modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
aiface/95k
c153f82f819ed8ef7114e753c2bf294498d5d6e8
2022-03-18T02:57:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aiface
null
aiface/95k
1
null
transformers
30,900
Entry not found
GleamEyeBeast/common_voice_dataset_model_naive_char
c3274256e2e1af5f0e8d275b399ca87930d427ad
2022-03-20T18:04:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/common_voice_dataset_model_naive_char
1
null
transformers
30,901
Entry not found
brokorli/brokorli_mrc
b021ba5da66effc30464c336926f75bf9a443709
2022-03-18T05:30:24.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
brokorli
null
brokorli/brokorli_mrc
1
1
transformers
30,902
Entry not found
erinchocolate/DialoGPT-small-harrypotter
287fd76699c03796944da18784612f7ccfec961c
2022-03-18T08:05:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
erinchocolate
null
erinchocolate/DialoGPT-small-harrypotter
1
null
transformers
30,903
--- tags: - conversational --- # Harry Potter DialoGPT Model
cammy/bart-large-cnn-100-MDS-own
cb89877bf65cf0abf2d510e719063abd2c46227e
2022-03-18T09:32:08.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-MDS-own
1
null
transformers
30,904
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-100-MDS-own results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-MDS-own This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5357 - Rouge1: 22.4039 - Rouge2: 4.681 - Rougel: 13.1526 - Rougelsum: 15.7986 - Gen Len: 70.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.3375 | 25.7428 | 6.754 | 16.4131 | 19.6269 | 81.9 | | No log | 2.0 | 50 | 3.5357 | 22.4039 | 4.681 | 13.1526 | 15.7986 | 70.3 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
brokorli/brokorli_ner
8cfea0d2d6ddf86e956bc21b81cc84a85a18f09d
2022-05-30T13:55:36.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
brokorli
null
brokorli/brokorli_ner
1
1
transformers
30,905
Entry not found
eliasws/openApiT5-to-json-v1
6a4fe746b0eaf5a2b459788f5e9c19cb62287338
2022-03-18T10:32:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-json-v1
1
null
transformers
30,906
Entry not found
beston91/gpt2-xl-ft-logits-1k
b700341214eb682995adf44bdafb6dcdbf8a2f26
2022-03-19T22:46:27.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl-ft-logits-1k
1
null
transformers
30,907
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-logits-1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-logits-1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.5341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 5.5302 | | No log | 1.91 | 10 | 5.5310 | | No log | 2.91 | 15 | 5.5323 | | No log | 3.91 | 20 | 5.5341 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59481430053711 ### Dataset Size Size: 5000
brokorli/brokorli_sm
bc71b4e16de310377a0109f4616fef5350396957
2022-05-30T14:13:05.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
brokorli
null
brokorli/brokorli_sm
1
1
transformers
30,908
Entry not found
facebook/regnet-x-320
bac84c8ded94a58b07ca1794943141d053fd38c7
2022-06-30T10:14:40.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-320
1
null
transformers
30,909
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-160
b0f06bf39fc48a363970806505d48192a0f6d8c9
2022-06-28T11:39:06.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-160
1
null
transformers
30,910
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
Valouzze/FairuvenIA
66403746287f95c9923bb478658544ec8bd61e8c
2022-03-18T16:51:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Valouzze
null
Valouzze/FairuvenIA
1
null
transformers
30,911
--- tags: - conversational --- # My Awesome Model
IsaacSST/gpt2-xl-ft-d2
035134474e29dca338a2c9fa35d7850cb6715d43
2022-03-18T20:51:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-d2
1
null
transformers
30,912
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2309 | | No log | 2.0 | 312 | 1.2382 | | No log | 3.0 | 468 | 1.2997 | | 1.172 | 4.0 | 624 | 1.3483 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
emilygs2/bert-base-uncased-finetuned-genderswap
a70293552c1e4fb2ac1cab8fdd8e5040274258d9
2022-03-18T18:35:32.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
emilygs2
null
emilygs2/bert-base-uncased-finetuned-genderswap
1
null
transformers
30,913
Entry not found
MehSatho/Tai-medium-Hermione
2fb794900c8f008b8b8afcf1c483cb6581e10707
2022-03-18T18:56:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MehSatho
null
MehSatho/Tai-medium-Hermione
1
1
transformers
30,914
--- tags: - conversational ---
beston91/gpt2-xl_ft_mult_1k
26b1169f495d3cc06b3d6a553dc4ea5a546fa43f
2022-03-19T23:56:20.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_mult_1k
1
null
transformers
30,915
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.7968 | | No log | 1.91 | 10 | 6.6621 | | No log | 2.91 | 15 | 6.4335 | | No log | 3.91 | 20 | 6.1137 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_mult_5k
4f2b5d5efce3668eda4ab0e859a93cd64702ecdb
2022-03-20T17:31:57.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_mult_5k
1
null
transformers
30,916
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_5k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.3035 | | No log | 1.99 | 54 | 1.2709 | | No log | 2.99 | 81 | 0.7482 | | No log | 3.99 | 108 | 0.6758 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 21.267963409423828 ### Dataset Size Size: 5000
IsaacSST/gpt2-xl-ft-d3
20a2074328da1b814773efafba5cb4045bbc6fd0
2022-03-19T15:18:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-d3
1
null
transformers
30,917
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2135 | | No log | 2.0 | 312 | 1.2181 | | No log | 3.0 | 468 | 1.2754 | | 1.1743 | 4.0 | 624 | 1.3252 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
eliasws/openApiT5-distilled-description-v2
e12a112a5c35c546b99caf03532fa39b4f2f0331
2022-03-19T14:09:15.000Z
[ "pytorch", "t5", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
eliasws
null
eliasws/openApiT5-distilled-description-v2
1
null
sentence-transformers
30,918
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4300 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4300, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
adalbertojunior/test_en_aligned
3ae3e669ea457aabfb2a65f14e9706e871507e40
2022-03-19T14:31:31.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test_en_aligned
1
null
transformers
30,919
Entry not found
202015004/MY_st1_training_shreya
c4c91c5c450e7ef1d7f49413f281aa183597b614
2022-03-19T17:05:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya
1
null
transformers
30,920
Entry not found
eliasws/openApiT5-to-json-v2
abba3ec973859800e11e6305b3f5663e24a26221
2022-03-19T15:18:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-json-v2
1
null
transformers
30,921
Entry not found
Ameer05/tokenizer-repo
f4fe6c2ecf593c29f0576e43802d4651cec04109
2022-03-19T18:43:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ameer05
null
Ameer05/tokenizer-repo
1
null
transformers
30,922
Entry not found
Aleksandar1932/gpt-neo-125M-metal
1a24ca93ac2fa012515574fc718d69fbbcddaa46
2022-03-19T18:54:56.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt-neo-125M-metal
1
null
transformers
30,923
Entry not found
Aleksandar1932/gpt-neo-125M-country
4e3060bd6127a6dda94ed2a51f55f199cbdec784
2022-03-19T19:27:27.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt-neo-125M-country
1
null
transformers
30,924
Entry not found
KheireddineDaouadi/AraRoberta
580544eb2a50a61a4247cab6b2e790d1f18acaf3
2022-03-19T19:56:19.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KheireddineDaouadi
null
KheireddineDaouadi/AraRoberta
1
null
transformers
30,925
Entry not found
darthrussel/DialoGPT-small-rickandmorty
83634b5a280ddf75cc7591a041c871809b711bff
2022-03-19T21:42:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
darthrussel
null
darthrussel/DialoGPT-small-rickandmorty
1
null
transformers
30,926
--- tags: - conversational --- # Rick and Morty DialoGPT Model
willcai/wav2vec2_common_voice_accents_5
f23f75cbb3f348a72ef4634a6f59d8b22f4be349
2022-03-20T07:07:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_5
1
null
transformers
30,927
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4163 | 1.34 | 400 | 0.5520 | | 0.3305 | 2.68 | 800 | 0.1698 | | 0.2138 | 4.03 | 1200 | 0.1104 | | 0.1714 | 5.37 | 1600 | 0.0944 | | 0.1546 | 6.71 | 2000 | 0.0700 | | 0.1434 | 8.05 | 2400 | 0.0610 | | 0.1272 | 9.4 | 2800 | 0.0493 | | 0.1183 | 10.74 | 3200 | 0.0371 | | 0.1113 | 12.08 | 3600 | 0.0468 | | 0.1013 | 13.42 | 4000 | 0.0336 | | 0.0923 | 14.77 | 4400 | 0.0282 | | 0.0854 | 16.11 | 4800 | 0.0410 | | 0.0791 | 17.45 | 5200 | 0.0252 | | 0.0713 | 18.79 | 5600 | 0.0128 | | 0.0662 | 20.13 | 6000 | 0.0252 | | 0.0635 | 21.48 | 6400 | 0.0080 | | 0.0607 | 22.82 | 6800 | 0.0098 | | 0.0557 | 24.16 | 7200 | 0.0069 | | 0.0511 | 25.5 | 7600 | 0.0057 | | 0.0474 | 26.85 | 8000 | 0.0046 | | 0.045 | 28.19 | 8400 | 0.0037 | | 0.0426 | 29.53 | 8800 | 0.0027 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
adalbertojunior/test-gpt2
b5e14ce7ee9d32c3a24318b58310611f743ce4a1
2022-03-20T13:51:46.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
adalbertojunior
null
adalbertojunior/test-gpt2
1
null
transformers
30,928
Entry not found
IsaacSST/gpt2-xl-ft-d4-0.15-n-3
e66c1824f253f889b4613a8fe4e6c367caa1e3c2
2022-03-21T07:29:50.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-d4-0.15-n-3
1
null
transformers
30,929
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.15-n-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.15-n-3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.3294 | | No log | 2.0 | 312 | 1.3466 | | No log | 3.0 | 468 | 1.4295 | | 1.1304 | 4.0 | 624 | 1.4877 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tau/fewsion_1024_0.3_3900
133450069ac66a0b6823a68ab82017c1c2e283f0
2022-03-21T07:27:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/fewsion_1024_0.3_3900
1
null
transformers
30,930
Entry not found
PSW/ut-del-two-at-once-ver3
7ffce2e235a8bdec876c99449153af4a8957ebbb
2022-03-21T07:56:40.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut-del-two-at-once-ver3
1
null
transformers
30,931
Entry not found
Ameer05/test
d146ed6903c487ef532c76ebaa1c81d2d0988198
2022-03-21T09:35:03.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Ameer05
null
Ameer05/test
1
null
transformers
30,932
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6109 - Rouge1: 54.9442 - Rouge2: 45.3299 - Rougel: 50.5219 - Rougelsum: 53.6475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.3705 | 53.62 | 44.3835 | 49.6135 | 52.693 | | No log | 1.91 | 10 | 1.9035 | 47.478 | 37.0934 | 39.7935 | 45.1881 | | No log | 2.91 | 15 | 1.7990 | 54.2488 | 45.0782 | 49.8421 | 52.7564 | | No log | 3.91 | 20 | 1.7125 | 55.7903 | 46.7554 | 52.2733 | 54.9389 | | 2.4456 | 4.91 | 25 | 1.6421 | 52.2279 | 43.4391 | 49.6955 | 51.2915 | | 2.4456 | 5.91 | 30 | 1.6102 | 55.8598 | 47.3293 | 53.1337 | 54.8596 | | 2.4456 | 6.91 | 35 | 1.6164 | 53.7902 | 44.6622 | 49.5045 | 52.2304 | | 2.4456 | 7.91 | 40 | 1.6015 | 51.5597 | 42.0333 | 47.9639 | 50.1154 | | 1.239 | 8.91 | 45 | 1.6067 | 53.0301 | 43.7214 | 49.0227 | 51.8109 | | 1.239 | 9.91 | 50 | 1.6109 | 54.9442 | 45.3299 | 50.5219 | 53.6475 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
PSW/ut_del_two_per_each_ver1
76d1e631b53efd1ede0140abb0fb278d5e7c8908
2022-03-21T09:00:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_per_each_ver1
1
null
transformers
30,933
Entry not found
PSW/ut_del_two_per_each_ver2
3265148f5f6a1bbb4db59de9395ba817553799d7
2022-03-21T10:01:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_per_each_ver2
1
null
transformers
30,934
Entry not found
PSW/ut_del_two_per_each_ver3
6139e73bb6dde99f622596c44627da4c61237d41
2022-03-21T12:31:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_per_each_ver3
1
null
transformers
30,935
Entry not found
peterhsu/bert-finetuned-squad
8e0b6f5229506a3da500115221d5e6be20048e42
2022-03-26T08:48:45.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
peterhsu
null
peterhsu/bert-finetuned-squad
1
null
transformers
30,936
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ScandinavianMrT/gpt2_ONION_prefinetune
944ee2ede4bc520857480095a30fc71167eb5b52
2022-03-21T15:05:41.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
ScandinavianMrT
null
ScandinavianMrT/gpt2_ONION_prefinetune
1
null
transformers
30,937
Entry not found
ianMconversica/autonlp-test-654919306
7d3f9ca04695a1365ee17bec150a3db0cc876f5a
2022-03-21T17:29:34.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:McIan91/autonlp-data-test", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ianMconversica
null
ianMconversica/autonlp-test-654919306
1
null
transformers
30,938
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - McIan91/autonlp-data-test co2_eq_emissions: 0.7013851565380207 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 654919306 - CO2 Emissions (in grams): 0.7013851565380207 ## Validation Metrics - Loss: 2.5570242404937744 - Rouge1: 72.7273 - Rouge2: 44.4444 - RougeL: 72.7273 - RougeLsum: 72.7273 - Gen Len: 17.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/McIan91/autonlp-test-654919306 ```
saghar/xtremedistil-l12-h384-uncased-finetuned-wikitext103
78b88c38b55f12237e92d22ae9cb2a24bcd56f75
2022-03-21T23:47:43.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/xtremedistil-l12-h384-uncased-finetuned-wikitext103
1
null
transformers
30,939
--- license: mit tags: - generated_from_trainer datasets: - wikitext model-index: - name: xtremedistil-l12-h384-uncased-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l12-h384-uncased-finetuned-wikitext103 This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 6.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.3467 | 1.0 | 3125 | 6.9197 | | 6.9751 | 2.0 | 6250 | 6.8061 | | 6.9142 | 3.0 | 9375 | 6.7699 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 1.1.1 - Tokenizers 0.10.1
elena-soare/bat-table-aug
95088070f157df171bfb3aff8855b9e5eaee03fa
2022-06-07T16:15:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
elena-soare
null
elena-soare/bat-table-aug
1
null
transformers
30,940
# Text2SQL Task T5-Base + Fine-tuning on Spider + Table Augumentation This is our T5 model fine-tuned on Spider using a schema serialization, which includes a table description for injecting domain knowledge into T5 ## Running the model Inspired by the work done by [Picard](https://github.com/ElementAI/picard/) by adding a table description to the question and serialized schema: ```python [question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... description * [table] : <meaning of table>; [table] : <meaning of table> ; .... ```
willcai/wav2vec2_common_voice_accents_indian
bc2d965c6c8526cc1d085d40e6e23878d913ddb4
2022-03-22T10:58:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_indian
1
1
transformers
30,941
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_indian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_indian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.5186 | 1.28 | 400 | 0.6937 | | 0.3485 | 2.56 | 800 | 0.2323 | | 0.2229 | 3.83 | 1200 | 0.2195 | | 0.1877 | 5.11 | 1600 | 0.2147 | | 0.1618 | 6.39 | 2000 | 0.2058 | | 0.1434 | 7.67 | 2400 | 0.2077 | | 0.132 | 8.95 | 2800 | 0.1995 | | 0.1223 | 10.22 | 3200 | 0.2146 | | 0.1153 | 11.5 | 3600 | 0.2117 | | 0.1061 | 12.78 | 4000 | 0.2071 | | 0.1003 | 14.06 | 4400 | 0.2219 | | 0.0949 | 15.34 | 4800 | 0.2204 | | 0.0889 | 16.61 | 5200 | 0.2162 | | 0.0824 | 17.89 | 5600 | 0.2243 | | 0.0784 | 19.17 | 6000 | 0.2323 | | 0.0702 | 20.45 | 6400 | 0.2325 | | 0.0665 | 21.73 | 6800 | 0.2334 | | 0.0626 | 23.0 | 7200 | 0.2411 | | 0.058 | 24.28 | 7600 | 0.2473 | | 0.054 | 25.56 | 8000 | 0.2591 | | 0.0506 | 26.84 | 8400 | 0.2577 | | 0.0484 | 28.12 | 8800 | 0.2633 | | 0.0453 | 29.39 | 9200 | 0.2692 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
Bistolero/mt5_two_epocs_nl_3100
12ae914d21dcb0e156ce8490dc0e20767aa48154
2022-03-21T23:29:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/mt5_two_epocs_nl_3100
1
null
transformers
30,942
Entry not found
ggvick/distilgpt2-finetuned-wikitext2
25c10407ca1419d5378a616f2bc83dbac0f462e6
2022-03-22T02:29:11.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
ggvick
null
ggvick/distilgpt2-finetuned-wikitext2
1
null
transformers
30,943
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Bistolero/mix_training_en_du_nl_1
4fd8c3e9f2397abff4f6d3fb459dcae6393b9605
2022-03-22T02:07:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/mix_training_en_du_nl_1
1
null
transformers
30,944
Entry not found
BigSalmon/InformalToFormalLincoln29
f679926b1649bd938440d734796036f9c3e9b7f0
2022-03-22T03:35:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln29
1
null
transformers
30,945
``` original: chrome extensions [MASK] accomplish everyday tasks. infill: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. original: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. original: ```
202015004/MY_st1_training_shreya_fixed_22_march
824cc9476b30f9bb086fab66f7ee23c481ca09e2
2022-03-22T11:07:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya_fixed_22_march
1
null
transformers
30,946
Entry not found
tau/fewsion_2_1024_0.3_epoch2
2c526402d6fa4cf5a9cb94007dd2ea415fee5690
2022-03-22T10:38:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/fewsion_2_1024_0.3_epoch2
1
null
transformers
30,947
Entry not found
tau/pegasus_1024_0.3_epoch2_v2
2691a2d8d28d355e90e7e548985f468ce46d39ba
2022-03-22T10:47:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/pegasus_1024_0.3_epoch2_v2
1
null
transformers
30,948
Entry not found
Dahn/wav2vec2-large-xls-r-300m-turkish-colab
ef1d562c04d6223aaa4035cb7fda1277f821c80b
2022-03-22T17:29:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Dahn
null
Dahn/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
30,949
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3965 - Wer: 0.3807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.974 | 3.67 | 400 | 0.7102 | 0.7318 | | 0.4216 | 7.34 | 800 | 0.4273 | 0.4941 | | 0.1891 | 11.01 | 1200 | 0.4548 | 0.4864 | | 0.1267 | 14.68 | 1600 | 0.4208 | 0.4082 | | 0.0958 | 18.35 | 2000 | 0.4236 | 0.4033 | | 0.0799 | 22.02 | 2400 | 0.4052 | 0.3829 | | 0.0624 | 25.69 | 2800 | 0.4088 | 0.3875 | | 0.0491 | 29.36 | 3200 | 0.3965 | 0.3807 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-fr
72064423f199b50e1091ef232e5730f51be090d8
2022-03-22T13:27:23.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-fr
1
null
transformers
30,950
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8330262937531401 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2961 - F1: 0.8330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5464 | 1.0 | 287 | 0.3304 | 0.7912 | | 0.2617 | 2.0 | 574 | 0.2995 | 0.8142 | | 0.1672 | 3.0 | 861 | 0.2961 | 0.8330 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
beston91/gpt2-xl_ft_logits_25k
f4529f2757d86e0c5a30e28cc3202af9e54ae8a8
2022-03-24T12:59:29.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_logits_25k
1
null
transformers
30,951
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_25k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_25k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 136 | 6.2712 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.583023071289062
willcai/wav2vec2_common_voice_accents_us
8ac0415daa08172c9a6b39bb97c26169746c454d
2022-03-23T11:03:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_us
1
null
transformers
30,952
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_us results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_us This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.549 | 1.28 | 400 | 0.8521 | | 0.4066 | 2.56 | 800 | 0.2407 | | 0.2262 | 3.83 | 1200 | 0.2070 | | 0.1828 | 5.11 | 1600 | 0.2134 | | 0.1565 | 6.39 | 2000 | 0.2060 | | 0.1448 | 7.67 | 2400 | 0.2100 | | 0.1333 | 8.95 | 2800 | 0.2036 | | 0.121 | 10.22 | 3200 | 0.2192 | | 0.1146 | 11.5 | 3600 | 0.2154 | | 0.1108 | 12.78 | 4000 | 0.2223 | | 0.1017 | 14.06 | 4400 | 0.2331 | | 0.094 | 15.34 | 4800 | 0.2257 | | 0.0896 | 16.61 | 5200 | 0.2229 | | 0.0825 | 17.89 | 5600 | 0.2229 | | 0.0777 | 19.17 | 6000 | 0.2417 | | 0.0719 | 20.45 | 6400 | 0.2433 | | 0.0659 | 21.73 | 6800 | 0.2447 | | 0.0651 | 23.0 | 7200 | 0.2446 | | 0.0587 | 24.28 | 7600 | 0.2542 | | 0.056 | 25.56 | 8000 | 0.2587 | | 0.0521 | 26.84 | 8400 | 0.2640 | | 0.0494 | 28.12 | 8800 | 0.2753 | | 0.0465 | 29.39 | 9200 | 0.2722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_scotland
4562fa4142d174f54259ead8c5e5d0422ec0f870
2022-03-23T11:15:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_scotland
1
null
transformers
30,953
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_scotland results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_scotland This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7171 | 1.28 | 400 | 1.1618 | | 0.4391 | 2.56 | 800 | 0.2422 | | 0.2259 | 3.83 | 1200 | 0.2071 | | 0.1813 | 5.11 | 1600 | 0.2126 | | 0.1531 | 6.39 | 2000 | 0.2010 | | 0.1383 | 7.67 | 2400 | 0.2004 | | 0.13 | 8.95 | 2800 | 0.2069 | | 0.1193 | 10.22 | 3200 | 0.2081 | | 0.1124 | 11.5 | 3600 | 0.2051 | | 0.1023 | 12.78 | 4000 | 0.2175 | | 0.097 | 14.06 | 4400 | 0.2261 | | 0.0863 | 15.34 | 4800 | 0.2301 | | 0.0823 | 16.61 | 5200 | 0.2334 | | 0.079 | 17.89 | 5600 | 0.2252 | | 0.0743 | 19.17 | 6000 | 0.2393 | | 0.0696 | 20.45 | 6400 | 0.2481 | | 0.0644 | 21.73 | 6800 | 0.2416 | | 0.064 | 23.0 | 7200 | 0.2449 | | 0.0584 | 24.28 | 7600 | 0.2660 | | 0.0544 | 25.56 | 8000 | 0.2630 | | 0.0523 | 26.84 | 8400 | 0.2677 | | 0.0494 | 28.12 | 8800 | 0.2730 | | 0.0462 | 29.39 | 9200 | 0.2752 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
rahulkuruvilla/COVID-DistilBERTa
817644da036ff4eb4a3835ba2bc0940ee68972b0
2022-03-22T21:28:47.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rahulkuruvilla
null
rahulkuruvilla/COVID-DistilBERTa
1
null
transformers
30,954
Entry not found
202015004/MY_st1_training_shreya_fixed_23_march_unlabled_training
b0b9d13b69c63d62371849af2677e243becbbfa6
2022-03-23T01:31:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya_fixed_23_march_unlabled_training
1
null
transformers
30,955
Entry not found
PSW/ut_del_three_per_each_ver3
b4e5c26302d1995fce7363113b122deab3bacd75
2022-03-23T06:21:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver3
1
null
transformers
30,956
Entry not found
PSW/ut_del_three_per_each_ver4
ef0d112aa608365e06cb52abea05948d757039cd
2022-03-23T07:52:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver4
1
null
transformers
30,957
Entry not found
PSW/ut_del_three_per_each_ver5
7d097ff72d7e02e576f41548637a1a32bbc1849e
2022-03-23T09:10:40.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver5
1
null
transformers
30,958
Entry not found
tau/random_single_mask_1024_0.3_epoch1
06df59aa3afcc5f9b290d30fd68ce056191d8455
2022-03-23T12:17:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/random_single_mask_1024_0.3_epoch1
1
null
transformers
30,959
Entry not found
PSW/ut_del_n_per_each_ver1
d370f60f2dee072004a8c838425695db69cc726b
2022-03-23T14:31:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_n_per_each_ver1
1
null
transformers
30,960
Entry not found
202015004/My_st1_training_shreya_fixed_23_march_2
899d94c98aef2c1e438d1ad4dd49bbb8c04eb2f6
2022-03-23T19:09:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/My_st1_training_shreya_fixed_23_march_2
1
null
transformers
30,961
Entry not found
negfir/uncased_L-12_H-128_A-2
8abe4882cb1772793e9ae7442f406a7edea25de0
2022-03-23T19:18:33.000Z
[ "pytorch", "tf", "bert", "pretraining", "transformers", "generated_from_keras_callback", "model-index" ]
null
false
negfir
null
negfir/uncased_L-12_H-128_A-2
1
null
transformers
30,962
--- tags: - generated_from_keras_callback model-index: - name: uncased_L-12_H-128_A-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # uncased_L-12_H-128_A-2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Bistolero/it_train_all
f38b05c2857e8c737043fdd35add654119ba5250
2022-03-23T20:28:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/it_train_all
1
null
transformers
30,963
Entry not found
simonnedved/codet5-base
9e3e2ebac8c470a696147edd46f7135052d226c6
2022-03-24T06:57:59.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "dis2py", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
simonnedved
null
simonnedved/codet5-base
1
null
transformers
30,964
--- license: apache-2.0 tags: - dis2py - generated_from_trainer model-index: - name: codet5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-base This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
modhp/wav2vec2-model1-torgo
894d9f80426fc985d645cd85f65925689889166b
2022-04-08T20:12:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
modhp
null
modhp/wav2vec2-model1-torgo
1
null
transformers
30,965
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-model1-torgo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-model1-torgo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.11.6
enimai/mt5-mustc-fr
398a6eb77f41023ffca1e871dfb29696cd344750
2022-03-24T07:30:36.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/mt5-mustc-fr
1
null
transformers
30,966
--- license: apache-2.0 ---
202015004/MY_st1_training_shreya_fixed_24_march
553055a074945ff29be017d852973869da93abbb
2022-03-24T08:34:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya_fixed_24_march
1
null
transformers
30,967
Entry not found
zuppif/resnet-d-34
31c63b163f49af61f79db735fe4e0835444b44b4
2022-03-24T08:59:13.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-34
1
null
transformers
30,968
Entry not found
zuppif/resnet-d-101
579f1cceea82c576675d03790d10e9fd4ff79e1e
2022-03-24T09:01:44.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-101
1
null
transformers
30,969
Entry not found
zuppif/resnet-d-152
17522072882014386894e6b699c893b93e40cd6f
2022-03-24T09:03:30.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-152
1
null
transformers
30,970
Entry not found
Khalsuu/wav2vec2-large-xls-r-300m-turkish-colab
878ae17b6a72800ec99bf3a5ca9814803ddcfef3
2022-03-24T14:00:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
30,971
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3631 - Wer: 0.3907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2448 | 7.4 | 400 | 0.5564 | 0.5914 | | 0.2245 | 14.81 | 800 | 0.3631 | 0.3907 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
PSW/ut_del_two_at_once_ver1_early_stopping
8fe66aadcee1e8c307e83be412ac5b56422b6930
2022-03-24T11:54:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_at_once_ver1_early_stopping
1
null
transformers
30,972
Entry not found
Helsinki-NLP/opus-mt-tc-big-zle-es
06cbe533035fc3d2efbaf221974a1c07ff1bed78
2022-06-01T13:09:20.000Z
[ "pytorch", "marian", "text2text-generation", "be", "es", "ru", "rue", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-es
1
null
transformers
30,973
--- language: - be - es - ru - rue - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-es results: - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: flores101-devtest type: flores_101 args: rus spa devtest metrics: - name: BLEU type: bleu value: 22.5 - task: name: Translation ukr-spa type: translation args: ukr-spa dataset: name: flores101-devtest type: flores_101 args: ukr spa devtest metrics: - name: BLEU type: bleu value: 22.7 - task: name: Translation bel-spa type: translation args: bel-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-spa metrics: - name: BLEU type: bleu value: 46.3 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-spa metrics: - name: BLEU type: bleu value: 52.3 - task: name: Translation ukr-spa type: translation args: ukr-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-spa metrics: - name: BLEU type: bleu value: 51.6 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: newstest2012 type: wmt-2012-news args: rus-spa metrics: - name: BLEU type: bleu value: 29.0 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: newstest2013 type: wmt-2013-news args: rus-spa metrics: - name: BLEU type: bleu value: 31.7 --- # opus-mt-tc-big-zle-es Neural machine translation model for translating from East Slavic languages (zle) to Spanish (es). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rue rus ukr * target language(s): spa * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-spa README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-spa/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Том був п'яничкою.", "Он достаточно взрослый, чтобы путешествовать одному." ] model_name = "pytorch-models/opus-mt-tc-big-zle-es" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tom era un borracho. # Es lo suficientemente mayor como para viajar solo. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-es") print(pipe("Том був п'яничкою.")) # expected output: Tom era un borracho. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-spa | tatoeba-test-v2021-08-07 | 0.65523 | 46.3 | 205 | 1412 | | rus-spa | tatoeba-test-v2021-08-07 | 0.69933 | 52.3 | 10506 | 75246 | | ukr-spa | tatoeba-test-v2021-08-07 | 0.68862 | 51.6 | 10115 | 59284 | | bel-spa | flores101-devtest | 0.44744 | 14.1 | 1012 | 29199 | | rus-spa | flores101-devtest | 0.50880 | 22.5 | 1012 | 29199 | | ukr-spa | flores101-devtest | 0.50943 | 22.7 | 1012 | 29199 | | rus-spa | newstest2012 | 0.55185 | 29.0 | 3003 | 79006 | | rus-spa | newstest2013 | 0.56826 | 31.7 | 3000 | 70528 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:12:49 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-it-zle
7a2d527e3ddfbc6ffc75f81712451b89d47407ea
2022-06-01T13:08:33.000Z
[ "pytorch", "marian", "text2text-generation", "be", "it", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-it-zle
1
null
transformers
30,974
--- language: - be - it - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-it-zle results: - task: name: Translation ita-rus type: translation args: ita-rus dataset: name: flores101-devtest type: flores_101 args: ita rus devtest metrics: - name: BLEU type: bleu value: 21.3 - task: name: Translation ita-bel type: translation args: ita-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-bel metrics: - name: BLEU type: bleu value: 33.3 - task: name: Translation ita-rus type: translation args: ita-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-rus metrics: - name: BLEU type: bleu value: 46.7 - task: name: Translation ita-ukr type: translation args: ita-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-ukr metrics: - name: BLEU type: bleu value: 48.4 --- # opus-mt-tc-big-it-zle Neural machine translation model for translating from Italian (it) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): ita * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT ita-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ukr<< Alcune cose non cambiano mai.", ">>rus<< Puoi sederti." ] model_name = "pytorch-models/opus-mt-tc-big-it-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Деякі речі ніколи не змінюються. # Можешь присесть. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-it-zle") print(pipe(">>ukr<< Alcune cose non cambiano mai.")) # expected output: Деякі речі ніколи не змінюються. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ita-bel | tatoeba-test-v2021-08-07 | 0.55727 | 33.3 | 264 | 1513 | | ita-rus | tatoeba-test-v2021-08-07 | 0.66083 | 46.7 | 10045 | 65968 | | ita-ukr | tatoeba-test-v2021-08-07 | 0.67674 | 48.4 | 5000 | 25353 | | ita-rus | flores101-devtest | 0.50323 | 21.3 | 1012 | 23295 | | ita-ukr | flores101-devtest | 0.47658 | 18.3 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:49:36 EET 2022 * port machine: LM0-400-22516.local
negfir/bert_uncased_L-10_H-768_A-12_new
3e82b88a03fb81a284425b4bc68cdd75c88d7c1d
2022-03-30T21:25:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-768_A-12_new
1
null
transformers
30,975
Entry not found
VRT/mT5Small_mBartTokenizer_5epoch
d87957738d6bb0960e8e0891b486b2b42fa0906b
2022-03-28T07:31:04.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
VRT
null
VRT/mT5Small_mBartTokenizer_5epoch
1
null
transformers
30,976
Entry not found
MolePatrol/DialoGPT-Medium-ConnerBot
10d22568446985471084f82be290822438035da3
2022-03-24T16:42:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MolePatrol
null
MolePatrol/DialoGPT-Medium-ConnerBot
1
null
transformers
30,977
--- tags: - conversational --- # ConnerBot DialoGPT Model
202015004/MY_st1_training_shreya_fixed_24_march_labled-decoded
ef388ceb76cf92cb39e9a35a0cfe7d4ef04c2d31
2022-03-24T20:19:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya_fixed_24_march_labled-decoded
1
null
transformers
30,978
Entry not found
pere/tt5-small
80939cf7d1866f888dac1183861512daa43083dd
2022-03-24T20:52:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pere
null
pere/tt5-small
1
null
transformers
30,979
Entry not found
IsaacSST/gpt2-xl-ft-value_it-1k-0_on_1k-1
2120f46475aad9f366399a7c01cb19275ea99551
2022-03-24T22:57:07.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-value_it-1k-0_on_1k-1
1
null
transformers
30,980
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-value_it-1k-0_on_1k-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-value_it-1k-0_on_1k-1 This model is a fine-tuned version of [newtonkwan/gpt2-xl-ft-0](https://huggingface.co/newtonkwan/gpt2-xl-ft-0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 3 | 1.9325 | | No log | 1.96 | 6 | 1.9178 | | No log | 2.96 | 9 | 1.8947 | | No log | 3.96 | 12 | 1.8666 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.54938316345215
Tejas21/Totto_t5_base_pt_bleu_10k_steps
82cba0cb2270d29dd702435adb95504a282c4a08
2022-04-21T18:36:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Tejas21
null
Tejas21/Totto_t5_base_pt_bleu_10k_steps
1
null
transformers
30,981
--- license: apache-2.0 --- language: - en tags: - Table to text - Data to text ## Dataset: - [ToTTo](https://github.com/google-research-datasets/ToTTo) A Controlled Table-to-Text Dataset. Totto is an open-source table-to-text dataset with over 1,20,000 examples in the English language. It defines a controlled generation task as: given a Wikipedia table and a set of highlighted cells, generate a one-sentence description. ## Base Model - T5-Base [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) The T5 was built by the Google team in order to create a general-purpose model that can understand the text. The basic idea behind t5 was to deal with the text processing problem as a “text-to-text” problem, i.e. taking the text as input and producing new text as output. ## Baseline Preprocessing [Baseline Preprocessing](https://github.com/google-research/language/tree/master/language/totto) This code repository serves as a supplementary for the main repository, which can be used to do basic preprocessing of the Totto dataset. ## Fine-tuning We used the T5 for the conditional generation model to fine-tune with, 10000 steps with the ToTTo dataset using BLEU as a metric.
MolePatrol/DialoGPT-Medium-MoleBot
fc64a52821b3350ddf443f7cf49f976acf819b36
2022-03-25T01:22:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MolePatrol
null
MolePatrol/DialoGPT-Medium-MoleBot
1
null
transformers
30,982
--- tags: - conversational --- # My Awesome Model
scasutt/wav2vec2-base_toy_train_data_augment_0.1
df93bf5f18033f1633f269241189d91cd6dcaa6d
2022-03-25T17:44:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_augment_0.1
1
null
transformers
30,983
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augment_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augment_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3786 - Wer: 0.9954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1342 | 1.05 | 250 | 3.3901 | 0.9954 | | 3.0878 | 2.1 | 500 | 3.4886 | 0.9954 | | 3.0755 | 3.15 | 750 | 3.4616 | 0.9954 | | 3.0891 | 4.2 | 1000 | 3.5316 | 0.9954 | | 3.0724 | 5.25 | 1250 | 3.2608 | 0.9954 | | 3.0443 | 6.3 | 1500 | 3.3881 | 0.9954 | | 3.0421 | 7.35 | 1750 | 3.4507 | 0.9954 | | 3.0448 | 8.4 | 2000 | 3.4525 | 0.9954 | | 3.0455 | 9.45 | 2250 | 3.3342 | 0.9954 | | 3.0425 | 10.5 | 2500 | 3.3385 | 0.9954 | | 3.0457 | 11.55 | 2750 | 3.4411 | 0.9954 | | 3.0375 | 12.6 | 3000 | 3.4459 | 0.9954 | | 3.0459 | 13.65 | 3250 | 3.3883 | 0.9954 | | 3.0455 | 14.7 | 3500 | 3.3417 | 0.9954 | | 3.0524 | 15.75 | 3750 | 3.3908 | 0.9954 | | 3.0443 | 16.81 | 4000 | 3.3932 | 0.9954 | | 3.0446 | 17.86 | 4250 | 3.4052 | 0.9954 | | 3.0412 | 18.91 | 4500 | 3.3776 | 0.9954 | | 3.0358 | 19.96 | 4750 | 3.3786 | 0.9954 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
PSW/ut_del_three_per_each_ver2_early_stop
80dade84e61ffe9d70aefa438bca8e2348608426
2022-03-25T16:00:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver2_early_stop
1
null
transformers
30,984
Entry not found
calebcsjm/reversed_harrypotter_generation
2a6a17fd2d8f131997712fb58f413908a9ff4aa9
2022-03-26T05:02:52.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
calebcsjm
null
calebcsjm/reversed_harrypotter_generation
1
null
transformers
30,985
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reversed_harrypotter_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reversed_harrypotter_generation This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
peterhsu/bert-finetuned-squad-accelerate
52183ebce0101c06c72cd6bfca8ece30bf1864b0
2022-03-26T19:34:28.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peterhsu
null
peterhsu/bert-finetuned-squad-accelerate
1
null
transformers
30,986
Entry not found
scasutt/wav2vec2-base_toy_train_data_masked_audio_10ms
36f585454421b1edcd7a88a448f3f0eed4f7d246
2022-03-26T14:57:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_masked_audio_10ms
1
null
transformers
30,987
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_masked_audio_10ms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_masked_audio_10ms This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2477 - Wer: 0.7145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1337 | 1.05 | 250 | 3.4081 | 0.9982 | | 3.0792 | 2.1 | 500 | 3.2446 | 0.9982 | | 2.0577 | 3.15 | 750 | 1.5839 | 0.9492 | | 1.3639 | 4.2 | 1000 | 1.3279 | 0.8798 | | 1.0814 | 5.25 | 1250 | 1.1629 | 0.8294 | | 0.8722 | 6.3 | 1500 | 1.1305 | 0.8140 | | 0.7602 | 7.35 | 1750 | 1.1241 | 0.7972 | | 0.6982 | 8.4 | 2000 | 1.1429 | 0.7780 | | 0.6494 | 9.45 | 2250 | 1.1047 | 0.7620 | | 0.5924 | 10.5 | 2500 | 1.1756 | 0.7649 | | 0.5385 | 11.55 | 2750 | 1.2230 | 0.7736 | | 0.5026 | 12.6 | 3000 | 1.1783 | 0.7472 | | 0.4973 | 13.65 | 3250 | 1.1613 | 0.7287 | | 0.4726 | 14.7 | 3500 | 1.1923 | 0.7345 | | 0.4521 | 15.75 | 3750 | 1.2153 | 0.7171 | | 0.4552 | 16.81 | 4000 | 1.2485 | 0.7226 | | 0.422 | 17.86 | 4250 | 1.2664 | 0.7240 | | 0.3708 | 18.91 | 4500 | 1.2352 | 0.7148 | | 0.3516 | 19.96 | 4750 | 1.2477 | 0.7145 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
202015004/MY_st1_training_shreya_fixed_26_march_labled-decoded
56a404feb6da4a3888f150fb951c8413fc3d4f39
2022-03-27T00:48:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/MY_st1_training_shreya_fixed_26_march_labled-decoded
1
null
transformers
30,988
Entry not found
scasutt/wav2vec2-base_toy_train_data_random_noise_0.1
a2ce32c38437d797989fc7111c0e00f3a97f3139
2022-03-27T00:13:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_random_noise_0.1
1
null
transformers
30,989
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_random_noise_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_noise_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9263 - Wer: 0.7213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1296 | 2.1 | 250 | 3.5088 | 1.0 | | 3.0728 | 4.2 | 500 | 3.1694 | 1.0 | | 1.8686 | 6.3 | 750 | 1.3414 | 0.9321 | | 1.1241 | 8.4 | 1000 | 1.0196 | 0.8321 | | 0.8704 | 10.5 | 1250 | 0.9387 | 0.7962 | | 0.6734 | 12.6 | 1500 | 0.9309 | 0.7640 | | 0.5832 | 14.7 | 1750 | 0.9329 | 0.7346 | | 0.5207 | 16.8 | 2000 | 0.9060 | 0.7247 | | 0.4857 | 18.9 | 2250 | 0.9263 | 0.7213 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
TheDaydreamer/ricky
31babcb06173cfe20af2c9f485758b2fe94e55a3
2022-03-26T22:37:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TheDaydreamer
null
TheDaydreamer/ricky
1
null
transformers
30,990
--- tags: - conversational --- # Rick
ArkanDash/DialoGPT-small-emilia
2d0c035189d69204f1d4aa03bc38ce6055308808
2022-03-30T07:54:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ArkanDash
null
ArkanDash/DialoGPT-small-emilia
1
null
transformers
30,991
--- tags: - conversational --- # Emilia DialogGPT Model
willcai/wav2vec2_common_voice_accents_indian_only_rerun
ccea57f2d2a915a6158b9e6142d7c19418aeea4d
2022-03-27T18:00:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_indian_only_rerun
1
null
transformers
30,992
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_indian_only_rerun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_indian_only_rerun This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 588 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6205 | 25.0 | 400 | 1.4584 | | 0.3427 | 50.0 | 800 | 1.8377 | | 0.1213 | 75.0 | 1200 | 1.6086 | | 0.0643 | 100.0 | 1600 | 1.5136 | | 0.0433 | 125.0 | 2000 | 1.4882 | | 0.0323 | 150.0 | 2400 | 1.2204 | | 0.0265 | 175.0 | 2800 | 1.3034 | | 0.0206 | 200.0 | 3200 | 1.2866 | | 0.0191 | 225.0 | 3600 | 1.2337 | | 0.0148 | 250.0 | 4000 | 1.1729 | | 0.0121 | 275.0 | 4400 | 1.2059 | | 0.0105 | 300.0 | 4800 | 1.1246 | | 0.01 | 325.0 | 5200 | 1.1397 | | 0.0098 | 350.0 | 5600 | 1.1684 | | 0.0073 | 375.0 | 6000 | 1.1030 | | 0.0061 | 400.0 | 6400 | 1.2077 | | 0.0049 | 425.0 | 6800 | 1.2653 | | 0.0044 | 450.0 | 7200 | 1.1587 | | 0.0037 | 475.0 | 7600 | 1.2283 | | 0.0033 | 500.0 | 8000 | 1.1897 | | 0.0026 | 525.0 | 8400 | 1.2633 | | 0.0023 | 550.0 | 8800 | 1.2571 | | 0.002 | 575.0 | 9200 | 1.2807 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
Danik51002/Example
3a510c2864b3e8cb413b2e50080e002f16b26952
2022-03-27T08:55:29.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Danik51002
null
Danik51002/Example
1
null
transformers
30,993
--- tags: - generated_from_trainer model-index: - name: Example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Example This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 300 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data
adc9b9f540f8441d4845ca356580a9e8328af84e
2022-03-27T11:32:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data
1
null
transformers
30,994
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6357 - Wer: 0.5496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6073 | 2.1 | 250 | 3.5111 | 1.0 | | 3.0828 | 4.2 | 500 | 3.5133 | 1.0 | | 1.9969 | 6.3 | 750 | 1.3924 | 0.9577 | | 0.9279 | 8.4 | 1000 | 0.8378 | 0.7243 | | 0.6692 | 10.5 | 1250 | 0.7367 | 0.6394 | | 0.5273 | 12.6 | 1500 | 0.6703 | 0.5907 | | 0.4314 | 14.7 | 1750 | 0.6594 | 0.5718 | | 0.3809 | 16.8 | 2000 | 0.6138 | 0.5559 | | 0.3934 | 18.9 | 2250 | 0.6357 | 0.5496 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
jorge-henao/gpt2-small-spanish-disco-poetry
ffc330e0430e0ce045620e98c0d442453f624945
2022-03-29T04:06:39.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
jorge-henao
null
jorge-henao/gpt2-small-spanish-disco-poetry
1
null
transformers
30,995
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-disco-poetry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-disco-poetry This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7329 | 1.0 | 750 | 4.4635 | | 4.4445 | 2.0 | 1500 | 4.3703 | | 4.3344 | 3.0 | 2250 | 4.3262 | | 4.2352 | 4.0 | 3000 | 4.3045 | | 4.1714 | 5.0 | 3750 | 4.2821 | | 4.1034 | 6.0 | 4500 | 4.2619 | | 4.0668 | 7.0 | 5250 | 4.2554 | | 4.0322 | 8.0 | 6000 | 4.2515 | | 4.0163 | 9.0 | 6750 | 4.2489 | | 4.0011 | 10.0 | 7500 | 4.2471 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BeamBee/DialoGPT-small-Lavenza
cfa983c8336e02a36425e10172f3c59adbad4141
2022-03-27T19:41:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BeamBee
null
BeamBee/DialoGPT-small-Lavenza
1
null
transformers
30,996
--- tags: - conversational --- # Lavenza DialoGPT Model
theResearchNinja/Cybonto-distilbert-base-uncased-finetuned-ner-v0.1
275e19282c811dbf51a9fd54a85770feb9582de7
2022-03-27T21:51:10.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:few_nerd", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
theResearchNinja
null
theResearchNinja/Cybonto-distilbert-base-uncased-finetuned-ner-v0.1
1
null
transformers
30,997
--- license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: Cybonto-distilbert-base-uncased-finetuned-ner-v0.1 results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.7377633209417596 - name: Recall type: recall value: 0.7817648386368765 - name: F1 type: f1 value: 0.7591269959856158 - name: Accuracy type: accuracy value: 0.9383331648547562 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Cybonto-distilbert-base-uncased-finetuned-ner-v0.1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.1930 - Precision: 0.7378 - Recall: 0.7818 - F1: 0.7591 - Accuracy: 0.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2001 | 1.0 | 3661 | 0.1954 | 0.7244 | 0.7750 | 0.7488 | 0.9360 | | 0.1717 | 2.0 | 7322 | 0.1898 | 0.7392 | 0.7767 | 0.7575 | 0.9384 | | 0.1485 | 3.0 | 10983 | 0.1930 | 0.7378 | 0.7818 | 0.7591 | 0.9383 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Garsic/DialoGPT-medium-pecorine
520b2778b99b0d5f5bf22a3abba10a5092d99d13
2022-03-27T22:17:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Garsic
null
Garsic/DialoGPT-medium-pecorine
1
null
transformers
30,998
--- tags: - conversational --- # Pecorine dialog model
BigSalmon/InformalToFormalLincoln31
d9760a095371a0fe8e5c31a13ec6a92b2082cc53
2022-03-28T00:48:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln31
1
null
transformers
30,999
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln31") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ```