modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
openclimatefix/dgmr-latent-conditioning-stack
81151f1561c1334263ee65c8eb3f38856c776f78
2022-06-20T08:24:16.000Z
[ "pytorch", "transformers" ]
null
false
openclimatefix
null
openclimatefix/dgmr-latent-conditioning-stack
95
null
transformers
4,700
Entry not found
othrif/wav2vec2-large-xlsr-egyptian
4cfa2d83da399280eaba031bdcbec7b73613442e
2021-03-29T02:46:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "arz", "dataset:https://arabicspeech.org/", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
othrif
null
othrif/wav2vec2-large-xlsr-egyptian
95
null
transformers
4,701
--- language: arz datasets: - https://arabicspeech.org/ metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Egyptian Arabic by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: arabicspeech.org MGB-3 type: arabicspeech.org MGB-3 args: ar metrics: - name: Test WER type: wer value: 55.2 --- # Wav2Vec2-Large-XLSR-53-Egyptian-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Egyptian using the [arabicspeech.org MGB-3](https://arabicspeech.org/mgb3-asr/) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian") model.to("cuda") chars_to_ignore_regex = '[\؛\—\_get\«\»\ـ\ـ\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\،\☭,\؟]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 55.2 ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/othrif/xlsr-wav2vec2)
tartuNLP/EstBERT_NER
fc6f195676c5ae365aac5d12d820dd9bb107a3e2
2022-05-06T06:29:01.000Z
[ "pytorch", "jax", "bert", "token-classification", "et", "arxiv:2011.04784", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
tartuNLP
null
tartuNLP/EstBERT_NER
95
null
transformers
4,702
--- language: et license: cc-by-4.0 widget: - text: "Eesti President on Alar Karis." --- # EstBERT_NER ## Model description EstBERT_NER is a fine-tuned EstBERT model that can be used for Named Entity Recognition. This model was trained on the Estonian NER dataset created by [Tkachenko et al](https://www.aclweb.org/anthology/W13-2412.pdf). It can recognize three types of entities: locations (LOC), organizations (ORG) and persons (PER). ## How to use You can use this model with Transformers pipeline for NER. Post-processing of results may be necessary as the model occasionally tags subword tokens as entities. ``` from transformers import BertTokenizer, BertForTokenClassification from transformers import pipeline tokenizer = BertTokenizer.from_pretrained('tartuNLP/EstBERT_NER') bertner = BertForTokenClassification.from_pretrained('tartuNLP/EstBERT_NER') nlp = pipeline("ner", model=bertner, tokenizer=tokenizer) sentence = 'Eesti Ekspressi teada on Eesti Pank uurinud Hansapanga tehinguid , mis toimusid kaks aastat tagasi suvel ja mille käigus voolas panka ligi miljardi krooni ulatuses kahtlast raha .' ner_results = nlp(sentence) print(ner_results) ``` ``` [{'word': 'Eesti', 'score': 0.9964128136634827, 'entity': 'B-ORG', 'index': 1}, {'word': 'Ekspressi', 'score': 0.9978809356689453, 'entity': 'I-ORG', 'index': 2}, {'word': 'Eesti', 'score': 0.9988121390342712, 'entity': 'B-ORG', 'index': 5}, {'word': 'Pank', 'score': 0.9985784292221069, 'entity': 'I-ORG', 'index': 6}, {'word': 'Hansapanga', 'score': 0.9979034662246704, 'entity': 'B-ORG', 'index': 8}] ``` ## BibTeX entry and citation info ``` @misc{tanvir2020estbert, title={EstBERT: A Pretrained Language-Specific BERT for Estonian}, author={Hasan Tanvir and Claudia Kittask and Kairit Sirts}, year={2020}, eprint={2011.04784}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
yoshitomo-matsubara/bert-base-uncased-stsb
8fc0be283c7af38c97c6b7151d921a1f84f647b4
2021-05-29T21:58:50.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:stsb", "transformers", "stsb", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-stsb
95
null
transformers
4,703
--- language: en tags: - bert - stsb - glue - torchdistill license: apache-2.0 datasets: - stsb metrics: - pearson correlation - spearman correlation --- `bert-base-uncased` fine-tuned on STS-B dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/stsb/mse/bert_base_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
mt-empty/english-assyrian
27fec608a66ff550100bfc7d56001a8a71db94d5
2022-03-14T11:01:52.000Z
[ "pytorch", "marian", "text2text-generation", "en", "as", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
mt-empty
null
mt-empty/english-assyrian
95
null
transformers
4,704
--- language: - en - as tags: - translation license: apache-2.0 metrics: - sacrebleu --- https://github.com/mt-empty/assyrian-translation-model This is an English to Assyrian/Eastern Syriac machine translation model, it uses [English to Arabic](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) model as the base model. Although the project aim is to Build a English to Assyrian - the ones that fall under [Northeastern Neo-Aramaic](https://en.wikipedia.org/wiki/Northeastern_Neo-Aramaic) - the current model mostly provides translation for Classical Syriac. This model is a good initial step, but I hope future work will make it more inline with Assyrian dialects.
Helsinki-NLP/opus-mt-tc-big-en-ar
e2140a8272b3ea1e147084a35117649263b4408d
2022-06-01T13:02:37.000Z
[ "pytorch", "marian", "text2text-generation", "ar", "en", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-ar
95
null
transformers
4,705
--- language: - ar - en tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-ar results: - task: name: Translation eng-ara type: translation args: eng-ara dataset: name: flores101-devtest type: flores_101 args: eng ara devtest metrics: - name: BLEU type: bleu value: 29.4 - task: name: Translation eng-ara type: translation args: eng-ara dataset: name: tatoeba-test-v2020-07-28 type: tatoeba_mt args: eng-ara metrics: - name: BLEU type: bleu value: 20.0 - task: name: Translation eng-ara type: translation args: eng-ara dataset: name: tico19-test type: tico19-test args: eng-ara metrics: - name: BLEU type: bleu value: 30.0 --- # opus-mt-tc-big-en-ar Neural machine translation model for translating from English (en) to Arabic (ar). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): afb ara * valid target language labels: >>afb<< >>ara<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ara/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-ara README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ara/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>afb<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ara<< I can't help you because I'm busy.", ">>ara<< I have to write a letter. Do you have some paper?" ] model_name = "pytorch-models/opus-mt-tc-big-en-ar" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # لا أستطيع مساعدتك لأنني مشغول. # يجب أن أكتب رسالة هل لديك بعض الأوراق؟ ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ar") print(pipe(">>ara<< I can't help you because I'm busy.")) # expected output: لا أستطيع مساعدتك لأنني مشغول. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ara/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ara/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-ara | tatoeba-test-v2021-08-07 | 0.48813 | 19.8 | 10305 | 61356 | | eng-ara | flores101-devtest | 0.61154 | 29.4 | 1012 | 21357 | | eng-ara | tico19-test | 0.60075 | 30.0 | 2100 | 51339 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 16:37:31 EEST 2022 * port machine: LM0-400-22516.local
north/t5_xl_NCC_lm
b445c8c4dd5958f859de7f9a6587758a49b575db
2022-06-01T19:41:43.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
north
null
north/t5_xl_NCC_lm
95
null
transformers
4,706
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- -T5 The North-T5-models are a set of Norwegian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|✔|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/xl/norwegian_NCC_plus_English_pluss100k_lm_t5x_xl/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
RohanJoshi28/twitter_sentiment_analysisv1
cc7bd2e55a7f39dea523a6f50b75005ede4120ab
2022-05-29T20:14:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
RohanJoshi28
null
RohanJoshi28/twitter_sentiment_analysisv1
95
null
transformers
4,707
Entry not found
FigoMe/news-gpt-neo-1.3B-keywords-line-by-line-reverse
4ef8e25b4d39ba58612e36e48c8becd9785e6fee
2022-06-01T17:15:31.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
FigoMe
null
FigoMe/news-gpt-neo-1.3B-keywords-line-by-line-reverse
95
null
transformers
4,708
Entry not found
Peltarion/dnabert-distilbert
eb65755814f5e0e934ecf74a573e7bac2b661ef3
2022-07-02T11:28:16.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "DNA", "license:mit", "autotrain_compatible" ]
fill-mask
false
Peltarion
null
Peltarion/dnabert-distilbert
95
null
transformers
4,709
--- tags: - DNA license: mit --- ## DistilDNA model This is a distilled version of [DNABERT](https://github.com/jerryji1993/DNABERT) by using DistilBERT technique. It has a BERT architecture with 6 layers and 768 hidden units, pre-trained on 6-mer DNA sequences. For more details on the pre-training scheme and methods, please check the original [thesis report](http://www.diva-portal.org/smash/record.jsf?dswid=846&pid=diva2%3A1676068&c=1&searchType=SIMPLE&language=en&query=joana+palés&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all). ## How to Use The model can be used to fine-tune on a downstream genomic task, e.g. promoter identification. ```python import torch from transformers import DistilBertForSequenceClassification model = DistilBertForSequenceClassification.from_pretrained('Peltarion/dnabert-distilbert') ``` More details on how to fine-tune the model, dataset and additional source codes are available on [github.com/joanaapa/Distillation-DNABERT-Promoter](https://github.com/joanaapa/Distillation-DNABERT-Promoter).
ckiplab/bert-base-han-chinese
274f25f098e41e7fe2d1a8f032cde0460c7dc8c8
2022-07-04T08:04:03.000Z
[ "pytorch", "bert", "fill-mask", "zh", "transformers", "lm-head", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
ckiplab
null
ckiplab/bert-base-han-chinese
95
null
transformers
4,710
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - lm-head - bert - zh license: gpl-3.0 --- # CKIP BERT Base Han Chinese Pretrained model on Ancient Chinese language using a masked language modeling (MLM) objective. ## Homepage * [ckiplab/han-transformers](https://github.com/ckiplab/han-transformers) ## Training Datasets The copyright of the datasets belongs to the Institute of Linguistics, Academia Sinica. * [中央研究院上古漢語標記語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/akiwi/kiwi.sh) * [中央研究院中古漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/dkiwi/kiwi.sh) * [中央研究院近代漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/pkiwi/kiwi.sh) * [中央研究院現代漢語語料庫](http://asbc.iis.sinica.edu.tw) ## Contributors * Chin-Tung Lin at [CKIP](https://ckip.iis.sinica.edu.tw) ## Usage * Using our model in your script ```python from transformers import ( AutoTokenizer, AutoModel, ) tokenizer = AutoTokenizer.from_pretrained("ckiplab/bert-base-han-chinese") model = AutoModel.from_pretrained("ckiplab/bert-base-han-chinese") ``` * Using our model for inference ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='ckiplab/bert-base-han-chinese') >>> unmasker("黎[MASK]於變時雍。") [{'sequence': '黎 民 於 變 時 雍 。', 'score': 0.14885780215263367, 'token': 3696, 'token_str': '民'}, {'sequence': '黎 庶 於 變 時 雍 。', 'score': 0.0859643816947937, 'token': 2433, 'token_str': '庶'}, {'sequence': '黎 氏 於 變 時 雍 。', 'score': 0.027848130092024803, 'token': 3694, 'token_str': '氏'}, {'sequence': '黎 人 於 變 時 雍 。', 'score': 0.023678112775087357, 'token': 782, 'token_str': '人'}, {'sequence': '黎 生 於 變 時 雍 。', 'score': 0.018718384206295013, 'token': 4495, 'token_str': '生'}] ```
furrutiav/beto_coherence
c0f23f38c50776b194ada97ca3784077b6b0a402
2022-07-12T00:29:30.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:gpl-2.0" ]
feature-extraction
false
furrutiav
null
furrutiav/beto_coherence
95
null
transformers
4,711
--- license: gpl-2.0 ---
neulab/gpt2-large-finetuned-wikitext103
8ad278e42033da88bd34b5e810390c88bef565c3
2022-07-14T15:38:45.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:2201.12431", "transformers" ]
text-generation
false
neulab
null
neulab/gpt2-large-finetuned-wikitext103
95
null
transformers
4,712
This is a `gpt2-large` model, finetuned on the Wikitext-103 dataset. It achieves a perplexity of **10.56** using a "sliding window" context, using the `run_clm.py` script at [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers). | Base LM: | `distilgpt2` | `gpt2` | | :--- | ----: | ---: | | base perplexity | 18.25 | 14.84 | | + kNN-LM | 15.03 | 12.57 | | + RetoMaton | **14.70** | **12.46** | This model was released as part of the paper ["Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval"](https://arxiv.org/pdf/2201.12431.pdf) (ICML'2022). For more information, see: [https://github.com/neulab/knn-transformers](https://github.com/neulab/knn-transformers) If you use this model, please cite: ``` @inproceedings{alon2022neuro, title={Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval}, author={Alon, Uri and Xu, Frank and He, Junxian and Sengupta, Sudipta and Roth, Dan and Neubig, Graham}, booktitle={International Conference on Machine Learning}, pages={468--485}, year={2022}, organization={PMLR} } ```
Amalq/schizophrenia-roberta-large
5914d6c8121f0339694317d3d9f321d29e649d16
2022-07-26T21:38:32.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:SMHD", "dataset:Schizophrenia Reddit", "arxiv:1806.05258", "transformers", "Transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Amalq
null
Amalq/schizophrenia-roberta-large
95
null
transformers
4,713
--- language: en tags: - Transformers license: apache-2.0 datasets: - SMHD - Schizophrenia Reddit --- # SchizophreniaRoberta model is a model initialized with [roberta-large](https://huggingface.co/roberta-large) and trained with Schizophrenia Reddit, a subset of [Self-Reported Mental Health Diagnoses (SMHD) dataset](https://arxiv.org/pdf/1806.05258.pdf) which consists of Reddit posts by patients with schizophrenia only or schizophrenia with other mental disorders and matched control. We follow the standard pretraining protocols of RoBERTa with [Huggingface’s Transformers library](https://github.com/huggingface/transformers). ## Usage Load the model via [Huggingface’s Transformers library](https://github.com/huggingface/transformers): from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Amalq/schizophrenia-roberta-large") model = AutoModel.from_pretrained("Amalq/schizophrenia-roberta-large") Perplexity of this model is: 4.43
Helsinki-NLP/opus-mt-cs-de
f5a1b1443dc5381df3a0a83d790b3c2eb16cf811
2021-09-09T21:29:18.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cs-de
94
null
transformers
4,714
--- tags: - translation license: apache-2.0 --- ### opus-mt-cs-de * source languages: cs * target languages: de * OPUS readme: [cs-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.cs.de | 22.0 | 0.525 | | news-test2008.cs.de | 21.1 | 0.520 | | newstest2009.cs.de | 22.2 | 0.525 | | newstest2010.cs.de | 22.1 | 0.527 | | newstest2011.cs.de | 21.6 | 0.515 | | newstest2012.cs.de | 22.2 | 0.516 | | newstest2013.cs.de | 24.8 | 0.538 | | newstest2019-csde.cs.de | 23.6 | 0.530 | | Tatoeba.cs.de | 51.6 | 0.687 |
Helsinki-NLP/opus-mt-ko-es
6a5a499d1635016abfe1c289a26dd039b55cf5ae
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-es
94
null
transformers
4,715
--- language: - ko - es tags: - translation license: apache-2.0 --- ### kor-spa * source group: Korean * target group: Spanish * OPUS readme: [kor-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-spa/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.spa | 31.3 | 0.521 | ### System Info: - hf_name: kor-spa - source_languages: kor - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'es'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-spa/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: spa - short_pair: ko-es - chrF2_score: 0.521 - bleu: 31.3 - brevity_penalty: 0.95 - ref_len: 6805.0 - src_name: Korean - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: es - prefer_old: False - long_pair: kor-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-nl-es
2b106c525d9a4b17769f562fde0aac3997aad530
2021-09-10T13:59:11.000Z
[ "pytorch", "marian", "text2text-generation", "nl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nl-es
94
null
transformers
4,716
--- tags: - translation license: apache-2.0 --- ### opus-mt-nl-es * source languages: nl * target languages: es * OPUS readme: [nl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nl-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.nl.es | 51.6 | 0.698 |
funnel-transformer/intermediate-base
40356a7e0969916d0b958333c61ba21f611bcab8
2020-12-11T21:40:21.000Z
[ "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "transformers", "license:apache-2.0" ]
feature-extraction
false
funnel-transformer
null
funnel-transformer/intermediate-base
94
null
transformers
4,717
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia - gigaword --- # Funnel Transformer intermediate model (B6-6-6 without decoder) Pretrained model on English language using a similar objective objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. **Note:** This model does not contain the decoder, so it ouputs hidden states that have a sequence length of one fourth of the inputs. It's good to use for tasks requiring a summary of the sentence (like sentence classification) but not if you need one input per initial token. You should use the `intermediate` model in that case. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate-base") model = FunnelBaseModel.from_pretrained("funnel-transformer/intermediate-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelBaseModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/intermediate-base") model = TFFunnelBaseModel.from_pretrained("funnel-transformer/intermediate-base") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad
35d84905f0e8a5f6ee25104ed20fbed73c299103
2021-05-19T20:06:17.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
huggingface
null
huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad
94
2
transformers
4,718
Entry not found
junnyu/roformer_chinese_sim_char_ft_small
c2f6b597902a58686723b5bee929f150e51fa011
2022-04-15T03:51:50.000Z
[ "pytorch", "roformer", "text-generation", "zh", "transformers", "tf2.0" ]
text-generation
false
junnyu
null
junnyu/roformer_chinese_sim_char_ft_small
94
2
transformers
4,719
--- language: zh tags: - roformer - pytorch - tf2.0 inference: False --- # 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1
1c1e994ef2a74026daeb86cb7a562bbf9475f645
2021-06-16T17:12:46.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad_v2", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1
94
null
transformers
4,720
--- language: en thumbnail: license: mit tags: - question-answering - - datasets: - squad_v2 metrics: - squad_v2 widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## bert-large-uncased-whole-word-masking model fine-tuned on SQuAD v2 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 16.0%** of the original weights. The model contains **24.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). With a simple resizing of the linear matrices it ran **2.63x as fast as bert-large-uncased-whole-word-masking** on the evaluation. This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix. <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1/raw/main/model_card/density_info.js" id="0e65059e-a61d-4561-947e-b8f47b818bb8"></script></div> In terms of accuracy, its **F1 is 82.57**, compared with 85.85 for bert-large-uncased-whole-word-masking, a **F1 drop of 3.28**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-large-uncased-whole-word-masking) checkpoint on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2). This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning is that some of the attention heads are completely removed: 190 heads were removed on a total of 384 (49.5%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1/raw/main/model_card/pruning_info.js" id="f7ae9ec9-d050-46d0-b237-3025165e9504"></script></div> ## Details of the SQuAD1.1 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD 2.0 | train | 130.0K | | SQuAD 2.0 | eval | 11.9k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `1084MB` (original BERT: `1228.0MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **EM** | **79.70** | **82.83** | **-4.13**| | **F1** | **82.57** | **85.85** | **-3.28**| ``` { "HasAns_exact": 74.8144399460189, "HasAns_f1": 80.555306012496, "HasAns_total": 5928, "NoAns_exact": 84.57527333894029, "NoAns_f1": 84.57527333894029, "NoAns_total": 5945, "best_exact": 79.70184452118251, "best_exact_thresh": 0.0, "best_f1": 82.56816761071966, "best_f1_thresh": 0.0, "exact": 79.70184452118251, "f1": 82.56816761071981, "total": 11873 } ``` ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model qa_pipeline = pipeline( "question-answering", model="madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1", tokenizer="madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1" ) print("bert-large-uncased-whole-word-masking parameters: 445.0M") print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M") qa_pipeline.model = optimize_model(qa_pipeline.model, "dense") print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M") predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print("Predictions", predictions) ```
microsoft/trocr-large-stage1
263390badaa806a561702715213cae4a5f059267
2022-07-01T07:39:08.000Z
[ "pytorch", "vision-encoder-decoder", "arxiv:2109.10282", "transformers", "trocr", "image-to-text" ]
image-to-text
false
microsoft
null
microsoft/trocr-large-stage1
94
2
transformers
4,721
--- tags: - trocr - image-to-text --- # TrOCR (large-sized model, pre-trained only) TrOCR pre-trained only model. It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr). Disclaimer: The team releasing TrOCR did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens. ## Intended uses & limitations You can use the raw model for optical character recognition (OCR) on single text-line images. See the [model hub](https://huggingface.co/models?search=microsoft/trocr) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-stage1') model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-stage1') # training pixel_values = processor(image, return_tensors="pt").pixel_values # Batch size 1 decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) ``` ### BibTeX entry and citation info ```bibtex @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mrm8488/t5-base-finetuned-qasc
7c26f8e64578318f9e0c3223880a1cc68739ddc7
2020-12-11T21:55:50.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:qasc", "arxiv:1910.10683", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-qasc
94
1
transformers
4,722
--- language: en datasets: - qasc --- # T5-base fine-tuned on QASC [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [QASC](https://allenai.org/data/qasc) for **QA** (via *sentence composition*) downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the dataset 📚 **Question Answering via Sentence Composition** (QASC) is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences. ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28). The **context** passed to the *encoder* is the combination of the 2 *facts* (`fact1` and `fact2`). The **question** is just the `formatted_question` field. The **answer** passed to the *decoder* is the`text` right answer instead of the `label` (A, B, C... See `choices` field). More details about the dataset format/fields [here](https://huggingface.co/nlp/viewer/?dataset=qasc) ## Metrics on validation set 📋 | Metric | Score | |--------|-------| |Accuracy (EM) | **97.73**| ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-qasc") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-qasc") def get_response(question, context, max_length=64): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) fact_1 = 'a watch is used for measuring time' fact_2 = 'Times are measured in seconds.' context = fact_1 + ' ' + fact_2 question = 'What can be used to measure seconds? (A) Watch (B) seconds (C) fluid (D) Ruler (E) goggles (F) glasses (G) Drill (H) Scale' get_response(question, context) # output: 'Watch' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
speechbrain/sepformer-whamr16k
0b73df532deb3215baf372ca5a90512ba0c75c2a
2021-11-30T00:53:21.000Z
[ "en", "dataset:WHAMR!", "arxiv:2010.13154", "arxiv:2106.04624", "speechbrain", "audio-to-audio", "audio-source-separation", "Source Separation", "Speech Separation", "WHAM!", "SepFormer", "Transformer", "pytorch", "license:apache-2.0" ]
audio-to-audio
false
speechbrain
null
speechbrain/sepformer-whamr16k
94
1
speechbrain
4,723
--- language: "en" thumbnail: tags: - audio-to-audio - audio-source-separation - Source Separation - Speech Separation - WHAM! - SepFormer - Transformer - pytorch - speechbrain license: "apache-2.0" datasets: - WHAMR! metrics: - SI-SNRi - SDRi --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # SepFormer trained on WHAMR! (16k sampling frequency) This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on [WHAMR!](http://wham.whisper.ai/) dataset with 16k sampling frequency, which is basically a version of WSJ0-Mix dataset with environmental noise and reverberation in 16k. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance is 13.5 dB SI-SNRi on the test set of WHAMR! dataset. | Release | Test-Set SI-SNRi | Test-Set SDRi | |:-------------:|:--------------:|:--------------:| | 30-03-21 | 13.5 dB | 13.0 dB | ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform source separation on your own audio file ```python from speechbrain.pretrained import SepformerSeparation as separator import torchaudio model = separator.from_hparams(source="speechbrain/sepformer-whamr16k", savedir='pretrained_models/sepformer-whamr16k') # for custom file, change path est_sources = model.separate_file(path='speechbrain/sepformer-whamr16k/test_mixture16k.wav') torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 16000) torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 16000) ``` The system expects input recordings sampled at 16kHz (single channel). If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (fc2eabb7). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/WHAMandWHAMR/separation/ python train.py hparams/sepformer-whamr.yaml --data_folder=your_data_folder --sample_rate=16000 ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1QiQhp1vi5t4UfNpNETA48_OmPiXnUy8O?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` #### Referencing SepFormer ```bibtex @inproceedings{subakan2021attention, title={Attention is All You Need in Speech Separation}, author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong}, year={2021}, booktitle={ICASSP 2021} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
uclanlp/plbart-java-clone-detection
f05211c8f2ef087522c5ac571c69b2e377b39371
2021-11-09T17:18:43.000Z
[ "pytorch", "plbart", "text-classification", "transformers" ]
text-classification
false
uclanlp
null
uclanlp/plbart-java-clone-detection
94
null
transformers
4,724
Entry not found
yoshitomo-matsubara/bert-base-uncased-cola
106940f94f17e702ae37d740922d679677667c3c
2021-05-29T21:40:15.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:cola", "transformers", "cola", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-cola
94
null
transformers
4,725
--- language: en tags: - bert - cola - glue - torchdistill license: apache-2.0 datasets: - cola metrics: - matthew's correlation --- `bert-base-uncased` fine-tuned on CoLA dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/cola/ce/bert_base_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
nickmuchi/vit-base-xray-pneumonia
7e99827336046d85c0f85884405034df80b08ebd
2022-03-09T05:43:35.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:chest xrays", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nickmuchi
null
nickmuchi/vit-base-xray-pneumonia
94
null
transformers
4,726
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - chest xrays widget: - src: https://drive.google.com/uc?id=1yqnhD4Wjt4Y_NGLtijTGGaaw9GL497kQ example_title: PNEUMONIA - src: https://drive.google.com/uc?id=1xjcIEDb8kuSd4wF44gCEgsc0PfRvs53m example_title: NORMAL metrics: - accuracy model-index: - name: vit-base-xray-pneumonia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-xray-pneumonia This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [chest-xray-pneumonia](https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia) dataset. It achieves the following results on the evaluation set: - Loss: 0.3387 - Accuracy: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1233 | 0.31 | 100 | 1.1662 | 0.6651 | | 0.0868 | 0.61 | 200 | 0.3387 | 0.9006 | | 0.1387 | 0.92 | 300 | 0.5297 | 0.8237 | | 0.1264 | 1.23 | 400 | 0.4566 | 0.8590 | | 0.0829 | 1.53 | 500 | 0.6832 | 0.8285 | | 0.0734 | 1.84 | 600 | 0.4886 | 0.8157 | | 0.0132 | 2.15 | 700 | 1.3639 | 0.7292 | | 0.0877 | 2.45 | 800 | 0.5258 | 0.8846 | | 0.0516 | 2.76 | 900 | 0.8772 | 0.8013 | | 0.0637 | 3.07 | 1000 | 0.4947 | 0.8558 | | 0.0022 | 3.37 | 1100 | 1.0062 | 0.8045 | | 0.0555 | 3.68 | 1200 | 0.7822 | 0.8285 | | 0.0405 | 3.99 | 1300 | 1.9288 | 0.6779 | | 0.0012 | 4.29 | 1400 | 1.2153 | 0.7981 | | 0.0034 | 4.6 | 1500 | 1.8931 | 0.7308 | | 0.0339 | 4.91 | 1600 | 0.9071 | 0.8590 | | 0.0013 | 5.21 | 1700 | 1.6266 | 0.7580 | | 0.0373 | 5.52 | 1800 | 1.5252 | 0.7676 | | 0.001 | 5.83 | 1900 | 1.2748 | 0.7869 | | 0.0005 | 6.13 | 2000 | 1.2103 | 0.8061 | | 0.0004 | 6.44 | 2100 | 1.3133 | 0.7981 | | 0.0004 | 6.75 | 2200 | 1.2200 | 0.8045 | | 0.0004 | 7.06 | 2300 | 1.2834 | 0.7933 | | 0.0004 | 7.36 | 2400 | 1.3080 | 0.7949 | | 0.0003 | 7.67 | 2500 | 1.3814 | 0.7917 | | 0.0004 | 7.98 | 2600 | 1.2853 | 0.7965 | | 0.0003 | 8.28 | 2700 | 1.3644 | 0.7933 | | 0.0003 | 8.59 | 2800 | 1.3137 | 0.8013 | | 0.0003 | 8.9 | 2900 | 1.3507 | 0.7997 | | 0.0003 | 9.2 | 3000 | 1.3751 | 0.7997 | | 0.0003 | 9.51 | 3100 | 1.3884 | 0.7981 | | 0.0003 | 9.82 | 3200 | 1.3831 | 0.7997 | ## Example Images #### Pneumonia Chest X-Ray ![Pneumonia](https://drive.google.com/uc?id=1yqnhD4Wjt4Y_NGLtijTGGaaw9GL497kQ) #### Normal Chest X-Ray ![Normal](https://drive.google.com/uc?id=1xjcIEDb8kuSd4wF44gCEgsc0PfRvs53m) ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
UrukHan/wav2vec2-russian
c74e309d12ca9c2be2d69d51f3adb744603a00ff
2022-04-18T10:33:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
UrukHan
null
UrukHan/wav2vec2-russian
94
2
transformers
4,727
--- tags: - generated_from_trainer model-index: - name: wav2vec2-russian results: [] widget: - src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-russian # модель для распознания аудио. результаты модели можно потом прогнать через мою сеть исправления текстов UrukHan/t5-russian-spell <table border="0"> <tr> <td><b style="font-size:30px">Output wav2vec2</b></td> <td><b style="font-size:30px">Output spell correcor</b></td> </tr> <tr> <td>ывсем привет выныканалетоп армии и это двадцать пятый день спец операций на украине ет самый главной новости российские военные ракетами кинжалы калибр уничтожили крупную военную топливную базу украины ракетным ударом по населенному пункту под жетамиром уничтжены более стаукраинских военных в две тысячи двадцать втором году</td> <td>Всем привет! Вы в курсе новостей от армии. И это 25 день спецопераций на Украине. Есть самые главные новости. Российские военные ракетами «Кинжалы» и «Кинжалы» калибра уничтожили крупную военную топливную базу Украины. Ракетным ударом по населенному пункту под Жетамиром уничтожены более ста украинских военных в 2022г.</td> </tr> </table> --- Загрузите аудиофайл в формате wav для распознования. Результат можно откорректировать в другой моей сети. которая исправляет ошибки, расставляет знаки припинания и исправляет цифры. https://huggingface.co/UrukHan/t5-russian-spell # --- # Запуск сети пример в колабе https://colab.research.google.com/drive/1dVZvccYJq02hmEsapWgmuJ-pLdezFnn1?usp=sharing # ```python from transformers import AutoModelForCTC, Wav2Vec2Processor model = AutoModelForCTC.from_pretrained("UrukHan/wav2vec2-russian") processor = Wav2Vec2Processor.from_pretrained("UrukHan/wav2vec2-russian") def map_to_result(batch): with torch.no_grad(): input_values = torch.tensor(batch["input_values"]).unsqueeze(0) #, device="cuda" logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch = processor.batch_decode(pred_ids)[0] return batch map_to_result() ``` # --- # Тренировка модели с обработкой данных и созданием датасета разобрать можете в колабе: # https://colab.research.google.com/drive/1zkCA2PtKxD2acqLr55USh35OomoOwOhm?usp=sharing
voidism/diffcse-bert-base-uncased-trans
77046440b79536bb8d37842cf86034f69a8577bd
2022-05-01T19:24:20.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2204.10298", "arxiv:2104.08821", "arxiv:2111.00899", "transformers", "license:apache-2.0" ]
feature-extraction
false
voidism
null
voidism/diffcse-bert-base-uncased-trans
94
1
transformers
4,728
--- license: apache-2.0 --- # DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [![GitHub Stars](https://img.shields.io/github/stars/voidism/DiffCSE?style=social)](https://github.com/voidism/DiffCSE/) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) arXiv link: https://arxiv.org/abs/2204.10298 To be published in [**NAACL 2022**](https://2022.naacl.org/) Authors: [Yung-Sung Chuang](https://people.csail.mit.edu/yungsung/), [Rumen Dangovski](http://super-ms.mit.edu/rumen.html), [Hongyin Luo](http://people.csail.mit.edu/hyluo/), [Yang Zhang](https://mitibmwatsonailab.mit.edu/people/yang-zhang/), [Shiyu Chang](https://code-terminator.github.io/), [Marin Soljačić](http://www.mit.edu/~soljacic/marin.html), [Shang-Wen Li](https://swdanielli.github.io/), [Scott Wen-tau Yih](https://scottyih.org/), [Yoon Kim](https://people.csail.mit.edu/yoonkim/), [James Glass](http://groups.csail.mit.edu/sls/people/glass.shtml) Our code is mainly based on the code of [SimCSE](https://arxiv.org/abs/2104.08821). Please refer to their [repository](https://github.com/princeton-nlp/SimCSE) for more detailed information. ## Overview ![DiffCSE](https://github.com/voidism/DiffCSE/raw/master/diffcse.png) We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning [(Dangovski et al., 2021)](https://arxiv.org/abs/2111.00899), which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other "harmful" types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks. ## Setups [![Python](https://img.shields.io/badge/python-3.9.5-blue?logo=python&logoColor=FED643)](https://www.python.org/downloads/release/python-395/) ### Requirements * Python 3.9.5 ### Install our customized Transformers package ``` cd transformers-4.2.1 pip install . ``` > If you have already installed `transformers==4.2.1` through pip, you need to put `modeling_bert.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_bert.py` and `modeling_roberta.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_roberta.py`. > We modify these two files in the package so that we can perform _conditional_ pretraining tasks using BERT/RoBERTa. If possible, please directly pip install our customized Transformers package. ### Install other packages ``` pip install -r requirements.txt ``` ### Download the pretraining dataset ``` cd data bash download_wiki.sh ``` ### Download the downstream dataset ``` cd SentEval/data/downstream/ bash download_dataset.sh ``` ## Training (The same as `run_diffcse.sh`.) ```bash python train.py \ --model_name_or_path bert-base-uncased \ --generator_name distilbert-base-uncased \ --train_file data/wiki1m_for_simcse.txt \ --output_dir <your_output_model_dir> \ --num_train_epochs 2 \ --per_device_train_batch_size 64 \ --learning_rate 7e-6 \ --max_seq_length 32 \ --evaluation_strategy steps \ --metric_for_best_model stsb_spearman \ --load_best_model_at_end \ --eval_steps 125 \ --pooler_type cls \ --mlp_only_train \ --overwrite_output_dir \ --logging_first_step \ --logging_dir <your_logging_dir> \ --temp 0.05 \ --do_train \ --do_eval \ --batchnorm \ --lambda_weight 0.005 \ --fp16 --masking_ratio 0.30 ``` Our new arguments: * `--lambda_weight`: the lambda coefficient mentioned in Section 3 of our paper. * `--masking_ratio`: the masking ratio for MLM generator to randomly replace tokens. * `--generator_name`: the model name of generator. For `bert-base-uncased`, we use `distilbert-base-uncased`. For `roberta-base`, we use `distilroberta-base`. Arguments from [SimCSE](https://github.com/princeton-nlp/SimCSE): * `--train_file`: Training file path (`data/wiki1m_for_simcse.txt`). * `--model_name_or_path`: Pre-trained checkpoints to start with such as BERT-based models (`bert-base-uncased`, `bert-large-uncased`, etc.) and RoBERTa-based models (`RoBERTa-base`, `RoBERTa-large`). * `--temp`: Temperature for the contrastive loss. We always use `0.05`. * `--pooler_type`: Pooling method. * `--mlp_only_train`: For unsupervised SimCSE or DiffCSE, it works better to train the model with MLP layer but test the model without it. You should use this argument when training unsupervised SimCSE/DiffCSE models. For the results in our paper, we use a NVidia 2080Ti GPU with CUDA 11.2. Using different types of devices or different versions of CUDA/Python/PyTorch may lead to slightly different performance. ## Evaluation [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) We provide a simple colab notebook to reproduce our results easily. We can also run the commands below for evaluation: ```bash python evaluation.py \ --model_name_or_path <your_output_model_dir> \ --pooler cls_before_pooler \ --task_set <sts|transfer|full> \ --mode test ``` To evaluate our pretrained DiffCSE checkpoints, we can use the following scripts: ### BERT #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` ### RoBERTa #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` For more detailed information, please check [SimCSE's GitHub repo](https://github.com/princeton-nlp/SimCSE). ## Pretrained models [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97-Models-yellow)](https://huggingface.co/voidism) * DiffCSE-BERT-base (STS): https://huggingface.co/voidism/diffcse-bert-base-uncased-sts * DiffCSE-BERT-base (transfer tasks): https://huggingface.co/voidism/diffcse-bert-base-uncased-trans * DiffCSE-RoBERTa-base (STS): https://huggingface.co/voidism/diffcse-roberta-base-sts * DiffCSE-RoBERTa-base (transfer tasks): https://huggingface.co/voidism/diffcse-roberta-base-trans We can load the models using the API provided by [SimCSE](https://github.com/princeton-nlp/SimCSE). See [Getting Started](https://github.com/princeton-nlp/SimCSE#getting-started) for more information. ```python from diffcse import DiffCSE model_bert_sts = DiffCSE("voidism/diffcse-bert-base-uncased-sts") model_bert_trans = DiffCSE("voidism/diffcse-bert-base-uncased-trans") model_roberta_sts = DiffCSE("voidism/diffcse-roberta-base-sts") model_roberta_trans = DiffCSE("voidism/diffcse-roberta-base-trans") ``` ## Citations [![DOI](https://img.shields.io/badge/DOI-10.48550/arXiv.2204.10298-green?color=FF8000?color=009922)](https://doi.org/10.48550/arXiv.2204.10298) Please cite our paper and the SimCSE paper if they are helpful to your work! ```bibtex @inproceedings{chuang2022diffcse, title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings}, author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James}, booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)}, year={2022} } @inproceedings{gao2021simcse, title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings}, author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi}, booktitle={Empirical Methods in Natural Language Processing (EMNLP)}, year={2021} } ```
rmihaylov/roberta-base-sentiment-bg
47106fae3b98b8ae395c661ecd83e90eba51999f
2022-04-19T15:58:12.000Z
[ "pytorch", "xlm-roberta", "text-classification", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "transformers", "torch", "license:mit" ]
text-classification
false
rmihaylov
null
rmihaylov/roberta-base-sentiment-bg
94
null
transformers
4,729
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # ROBERTA BASE (cased) trained on private Bulgarian sentiment-analysis dataset This is a Multilingual Roberta model. This model is cased: it does make a difference between bulgarian and Bulgarian. ### How to use Here is how to use this model in PyTorch: ```python >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "rmihaylov/roberta-base-sentiment-bg" >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> >>> inputs = tokenizer.batch_encode_plus(['Това е умно.', 'Това е тъпо.'], return_tensors='pt') >>> outputs = model(**inputs) >>> torch.softmax(outputs, dim=1).tolist() [[0.0004746630438603461, 0.9995253086090088], [0.9986956715583801, 0.0013043134240433574]] ```
qanastek/51-languages-classifier
966ca1a15a30f218ad48561943f046d809d4ed26
2022-05-19T12:56:56.000Z
[ "pytorch", "dataset:qanastek/MASSIVE", "arxiv:1911.02116", "Transformers", "text-classification", "multi-class-classification", "license:cc-by-4.0" ]
text-classification
false
qanastek
null
qanastek/51-languages-classifier
94
1
null
4,730
--- tags: - Transformers - text-classification - multi-class-classification languages: - af-ZA - am-ET - ar-SA - az-AZ - bn-BD - cy-GB - da-DK - de-DE - el-GR - en-US - es-ES - fa-IR - fi-FI - fr-FR - he-IL - hi-IN - hu-HU - hy-AM - id-ID - is-IS - it-IT - ja-JP - jv-ID - ka-GE - km-KH - kn-IN - ko-KR - lv-LV - ml-IN - mn-MN - ms-MY - my-MM - nb-NO - nl-NL - pl-PL - pt-PT - ro-RO - ru-RU - sl-SL - sq-AL - sv-SE - sw-KE - ta-IN - te-IN - th-TH - tl-PH - tr-TR - ur-PK - vi-VN - zh-CN - zh-TW multilinguality: - af-ZA - am-ET - ar-SA - az-AZ - bn-BD - cy-GB - da-DK - de-DE - el-GR - en-US - es-ES - fa-IR - fi-FI - fr-FR - he-IL - hi-IN - hu-HU - hy-AM - id-ID - is-IS - it-IT - ja-JP - jv-ID - ka-GE - km-KH - kn-IN - ko-KR - lv-LV - ml-IN - mn-MN - ms-MY - my-MM - nb-NO - nl-NL - pl-PL - pt-PT - ro-RO - ru-RU - sl-SL - sq-AL - sv-SE - sw-KE - ta-IN - te-IN - th-TH - tl-PH - tr-TR - ur-PK - vi-VN - zh-CN - zh-TW datasets: - qanastek/MASSIVE widget: - text: "wake me up at five am this week" - text: "je veux écouter la chanson de jacques brel encore une fois" - text: "quiero escuchar la canción de arijit singh una vez más" - text: "olly onde é que á um parque por perto onde eu possa correr" - text: "פרק הבא בפודקאסט בבקשה" - text: "亚马逊股价" - text: "найди билет на поезд в санкт-петербург" license: cc-by-4.0 --- **People Involved** * [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1) **Affiliations** 1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France. ## Model XLM-Roberta : [https://huggingface.co/xlm-roberta-base](https://huggingface.co/xlm-roberta-base) Paper : [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/pdf/1911.02116.pdf) ## Demo: How to use in HuggingFace Transformers Pipeline Requires [transformers](https://pypi.org/project/transformers/): ```pip install transformers``` ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline model_name = 'qanastek/51-languages-classifier' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) res = classifier("פרק הבא בפודקאסט בבקשה") print(res) ``` Outputs: ```python [{'label': 'he-IL', 'score': 0.9998375177383423}] ``` ## Training data [MASSIVE](https://huggingface.co/datasets/qanastek/MASSIVE) is a parallel dataset of > 1M utterances across 51 languages with annotations for the Natural Language Understanding tasks of intent prediction and slot annotation. Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions. ### Languages Thee model is capable of distinguish 51 languages : - `Afrikaans - South Africa (af-ZA)` - `Amharic - Ethiopia (am-ET)` - `Arabic - Saudi Arabia (ar-SA)` - `Azeri - Azerbaijan (az-AZ)` - `Bengali - Bangladesh (bn-BD)` - `Chinese - China (zh-CN)` - `Chinese - Taiwan (zh-TW)` - `Danish - Denmark (da-DK)` - `German - Germany (de-DE)` - `Greek - Greece (el-GR)` - `English - United States (en-US)` - `Spanish - Spain (es-ES)` - `Farsi - Iran (fa-IR)` - `Finnish - Finland (fi-FI)` - `French - France (fr-FR)` - `Hebrew - Israel (he-IL)` - `Hungarian - Hungary (hu-HU)` - `Armenian - Armenia (hy-AM)` - `Indonesian - Indonesia (id-ID)` - `Icelandic - Iceland (is-IS)` - `Italian - Italy (it-IT)` - `Japanese - Japan (ja-JP)` - `Javanese - Indonesia (jv-ID)` - `Georgian - Georgia (ka-GE)` - `Khmer - Cambodia (km-KH)` - `Korean - Korea (ko-KR)` - `Latvian - Latvia (lv-LV)` - `Mongolian - Mongolia (mn-MN)` - `Malay - Malaysia (ms-MY)` - `Burmese - Myanmar (my-MM)` - `Norwegian - Norway (nb-NO)` - `Dutch - Netherlands (nl-NL)` - `Polish - Poland (pl-PL)` - `Portuguese - Portugal (pt-PT)` - `Romanian - Romania (ro-RO)` - `Russian - Russia (ru-RU)` - `Slovanian - Slovania (sl-SL)` - `Albanian - Albania (sq-AL)` - `Swedish - Sweden (sv-SE)` - `Swahili - Kenya (sw-KE)` - `Hindi - India (hi-IN)` - `Kannada - India (kn-IN)` - `Malayalam - India (ml-IN)` - `Tamil - India (ta-IN)` - `Telugu - India (te-IN)` - `Thai - Thailand (th-TH)` - `Tagalog - Philippines (tl-PH)` - `Turkish - Turkey (tr-TR)` - `Urdu - Pakistan (ur-PK)` - `Vietnamese - Vietnam (vi-VN)` - `Welsh - United Kingdom (cy-GB)` ## Evaluation results ```plain precision recall f1-score support af-ZA 0.9821 0.9805 0.9813 2974 am-ET 1.0000 1.0000 1.0000 2974 ar-SA 0.9809 0.9822 0.9815 2974 az-AZ 0.9946 0.9845 0.9895 2974 bn-BD 0.9997 0.9990 0.9993 2974 cy-GB 0.9970 0.9929 0.9949 2974 da-DK 0.9575 0.9617 0.9596 2974 de-DE 0.9906 0.9909 0.9908 2974 el-GR 0.9997 0.9973 0.9985 2974 en-US 0.9712 0.9866 0.9788 2974 es-ES 0.9825 0.9842 0.9834 2974 fa-IR 0.9940 0.9973 0.9956 2974 fi-FI 0.9943 0.9946 0.9945 2974 fr-FR 0.9963 0.9923 0.9943 2974 he-IL 1.0000 0.9997 0.9998 2974 hi-IN 1.0000 0.9980 0.9990 2974 hu-HU 0.9983 0.9950 0.9966 2974 hy-AM 1.0000 0.9993 0.9997 2974 id-ID 0.9319 0.9291 0.9305 2974 is-IS 0.9966 0.9943 0.9955 2974 it-IT 0.9698 0.9926 0.9811 2974 ja-JP 0.9987 0.9963 0.9975 2974 jv-ID 0.9628 0.9744 0.9686 2974 ka-GE 0.9993 0.9997 0.9995 2974 km-KH 0.9867 0.9963 0.9915 2974 kn-IN 1.0000 0.9993 0.9997 2974 ko-KR 0.9917 0.9997 0.9956 2974 lv-LV 0.9990 0.9950 0.9970 2974 ml-IN 0.9997 0.9997 0.9997 2974 mn-MN 0.9987 0.9966 0.9976 2974 ms-MY 0.9359 0.9418 0.9388 2974 my-MM 1.0000 0.9993 0.9997 2974 nb-NO 0.9600 0.9533 0.9566 2974 nl-NL 0.9850 0.9748 0.9799 2974 pl-PL 0.9946 0.9923 0.9934 2974 pt-PT 0.9885 0.9798 0.9841 2974 ro-RO 0.9919 0.9916 0.9918 2974 ru-RU 0.9976 0.9983 0.9980 2974 sl-SL 0.9956 0.9939 0.9948 2974 sq-AL 0.9936 0.9896 0.9916 2974 sv-SE 0.9902 0.9842 0.9872 2974 sw-KE 0.9867 0.9953 0.9910 2974 ta-IN 1.0000 1.0000 1.0000 2974 te-IN 1.0000 0.9997 0.9998 2974 th-TH 1.0000 0.9983 0.9992 2974 tl-PH 0.9929 0.9899 0.9914 2974 tr-TR 0.9869 0.9872 0.9871 2974 ur-PK 0.9983 0.9929 0.9956 2974 vi-VN 0.9993 0.9973 0.9983 2974 zh-CN 0.9812 0.9832 0.9822 2974 zh-TW 0.9832 0.9815 0.9823 2974 accuracy 0.9889 151674 macro avg 0.9889 0.9889 0.9889 151674 weighted avg 0.9889 0.9889 0.9889 151674 ``` Keywords : language identification ; language identification ; multilingual ; classification
josh-oo/german-gpt2-easy-new-padding
5d8da72b39d8dbe27496005c8d8aa1800cf51adc
2022-06-29T09:45:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
josh-oo
null
josh-oo/german-gpt2-easy-new-padding
94
null
transformers
4,731
Entry not found
Evelyn18/distilbert-base-uncased-becas-7
90be144d188753450444f9cdd08d4388ccd85428
2022-07-01T20:39:35.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-becas-7
94
null
transformers
4,732
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becas-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becas-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.3059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.4980 | | No log | 2.0 | 10 | 5.0383 | | No log | 3.0 | 15 | 4.6244 | | No log | 4.0 | 20 | 4.2090 | | No log | 5.0 | 25 | 4.0156 | | No log | 6.0 | 30 | 3.8638 | | No log | 7.0 | 35 | 4.0836 | | No log | 8.0 | 40 | 4.1302 | | No log | 9.0 | 45 | 4.2543 | | No log | 10.0 | 50 | 4.3059 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pineappleSoup/DialoGPT-medium-707
80f8be57a6d8fd8a58d21a5db2f6fc463668ffe0
2022-07-28T10:24:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pineappleSoup
null
pineappleSoup/DialoGPT-medium-707
94
null
transformers
4,733
--- tags: - conversational --- # 707 DialoGPT Model Chatbot for the character 707 from Mystic Messenger.
autoevaluate/distilbert-base-cased-distilled-squad
d62c5ac3e62b8d308d894fab57e5ec5b88a44040
2022-07-20T13:17:25.000Z
[ "pytorch", "tf", "rust", "distilbert", "question-answering", "en", "dataset:squad", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
autoevaluate
null
autoevaluate/distilbert-base-cased-distilled-squad
94
null
transformers
4,734
--- language: "en" datasets: - squad metrics: - squad license: apache-2.0 --- # DistilBERT base cased distilled SQuAD > Note: This model is a clone of [`distilbert-base-cased-distilled-squad`](https://huggingface.co/distilbert-base-cased-distilled-squad) for internal testing. This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1. This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7). Using the question answering `Evaluator` from evaluate gives: ``` {'exact_match': 79.54588457899716, 'f1': 86.81181300991533, 'latency_in_seconds': 0.008683730778997168, 'samples_per_second': 115.15787689073015, 'total_time_in_seconds': 91.78703433400005} ``` which is roughly consistent with the official score.
BSC-TeMU/RoBERTalex
2a1c89fd468a362368463b4126751fdd51c4d847
2021-10-26T10:10:38.000Z
[ "pytorch", "roberta", "fill-mask", "es", "dataset:legal_ES", "dataset:temu_legal", "arxiv:2110.12201", "transformers", "legal", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
BSC-TeMU
null
BSC-TeMU/RoBERTalex
93
4
transformers
4,735
--- language: - es license: apache-2.0 tags: - legal - spanish datasets: - legal_ES - temu_legal metrics: - ppl widget: - text: "La ley fue <mask> finalmente." - text: "El Tribunal <mask> desestimó el recurso de amparo." - text: "Hay base legal dentro del marco <mask> actual." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/RoBERTalex # Spanish Legal-domain RoBERTa There are few models trained for the Spanish language. Some of the models have been trained with a low resource, unclean corpora. The ones derived from the Spanish National Plan for Language Technologies are proficient solving several tasks and have been trained using large scale clean corpora. However, the Spanish Legal domain language could be think of an independent language on its own. We therefore created a Spanish Legal model from scratch trained exclusively on legal corpora. ## Citing ``` @misc{gutierrezfandino2021legal, title={Spanish Legalese Language Model and Corpora}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Aitor Gonzalez-Agirre and Marta Villegas}, year={2021}, eprint={2110.12201}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` For more information visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-legal-es) ## Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
Hate-speech-CNERG/dehatebert-mono-french
7c0e8c45e9176581e57d4ae7e52327258116f969
2021-09-25T13:51:14.000Z
[ "pytorch", "jax", "bert", "text-classification", "fr", "arxiv:2004.06465", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/dehatebert-mono-french
93
2
transformers
4,736
--- language: fr license: apache-2.0 --- This model is used detecting **hatespeech** in **French language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.692094 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Helsinki-NLP/opus-mt-tr-ar
9883a63af0aef0043dfce9a04a231ea9b6f3d722
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "tr", "ar", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tr-ar
93
null
transformers
4,737
--- language: - tr - ar tags: - translation license: apache-2.0 --- ### tur-ara * source group: Turkish * target group: Arabic * OPUS readme: [tur-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ara/README.md) * model: transformer * source language(s): tur * target language(s): apc_Latn ara ara_Latn arq_Latn * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.tur.ara | 14.9 | 0.455 | ### System Info: - hf_name: tur-ara - source_languages: tur - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['tr', 'ar'] - src_constituents: {'tur'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ara/opus-2020-07-03.test.txt - src_alpha3: tur - tgt_alpha3: ara - short_pair: tr-ar - chrF2_score: 0.455 - bleu: 14.9 - brevity_penalty: 0.988 - ref_len: 6944.0 - src_name: Turkish - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: tr - tgt_alpha2: ar - prefer_old: False - long_pair: tur-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
QianWeiTech/GPT2-News
ebcc0d7d17deb00af1f256d05d1b61228819062a
2021-05-21T11:02:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
QianWeiTech
null
QianWeiTech/GPT2-News
93
null
transformers
4,738
Entry not found
allegro/plt5-large
b446ea4115bc01549ab832e01d138203cfe1324a
2021-08-19T17:01:13.000Z
[ "pytorch", "t5", "text2text-generation", "pl", "dataset:ccnet", "dataset:nkjp", "dataset:wikipedia", "dataset:open subtitles", "dataset:free readings", "transformers", "T5", "translation", "summarization", "question answering", "reading comprehension", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
allegro
null
allegro/plt5-large
93
2
transformers
4,739
--- language: pl tags: - T5 - translation - summarization - question answering - reading comprehension datasets: - ccnet - nkjp - wikipedia - open subtitles - free readings license: cc-by-4.0 --- # plT5 Large **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-large") model = AutoModel.from_pretrained("allegro/plt5-large") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
edixo/road_good_damaged_condition
70171ea85efe8c9105d793440b8aa62be857e8e6
2021-07-05T14:43:15.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
edixo
null
edixo/road_good_damaged_condition
93
null
transformers
4,740
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: road_good_damaged_condition results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9583333134651184 --- # road_good_damaged_condition Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### damaged road ![damaged road](images/damaged_road.jpg) #### good road ![good road](images/good_road.jpg)
frgfm/rexnet1_0x
9f2b2d7e23dcf64a13a4df8abe4b8ca2afa973cb
2022-07-20T00:53:57.000Z
[ "pytorch", "onnx", "dataset:frgfm/imagenette", "arxiv:2007.00992", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
frgfm
null
frgfm/rexnet1_0x
93
null
transformers
4,741
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.0x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_0x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
huggingface-course/mt5-small-finetuned-amazon-en-es
7e7155d1e44ced6b274adcd33223f698af16d185
2021-11-11T17:26:47.000Z
[ "pytorch", "tf", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
huggingface-course
null
huggingface-course/mt5-small-finetuned-amazon-en-es
93
1
transformers
4,742
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0285 - Rouge1: 16.9728 - Rouge2: 8.2969 - Rougel: 16.8366 - Rougelsum: 16.8510 - Gen Len: 10.1597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 6.4205 | 1.0 | 1209 | 3.3904 | 7.3124 | 2.1083 | 7.0649 | 7.0966 | 4.7269 | | 3.7818 | 2.0 | 2418 | 3.1762 | 10.5437 | 3.0706 | 10.4618 | 10.4713 | 5.3697 | | 3.4672 | 3.0 | 3627 | 3.1304 | 10.4674 | 3.0531 | 10.2156 | 10.2549 | 5.9748 | | 3.3179 | 4.0 | 4836 | 3.1170 | 11.2847 | 3.3152 | 11.1387 | 11.146 | 6.1723 | | 3.2048 | 5.0 | 6045 | 3.1069 | 11.5212 | 3.1957 | 11.2117 | 11.2044 | 6.042 | | 3.1211 | 6.0 | 7254 | 3.1028 | 11.8104 | 3.6482 | 11.5535 | 11.5259 | 6.0462 | | 3.0724 | 7.0 | 8463 | 3.1001 | 11.7336 | 3.6575 | 11.4403 | 11.4738 | 5.9454 | | 3.0476 | 8.0 | 9672 | 3.0983 | 11.8061 | 3.6575 | 11.4999 | 11.5414 | 5.9286 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
munggok/mt5-translate-en-id
2b56f07d3f29fde43ff8cf1e09ca0976c4039965
2021-01-25T12:40:58.000Z
[ "pytorch", "t5", "text2text-generation", "id", "dataset:OPUS", "dataset:CC-aligned", "transformers", "translation", "license:mit", "autotrain_compatible" ]
translation
false
munggok
null
munggok/mt5-translate-en-id
93
null
transformers
4,743
--- tags: - translation language: "id" license: "mit" datasets: - OPUS - CC-aligned widget: - text: "I love you" --- ## MT5-Large-Translate-en-id ## Prefix use Use prefix "translate:" before input to generate the translation e.g "translate: i love you" ## Training data Opus (Open Subtittle and Wikimatrix) CCaligned (en-id sentence pair)
ncduy/phobert-large-finetuned-vietnamese_students_feedback
b99e157e2beae2c3b8bcaa6175102b647ca320ba
2022-01-06T05:55:30.000Z
[ "pytorch", "roberta", "text-classification", "dataset:vietnamese_students_feedback", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ncduy
null
ncduy/phobert-large-finetuned-vietnamese_students_feedback
93
null
transformers
4,744
--- tags: - generated_from_trainer datasets: - vietnamese_students_feedback metrics: - accuracy model-index: - name: phobert-large-finetuned-vietnamese_students_feedback results: - task: name: Text Classification type: text-classification dataset: name: vietnamese_students_feedback type: vietnamese_students_feedback args: default metrics: - name: Accuracy type: accuracy value: 0.9463044851547694 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-large-finetuned-vietnamese_students_feedback This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on the vietnamese_students_feedback dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 477 | 0.2088 | 0.9375 | | 0.3231 | 2.0 | 954 | 0.2463 | 0.9444 | | 0.1805 | 3.0 | 1431 | 0.2285 | 0.9463 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
nguyenvulebinh/vi-mrc-large
732c3096bbc2b9c7360e46ffb93c4f89692dafdb
2022-03-13T20:53:44.000Z
[ "pytorch", "roberta", "question-answering", "vi", "vn", "en", "dataset:squad", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
question-answering
false
nguyenvulebinh
null
nguyenvulebinh/vi-mrc-large
93
null
transformers
4,745
--- language: - vi - vn - en tags: - question-answering - pytorch datasets: - squad license: cc-by-nc-4.0 pipeline_tag: question-answering metrics: - squad widget: - text: "Bình là chuyên gia về gì ?" context: "Bình Nguyễn là một người đam mê với lĩnh vực xử lý ngôn ngữ tự nhiên . Anh nhận chứng chỉ Google Developer Expert năm 2020" - text: "Bình được công nhận với danh hiệu gì ?" context: "Bình Nguyễn là một người đam mê với lĩnh vực xử lý ngôn ngữ tự nhiên . Anh nhận chứng chỉ Google Developer Expert năm 2020" --- ## Model Description - Language model: [XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html) - Fine-tune: [MRCQuestionAnswering](https://github.com/nguyenvulebinh/extractive-qa-mrc) - Language: Vietnamese, Englsih - Downstream-task: Extractive QA - Dataset (combine English and Vietnamese): - [Squad 2.0](https://rajpurkar.github.io/SQuAD-explorer/) - [mailong25](https://github.com/mailong25/bert-vietnamese-question-answering/tree/master/dataset) - [VLSP MRC 2021](https://vlsp.org.vn/vlsp2021/eval/mrc) - [MultiLingual Question Answering](https://github.com/facebookresearch/MLQA) This model is intended to be used for QA in the Vietnamese language so the valid set is Vietnamese only (but English works fine). The evaluation result below uses the VLSP MRC 2021 test set. This experiment achieves TOP 1 on the leaderboard. | Model | EM | F1 | | ------------- | ------------- | ------------- | | [large](https://huggingface.co/nguyenvulebinh/vi-mrc-large) public_test_set | 85.847 | 83.826 | | [large](https://huggingface.co/nguyenvulebinh/vi-mrc-large) private_test_set | 82.072 | 78.071 | Public leaderboard | Private leaderboard :-------------------------:|:-------------------------: ![](https://i.ibb.co/tJX6V6T/public-leaderboard.jpg) | ![](https://i.ibb.co/nmsX2pG/private-leaderboard.jpg) [MRCQuestionAnswering](https://github.com/nguyenvulebinh/extractive-qa-mrc) using [XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html) as a pre-trained language model. By default, XLM-RoBERTa will split word in to sub-words. But in my implementation, I re-combine sub-words representation (after encoded by BERT layer) into word representation using sum strategy. ## Using pre-trained model [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Yqgdfaca7L94OyQVnq5iQq8wRTFvVZjv?usp=sharing) - Hugging Face pipeline style (**NOT using sum features strategy**). ```python from transformers import pipeline # model_checkpoint = "nguyenvulebinh/vi-mrc-large" model_checkpoint = "nguyenvulebinh/vi-mrc-base" nlp = pipeline('question-answering', model=model_checkpoint, tokenizer=model_checkpoint) QA_input = { 'question': "Bình là chuyên gia về gì ?", 'context': "Bình Nguyễn là một người đam mê với lĩnh vực xử lý ngôn ngữ tự nhiên . Anh nhận chứng chỉ Google Developer Expert năm 2020" } res = nlp(QA_input) print('pipeline: {}'.format(res)) #{'score': 0.5782045125961304, 'start': 45, 'end': 68, 'answer': 'xử lý ngôn ngữ tự nhiên'} ``` - More accurate infer process ([**Using sum features strategy**](https://github.com/nguyenvulebinh/extractive-qa-mrc)) ```python from infer import tokenize_function, data_collator, extract_answer from model.mrc_model import MRCQuestionAnswering from transformers import AutoTokenizer model_checkpoint = "nguyenvulebinh/vi-mrc-large" #model_checkpoint = "nguyenvulebinh/vi-mrc-base" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = MRCQuestionAnswering.from_pretrained(model_checkpoint) QA_input = { 'question': "Bình được công nhận với danh hiệu gì ?", 'context': "Bình Nguyễn là một người đam mê với lĩnh vực xử lý ngôn ngữ tự nhiên . Anh nhận chứng chỉ Google Developer Expert năm 2020" } inputs = [tokenize_function(*QA_input)] inputs_ids = data_collator(inputs) outputs = model(**inputs_ids) answer = extract_answer(inputs, outputs, tokenizer) print(answer) # answer: Google Developer Expert. Score start: 0.9926977753639221, Score end: 0.9909810423851013 ``` ## About *Built by Binh Nguyen* [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/nguyenvulebinh/extractive-qa-mrc?style=social)](https://github.com/nguyenvulebinh/extractive-qa-mrc)
openclimatefix/dgmr-discriminator
d0d6e85d81d3524b52295668788bccfa47ac9327
2022-06-20T08:19:22.000Z
[ "pytorch", "transformers" ]
null
false
openclimatefix
null
openclimatefix/dgmr-discriminator
93
null
transformers
4,746
Entry not found
sentence-transformers/roberta-large-nli-mean-tokens
122c0aac5edb08467a65bd04bce837ea1208efd1
2021-08-05T08:30:37.000Z
[ "pytorch", "roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/roberta-large-nli-mean-tokens
93
null
sentence-transformers
4,747
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/roberta-large-nli-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/roberta-large-nli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/roberta-large-nli-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/roberta-large-nli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/roberta-large-nli-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
chinhon/pegasus-newsroom-rewriter
8f2eef17627f17af9100dd10a19e243722a88ecb
2022-03-18T10:51:57.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/pegasus-newsroom-rewriter
93
1
transformers
4,748
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-rewriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-rewriter This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3424 - Rouge1: 46.6856 - Rouge2: 31.6377 - Rougel: 33.2741 - Rougelsum: 44.5003 - Gen Len: 126.58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 450 | 1.4020 | 47.0593 | 32.2065 | 33.9168 | 44.901 | 126.32 | | 1.9944 | 2.0 | 900 | 1.3567 | 46.2635 | 30.9959 | 32.933 | 44.1659 | 126.48 | | 1.6511 | 3.0 | 1350 | 1.3449 | 46.1544 | 30.7257 | 32.693 | 43.9977 | 126.4 | | 1.5951 | 4.0 | 1800 | 1.3424 | 46.6856 | 31.6377 | 33.2741 | 44.5003 | 126.58 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Salesforce/codegen-6B-multi
ba33ebe5dd88700dfedd924a4417df39d7a75627
2022-06-28T17:44:08.000Z
[ "pytorch", "codegen", "text-generation", "arxiv:2203.13474", "transformers", "license:bsd-3-clause" ]
text-generation
false
Salesforce
null
Salesforce/codegen-6B-multi
93
null
transformers
4,749
--- license: bsd-3-clause --- # CodeGen (CodeGen-Multi 6B) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-Multi 6B** in the paper, where "Multi" means the model is initialized with *CodeGen-NL 6B* and further pre-trained on a dataset of multiple programming languages, and "6B" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-Multi 6B) was firstly initialized with *CodeGen-NL 6B*, and then pre-trained on [BigQuery](https://console.cloud.google.com/marketplace/details/github/github-repos), a large-scale dataset of multiple programming languages from GitHub repositories. The data consists of 119.2B tokens and includes C, C++, Go, Java, JavaScript, and Python. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-6B-multi") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-6B-multi") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
patrickvonplaten/wav2vec2-base-timit-demo-google-colab
38b281e77efc6a390bf8b4473d8f4d744ecd2f5c
2022-05-10T12:33:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-timit-demo-google-colab
93
null
transformers
4,750
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5185 - Wer: 0.3370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5137 | 1.0 | 500 | 1.6719 | 0.9580 | | 0.8324 | 2.01 | 1000 | 0.5546 | 0.5341 | | 0.4365 | 3.01 | 1500 | 0.4567 | 0.4635 | | 0.3058 | 4.02 | 2000 | 0.4429 | 0.4454 | | 0.2284 | 5.02 | 2500 | 0.4734 | 0.4186 | | 0.1892 | 6.02 | 3000 | 0.4191 | 0.4030 | | 0.1542 | 7.03 | 3500 | 0.4522 | 0.3985 | | 0.1364 | 8.03 | 4000 | 0.4749 | 0.3922 | | 0.1239 | 9.04 | 4500 | 0.4950 | 0.3977 | | 0.1092 | 10.04 | 5000 | 0.4468 | 0.3779 | | 0.0956 | 11.04 | 5500 | 0.4897 | 0.3789 | | 0.0897 | 12.05 | 6000 | 0.4927 | 0.3718 | | 0.0792 | 13.05 | 6500 | 0.5242 | 0.3699 | | 0.0731 | 14.06 | 7000 | 0.5202 | 0.3772 | | 0.0681 | 15.06 | 7500 | 0.5046 | 0.3637 | | 0.062 | 16.06 | 8000 | 0.5336 | 0.3664 | | 0.0556 | 17.07 | 8500 | 0.5017 | 0.3633 | | 0.0556 | 18.07 | 9000 | 0.5466 | 0.3736 | | 0.0461 | 19.08 | 9500 | 0.5489 | 0.3566 | | 0.0439 | 20.08 | 10000 | 0.5399 | 0.3559 | | 0.0397 | 21.08 | 10500 | 0.5154 | 0.3539 | | 0.0346 | 22.09 | 11000 | 0.5170 | 0.3513 | | 0.0338 | 23.09 | 11500 | 0.5236 | 0.3492 | | 0.0342 | 24.1 | 12000 | 0.5288 | 0.3493 | | 0.0282 | 25.1 | 12500 | 0.5147 | 0.3449 | | 0.0251 | 26.1 | 13000 | 0.5092 | 0.3442 | | 0.0268 | 27.11 | 13500 | 0.5093 | 0.3413 | | 0.021 | 28.11 | 14000 | 0.5310 | 0.3399 | | 0.022 | 29.12 | 14500 | 0.5185 | 0.3370 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ai4bharat/IndicBART-XLSum
0d527c39c318282e7c8cbbcd479b6bad9f46a599
2022-05-14T15:09:17.000Z
[ "pytorch", "mbart", "text2text-generation", "dataset:csebuetnlp/xlsum", "arxiv:2109.02903", "transformers", "multilingual", "nlp", "indicnlp", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/IndicBART-XLSum
93
null
transformers
4,751
--- languages: - bn - gu - hi - mr - pa - ta - te datasets: - csebuetnlp/xlsum tags: - multilingual - nlp - indicnlp widget: - टेसा जॉवल का कहना है कि मृतकों और लापता लोगों के परिजनों की मदद के लिए एक केंद्र स्थापित किया जा रहा है. उन्होंने इस हादसे के तीन के बाद भी मृतकों की सूची जारी करने में हो रही देरी के बारे में स्पष्टीकरण देते हुए कहा है शवों की ठीक पहचान होना ज़रूरी है. पुलिस के अनुसार धमाकों में मारे गए लोगों की संख्या अब 49 हो गई है और अब भी 20 से ज़्यादा लोग लापता हैं. पुलिस के अनुसार लंदन पर हमले योजनाबद्ध तरीके से हुए और भूमिगत रेलगाड़ियों में विस्फोट तो 50 सैकेंड के भीतर हुए. पहचान की प्रक्रिया किंग्स क्रॉस स्टेशन के पास सुरंग में धमाके से क्षतिग्रस्त रेल कोचों में अब भी पड़े शवों के बारे में स्थिति साफ नहीं है और पुलिस ने आगाह किया है कि हताहतों की संख्या बढ़ सकती है. पुलिस, न्यायिक अधिकारियों, चिकित्सकों और अन्य विशेषज्ञों का एक आयोग बनाया गया है जिसकी देख-रेख में शवों की पहचान की प्रक्रिया पूरी होगी. महत्वपूर्ण है कि गुरुवार को लंदन में मृतकों के सम्मान में सार्वजनिक समारोह होगा जिसमें उन्हें श्रद्धाँजलि दी जाएगी और दो मिनट का मौन रखा जाएगा. पुलिस का कहना है कि वह इस्लामी चरमपंथी संगठन अबू हफ़्स अल-मासरी ब्रिगेड्स का इन धमाकों के बारे में किए गए दावे को गंभीरता से ले रही है. 'धमाके पचास सेकेंड में हुए' पुलिस के अनुसार लंदन पर हुए हमले योजनाबद्ध तरीके से किए गए थे. पुलिस के अनुसार भूमिगत रेलों में तीन बम अलग-अलग जगहों लगभग अचानक फटे थे. इसलिए पुलिस को संदेह है कि धमाकों में टाइमिंग उपकरणों का उपयोग किया गया होगा. यह भी तथ्य सामने आया है कि धमाकों में आधुनिक किस्म के विस्फोटकों का उपयोग किया गया था. पहले माना जा रहा था कि हमलों में देसी विस्फोटकों का इस्तेमाल किया गया होगा. पुलिस मुख्यालय स्कॉटलैंड यार्ड में सहायक उपायुक्त ब्रायन पैडिक ने बताया कि भूमिगत रेलों में तीन धमाके 50 सेकेंड के अंतराल के भीतर हुए थे. धमाके गुरुवार सुबह आठ बजकर पचास मिनट पर हुए थे. लंदन अंडरग्राउंड से मिली विस्तृत तकनीकी सूचनाओं से यह तथ्य सामने आया है. इससे पहले बम धमाकों में अच्छे खासे अंतराल की बात की जा रही थी.</s> <2hi> --- IndicBART-XLSum is a multilingual separate script [IndicBART](https://huggingface.co/ai4bharat/IndicBARTSS) based, sequence-to-sequence pre-trained model focusing on Indic languages. It currently supports 7 Indian languages and is based on the mBART architecture. Some salient features of the IndicBART-XLSum are: <ul> <li >Supported languages: Bengali, Gujarati, Hindi, Marathi, Punjabi, Tamil and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Trained on Indic portion of <a href="https://huggingface.co/datasets/csebuetnlp/xlsum">XLSum corpora</a>. </li> <li> Each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li> </ul> You can read about IndicBARTSS in this <a href="https://arxiv.org/abs/2109.02903">paper</a>. # Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART-XLSum", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART-XLSum", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART-XLSum") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBART-XLSum") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2bn>', '<2gu>', '<2hi>', '<2mr>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART-XLSum was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("टेसा जॉवल का कहना है कि मृतकों और लापता लोगों के परिजनों की मदद के लिए एक केंद्र स्थापित किया जा रहा है. उन्होंने इस हादसे के तीन के बाद भी मृतकों की सूची जारी करने में हो रही देरी के बारे में स्पष्टीकरण देते हुए कहा है शवों की ठीक पहचान होना ज़रूरी है. पुलिस के अनुसार धमाकों में मारे गए लोगों की संख्या अब 49 हो गई है और अब भी 20 से ज़्यादा लोग लापता हैं. पुलिस के अनुसार लंदन पर हमले योजनाबद्ध तरीके से हुए और भूमिगत रेलगाड़ियों में विस्फोट तो 50 सैकेंड के भीतर हुए. पहचान की प्रक्रिया किंग्स क्रॉस स्टेशन के पास सुरंग में धमाके से क्षतिग्रस्त रेल कोचों में अब भी पड़े शवों के बारे में स्थिति साफ नहीं है और पुलिस ने आगाह किया है कि हताहतों की संख्या बढ़ सकती है. पुलिस, न्यायिक अधिकारियों, चिकित्सकों और अन्य विशेषज्ञों का एक आयोग बनाया गया है जिसकी देख-रेख में शवों की पहचान की प्रक्रिया पूरी होगी. महत्वपूर्ण है कि गुरुवार को लंदन में मृतकों के सम्मान में सार्वजनिक समारोह होगा जिसमें उन्हें श्रद्धाँजलि दी जाएगी और दो मिनट का मौन रखा जाएगा. पुलिस का कहना है कि वह इस्लामी चरमपंथी संगठन अबू हफ़्स अल-मासरी ब्रिगेड्स का इन धमाकों के बारे में किए गए दावे को गंभीरता से ले रही है. 'धमाके पचास सेकेंड में हुए' पुलिस के अनुसार लंदन पर हुए हमले योजनाबद्ध तरीके से किए गए थे. पुलिस के अनुसार भूमिगत रेलों में तीन बम अलग-अलग जगहों लगभग अचानक फटे थे. इसलिए पुलिस को संदेह है कि धमाकों में टाइमिंग उपकरणों का उपयोग किया गया होगा. यह भी तथ्य सामने आया है कि धमाकों में आधुनिक किस्म के विस्फोटकों का उपयोग किया गया था. पहले माना जा रहा था कि हमलों में देसी विस्फोटकों का इस्तेमाल किया गया होगा. पुलिस मुख्यालय स्कॉटलैंड यार्ड में सहायक उपायुक्त ब्रायन पैडिक ने बताया कि भूमिगत रेलों में तीन धमाके 50 सेकेंड के अंतराल के भीतर हुए थे. धमाके गुरुवार सुबह आठ बजकर पचास मिनट पर हुए थे. लंदन अंडरग्राउंड से मिली विस्तृत तकनीकी सूचनाओं से यह तथ्य सामने आया है. इससे पहले बम धमाकों में अच्छे खासे अंतराल की बात की जा रही थी.</s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi>परिजनों की मदद की ज़िम्मेदारी मंत्री पर </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # लंदन धमाकों में मारे गए लोगों की सूची जारी ``` # Benchmarks Scores on the `IndicBART-XLSum` test sets are as follows: Language | Rouge-1 / Rouge-2 / Rouge-L ---------|---------------------------- bn | 0.172331 / 0.051777 / 0.160245 gu | 0.143240 / 0.039993 / 0.133981 hi | 0.220394 / 0.065464 / 0.198816 mr | 0.172568 / 0.062591 / 0.160403 pa | 0.218274 / 0.066087 / 0.192010 ta | 0.177317 / 0.058636 / 0.166324 te | 0.156386 / 0.041042 / 0.144179 average | 0.180073 / 0.055084 / 0.165137 # Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to get logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore, I used the AlbertTokenizer class and not the MBartTokenizer class.
ncfrey/ChemGPT-4.7M
7438a282460b3038e17a27e25b85b1376e9a23e2
2022-06-15T15:17:11.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "chemistry" ]
text-generation
false
ncfrey
null
ncfrey/ChemGPT-4.7M
93
null
transformers
4,752
--- tags: - chemistry --- # ChemGPT 4.7M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
LooksLikeIveLost/DialoGPT-medium-me
a01a8a16183cc43e250c676aab0540c54e4ab1fa
2022-05-20T02:16:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
LooksLikeIveLost
null
LooksLikeIveLost/DialoGPT-medium-me
93
null
transformers
4,753
--- tags: - conversational --- #Me Bot
bigscience-catalogue-lm-data/sgpt-nli-bloom-1b3
24a4ede287f478b4217b79b434528ba35b43316a
2022-07-10T15:23:17.000Z
[ "pytorch", "bloom", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
bigscience-catalogue-lm-data
null
bigscience-catalogue-lm-data/sgpt-nli-bloom-1b3
93
2
sentence-transformers
4,754
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # sgpt-nli-bloom-1b3 ## Usage For usage instructions, refer to: https://github.com/Muennighoff/sgpt#symmetric-semantic-search The model was trained with the command ```bash CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/nli/training_nli_v2.py --model_name bigscience/bloom-1b3 --freezenonbias --train_batch_size 128 --lr 32e-5 --pooling weightedmean --wandb --wandbwatchlog gradients --gradcache --chunksize 4 ``` ## Evaluation Results `{'askubuntu': 57.44, 'cqadupstack': 14.18, 'twitterpara': 73.99, 'scidocs': 74.74, 'avg': 55.087500000000006}` ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4403 with parameters: ``` {'batch_size': 128} ``` The model uses BitFit, weighted-mean pooling & GradCache, for details see: https://arxiv.org/abs/2202.08904 **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 440, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.00032 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 441, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
bloom-testing/test-bloomd-350m-fix-master-ci
4d0c88371a597294e0d01c76b754c2659acb3f6c
2022-07-16T00:58:37.000Z
[ "pytorch", "bloom", "feature-extraction", "transformers" ]
feature-extraction
false
bloom-testing
null
bloom-testing/test-bloomd-350m-fix-master-ci
93
null
transformers
4,755
Entry not found
Cinnamon/electra-small-japanese-discriminator
556f337383b3421fa3276a6787e88c5cc2e3a0cd
2020-12-11T21:26:13.000Z
[ "pytorch", "electra", "pretraining", "ja", "transformers", "license:apache-2.0" ]
null
false
Cinnamon
null
Cinnamon/electra-small-japanese-discriminator
92
1
transformers
4,756
--- language: ja license: apache-2.0 --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ## How to use the discriminator in `transformers` ``` from transformers import BertJapaneseTokenizer, ElectraForPreTraining tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator') ```
PaulLerner/dpr_question_encoder_triviaqa_without_viquae
0e4feb8b7a09fee824989b911f7f83cc8b5fa6b7
2022-02-18T13:55:05.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers" ]
feature-extraction
false
PaulLerner
null
PaulLerner/dpr_question_encoder_triviaqa_without_viquae
92
null
transformers
4,757
Entry not found
assemblyai/distilbert-base-uncased-qqp
c6a84d6432d9eccfa1850c252322fb1e0e77fcb4
2021-06-14T22:13:49.000Z
[ "pytorch", "distilbert", "text-classification", "arxiv:1910.01108", "transformers" ]
text-classification
false
assemblyai
null
assemblyai/distilbert-base-uncased-qqp
92
null
transformers
4,758
# DistilBERT-Base-Uncased for Duplicate Question Detection This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) originally released in ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108) and trained on the [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) dataset; part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post](). ## Usage To download and utilize this model for duplicate question detection please execute the following: ```python import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("assemblyai/distilbert-base-uncased-qqp") model = AutoModelForSequenceClassification.from_pretrained("assemblyai/distilbert-base-uncased-qqp") tokenized_segments = tokenizer(["How many hours does it take to fly from California to New York?"], ["What is the flight time from New York to Seattle?"], return_tensors="pt", padding=True, truncation=True) tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1) print("Duplicate probability: "+str(model_predictions[0][1].item()*100)+"%") print("Non-duplicate probability: "+str(model_predictions[0][0].item()*100)+"%") ``` For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!
facebook/wav2vec2-large-it-voxpopuli
06983d0205d75ad2b6ff6b31ef0cff420091ec85
2021-07-06T02:18:35.000Z
[ "pytorch", "jax", "wav2vec2", "pretraining", "it", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-it-voxpopuli
92
null
transformers
4,759
--- language: it tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Large-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the it unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
huggingtweets/girlmeat5557
e8bbda0e4e4ff17aa2acaaae5caa91d1d3f0a424
2021-05-22T05:31:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/girlmeat5557
92
null
transformers
4,760
--- language: en thumbnail: https://www.huggingtweets.com/girlmeat5557/1617790352329/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373592959380242432/Vw_88RqG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">a scared animal bites 🧷 vtuber 🤖 AI Bot </div> <div style="font-size: 15px">@girlmeat5557 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@girlmeat5557's tweets](https://twitter.com/girlmeat5557). | Data | Quantity | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 871 | | Short tweets | 489 | | Tweets kept | 1882 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wthiey09/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @girlmeat5557's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/io5hvymh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/io5hvymh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/girlmeat5557') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/huxijin_gt
5875c1a5dac528529f57cd66c6cb788b38bf69f9
2021-05-22T07:20:55.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/huxijin_gt
92
null
transformers
4,761
--- language: en thumbnail: https://www.huggingtweets.com/huxijin_gt/1603826688877/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/504912656256352256/swrUCKHO_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hu Xijin 胡锡进 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@huxijin_gt bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@huxijin_gt's tweets](https://twitter.com/huxijin_gt). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2167</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2149</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3s1czwb3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @huxijin_gt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3h7d51hp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3h7d51hp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/huxijin_gt'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
ml6team/gpt-2-medium-conditional-quote-generator
d24ccfffa33b49ff47ed4474622231f26dc66f73
2021-05-23T09:38:59.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ml6team
null
ml6team/gpt-2-medium-conditional-quote-generator
92
6
transformers
4,762
This model has been finetuned on the [`Quotes-500K`](https://github.com/ShivaliGoel/Quotes-500K) dataset to generate quotes based on given topics. To generate a quote, use the following input prompt: `Given Topics: topic 1 | topic 2 | ... | topic n. Related Quote: `
mrm8488/gpt2-finetuned-recipes-cooking_v2
c7b08a08939ef24841e4b3d756b3bc75a81faffa
2021-05-23T10:25:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/gpt2-finetuned-recipes-cooking_v2
92
null
transformers
4,763
--- language: en thumbnail: widget: - text: "HuggingFace Cake:" ---
navteca/quora-roberta-base
0919bfda01351c5074b84550e96cbe4207234b60
2021-03-25T16:10:08.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "dataset:quora", "transformers", "license:mit" ]
text-classification
false
navteca
null
navteca/quora-roberta-base
92
null
transformers
4,764
--- datasets: - quora language: en license: mit pipeline_tag: text-classification tags: - roberta - text-classification --- # Cross-Encoder for Quora Duplicate Questions Detection This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model uses [roberta-base](https://huggingface.co/roberta-base). ## Training Data This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1: How likely the two given questions are duplicates. Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions "How to learn Java" and "How to learn Python" will result in a rahter low score, as these are not duplicates. ## Usage and Performance The trained model can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name') scores = model.predict([('Question 1', 'Question 2'), ('Question 3', 'Question 4')]) print(scores) ```
nielsr/coref-roberta-large
b228bea5218e3575342d440385dcd2d7bd809738
2021-01-21T10:07:15.000Z
[ "pytorch", "en", "dataset:wikipedia", "dataset:quoref", "dataset:docred", "dataset:fever", "dataset:gap", "dataset:winograd_wsc", "dataset:winogender", "dataset:glue", "arxiv:2004.06870", "transformers", "exbert", "license:apache-2.0" ]
null
false
nielsr
null
nielsr/coref-roberta-large
92
null
transformers
4,765
--- language: en tags: - exbert license: apache-2.0 datasets: - wikipedia - quoref - docred - fever - gap - winograd_wsc - winogender - glue --- # CorefRoBERTa large model Pretrained model on English language using Masked Language Modeling (MLM) and Mention Reference Prediction (MRP) objectives. It was introduced in [this paper](https://arxiv.org/abs/2004.06870) and first released in [this repository](https://github.com/thunlp/CorefBERT). Disclaimer: The team releasing CorefRoBERTa did not write a model card for this model so this model card has been written by me. ## Model description CorefRoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Mention reference prediction (MRP): this is a novel training task which is proposed to enhance coreferential reasoning ability. MRP utilizes the mention reference masking strategy to mask one of the repeated mentions and then employs a copybased training objective to predict the masked tokens by copying from other tokens in the sequence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks, especially those that involve coreference resolution. If you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the CorefRoBERTa model as inputs. ### BibTeX entry and citation info ```bibtex @misc{ye2020coreferential, title={Coreferential Reasoning Learning for Language Representation}, author={Deming Ye and Yankai Lin and Jiaju Du and Zhenghao Liu and Peng Li and Maosong Sun and Zhiyuan Liu}, year={2020}, eprint={2004.06870}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
persiannlp/wikibert-base-parsinlu-multiple-choice
b52a5055ac9977d7fef340cabc743ceddf54b574
2021-09-23T16:20:58.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "fa", "multilingual", "dataset:parsinlu", "transformers", "wikibert", "persian", "farsi", "license:cc-by-nc-sa-4.0", "text-classification" ]
text-classification
false
persiannlp
null
persiannlp/wikibert-base-parsinlu-multiple-choice
92
null
transformers
4,766
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - wikibert - persian - farsi pipeline_tag: text-classification license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a wikibert-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
trituenhantaoio/bert-base-vietnamese-diacritics-uncased
c9451f959df56b17cfce1cc14ee80951577874f5
2021-05-20T08:05:47.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
null
false
trituenhantaoio
null
trituenhantaoio/bert-base-vietnamese-diacritics-uncased
92
null
transformers
4,767
## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer model = BertForSequenceClassification.from_pretrained("trituenhantaoio/bert-base-vietnamese-diacritics-uncased") tokenizer = BertTokenizer.from_pretrained("trituenhantaoio/bert-base-vietnamese-diacritics-uncased") ``` ### References ``` @article{ttnt2020bertdiacritics, title={Vietnamese BERT Diacritics: Pretrained on News and Wiki}, author={trituenhantao.io}, year = {2020}, publisher = {Hugging Face}, journal = {Hugging Face repository} } ``` [trituenhantao.io](https://trituenhantao.io)
pysentimiento/robertuito-ner
e3c0367de51f0f91899a94c43a20de9a0913c7c0
2022-07-21T11:22:07.000Z
[ "pytorch", "roberta", "token-classification", "es", "arxiv:2106.09462", "arxiv:2111.09453", "transformers", "twitter", "sentiment-analysis", "autotrain_compatible" ]
token-classification
false
pysentimiento
null
pysentimiento/robertuito-ner
92
null
transformers
4,768
--- language: - es tags: - twitter - sentiment-analysis --- # Named Entity Recognition model for Spanish/English ## robertuito-ner Repository: [https://github.com/pysentimiento/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with the Spanish/English split of the [LinCE NER corpus](https://ritual.uh.edu/lince/), a code-switched benchmark . Base model is [RoBERTuito](https://github.com/pysentimiento/robertuito), a RoBERTa model trained in Spanish tweets. ## Results Results are taken from the LinCE leaderboard | Model | Sentiment | NER | POS | |:-----------------------|:----------------|:-------------------|:--------| | RoBERTuito | **60.6** | 68.5 | 97.2 | | XLM Large | -- | **69.5** | **97.2** | | XLM Base | -- | 64.9 | 97.0 | | C2S mBERT | 59.1 | 64.6 | 96.9 | | mBERT | 56.4 | 64.0 | 97.1 | | BERT | 58.4 | 61.1 | 96.9 | | BETO | 56.5 | -- | -- | ## Citation If you use this model in your research, please cite pysentimiento, RoBERTuito and LinCE papers: ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{perez2021robertuito, title={RoBERTuito: a pre-trained language model for social media text in Spanish}, author={Juan Manuel Pérez and Damián A. Furman and Laura Alonso Alemany and Franco Luque}, year={2021}, eprint={2111.09453}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{aguilar2020lince, title={LinCE: A Centralized Benchmark for Linguistic Code-switching Evaluation}, author={Aguilar, Gustavo and Kar, Sudipta and Solorio, Thamar}, booktitle={Proceedings of the 12th Language Resources and Evaluation Conference}, pages={1803--1813}, year={2020} } ```
xlm-mlm-xnli15-1024
c86c766c25685d110275169e45babb27636d89c2
2022-07-22T08:10:39.000Z
[ "pytorch", "tf", "xlm", "fill-mask", "multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur", "arxiv:1901.07291", "arxiv:1910.09700", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
fill-mask
false
null
null
xlm-mlm-xnli15-1024
91
null
transformers
4,769
--- language: - multilingual - en - fr - es - de - el - bg - ru - tr - ar - vi - th - zh - hi - sw - ur license: cc-by-nc-4.0 --- # xlm-mlm-xnli15-1024 # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Technical Specifications](#technical-specifications) 8. [Citation](#citation) 9. [Model Card Authors](#model-card-authors) 10. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details The XLM model was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample, Alexis Conneau. xlm-mlm-xnli15-1024 is a transformer pretrained using a masked language modeling (MLM) objective fine-tuned on the English NLI dataset. The model developers evaluated the capacity of the model to make correct predictions in all 15 XNLI languages (see the [XNLI data card](https://huggingface.co/datasets/xnli) for further information on XNLI). ## Model Description - **Developed by:** Guillaume Lample, Alexis Conneau, see [associated paper](https://arxiv.org/abs/1901.07291) - **Model type:** Language model - **Language(s) (NLP):** English; evaluated in 15 languages (see [XNLI data card](https://huggingface.co/datasets/xnli)) - **License:** CC-BY-NC-4.0 - **Related Models:** [XLM models](https://huggingface.co/models?sort=downloads&search=xlm) - **Resources for more information:** - [Associated paper](https://arxiv.org/abs/1901.07291) - [GitHub Repo for XLM](https://github.com/facebookresearch/XLM) - [GitHub Repo for XNLI](https://github.com/facebookresearch/XNLI) - [XNLI data card](https://huggingface.co/datasets/xnli) - [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) # Uses ## Direct Use The model is a language model. The model can be used for cross-lingual text classification. Though the model is fine-tuned based on English text data, the model's ability to classify sentences in 14 other languages has been evaluated (see [Evaluation](#evaluation)). ## Downstream Use This model can be used for downstream tasks related to natural language inference in different languages. For more information, see the [associated paper](https://arxiv.org/abs/1901.07291). ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. # Training Details Training details are culled from the [associated paper](https://arxiv.org/pdf/1901.07291.pdf). See the paper for links, citations, and further details. Also see the associated [GitHub Repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details. ## Training Data The model developers write: > We use WikiExtractor2 to extract raw sentences from Wikipedia dumps and use them as mono-lingual data for the CLM and MLM objectives. For the TLM objective, we only use parallel data that involves English, similar to Conneau et al. (2018b). > - Precisely, we use MultiUN (Ziemski et al., 2016) for French, Spanish, Russian, Arabic and Chinese, and the IIT Bombay corpus (Anoop et al., 2018) for Hindi. > - We extract the following corpora from the OPUS 3 website Tiedemann (2012): the EUbookshop corpus for German, Greek and Bulgarian, OpenSubtitles 2018 for Turkish, Vietnamese and Thai, Tanzil for both Urdu and Swahili and GlobalVoices for Swahili. > - For Chinese, Japanese and Thai we use the tokenizer of Chang et al. (2008), the Kytea4 tokenizer, and the PyThaiNLP5 tokenizer respectively. > - For all other languages, we use the tokenizer provided by Moses (Koehn et al., 2007), falling back on the default English tokenizer when necessary. For fine-tuning, the developers used the English NLI dataset (see the [XNLI data card](https://huggingface.co/datasets/xnli)). ## Training Procedure ### Preprocessing The model developers write: > We use fastBPE to learn BPE codes and split words into subword units. The BPE codes are learned on the concatenation of sentences sampled from all languages, following the method presented in Section 3.1. ### Speeds, Sizes, Times The model developers write: > We use a Transformer architecture with 1024 hidden units, 8 heads, GELU activations (Hendrycks and Gimpel, 2016), a dropout rate of 0.1 and learned positional embeddings. We train our models with the Adam optimizer (Kingma and Ba, 2014), a linear warm-up (Vaswani et al., 2017) and learning rates varying from 10^−4 to 5.10^−4. > > For the CLM and MLM objectives, we use streams of 256 tokens and a mini-batches of size 64. Unlike Devlin et al. (2018), a sequence in a mini-batch can contain more than two consecutive sentences, as explained in Section 3.2. For the TLM objective, we sample mini-batches of 4000 tokens composed of sentences with similar lengths. We use the averaged perplexity over languages as a stopping criterion for training. For machine translation, we only use 6 layers, and we create mini-batches of 2000 tokens. > > When fine-tuning on XNLI, we use mini-batches of size 8 or 16, and we clip the sentence length to 256 words. We use 80k BPE splits and a vocabulary of 95k and train a 12-layer model on the Wikipedias of the XNLI languages. We sample the learning rate of the Adam optimizer with values from 5.10−4 to 2.10−4, and use small evaluation epochs of 20000 random samples. We use the first hidden state of the last layer of the transformer as input to the randomly initialized final linear classifier, and fine-tune all parameters. In our experiments, using either max-pooling or mean-pooling over the last layer did not work bet- ter than using the first hidden state. > > We implement all our models in Py-Torch (Paszke et al., 2017), and train them on 64 Volta GPUs for the language modeling tasks, and 8 GPUs for the MT tasks. We use float16 operations to speed up training and to reduce the memory usage of our models. # Evaluation ## Testing Data, Factors & Metrics After fine-tuning the model on the English NLI dataset, the model developers evaluated the capacity of the model to make correct predictions in the 15 XNLI languages using the XNLI data and the metric of test accuracy.See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for further details. ## Results |Language| en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur | |:------:|:--:|:---:|:--:|:--:|:--:|:--:|:---:|:--:|:--:|:--:|:--:|:---:|:--:|:--:|:--:| |Accuracy|83.2|76.5 |76.3|74.2|73.1|74.0|73.1 |67.8|68.5|71.2|69.2|71.9 |65.7|64.6|63.4| # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 64 Volta GPUs - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications Details are culled from the [associated paper](https://arxiv.org/pdf/1901.07291.pdf). See the paper for links, citations, and further details. Also see the associated [GitHub Repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details. ## Model Architecture and Objective xlm-mlm-xnli15-1024 is a transformer pretrained using a masked language modeling (MLM) objective fine-tuned on the English NLI dataset. About the MLM objective, the developers write: > We also consider the masked language model- ing (MLM) objective of Devlin et al. (2018), also known as the Cloze task (Taylor, 1953). Follow- ing Devlin et al. (2018), we sample randomly 15% of the BPE tokens from the text streams, replace them by a [MASK] token 80% of the time, by a random token 10% of the time, and we keep them unchanged 10% of the time. Differences be- tween our approach and the MLM of Devlin et al. (2018) include the use of text streams of an ar- bitrary number of sentences (truncated at 256 to- kens) instead of pairs of sentences. To counter the imbalance between rare and frequent tokens (e.g. punctuations or stop words), we also subsample the frequent outputs using an approach similar to Mikolov et al. (2013b): tokens in a text stream are sampled according to a multinomial distribution, whose weights are proportional to the square root of their invert frequencies. Our MLM objective is illustrated in Figure 1. ## Compute Infrastructure ### Hardware and Software The developers write: > We implement all our models in PyTorch (Paszke et al., 2017), and train them on 64 Volta GPUs for the language modeling tasks, and 8 GPUs for the MT tasks. We use float16 operations to speed up training and to reduce the memory usage of our models. # Citation **BibTeX:** ```bibtex @article{lample2019cross, title={Cross-lingual language model pretraining}, author={Lample, Guillaume and Conneau, Alexis}, journal={arXiv preprint arXiv:1901.07291}, year={2019} } ``` **APA:** - Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model This model uses language embeddings to specify the language used at inference. See the [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) for further details.
Helsinki-NLP/opus-mt-cs-fr
3040852ec5404c1da928602fa1ec636b6ddf9a2e
2021-09-09T21:29:29.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cs-fr
91
null
transformers
4,770
--- tags: - translation license: apache-2.0 --- ### opus-mt-cs-fr * source languages: cs * target languages: fr * OPUS readme: [cs-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | GlobalVoices.cs.fr | 21.0 | 0.488 |
Helsinki-NLP/opus-mt-en-et
f696ce2db3f802cf4dd723ea97b2af1eda90c7e9
2021-09-09T21:35:13.000Z
[ "pytorch", "marian", "text2text-generation", "en", "et", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-et
91
null
transformers
4,771
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-et * source languages: en * target languages: et * OPUS readme: [en-et](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-et/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-et/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-et/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-et/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2018-enet.en.et | 21.8 | 0.540 | | newstest2018-enet.en.et | 23.3 | 0.556 | | Tatoeba.en.et | 54.0 | 0.717 |
Helsinki-NLP/opus-mt-sl-ru
f537bd30d780082fffad4b80036fca19c87a67a8
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "sl", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sl-ru
91
null
transformers
4,772
--- language: - sl - ru tags: - translation license: apache-2.0 --- ### slv-rus * source group: Slovenian * target group: Russian * OPUS readme: [slv-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/slv-rus/README.md) * model: transformer-align * source language(s): slv * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/slv-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/slv-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/slv-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.slv.rus | 37.3 | 0.504 | ### System Info: - hf_name: slv-rus - source_languages: slv - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/slv-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['sl', 'ru'] - src_constituents: {'slv'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/slv-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/slv-rus/opus-2020-06-17.test.txt - src_alpha3: slv - tgt_alpha3: rus - short_pair: sl-ru - chrF2_score: 0.504 - bleu: 37.3 - brevity_penalty: 0.988 - ref_len: 2101.0 - src_name: Slovenian - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: sl - tgt_alpha2: ru - prefer_old: False - long_pair: slv-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary
5f8fd46cd438d48ce4ff9fb9a01024b857f6204c
2021-05-18T20:56:29.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
HooshvareLab
null
HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary
91
1
transformers
4,773
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ### DeepSentiPers which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset. **Binary:** 1. Negative (Furious + Angry) 2. Positive (Happy + Delighted) **Multi** 1. Furious 2. Angry 3. Neutral 4. Happy 5. Delighted | Label | # | |:---------:|:----:| | Furious | 236 | | Angry | 1357 | | Neutral | 2874 | | Happy | 2848 | | Delighted | 2516 | **Download** You can download the dataset from: - [SentiPers](https://github.com/phosseini/sentipers) - [DeepSentiPers](https://github.com/JoyeBright/DeepSentiPers) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:| | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 | ## How to use :hugs: | Task | Notebook | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sentiment Analysis | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
KoichiYasuoka/bert-base-japanese-char-extended
ec39844667602ffc6fc2fa1958ee683b667421f8
2022-06-20T22:21:54.000Z
[ "pytorch", "bert", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/bert-base-japanese-char-extended
91
null
transformers
4,774
--- language: - "ja" tags: - "japanese" - "masked-lm" - "wikipedia" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "酸素ボンベを充[MASK]する。" --- # bert-base-japanese-char-extended ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts, derived from [bert-base-japanese-char-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2). Character-embeddings are enhanced to include all 常用漢字/人名用漢字 characters using BertTokenizerFast. You can fine-tune `bert-base-japanese-char-extended` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/bert-base-japanese-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/bert-base-japanese-wikipedia-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-char-extended") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/bert-base-japanese-char-extended") ```
allenai/unifiedqa-v2-t5-base-1363200
48d92192cfceb184fc6593c1e60b9752a5877cc3
2022-02-22T00:26:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/unifiedqa-v2-t5-base-1363200
91
1
transformers
4,775
# Further details: https://github.com/allenai/unifiedqa
cointegrated/rut5-small-chitchat
6a8dd478cfecbb26a4637be2c101c131dd931fde
2021-07-18T21:50:13.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "dialogue", "russian", "license:mit", "autotrain_compatible" ]
text2text-generation
false
cointegrated
null
cointegrated/rut5-small-chitchat
91
3
transformers
4,776
--- language: "ru" tags: - dialogue - russian license: mit --- This is a version of the [cointegrated/rut5-small](https://huggingface.co/cointegrated/rut5-small) model fine-tuned on some Russian dialogue data. It is not very smart and creative, but it is small and fast, and can serve as a fallback response generator for some chatbot or can be fine-tuned to imitate the style of someone. The input of the model is the previous dialogue utterances separated by `'\n\n'`, and the output is the next utterance. The model can be used as follows: ``` # !pip install transformers sentencepiece import torch from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("cointegrated/rut5-small-chitchat") model = T5ForConditionalGeneration.from_pretrained("cointegrated/rut5-small-chitchat") text = 'Привет! Расскажи, как твои дела?' inputs = tokenizer(text, return_tensors='pt') with torch.no_grad(): hypotheses = model.generate( **inputs, do_sample=True, top_p=0.5, num_return_sequences=3, repetition_penalty=2.5, max_length=32, ) for h in hypotheses: print(tokenizer.decode(h, skip_special_tokens=True)) # Как обычно. # Сейчас - в порядке. # Хорошо. # Wall time: 363 ms ```
dtomas/roberta-base-bne-irony
772b696b754dc0c279b8ae569b3604907034268c
2021-12-22T13:55:36.000Z
[ "pytorch", "roberta", "text-classification", "es", "transformers", "irony", "sarcasm", "spanish" ]
text-classification
false
dtomas
null
dtomas/roberta-base-bne-irony
91
null
transformers
4,777
--- language: - es tags: - irony - sarcasm - spanish widget: - text: "¡Cómo disfruto peleándome con los Transformers!" example_title: "Ironic" - text: "Madrid es la capital de España" example_title: "Non ironic" --- # RoBERTa base finetuned for Spanish irony detection ## Model description Model to perform irony detection in Spanish. This is a finetuned version of the [RoBERTa-base-bne model](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the [IroSvA](https://www.autoritas.net/IroSvA2019/) corpus. Only the Spanish from Spain variant was used in the training process. It comprises 2,400 tweets labeled as ironic/non-ironic.
flax-community/wav2vec2-spanish
bd4d4e898c994eecd8df48e21a6c3abd316a26d6
2021-07-19T05:02:39.000Z
[ "pytorch", "jax", "wav2vec2", "pretraining", "es", "dataset:common_voice", "arxiv:2006.11477", "transformers", "audio", "automatic-speech-recognition" ]
automatic-speech-recognition
false
flax-community
null
flax-community/wav2vec2-spanish
91
null
transformers
4,778
--- language: es tags: - audio - automatic-speech-recognition datasets: - common_voice --- # Wav2Vec2 Spanish Wav2Vec2 model pre-trained using the Spanish portion of the Common Voice dataset. The model is trained with Flax and using TPUs sponsored by Google since this is part of the [Flax/Jax Community Week](https://discss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. ## Model description The model used for training is [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) by FacebookAI. It was introduced in the paper "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli (https://arxiv.org/abs/2006.11477). This model is available in the 🤗 [Model Hub](https://huggingface.co/facebook/wav2vec2-base-960h). ## Training data Spanish portion of [Common Voice](https://commonvoice.mozilla.org/en/datasets). Common Voice is an open source, multi-language dataset of voices part of Mozilla's initiative to help teach machines how real people speak. The dataset is also available in the 🤗 [Datasets](https://huggingface.co/datasets/common_voice) library. ## Team members - María Grandury ([@mariagrandury](https://github.com/mariagrandury)) - Manuel Romero ([@mrm8488](https://huggingface.co/mrm8488)) - Eduardo González Ponferrada ([@edugp](https://huggingface.co/edugp)) - pcuenq ([@pcuenq](https://huggingface.co/pcuenq))
llange/xlm-roberta-large-spanish-clinical
3ef89eb7322ba99a1125efb69eea06c94def53e4
2021-12-17T10:27:39.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2112.08754", "transformers", "autotrain_compatible" ]
fill-mask
false
llange
null
llange/xlm-roberta-large-spanish-clinical
91
null
transformers
4,779
# CLIN-X-ES: a pre-trained language model for the Spanish clinical domain Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow. The paper can be found [here](https://arxiv.org/abs/2112.08754). In case of questions, please contact the authors as listed on the paper. Please cite the above paper when reporting, reproducing or extending the results. @misc{lange-etal-2021-clin-x, author = {Lukas Lange and Heike Adel and Jannik Str{\"{o}}tgen and Dietrich Klakow}, title = {CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain}, year={2021}, eprint={2112.08754}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2112.08754} } ## Training details The model is based on the multilingual XLM-R transformer `(xlm-roberta-large)`, which was trained on 100 languages and showed superior performance in many different tasks across languages and can even outperform monolingual models in certain settings (Conneau et al. 2020). Even though XLM-R was pre-trained on 53GB of Spanish documents, this was only 2% of the overall training data. To steer this model towards the Spanish clinical domain, we sample documents from the Scielo archive (https://scielo.org/) and the MeSpEn resources (Villegas et al. 2018). The resulting corpus has a size of 790MB and is highly specific for the clinical domain. We initialize CLIN-X using the pre-trained XLM-R weights and train masked language modeling (MLM) on the Spanish clinical corpus for 3 epochs which roughly corresponds to 32k steps. This allows researchers and practitioners to address the Spanish clinical domain with an out-of-the-box tailored model. ## Results for Spanish concept extraction We apply CLIN-X-ES to five Spanish concept extraction tasks from the clinical domain in a standard sequence labeling architecture similar to Devlin et al. 2019 and compare to a Spanish BERT model called BETO. In addition, we perform experiments with an improved architecture `(+ OurArchitecture)` as described in the paper linked above. The code for our model architecture can be found [here](https://github.com/boschresearch/clin_x). | | Cantemist | Meddocan | Meddoprof (NER) | Meddoprof (CLASS) | Pharmaconer | |------------------------------------------|-----------|----------|-----------------|-------------------|-------------| | BETO (Spanish BERT) | 81.30 | 96.81 | 79.19 | 74.59 | 87.70 | | CLIN-X (ES) | 83.22 | 97.08 | 79.54 | 76.95 | 90.05 | | CLIN-X (ES) + OurArchitecture | **88.24** | **98.00** | **81.68** | **80.54** | **92.27** | ### Results for English concept extraction As the CLIN-X-ES model is based on XLM-R, the model is still multilingual and we demonstrate the positive impact of cross-language domain adaptation by applying this model to five different English sequence labeling tasks from i2b2. We found that further transfer from related concept extraction is particularly helpful in this cross-language setting. For a detailed description of the transfer process and all other models, we refer to our paper. | | i2b2 2006 | i2b2 2010 | i2b2 2012 (Concept) | i2b2 2012 (Time) | i2b2 2014 | |------------------------------------------|-----------|-----------|---------------|---------------|-----------| | BERT | 94.80 | 85.25 | 76.51 | 75.28 | 94.86 | | ClinicalBERT | 94.8 | 87.8 | 78.9 | 76.6 | 93.0 | | CLIN-X (ES) | 95.49 | 87.94 | 79.58 | 77.57 | 96.80 | | CLIN-X (ES) + OurArchitecture | 98.30 | 89.10 | 80.42 | 78.48 | **97.62** | | CLIN-X (ES) + OurArchitecture + Transfer | **89.50** | **89.74** | **80.93** | **79.60** | 97.46 | ## Purpose of the project This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way. ## License The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the [LICENSE](LICENSE) file for details.
philschmid/tiny-distilbert-classification
2ec87b1f823ed23236b016ad3f7c767222021877
2021-09-02T07:43:52.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
philschmid
null
philschmid/tiny-distilbert-classification
91
null
transformers
4,780
# Test model > ## This model is used to run tests for the Hugging Face DLCs
reshinthadith/BashGPTNeo
2088f79bd44b8a2c2e77cf98d08d91798eb3d05e
2021-09-01T15:22:29.000Z
[ "pytorch", "gpt_neo", "text-generation", "English", "Bash", "dataset:nlc2cmd", "transformers", "code-representation-learning", "program-synthesis" ]
text-generation
false
reshinthadith
null
reshinthadith/BashGPTNeo
91
null
transformers
4,781
--- language: - English - Bash thumbnail: "Neural Program Synthesis for Bash" tags: - code-representation-learning - program-synthesis datasets: - nlc2cmd metrics: - metric1 - metric2 --- # BashGPT-Neo ## What is it ? BashGPT-Neo is a [Neural Program Synthesis](https://www.microsoft.com/en-us/research/project/neural-program-synthesis/) Model for Bash Commands and Shell Scripts. Trained on the data provided by [NLC2CMD](https://nlc2cmd.us-east.mybluemix.net/). It is fine-tuned version of GPTNeo-125M by EleutherAI. ## Usage ```py from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("reshinthadith/BashGPTNeo") model = AutoModelForCausalLM.from_pretrained("reshinthadith/BashGPTNeo") ``` ## Core Contributors 👥 - [Reshinth Adithyan](https://github.com/reshinthadithyan) - [Aditya Thuruvas](https://github.com/dhuruvasaditya)
rexoscare/string_instrument_detector
5054f6cf64bdeabdd60001bd4c87d35842cde21e
2021-07-03T17:54:43.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
rexoscare
null
rexoscare/string_instrument_detector
91
null
transformers
4,782
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: string_instrument_detector results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7395833134651184 --- # string_instrument_detector Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Banjo ![Banjo](images/Banjo.jpg) #### Guitar ![Guitar](images/Guitar.jpg) #### Mandolin ![Mandolin](images/Mandolin.jpg) #### Ukulele ![Ukulele](images/Ukulele.jpg)
chitanda/merit-roberta-large-v1
ff498af4c27005fbfdecba7cabefc9e64eb3e5a8
2022-02-26T12:26:41.000Z
[ "pytorch", "roberta", "transformers", "license:mit" ]
null
false
chitanda
null
chitanda/merit-roberta-large-v1
91
null
transformers
4,783
--- license: mit ---
KES/T5-TTParser
88a9c1f519008c4ca705a9ad861e79ae66c7bb07
2022-06-04T20:11:13.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:Custom dataset", "dataset:Creolised JFLEG", "arxiv:1702.04066", "transformers", "Trinidad and Tobago English Parser", "Caribe", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
KES
null
KES/T5-TTParser
91
1
transformers
4,784
--- language: en tags: - Trinidad and Tobago English Parser - text2text-generation - Caribe license: cc-by-nc-sa-4.0 datasets: - Custom dataset - Creolised JFLEG --- # Trinidad English Creole Parser This model was trained as a parser to Trinidad English Creole. --- # Model This model utilises T5-base pre-trained model. It was fine tuned using a combination of a custom dataset and creolised [JFLEG](https://arxiv.org/abs/1702.04066) dataset. JFLEG dataset was creolised using the file encoding feature of the Caribe library. For more on Caribbean Creole checkout the library [Caribe](https://pypi.org/project/Caribe/). ___ # Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("KES/T5-TTParser") model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-TTParser") txt = "Ah have live with mi paremnts en London" inputs = tokenizer("grammar:"+txt, truncation=True, return_tensors='pt') output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True) correction=tokenizer.batch_decode(output, skip_special_tokens=True) print("".join(correction)) #Correction: Ah live with meh parents in London. ```
IDEA-CCNL/Taiyi-vit-87M-D
967326d6b96e1b1cb65f7e1e4377a367b309699a
2022-05-12T02:52:56.000Z
[ "pytorch", "vit", "image-classification", "transformers", "license:apache-2.0" ]
image-classification
false
IDEA-CCNL
null
IDEA-CCNL/Taiyi-vit-87M-D
91
null
transformers
4,785
--- license: apache-2.0 --- # Taiyi-vit-87M-D (base-sized model) Based on pre-trained clip-vit-base **(patch 16, resolution 224x224)**, we introduce multimodal information. For multimodal pre-training tasks, we design several special training objectives in our paper. Our code and details of pre-training tasks will be made publicly available upon paper acceptance. The pre-training datasets are MSCOCO and VG. "D" implies a special training method. # Taiyi (太乙) Taiyi models are a branch of the Fengshenbang (封神榜) series of models. The models in Taiyi are pre-trained with multimodal pre-training strategies. # Usage ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('IDEA-CCNL/Taiyi-vit-87M-D') model = ViTForImageClassification.from_pretrained('IDEA-CCNL/Taiyi-vit-87M-D') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) # Predicted class: Egyptian cat ``` # Benchmark | | CIFAR10 | ImageNet1k | |--------------------------------------|:-------:|:----------:| | clip-vit-base-patch16-224 (official) | 96.2 | 80.2 | | Taiyi-vit-87M-D (local) | 98.7 | 82.4 | The local test settings are: learning_rate=2e-5, batch_size=128, num_train_epochs=5, weight_decay=0.01 # Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
ckiplab/bert-tiny-chinese-ws
f4a11d4b00b06502c260d8134a375a4000b09d7b
2022-05-10T03:28:12.000Z
[ "pytorch", "bert", "token-classification", "zh", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
token-classification
false
ckiplab
null
ckiplab/bert-tiny-chinese-ws
91
null
transformers
4,786
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Tiny Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/bert-tiny-chinese-ws') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
bongsoo/sentencebert_v1.0
25a2079e0331317c8bc9059c2427ef234a66d851
2022-07-28T03:04:28.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "en", "ko" ]
sentence-similarity
false
bongsoo
null
bongsoo/sentencebert_v1.0
91
2
sentence-transformers
4,787
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - en - ko --- # sentencebert_v1.0 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> - 이 모델은 **bert-base-multiligual-cased** 모델에 **kowiki_20200920** 말뭉치를 가지고, 한글 단어들을 추가 학습 시킨 후 <br>distilbert 만들고, 다시 distilbert를 sentencebert로 만든 후,추가적으로 NLI/STS Tearch-student 증류 학습 시켜 만든 모델 입니다. - 모델 제작 과정에 대한 자세한 내용은 [여기](https://github.com/kobongsoo/BERT/tree/master)를 참조 하세요. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["오늘은 비가 올것 같다", "내일은 춥고 눈이 올거다"] model = SentenceTransformer('bongsoo/sentencebert_v1.0') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/sentencebert_v1.0') model = AutoModel.from_pretrained('bongsoo/sentencebert_v1.0') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results - 성능 측정을 위한 말뭉치는, **korsts(1,379쌍문장)** 와 **klue-sts(519쌍문장)** 를 이용함. |모델 |korsts|klue-sts|korsts+klue-sts| |:--------|------:|--------:|--------------:| |bongsoo/sentencebert_v1.0|0.743|0.799|0.638| |bongsoo/sentencebert_v1.1|0.806|0.749|0.633| |distiluse-base-multilingual-cased-v2|0.747|0.785|0.644| |paraphrase-multilingual-mpnet-base-v2|0.820|0.799|0.721| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 18432 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 9216, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "warmupconstant", "steps_per_epoch": null, "warmup_steps": 9216, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors bongsoo
ismail-lucifer011/autotrain-name_all-904029577
7a0ea3a6b0a2785686b27a4154e26236e7548d5f
2022-05-24T15:43:22.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:ismail-lucifer011/autotrain-data-name_all", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
ismail-lucifer011
null
ismail-lucifer011/autotrain-name_all-904029577
91
null
transformers
4,788
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ismail-lucifer011/autotrain-data-name_all co2_eq_emissions: 0.8375653425894861 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 904029577 - CO2 Emissions (in grams): 0.8375653425894861 ## Validation Metrics - Loss: 0.0035200684797018766 - Accuracy: 0.9989316041363876 - Precision: 0.9877899024589919 - Recall: 0.9933336010601984 - F1: 0.9905539954046464 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ismail-lucifer011/autotrain-name_all-904029577 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("ismail-lucifer011/autotrain-name_all-904029577", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ismail-lucifer011/autotrain-name_all-904029577", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
alibaba-pai/pai-dkplm-financial-base-zh
1ce4f42ff8d5073d61886c0e3c6df501e694c815
2022-06-10T06:49:32.000Z
[ "pytorch", "bert", "pretraining", "zh", "arxiv:2205.00258", "arxiv:2112.01047", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
false
alibaba-pai
null
alibaba-pai/pai-dkplm-financial-base-zh
91
1
transformers
4,789
--- language: zh pipeline_tag: fill-mask widget: - text: "根据新闻报道,三大[MASK]数午后集体涨超1%。" - text: "用各种途径支持中小[MASK]企业融资。" tags: - bert license: apache-2.0 --- ## Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model) for the financial domain For Chinese natural language processing in specific domains, we provide **Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model)** for the financial domain named **pai-dkplm-financial-base-zh**, from our AAAI 2021 paper named **DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) developed by the Alibaba PAI team. ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, publisher = {arXiv}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For DKPLM: ``` @article{dkplm, title = {DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding}, author = {Zhang, Taolin and Wang, Chengyu and Hu, Nan and Qiu, Minghui and Tang, Chengguang and He, Xiaofeng and Huang, Jun}, url = {https://arxiv.org/abs/2112.01047}, publisher = {arXiv}, year = {2021} } ```
docketanalyzer/distilroberta-base-ddcl
09d99f735e5a3bdde0d74411a6c6c95ff9788f57
2021-05-20T16:12:23.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
docketanalyzer
null
docketanalyzer/distilroberta-base-ddcl
90
null
transformers
4,790
Entry not found
facebook/wav2vec2-large-fr-voxpopuli
3a2f030a11d4d1cabf1a62e3c3c55239c6b59b96
2021-07-06T02:11:48.000Z
[ "pytorch", "jax", "wav2vec2", "pretraining", "fr", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-fr-voxpopuli
90
null
transformers
4,791
--- language: fr tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Large-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the fr unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
federicopascual/finetuned-sentiment-analysis-model
7190a2735c09fd9b62e9da30466cb7e382ff2645
2021-12-28T15:57:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
federicopascual
null
federicopascual/finetuned-sentiment-analysis-model
90
null
transformers
4,792
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - precision - recall model-index: - name: finetuned-sentiment-analysis-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.909 - name: Precision type: precision value: 0.8899803536345776 - name: Recall type: recall value: 0.9282786885245902 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-sentiment-analysis-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
google/tapas-tiny-finetuned-wtq
7bc868b0c8c0ff220769a2e78b6306870fb80d8b
2021-11-29T10:45:11.000Z
[ "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:wtq", "arxiv:2004.02349", "arxiv:2010.00571", "arxiv:1508.00305", "transformers", "license:apache-2.0" ]
table-question-answering
false
google
null
google/tapas-tiny-finetuned-wtq
90
null
transformers
4,793
--- language: en tags: - tapas - table-question-answering license: apache-2.0 datasets: - wtq --- # TAPAS tiny model fine-tuned on WikiTable Questions (WTQ) This model has 2 versions which can be used. The default version corresponds to the `tapas_wtq_wikisql_sqa_inter_masklm_tiny_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned in a chain on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253), [WikiSQL](https://github.com/salesforce/WikiSQL) and finally [WTQ](https://github.com/ppasupat/WikiTableQuestions). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_wtq_wikisql_sqa_inter_masklm_tiny` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.5062 | [tapas-large-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/no_reset) LARGE | reset | 0.5097 | [tapas-large-finetuned-wtq](https://huggingface.co/google/tapas-large-finetuned-wtq/tree/main) BASE | noreset | 0.4525 | [tapas-base-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/no_reset) BASE | reset | 0.4638 | [tapas-base-finetuned-wtq](https://huggingface.co/google/tapas-base-finetuned-wtq/tree/main) MEDIUM | noreset | 0.4324 | [tapas-medium-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/no_reset) MEDIUM | reset | 0.4324 | [tapas-medium-finetuned-wtq](https://huggingface.co/google/tapas-medium-finetuned-wtq/tree/main) SMALL | noreset | 0.3681 | [tapas-small-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/no_reset) SMALL | reset | 0.3762 | [tapas-small-finetuned-wtq](https://huggingface.co/google/tapas-small-finetuned-wtq/tree/main) MINI | noreset | 0.2783 | [tapas-mini-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/no_reset) MINI | reset | 0.2854 | [tapas-mini-finetuned-wtq](https://huggingface.co/google/tapas-mini-finetuned-wtq/tree/main) **TINY** | **noreset** | **0.0823** | [tapas-tiny-finetuned-wtq (with absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/no_reset) **TINY** | **reset** | **0.1039** | [tapas-tiny-finetuned-wtq](https://huggingface.co/google/tapas-tiny-finetuned-wtq/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head and aggregation head on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on SQa, WikiSQL and finally WTQ. ## Intended uses & limitations You can use this model for answering questions related to a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` The authors did first convert the WTQ dataset into the format of SQA using automatic conversion scripts. ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 50,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 10 hours. The optimizer used is Adam with a learning rate of 1.93581e-5, and a warmup ratio of 0.128960. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See the [paper](https://arxiv.org/abs/2004.02349) for more details (tables 11 and 12). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @article{DBLP:journals/corr/PasupatL15, author = {Panupong Pasupat and Percy Liang}, title = {Compositional Semantic Parsing on Semi-Structured Tables}, journal = {CoRR}, volume = {abs/1508.00305}, year = {2015}, url = {http://arxiv.org/abs/1508.00305}, archivePrefix = {arXiv}, eprint = {1508.00305}, timestamp = {Mon, 13 Aug 2018 16:47:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/PasupatL15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
julien-c/flair-ner
9b28741e755f4f34f588d50e812ae590a3b6e511
2020-11-26T22:01:14.000Z
[ "pytorch", "en", "dataset:conll2003", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
julien-c
null
julien-c/flair-ner
90
null
flair
4,794
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 inference: false --- ## Flair NER model `en-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "My name is Julien, I currently live in Paris, I work at Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
liam168/chat-DialoGPT-small-zh
cf12fe8e8d5a7f4ca6c26ba47c249751597c34f8
2021-08-04T09:01:41.000Z
[ "pytorch", "gpt2", "text-generation", "zh", "transformers", "license:apache-2.0" ]
text-generation
false
liam168
null
liam168/chat-DialoGPT-small-zh
90
1
transformers
4,795
--- language: zh widget: - text: "你们宿舍都是这么厉害的人吗" license: apache-2.0 --- # liam168/chat-DialoGPT-small-zh ## Model description 用中文聊天数据训练的模型; ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch mode_name = 'liam168/chat-DialoGPT-small-zh' tokenizer = AutoTokenizer.from_pretrained(mode_name) model = AutoModelForCausalLM.from_pretrained(mode_name) # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Answer: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
orzhan/rugpt3-simplify-large
96bbd89cc7bb5eb4646216fa869ae7f49a7f3432
2021-05-31T14:31:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
orzhan
null
orzhan/rugpt3-simplify-large
90
null
transformers
4,796
Text simplification model for Russian. Fine-tuned ruGPT3-large https://github.com/orzhan/rusimscore --- language: ru
allenai/aspire-sentence-embedder
0379fd17fb957625b414a392646cb2406a070424
2022-03-09T00:03:57.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2111.08366", "transformers", "license:apache-2.0" ]
feature-extraction
false
allenai
null
allenai/aspire-sentence-embedder
90
null
transformers
4,797
--- license: apache-2.0 --- ## Overview Model included in a paper for modeling fine grained similarity between documents: **Title**: "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity" **Authors**: Sheshera Mysore, Arman Cohan, Tom Hope **Paper**: https://arxiv.org/abs/2111.08366 **Github**: https://github.com/allenai/aspire **Note**: In the context of the paper, this model is referred to as `cosentbert` and represents a baseline sentence encoder for scientific text. The paper trains two versions of `cosentbert`, one for biomedical scientific text and another one for computer science text. This released model is trained on a union of all available data across scientific domains in the Semantic Scholar Open Research Corpus (S2ORC) dataset. This difference in training data leads to different, though close, evaluation performance than in the paper. ## Model Card **Model description:** This model represents a SciBERT based sentence encoder pre-trained for scientific text similarity. The model represents a sentence with a single vector obtained by reading the CLS token for the sentence. **Training data:** The model is trained on sets of co-citation context sentences referencing the same set of papers in a contrastive learning setup. These sentences can often be considered as paraphrases since co-citation sentences citing the same papers often describe similar aspects of the co-cited papers. The model is trained on 4.3 million sentence pairs of this type. In training the model negative examples for the contrastive loss are obtained as random in-batch negatives. An example pair of sentences used for training is as follows: > "The idea of distant supervision has been proposed and used widely in Relation Extraction (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012) , where the source of labels is an external knowledge base." > > "Distant supervision [31, 43, 21, 49] generates training data automatically by aligning texts and a knowledge base (KB) (see Fig. 1 )." **Training procedure:** The model was trained with the Adam Optimizer and a learning rate of 2e-5 with 1000 warm-up steps followed by linear decay of the learning rate. The model training convergence is checked with the loss on a held out dev set consisting of co-citation context pairs. All the training data used was in English. **Intended uses & limitations:** This model is trained for sentence similarity tasks in scientific text and is best used as a sentence encoder. However with appropriate fine-tuning the model can also be used for other tasks such as classification. Note that about 50% of the training data consists of text from biomedical text and performance may be superior on text from bio-medicine and similar domains. **How to use:** This model can be used as a BERT model via the `transformers` library: ``` from transformers import AutoModel, AutoTokenizer aspire_sent = AutoModel.from_pretrained('allenai/aspire-sentence-embedder') aspire_tok = AutoTokenizer.from_pretrained('allenai/aspire-sentence-embedder') s='We present a new scientific document similarity model based on matching fine-grained aspects of texts.' inputs = aspire_tok(s, padding=True, truncation=True, return_tensors="pt", max_length=512) result = aspire_sent(\*\*inputs) clsrep = result.last_hidden_state[:,0,:] ``` OR via the `sentence_transformers` library: ``` from sentence_transformers import SentenceTransformer, models word_embedding_model = models.Transformer('allenai/aspire-sentence-embedder', max_seq_length=512) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls') aspire_sb = SentenceTransformer(modules=[word_embedding_model, pooling_model]) clsrep_sb = sentbert_model.encode([s]) ``` **Variable and metrics:** Since the paper this model was trained for proposes methods for similarity of scientific abstracts, this model is evaluated on information retrieval datasets with document level queries. The datasets used for the paper include RELISH (biomedical/English), TRECCOVID (biomedical/English), and CSFCube (computer science/English). These are all detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). RELISH and TRECCOVID represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts. CSFCube presents a slightly different task and presents a set of finer-grained sentences in the abstract based on which a finer-grained retrieval must be made. This task represents the closest task to a sentence similarity task. In using this sentence level model for abstract level retrieval we rank documents by the minimal L2 distance between the sentences in the query and candidate abstract. **Evaluation results:** The released model `aspire-sentence-embedder` is compared against 1) `all-mpnet-base-v2` a sentence-bert model trained on ~1 billion training examples, 2) `paraphrase-TinyBERT-L6-v2` a sentence-bert model trained on paraphrase pairs, and 3) the `cosentbert` models used in our paper. | | CSFCube aggregated | CSFCube aggregated | TRECCOVID | TRECCOVID | RELISH | RELISH | |-------------------------------------------:|:------------------:|:-------:|:---------:|:-------:|:------:|:-------:| | | MAP | NDCG%20 | MAP | NDCG%20 | MAP | NDCG%20 | | `all-mpnet-base-v2` | 34.64 | 54.94 | 17.35 | 43.87 | 52.92 | 69.69 | | `paraphrase-TinyBERT-L6-v2` | 26.77 | 48.57 | 11.12 | 34.85 | 50.80 | 67.35 | | `cosentbert` | 28.95 | 50.68 | 12.80 | 38.07 | 50.04 | 66.35 | | `aspire-sentence-embedder` | 30.58 | 53.86 | 11.64 | 36.50 | 50.36 | 66.63 | The released model sees similar performance across datasets to the per-domain `cosentbert` models used in our paper (and reported above).
Helsinki-NLP/opus-mt-tc-big-zle-en
2481ba3f65e32ebd1131528c2bc76ed6fe330c43
2022-06-01T13:09:45.000Z
[ "pytorch", "marian", "text2text-generation", "be", "en", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-en
90
null
transformers
4,798
--- language: - be - en - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-en results: - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: flores101-devtest type: flores_101 args: rus eng devtest metrics: - name: BLEU type: bleu value: 35.2 - task: name: Translation ukr-eng type: translation args: ukr-eng dataset: name: flores101-devtest type: flores_101 args: ukr eng devtest metrics: - name: BLEU type: bleu value: 39.2 - task: name: Translation bel-eng type: translation args: bel-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-eng metrics: - name: BLEU type: bleu value: 48.1 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-eng metrics: - name: BLEU type: bleu value: 57.4 - task: name: Translation ukr-eng type: translation args: ukr-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-eng metrics: - name: BLEU type: bleu value: 56.9 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: tico19-test type: tico19-test args: rus-eng metrics: - name: BLEU type: bleu value: 33.3 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2012 type: wmt-2012-news args: rus-eng metrics: - name: BLEU type: bleu value: 39.2 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2013 type: wmt-2013-news args: rus-eng metrics: - name: BLEU type: bleu value: 31.3 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2014 type: wmt-2014-news args: rus-eng metrics: - name: BLEU type: bleu value: 40.5 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2015 type: wmt-2015-news args: rus-eng metrics: - name: BLEU type: bleu value: 36.1 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2016 type: wmt-2016-news args: rus-eng metrics: - name: BLEU type: bleu value: 35.7 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2017 type: wmt-2017-news args: rus-eng metrics: - name: BLEU type: bleu value: 40.8 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2018 type: wmt-2018-news args: rus-eng metrics: - name: BLEU type: bleu value: 35.2 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2019 type: wmt-2019-news args: rus-eng metrics: - name: BLEU type: bleu value: 41.6 - task: name: Translation rus-eng type: translation args: rus-eng dataset: name: newstest2020 type: wmt-2020-news args: rus-eng metrics: - name: BLEU type: bleu value: 36.9 --- # opus-mt-tc-big-zle-en Neural machine translation model for translating from East Slavic languages (zle) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): bel rus ukr * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT zle-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Скільки мені слід купити пива?", "Я клієнтка." ] model_name = "pytorch-models/opus-mt-tc-big-zle-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # How much beer should I buy? # I'm a client. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-en") print(pipe("Скільки мені слід купити пива?")) # expected output: How much beer should I buy? ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-eng | tatoeba-test-v2021-08-07 | 0.65221 | 48.1 | 2500 | 18571 | | rus-eng | tatoeba-test-v2021-08-07 | 0.71452 | 57.4 | 19425 | 147872 | | ukr-eng | tatoeba-test-v2021-08-07 | 0.71162 | 56.9 | 13127 | 88607 | | bel-eng | flores101-devtest | 0.51689 | 18.1 | 1012 | 24721 | | rus-eng | flores101-devtest | 0.62581 | 35.2 | 1012 | 24721 | | ukr-eng | flores101-devtest | 0.65001 | 39.2 | 1012 | 24721 | | rus-eng | newstest2012 | 0.63724 | 39.2 | 3003 | 72812 | | rus-eng | newstest2013 | 0.57641 | 31.3 | 3000 | 64505 | | rus-eng | newstest2014 | 0.65667 | 40.5 | 3003 | 69190 | | rus-eng | newstest2015 | 0.61747 | 36.1 | 2818 | 64428 | | rus-eng | newstest2016 | 0.61414 | 35.7 | 2998 | 69278 | | rus-eng | newstest2017 | 0.65365 | 40.8 | 3001 | 69025 | | rus-eng | newstest2018 | 0.61386 | 35.2 | 3000 | 71291 | | rus-eng | newstest2019 | 0.65476 | 41.6 | 2000 | 42642 | | rus-eng | newstest2020 | 0.64878 | 36.9 | 991 | 20217 | | rus-eng | newstestB2020 | 0.65685 | 39.3 | 991 | 20423 | | rus-eng | tico19-test | 0.63280 | 33.3 | 2100 | 56323 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 22:17:11 EET 2022 * port machine: LM0-400-22516.local
cambridgeltl/simctg_rocstories
61b674aa71e858af99ff2fbd77f91d4a3c807cbb
2022-06-25T19:33:13.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:2202.06417", "transformers" ]
text-generation
false
cambridgeltl
null
cambridgeltl/simctg_rocstories
90
null
transformers
4,799
This model provides a GPT-2 language model trained with SimCTG on the ROCStories benchmark [(Mostafazadeh et al., 2016)](https://aclanthology.org/N16-1098.pdf) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_rocstories' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prompt = r"Accident in the Lab <|endoftext|>" print ('Prefix is: {}'.format(prompt)) tokens = model.tokenizer.tokenize(prompt) input_ids = model.tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.65, 45 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output).split(model.tokenizer.eos_token)[1].strip()) ''' Prefix is: Accident in the Lab <|endoftext|> Output: ---------------------------------------------------------------------------------------------------- Tom went to work one day. He noticed a lab accident in the lab. Tom was worried about his safety at work. Unfortunately the accident didn't go well. Tom wound up leaving early to get back on the job. ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```