modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
GroNLP/wav2vec2-dutch-base
67936cfc475473608f6763087a2a6006e3b7f5c7
2022-03-11T16:04:18.000Z
[ "pytorch", "wav2vec2", "pretraining", "nl", "transformers", "speech" ]
null
false
GroNLP
null
GroNLP/wav2vec2-dutch-base
1
null
transformers
30,800
--- language: nl tags: - speech --- # Wav2Vec2-Dutch-Base A Dutch Wav2Vec2 model. This model is created by further pre-training the original English [`facebook/wav2vec2-base`](https://huggingface.co/facebook/wav2vec2-base) model on Dutch speech from [Het Corpus Gesproken Nederlands](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). This model is one of two Dutch Wav2Vec2 models: - [`GroNLP/wav2vec2-dutch-base`](https://huggingface.co/GroNLP/wav2vec2-dutch-base) (this model) - [`GroNLP/wav2vec2-dutch-large`](https://huggingface.co/GroNLP/wav2vec2-dutch-large)
clapika2010/beers_finetuned
1d173e5332840df34eed9ab2269da4ef3e268026
2022-03-24T17:44:32.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clapika2010
null
clapika2010/beers_finetuned
1
null
transformers
30,801
Entry not found
zhiweitong/bart-large-nq-qg
e20e9b726637dd2a94c1b235bcd8f9957f21b90e
2022-03-15T08:14:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
zhiweitong
null
zhiweitong/bart-large-nq-qg
1
null
transformers
30,802
Entry not found
wooihen/xlm-roberta-base-finetuned-panx-de
ec8d6527200dd635755bafe85bfb98676e30684e
2022-07-27T06:37:57.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
wooihen
null
wooihen/xlm-roberta-base-finetuned-panx-de
1
null
transformers
30,803
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
benjaminbeilharz/bert2bert-empathetic-dialogues
50c064bf9ca470ce53229953cac7effbda0c7a9e
2022-03-12T08:01:42.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
benjaminbeilharz
null
benjaminbeilharz/bert2bert-empathetic-dialogues
1
null
transformers
30,804
Entry not found
benjaminbeilharz/dialoGPT-small-conditioned2nextturn
5175b611e49c72f6895f3dcc5768ee2ed1ae1b30
2022-03-12T08:22:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
benjaminbeilharz
null
benjaminbeilharz/dialoGPT-small-conditioned2nextturn
1
null
transformers
30,805
Entry not found
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4
ab24b00bd3d2e91f2a264c028f0db63f882c61f0
2022-03-12T14:42:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4
1
null
transformers
30,806
Entry not found
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch2_grad2
b8d3f938cf8e3e3314e79ea086e1910fab39fb88
2022-03-12T14:47:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch2_grad2
1
null
transformers
30,807
Entry not found
cammy/bart-large-cnn-weaksup-original-100k
e0594a55d87cf2e4df166a4243267d1c671cbe93
2022-03-13T00:10:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-original-100k
1
null
transformers
30,808
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-original-100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-original-100k This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5931 - Rouge1: 30.4429 - Rouge2: 15.6691 - Rougel: 24.1975 - Rougelsum: 27.4761 - Gen Len: 68.4568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.261 | 1.0 | 100000 | 1.5931 | 30.4429 | 15.6691 | 24.1975 | 27.4761 | 68.4568 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
lijingxin/pegasus-samsum
0fe1a97c62c599e534e24ebb0067d97cccda65a3
2022-03-12T15:33:54.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
lijingxin
null
lijingxin/pegasus-samsum
1
null
transformers
30,809
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.702 | 0.54 | 500 | 1.4874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4_lr4
406552bbd87be87885e0127b5bc58af5c262eca2
2022-03-12T16:32:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4_lr4
1
null
transformers
30,810
Entry not found
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4_lr16
769ae80f473bedf06b00bde4af0b9fe7a0f07cb6
2022-03-12T17:45:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-300m-hyAM_batch4_lr16
1
null
transformers
30,811
Entry not found
lilitket/xls-r-300m-hyAM_batch4_lr8e-05_warmup400
f943b9be536811222bcd467437c616d76c85246b
2022-03-12T21:09:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/xls-r-300m-hyAM_batch4_lr8e-05_warmup400
1
null
transformers
30,812
Entry not found
snoop2head/Deep-Shallow-Ko2En
cc0d7056b89f4c35f6efd287ff7cb7d74a75a6d1
2022-03-14T13:03:45.000Z
[ "pytorch", "transformer", "transformers" ]
null
false
snoop2head
null
snoop2head/Deep-Shallow-Ko2En
1
null
transformers
30,813
Entry not found
beston91/gpt2_large_ft_mult_1k
b928295c1a4c7914959ec1938a358ec2ea8702e4
2022-03-13T00:56:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
beston91
null
beston91/gpt2_large_ft_mult_1k
1
null
transformers
30,814
Entry not found
cammy/bart-large-cnn-weaksup-100-NOpad-early
ab3d69b266687b3f1e64445eab65329ccf81f288
2022-03-13T05:24:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-100-NOpad-early
1
null
transformers
30,815
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-100-NOpad-early results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-100-NOpad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0768 - Rouge1: 28.7908 - Rouge2: 10.6989 - Rougel: 20.534 - Rougelsum: 24.1294 - Gen Len: 68.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.8905 | 31.1534 | 13.7074 | 21.6489 | 27.0709 | 64.2 | | No log | 2.0 | 200 | 2.0768 | 28.7908 | 10.6989 | 20.534 | 24.1294 | 68.5 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-weaksup-1000-NOpad-early
acd98d85777e8c4df21407c0e15b803d41f353ce
2022-03-13T05:51:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-1000-NOpad-early
1
null
transformers
30,816
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-1000-NOpad-early results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-1000-NOpad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9082 - Rouge1: 26.9663 - Rouge2: 11.3027 - Rougel: 20.7327 - Rougelsum: 23.5965 - Gen Len: 67.19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4775 | 1.0 | 1000 | 1.6796 | 27.208 | 12.01 | 20.8401 | 24.1333 | 66.06 | | 0.6972 | 2.0 | 2000 | 1.9082 | 26.9663 | 11.3027 | 20.7327 | 23.5965 | 67.19 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-weaksup-10k-NOpad-early
b46947cb5ff7cf947bae0a6b95cd07d6c2707a07
2022-03-13T08:16:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-10k-NOpad-early
1
null
transformers
30,817
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-10k-NOpad-early results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-10k-NOpad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7883 - Rouge1: 26.9755 - Rouge2: 12.4975 - Rougel: 21.0743 - Rougelsum: 23.9303 - Gen Len: 69.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4657 | 1.0 | 10000 | 1.7295 | 27.973 | 13.2818 | 21.8493 | 25.0101 | 67.831 | | 0.8522 | 2.0 | 20000 | 1.7883 | 26.9755 | 12.4975 | 21.0743 | 23.9303 | 69.549 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Splend1dchan/t5lephone-mnli
ad9db3c55a31888ac384f769b5f4d61ec99dff8c
2022-03-13T06:42:43.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/t5lephone-mnli
1
null
transformers
30,818
Entry not found
cammy/bart-large-cnn-100-lit-evalMA-NOpad1
e21ca352058c8572d6400913954b85b7e1e7b768
2022-03-13T09:49:45.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA-NOpad1
1
null
transformers
30,819
Entry not found
cammy/bart-large-cnn-1000-lit-evalMA-NOpad
fcb3033ebfc4e366f475be6f814e46637a9ff8d4
2022-03-13T10:50:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-1000-lit-evalMA-NOpad
1
null
transformers
30,820
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-1000-lit-evalMA-NOpad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-1000-lit-evalMA-NOpad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9804 - Rouge1: 27.2698 - Rouge2: 11.8561 - Rougel: 20.5948 - Rougelsum: 23.5497 - Gen Len: 67.67 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5372 | 1.0 | 1000 | 1.7499 | 27.7275 | 12.7894 | 21.1334 | 24.4929 | 66.31 | | 0.7344 | 2.0 | 2000 | 1.9804 | 27.2698 | 11.8561 | 20.5948 | 23.5497 | 67.67 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-100-lit-evalMA-NOpad2
0d38c437db512f15277026bb8f675577c8a2eb74
2022-03-13T11:11:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA-NOpad2
1
null
transformers
30,821
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-100-lit-evalMA-NOpad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-lit-evalMA-NOpad2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2126 - Rouge1: 25.6196 - Rouge2: 7.2753 - Rougel: 18.0987 - Rougelsum: 20.8416 - Gen Len: 67.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.0890 | 23.5493 | 8.9875 | 17.1471 | 20.1643 | 67.8 | | No log | 2.0 | 200 | 1.2126 | 25.6196 | 7.2753 | 18.0987 | 20.8416 | 67.3 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Danik51002/finetuned
cc58daa628b40505718a1cc1632e38deeadd50e5
2022-03-27T08:26:55.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Danik51002
null
Danik51002/finetuned
1
null
transformers
30,822
--- tags: - generated_from_trainer model-index: - name: finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 300 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
Devendr/wav2vec2-large-xls-r-300m-hindi
fccc51f49bf5eab58613f089584df90e88aa0266
2022-03-13T14:44:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Devendr
null
Devendr/wav2vec2-large-xls-r-300m-hindi
1
null
transformers
30,823
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Danik51002/NewModel
92cb4a92eb05d4e441538c56809d84fbc9dbd30e
2022-03-27T12:52:39.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Danik51002
null
Danik51002/NewModel
1
null
transformers
30,824
--- tags: - generated_from_trainer model-index: - name: NewModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewModel This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 200 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
tau/test
a548349261d3c82c7821d7a5d3eb3bf591ccfad8
2022-03-13T17:20:05.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/test
1
null
transformers
30,825
Entry not found
qahq/CL-AraBERTv0.1-base
1da981a391df548f060730678b806e0bd79010b5
2022-03-21T16:04:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
qahq
null
qahq/CL-AraBERTv0.1-base
1
null
transformers
30,826
--- license: apache-2.0 ---
lilitket/20220314-084927
cc90e2f52342a2163e933a57df86be1cbf3e804a
2022-03-14T13:26:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220314-084927
1
null
transformers
30,827
Entry not found
Kalaoke/embeddings_dense_model
7038a8f1ad9d4073c1553d61f1727f95c43e6f61
2022-03-14T09:54:04.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Kalaoke
null
Kalaoke/embeddings_dense_model
1
null
sentence-transformers
30,828
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # Kalaoke/embeddings_dense_model This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 50 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Kalaoke/embeddings_dense_model') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Kalaoke/embeddings_dense_model) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1050 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 315, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Asym( (topic-0): Dense({'in_features': 768, 'out_features': 50, 'bias': False, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (title-0): Dense({'in_features': 768, 'out_features': 50, 'bias': False, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sanchit-gandhi/wav2vec2-2-bart-large-no-adapter
f09c487bf0af0c95eab6b1eceb28518a352a1d90
2022-03-14T21:45:57.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-bart-large-no-adapter
1
null
transformers
30,829
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 5.6120 - Wer: 1.0267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.7189 | 0.56 | 500 | 6.9796 | 0.9350 | | 6.5068 | 1.12 | 1000 | 6.4823 | 1.3923 | | 6.4601 | 1.68 | 1500 | 6.1801 | 1.1578 | | 6.1802 | 2.24 | 2000 | 6.0002 | 1.7750 | | 6.0888 | 2.8 | 2500 | 5.8453 | 1.7581 | | 6.0993 | 3.36 | 3000 | 5.7702 | 1.4096 | | 6.0851 | 3.92 | 3500 | 5.6634 | 1.0944 | | 5.9357 | 4.48 | 4000 | 5.6120 | 1.0267 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
vamsibanda/bert-large-cased-onnx
bd7d6f1b51e77e2b8e90e063db990e86e5545b0a
2022-07-23T04:17:19.000Z
[ "pytorch", "onnx", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
vamsibanda
null
vamsibanda/bert-large-cased-onnx
1
null
transformers
30,830
GPL/scifact-distilbert-tas-b-gpl-self_miner
fbf6d0feec31523a165aee0f06fb35fdac0ab262
2022-03-14T14:17:30.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/scifact-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,831
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/trec-covid-v2-distilbert-tas-b-gpl-self_miner
d080b40c4d945c5e1f22b342dc36dcfd410c64b3
2022-03-14T14:18:03.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-covid-v2-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,832
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/cqadupstack-distilbert-tas-b-gpl-self_miner
2b939ed344e8c50d24a8571e422fa9d46a787752
2022-03-14T14:18:20.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/cqadupstack-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,833
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/robust04-distilbert-tas-b-gpl-self_miner
094a95ffc73f3e3c2fb45bd964a8bbc818f25f3b
2022-03-14T14:18:37.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/robust04-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,834
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/trec-covid-distilbert-tas-b-gpl-self_miner
ffd171f8480dbcd9970aefae9f92f21b15df3a7e
2022-03-14T14:22:13.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-covid-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,835
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/arguana-distilbert-tas-b-gpl-self_miner
eaa663cdd4c130371aeb61ecb3573c911fdbb871
2022-03-14T14:22:47.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/arguana-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,836
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/climate-fever-distilbert-tas-b-gpl-self_miner
cc55804d1f95f8ac52505d69d896abd58db490d3
2022-03-14T14:23:05.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/climate-fever-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,837
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/hotpotqa-distilbert-tas-b-gpl-self_miner
a397243c5cabc9deb692ed0749d085621780646f
2022-03-14T14:23:55.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/hotpotqa-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,838
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/nfcorpus-distilbert-tas-b-gpl-self_miner
0317af0d0f20eca4beda75168394591cac07bd66
2022-03-14T14:24:13.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/nfcorpus-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,839
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/nq-distilbert-tas-b-gpl-self_miner
8de5a0f14b51a9f0f54f6bdfa65d347cc35b3bcc
2022-03-14T14:24:29.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/nq-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,840
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/trec-news-distilbert-tas-b-gpl-self_miner
92aad421fc6cb4fa62d4c038c24cb7775678b01b
2022-03-14T14:25:19.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-news-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,841
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/webis-touche2020-distilbert-tas-b-gpl-self_miner
c4e87e105b5f934cd2b5b7743d7cca6615539e68
2022-03-14T14:25:36.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/webis-touche2020-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,842
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/scidocs-distilbert-tas-b-gpl-self_miner
16e528b0d28189eacd46c7253088cf2e7f829ef2
2022-03-14T14:26:01.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/scidocs-distilbert-tas-b-gpl-self_miner
1
null
sentence-transformers
30,843
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Splend1dchan/byt5base-glue-mnli
224d0023af8cbe3f0afeacd5987a8d9fdaad526f
2022-03-14T17:09:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5base-glue-mnli
1
null
transformers
30,844
Entry not found
anton-l/xls-r-300m-mbart-large-50
2665011af4960abd82e9532dc783a2a1461c0926
2022-03-14T21:19:20.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xls-r-300m-mbart-large-50
1
null
transformers
30,845
--- license: apache-2.0 --- A freshly initialized seq2seq model
peterhsu/codeparrot-ds-accelerate
30dbb932e78e8b4e58dd9e812dac0ee90a0d2090
2022-03-15T20:59:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
peterhsu
null
peterhsu/codeparrot-ds-accelerate
1
null
transformers
30,846
Entry not found
tau/fewsion_1024_0.3_3150
b78280012c63a6095332c959a734e3759f6bde4d
2022-03-15T07:23:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/fewsion_1024_0.3_3150
1
null
transformers
30,847
Entry not found
zuppif/resnetd-26
a39caedee7d972ea8484be1cdb0e4b2d1ea1a9ea
2022-03-17T09:09:16.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnetd-26
1
null
transformers
30,848
Entry not found
zuppif/resnetd-34
2554e1e8672ca97467d71f75e1d12bdaaf2cab58
2022-03-17T09:10:19.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnetd-34
1
null
transformers
30,849
Entry not found
zuppif/resnetd-50
252bd5a1c46413962046c276af8cb77ca52bd64c
2022-03-17T09:11:34.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnetd-50
1
null
transformers
30,850
Entry not found
zuppif/resnetd-152
ea1c0a8f5a465ba9daffa11403ebed27e90f947d
2022-03-17T09:16:03.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnetd-152
1
null
transformers
30,851
Entry not found
Francesc/distilbert-base-uncased-finetuned-imdb-accelerate
a5e6157621b950577ee5852de2f980111eaa3d67
2022-03-15T18:44:43.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Francesc
null
Francesc/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
30,852
Entry not found
abinternet143/t5-small-finetuned-xsum
91decf121b984de2925c975285305ec511957ab6
2022-03-16T20:53:29.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
abinternet143
null
abinternet143/t5-small-finetuned-xsum
1
null
transformers
30,853
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 2.0.0 - Tokenizers 0.11.6
mfleck/wav2vec2-large-xls-r-300m-slowenian-with-lm
f0f07335ace860813a6db5dddf3283093f791fc5
2022-03-15T16:15:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mfleck
null
mfleck/wav2vec2-large-xls-r-300m-slowenian-with-lm
1
null
transformers
30,854
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-slowenian-with-lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slowenian-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3935 - Wer: 0.3480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.9937 | 2.5 | 100 | 3.1565 | 1.0 | | 3.0466 | 5.0 | 200 | 3.0009 | 0.9992 | | 2.9708 | 7.5 | 300 | 2.9494 | 0.9992 | | 2.0519 | 10.0 | 400 | 0.8874 | 0.7290 | | 0.5773 | 12.5 | 500 | 0.5258 | 0.5037 | | 0.3427 | 15.0 | 600 | 0.4767 | 0.4649 | | 0.2612 | 17.5 | 700 | 0.4549 | 0.4209 | | 0.212 | 20.0 | 800 | 0.4294 | 0.3860 | | 0.1748 | 22.5 | 900 | 0.4085 | 0.3769 | | 0.1587 | 25.0 | 1000 | 0.4017 | 0.3673 | | 0.1435 | 27.5 | 1100 | 0.3927 | 0.3538 | | 0.1314 | 30.0 | 1200 | 0.3935 | 0.3480 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
apkbala107/tamilroberto
7e55c38b099d681b62244e6a5604b2752a840ef2
2022-03-15T15:13:41.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "license:cc", "autotrain_compatible" ]
fill-mask
false
apkbala107
null
apkbala107/tamilroberto
1
null
transformers
30,855
--- license: cc ---
torbenal/MiniLMv2-L6-H384-RoBERTa-Large
1834a50e5b15a672da345f2b8ff656186adf99f0
2022-03-15T15:30:53.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
torbenal
null
torbenal/MiniLMv2-L6-H384-RoBERTa-Large
1
null
transformers
30,856
# MiniLM v2 Microsoft's MiniLM v2 L6 H384 distilled from RoBERTa-Large \ Found [here](https://github.com/microsoft/unilm/tree/master/minilm)
lijingxin/bert-base-uncased-issues-128
07073a0739292e699ebf1b4116282e72edd073e7
2022-03-16T03:19:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
lijingxin
null
lijingxin/bert-base-uncased-issues-128
1
null
transformers
30,857
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0981 | 1.0 | 291 | 1.6917 | | 1.6493 | 2.0 | 582 | 1.4357 | | 1.4831 | 3.0 | 873 | 1.3923 | | 1.3957 | 4.0 | 1164 | 1.4056 | | 1.3339 | 5.0 | 1455 | 1.1944 | | 1.2936 | 6.0 | 1746 | 1.2888 | | 1.2458 | 7.0 | 2037 | 1.2715 | | 1.2004 | 8.0 | 2328 | 1.1992 | | 1.1785 | 9.0 | 2619 | 1.1726 | | 1.1389 | 10.0 | 2910 | 1.2157 | | 1.1313 | 11.0 | 3201 | 1.1977 | | 1.0935 | 12.0 | 3492 | 1.1794 | | 1.0826 | 13.0 | 3783 | 1.2260 | | 1.0729 | 14.0 | 4074 | 1.1549 | | 1.0599 | 15.0 | 4365 | 1.1269 | | 1.0538 | 16.0 | 4656 | 1.2540 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.16.1 - Tokenizers 0.10.3
newtonkwan/gpt2-xl-ft-with-non-challenging-1k
e517214a052bc530b3b2afba180aa41745216539
2022-03-15T16:14:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-with-non-challenging-1k
1
null
transformers
30,858
Entry not found
facebook/regnet-x-008
58a01db88b994f5ff97c8acff097bea5dc2bd776
2022-06-30T10:14:24.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-008
1
null
transformers
30,859
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-x-064
ec98667114da4f67037d019a0eb9e99c51c589f6
2022-06-30T10:14:43.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-064
1
null
transformers
30,860
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
anton-l/xtreme_s_xlsr_300m_minds14_old_splits
9d475abdf4ba91ca74c069270ce4938e0e0443ac
2022-03-17T22:23:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "automatic-speech-recognition", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_minds14_old_splits
1
1
transformers
30,861
--- license: apache-2.0 tags: - automatic-speech-recognition - google/xtreme_s - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_minds14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14 dataset. It achieves the following results on the evaluation set: - Loss: 0.2890 - F1: 0.9474 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.551 | 2.7 | 200 | 2.5855 | 0.0407 | 0.1201 | | 1.6934 | 5.41 | 400 | 1.5072 | 0.5862 | 0.6085 | | 0.5914 | 8.11 | 600 | 0.7274 | 0.8270 | 0.8232 | | 0.3896 | 10.81 | 800 | 0.4402 | 0.8905 | 0.8890 | | 0.5052 | 13.51 | 1000 | 0.4483 | 0.8837 | 0.8829 | | 0.4806 | 16.22 | 1200 | 0.4981 | 0.8784 | 0.8787 | | 0.2103 | 18.92 | 1400 | 0.4957 | 0.8810 | 0.8817 | | 0.4198 | 21.62 | 1600 | 0.5161 | 0.8927 | 0.8921 | | 0.11 | 24.32 | 1800 | 0.4456 | 0.8923 | 0.8902 | | 0.1233 | 27.03 | 2000 | 0.3858 | 0.9016 | 0.9012 | | 0.1827 | 29.73 | 2200 | 0.3765 | 0.9162 | 0.9159 | | 0.1235 | 32.43 | 2400 | 0.3716 | 0.9134 | 0.9128 | | 0.1873 | 35.14 | 2600 | 0.3080 | 0.9314 | 0.9311 | | 0.017 | 37.84 | 2800 | 0.2629 | 0.9415 | 0.9409 | | 0.0436 | 40.54 | 3000 | 0.3159 | 0.9397 | 0.9390 | | 0.0455 | 43.24 | 3200 | 0.2963 | 0.9393 | 0.9390 | | 0.046 | 45.95 | 3400 | 0.2914 | 0.9457 | 0.9451 | | 0.0042 | 48.65 | 3600 | 0.2890 | 0.9474 | 0.9470 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
krinal214/bert-3lang
a00a250b59b9971d1cb7f3a819a7bee993a39dda
2022-03-15T23:30:47.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/bert-3lang
1
null
transformers
30,862
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: bert-3lang results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-3lang This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.6422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8161 | 1.0 | 905 | 0.6422 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
aytugkaya/xlm-roberta-base-finetuned-panx-de
5668c34844a76963b04f317f11136ca270043012
2022-03-16T02:12:08.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
aytugkaya
null
aytugkaya/xlm-roberta-base-finetuned-panx-de
1
null
transformers
30,863
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8650707909251151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1474 - F1: 0.8651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2498 | 1.0 | 1049 | 0.1835 | 0.8213 | | 0.1293 | 2.0 | 2098 | 0.1448 | 0.8481 | | 0.0788 | 3.0 | 3147 | 0.1474 | 0.8651 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
saghar/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103
bbdd1bc288229d42452cf0220fb679d51c21ecae
2022-03-18T19:10:05.000Z
[ "pytorch", "roberta", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103
1
null
transformers
30,864
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 3.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6806 | 1.0 | 3125 | 3.9691 | | 4.0441 | 2.0 | 6250 | 3.7885 | | 3.9509 | 3.0 | 9375 | 3.7556 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
Neulvo/distilbert-base-uncased-finetuned-imdb
4f62b00524d5c447baacf8dd6bece3790865a447
2022-03-16T06:05:40.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Neulvo
null
Neulvo/distilbert-base-uncased-finetuned-imdb
1
null
transformers
30,865
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7071 | 1.0 | 157 | 2.4942 | | 2.5754 | 2.0 | 314 | 2.4235 | | 2.5426 | 3.0 | 471 | 2.4361 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
ScandinavianMrT/gpt2_prefinetune_SARC_1epoch_withcontext
e5751d38c0ca3d9969eb95c93255255cadcc36fb
2022-03-16T07:23:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
ScandinavianMrT
null
ScandinavianMrT/gpt2_prefinetune_SARC_1epoch_withcontext
1
null
transformers
30,866
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_prefinetune_SARC_1epoch_withcontext results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_prefinetune_SARC_1epoch_withcontext This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.8788 | 1.0 | 14028 | 3.7899 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
triet1102/bert-base-cased-GoogleRE
9a859b6d285d446a0eb6356c53aa74baa18fa2be
2022-03-17T10:37:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
triet1102
null
triet1102/bert-base-cased-GoogleRE
1
null
transformers
30,867
Entry not found
Nadav/MacSQuAD
0ef052112814ad1b676f8aa1ccddbcc7a431dd16
2022-03-17T18:20:05.000Z
[ "pytorch", "bert", "question-answering", "transformers", "license:afl-3.0", "autotrain_compatible" ]
question-answering
false
Nadav
null
Nadav/MacSQuAD
1
null
transformers
30,868
--- license: afl-3.0 --- A MacBERTh model fine-tuned on SQuAD_v2. Hopefully, this will allow the model to perform well on QA tasks on historical texts. Finetune parameters: ``` training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=3e-5, per_device_train_batch_size=64, per_device_eval_batch_size=64, num_train_epochs=2, weight_decay=0.01, lr_scheduler_type=SchedulerType.LINEAR, warmup_ratio=0.2 ) ``` Evaluation metrics on the validation set of SQuAD_v2: ``` {'exact': 49.49886296639434, 'f1': 53.9199170778635, 'total': 11873, 'HasAns_exact': 60.08771929824562, 'HasAns_f1': 68.94250598270429, 'HasAns_total': 5928, 'NoAns_exact': 38.940285954583686, 'NoAns_f1': 38.940285954583686, 'NoAns_total': 5945, 'best_exact': 50.5095595047587, 'best_exact_thresh': 0.0, 'best_f1': 51.75825524534494, 'best_f1_thresh': 0.0} ```
krinal214/zero_shot
50576657396ff78582c637891740e8add571e69d
2022-03-16T12:41:46.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
krinal214
null
krinal214/zero_shot
1
null
transformers
30,869
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: zero_last results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zero_last This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.9190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9816 | 1.0 | 5557 | 1.9190 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
osanseviero/distilbert-base-uncased-finetuned-squad-d5716d28
f9bc73352dc9cfb4cc89f138aa27dc2ebb177580
2022-06-27T07:23:07.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
osanseviero
null
osanseviero/distilbert-base-uncased-finetuned-squad-d5716d28
1
null
transformers
30,870
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad model-index: - name: osanseviero/distilbert-base-uncased-finetuned-squad-d5716d28 results: - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: train metrics: - name: Loss type: loss value: 4.052208423614502 verified: true --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Neulvo/marian-finetuned-kde4-en-to-fr-accelerate
86a5043f267e822cf30f6f189742a54aa1348d91
2022-03-16T15:53:38.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Neulvo
null
Neulvo/marian-finetuned-kde4-en-to-fr-accelerate
1
null
transformers
30,871
Entry not found
mondovero/distilgpt2_fine_tuned_coder_custom
6aaa7a36d28cf91e609b152789beedd749770b37
2022-03-16T16:12:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
mondovero
null
mondovero/distilgpt2_fine_tuned_coder_custom
1
null
transformers
30,872
Entry not found
microsoft/resnet-26
5ca407f2074c8fd2c4ffefe3b75fbb4323c0ddc1
2022-07-01T17:33:42.000Z
[ "pytorch", "tf", "resnet", "image-classification", "transformers" ]
image-classification
false
microsoft
null
microsoft/resnet-26
1
null
transformers
30,873
Entry not found
apkbala107/tamilroberta
bbf77438dd3eadfbbc2a62217dc3b0b6350b2d57
2022-03-16T16:06:23.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "license:cc", "autotrain_compatible" ]
fill-mask
false
apkbala107
null
apkbala107/tamilroberta
1
null
transformers
30,874
--- license: cc ---
anton-l/xls-r-300m-bart-base
51acc16047f2a5dc237e546e68b880553992b177
2022-03-16T17:27:16.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xls-r-300m-bart-base
1
null
transformers
30,875
--- license: apache-2.0 ---
horsbug98/Part_2_mBERT_Model_E2
c5c3c3289f660b4459a4d431a6a7c59d1f916915
2022-03-16T17:25:02.000Z
[ "pytorch", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_2_mBERT_Model_E2
1
null
transformers
30,876
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_mbert_task2_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_mbert_task2_2 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
horsbug98/Part_2_XLM_Model_E1
dba7818f994199e15f35bf70bf98d5f70185f36e
2022-03-30T18:29:46.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_2_XLM_Model_E1
1
null
transformers
30,877
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_xlm_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_xlm_task2_1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
horsbug98/Part_2_BERT_Multilingual_Dutch_Model_E1
65a4a825acc3cae701be64a2eefd152f9f239151
2022-03-16T18:09:32.000Z
[ "pytorch", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_2_BERT_Multilingual_Dutch_Model_E1
1
null
transformers
30,878
--- tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_bert_finetuned_dutch_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_bert_finetuned_dutch_task2_1 This model is a fine-tuned version of [henryk/bert-base-multilingual-cased-finetuned-dutch-squad2](https://huggingface.co/henryk/bert-base-multilingual-cased-finetuned-dutch-squad2) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
DrishtiSharma/poem-gen-gpt2-small-spanish
2852d4354c52396f999d825297f98180ff6f1814
2022-03-16T18:46:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
DrishtiSharma
null
DrishtiSharma/poem-gen-gpt2-small-spanish
1
null
transformers
30,879
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: poem-gen-gpt2-small-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-gpt2-small-spanish This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2121 | 1.0 | 2569 | 3.9954 | | 4.0612 | 2.0 | 5138 | 3.9375 | | 3.9988 | 3.0 | 7707 | 3.9229 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
horsbug98/Part_1_mBERT_Model_E1
7a924df2247d833b3b4ac4fe4ad9bfb23f87f0b9
2022-03-16T18:48:12.000Z
[ "pytorch", "bert", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_1_mBERT_Model_E1
1
null
transformers
30,880
--- tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_bert_finetuned_dutch_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_bert_finetuned_dutch_task2_1 This model is a fine-tuned version of [henryk/bert-base-multilingual-cased-finetuned-dutch-squad2](https://huggingface.co/henryk/bert-base-multilingual-cased-finetuned-dutch-squad2) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
negfir/Distill_4L_2ep
3edc3b88a77e5d6faed210fbc742f3686889cf0a
2022-03-16T19:14:10.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/Distill_4L_2ep
1
null
transformers
30,881
Entry not found
newtonkwan/gpt2-xl-ft-2
24a8ed66fdf945468c1599c44b6270fb5ad69e66
2022-03-16T21:04:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-2
1
null
transformers
30,882
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 62 | 1.5080 | | No log | 1.99 | 124 | 1.5119 | | No log | 2.99 | 186 | 1.5765 | | No log | 3.99 | 248 | 1.6371 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 27.79615592956543 ### Dataset Size Size: 10000
anton-l/xtreme_s_xlsr_covost2_fr_en
b184a9ee527f7fc489bf7b0f7bf81ee55ea1a704
2022-03-17T11:58:49.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_covost2_fr_en
1
null
transformers
30,883
Entry not found
saghar/TinyBERT_General_6L_768D-finetuned-wikitext103
29151bbd0c201654aef0dbc11abc08751e27b075
2022-03-17T06:14:16.000Z
[ "pytorch", "bert", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/TinyBERT_General_6L_768D-finetuned-wikitext103
1
null
transformers
30,884
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: TinyBERT_General_6L_768D-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyBERT_General_6L_768D-finetuned-wikitext103 This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 3.3768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.1792 | 1.0 | 3125 | 3.5465 | | 3.6726 | 2.0 | 6250 | 3.4226 | | 3.6065 | 3.0 | 9375 | 3.3768 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
wypoon/bert-base-uncased-mlm
d6ee550be7b80d7022b88783c5ba165498f4d8cc
2022-03-16T23:55:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
wypoon
null
wypoon/bert-base-uncased-mlm
1
null
transformers
30,885
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-mlm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2248 | 1.0 | 38 | 1.9818 | | 1.9124 | 2.0 | 76 | 1.8334 | | 1.8166 | 3.0 | 114 | 1.7863 | | 1.7414 | 4.0 | 152 | 1.9024 | | 1.6727 | 5.0 | 190 | 1.7832 | | 1.5969 | 6.0 | 228 | 1.8033 | | 1.5023 | 7.0 | 266 | 1.5792 | | 1.4593 | 8.0 | 304 | 1.7809 | | 1.4825 | 9.0 | 342 | 1.6362 | | 1.3928 | 10.0 | 380 | 1.6409 | | 1.386 | 11.0 | 418 | 1.6855 | | 1.3579 | 12.0 | 456 | 1.7348 | | 1.2951 | 13.0 | 494 | 1.6956 | | 1.3187 | 14.0 | 532 | 1.8408 | | 1.3065 | 15.0 | 570 | 1.6207 | | 1.3496 | 16.0 | 608 | 1.7425 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
newtonkwan/gpt2-xl-ft-3
149e2ccd93d42fbd32cc82ec15073e212e57023f
2022-03-17T10:47:43.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-3
1
null
transformers
30,886
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.3062 | | No log | 2.0 | 312 | 1.3141 | | No log | 3.0 | 468 | 1.3810 | | 1.1725 | 4.0 | 624 | 1.4315 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 138.43353271484375 ### Dataset Size Size: 25000
MolePatrol/Olbot
588257f152f9295996d78d9512aa674e4eb3ff0f
2022-03-23T21:14:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MolePatrol
null
MolePatrol/Olbot
1
null
transformers
30,887
--- tags: - conversational --- # My Awesome Model
cammy/bart-large-cnn-100-lit-evalMA-ga
e0e591a5433886403c3bab497a357c08641ca6c5
2022-03-17T02:46:15.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA-ga
1
null
transformers
30,888
Entry not found
libalabala/mt5-small-finetuned-amazon-en-es
942027a143164fd3068962c2e4e8c4e24f0f39df
2022-03-24T07:00:11.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
libalabala
null
libalabala/mt5-small-finetuned-amazon-en-es
1
null
transformers
30,889
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1997 - Rouge1: 16.7312 - Rouge2: 8.6607 - Rougel: 16.1846 - Rougelsum: 16.2411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0772 | 1.0 | 1209 | 3.3307 | 12.4644 | 4.0353 | 12.0167 | 12.0722 | | 4.0223 | 2.0 | 2418 | 3.2257 | 15.338 | 7.0168 | 14.7769 | 14.8391 | | 3.8018 | 3.0 | 3627 | 3.1997 | 16.7312 | 8.6607 | 16.1846 | 16.2411 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Jungwonchang/wav2vec2-large-xls-r-300m-vietnamese-colab
53ace321d93a09b0bdba6114f678aa4b37eff471
2022-03-17T11:55:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Jungwonchang
null
Jungwonchang/wav2vec2-large-xls-r-300m-vietnamese-colab
1
null
transformers
30,890
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vietnamese-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vietnamese-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
mideind/IceBERT-ic3
afb51e2a601dafcb5a21c90645bc393bb0802852
2022-03-17T14:03:37.000Z
[ "pytorch", "roberta", "fill-mask", "is", "arxiv:2201.05601", "transformers", "icelandic", "masked-lm", "license:agpl-3.0", "autotrain_compatible" ]
fill-mask
false
mideind
null
mideind/IceBERT-ic3
1
null
transformers
30,891
--- language: is widget: - text: Má bjóða þér <mask> í kvöld? - text: Forseti <mask> er ágæt. - text: Súpan var <mask> á bragðið. tags: - roberta - icelandic - masked-lm - pytorch license: agpl-3.0 --- # IceBERT-ic3 This model was trained with fairseq using the RoBERTa-base architecture. It is one of many models we have trained for Icelandic, see the paper referenced below for further details. The training data used is shown in the table below. | Dataset | Size | Tokens | |------------------------------------------------------|---------|--------| | Icelandic Common Crawl Corpus (IC3) | 4.9 GB | 824M | ## Citation The model is described in this paper [https://arxiv.org/abs/2201.05601](https://arxiv.org/abs/2201.05601). Please cite the paper if you make use of the model. ``` @article{DBLP:journals/corr/abs-2201-05601, author = {V{\'{e}}steinn Sn{\ae}bjarnarson and Haukur Barri S{\'{\i}}monarson and P{\'{e}}tur Orri Ragnarsson and Svanhv{\'{\i}}t Lilja Ing{\'{o}}lfsd{\'{o}}ttir and Haukur P{\'{a}}ll J{\'{o}}nsson and Vilhj{\'{a}}lmur {\TH}orsteinsson and Hafsteinn Einarsson}, title = {A Warm Start and a Clean Crawled Corpus - {A} Recipe for Good Language Models}, journal = {CoRR}, volume = {abs/2201.05601}, year = {2022}, url = {https://arxiv.org/abs/2201.05601}, eprinttype = {arXiv}, eprint = {2201.05601}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-05601.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
davidlopez/distilbert-base-uncased-go-emotion-EnkelMode-cyberblue
c56d5fa0cac4f052a92412cde1018562fe2f7080
2022-03-17T14:32:17.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
davidlopez
null
davidlopez/distilbert-base-uncased-go-emotion-EnkelMode-cyberblue
1
null
transformers
30,892
Entry not found
negfir/BERT_6L
4f88b96f1a78524941d33a04412338eff7989bd9
2022-03-17T14:47:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/BERT_6L
1
null
transformers
30,893
Entry not found
newtonkwan/gpt2-xl-ft-4
e3ea0458f25f8f63edd3da2e482423b7a1ae87db
2022-03-17T16:38:08.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-ft-4
1
null
transformers
30,894
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-4 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 15 | 3.5549 | | No log | 1.96 | 30 | 1.4216 | | No log | 2.96 | 45 | 1.2969 | | No log | 3.96 | 60 | 1.2823 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 35.67070770263672 ### Dataset Size Size: 5000
Graphcore/bert-base-uncased-squad
3eb3ca0534cd06e4524883c53eabfa9ef00d5f23
2022-05-25T18:30:44.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Graphcore
null
Graphcore/bert-base-uncased-squad
1
1
transformers
30,895
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: Graphcore/bert-base-uncased-squad results: [] --- # Graphcore/bert-base-uncased-squad Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description BERT (Bidirectional Encoder Representations from Transformers) is a transformers model which is designed to pretrain bidirectional representations from unlabelled texts. It enables easy and fast fine-tuning for different downstream tasks such as Sequence Classification, Named Entity Recognition, Question Answering, Multiple Choice and MaskedLM. It was trained with two objectives in pretraining : Masked language modelling (MLM) and Next sentence prediction(NSP). First, MLM is different from traditional LM which sees the words one after another while BERT allows the model to learn a bidirectional representation. In addition to MLM, NSP is used for jointly pertaining text-pair representations. It reduces the need of many engineering efforts for building task specific architectures through pre-trained representation. And achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks. ## Intended uses & limitations This model is a fine-tuned version of [Graphcore/bert-base-uncased](https://huggingface.co/Graphcore/bert-base-uncased) on the squad dataset. ## Training and evaluation data Trained on squad dataset: - [HuggingFace/squad](https://huggingface.co/datasets/squad) ## Training procedure Model was trained on 16 Graphcore Mk2 IPUs using the [optimum-graphcore](https://github.com/huggingface/optimum-graphcore) library. Command line: ``` python examples/question-answering/run_qa.py \ --model_name_or_path Graphcore/bert-base-uncased \ --ipu_config_name Graphcore/bert-base-ipu \ --dataset_name squad \ --do_train \ --do_eval \ --num_train_epochs 3 \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 16 \ --pod_type pod16 \ --learning_rate 9e-5 \ --max_seq_length 384 \ --doc_stride 128 \ --seed 42\ --lr_scheduler_type linear \ --loss_scaling 64 \ --weight_decay 0.01 \ --warmup_ratio 0.2 \ --logging_steps 1 \ --save_steps 50 \ --dataloader_num_workers 64 \ --ipu_config_overrides "embedding_serialization_factor=2" \ --output_dir squad_v2_bert_base \ --overwrite_output_dir ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - training precision: Mixed Precision ### Training results ``` { "epoch": 3.0, "eval_exact_match": 81.79754020813624, "eval_f1": 88.84840994541061, "eval_samples": 10784 } ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 1.18.4 - Tokenizers 0.11.6
sileod/genqa
f3c2d228e77c55a8c7e8c979df520909505e0f32
2022-03-25T09:39:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sileod
null
sileod/genqa
1
null
transformers
30,896
Entry not found
beston91/gpt2-xl-ft-logits-5k
be5bba696495b3c74ad358f296b60f3ebd6fcd43
2022-03-18T02:54:46.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl-ft-logits-5k
1
null
transformers
30,897
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-vanilla-debiased-5000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-vanilla-debiased-5000 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1985 | | No log | 1.99 | 54 | 6.4583 | | No log | 2.99 | 81 | 6.7709 | | No log | 3.99 | 108 | 7.0371 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_4
8fd5ad5dbb834bdf733081bd8cc31f3f0d163be0
2022-03-18T11:11:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents_4
1
null
transformers
30,898
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.615 | 1.28 | 400 | 0.8202 | | 0.3778 | 2.56 | 800 | 0.1587 | | 0.2229 | 3.85 | 1200 | 0.1027 | | 0.1799 | 5.13 | 1600 | 0.0879 | | 0.1617 | 6.41 | 2000 | 0.0772 | | 0.1474 | 7.69 | 2400 | 0.0625 | | 0.134 | 8.97 | 2800 | 0.0498 | | 0.1213 | 10.26 | 3200 | 0.0429 | | 0.1186 | 11.54 | 3600 | 0.0434 | | 0.1118 | 12.82 | 4000 | 0.0312 | | 0.1026 | 14.1 | 4400 | 0.0365 | | 0.0951 | 15.38 | 4800 | 0.0321 | | 0.0902 | 16.67 | 5200 | 0.0262 | | 0.0843 | 17.95 | 5600 | 0.0208 | | 0.0744 | 19.23 | 6000 | 0.0140 | | 0.0718 | 20.51 | 6400 | 0.0204 | | 0.0694 | 21.79 | 6800 | 0.0133 | | 0.0636 | 23.08 | 7200 | 0.0104 | | 0.0609 | 24.36 | 7600 | 0.0084 | | 0.0559 | 25.64 | 8000 | 0.0050 | | 0.0527 | 26.92 | 8400 | 0.0089 | | 0.0495 | 28.21 | 8800 | 0.0058 | | 0.0471 | 29.49 | 9200 | 0.0047 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
calebcsjm/reverse_text_flipped_tokens_HarryPotter
427641ec385ae2c80be9d49e794964a615ee2de4
2022-03-18T03:31:13.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
calebcsjm
null
calebcsjm/reverse_text_flipped_tokens_HarryPotter
1
null
transformers
30,899
Entry not found