoe_Hybrid_SUV_2012.jpg) #### Chevrolet_TrailBlazer_SS_2009 ![Chevrolet_TrailBlazer_SS_2009](images/Chevrolet_TrailBlazer_SS_2009.jpg) #### Chevrolet_Traverse_SUV_2012 ![Chevrolet_Traverse_SUV_2012](images/Chevrolet_Traverse_SUV_2012.jpg) #### Chrysler_300_SRT-8_2010 ![Chrysler_300_SRT-8_2010](images/Chrysler_300_SRT-8_2010.jpg) #### Chrysler_Aspen_SUV_2009 ![Chrysler_Aspen_SUV_2009](images/Chrysler_Aspen_SUV_2009.jpg) #### Chrysler_Crossfire_Convertible_2008 ![Chrysler_Crossfire_Convertible_2008](images/Chrysler_Crossfire_Convertible_2008.jpg) #### Chrysler_PT_Cruiser_Convertible_2008 ![Chrysler_PT_Cruiser_Convertible_2008](images/Chrysler_PT_Cruiser_Convertible_2008.jpg) #### Chrysler_Sebring_Convertible_2010 ![Chrysler_Sebring_Convertible_2010](images/Chrysler_Sebring_Convertible_2010.jpg) #### Chrysler_Town_and_Country_Minivan_2012 ![Chrysler_Town_and_Country_Minivan_2012](images/Chrysler_Town_and_Country_Minivan_2012.jpg) #### Daewoo_Nubira_Wagon_2002 ![Daewoo_Nubira_Wagon_2002](images/Daewoo_Nubira_Wagon_2002.jpg) #### Dodge_Caliber_Wagon_2007 ![Dodge_Caliber_Wagon_2007](images/Dodge_Caliber_Wagon_2007.jpg) #### Dodge_Caliber_Wagon_2012 ![Dodge_Caliber_Wagon_2012](images/Dodge_Caliber_Wagon_2012.jpg) #### Dodge_Caravan_Minivan_1997 ![Dodge_Caravan_Minivan_1997](images/Dodge_Caravan_Minivan_1997.jpg) #### Dodge_Challenger_SRT8_2011 ![Dodge_Challenger_SRT8_2011](images/Dodge_Challenger_SRT8_2011.jpg) #### Dodge_Charger_SRT-8_2009 ![Dodge_Charger_SRT-8_2009](images/Dodge_Charger_SRT-8_2009.jpg) #### Dodge_Charger_Sedan_2012 ![Dodge_Charger_Sedan_2012](images/Dodge_Charger_Sedan_2012.jpg) #### Dodge_Dakota_Club_Cab_2007 ![Dodge_Dakota_Club_Cab_2007](images/Dodge_Dakota_Club_Cab_2007.jpg) #### Dodge_Dakota_Crew_Cab_2010 ![Dodge_Dakota_Crew_Cab_2010](images/Dodge_Dakota_Crew_Cab_2010.jpg) #### Dodge_Durango_SUV_2007 ![Dodge_Durango_SUV_2007](images/Dodge_Durango_SUV_2007.jpg) #### Dodge_Durango_SUV_2012 ![Dodge_Durango_SUV_2012](images/Dodge_Durango_SUV_2012.jpg) #### Dodge_Journey_SUV_2012 ![Dodge_Journey_SUV_2012](images/Dodge_Journey_SUV_2012.jpg) #### Dodge_Magnum_Wagon_2008 ![Dodge_Magnum_Wagon_2008](images/Dodge_Magnum_Wagon_2008.jpg) #### Dodge_Ram_Pickup_3500_Crew_Cab_2010 ![Dodge_Ram_Pickup_3500_Crew_Cab_2010](images/Dodge_Ram_Pickup_3500_Crew_Cab_2010.jpg) #### Dodge_Ram_Pickup_3500_Quad_Cab_2009 ![Dodge_Ram_Pickup_3500_Quad_Cab_2009](images/Dodge_Ram_Pickup_3500_Quad_Cab_2009.jpg) #### Dodge_Sprinter_Cargo_Van_2009 ![Dodge_Sprinter_Cargo_Van_2009](images/Dodge_Sprinter_Cargo_Van_2009.jpg) #### Eagle_Talon_Hatchback_1998 ![Eagle_Talon_Hatchback_1998](images/Eagle_Talon_Hatchback_1998.jpg) #### FIAT_500_Abarth_2012 ![FIAT_500_Abarth_2012](images/FIAT_500_Abarth_2012.jpg) #### FIAT_500_Convertible_2012 ![FIAT_500_Convertible_2012](images/FIAT_500_Convertible_2012.jpg) #### Ferrari_458_Italia_Convertible_2012 ![Ferrari_458_Italia_Convertible_2012](images/Ferrari_458_Italia_Convertible_2012.jpg) #### Ferrari_458_Italia_Coupe_2012 ![Ferrari_458_Italia_Coupe_2012](images/Ferrari_458_Italia_Coupe_2012.jpg) #### Ferrari_California_Convertible_2012 ![Ferrari_California_Convertible_2012](images/Ferrari_California_Convertible_2012.jpg) #### Ferrari_FF_Coupe_2012 ![Ferrari_FF_Coupe_2012](images/Ferrari_FF_Coupe_2012.jpg) #### Fisker_Karma_Sedan_2012 ![Fisker_Karma_Sedan_2012](images/Fisker_Karma_Sedan_2012.jpg) #### Ford_E-Series_Wagon_Van_2012 ![Ford_E-Series_Wagon_Van_2012](images/Ford_E-Series_Wagon_Van_2012.jpg) #### Ford_Edge_SUV_2012 ![Ford_Edge_SUV_2012](images/Ford_Edge_SUV_2012.jpg) #### Ford_Expedition_EL_SUV_2009 ![Ford_Expedition_EL_SUV_2009](images/Ford_Expedition_EL_SUV_2009.jpg) #### Ford_F-150_Regular_Cab_2007 ![Ford_F-150_Regular_Cab_2007](images/Ford_F-150_Regular_Cab_2007.jpg) #### Ford_F-150_Regular_Cab_2012 ![Ford_F-150_Regular_Cab_2012](images/Ford_F-150_Regular_Cab_2012.jpg) #### Ford_F-450_Super_Duty_Crew_Cab_2012 ![Ford_F-450_Super_Duty_Crew_Cab_2012](images/Ford_F-450_Super_Duty_Crew_Cab_2012.jpg) #### Ford_Fiesta_Sedan_2012 ![Ford_Fiesta_Sedan_2012](images/Ford_Fiesta_Sedan_2012.jpg) #### Ford_Focus_Sedan_2007 ![Ford_Focus_Sedan_2007](images/Ford_Focus_Sedan_2007.jpg) #### Ford_Freestar_Minivan_2007 ![Ford_Freestar_Minivan_2007](images/Ford_Freestar_Minivan_2007.jpg) #### Ford_GT_Coupe_2006 ![Ford_GT_Coupe_2006](images/Ford_GT_Coupe_2006.jpg) #### Ford_Mustang_Convertible_2007 ![Ford_Mustang_Convertible_2007](images/Ford_Mustang_Convertible_2007.jpg) #### Ford_Ranger_SuperCab_2011 ![Ford_Ranger_SuperCab_2011](images/Ford_Ranger_SuperCab_2011.jpg) #### GMC_Acadia_SUV_2012 ![GMC_Acadia_SUV_2012](images/GMC_Acadia_SUV_2012.jpg) #### GMC_Canyon_Extended_Cab_2012 ![GMC_Canyon_Extended_Cab_2012](images/GMC_Canyon_Extended_Cab_2012.jpg) #### GMC_Savana_Van_2012 ![GMC_Savana_Van_2012](images/GMC_Savana_Van_2012.jpg) #### GMC_Terrain_SUV_2012 ![GMC_Terrain_SUV_2012](images/GMC_Terrain_SUV_2012.jpg) #### GMC_Yukon_Hybrid_SUV_2012 ![GMC_Yukon_Hybrid_SUV_2012](images/GMC_Yukon_Hybrid_SUV_2012.jpg) #### Geo_Metro_Convertible_1993 ![Geo_Metro_Convertible_1993](images/Geo_Metro_Convertible_1993.jpg) #### HUMMER_H2_SUT_Crew_Cab_2009 ![HUMMER_H2_SUT_Crew_Cab_2009](images/HUMMER_H2_SUT_Crew_Cab_2009.jpg) #### HUMMER_H3T_Crew_Cab_2010 ![HUMMER_H3T_Crew_Cab_2010](images/HUMMER_H3T_Crew_Cab_2010.jpg) #### Honda_Accord_Coupe_2012 ![Honda_Accord_Coupe_2012](images/Honda_Accord_Coupe_2012.jpg) #### Honda_Accord_Sedan_2012 ![Honda_Accord_Sedan_2012](images/Honda_Accord_Sedan_2012.jpg) #### Honda_Odyssey_Minivan_2007 ![Honda_Odyssey_Minivan_2007](images/Honda_Odyssey_Minivan_2007.jpg) #### Honda_Odyssey_Minivan_2012 ![Honda_Odyssey_Minivan_2012](images/Honda_Odyssey_Minivan_2012.jpg) #### Hyundai_Accent_Sedan_2012 ![Hyundai_Accent_Sedan_2012](images/Hyundai_Accent_Sedan_2012.jpg) #### Hyundai_Azera_Sedan_2012 ![Hyundai_Azera_Sedan_2012](images/Hyundai_Azera_Sedan_2012.jpg) #### Hyundai_Elantra_Sedan_2007 ![Hyundai_Elantra_Sedan_2007](images/Hyundai_Elantra_Sedan_2007.jpg) #### Hyundai_Elantra_Touring_Hatchback_2012 ![Hyundai_Elantra_Touring_Hatchback_2012](images/Hyundai_Elantra_Touring_Hatchback_2012.jpg) #### Hyundai_Genesis_Sedan_2012 ![Hyundai_Genesis_Sedan_2012](images/Hyundai_Genesis_Sedan_2012.jpg) #### Hyundai_Santa_Fe_SUV_2012 ![Hyundai_Santa_Fe_SUV_2012](images/Hyundai_Santa_Fe_SUV_2012.jpg) #### Hyundai_Sonata_Hybrid_Sedan_2012 ![Hyundai_Sonata_Hybrid_Sedan_2012](images/Hyundai_Sonata_Hybrid_Sedan_2012.jpg) #### Hyundai_Sonata_Sedan_2012 ![Hyundai_Sonata_Sedan_2012](images/Hyundai_Sonata_Sedan_2012.jpg) #### Hyundai_Tucson_SUV_2012 ![Hyundai_Tucson_SUV_2012](images/Hyundai_Tucson_SUV_2012.jpg) #### Hyundai_Veloster_Hatchback_2012 ![Hyundai_Veloster_Hatchback_2012](images/Hyundai_Veloster_Hatchback_2012.jpg) #### Hyundai_Veracruz_SUV_2012 ![Hyundai_Veracruz_SUV_2012](images/Hyundai_Veracruz_SUV_2012.jpg) #### Infiniti_G_Coupe_IPL_2012 ![Infiniti_G_Coupe_IPL_2012](images/Infiniti_G_Coupe_IPL_2012.jpg) #### Infiniti_QX56_SUV_2011 ![Infiniti_QX56_SUV_2011](images/Infiniti_QX56_SUV_2011.jpg) #### Isuzu_Ascender_SUV_2008 ![Isuzu_Ascender_SUV_2008](images/Isuzu_Ascender_SUV_2008.jpg) #### Jaguar_XK_XKR_2012 ![Jaguar_XK_XKR_2012](images/Jaguar_XK_XKR_2012.jpg) #### Jeep_Compass_SUV_2012 ![Jeep_Compass_SUV_2012](images/Jeep_Compass_SUV_2012.jpg) #### Jeep_Grand_Cherokee_SUV_2012 ![Jeep_Grand_Cherokee_SUV_2012](images/Jeep_Grand_Cherokee_SUV_2012.jpg) #### Jeep_Liberty_SUV_2012 ![Jeep_Liberty_SUV_2012](images/Jeep_Liberty_SUV_2012.jpg) #### Jeep_Patriot_SUV_2012 ![Jeep_Patriot_SUV_2012](images/Jeep_Patriot_SUV_2012.jpg) #### Jeep_Wrangler_SUV_2012 ![Jeep_Wrangler_SUV_2012](images/Jeep_Wrangler_SUV_2012.jpg) #### Lamborghini_Aventador_Coupe_2012 ![Lamborghini_Aventador_Coupe_2012](images/Lamborghini_Aventador_Coupe_2012.jpg) #### Lamborghini_Diablo_Coupe_2001 ![Lamborghini_Diablo_Coupe_2001](images/Lamborghini_Diablo_Coupe_2001.jpg) #### Lamborghini_Gallardo_LP_570-4_Superleggera_2012 ![Lamborghini_Gallardo_LP_570-4_Superleggera_2012](images/Lamborghini_Gallardo_LP_570-4_Superleggera_2012.jpg) #### Lamborghini_Reventon_Coupe_2008 ![Lamborghini_Reventon_Coupe_2008](images/Lamborghini_Reventon_Coupe_2008.jpg) #### Land_Rover_LR2_SUV_2012 ![Land_Rover_LR2_SUV_2012](images/Land_Rover_LR2_SUV_2012.jpg) #### Land_Rover_Range_Rover_SUV_2012 ![Land_Rover_Range_Rover_SUV_2012](images/Land_Rover_Range_Rover_SUV_2012.jpg) #### Lincoln_Town_Car_Sedan_2011 ![Lincoln_Town_Car_Sedan_2011](images/Lincoln_Town_Car_Sedan_2011.jpg) #### MINI_Cooper_Roadster_Convertible_2012 ![MINI_Cooper_Roadster_Convertible_2012](images/MINI_Cooper_Roadster_Convertible_2012.jpg) #### Maybach_Landaulet_Convertible_2012 ![Maybach_Landaulet_Convertible_2012](images/Maybach_Landaulet_Convertible_2012.jpg) #### Mazda_Tribute_SUV_2011 ![Mazda_Tribute_SUV_2011](images/Mazda_Tribute_SUV_2011.jpg) #### McLaren_MP4-12C_Coupe_2012 ![McLaren_MP4-12C_Coupe_2012](images/McLaren_MP4-12C_Coupe_2012.jpg) #### Mercedes-Benz_300-Class_Convertible_1993 ![Mercedes-Benz_300-Class_Convertible_1993](images/Mercedes-Benz_300-Class_Convertible_1993.jpg) #### Mercedes-Benz_C-Class_Sedan_2012 ![Mercedes-Benz_C-Class_Sedan_2012](images/Mercedes-Benz_C-Class_Sedan_2012.jpg) #### Mercedes-Benz_E-Class_Sedan_2012 ![Mercedes-Benz_E-Class_Sedan_2012](images/Mercedes-Benz_E-Class_Sedan_2012.jpg) #### Mercedes-Benz_S-Class_Sedan_2012 ![Mercedes-Benz_S-Class_Sedan_2012](images/Mercedes-Benz_S-Class_Sedan_2012.jpg) #### Mercedes-Benz_SL-Class_Coupe_2009 ![Mercedes-Benz_SL-Class_Coupe_2009](images/Mercedes-Benz_SL-Class_Coupe_2009.jpg) #### Mercedes-Benz_Sprinter_Van_2012 ![Mercedes-Benz_Sprinter_Van_2012](images/Mercedes-Benz_Sprinter_Van_2012.jpg) #### Mitsubishi_Lancer_Sedan_2012 ![Mitsubishi_Lancer_Sedan_2012](images/Mitsubishi_Lancer_Sedan_2012.jpg) #### Nissan_240SX_Coupe_1998 ![Nissan_240SX_Coupe_1998](images/Nissan_240SX_Coupe_1998.jpg) #### Nissan_Juke_Hatchback_2012 ![Nissan_Juke_Hatchback_2012](images/Nissan_Juke_Hatchback_2012.jpg) #### Nissan_Leaf_Hatchback_2012 ![Nissan_Leaf_Hatchback_2012](images/Nissan_Leaf_Hatchback_2012.jpg) #### Nissan_NV_Passenger_Van_2012 ![Nissan_NV_Passenger_Van_2012](images/Nissan_NV_Passenger_Van_2012.jpg) #### Plymouth_Neon_Coupe_1999 ![Plymouth_Neon_Coupe_1999](images/Plymouth_Neon_Coupe_1999.jpg) #### Porsche_Panamera_Sedan_2012 ![Porsche_Panamera_Sedan_2012](images/Porsche_Panamera_Sedan_2012.jpg) #### Ram_C_V_Cargo_Van_Minivan_2012 ![Ram_C_V_Cargo_Van_Minivan_2012](images/Ram_C_V_Cargo_Van_Minivan_2012.jpg) #### Rolls-Royce_Ghost_Sedan_2012 ![Rolls-Royce_Ghost_Sedan_2012](images/Rolls-Royce_Ghost_Sedan_2012.jpg) #### Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012 ![Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012](images/Rolls-Royce_Phantom_Drophead_Coupe_Convertible_2012.jpg) #### Rolls-Royce_Phantom_Sedan_2012 ![Rolls-Royce_Phantom_Sedan_2012](images/Rolls-Royce_Phantom_Sedan_2012.jpg) #### Scion_xD_Hatchback_2012 ![Scion_xD_Hatchback_2012](images/Scion_xD_Hatchback_2012.jpg) #### Spyker_C8_Convertible_2009 ![Spyker_C8_Convertible_2009](images/Spyker_C8_Convertible_2009.jpg) #### Spyker_C8_Coupe_2009 ![Spyker_C8_Coupe_2009](images/Spyker_C8_Coupe_2009.jpg) #### Suzuki_Aerio_Sedan_2007 ![Suzuki_Aerio_Sedan_2007](images/Suzuki_Aerio_Sedan_2007.jpg) #### Suzuki_Kizashi_Sedan_2012 ![Suzuki_Kizashi_Sedan_2012](images/Suzuki_Kizashi_Sedan_2012.jpg) #### Suzuki_SX4_Hatchback_2012 ![Suzuki_SX4_Hatchback_2012](images/Suzuki_SX4_Hatchback_2012.jpg) #### Suzuki_SX4_Sedan_2012 ![Suzuki_SX4_Sedan_2012](images/Suzuki_SX4_Sedan_2012.jpg) #### Tesla_Model_S_Sedan_2012 ![Tesla_Model_S_Sedan_2012](images/Tesla_Model_S_Sedan_2012.jpg) #### Toyota_4Runner_SUV_2012 ![Toyota_4Runner_SUV_2012](images/Toyota_4Runner_SUV_2012.jpg) #### Toyota_Camry_Sedan_2012 ![Toyota_Camry_Sedan_2012](images/Toyota_Camry_Sedan_2012.jpg) #### Toyota_Corolla_Sedan_2012 ![Toyota_Corolla_Sedan_2012](images/Toyota_Corolla_Sedan_2012.jpg) #### Toyota_Sequoia_SUV_2012 ![Toyota_Sequoia_SUV_2012](images/Toyota_Sequoia_SUV_2012.jpg) #### Volkswagen_Beetle_Hatchback_2012 ![Volkswagen_Beetle_Hatchback_2012](images/Volkswagen_Beetle_Hatchback_2012.jpg) #### Volkswagen_Golf_Hatchback_1991 ![Volkswagen_Golf_Hatchback_1991](images/Volkswagen_Golf_Hatchback_1991.jpg) #### Volkswagen_Golf_Hatchback_2012 ![Volkswagen_Golf_Hatchback_2012](images/Volkswagen_Golf_Hatchback_2012.jpg) #### Volvo_240_Sedan_1993 ![Volvo_240_Sedan_1993](images/Volvo_240_Sedan_1993.jpg) #### Volvo_C30_Hatchback_2012 ![Volvo_C30_Hatchback_2012](images/Volvo_C30_Hatchback_2012.jpg) #### Volvo_XC90_SUV_2007 ![Volvo_XC90_SUV_2007](images/Volvo_XC90_SUV_2007.jpg) #### smart_fortwo_Convertible_2012 ![smart_fortwo_Convertible_2012](images/smart_fortwo_Convertible_2012.jpg)
ajrae/bert-base-uncased-finetuned-mrpc
561654da12001407e33f5118cc2d980143030e07
2022-02-21T21:19:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ajrae
null
ajrae/bert-base-uncased-finetuned-mrpc
82
null
transformers
4,991
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8578431372549019 - name: F1 type: f1 value: 0.9003436426116839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - Accuracy: 0.8578 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.4169 | 0.8039 | 0.8639 | | No log | 2.0 | 460 | 0.4299 | 0.8137 | 0.875 | | 0.4242 | 3.0 | 690 | 0.4520 | 0.8578 | 0.9003 | | 0.4242 | 4.0 | 920 | 0.6323 | 0.8431 | 0.8926 | | 0.1103 | 5.0 | 1150 | 0.6163 | 0.8578 | 0.8997 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
akhooli/mbart-large-cc25-ar-en
903e7a58186a74ce3aed12f6d1c891e27ade277a
2020-12-11T21:32:04.000Z
[ "pytorch", "mbart", "text2text-generation", "ar", "en", "transformers", "translation", "license:mit", "autotrain_compatible" ]
translation
false
akhooli
null
akhooli/mbart-large-cc25-ar-en
82
1
transformers
4,992
--- tags: - translation language: - ar - en license: mit --- ### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production). Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
b25mayank3/shirt_identifier
2b37de74691a740e005ea610f5decfa610c6d13b
2021-07-21T20:29:09.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
b25mayank3
null
b25mayank3/shirt_identifier
82
null
transformers
4,993
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shirt_identifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6875 --- # shirt_identifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Big Check shirt ![Big Check shirt](images/Big_Check_shirt.jpg) #### Formal Shirt ![Formal Shirt](images/Formal_Shirt.jpg) #### casual shirt ![casual shirt](images/casual_shirt.jpg) #### denim shirt ![denim shirt](images/denim_shirt.jpg)
bayartsogt/mongolian-roberta-base
9e6b882a3b2e208f1e7741407e4f0e350fa3a3cc
2021-07-07T00:52:33.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
bayartsogt
null
bayartsogt/mongolian-roberta-base
82
null
transformers
4,994
Entry not found
birgermoell/roberta-swedish-scandi
3c3b9c6fee15853aa9fe9f472190ab82a180927d
2021-09-23T13:42:48.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "sv", "dataset:mc4", "transformers", "translate", "license:cc-by-4.0" ]
feature-extraction
false
birgermoell
null
birgermoell/roberta-swedish-scandi
82
null
transformers
4,995
--- language: sv license: cc-by-4.0 tags: - translate datasets: - mc4 widget: - text: Meningen med livet är <mask> --- # Svensk Roberta ## Description Swedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
deepset/covid_bert_base
defac006e33937242fe54122c275fbc86794223f
2021-05-19T15:31:18.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
deepset
null
deepset/covid_bert_base
82
4
transformers
4,996
Entry not found
frgfm/rexnet1_5x
af5a939881795422fa97771e8a06b33e19f2dcab
2022-07-20T00:54:55.000Z
[ "pytorch", "onnx", "dataset:frgfm/imagenette", "arxiv:2007.00992", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
frgfm
null
frgfm/rexnet1_5x
82
null
transformers
4,997
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.5x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
google/bert_uncased_L-6_H-256_A-4
67ada51801f40684c01ca3f20c97a35fa7a67d36
2021-05-19T17:33:36.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
null
false
google
null
google/bert_uncased_L-6_H-256_A-4
82
null
transformers
4,998
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
gsarti/opus-tatoeba-eng-pol
e7460fa29a5d6e992cfd8a442c6127d4f1c6dda1
2021-10-18T13:48:19.000Z
[ "pytorch", "marian", "text2text-generation", "en", "pl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
gsarti
null
gsarti/opus-tatoeba-eng-pol
82
null
transformers
4,999
--- language: - en - pl tags: - translation license: apache-2.0 --- ### OPUS Tatoeba English-Polish *This model was obtained by running the script [convert_marian_to_pytorch.py](https://github.com/huggingface/transformers/blob/master/src/transformers/models/marian/convert_marian_to_pytorch.py) with the flag `-m eng-pol`. The original models were trained by [Jörg Tiedemann](https://blogs.helsinki.fi/tiedeman/) using the [MarianNMT](https://marian-nmt.github.io/) library. See all available `MarianMTModel` models on the profile of the [Helsinki NLP](https://huggingface.co/Helsinki-NLP) group.* * source language name: English * target language name: Polish * OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-pol/README.md) * model: transformer * source language code: en * target language code: pl * dataset: opus * release date: 2021-02-19 * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2021-02-19.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-pol/opus-2021-02-19.zip/eng-pol/opus-2021-02-19.zip) * Training data: * eng-pol: Tatoeba-train (59742979) * Validation data: * eng-pol: Tatoeba-dev, 44146 * total-size-shuffled: 44145 * devset-selected: top 5000 lines of Tatoeba-dev.src.shuffled! * Test data: * Tatoeba-test.eng-pol: 10000/64925 * test set translations file: [test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-pol/opus-2021-02-19.zip/eng-pol/opus-2021-02-19.test.txt) * test set scores file: [eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-pol/opus-2021-02-19.zip/eng-pol/opus-2021-02-19.eval.txt) * BLEU-scores |Test set|score| |---|---| |Tatoeba-test.eng-pol|47.5| * chr-F-scores |Test set|score| |---|---| |Tatoeba-test.eng-pol|0.673| ### System Info: * hf_name: eng-pol * source_languages: en * target_languages: pl * opus_readme_url: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-pol/opus-2021-02-19.zip/README.md * original_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['en', 'pl'] * src_constituents: ['eng'] * tgt_constituents: ['pol'] * src_multilingual: False * tgt_multilingual: False * helsinki_git_sha: 70b0a9621f054ef1d8ea81f7d55595d7f64d19ff * transformers_git_sha: 7c6cd0ac28f1b760ccb4d6e4761f13185d05d90b * port_machine: databox * port_time: 2021-10-18-15:11