modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
lazyturtl/roomclassifier
9459b019773ca1279fe099c515762acf5e06b71e
2022-03-31T01:09:57.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
lazyturtl
null
lazyturtl/roomclassifier
73
null
transformers
5,300
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: roomclassifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9402984976768494 --- # roomclassifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bathroom ![Bathroom](images/Bathroom.jpg) #### Bedroom ![Bedroom](images/Bedroom.jpg) #### DinningRoom ![DinningRoom](images/DinningRoom.jpg) #### Kitchen ![Kitchen](images/Kitchen.jpg) #### Laundry room ![Laundry room](images/Laundry_room.jpg) #### Livingroom ![Livingroom](images/Livingroom.jpg)
Nonem100/Test-Model
57666cfe40a32679221ada968a18cbffb8254b64
2022-03-31T15:19:38.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Nonem100
null
Nonem100/Test-Model
73
null
transformers
5,301
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Test-Model results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9017857313156128 --- # Test-Model Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cotton candy ![cotton candy](images/cotton_candy.jpg) #### hamburger ![hamburger](images/hamburger.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### nachos ![nachos](images/nachos.jpg) #### popcorn ![popcorn](images/popcorn.jpg)
nickmuchi/swin-tiny-patch4-window7-224-finetuned-eurosat
55f500ccbd1ee1c7878e51ff889faf0a0327c708
2022-05-24T02:08:03.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "dataset:nielsr/eurosat-demo", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nickmuchi
null
nickmuchi/swin-tiny-patch4-window7-224-finetuned-eurosat
73
null
transformers
5,302
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder - nielsr/eurosat-demo widget: - src: https://drive.google.com/uc?id=1trKgvkMRQ3BB0VcqnDwmieLxXhWmS8rq example_title: Annual Crop - src: https://drive.google.com/uc?id=1kWQbPNHVa_JscS0age5E0UOSBcU1bh18 example_title: Forest - src: https://drive.google.com/uc?id=12YbxF-MfpMqLPB91HuTPEgcg1xnZKhGP example_title: Herbaceous Vegetation - src: https://drive.google.com/uc?id=1NkzDiaQ1ciMDf89C8uA5zGx984bwkFCi example_title: Highway - src: https://drive.google.com/uc?id=1F6r7O0rlgzaPvY6XBpFOWUTIddEIUkxx example_title: Industrial - src: https://drive.google.com/uc?id=16zOtFHZ9E17jA9Ua4PsXrUjugSs77XKm example_title: Pasture - src: https://drive.google.com/uc?id=163tqIdoVY7WFtKQlpz_bPM9WjwbJAtd example_title: Permanent Crop - src: https://drive.google.com/uc?id=1qsX-XsrE3dMp7C7LLVa6HriaABIXuBrJ example_title: Residential - src: https://drive.google.com/uc?id=1UK2praQHbNXDnctJt58rrlQZu84lxyk example_title: River - src: https://drive.google.com/uc?id=1zVAfR7N5hXy6eq1cVOd8bXPjC1sqxVir example_title: Sea Lake metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9848148148148148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0536 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2602 | 1.0 | 190 | 0.1310 | 0.9563 | | 0.1975 | 2.0 | 380 | 0.1063 | 0.9637 | | 0.142 | 3.0 | 570 | 0.0642 | 0.9767 | | 0.1235 | 4.0 | 760 | 0.0560 | 0.9837 | | 0.1019 | 5.0 | 950 | 0.0536 | 0.9848 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-base-japanese-luw-upos
7cbf54c18a6139d57cb47b0bc2e97bf87a9c3191
2022-07-23T14:43:41.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-luw-upos
73
null
transformers
5,303
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-base-japanese-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-japanese-luw-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-japanese-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
roydcarlson/grain
36e78c0a9507f36b58a71e2f9f5c859af2d9537f
2022-05-27T17:01:52.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
roydcarlson
null
roydcarlson/grain
73
null
transformers
5,304
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: grain results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6607142686843872 --- # grain Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### barley ![barley](images/barley.jpg) #### buckwheat ![buckwheat](images/buckwheat.jpg) #### millet ![millet](images/millet.jpg) #### teff ![teff](images/teff.jpg) #### wheat ![wheat](images/wheat.jpg)
KL/swin-tiny-patch4-window7-224-finetuned-eurosat
ccbaa5f4cf45f5d4ee5eac3950bca6a8c293faf1
2022-05-29T12:07:22.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "transformers" ]
image-classification
false
KL
null
KL/swin-tiny-patch4-window7-224-finetuned-eurosat
73
null
transformers
5,305
Entry not found
RUCAIBox/mtl-data-to-text
ed44b68242f30903d42abf0f13c1d9af5c1bb8f8
2022-06-27T02:27:10.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mtl-data-to-text
73
null
transformers
5,306
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MTL-data-to-text The MTL-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-data-to-text is supervised pre-trained using a mixture of labeled data-to-text datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
aws-ai/dse-bert-base
918ad931256ade24add8b1840a710e9e96bc9b40
2022-07-10T19:43:15.000Z
[ "pytorch", "bert", "transformers" ]
null
false
aws-ai
null
aws-ai/dse-bert-base
73
null
transformers
5,307
Entry not found
CLTL/gm-ner-xlmrbase
120252d7c808f3997ca6423a57087077273f79e0
2021-11-09T16:14:39.000Z
[ "pytorch", "tf", "xlm-roberta", "token-classification", "nl", "transformers", "dighum", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CLTL
null
CLTL/gm-ner-xlmrbase
72
null
transformers
5,308
--- language: nl license: apache-2.0 tags: - dighum pipeline_tag: token-classification --- # Early-modern Dutch NER (General Letters) ## Description This is a fine-tuned NER model for early-modern Dutch United East India Company (VOC) letters based on XLM-R_base [(Conneau et al., 2020)](https://aclanthology.org/2020.acl-main.747/). The model identifies *locations*, *persons*, *organisations*, but also *ships* as well as derived forms of locations and religions. ## Intended uses and limitations This model was fine-tuned (trained, validated and tested) on a single source of data, the General Letters (Generale Missiven). These letters span a large variety of Dutch, as they cover the largest part of the 17th and 18th centuries, and have been extended with editorial notes between 1960 and 2017. As the model was only fine-tuned on this data however, it may perform less well on other texts from the same period. ## How to use The model can run on raw text through the *token-classification* pipeline: ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("CLTL/gm-ner-xlmrbase") model = AutoModelForTokenClassification.from_pretrained("CLTL/gm-ner-xlmrbase") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Batavia heeft om advies gevraagd." ner_results = nlp(example) print(ner_results) ``` This outputs a list of entities with their character offsets in the input text: ``` [{'entity': 'B-LOC', 'score': 0.99739265, 'index': 1, 'word': '▁Bata', 'start': 0, 'end': 4}, {'entity': 'I-LOC', 'score': 0.5373179, 'index': 2, 'word': 'via', 'start': 4, 'end': 7}] ``` ## Training data and tagset The model was fine-tuned on the General Letters [GM-NER](https://github.com/cltl/voc-missives/tree/master/data/ner/datasplit_all_standard) dataset, with the following tagset: | tag | description | notes | | --- | ----------- | ----- | | LOC | locations | | | LOCderiv | derived forms of locations | by derivation, e.g. *Bandanezen*, or composition, e.g. *Javakoffie* | | ORG | organisations | includes forms derived by composition, e.g. *Compagnieszaken* | PER | persons | | RELderiv | forms related to religion | merges religion names (*Christendom*), derived forms (*christenen*) and composed forms (*Christen-orangkay*) | | SHP | ships | The base text for this dataset is OCR text that has been partially corrected. The text is clean overall but errors remain. ## Training procedure The model was fine-tuned with [xlm-roberta-base](https://huggingface.co/xlm-roberta-base), using [this script](https://github.com/huggingface/transformers/blob/master/examples/legacy/token-classification/run_ner.py). Non-default training parameters are: * training batch size: 16 * max sequence length: 256 * number of epochs: 4 -- loading the best checkpoint model by loss at the end, with checkpoints every 200 steps * (seed: 1) ## Evaluation ### Metric * entity-level F1 ### Results | overall | 92.7 | | --- | ----------- | | LOC | 95.8 | | LOCderiv | 92.7 | | ORG | 92.5 | | PER | 86.2 | | RELderiv | 90.7 | | SHP | 81.6 | ## Reference The model and fine-tuning data presented here were developed as part of: ```bibtex @inproceedings{arnoult-etal-2021-batavia, title = "Batavia asked for advice. Pretrained language models for Named Entity Recognition in historical texts.", author = "Arnoult, Sophie I. and Petram, Lodewijk and Vossen, Piek", booktitle = "Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature", month = nov, year = "2021", address = "Punta Cana, Dominican Republic (online)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.latechclfl-1.3", pages = "21--30" } ```
Helsinki-NLP/opus-mt-aav-en
f0d56d0d1bb26a58faa0a70d8804809a58e6a06d
2021-01-18T07:45:52.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "km", "aav", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-aav-en
72
null
transformers
5,309
--- language: - vi - km - aav - en tags: - translation license: apache-2.0 --- ### aav-eng * source group: Austro-Asiatic languages * target group: English * OPUS readme: [aav-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aav-eng/README.md) * model: transformer * source language(s): hoc hoc_Latn kha khm khm_Latn mnw vie vie_Hani * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/aav-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aav-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/aav-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hoc-eng.hoc.eng | 0.3 | 0.095 | | Tatoeba-test.kha-eng.kha.eng | 1.0 | 0.115 | | Tatoeba-test.khm-eng.khm.eng | 8.9 | 0.271 | | Tatoeba-test.mnw-eng.mnw.eng | 0.8 | 0.118 | | Tatoeba-test.multi.eng | 24.8 | 0.391 | | Tatoeba-test.vie-eng.vie.eng | 38.7 | 0.567 | ### System Info: - hf_name: aav-eng - source_languages: aav - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/aav-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'km', 'aav', 'en'] - src_constituents: {'mnw', 'vie', 'kha', 'khm', 'vie_Hani', 'khm_Latn', 'hoc_Latn', 'hoc'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/aav-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/aav-eng/opus2m-2020-07-31.test.txt - src_alpha3: aav - tgt_alpha3: eng - short_pair: aav-en - chrF2_score: 0.391 - bleu: 24.8 - brevity_penalty: 0.968 - ref_len: 36693.0 - src_name: Austro-Asiatic languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: aav - tgt_alpha2: en - prefer_old: False - long_pair: aav-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-it-vi
043beee1bbe972313387181b4fd1d4796a15fe0a
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "it", "vi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-vi
72
null
transformers
5,310
--- language: - it - vi tags: - translation license: apache-2.0 --- ### ita-vie * source group: Italian * target group: Vietnamese * OPUS readme: [ita-vie](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-vie/README.md) * model: transformer-align * source language(s): ita * target language(s): vie * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-vie/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-vie/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-vie/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.vie | 36.2 | 0.535 | ### System Info: - hf_name: ita-vie - source_languages: ita - target_languages: vie - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-vie/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'vi'] - src_constituents: {'ita'} - tgt_constituents: {'vie', 'vie_Hani'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-vie/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-vie/opus-2020-06-17.test.txt - src_alpha3: ita - tgt_alpha3: vie - short_pair: it-vi - chrF2_score: 0.535 - bleu: 36.2 - brevity_penalty: 1.0 - ref_len: 2144.0 - src_name: Italian - tgt_name: Vietnamese - train_date: 2020-06-17 - src_alpha2: it - tgt_alpha2: vi - prefer_old: False - long_pair: ita-vie - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ru-vi
5fc954aae39caa5f6f65dc8837328254d4927b07
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "vi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-vi
72
null
transformers
5,311
--- language: - ru - vi tags: - translation license: apache-2.0 --- ### rus-vie * source group: Russian * target group: Vietnamese * OPUS readme: [rus-vie](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-vie/README.md) * model: transformer-align * source language(s): rus * target language(s): vie * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.vie | 16.9 | 0.346 | ### System Info: - hf_name: rus-vie - source_languages: rus - target_languages: vie - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-vie/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'vi'] - src_constituents: {'rus'} - tgt_constituents: {'vie', 'vie_Hani'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-vie/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: vie - short_pair: ru-vi - chrF2_score: 0.34600000000000003 - bleu: 16.9 - brevity_penalty: 1.0 - ref_len: 2566.0 - src_name: Russian - tgt_name: Vietnamese - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: vi - prefer_old: False - long_pair: rus-vie - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-vi-de
5732a1f19967c1ba48e9ac85428f4e6cfea6ecc3
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-vi-de
72
null
transformers
5,312
--- language: - vi - de tags: - translation license: apache-2.0 --- ### vie-deu * source group: Vietnamese * target group: German * OPUS readme: [vie-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-deu/README.md) * model: transformer-align * source language(s): vie * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-deu/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-deu/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-deu/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.deu | 27.6 | 0.484 | ### System Info: - hf_name: vie-deu - source_languages: vie - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'de'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-deu/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-deu/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: deu - short_pair: vi-de - chrF2_score: 0.484 - bleu: 27.6 - brevity_penalty: 0.958 - ref_len: 3365.0 - src_name: Vietnamese - tgt_name: German - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: de - prefer_old: False - long_pair: vie-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Maltehb/danish-bert-botxo-ner-dane
0535804050650a7c1dde9b51af68b1e039d6df0a
2021-11-12T08:36:46.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish OpenSubtitles", "transformers", "danish", "masked-lm", "botxo", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
Maltehb
null
Maltehb/danish-bert-botxo-ner-dane
72
1
transformers
5,313
--- language: da tags: - danish - bert - masked-lm - botxo license: cc-by-4.0 datasets: - common_crawl - wikipedia - dindebat.dk - hestenettet.dk - danish OpenSubtitles widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." --- # Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO) finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. Humongous amounts of credit needs to go to [Certainly](https://certainly.io/) (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT for token classification in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") ``` ### References Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20DanishBERTUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Muennighoff/SGPT-1.3B-weightedmean-nli-bitfit
21ac01bac24bf051aa64428d105d95921ec4e562
2022-06-18T13:04:47.000Z
[ "pytorch", "gpt_neo", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SGPT-1.3B-weightedmean-nli-bitfit
72
null
sentence-transformers
5,314
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-1.3B-weightedmean-nli-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters: ``` {'batch_size': 6} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9394, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0001 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9395, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
Rostlab/prot_t5_xxl_bfd
34a420890330b9335d7292c36d8950c7952f09c9
2020-12-11T10:20:10.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
Rostlab
null
Rostlab/prot_t5_xxl_bfd
72
null
transformers
5,315
Entry not found
aloxatel/mbert
cce439353fe629e6fdb88d10cb326d0a7a405a02
2021-05-19T11:43:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/mbert
72
1
transformers
5,316
Entry not found
cambridgeltl/tacl-bert-base-chinese
c86daf0753de79319b2066897a54c6cae64daf85
2021-10-28T17:51:55.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
cambridgeltl
null
cambridgeltl/tacl-bert-base-chinese
72
null
transformers
5,317
Entry not found
jpcorb20/toxic-detector-distilroberta
88d1b244e128ed29bc23a68338258784cf2e4008
2021-05-20T17:25:58.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
jpcorb20
null
jpcorb20/toxic-detector-distilroberta
72
1
transformers
5,318
# Distilroberta for toxic comment detection See my GitHub repo [toxic-comment-server](https://github.com/jpcorb20/toxic-comment-server) The model was trained from [DistilRoberta](https://huggingface.co/distilroberta-base) on [Kaggle Toxic Comments](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) with the BCEWithLogits loss for Multi-Label prediction. Thus, please use the sigmoid activation on the logits (not made to use the softmax output, e.g. like the HF widget). ## Evaluation F1 scores: toxic: 0.72 severe_toxic: 0.38 obscene: 0.72 threat: 0.52 insult: 0.69 identity_hate: 0.60 Macro-F1: 0.61
mrm8488/distilbert-base-multi-cased-finetuned-typo-detection
3d191639cca2821fbfebef7c779a2bba6228a6bb
2020-12-11T21:53:44.000Z
[ "pytorch", "distilbert", "token-classification", "multilingual", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/distilbert-base-multi-cased-finetuned-typo-detection
72
null
transformers
5,319
--- language: multilingual thumbnail: --- # DISTILBERT 🌎 + Typo Detection ✍❌✍✔ [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) fine-tuned on [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) for **typo detection** (using *NER* style) ## Details of the downstream task (Typo detection as NER) - Dataset: [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) 📚 for 15 languages - [Fine-tune script on NER dataset provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) 🏋️‍♂️ ## Metrics on test set 📋 | Metric | # score | | :-------: | :-------: | | F1 | **93.51** | | Precision | **96.08** | | Recall | **91.06** | ## Model in action 🔨 Fast usage with **pipelines** 🧪 ```python from transformers import pipeline typo_checker = pipeline( "ner", model="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection", tokenizer="mrm8488/distilbert-base-multi-cased-finetuned-typo-detection" ) result = typo_checker("Adddd validation midelware") result[1:-1] # Output: [{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'}, {'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'}, {'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'}, {'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'}, {'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'}, {'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}] ``` It works🎉! We typed wrong ```Add and middleware``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
nateraw/rare-puppers-09-04-2021
55954fde8839b77f629c664ef2a9626181f2796b
2021-09-04T20:46:06.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/rare-puppers-09-04-2021
72
null
transformers
5,320
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers-09-04-2021 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8657407164573669 --- # rare-puppers-09-04-2021 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
saburbutt/roberta_base_tweetqa_model
433145b954f69bff58a02725757f9f1f33b50e06
2021-05-20T19:58:30.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saburbutt
null
saburbutt/roberta_base_tweetqa_model
72
null
transformers
5,321
Entry not found
stevenshoemaker/horror
de0fda6abd5856125fe2c236c8ca7cb1b58c0fcc
2021-05-23T12:56:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
stevenshoemaker
null
stevenshoemaker/horror
72
null
transformers
5,322
Entry not found
facebook/wav2vec2-base-es-voxpopuli-v2
b982ca9b90f554145513d3a5e524f65bb6f20be0
2022-02-27T13:11:53.000Z
[ "pytorch", "wav2vec2", "pretraining", "es", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-es-voxpopuli-v2
72
null
transformers
5,323
--- language: es tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **es** on **21.4k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **es**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
nickmuchi/vit-finetuned-cats-dogs
5cefa517e61aa63ca6b1642d887c3a65b233ef34
2022-03-01T13:15:13.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nickmuchi
null
nickmuchi/vit-finetuned-cats-dogs
72
null
transformers
5,324
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy widget: - src: https://cdn.pixabay.com/photo/2021/09/19/12/19/animal-6637774_1280.jpg example_title: Dog - src: https://cdn.pixabay.com/photo/2017/02/20/18/03/cat-2083492_1280.jpg example_title: Cat model-index: - name: vit-finetuned-cats-dogs results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9971014261245728 --- # vit-finetuned-cats-dogs Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg)
hafidber/fruits
28be4b5394f7cdaf3b8018e7f93e10552dbe7a27
2022-04-07T15:02:57.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
hafidber
null
hafidber/fruits
72
null
transformers
5,325
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fruits results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9910714030265808 --- # fruits Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### apple ![apple](images/apple.jpg) #### banana ![banana](images/banana.jpg) #### grape ![grape](images/grape.jpg) #### kiwi ![kiwi](images/kiwi.jpg) #### lemon ![lemon](images/lemon.jpg)
nielsr/swin-tiny-patch4-window7-224-finetuned-cifar10
b21db45e5b3fbd1e83f9787e07f3fe80ad254206
2022-04-11T12:19:54.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
nielsr
null
nielsr/swin-tiny-patch4-window7-224-finetuned-cifar10
72
null
transformers
5,326
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-cifar10 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9788888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-cifar10 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0690 - Accuracy: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2446 | 1.0 | 190 | 0.1128 | 0.9659 | | 0.1722 | 2.0 | 380 | 0.1034 | 0.9663 | | 0.1355 | 3.0 | 570 | 0.0690 | 0.9789 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Zayn/VIT_Basic
d8ecb81a9b939600d0e850c6e3c160c7a14cc37e
2022-04-22T16:19:34.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Zayn
null
Zayn/VIT_Basic
72
null
transformers
5,327
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: VIT_Basic results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- # VIT_Basic Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chairs ![chairs](images/chairs.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### ice cream ![ice cream](images/ice_cream.jpg) #### ladders ![ladders](images/ladders.jpg) #### tables ![tables](images/tables.jpg)
Gunulhona/tbstmodel_v3
488b4153082302af6fc4a20d151ce031b80e3dfb
2022-07-30T08:34:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Gunulhona
null
Gunulhona/tbstmodel_v3
72
null
transformers
5,328
Entry not found
mrm8488/data2vec-base-finetuned-imagenet1k
3bfe19761dfeb217806b7302baa7355f7e538f0f
2022-05-04T14:55:41.000Z
[ "pytorch", "data2vec-vision", "image-classification", "transformers" ]
image-classification
false
mrm8488
null
mrm8488/data2vec-base-finetuned-imagenet1k
72
null
transformers
5,329
Entry not found
Ahmed9275/ALL-test
a6697d6f66bd8c8800fc580debdb85fe93439819
2022-05-05T23:55:05.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Ahmed9275
null
Ahmed9275/ALL-test
72
null
transformers
5,330
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL-test results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9572474360466003 --- # ALL-test Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
zzzzzzttt/vit-base-patch16-224-finetuned-eurosat
d1af73b119967cf26591363e14753b10d1b5718a
2022-05-06T05:29:18.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
zzzzzzttt
null
zzzzzzttt/vit-base-patch16-224-finetuned-eurosat
72
null
transformers
5,331
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9071691176470589 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3209 - Accuracy: 0.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5417 | 0.99 | 76 | 0.5556 | 0.8263 | | 0.4853 | 1.99 | 152 | 0.5319 | 0.8199 | | 0.4926 | 2.99 | 228 | 0.5133 | 0.8539 | | 0.4131 | 3.99 | 304 | 0.4481 | 0.8603 | | 0.4081 | 4.99 | 380 | 0.4280 | 0.8824 | | 0.3287 | 5.99 | 456 | 0.4330 | 0.8667 | | 0.3381 | 6.99 | 532 | 0.3549 | 0.8888 | | 0.3182 | 7.99 | 608 | 0.3382 | 0.8961 | | 0.3046 | 8.99 | 684 | 0.3790 | 0.8925 | | 0.3093 | 9.99 | 760 | 0.3209 | 0.9072 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
karthiksv/vit-base-beans
da7e199b23fe32e5145d756571e762c1a50d603f
2022-05-12T15:21:37.000Z
[ "pytorch", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
karthiksv
null
karthiksv/vit-base-beans
72
null
transformers
5,332
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans model-index: - name: vit-base-beans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
KoichiYasuoka/deberta-base-japanese-aozora
4cfed2b76e0089667aec79fb4fce318939282cc8
2022-07-23T14:43:28.000Z
[ "pytorch", "deberta-v2", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-aozora
72
null
transformers
5,333
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-base-japanese-aozora ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts. You can fine-tune `deberta-base-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-base-japanese-aozora") ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
Annabelleabbott/swin-tiny-patch4-window7-224-finetuned-eurosat
b854e399d64a2351130b6814af6755313f787a0c
2022-05-25T15:56:42.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
Annabelleabbott
null
Annabelleabbott/swin-tiny-patch4-window7-224-finetuned-eurosat
72
null
transformers
5,334
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9725925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2548 | 1.0 | 190 | 0.1162 | 0.9652 | | 0.1544 | 2.0 | 380 | 0.0894 | 0.9719 | | 0.1182 | 3.0 | 570 | 0.0767 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
GRANTHE2761/swin-tiny-patch4-window7-224-finetuned-eurosat
b37ddc121c456f71672a41cc430af49eee88e966
2022-05-26T09:00:52.000Z
[ "pytorch", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
GRANTHE2761
null
GRANTHE2761/swin-tiny-patch4-window7-224-finetuned-eurosat
72
null
transformers
5,335
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9688888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3046 | 1.0 | 95 | 0.1547 | 0.9452 | | 0.191 | 2.0 | 190 | 0.1161 | 0.9559 | | 0.1701 | 3.0 | 285 | 0.0866 | 0.9689 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Anjoe/kant-gpt2-large
2e4fda374a8d2bc2b113310efaf19a77d9d65461
2022-07-21T14:32:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Anjoe
null
Anjoe/kant-gpt2-large
72
null
transformers
5,336
--- license: mit tags: - generated_from_trainer model-index: - name: kant-gpt2-large results: [] --- # kant-gpt2-large This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large). It was trained on the "Akademie Ausgabe" of the works of Immanuel Kant. It achieves the following results on the evaluation set: - Loss: 3.4257 ## Model description A large version of gpt2 ## Intended uses & limitations It could be used for the analysis of knowledge representation in and extraction from large language models ## Training and evaluation data Akademie Ausgabe Immanuel Kant ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4094 | 1.0 | 11308 | 3.3838 | | 3.0445 | 2.0 | 22616 | 3.3107 | | 2.7161 | 3.0 | 33924 | 3.3409 | | 2.4793 | 4.0 | 45232 | 3.4257 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
s3h/arabic-token-ged-arabert
6407a502bd65f8564c68094fe62613db195fa1c7
2022-07-01T15:04:33.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
s3h
null
s3h/arabic-token-ged-arabert
72
null
transformers
5,337
Entry not found
brjezierski/bert-to-gpt2-german-to-easy-german
39fd188fbf78a8b3531f47a210f95557c82d8e87
2022-07-13T22:47:58.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
brjezierski
null
brjezierski/bert-to-gpt2-german-to-easy-german
72
null
transformers
5,338
Entry not found
DTAI-KULeuven/robbertje-1-gb-bort
8a8832a3545206b8efb64db369f15d06f4eff0ac
2022-02-24T09:57:08.000Z
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
false
DTAI-KULeuven
null
DTAI-KULeuven/robbertje-1-gb-bort
71
null
transformers
5,339
--- language: "nl" thumbnail: "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png" tags: - Dutch - Flemish - RoBERTa - RobBERT - RobBERTje license: mit datasets: - oscar - oscar (NL) - dbrd - lassy-ud - europarl-mono - conll2002 widget: - text: "Hallo, ik ben RobBERTje, een gedistilleerd <mask> taalmodel van de KU Leuven." --- <p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | this model | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
Geotrend/distilbert-base-ur-cased
2d74a893b996945026a25aa41ac3a4427b5341b2
2021-08-16T13:24:21.000Z
[ "pytorch", "distilbert", "fill-mask", "ur", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-ur-cased
71
null
transformers
5,340
--- language: ur datasets: wikipedia license: apache-2.0 --- # distilbert-base-ur-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ur-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ur-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Helsinki-NLP/opus-mt-et-de
d3e6e2fd83bc8b61639fc47ab249dfdd5d981050
2021-09-09T21:45:57.000Z
[ "pytorch", "marian", "text2text-generation", "et", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-de
71
null
transformers
5,341
--- tags: - translation license: apache-2.0 --- ### opus-mt-et-de * source languages: et * target languages: de * OPUS readme: [et-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/et-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/et-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.et.de | 22.4 | 0.474 |
Helsinki-NLP/opus-mt-zh-nl
51af542ab7955009cb30a4759a7bdd9db6a31f9d
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "zh", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zh-nl
71
null
transformers
5,342
--- language: - zh - nl tags: - translation license: apache-2.0 --- ### zho-nld * source group: Chinese * target group: Dutch * OPUS readme: [zho-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-nld/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hani cmn_Hira cmn_Kana cmn_Latn * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.nld | 31.5 | 0.525 | ### System Info: - hf_name: zho-nld - source_languages: zho - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'nl'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: nld - short_pair: zh-nl - chrF2_score: 0.525 - bleu: 31.5 - brevity_penalty: 0.9309999999999999 - ref_len: 13575.0 - src_name: Chinese - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: nl - prefer_old: False - long_pair: zho-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Lowin/chinese-bigbird-wwm-base-4096
5a7324c571df27341d5fdf571d2a4b6a6470d1c2
2021-11-24T15:58:17.000Z
[ "pytorch", "big_bird", "fill-mask", "zh", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Lowin
null
Lowin/chinese-bigbird-wwm-base-4096
71
1
transformers
5,343
--- language: - zh license: - apache-2.0 --- ```python from transformers import BertTokenizer from transformers import BigBirdModel model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-wwm-base-4096') tokenizer = BertTokenizer.from_pretrained('Lowin/chinese-bigbird-wwm-base-4096') ``` https://github.com/LowinLi/chinese-bigbird
Rolv-Arild/xls-r-300m-npsc-seq2seq
6d3acfc42af6a610f154a8dfe36050c9b0fd93bb
2022-02-18T18:51:44.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Rolv-Arild
null
Rolv-Arild/xls-r-300m-npsc-seq2seq
71
null
transformers
5,344
--- tags: - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2965 - Wer: 0.3144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.888 | 0.51 | 400 | 3.7320 | 0.9440 | | 3.1636 | 1.02 | 800 | 2.9188 | 1.1916 | | 2.773 | 1.53 | 1200 | 2.3347 | 1.0134 | | 0.7198 | 2.04 | 1600 | 0.6678 | 0.4826 | | 0.5255 | 2.55 | 2000 | 0.4605 | 0.4135 | | 0.3961 | 3.06 | 2400 | 0.4266 | 0.3955 | | 0.3424 | 3.57 | 2800 | 0.3786 | 0.3741 | | 0.3858 | 4.08 | 3200 | 0.3161 | 0.3552 | | 0.3218 | 4.59 | 3600 | 0.3029 | 0.3510 | | 0.199 | 5.1 | 4000 | 0.2988 | 0.3418 | | 0.2054 | 5.61 | 4400 | 0.2873 | 0.3434 | | 0.1704 | 6.12 | 4800 | 0.3129 | 0.3432 | | 0.1805 | 6.63 | 5200 | 0.2963 | 0.3413 | | 0.2091 | 7.14 | 5600 | 0.2755 | 0.3329 | | 0.1971 | 7.65 | 6000 | 0.2706 | 0.3309 | | 0.1237 | 8.16 | 6400 | 0.2823 | 0.3270 | | 0.123 | 8.67 | 6800 | 0.2754 | 0.3246 | | 0.103 | 9.18 | 7200 | 0.2917 | 0.3272 | | 0.1143 | 9.69 | 7600 | 0.2885 | 0.3305 | | 0.156 | 10.2 | 8000 | 0.2810 | 0.3288 | | 0.167 | 10.71 | 8400 | 0.2689 | 0.3232 | | 0.0815 | 11.22 | 8800 | 0.2899 | 0.3236 | | 0.0844 | 11.73 | 9200 | 0.2798 | 0.3225 | | 0.0775 | 12.24 | 9600 | 0.2894 | 0.3224 | | 0.0677 | 12.75 | 10000 | 0.2838 | 0.3204 | | 0.1383 | 13.27 | 10400 | 0.2959 | 0.3211 | | 0.1233 | 13.77 | 10800 | 0.2922 | 0.3213 | | 0.0688 | 14.29 | 11200 | 0.2903 | 0.3209 | | 0.0655 | 14.8 | 11600 | 0.2868 | 0.3182 | | 0.0449 | 15.31 | 12000 | 0.2959 | 0.3172 | | 0.0421 | 15.82 | 12400 | 0.2966 | 0.3180 | | 0.0858 | 16.33 | 12800 | 0.2941 | 0.3164 | | 0.0859 | 16.84 | 13200 | 0.2980 | 0.3165 | | 0.0561 | 17.35 | 13600 | 0.2965 | 0.3165 | | 0.0506 | 17.86 | 14000 | 0.2935 | 0.3148 | | 0.0312 | 18.37 | 14400 | 0.2964 | 0.3154 | | 0.0403 | 18.88 | 14800 | 0.2967 | 0.3160 | | 0.0924 | 19.39 | 15200 | 0.2955 | 0.3147 | | 0.0585 | 19.9 | 15600 | 0.2965 | 0.3144 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.1 - Tokenizers 0.11.0
SEBIS/code_trans_t5_base_commit_generation
1a568af651d14ea287897f8507cfbfb65959f39b
2021-06-23T04:56:59.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_commit_generation
71
null
transformers
5,345
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Git Commit Message Generation dataset. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_commit_generation"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_commit_generation", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/commit%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
abhilash1910/french-roberta
2358f6784bcec544c1b00598c8fc8631036384c3
2021-09-14T07:17:21.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "fr", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
abhilash1910
null
abhilash1910/french-roberta
71
null
transformers
5,346
# Roberta Trained Model For Masked Language Model On French Corpus :robot: This is a Masked Language Model trained with [Roberta](https://huggingface.co/transformers/model_doc/roberta.html) on a small French News Corpus(Leipzig corpora). The model is built using Huggingface transformers. The model can be found at :[French-Roberta](https://huggingface.co/abhilash1910/french-roberta) ## Specifications The corpus for training is taken from Leipzig Corpora (French News) , and is trained on a small set of the corpus (300K). ## Model Specification The model chosen for training is [Roberta](https://arxiv.org/abs/1907.11692) with the following specifications: 1. vocab_size=32000 2. max_position_embeddings=514 3. num_attention_heads=12 4. num_hidden_layers=6 5. type_vocab_size=1 This is trained by using RobertaConfig from transformers package.The total training parameters :68124416 The model is trained for 100 epochs with a gpu batch size of 64 units. More details for building custom models can be found at the [HuggingFace Blog](https://huggingface.co/blog/how-to-train) ## Usage Specifications For using this model, we have to first import AutoTokenizer and AutoModelWithLMHead Modules from transformers After that we have to specify, the pre-trained model,which in this case is 'abhilash1910/french-roberta' for the tokenizers and the model. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("abhilash1910/french-roberta") model = AutoModelWithLMHead.from_pretrained("abhilash1910/french-roberta") ``` After this the model will be downloaded, it will take some time to download all the model files. For testing the model, we have to import pipeline module from transformers and create a masked output model for inference as follows: ```python from transformers import pipeline model_mask = pipeline('fill-mask', model='abhilash1910/french-roberta') model_mask("Le tweet <mask>.") ``` Some of the examples are also provided with generic French sentences: Example 1: ```python model_mask("À ce jour, <mask> projet a entraîné") ``` Output: ```bash [{'sequence': '<s>À ce jour, belles projet a entraîné</s>', 'score': 0.18685665726661682, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': '<s>À ce jour,- projet a entraîné</s>', 'score': 0.0005200508167035878, 'token': 17, 'token_str': '-'}, {'sequence': '<s>À ce jour, de projet a entraîné</s>', 'score': 0.00045729897101409733, 'token': 268, 'token_str': 'Ġde'}, {'sequence': '<s>À ce jour, du projet a entraîné</s>', 'score': 0.0004307595663703978, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': '<s>À ce jour," projet a entraîné</s>', 'score': 0.0004219160182401538, 'token': 6, 'token_str': '"'}] ``` Example 2: ```python model_mask("C'est un <mask>") ``` Output: ```bash [{'sequence': "<s>C'est un belles</s>", 'score': 0.16440927982330322, 'token': 6504, 'token_str': 'Ġbelles'}, {'sequence': "<s>C'est un de</s>", 'score': 0.0005495127406902611, 'token': 268, 'token_str': 'Ġde'}, {'sequence': "<s>C'est un du</s>", 'score': 0.00044988933950662613, 'token': 326, 'token_str': 'Ġdu'}, {'sequence': "<s>C'est un-</s>", 'score': 0.00044542422983795404, 'token': 17, 'token_str': '-'}, {'sequence': "<s>C'est un </s>", 'score': 0.00037563967634923756, 'token': 202, 'token_str': 'ĉ'}] ``` ## Resources For all resources , please look into the [HuggingFace](https://huggingface.co/) Site and the [Repositories](https://github.com/huggingface). --- language: - fr tags: - fill-mask license: apache-2.0 ---
abhiramtirumala/DialoGPT-sarcastic
796ca7306a806583428e40747632577e5db932bc
2021-06-30T19:52:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
abhiramtirumala
null
abhiramtirumala/DialoGPT-sarcastic
71
4
transformers
5,347
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
abinayam/gpt-2-tamil
752d5c1069d9ae7b43019bd280300950f599c7e8
2021-07-23T06:24:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "ta", "dataset:oscar", "dataset:IndicNLP", "transformers" ]
text-generation
false
abinayam
null
abinayam/gpt-2-tamil
71
2
transformers
5,348
--- language: ta datasets: - oscar - IndicNLP widget: - text: 'ஒரு ஊரிலே ஒரு காக்கைக்கு' --- # GPT2-Tamil This repository is created as part of the Flax/Jax community week by Huggingface. The aim of this project is to pretrain a language model using GPT-2 specifically for Tamil language. ## Setup: To setup the project, run the following command, ```python pip install -r requirements.txt ``` ## Model: Pretrained model on Tamil language using a causal language modeling (CLM) objective. ## Dataset Used: The GTP-2 model is trained on [oscar dataset - ta](https://huggingface.co/datasets/oscar) and [IndicNLP dataset - ta](https://indicnlp.ai4bharat.org/corpora/) ## Intended uses & limitations: You can use the raw model for next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ## How to pretrain the model: To perform training, do the following steps, - Export the model directory (where you want to store the model artifacts like config, tokenizer, etc.) ```python >>> export MODEL_DIR=<model_dir> ``` - Create the config.json by running the following command, ```python >>> python src/create_config.py ``` - Create the tokenizer by running the following command, ```python >>> python src/train_tokenizer.py ``` - Once the config and tokenizer is created, run the following script to start training the flax model ```python >>> python scripts/train_gpt2-oscar-tamil.sh ``` ## How to use: To perform language generation using the model, pipeline can be used directly. - First convert the flax model to pytorch using the following command, ```python python src/convert_flax_to_pytorch.py ``` - Use the following snippet to perform language generation, ```python >>> from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline >>> model_name = 'abinayam/gpt-2-tamil' >>> model = AutoModelWithLMHead.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> set_seed(42) >>> input_text = "ஒரு ஊரிலே ஒரு காக்கைக்கு" >>> max_len = 300 >>> no_seq = 5 >>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer) >>> sequence = generator(input_text, max_length=max_len, num_return_sequences=no_seq) ```
airesearch/wangchanberta-base-wiki-newmm
840fd2896fd1a23f9f6366ab458863bdc4e921f8
2021-09-11T09:39:18.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "th", "arxiv:1907.11692", "arxiv:2101.09635", "transformers", "autotrain_compatible" ]
fill-mask
false
airesearch
null
airesearch/wangchanberta-base-wiki-newmm
71
null
transformers
5,349
--- language: th --- # WangchanBERTa base model: `wangchanberta-base-wiki-newmm` <br> Pretrained RoBERTa BASE model on Thai Wikipedia corpus. The script and documentation can be found at [this reposiryory](https://github.com/vistec-AI/thai2transformers). <br> ## Model description <br> The architecture of the pretrained model is based on RoBERTa [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692). <br> ## Intended uses & limitations <br> You can use the pretrained model for masked language modeling (i.e. predicting a mask token in the input text). In addition, we also provide finetuned models for multiclass/multilabel text classification and token classification task. <br> **Multiclass text classification** - `wisesight_sentiment` 4-class text classification task (`positive`, `neutral`, `negative`, and `question`) based on social media posts and tweets. - `wongnai_reivews` Users' review rating classification task (scale is ranging from 1 to 5) - `generated_reviews_enth` : (`review_star` as label) Generated users' review rating classification task (scale is ranging from 1 to 5). **Multilabel text classification** - `prachathai67k` Thai topic classification with 12 labels based on news article corpus from prachathai.com. The detail is described in this [page](https://huggingface.co/datasets/prachathai67k). **Token classification** - `thainer` Named-entity recognition tagging with 13 named-entities as descibed in this [page](https://huggingface.co/datasets/thainer). - `lst20` : NER NER and POS tagging Named-entity recognition tagging with 10 named-entities and Part-of-Speech tagging with 16 tags as descibed in this [page](https://huggingface.co/datasets/lst20). <br> ## How to use <br> The getting started notebook of WangchanBERTa model can be found at this [Colab notebook](https://colab.research.google.com/drive/1Kbk6sBspZLwcnOE61adAQo30xxqOQ9ko) <br> ## Training data `wangchanberta-base-wiki-newmm` model was pretrained on Thai Wikipedia. Specifically, we use the Wikipedia dump articles on 20 August 2020 (dumps.wikimedia.org/thwiki/20200820/). We opt out lists, and tables. ### Preprocessing Texts are preprocessed with the following rules: - Replace non-breaking space, zero-width non-breaking space, and soft hyphen with spaces. - Remove an empty parenthesis that occur right after the title of the first paragraph. - Replace spaces wtth <_>. <br> Regarding the vocabulary, we use wordl-level token from [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s dictionary-based tokenizer namedly `newmm`. The total number of word-level tokens in the vocabulary is 97,982. We sample sentences contigously to have the length of at most 512 tokens. For some sentences that overlap the boundary of 512 tokens, we split such sentence with an additional token as document separator. This is the same approach as proposed by [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692) (called "FULL-SENTENCES"). Regarding the masking procedure, for each sequence, we sampled 15% of the tokens and replace them with<mask>token.Out of the 15%, 80% is replaced with a<mask>token, 10% is left unchanged and 10% is replaced with a random token. <br> **Train/Val/Test splits** We split sequencially 944,782 sentences for training set, 24,863 sentences for validation set and 24,862 sentences for test set. <br> **Pretraining** The model was trained on 32 V100 GPUs for 31,250 steps with the batch size of 8,192 (16 sequences per device with 16 accumulation steps) and a sequence length of 512 tokens. The optimizer we used is Adam with the learning rate of $7e-4$, $\beta_1 = 0.9$, $\beta_2= 0.98$ and $\epsilon = 1e-6$. The learning rate is warmed up for the first 1250 steps and linearly decayed to zero. The model checkpoint with minimum validation loss will be selected as the best model checkpoint. <br> **BibTeX entry and citation info** ``` @misc{lowphansirikul2021wangchanberta, title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong}, year={2021}, eprint={2101.09635}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
davanstrien/iiif_manuscript_vit
37b1ed562376f16bb2dce761dcfd57fc582ba047
2022-02-10T22:49:42.000Z
[ "pytorch", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
davanstrien
null
davanstrien/iiif_manuscript_vit
71
null
transformers
5,350
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: iiif_manuscript_vit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iiif_manuscript_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - F1: 0.5996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 | | 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 | | 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 | | 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 | | 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 | | 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 | | 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 | | 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 | | 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 | | 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
dvm1983/TinyBERT_General_4L_312D_de
3b3084a67cb7894f26fbc0232ce3e8fbc1b61fc9
2021-08-22T16:44:48.000Z
[ "pytorch", "bert", "de", "dataset:wiki", "arxiv:1909.10351", "transformers", "tinybert", "fill-mask" ]
fill-mask
false
dvm1983
null
dvm1983/TinyBERT_General_4L_312D_de
71
null
transformers
5,351
--- language: - de tags: - tinybert - fill-mask datasets: - wiki --- Here is represented tinybert model for German language (de). The model was created by distilling of bert base cased model(https://huggingface.co/dbmdz/bert-base-german-cased) in the way described in https://arxiv.org/abs/1909.10351 (TinyBERT: Distilling BERT for Natural Language Understanding) Dataset: German Wikipedia Text Corpus - https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus Versions: torch==1.4.0 transformers==4.8.1 How to load model for LM(fill-mask) task: tokenizer = transformers.BertTokenizer.from_pretrained(model_dir + '/vocab.txt', do_lower_case=False) config = transformers.BertConfig.from_json_file(model_dir+'config.json') model = transformers.BertModel(config=config) model.pooler = nn.Sequential(nn.Linear(in_features=model.config.hidden_size, out_features=model.config.hidden_size, bias=True), nn.LayerNorm((model.config.hidden_size,), eps=1e-12, elementwise_affine=True), nn.Linear(in_features=model.config.hidden_size, out_features=len(tokenizer), bias=True)) model.resize_token_embeddings(len(tokenizer)) checkpoint = torch.load(model_dir+'/pytorch_model.bin', map_location=torch.device('cuda')) model.load_state_dict(checkpoint) In case of NER or Classification task we have to load model for LM task and change pooler: model.pooler = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob, inplace=False), nn.Linear(in_features=config.hidden_size, out_features=n_classes, bias=True))
godiec/diam
a83df7f3dc0379b2f64317b1dc0c757a40018053
2021-12-13T19:12:32.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
godiec
null
godiec/diam
71
null
transformers
5,352
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: diam results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9775280952453613 --- # diam Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bunny ![bunny](images/bunny.jpg) #### moon ![moon](images/moon.jpg) #### sun ![sun](images/sun.jpg) #### tiger ![tiger](images/tiger.jpg)
harr/distilbert-base-uncased-finetuned-ingredients
4d043103a8ee532364bf569c53e4a06c2eb6d5c5
2021-09-11T09:20:35.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:ingredients_yes_no", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
harr
null
harr/distilbert-base-uncased-finetuned-ingredients
71
3
transformers
5,353
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ingredients_yes_no metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ingredients results: - task: name: Token Classification type: token-classification dataset: name: ingredients_yes_no type: ingredients_yes_no args: IngredientsYesNo metrics: - name: Precision type: precision value: 0.9898648648648649 - name: Recall type: recall value: 0.9932203389830508 - name: F1 type: f1 value: 0.9915397631133671 - name: Accuracy type: accuracy value: 0.9978308026030369 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0105 - Precision: 0.9899 - Recall: 0.9932 - F1: 0.9915 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 47 | 0.2783 | 0.4 | 0.5492 | 0.4629 | 0.8910 | | No log | 2.0 | 94 | 0.1089 | 0.8145 | 0.8780 | 0.8450 | 0.9718 | | No log | 3.0 | 141 | 0.0273 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 4.0 | 188 | 0.0168 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 5.0 | 235 | 0.0156 | 0.9865 | 0.9898 | 0.9882 | 0.9957 | | No log | 6.0 | 282 | 0.0129 | 0.9865 | 0.9932 | 0.9899 | 0.9973 | | No log | 7.0 | 329 | 0.0121 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 8.0 | 376 | 0.0115 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 9.0 | 423 | 0.0108 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | | No log | 10.0 | 470 | 0.0105 | 0.9899 | 0.9932 | 0.9915 | 0.9978 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ml6team/gpt2-medium-dutch-finetune-oscar
7ae5ea65cb2d434d07da0f3628c0738d8ee5fef5
2021-05-23T09:42:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "nl", "transformers", "adaption", "recycled", "gpt2-medium" ]
text-generation
false
ml6team
null
ml6team/gpt2-medium-dutch-finetune-oscar
71
6
transformers
5,354
--- language: nl widget: - text: "De regering heeft beslist dat" tags: - adaption - recycled - gpt2-medium - gpt2 pipeline_tag: text-generation --- # Dutch finetuned GPT2
nateraw/baseball-stadium-foods
1252d68fce7e2a3e3855b43439992beccea3f716
2021-06-30T07:11:21.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/baseball-stadium-foods
71
null
transformers
5,355
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baseball-stadium-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- # baseball-stadium-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cotton candy ![cotton candy](images/cotton_candy.jpg) #### hamburger ![hamburger](images/hamburger.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### nachos ![nachos](images/nachos.jpg) #### popcorn ![popcorn](images/popcorn.jpg)
nateraw/donut-or-bagel
408739a81234d039cbead3c0f956ef1f729a4739
2021-07-10T19:54:49.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
nateraw
null
nateraw/donut-or-bagel
71
null
transformers
5,356
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: donut-or-bagel results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # donut-or-bagel Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bagel ![bagel](images/bagel.jpg) #### donut ![donut](images/donut.jpg)
nateraw/planes-trains-automobiles
dcf495d94e1cb0e9e7fb6bf8ac3c05c74dc3c8df
2021-08-23T21:42:21.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "generated_from_trainer", "license:apache-2.0" ]
image-classification
false
nateraw
null
nateraw/planes-trains-automobiles
71
null
transformers
5,357
--- license: apache-2.0 tags: - huggingpics - image-classification - generated_from_trainer metrics: - accuracy model_index: - name: planes-trains-automobiles results: - task: name: Image Classification type: image-classification metric: name: Accuracy type: accuracy value: 0.9850746268656716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # planes-trains-automobiles This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the huggingpics dataset. It achieves the following results on the evaluation set: - Loss: 0.0534 - Accuracy: 0.9851 ## Model description Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### automobiles ![automobiles](images/automobiles.jpg) #### planes ![planes](images/planes.jpg) #### trains ![trains](images/trains.jpg) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0283 | 1.0 | 48 | 0.0434 | 0.9851 | | 0.0224 | 2.0 | 96 | 0.0548 | 0.9851 | | 0.0203 | 3.0 | 144 | 0.0445 | 0.9851 | | 0.0195 | 4.0 | 192 | 0.0534 | 0.9851 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
sonoisa/vl-t5-base-japanese
d5d3c72dcbad8ebb55e51ffe7ede7ba786edb5cd
2021-10-04T11:13:35.000Z
[ "pytorch", "t5", "ja", "dataset:wikipedia", "dataset:oscar", "dataset:cc100", "dataset:ms_coco", "dataset:visual_genome", "dataset:coco_captions", "dataset:vqa", "dataset:gqa", "arxiv:2102.02779", "transformers", "vl-t5", "license:cc-by-sa-4.0" ]
null
false
sonoisa
null
sonoisa/vl-t5-base-japanese
71
null
transformers
5,358
--- language: ja tags: - vl-t5 license: cc-by-sa-4.0 datasets: - wikipedia - oscar - cc100 - ms_coco - visual_genome - coco_captions - vqa - gqa --- # 日本語VL-T5事前学習済みモデル This is a VL-T5 (Unifying Vision-and-Language Tasks via Text Generation) model pretrained on Japanese corpus. 日本語コーパスを用いて事前学習を行ったVL-T5 (Unifying Vision-and-Language Tasks via Text Generation) モデルです。 - VL-T5の論文: https://arxiv.org/abs/2102.02779 - 推論例 (要Google Colab): https://colab.research.google.com/github/sonoisa/VL-T5-ja/blob/master/日本語VL-T5推論.ipynb
suhnylla/planes_airlines
31689e3a1c78ffce0aebfa030bfa00c28a8eafc8
2021-07-22T02:21:24.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
suhnylla
null
suhnylla/planes_airlines
71
null
transformers
5,359
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: planes_airlines results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.32307693362236023 --- # planes_airlines Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### planes cathay pacific ![planes cathay pacific](images/planes_cathay_pacific.jpg) #### planes delta airlines ![planes delta airlines](images/planes_delta_airlines.jpg) #### planes malaysia airlines ![planes malaysia airlines](images/planes_malaysia_airlines.jpg) #### planes singapore airlines ![planes singapore airlines](images/planes_singapore_airlines.jpg) #### planes virgin airlines ![planes virgin airlines](images/planes_virgin_airlines.jpg)
hf-internal-testing/tiny-plbart
4744258777b2b19aab82ccab91cc4904b1f305a9
2022-04-05T14:38:10.000Z
[ "pytorch", "plbart", "text-classification", "transformers" ]
text-classification
false
hf-internal-testing
null
hf-internal-testing/tiny-plbart
71
null
transformers
5,360
Entry not found
shniranjan/wav2vec2-large-xlsr-300m-nepali
f95476bd5f3981d3684da3245b32334865c1550a
2022-04-15T02:29:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ne", "transformers", "speech-to-text" ]
automatic-speech-recognition
false
shniranjan
null
shniranjan/wav2vec2-large-xlsr-300m-nepali
71
null
transformers
5,361
## Usage The model can be used directly (without a language model) as follows: --- language: - ne tags: - speech-to-text --- ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("shniranjan/wav2vec2-large-xlsr-300m-nepali") model = Wav2Vec2ForCTC.from_pretrained("shniranjan/wav2vec2-large-xlsr-300m-nepali") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
zzzzzzttt/swin-tiny-patch4-window7-224-finetuned-eurosat
d6d2e6689168ae3466defaaf0020a46b334d76d8
2022-04-14T12:20:10.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
zzzzzzttt
null
zzzzzzttt/swin-tiny-patch4-window7-224-finetuned-eurosat
71
null
transformers
5,362
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9762962962962963 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0654 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2431 | 1.0 | 190 | 0.1119 | 0.9607 | | 0.1682 | 2.0 | 380 | 0.0921 | 0.9693 | | 0.1644 | 3.0 | 570 | 0.0654 | 0.9763 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mirbostani/bert-base-uncased-finetuned-newsqa
4b47302119d59350e95a2f5c6d4aee61dde202e8
2022-04-25T21:01:37.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:newsqa", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
mirbostani
null
mirbostani/bert-base-uncased-finetuned-newsqa
71
null
transformers
5,363
--- language: - en tags: - question-answering license: apache-2.0 datasets: - newsqa metrics: - f1 - exact_match --- # BERT Base Uncased Finetuned on NewsQA Examples with `noAnswer` and `badQuestion` are not included in the training process. ```shell $ cd ~/projects/transformers/examples/legacy/question-answering $ mkdir bert_base_uncased_finetuned_newsqa $ python run_newsqa.py \ --model_type bert \ --model_name_or_path "bert-base-uncased" \ --do_train \ --do_eval \ --do_lower_case \ --num_train_epochs 2 \ --per_gpu_train_batch_size 8 \ --per_gpu_eval_batch_size 32 \ --max_seq_length 384 \ --max_grad_norm inf \ --doc_stride 128 \ --train_file "~/projects/data/newsqa/combined-newsqa-data-v1.json" \ --predict_file "~/projects/data/newsqa/combined-newsqa-data-v1.json" \ --output_dir "./bert_base_uncased_finetuned_newsqa" \ --save_steps 20000 ``` Results: ```shell {'exact': 60.19350380096752, 'f1': 73.29371985128037, 'total': 4341, 'HasAns_exact': 60.19350380096752, 'HasAns_f1': 73.29371985128037, 'HasAns_total': 4341, 'best_exact': 60.19350380096752, 'best_exact_thresh': 0.0, 'best_f1': 73.29371985128037, 'best_f1_thresh': 0.0} ``` To prepare the database, follow the instructions on the [NewsQA](https://github.com/Maluuba/newsqa) repository.
beomi/KcELECTRA-small-v2022
d4f840c28ae2cc26b7639c7ced8ffa61169f4607
2022-04-27T05:48:25.000Z
[ "pytorch", "electra", "pretraining", "transformers", "license:mit" ]
null
false
beomi
null
beomi/KcELECTRA-small-v2022
71
2
transformers
5,364
--- license: mit ---
mbyanfei/swin-tiny-patch4-window7-224-finetuned-eurosat
f7868f313d240691001ebd43dce8f831a64283e1
2022-05-27T18:43:27.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
mbyanfei
null
mbyanfei/swin-tiny-patch4-window7-224-finetuned-eurosat
71
null
transformers
5,365
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9881481481481481 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0508 - Accuracy: 0.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2241 | 1.0 | 1518 | 0.0886 | 0.9719 | | 0.082 | 2.0 | 3036 | 0.0705 | 0.9815 | | 0.101 | 3.0 | 4554 | 0.0508 | 0.9881 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
fxtentacle/wav2vec2-xls-r-1b-tevr
7accec19468fc64f5ea54c11d8bab80342bc29f3
2022-06-28T16:22:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:common_voice", "arxiv:2206.12693", "transformers", "audio", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
fxtentacle
null
fxtentacle/wav2vec2-xls-r-1b-tevr
71
4
transformers
5,366
--- language: de datasets: - common_voice inference: false metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec 2.0 XLS-R 1B + TEVR tokens + 5-gram LM by Hajo Nils Krabbenhöft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 3.6433399042523233 - name: Test CER type: cer value: 1.5398893560981173 --- ## Overview This folder contains a fully trained German speech recognition pipeline consisting of an acoustic model using the new wav2vec 2.0 XLS-R 1B **TEVR** architecture and a 5-gram KenLM language model. For an explanation of the TEVR enhancements and their motivation, please see our paper: [TEVR: Improving Speech Recognition by Token Entropy Variance Reduction](https://arxiv.org/abs/2206.12693). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tevr-improving-speech-recognition-by-token/speech-recognition-on-common-voice-german)](https://paperswithcode.com/sota/speech-recognition-on-common-voice-german?p=tevr-improving-speech-recognition-by-token) This pipeline scores a very competitive (as of June 2022) **word error rate of 3.64%** on CommonVoice German. The character error rate was 1.54%. ## Citation If you use this ASR pipeline for research, please cite: ```bibtex @misc{https://doi.org/10.48550/arxiv.2206.12693, doi = {10.48550/ARXIV.2206.12693}, url = {https://arxiv.org/abs/2206.12693}, author = {Krabbenhöft, Hajo Nils and Barth, Erhardt}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, F.2.1; I.2.6; I.2.7}, title = {TEVR: Improving Speech Recognition by Token Entropy Variance Reduction}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## TEVR Tokenizer Creation / Testing See https://huggingface.co/fxtentacle/tevr-token-entropy-predictor-de for: - our trained ByT5 model used to calculate the entropies in the paper - a Jupyter Notebook to generate a TEVR Tokenizer from a text corpus - a Jupyter Notebook to generate the illustration image in the paper ## Evaluation To evalue this pipeline yourself and/or on your own data, see the `HF Eval Script.ipynb` Jupyter Notebook or use the following python script: ```python !pip install --quiet --root-user-action=ignore --upgrade pip !pip install --quiet --root-user-action=ignore "datasets>=1.18.3" "transformers==4.11.3" librosa jiwer huggingface_hub !pip install --quiet --root-user-action=ignore https://github.com/kpu/kenlm/archive/master.zip pyctcdecode !pip install --quiet --root-user-action=ignore --upgrade transformers !pip install --quiet --root-user-action=ignore torch_audiomentations audiomentations ``` ```python from datasets import load_dataset, Audio, load_metric from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM import torchaudio.transforms as T import torch import unicodedata import numpy as np import re # load testing dataset testing_dataset = load_dataset("common_voice", "de", split="test") # replace invisible characters with space allchars = list(set([c for t in testing_dataset['sentence'] for c in list(t)])) map_to_space = [c for c in allchars if unicodedata.category(c)[0] in 'PSZ' and c not in 'ʻ-'] replacements = ''.maketrans(''.join(map_to_space), ''.join(' ' for i in range(len(map_to_space))), '\'ʻ') def text_fix(text): # change ß to ss text = text.replace('ß','ss') # convert dash to space and remove double-space text = text.replace('-',' ').replace(' ',' ').replace(' ',' ') # make lowercase text = text.lower() # remap all invisible characters to space text = text.translate(replacements).strip() # for easier comparison to Zimmermeister, replace unrepresentable characters with ? text = re.sub("[âşěýňעảנźțãòàǔł̇æồאắîשðșęūāñë生בøúıśžçćńřğ]+","?",text) # remove multiple spaces (again) text = ' '.join([w for w in text.split(' ') if w != '']) return text # load model model = AutoModelForCTC.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") model.to('cuda') # load processor class HajoProcessor(Wav2Vec2ProcessorWithLM): @staticmethod def get_missing_alphabet_tokens(decoder, tokenizer): return [] processor = HajoProcessor.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") # this function will be called for each WAV file def predict_single_audio(batch, image=False): audio = batch['audio']['array'] # resample, if needed if batch['audio']['sampling_rate'] != 16000: audio = T.Resample(orig_freq=batch['audio']['sampling_rate'], new_freq=16000)(torch.from_numpy(audio)).numpy() # normalize audio = (audio - audio.mean()) / np.sqrt(audio.var() + 1e-7) # ask HF processor to prepare audio for GPU eval input_values = processor(audio, return_tensors="pt", sampling_rate=16_000).input_values # call model on GPU with torch.no_grad(): logits = model(input_values.to('cuda')).logits.cpu().numpy()[0] # ask HF processor to decode logits decoded = processor.decode(logits, beam_width=500) # return as dictionary return { 'groundtruth': text_fix(batch['sentence']), 'prediction': decoded.text } # process all audio files all_predictions = testing_dataset.map(predict_single_audio, remove_columns=testing_dataset.column_names) # print results print('WER', load_metric("wer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') print('CER', load_metric("cer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') ``` WER 3.6433399042523233 % CER 1.5398893560981173 %
Jihuai/bert-ancient-chinese
fd2d21041bf427d78405f6f9320478fae7710b54
2022-06-09T11:53:34.000Z
[ "pytorch", "bert", "fill-mask", "zh", "transformers", "chinese", "classical chinese", "literary chinese", "ancient chinese", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Jihuai
null
Jihuai/bert-ancient-chinese
71
0
transformers
5,367
--- language: - "zh" tags: - "chinese" - "classical chinese" - "literary chinese" - "ancient chinese" - "bert" - "pytorch" inference: false license: "apache-2.0" --- # bert-ancient-chinese ## Introduction With the current wave of Artificial Intelligence and Digital Humanities sweeping the world, the automatic analysis of modern Chinese has achieved great results. However, the automatic analysis and research of ancient Chinese is relatively weak, and it is difficult to meet the actual needs of Sinology, history, philology, Chinese history and the education of Sinology and traditional culture. There are many controversies about characters, words and parts of speech in ancient Chinese, and there are many difficulties in resource construction. Digital Humanities research requires large-scale corpora and high-performance ancient natural language processing tools. In view of the fact that pre-trained language models have greatly improved the accuracy of text mining in English and modern Chinese texts, there is an urgent need for pre-trained models for the automatic processing of ancient texts. In 2022, we took part in **[EvaHan 2022](https://circse.github.io/LT4HALA/2022/EvaHan)**, the first NLP tool evaluation competition in the field of ancient Chinese. **`bert-ancient-chinese`** is trained to further optimize the model effect in open environment. You can view the introduction of the Chinese version through [this link](https://github.com/Jihuai-wpy/bert-ancient-chinese). ## Further Pre-training **Compared with the previous pre-trained models, `bert-ancient-chinese` mainly has the following characteristics:** - Ancient Chinese texts mostly appear in traditional Chinese characters and contain a large number of uncommon Chinese characters, which makes the `vocab table` (vocabulary) of the pre-trained model without some uncommon Chinese characters. `bert-ancient-chinese` further expands the `vocab` (dictionary) of the pre-trained model by learning in a large-scale corpus. The final `vocab table` size is **38208**, compared to `bert-base-chinese` vocabulary size of **21128**, `siku-bert` vocabulary size of **29791**, `bert-ancient-chinese` has a **larger vocabulary**, and also includes more uncommon vocabulary word, which is more conducive to improving the performance of the model in downstream tasks. The `vocab table` is the vocabulary table, which is included in the `vocab.txt` in the pre-trained model. - `bert-ancient-chinese` uses a larger training set. Compared with `siku-bert` only using `"Siku Quanshu"` as training dataset, we use a larger-scale dataset (about six times that of `"Siku Quanshu"`), covering from the Ministry of Cong, the Ministry of Taoism, the Ministry of Buddhism, the Ministry of Confucianism, the Ministry of Poetry, the Ministry of History, the Ministry of Medicine, the Ministry of Art, the Ministry of Yi, and the Ministry of Zi, are richer in content and wider in scope than the `"Siku Quanshu"`. - Based on the idea of `Domain-Adaptive Pretraining`, `bert-ancient-chinese` was trained on the basis of `bert-base-chinese ` and was combined with ancient Chinese corpus to obtain a pre-trained model for the field of automatic processing of ancient Chinese. ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain `bert-ancient-chinese` model online. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Jihuai/bert-ancient-chinese") model = AutoModel.from_pretrained("Jihuai/bert-ancient-chinese") ``` ## Download PTM The model we provide is the `PyTorch` version. ### From Huggingface Download directly through Huggingface's official website, and the model on the official website has been updated to the latest version simultaneously: - **bert-ancient-chinese:[Jihuai/bert-ancient-chinese · Hugging Face](https://huggingface.co/Jihuai/bert-ancient-chinese)** ### From Cloud Disk Download address: | Model | Link | | :------------------: | :----------------------------------------------------------: | | bert-ancient-chinese | [Link](https://pan.baidu.com/s/1JC5_64gLT07wgG2hjzqxjg ) Extraction code: qs7x | ## Evaluation & Results We tested and compared different pre-trained models on the training and test sets provided by the competition [EvaHan 2022](https://circse.github.io/LT4HALA/2022/EvaHan). We compare the performance of the models by fine-tuning them on the downstream tasks of `Chinese Word Segmentation(CWS)` and `part-of-speech tagging(POS Tagging)`. We use `BERT+CRF` as the baseline model to compare the performance of `siku-bert`, `siku-roberta` and `bert-ancient-chinese` on downstream tasks. To fully utilize the entire training dataset, we employ `K-fold cross-validation`, while keeping other hyperparameters the same. The evaluation index is the `F1 value`. <table> <tr> <td></td> <td colspan="2" align="center"> <i>Zuozhuan</i> </td> <td colspan="2" align="center"> <i>Shiji</i> </td> </tr> <tr> <td></td> <td align="center">CWS</td> <td align="center">POS</td> <td align="center">CWS</td> <td align="center">POS</td> </tr> <tr> <td align="center">siku-bert</td> <td align="center">96.0670%</td> <td align="center">92.0156%</td> <td align="center">92.7909%</td> <td align="center">87.1188%</td> </tr> <tr> <td align="center">siku-roberta</td> <td align="center">96.0689%</td> <td align="center">92.0496%</td> <td align="center">93.0183%</td> <td align="center">87.5339%</td> </tr> <tr> <td align="center">bert-ancient-chinese</td> <td align="center"> <b>96.3273%</b> </td> <td align="center"> <b>92.5027%</b> </td> <td align="center"> <b>93.2917%</b> </td> <td align="center"> <b>87.8749%</b> </td> </tr> </table> ## Citing If our content is helpful for your research work, please quote it in the paper. ## Disclaim The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment. **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment `bert-ancient-chinese` is based on [bert-base-chinese](https://huggingface.co/bert-base-chinese) to continue training. Thanks to Prof. [Xipeng Qiu](https://xpqiu.github.io/) and the [Natural Language Processing Laboratory of Fudan University](https://nlp.fudan.edu.cn/). ## Contact us Pengyu Wang:[email protected]
lindsayng/t5-base-base-sweep-b3acbf3b
ce971bbd3cd1ab4818a0c1c8bc04ed0fcdf04ff8
2022-06-13T14:19:26.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lindsayng
null
lindsayng/t5-base-base-sweep-b3acbf3b
71
null
transformers
5,368
Entry not found
ArnavL/roberta-base-imdb-0
887f1f8080ca67925d43c3d81c132ef834bdd2d5
2022-07-11T10:46:26.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
ArnavL
null
ArnavL/roberta-base-imdb-0
71
null
transformers
5,369
Entry not found
ARTeLab/mbart-summarization-fanpage
7812dc1714de58152c634f88a19c7eb2a6045e3b
2022-05-03T06:07:47.000Z
[ "pytorch", "mbart", "text2text-generation", "it", "dataset:ARTeLab/fanpage", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ARTeLab
null
ARTeLab/mbart-summarization-fanpage
70
null
transformers
5,370
--- tags: - summarization language: - it metrics: - rouge model-index: - name: summarization_mbart_fanpage4epoch results: [] datasets: - ARTeLab/fanpage --- # mbart-summarization-fanpage This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.1833 - Rouge1: 36.5027 - Rouge2: 17.4428 - Rougel: 26.1734 - Rougelsum: 30.2636 - Gen Len: 75.2413 ## Usage ```python from transformers import MBartTokenizer, MBartForConditionalGeneration tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-fanpage") model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-fanpage") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
AhmedBou/TuniBert
615e28c7b0bb3c941092293ccd33ca7cd824b627
2021-10-05T01:47:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AhmedBou
null
AhmedBou/TuniBert
70
null
transformers
5,371
Entry not found
Helsinki-NLP/opus-mt-cpp-en
523c5f73e933411d9106072f70a53f4f416685cc
2021-01-18T07:54:45.000Z
[ "pytorch", "marian", "text2text-generation", "id", "cpp", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cpp-en
70
null
transformers
5,372
--- language: - id - cpp - en tags: - translation license: apache-2.0 --- ### cpp-eng * source group: Creoles and pidgins, Portuguese-based * target group: English * OPUS readme: [cpp-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpp-eng/README.md) * model: transformer * source language(s): ind max_Latn min pap tmw_Latn zlm_Latn zsm_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.msa-eng.msa.eng | 39.6 | 0.580 | | Tatoeba-test.multi.eng | 39.7 | 0.580 | | Tatoeba-test.pap-eng.pap.eng | 49.1 | 0.579 | ### System Info: - hf_name: cpp-eng - source_languages: cpp - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpp-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['id', 'cpp', 'en'] - src_constituents: {'zsm_Latn', 'ind', 'pap', 'min', 'tmw_Latn', 'max_Latn', 'zlm_Latn'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cpp-eng/opus2m-2020-07-31.test.txt - src_alpha3: cpp - tgt_alpha3: eng - short_pair: cpp-en - chrF2_score: 0.58 - bleu: 39.7 - brevity_penalty: 0.972 - ref_len: 37399.0 - src_name: Creoles and pidgins, Portuguese-based - tgt_name: English - train_date: 2020-07-31 - src_alpha2: cpp - tgt_alpha2: en - prefer_old: False - long_pair: cpp-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fr-ms
0fd5c97c9aea1f88f99f1636982864a01e57d895
2021-01-18T08:45:45.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ms", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ms
70
null
transformers
5,373
--- language: - fr - ms tags: - translation license: apache-2.0 --- ### fra-msa * source group: French * target group: Malay (macrolanguage) * OPUS readme: [fra-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-msa/README.md) * model: transformer-align * source language(s): fra * target language(s): ind zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.msa | 35.3 | 0.617 | ### System Info: - hf_name: fra-msa - source_languages: fra - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'ms'] - src_constituents: {'fra'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.test.txt - src_alpha3: fra - tgt_alpha3: msa - short_pair: fr-ms - chrF2_score: 0.617 - bleu: 35.3 - brevity_penalty: 0.978 - ref_len: 6696.0 - src_name: French - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: fr - tgt_alpha2: ms - prefer_old: False - long_pair: fra-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-vi-it
b505bfc06a5df56401a8206679e920b3898cc004
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "vi", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-vi-it
70
null
transformers
5,374
--- language: - vi - it tags: - translation license: apache-2.0 --- ### vie-ita * source group: Vietnamese * target group: Italian * OPUS readme: [vie-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-ita/README.md) * model: transformer-align * source language(s): vie * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.ita | 31.2 | 0.548 | ### System Info: - hf_name: vie-ita - source_languages: vie - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'it'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: ita - short_pair: vi-it - chrF2_score: 0.5479999999999999 - bleu: 31.2 - brevity_penalty: 0.932 - ref_len: 1774.0 - src_name: Vietnamese - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: it - prefer_old: False - long_pair: vie-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
OthmaneJ/distil-wav2vec2
e7d240706c12f07b823716eae6589c79d80ed72f
2021-08-25T07:59:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "speech", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
OthmaneJ
null
OthmaneJ/distil-wav2vec2
70
7
transformers
5,375
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition license: apache-2.0 --- # Distil-wav2vec2 This model is a distilled version of the wav2vec2 model (https://arxiv.org/pdf/2006.11477.pdf). This model is 45% times smaller and twice as fast as the original wav2vec2 base model. # Evaluation results This model achieves the following results (speed is mesured for a batch size of 64): |Model| Size| WER Librispeech-test-clean |WER Librispeech-test-other|Speed on cpu|speed on gpu| |----------| ------------- |-------------|-----------| ------|----| |Distil-wav2vec2| 197.9 Mb | 0.0983 | 0.2266|0.4006s| 0.0046s| |wav2vec2-base| 360 Mb | 0.0389 | 0.1047|0.4919s| 0.0082s| # Usage notebook (executes seamlessly on google colab) at https://github.com/OthmaneJ/distil-wav2vec2
it5/it5-large-news-summarization
4e7864b2ee439fc04a53d44b93da81a5720094fb
2022-03-09T07:53:26.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:ARTeLab/fanpage", "dataset:ARTeLab/ilpost", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "fanpage", "ilpost", "summarization", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
summarization
false
it5
null
it5/it5-large-news-summarization
70
null
transformers
5,376
--- language: - it license: apache-2.0 datasets: - ARTeLab/fanpage - ARTeLab/ilpost tags: - italian - sequence-to-sequence - fanpage - ilpost - summarization widget: - text: "Non lo vuole sposare. E’ quanto emerge all’interno dell’ultima intervista di Raffaella Fico che, ringraziando Mancini per i buoni consigli elargiti al suo fidanzato, rimanda l’idea del matrimonio per qualche anno ancora. La soubrette, che è stata recentemente protagonista di una dedica di Supermario, non ha ancora intenzione di accasarsi perché è sicura che per mettersi la fede al dito ci sia ancora tempo. Nonostante il suo Mario sia uno degli sportivi più desiderati al mondo, l’ex protagonista del Grande Fratello non ha alcuna intenzione di cedere seriamente alla sua corte. Solo qualche giorno fa, infatti, dopo l’ultima bravata di Balotelli, Mancini gli aveva consigliato di sposare la sua Raffaella e di mettere la testa a posto. Chi pensava che sarebbe stato Mario a rispondere, però, si è sbagliato. A mettere le cose bene in chiaro è la Fico che, intervistata dall’emittente radiofonica Rtl 102.5, dice: È presto per sposarsi, siamo ancora molto giovani. È giusto che prima uno si realizzi nel proprio lavoro. E poi successivamente perché no, ci si può anche pensare. Quando si è giovani capita di fare qualche pazzia, quindi ci sta. Comunque i tabloid inglesi sono totalmente accaniti sulla sua vita privata quando poi dovrebbero interessarsi di più di quello che fa sul campo. Lui non fa le cose con cattiveria, ma quando si è giovani si fanno determinate cose senza stare a pensare se sono giuste o sbagliate. Mario ha gli obiettivi puntati addosso: più per la sua vita privata che come giocatore. Per me può anche andare in uno strip club, se non fa niente di male, con gli amici, però devo dire che alla fine torna sempre da me, sono la sua preferita." - text: "Valerio è giovanissimo ma già una star. Fuori dall’Ariston ragazzine e meno ragazzine passano ore anche sotto la pioggia per vederlo. Lui è forte del suo talento e sicuro. Partecipa in gara tra i “big” di diritto, per essere arrivato in finalissima nel programma Amici di Maria De Filippi e presenta il brano Per tutte le volte che scritta per lui da Pierdavide Carone. Valerio Scanu è stato eliminato. Ma non è detta l'ultima parola: il duetto di questa sera con Alessandra Amoroso potrebbe risollevarlo e farlo rientrare in gara. Che cosa è successo alla giuria visto che sei stato eliminato anche se l’esibizione era perfetta? Nn lo so. Sono andate bene le esibizioni, ero emozionato ma tranquillo. Ero contento ma ho cantato bene. Non sono passato e stasera ci sarà il ballottaggio… Quali sono le differenze tra Amici e Sanremo? Sono due cose diverse. Amici ti prepara a salire sul palco di amici. A Sanremo ci devi arrivare… ho fatto più di sessanta serate nel tour estivo, poi promozione del secondo disco. Una bella palestra. Sono cresciuto anche umanamente. Sono riuscito a percepire quello che il pubblico trasmette. L’umiltà? Prima di tutto. Sennò non sarei qui." - text: "L’azienda statunitense Broadcom, uno dei più grandi produttori di semiconduttori al mondo, ha presentato un’offerta per acquisire Qualcomm, altra grande società degli Stati Uniti conosciuta soprattutto per la sua produzione di microprocessori Snapdragon (ARM), utilizzati in centinaia di milioni di smartphone in giro per il mondo. Broadcom ha proposto di acquistare ogni azione di Qualcomm al prezzo di 70 dollari, per un valore complessivo di circa 105 miliardi di dollari (130 miliardi se si comprendono 25 miliardi di debiti netti) . Se l’operazione dovesse essere approvata, sarebbe una delle più grandi acquisizioni di sempre nella storia del settore tecnologico degli Stati Uniti. Broadcom ha perfezionato per mesi la sua proposta di acquisto e, secondo i media statunitensi, avrebbe già preso contatti con Qualcomm per trovare un accordo. Secondo gli analisti, Qualcomm potrebbe comunque opporsi all’acquisizione perché il prezzo offerto è di poco superiore a quello dell’attuale valore delle azioni dell’azienda. Ci potrebbero essere inoltre complicazioni sul piano dell’antitrust da valutare, prima di un’eventuale acquisizione." - text: "Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente." metrics: - rouge model-index: - name: it5-large-news-summarization results: - task: type: news-summarization name: "News Summarization" dataset: type: newssum-it name: "NewsSum-IT" metrics: - type: rouge1 value: 0.249 name: "Test Rouge1 IlPost" - type: rouge2 value: 0.102 name: "Test Rouge2 IlPost" - type: rougeL value: 0.199 name: "Test RougeL IlPost" - type: bertscore value: 0.313 name: "Test BERTScore IlPost" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" - type: rouge1 value: 0.253 name: "Test Rouge1 Fanpage" - type: rouge2 value: 0.099 name: "Test Rouge2 Fanpage" - type: rougeL value: 0.191 name: "Test RougeL Fanpage" - type: bertscore value: 0.316 name: "Test BERTScore Fanpage" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Large for News Summarization ✂️🗞️ 🇮🇹 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on news summarization on the [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage) and [Il Post](https://huggingface.co/datasets/ARTeLab/ilpost) corpora as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines newsum = pipeline("summarization", model='it5/it5-large-news-summarization') newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.") >>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-news-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-news-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
jiangg/chembert_cased
6764448f64f869e2698ae20f64437feb9cb12f2c
2021-08-12T18:25:26.000Z
[ "pytorch", "transformers" ]
null
false
jiangg
null
jiangg/chembert_cased
70
3
transformers
5,377
This is the pre-trained model presented in [Automated Chemical Reaction Extraction from Scientific Literature](https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c00284), which is a BERT model trained on chemical literature data. The training corpus was taken from ~200K ACS publications, more details can be found in the paper. If using these models, please cite the following paper: ```latex @article{guo2021automated, title={Automated Chemical Reaction Extraction from Scientific Literature}, author={Guo, Jiang and Ibanez-Lopez, A Santiago and Gao, Hanyu and Quach, Victor and Coley, Connor W and Jensen, Klavs F and Barzilay, Regina}, journal={Journal of Chemical Information and Modeling}, year={2021}, publisher={ACS Publications} } ```
lewtun/oz-fauna
cca6e3688e27fb69df3f4dfc91bc8a46a9ce5017
2021-07-01T15:25:24.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
lewtun
null
lewtun/oz-fauna
70
null
transformers
5,378
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: oz-fauna results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8571428656578064 --- # oz-fauna Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dingo ![dingo](images/dingo.jpg) #### koala ![koala](images/koala.jpg) #### kookaburra ![kookaburra](images/kookaburra.jpg) #### possum ![possum](images/possum.jpg) #### tasmanian devil ![tasmanian devil](images/tasmanian_devil.jpg)
megagonlabs/bimeanvae-amzn
a5c0af3fe7f313d1b47d6376c1789aea5696e973
2021-09-11T00:10:54.000Z
[ "pytorch", "en", "transformers", "summarization", "license:bsd-3-clause" ]
summarization
false
megagonlabs
null
megagonlabs/bimeanvae-amzn
70
null
transformers
5,379
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## BiMeanVAE model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
ml6team/gpt2-medium-german-finetune-oscar
80aa19302f16278286d4917d763413d480d1ed21
2021-05-23T09:45:30.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "de", "transformers", "adaption", "recycled", "gpt2-medium" ]
text-generation
false
ml6team
null
ml6team/gpt2-medium-german-finetune-oscar
70
7
transformers
5,380
--- language: de widget: - text: "es wird entschieden, dass es" tags: - adaption - recycled - gpt2-medium - gpt2 pipeline_tag: text-generation --- # German finetuned GPT2
othrif/wav2vec2-large-xlsr-moroccan
198d2b645573e7b2cef5671c15f7f2175e751a36
2021-04-15T03:16:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ary", "dataset:mgb5", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
othrif
null
othrif/wav2vec2-large-xlsr-moroccan
70
null
transformers
5,381
--- language: ary datasets: - mgb5 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Moroccan Arabic dialect by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: MGB5 from ELDA and https://arabicspeech.org/ type: ELDA and https://arabicspeech.org/ args: ary metrics: - name: Test WER type: wer value: 66.45 --- # Wav2Vec2-Large-XLSR-53-Moroccan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [MGB5 Moroccan Arabic](http://www.islrn.org/resources/938-639-614-524-5/) kindly provided by [ELDA](http://www.elra.info/en/about/elda/) and [ArabicSpeech](https://arabicspeech.org/mgb5/). In order to have access to MGB5, please request it from ELDA. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import re import torch import librosa import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf dataset = load_dataset("ma_speech_corpus", split="test") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " return batch dataset = dataset.map(remove_special_characters) dataset = dataset.select(range(10)) def speech_file_to_array_fn(batch): start, stop = batch['segment'].split('_') speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), stop=int(float(stop) * sampling_rate)) batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) batch["sampling_rate"] = 16_000 batch["target_text"] = batch["text"] return batch dataset = dataset.map( speech_file_to_array_fn ) def predict(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) return batch dataset = dataset.map(predict, batched=True, batch_size=32) for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): print("reference:", reference) print("predicted:", predicted) print("--") ``` Here's the output: ``` reference: عشرين ألفريال الوحده وشي خمسميه دريال predicted: عشرين علف ريا لوحده وشي خمسميات ريال -- reference: واحد جوج تلاتة ربعه خمسة ستة predicted: غيحك تويش تتبة نتاست -- reference: هي هاديك غتجينا تقريبا ميه وسته وعشرين ألف ريال predicted: ياض كتجينا تقريبه ميه أو ستي و عشيناأفرين -- reference: ###والصرف ليبقا نجيب بيه الصالون فلهوندا... أهاه نديروها علاش لا؟... predicted: أواصرف ليبقا نجيب يه اصالون فالهندا أه نديروها علاش لا -- reference: ###صافي مشات... أنا أختي معندي مندير بهاد صداع الراس... predicted: صافي مشات أنا خصي معندي مندير بهاد داع راسك ف -- reference: خلصو ليا غير لكريدي ديالي وديرو ليعجبكوم predicted: خلصو ليا غير لكريدي ديالي أوديرو لي عجبكوم -- reference: أنا نتكلف يلاه لقى شي حاجه نشغل بيها راسي predicted: أنا نتكلف يالله لقا شي حاجه نشغل بيها راسي ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import re import torch import librosa import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf eval_dataset = load_dataset("ma_speech_corpus", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " return batch eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) #eval_dataset = eval_dataset.select(range(100)) def speech_file_to_array_fn(batch): start, stop = batch['segment'].split('_') speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), stop=int(float(stop) * sampling_rate)) batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) batch["sampling_rate"] = 16_000 batch["target_text"] = batch["text"] return batch eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names ) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = eval_dataset.map(evaluate, batched=True, batch_size=32) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"]))) ``` **Test Result**: 66.45 ## Training The [MGB5](http://www.islrn.org/resources/938-639-614-524-5/) `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/othrif/xlsr-wav2vec2)
p208p2002/gpt2-squad-qg-hl
393382bf4dd5c8ffc6b990c3f2acf9b328af079c
2021-05-23T10:54:57.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "dataset:squad", "arxiv:1606.05250", "arxiv:1705.00106", "transformers", "question-generation" ]
text-generation
false
p208p2002
null
p208p2002/gpt2-squad-qg-hl
70
null
transformers
5,382
--- datasets: - squad tags: - question-generation widget: - text: "Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]." --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` ### Input Example ``` Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]. ``` > # Who wrote Harry Potter? ## Data setting We report two dataset setting as Follow ### SQuAD - train: 87599\\\\t - validation: 10570 > [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250) ### SQuAD NQG - train: 75722 - dev: 10570 - test: 11877 > [Learning to Ask: Neural Question Generation for Reading Comprehension](https://arxiv.org/abs/1705.00106) ## Available models - BART - GPT2 - T5 ## Expriments We report score with `NQG Scorer` which is using in SQuAD NQG. If not special explanation, the size of the model defaults to "base". ### SQuAD Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BART-HLSQG |54.67 |39.26 |30.34 |24.15 |25.43 |52.64 | GPT2-HLSQG |49.31 |33.95 |25.41| 19.69 |22.29 |48.82 | T5-HLSQG |54.29 |39.22 |30.43 |24.26 |25.56 |53.11 | ### SQuAD NQG Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BERT-HLSQG (Chan et al.) |49.73 |34.60 |26.13 |20.33 |23.88 |48.23 | BART-HLSQG |54.12 |38.19 |28.84 |22.35 |24.55 |51.03 | GPT2-HLSQG |49.82 |33.69 |24.71 |18.63 |21.90 |47.60 | T5-HLSQG |53.13 |37.60 |28.62 |22.38 |24.48 |51.20 |
pszemraj/gpt-neo-tiny-JIBA
1671445eaa67954f7b22abfdf21c32293aef7a6c
2022-02-01T23:33:04.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "gpt-neo", "license:apache-2.0" ]
text-generation
false
pszemraj
null
pszemraj/gpt-neo-tiny-JIBA
70
null
transformers
5,383
--- license: apache-2.0 tags: - generated_from_trainer - gpt-neo widget: - text: "waddup bro?\n" example_title: "waddup" - text: "Are you going to be on League tonight?\n" example_title: "League" - text: "One of my hot takes is that dogs are cute. What do you think?\n" example_title: "hot take" - text: "what planet is brandon from?\n" example_title: "brandon" - text: "hello there.\n" example_title: "bold one" inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.6 no_repeat_ngram_size: 2 do_sample: True top_p: 0.97 top_k: 30 repetition_penalty: 5.2 --- # gpt-neo-125M-JIBA_DS-slack_Ep-40_Bs-8 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure - while it would appear that over-fitting is a huge issue, the data is first sorted by the channel and then time, so the test set is a different channel than what is discussed during train and therefore it makes sense that the validation loss for a specific topic would increase during training. This doesn't exclude it from being a problem, but it is not immediately bad. - this could be mitigated by stratifying the tokenized batches but because there are some intricacies, that was not completed for this MVP. If you are still reading this sentence you can do it though ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 190 | 4.0625 | | No log | 2.0 | 380 | 4.0195 | | 3.9459 | 3.0 | 570 | 4.0078 | | 3.9459 | 4.0 | 760 | 4.0117 | | 3.9459 | 5.0 | 950 | 4.0352 | | 3.5297 | 6.0 | 1140 | 4.0625 | | 3.5297 | 7.0 | 1330 | 4.1094 | | 3.2215 | 8.0 | 1520 | 4.1680 | | 3.2215 | 9.0 | 1710 | 4.2305 | | 3.2215 | 10.0 | 1900 | 4.3047 | | 2.9058 | 11.0 | 2090 | 4.3906 | | 2.9058 | 12.0 | 2280 | 4.4844 | | 2.9058 | 13.0 | 2470 | 4.5977 | | 2.5865 | 14.0 | 2660 | 4.6992 | | 2.5865 | 15.0 | 2850 | 4.8125 | | 2.2434 | 16.0 | 3040 | 4.9258 | | 2.2434 | 17.0 | 3230 | 5.0391 | | 2.2434 | 18.0 | 3420 | 5.1562 | | 1.9185 | 19.0 | 3610 | 5.2773 | | 1.9185 | 20.0 | 3800 | 5.3789 | | 1.9185 | 21.0 | 3990 | 5.4961 | | 1.6238 | 22.0 | 4180 | 5.5977 | | 1.6238 | 23.0 | 4370 | 5.7109 | | 1.3409 | 24.0 | 4560 | 5.8164 | | 1.3409 | 25.0 | 4750 | 5.9023 | | 1.3409 | 26.0 | 4940 | 5.9961 | | 1.11 | 27.0 | 5130 | 6.0820 | | 1.11 | 28.0 | 5320 | 6.1797 | | 0.9143 | 29.0 | 5510 | 6.2539 | | 0.9143 | 30.0 | 5700 | 6.3398 | | 0.9143 | 31.0 | 5890 | 6.4258 | | 0.7343 | 32.0 | 6080 | 6.5039 | | 0.7343 | 33.0 | 6270 | 6.5859 | | 0.7343 | 34.0 | 6460 | 6.6602 | | 0.5904 | 35.0 | 6650 | 6.7305 | | 0.5904 | 36.0 | 6840 | 6.7969 | | 0.4654 | 37.0 | 7030 | 6.8711 | | 0.4654 | 38.0 | 7220 | 6.9453 | | 0.4654 | 39.0 | 7410 | 7.0156 | | 0.3647 | 40.0 | 7600 | 7.0820 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.0
skimai/spanberta-base-cased-ner-conll02
dbaa1f489188897b4232c70825cbfa12bba275bb
2021-05-20T21:50:52.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
skimai
null
skimai/spanberta-base-cased-ner-conll02
70
null
transformers
5,384
Entry not found
uclanlp/plbart-c-cpp-defect-detection
51fe64169b0e3da9086766747b6be33f523636b9
2021-11-09T17:18:32.000Z
[ "pytorch", "plbart", "text-classification", "transformers" ]
text-classification
false
uclanlp
null
uclanlp/plbart-c-cpp-defect-detection
70
null
transformers
5,385
Entry not found
youzanai/clip-product-title-chinese
4bbf81603024c2c2b4f19c4fc2babdf2e1d32679
2022-02-09T08:59:51.000Z
[ "pytorch", "clip_chinese_model", "transformers" ]
null
false
youzanai
null
youzanai/clip-product-title-chinese
70
5
transformers
5,386
<!-- * @Description: * @Version: * @Author: Hardy * @Date: 2022-02-09 15:13:53 * @LastEditors: Hardy * @LastEditTime: 2022-02-09 16:59:01 --> <br /> <p align="center"> <h1 align="center">clip-product-title-chinese</h1> </p> ## 基于有赞商品图片和标题语料训练的clip模型。 ## Usage 使用模型前,请 git clone https://github.com/youzanai/trexpark.git ```python import torch from src.clip.clip import ClipProcesserChinese, ClipChineseModel import requests from PIL import Image clip_processor = ClipProcesserChinese.from_pretrained('youzanai/clip-product-title-chinese') model = ClipChineseModel.from_pretrained('youzanai/clip-product-title-chinese') url = 'http://img.yzcdn.cn/upload_files/2015/04/21/0140dac4657f874f2acff9294b28088c.jpg' img = Image.open(requests.get(url, stream=True).raw).convert('RGB') imgs = [img] texts = ['运动鞋', '红色连衣裙', '黑色连衣裙', '大衣', '文具'] f = clip_processor(texts, imgs, return_tensors='pt', truncation=True, padding=True) del f['token_type_ids'] with torch.no_grad(): out = model(**f) logits_per_image, logits_per_text = out['logits_per_image'], out['logits_per_text'] print(logits_per_image.softmax(dim=-1).cpu().detach().numpy()) # 结果: [[1.1700666e-07 9.9948394e-01 5.1582896e-04 4.7687358e-11 6.9604440e-08]] ```
nntadotzips/bert-base-cased-SynonymReplacementMethod_5703sem0of1to1999and5000to7162__8627sem1
2631131d1f6e1d982bcbf079d93a91af235b478c
2022-03-17T10:51:04.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
nntadotzips
null
nntadotzips/bert-base-cased-SynonymReplacementMethod_5703sem0of1to1999and5000to7162__8627sem1
70
null
transformers
5,387
Entry not found
mcsabai/huBert-fine-tuned-hungarian-squadv1
4d72ef9cbd028f38d67dc46f70215387e97c3fda
2022-05-10T10:59:53.000Z
[ "pytorch", "tf", "bert", "question-answering", "hu", "transformers", "autotrain_compatible" ]
question-answering
false
mcsabai
null
mcsabai/huBert-fine-tuned-hungarian-squadv1
70
1
transformers
5,388
--- language: hu thumbnail: tags: - question-answering - bert widget: - text: "Melyik folyó szeli ketté Budapestet?" context: "Magyarország fővárosát, Budapestet a Duna folyó szeli ketté. A XIX. században épült Lánchíd a dimbes-dombos budai oldalt köti össze a sík Pesttel. A Várdomb oldalában futó siklóval juthatunk fel a budai Óvárosba, ahol a Budapesti Történeti Múzeum egészen a római időkig visszavezetve mutatja be a városi életet. A Szentháromság tér ad otthont a XIII. századi Mátyás-templomnak és a Halászbástya lőtornyainak, amelyekből messzire ellátva gyönyörködhetünk a városban." - text: "Mivel juthatunk fel az Óvárosba?" context: "Magyarország fővárosát, Budapestet a Duna folyó szeli ketté. A XIX. században épült Lánchíd a dimbes-dombos budai oldalt köti össze a sík Pesttel. A Várdomb oldalában futó siklóval juthatunk fel a budai Óvárosba, ahol a Budapesti Történeti Múzeum egészen a római időkig visszavezetve mutatja be a városi életet. A Szentháromság tér ad otthont a XIII. századi Mátyás-templomnak és a Halászbástya lőtornyainak, amelyekből messzire ellátva gyönyörködhetünk a városban." --- ## MODEL DESCRIPTION huBERT base model (cased) fine-tuned on SQuAD v1 - huBert model + Tokenizer: https://huggingface.co/SZTAKI-HLT/hubert-base-cc - Hungarian SQUAD v1 dataset: Machine Translated SQuAD dataset (Google Translate API) - This is a demo model. Date of publication: 2022.03.27. ## Model in action - Fast usage with pipelines: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mcsabai/huBert-fine-tuned-hungarian-squadv1", tokenizer="mcsabai/huBert-fine-tuned-hungarian-squadv1" ) predictions = qa_pipeline({ 'context': "Anita vagyok és Budapesten élek már több mint 4 éve.", 'question': "Hol lakik Anita?" }) print(predictions) # output: # {'score': 0.9892364144325256, 'start': 16, 'end': 26, 'answer': 'Budapesten'} ```
johnnydevriese/vit_beans
3121791c03bfb93ee61a48d5b995b485e400cb89
2022-04-01T02:24:41.000Z
[ "pytorch", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
johnnydevriese
null
johnnydevriese/vit_beans
70
null
transformers
5,389
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit_beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9699248120300752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1176 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.10.3
dimbyTa/rock-challenge-DeiT-solo-2
ae8f0b5b82a70cdc53b49a71f46097ad3354a53e
2022-04-23T15:54:30.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
dimbyTa
null
dimbyTa/rock-challenge-DeiT-solo-2
70
null
transformers
5,390
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rock-challenge-DeiT-solo-2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8100078105926514 --- # rock-challenge-DeiT-solo-2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### fines ![fines](images/fines.png) #### large ![large](images/large.png) #### medium ![medium](images/medium.png) #### pellets ![pellets](images/pellets.png)
csebuetnlp/banglishbert
88f2777acd65160b2a6c07e5ffef2d232daadf87
2022-05-10T05:13:47.000Z
[ "pytorch", "electra", "pretraining", "bn", "en", "arxiv:2101.00204", "transformers" ]
null
false
csebuetnlp
null
csebuetnlp/banglishbert
70
null
transformers
5,391
--- language: - bn - en licenses: - cc-by-nc-sa-4.0 --- # BanglishBERT This repository contains the pretrained discriminator checkpoint of the model **BanglishBERT**. This is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) discriminator model pretrained with the Replaced Token Detection (RTD) objective on large amounts of Bengali and English corpora. BanglishBERT achieves state-of-the-art **zero-shot cross-lingual transfer** results in many of the NLP tasks in Bengali. For finetuning on different downstream tasks such as `Sentiment classification`, `Named Entity Recognition`, `Natural Language Inference` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/banglabert). **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository uses this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below: ## Using this model as a discriminator in `transformers` (tested on 4.11.0.dev0) ```python from transformers import AutoModelForPreTraining, AutoTokenizer from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer import torch model = AutoModelForPreTraining.from_pretrained("csebuetnlp/banglishbert") tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglishbert") original_sentence = "আমি কৃতজ্ঞ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।" fake_sentence = "আমি হতাশ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।" fake_sentence = normalize(fake_sentence) # this normalization step is required before tokenizing the text fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = model(fake_inputs).logits predictions = torch.round((torch.sign(discriminator_outputs) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] print("\n" + "-" * 50) [print("%7s" % int(prediction), end="") for prediction in predictions.squeeze().tolist()[1:-1]] print("\n" + "-" * 50) ``` ## Benchmarks * Zero-shot cross-lingual transfer-learning | Model | Params | SC (macro-F1) | NLI (accuracy) | NER (micro-F1) | QA (EM/F1) | BangLUE score | |----------------|-----------|-----------|-----------|-----------|-----------|-----------| |[mBERT](https://huggingface.co/bert-base-multilingual-cased) | 180M | 27.05 | 62.22 | 39.27 | 59.01/64.18 | 50.35 | |[XLM-R (base)](https://huggingface.co/xlm-roberta-base) | 270M | 42.03 | 72.18 | 45.37 | 55.03/61.83 | 55.29 | |[XLM-R (large)](https://huggingface.co/xlm-roberta-large) | 550M | 49.49 | 78.13 | 56.48 | 71.13/77.70 | 66.59 | |[BanglishBERT](https://huggingface.co/csebuetnlp/banglishbert) | 110M | 48.39 | 75.26 | 55.56 | 72.87/78.63 | 66.14 | * Supervised fine-tuning | Model | Params | SC (macro-F1) | NLI (accuracy) | NER (micro-F1) | QA (EM/F1) | BangLUE score | |----------------|-----------|-----------|-----------|-----------|-----------|-----------| |[mBERT](https://huggingface.co/bert-base-multilingual-cased) | 180M | 67.59 | 75.13 | 68.97 | 67.12/72.64 | 70.29 | |[XLM-R (base)](https://huggingface.co/xlm-roberta-base) | 270M | 69.54 | 78.46 | 73.32 | 68.09/74.27 | 72.82 | |[XLM-R (large)](https://huggingface.co/xlm-roberta-large) | 550M | 70.97 | 82.40 | 78.39 | 73.15/79.06 | 76.79 | |[sahajBERT](https://huggingface.co/neuropark/sahajBERT) | 18M | 71.12 | 76.92 | 70.94 | 65.48/70.69 | 71.03 | |[BanglishBERT](https://huggingface.co/csebuetnlp/banglishbert) | 110M | 70.61 | 80.95 | 76.28 | 72.43/78.40 | 75.73 | |[BanglaBERT](https://huggingface.co/csebuetnlp/banglabert) | 110M | 72.89 | 82.80 | 77.78 | 72.63/79.34 | **77.09** | The benchmarking datasets are as follows: * **SC:** **[Sentiment Classification](https://aclanthology.org/2021.findings-emnlp.278)** * **NER:** **[Named Entity Recognition](https://multiconer.github.io/competition)** * **NLI:** **[Natural Language Inference](https://github.com/csebuetnlp/banglabert/#datasets)** * **QA:** **[Question Answering](https://github.com/csebuetnlp/banglabert/#datasets)** ## Citation If you use this model, please cite the following paper: ``` @inproceedings{bhattacharjee-etal-2022-banglabert, title = {BanglaBERT: Lagnuage Model Pretraining and Benchmarks for Low-Resource Language Understanding Evaluation in Bangla}, author = "Bhattacharjee, Abhik and Hasan, Tahmid and Mubasshir, Kazi and Islam, Md. Saiful and Uddin, Wasi Ahmad and Iqbal, Anindya and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Findings of the North American Chapter of the Association for Computational Linguistics: NAACL 2022", month = july, year = {2022}, url = {https://arxiv.org/abs/2101.00204}, eprinttype = {arXiv}, eprint = {2101.00204} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
aricibo/swin-tiny-patch4-window7-224-finetuned-eurosat
611dcdf9bd96368abcf00d9f1a058aa73c861344
2022-05-20T07:48:24.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
aricibo
null
aricibo/swin-tiny-patch4-window7-224-finetuned-eurosat
70
null
transformers
5,392
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9725925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.18 | 1.0 | 190 | 0.0844 | 0.9689 | | 0.1347 | 2.0 | 380 | 0.0657 | 0.9726 | | 0.1459 | 3.0 | 570 | 0.0657 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
schoenml/swin-tiny-patch4-window7-224-finetuned-eurosat
100220f08c12c20b02f40ec9de2ca6486756b222
2022-05-25T15:56:50.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:image_folder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
schoenml
null
schoenml/swin-tiny-patch4-window7-224-finetuned-eurosat
70
null
transformers
5,393
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1551 - eval_accuracy: 0.9474 - eval_runtime: 13.1569 - eval_samples_per_second: 205.216 - eval_steps_per_second: 6.46 - epoch: 1.0 - step: 190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DaBaap/Chat-Bot-Batman
5dcf5b5c1043435e7fe25fe75c0bddafb92c96ce
2022-05-27T23:13:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
DaBaap
null
DaBaap/Chat-Bot-Batman
70
null
transformers
5,394
--- tags: - conversational ---
mrm8488/bertin-gpt-j-6B-ES-8bit
d87f4e9ad6d12594788bda91ddeac3c6f8efce21
2022-06-03T11:35:42.000Z
[ "pytorch", "gptj", "text-generation", "es", "arxiv:2106.09685", "arxiv:2110.02861", "transformers", "gpt-j", "spanish", "gpt-j-6b", "license:wtfpl" ]
text-generation
false
mrm8488
null
mrm8488/bertin-gpt-j-6B-ES-8bit
70
2
transformers
5,395
--- license: wtfpl language: es tags: - gpt-j - spanish - gpt-j-6b --- # BERTIN-GPT-J-6B with 8-bit weights (Quantized) This model (and model card) is an adaptation of [hivemind/gpt-j-6B-8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit), so all credits to him/her. This is a version of **bertin-project/bertin-gpt-j-6B** that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Here's how to run it: [![colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/check_perplexity.ipynb) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Where can I train for free? You can train fine in colab, but if you get a K80, it's probably best to switch to other free gpu providers: [kaggle](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a), [aws sagemaker](https://towardsdatascience.com/amazon-sagemaker-studio-lab-a-great-alternative-to-google-colab-7194de6ef69a) or [paperspace](https://docs.paperspace.com/gradient/more/instance-types/free-instances). For intance, this is the same notebook [running in kaggle](https://www.kaggle.com/justheuristic/dmazur-converted) using a more powerful P100 instance. ### Can I use this technique with other models? The model was converted using [this notebook](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters. ### How to use ```sh wget https://huggingface.co/mrm8488/bertin-gpt-j-6B-ES-8bit/resolve/main/utils.py -O Utils.py pip install transformers pip install bitsandbytes-cuda111==0.26.0 ``` ```py import transformers import torch from Utils import GPTJBlock, GPTJForCausalLM device = 'cuda' if torch.cuda.is_available() else 'cpu' transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J tokenizer = transformers.AutoTokenizer.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit") model = GPTJForCausalLM.from_pretrained("hivemind/gpt-j-6B-8bit", pad_token_id=tokenizer.eos_token_id, low_cpu_mem_usage=True).to(device) prompt = tokenizer("El sentido de la vida es", return_tensors='pt') prompt = {key: value.to(device) for key, value in prompt.items()} out = model.generate(**prompt, max_length=64, do_sample=True) print(tokenizer.decode(out[0])) ```
facebook/genre-kilt
d5c718b8bb571121a0d74d5bbc9a1d69a9a9c312
2022-06-14T14:05:20.000Z
[ "pytorch", "tf", "jax", "bart", "text2text-generation", "en", "arxiv:2010.00904", "arxiv:1910.13461", "arxiv:2009.02252", "transformers", "retrieval", "entity-retrieval", "named-entity-disambiguation", "entity-disambiguation", "named-entity-linking", "entity-linking", "autotrain_compatible" ]
text2text-generation
false
facebook
null
facebook/genre-kilt
70
null
transformers
5,396
--- language: - en tags: - retrieval - entity-retrieval - named-entity-disambiguation - entity-disambiguation - named-entity-linking - entity-linking - text2text-generation --- # GENRE The GENRE (Generative ENtity REtrieval) system as presented in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) implemented in pytorch. In a nutshell, GENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on fine-tuned [BART](https://arxiv.org/abs/1910.13461) architecture. GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers. The model was first released in the [facebookresearch/GENRE](https://github.com/facebookresearch/GENRE) repository using `fairseq` (the `transformers` models are obtained with a conversion script similar to [this](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py). This model was trained on the full training set of [KILT](https://arxiv.org/abs/2009.02252) (i.e., 11 datasets for fact-checking, entity-linking, slot filling, dialogue, open-domain extractive and abstractive QA). ## BibTeX entry and citation info **Please consider citing our works if you use code from this repository.** ```bibtex @inproceedings{decao2020autoregressive, title={Autoregressive Entity Retrieval}, author={Nicola {De Cao} and Gautier Izacard and Sebastian Riedel and Fabio Petroni}, booktitle={International Conference on Learning Representations}, url={https://openreview.net/forum?id=5k8F6UU39V}, year={2021} } ``` ## Usage Here is an example of generation for Wikipedia page retrieval for open-domain fact-checking: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # OPTIONAL: load the prefix tree (trie), you need to additionally download # https://huggingface.co/facebook/genre-kilt/blob/main/trie.py and # https://huggingface.co/facebook/genre-kilt/blob/main/kilt_titles_trie_dict.pkl # import pickle # from trie import Trie # with open("kilt_titles_trie_dict.pkl", "rb") as f: # trie = Trie.load_from_dict(pickle.load(f)) tokenizer = AutoTokenizer.from_pretrained("facebook/genre-kilt") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/genre-kilt").eval() sentences = ["Einstein was a German physicist."] outputs = model.generate( **tokenizer(sentences, return_tensors="pt"), num_beams=5, num_return_sequences=5, # OPTIONAL: use constrained beam search # prefix_allowed_tokens_fn=lambda batch_id, sent: trie.get(sent.tolist()), ) tokenizer.batch_decode(outputs, skip_special_tokens=True) ``` which outputs the following top-5 predictions (using constrained beam search) ``` ['Albert Einstein', 'Erwin Schrödinger', 'Werner Bruschke', 'Werner von Habsburg', 'Werner von Moltke'] ```
microsoft/markuplm-large-finetuned-websrc
a9fe69d1cb7a60734e3bc18060edcf0b4b9310ee
2022-06-14T13:57:35.000Z
[ "pytorch", "markuplm", "question-answering", "arxiv:2110.08518", "transformers", "autotrain_compatible" ]
question-answering
false
microsoft
null
microsoft/markuplm-large-finetuned-websrc
70
null
transformers
5,397
# MarkupLM **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei
prodm93/bert-rp-1-sentchunks
91e55fc4c609a6bc40ba7533e35128683d375131
2022-07-04T19:21:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
prodm93
null
prodm93/bert-rp-1-sentchunks
70
null
transformers
5,398
Entry not found
cybertelx/DialoGPT-small-drunkic0n
b31eccbc3cec34289e091cc506e53c23bf47fc71
2022-07-14T14:45:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cybertelx
null
cybertelx/DialoGPT-small-drunkic0n
70
null
transformers
5,399
--- tags: - conversational --- # Drunk IC-0n IC-0n (or Icon) is a murderous AI protagonist of the Internecion Cube series. This is an attempt to build her in real life (haha it failed, and actually gladly) This uses Microsoft's DialoGPT-small and it is trained on all of Icon's lines throughout the series from episode 1-3 (only 50 though, so low training data) It's "drunk" because it is very incoherent.