modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
facebook/maskformer-swin-small-ade
4b60066e3064ec1472883edfc4c6d2296359214d
2022-04-04T16:02:03.000Z
[ "pytorch", "maskformer", "dataset:ade-20k", "arxiv:2107.06278", "transformers", "vision", "image-segmentatiom", "license:apache-2.0" ]
null
false
facebook
null
facebook/maskformer-swin-small-ade
1
null
transformers
30,700
--- license: apache-2.0 tags: - vision - image-segmentatiom datasets: - ade-20k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # Mask Mask model trained on ade-20k. It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169). Disclaimer: The team releasing Mask did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MaskFormer addresses semantic segmentation with a mask classification paradigm instead. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=maskformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-ade") >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to feature_extractor for postprocessing >>> output = feature_extractor.post_process_segmentation(outputs) >>> output = feature_extractor.post_process_semantic_segmentation(outputs) >>> output = feature_extractor.post_process_panoptic_segmentation(outputs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer).
facebook/maskformer-swin-tiny-coco
a1e0c132b7da81eb1d33153b58f058694b89c324
2022-04-04T16:02:11.000Z
[ "pytorch", "maskformer", "dataset:coco", "arxiv:2107.06278", "transformers", "vision", "image-segmentatiom", "license:apache-2.0" ]
null
false
facebook
null
facebook/maskformer-swin-tiny-coco
1
null
transformers
30,701
--- license: apache-2.0 tags: - vision - image-segmentatiom datasets: - coco --- # Mask Mask model trained on coco. It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169). Disclaimer: The team releasing Mask did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MaskFormer addresses semantic segmentation with a mask classification paradigm instead. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=maskformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-base-ade") >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to feature_extractor for postprocessing >>> output = feature_extractor.post_process_segmentation(outputs) >>> output = feature_extractor.post_process_semantic_segmentation(outputs) >>> output = feature_extractor.post_process_panoptic_segmentation(outputs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer).
taesu/ts-test2
19938845c7f57033206e968057bb7670eb2b778c
2022-03-02T11:18:23.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
taesu
null
taesu/ts-test2
1
null
transformers
30,702
Entry not found
spy24/autonlp-AUS-to-US2-606817121
6a6e7f8433b6003190fd8145244733decf2c6d42
2022-03-02T10:00:43.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-AUS-to-US2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-AUS-to-US2-606817121
1
1
transformers
30,703
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-AUS-to-US2 co2_eq_emissions: 1.1512164322839105 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 606817121 - CO2 Emissions (in grams): 1.1512164322839105 ## Validation Metrics - Loss: 2.0312094688415527 - Rouge1: 34.8844 - Rouge2: 5.2023 - RougeL: 34.6339 - RougeLsum: 34.8555 - Gen Len: 3.1792 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-AUS-to-US2-606817121 ```
spy24/autonlp-US-to-AUS3-606917136
ddf0331dd86bfedf2a7dfb97591c6201405b8cf9
2022-03-02T10:03:47.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-US-to-AUS3", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-US-to-AUS3-606917136
1
null
transformers
30,704
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-US-to-AUS3 co2_eq_emissions: 1.2956300881026077 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 606917136 - CO2 Emissions (in grams): 1.2956300881026077 ## Validation Metrics - Loss: 2.2489309310913086 - Rouge1: 31.0639 - Rouge2: 2.2447 - RougeL: 31.1492 - RougeLsum: 31.1753 - Gen Len: 3.4798 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US-to-AUS3-606917136 ```
spy24/autonlp-US_to_AUS-607117159
33bc95bcba895d7dedc92c7d55b97f244a591aa3
2022-03-02T10:35:42.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-US_to_AUS", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-US_to_AUS-607117159
1
1
transformers
30,705
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-US_to_AUS co2_eq_emissions: 1.4276876566788055 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 607117159 - CO2 Emissions (in grams): 1.4276876566788055 ## Validation Metrics - Loss: 1.5177973508834839 - Rouge1: 46.134 - Rouge2: 10.578 - RougeL: 45.8856 - RougeLsum: 46.0088 - Gen Len: 3.7283 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US_to_AUS-607117159 ```
creynier/wav2vec2-base-swbd-turn-small-4
e277b089e479633479cfabdb5b9ebef91876874e
2022-03-02T18:40:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-small-4
1
null
transformers
30,706
Entry not found
ncoop57/multi_prog_code_clippy
9fc4aaac4bb5341573b512fa26cc0f1ca53381a3
2022-03-03T13:13:48.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/multi_prog_code_clippy
1
null
transformers
30,707
Entry not found
Kuray107/librispeech-100h-supervised
a199f9cbc19520b6e2c5a66a41b8cfa66def43cf
2022-03-06T08:07:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/librispeech-100h-supervised
1
null
transformers
30,708
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: librispeech-100h-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-100h-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.8277 | 0.42 | 500 | 2.9071 | 1.0 | | 2.0261 | 0.84 | 1000 | 0.3060 | 0.2496 | | 0.2181 | 1.26 | 1500 | 0.1172 | 0.0873 | | 0.1255 | 1.68 | 2000 | 0.0894 | 0.0637 | | 0.0971 | 2.1 | 2500 | 0.0821 | 0.0560 | | 0.078 | 2.52 | 3000 | 0.0751 | 0.0500 | | 0.0706 | 2.94 | 3500 | 0.0721 | 0.0456 | | 0.0609 | 3.36 | 4000 | 0.0755 | 0.0464 | | 0.0572 | 3.78 | 4500 | 0.0705 | 0.0431 | | 0.0528 | 4.2 | 5000 | 0.0715 | 0.0423 | | 0.0481 | 4.62 | 5500 | 0.0691 | 0.0403 | | 0.0471 | 5.04 | 6000 | 0.0743 | 0.0401 | | 0.0412 | 5.46 | 6500 | 0.0757 | 0.0399 | | 0.0416 | 5.88 | 7000 | 0.0688 | 0.0378 | | 0.0391 | 6.3 | 7500 | 0.0704 | 0.0383 | | 0.0367 | 6.72 | 8000 | 0.0742 | 0.0387 | | 0.0349 | 7.14 | 8500 | 0.0732 | 0.0388 | | 0.033 | 7.56 | 9000 | 0.0719 | 0.0374 | | 0.0327 | 7.98 | 9500 | 0.0750 | 0.0369 | | 0.0292 | 8.4 | 10000 | 0.0734 | 0.0368 | | 0.0303 | 8.82 | 10500 | 0.0733 | 0.0365 | | 0.0283 | 9.24 | 11000 | 0.0766 | 0.0357 | | 0.0269 | 9.66 | 11500 | 0.0761 | 0.0350 | | 0.0268 | 10.08 | 12000 | 0.0802 | 0.0359 | | 0.0245 | 10.42 | 12500 | 0.0758 | 0.0354 | | 0.023 | 10.84 | 13000 | 0.0775 | 0.0349 | | 0.0186 | 11.26 | 13500 | 0.0817 | 0.0355 | | 0.0176 | 11.68 | 14000 | 0.0853 | 0.0354 | | 0.0163 | 12.1 | 14500 | 0.0880 | 0.0347 | | 0.0156 | 12.52 | 15000 | 0.0864 | 0.0357 | | 0.0141 | 12.94 | 15500 | 0.0897 | 0.0355 | | 0.0134 | 13.36 | 16000 | 0.0915 | 0.0349 | | 0.013 | 13.78 | 16500 | 0.0928 | 0.0350 | | 0.0097 | 13.42 | 17000 | 0.0955 | 0.0345 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
yoavgur/gpt2-bash-history-baseline
2214af1f99cd46346e82f5e84d6539a9214cf6b5
2022-03-02T23:02:12.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
yoavgur
null
yoavgur/gpt2-bash-history-baseline
1
null
transformers
30,709
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-bash-history-baseline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-bash-history-baseline This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 158 | 2.1038 | | No log | 2.0 | 316 | 2.0349 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
jiobiala24/wav2vec2-base-1
3282e19f8f8b8f4ffa2b0053819f0f6f79a46cf8
2022-03-03T10:47:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-1
1
null
transformers
30,710
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9254 - Wer: 0.3216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.6597 | 2.2 | 1000 | 0.8904 | 0.5388 | | 0.4751 | 4.41 | 2000 | 0.7009 | 0.3976 | | 0.3307 | 6.61 | 3000 | 0.7068 | 0.3672 | | 0.2574 | 8.81 | 4000 | 0.7320 | 0.3544 | | 0.2096 | 11.01 | 5000 | 0.7803 | 0.3418 | | 0.177 | 13.22 | 6000 | 0.7768 | 0.3423 | | 0.1521 | 15.42 | 7000 | 0.8113 | 0.3375 | | 0.1338 | 17.62 | 8000 | 0.8153 | 0.3325 | | 0.1168 | 19.82 | 9000 | 0.8851 | 0.3306 | | 0.104 | 22.03 | 10000 | 0.8811 | 0.3277 | | 0.0916 | 24.23 | 11000 | 0.8722 | 0.3254 | | 0.083 | 26.43 | 12000 | 0.9527 | 0.3265 | | 0.0766 | 28.63 | 13000 | 0.9254 | 0.3216 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
StivenLancheros/Roberta-base-bne-NER-EN-ES
a9f30c54b9180834ea27b669167f6dc2213a2e69
2021-11-12T13:12:47.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2002", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/Roberta-base-bne-NER-EN-ES
1
null
transformers
30,711
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-bne-finetuned-ner-finetuned2-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 args: es metrics: - name: Precision type: precision value: 0.8697727272727273 - name: Recall type: recall value: 0.8793658088235294 - name: F1 type: f1 value: 0.8745429616087752 - name: Accuracy type: accuracy value: 0.9808778791829639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-ner-finetuned2-ner This model is a fine-tuned version of [StivenLancheros/roberta-base-bne-finetuned-ner](https://huggingface.co/StivenLancheros/roberta-base-bne-finetuned-ner) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1067 - Precision: 0.8698 - Recall: 0.8794 - F1: 0.8745 - Accuracy: 0.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0582 | 1.0 | 1665 | 0.0852 | 0.8697 | 0.8759 | 0.8728 | 0.9800 | | 0.0297 | 2.0 | 3330 | 0.0919 | 0.8841 | 0.8867 | 0.8854 | 0.9817 | | 0.0121 | 3.0 | 4995 | 0.0950 | 0.8751 | 0.8807 | 0.8779 | 0.9812 | | 0.0056 | 4.0 | 6660 | 0.1067 | 0.8698 | 0.8794 | 0.8745 | 0.9809 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
cammy/bart-large-cnn-finetuned-weaksup-100-pad-early
e86bf1fadee55590a6141b6cf7fbf664137861d7
2022-03-03T06:29:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-100-pad-early
1
null
transformers
30,712
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-100-pad-early results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-100-pad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0714 - Rouge1: 26.6767 - Rouge2: 8.6321 - Rougel: 17.4235 - Rougelsum: 21.6089 - Gen Len: 66.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.0405 | 26.8313 | 10.4295 | 19.1329 | 23.8101 | 64.6 | | No log | 2.0 | 200 | 1.0714 | 26.6767 | 8.6321 | 17.4235 | 21.6089 | 66.1 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
sadkat/technoai
689d5df4b7333dd72343143b985de7965e2735a1
2022-03-03T09:20:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sadkat
null
sadkat/technoai
1
null
transformers
30,713
--- tags: - conversational --- #technoai model
kookyklavicle/sean-diaz-bot
14558dcd7a5ec5c8d8c0eac86e17057a78f0d451
2022-03-03T11:20:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kookyklavicle
null
kookyklavicle/sean-diaz-bot
1
null
transformers
30,714
--- tags: - conversational --- # Sean Diaz Model
kookyklavicle/sean-diaz
7e8f1d51d67ee5718d6d6a6c4afece7a8e778ee1
2022-03-10T09:46:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kookyklavicle
null
kookyklavicle/sean-diaz
1
null
transformers
30,715
--- tags: - conversational --- # Sean Diaz (Life is Strange 2) Chat Model
Bistolero/aka
50093c06b7bf4293956f95212ee22f8cbedc1cd8
2022-03-03T18:59:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/aka
1
null
transformers
30,716
Entry not found
batterydata/batteryonlybert-cased
4cdf2ccc7f1e3c45b5843bd018eb9e766967ca33
2022-03-05T16:04:11.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:batterypapers", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
batterydata
null
batterydata/batteryonlybert-cased
1
null
transformers
30,717
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatteryOnlyBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference between english and English. ## Model description BatteryOnlyBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatteryOnlyBERT model was pretrained on the full text of battery papers only. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 30,522. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,500,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batteryonlybert-uncased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-uncased') model = BertModel.from_pretrained('batterydata/batteryonlybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-uncased') model = TFBertModel.from_pretrained('batterydata/batteryonlybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 1.1012. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
cammy/bart-large-cnn-finetuned-new-100-doc-pad-early
9fffcf0aed233062afa3da579d3a5b1004d3430d
2022-03-04T01:13:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-new-100-doc-pad-early
1
null
transformers
30,718
Entry not found
jiobiala24/wav2vec2-base-2
c69327d473cfd4025a27d29a863129a0e808856e
2022-03-04T15:56:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-2
1
null
transformers
30,719
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-2 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-1](https://huggingface.co/jiobiala24/wav2vec2-base-1) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9415 - Wer: 0.3076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4206 | 1.96 | 1000 | 0.6022 | 0.3435 | | 0.3278 | 3.93 | 2000 | 0.6191 | 0.3344 | | 0.2604 | 5.89 | 3000 | 0.6170 | 0.3288 | | 0.2135 | 7.86 | 4000 | 0.6590 | 0.3239 | | 0.1805 | 9.82 | 5000 | 0.7359 | 0.3289 | | 0.1582 | 11.79 | 6000 | 0.7450 | 0.3276 | | 0.1399 | 13.75 | 7000 | 0.7914 | 0.3218 | | 0.1252 | 15.72 | 8000 | 0.8254 | 0.3185 | | 0.1095 | 17.68 | 9000 | 0.8524 | 0.3184 | | 0.1 | 19.65 | 10000 | 0.8340 | 0.3165 | | 0.0905 | 21.61 | 11000 | 0.8846 | 0.3161 | | 0.0819 | 23.58 | 12000 | 0.8994 | 0.3142 | | 0.0763 | 25.54 | 13000 | 0.9018 | 0.3134 | | 0.0726 | 27.5 | 14000 | 0.9552 | 0.3081 | | 0.0668 | 29.47 | 15000 | 0.9415 | 0.3076 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
aaraki/opus-mt-en-ro-finetuned-en-to-ro
091aa3cee98200f21905a0640879ab7ea9708eda
2022-03-22T01:39:06.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aaraki
null
aaraki/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
30,720
Entry not found
ssardorf/pegasus-summ
56e0c06848953c25c4424c1fc19528ba481b1f06
2022-04-26T10:16:01.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ssardorf
null
ssardorf/pegasus-summ
1
null
transformers
30,721
Entry not found
mmaguero/gn-bert-small-cased
376acd914909c29fdb5751c1746b371f7609986a
2022-03-06T08:02:33.000Z
[ "pytorch", "bert", "fill-mask", "gn", "dataset:wikipedia", "dataset:wiktionary", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
mmaguero
null
mmaguero/gn-bert-small-cased
1
null
transformers
30,722
--- language: gn license: mit datasets: - wikipedia - wiktionary widget: - text: "Paraguay ha'e peteĩ táva oĩva [MASK] retãme " --- # BERT-i-small-cased (gnBERT-small-cased) A pre-trained BERT model for **Guarani** (6 layers, cased). Trained on Wikipedia + Wiktionary (~800K tokens).
jish/distilgpt2-finetuned-wikitext2
590c63e1eddfcfc50e39547d13df7c457e5b1be6
2022-03-04T15:14:19.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
jish
null
jish/distilgpt2-finetuned-wikitext2
1
null
transformers
30,723
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.633 | 2.0 | 4668 | 3.6455 | | 3.6078 | 3.0 | 7002 | 3.6423 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Ameer05/model-token-repo
e27616fca46d4737a9d4bee9504bda94f7a5342a
2022-03-04T15:09:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ameer05
null
Ameer05/model-token-repo
1
null
transformers
30,724
Entry not found
Aktsvigun/bart-base-tapt-xsum
4fc5ccb97196f21691ef21b494ff5581f172b5f8
2022-03-04T16:09:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base-tapt-xsum
1
null
transformers
30,725
Entry not found
akadriu/wav2vec2-large-xlsr-53-Total_2e-4_2
dd6bf8b07f28873467f7d6aef577b549c18678e4
2022-03-05T05:18:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-Total_2e-4_2
1
null
transformers
30,726
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-Total_2e-4_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Total_2e-4_2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2733 - Wer: 0.2116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.2741 | 0.1 | 200 | 2.9070 | 0.9707 | | 2.034 | 0.2 | 400 | 0.7240 | 0.6798 | | 1.0037 | 0.3 | 600 | 0.5651 | 0.5368 | | 0.8834 | 0.4 | 800 | 0.4709 | 0.4669 | | 0.7973 | 0.5 | 1000 | 0.4305 | 0.4261 | | 0.7489 | 0.6 | 1200 | 0.4017 | 0.3763 | | 0.7507 | 0.7 | 1400 | 0.3662 | 0.3481 | | 0.7108 | 0.8 | 1600 | 0.3604 | 0.3513 | | 0.7151 | 0.9 | 1800 | 0.3563 | 0.3406 | | 0.6755 | 1.0 | 2000 | 0.3365 | 0.3210 | | 0.6038 | 1.1 | 2200 | 0.3394 | 0.3053 | | 0.6109 | 1.2 | 2400 | 0.3179 | 0.2844 | | 0.5999 | 1.3 | 2600 | 0.3166 | 0.2773 | | 0.6291 | 1.4 | 2800 | 0.3134 | 0.2733 | | 0.626 | 1.5 | 3000 | 0.3060 | 0.2690 | | 0.6188 | 1.6 | 3200 | 0.3038 | 0.2644 | | 0.5757 | 1.7 | 3400 | 0.3015 | 0.2566 | | 0.5943 | 1.8 | 3600 | 0.2925 | 0.2494 | | 0.6043 | 1.9 | 3800 | 0.2858 | 0.2491 | | 0.5874 | 2.0 | 4000 | 0.2874 | 0.2452 | | 0.5263 | 2.1 | 4200 | 0.2800 | 0.2364 | | 0.5282 | 2.2 | 4400 | 0.2848 | 0.2387 | | 0.4953 | 2.3 | 4600 | 0.2793 | 0.2360 | | 0.5428 | 2.4 | 4800 | 0.2863 | 0.2414 | | 0.5618 | 2.5 | 5000 | 0.2788 | 0.2350 | | 0.5395 | 2.6 | 5200 | 0.2765 | 0.2325 | | 0.5178 | 2.7 | 5400 | 0.2787 | 0.2351 | | 0.5264 | 2.8 | 5600 | 0.2755 | 0.2312 | | 0.5222 | 2.9 | 5800 | 0.2692 | 0.2258 | | 0.5184 | 3.0 | 6000 | 0.2681 | 0.2242 | | 0.4826 | 3.1 | 6200 | 0.2736 | 0.2224 | | 0.479 | 3.2 | 6400 | 0.2896 | 0.2353 | | 0.4938 | 3.3 | 6600 | 0.2744 | 0.2252 | | 0.4772 | 3.4 | 6800 | 0.2735 | 0.2242 | | 0.4831 | 3.5 | 7000 | 0.2721 | 0.2225 | | 0.4869 | 3.6 | 7200 | 0.2710 | 0.2194 | | 0.4515 | 3.7 | 7400 | 0.2692 | 0.2196 | | 0.4732 | 3.8 | 7600 | 0.2729 | 0.2269 | | 0.4683 | 3.9 | 7800 | 0.2713 | 0.2211 | | 0.4674 | 4.0 | 8000 | 0.2642 | 0.2116 | | 0.4239 | 4.1 | 8200 | 0.2773 | 0.2176 | | 0.4306 | 4.2 | 8400 | 0.2779 | 0.2191 | | 0.441 | 4.3 | 8600 | 0.2758 | 0.2136 | | 0.4343 | 4.4 | 8800 | 0.2797 | 0.2203 | | 0.4059 | 4.5 | 9000 | 0.2763 | 0.2159 | | 0.4399 | 4.6 | 9200 | 0.2755 | 0.2123 | | 0.4131 | 4.7 | 9400 | 0.2741 | 0.2124 | | 0.4331 | 4.8 | 9600 | 0.2728 | 0.2101 | | 0.4288 | 4.9 | 9800 | 0.2730 | 0.2110 | | 0.4341 | 5.0 | 10000 | 0.2733 | 0.2116 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
voice/wav2vec2-large-xlsr-common1000asli-demo-colab
4bfaac1362649e124937508f1fcc0ff2dfe00d6c
2022-04-06T09:17:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
voice
null
voice/wav2vec2-large-xlsr-common1000asli-demo-colab
1
null
transformers
30,727
Entry not found
Kuray107/swbd-5percent-supervised
cabf9cd145c2d78b339b721842afe22848c1533e
2022-03-06T16:14:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/swbd-5percent-supervised
1
null
transformers
30,728
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: swbd-5percent-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swbd-5percent-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Wer: 0.1352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8534 | 0.64 | 1000 | 2.9535 | 1.0 | | 1.8605 | 1.28 | 2000 | 0.7878 | 0.3719 | | 0.9862 | 1.92 | 3000 | 0.5906 | 0.2684 | | 0.8405 | 2.56 | 4000 | 0.5555 | 0.2151 | | 0.6972 | 3.2 | 5000 | 0.5905 | 0.1992 | | 0.6033 | 3.84 | 6000 | 0.4867 | 0.1781 | | 0.5393 | 4.48 | 7000 | 0.5447 | 0.1805 | | 0.529 | 5.12 | 8000 | 0.5398 | 0.1746 | | 0.5072 | 5.77 | 9000 | 0.5093 | 0.1706 | | 0.4331 | 6.41 | 10000 | 0.4990 | 0.1627 | | 0.4837 | 7.05 | 11000 | 0.5319 | 0.1634 | | 0.3867 | 7.69 | 12000 | 0.4866 | 0.1595 | | 0.345 | 8.33 | 13000 | 0.5202 | 0.1582 | | 0.372 | 8.97 | 14000 | 0.5396 | 0.1547 | | 0.355 | 9.61 | 15000 | 0.5992 | 0.1493 | | 0.3258 | 10.25 | 16000 | 0.5247 | 0.1527 | | 0.3327 | 10.89 | 17000 | 0.5664 | 0.1512 | | 0.3422 | 11.53 | 18000 | 0.5819 | 0.1456 | | 0.2815 | 12.17 | 19000 | 0.5692 | 0.1453 | | 0.2719 | 12.81 | 20000 | 0.5012 | 0.1476 | | 0.2838 | 13.45 | 21000 | 0.5286 | 0.1454 | | 0.2418 | 14.09 | 22000 | 0.6238 | 0.1486 | | 0.2412 | 14.73 | 23000 | 0.5889 | 0.1456 | | 0.2227 | 15.37 | 24000 | 0.5901 | 0.1459 | | 0.2129 | 16.02 | 25000 | 0.5959 | 0.1454 | | 0.2071 | 16.66 | 26000 | 0.6259 | 0.1427 | | 0.2185 | 17.3 | 27000 | 0.6581 | 0.1437 | | 0.1982 | 17.94 | 28000 | 0.6194 | 0.1411 | | 0.1928 | 18.58 | 29000 | 0.5940 | 0.1409 | | 0.1885 | 19.22 | 30000 | 0.6733 | 0.1417 | | 0.1835 | 19.86 | 31000 | 0.6363 | 0.1393 | | 0.1756 | 20.5 | 32000 | 0.6675 | 0.1382 | | 0.1776 | 21.14 | 33000 | 0.6147 | 0.1407 | | 0.1758 | 21.78 | 34000 | 0.6405 | 0.1420 | | 0.1645 | 22.42 | 35000 | 0.6999 | 0.1401 | | 0.1631 | 23.06 | 36000 | 0.6224 | 0.1385 | | 0.1494 | 23.7 | 37000 | 0.6639 | 0.1374 | | 0.1472 | 24.34 | 38000 | 0.6471 | 0.1373 | | 0.1514 | 24.98 | 39000 | 0.6570 | 0.1395 | | 0.1527 | 25.62 | 40000 | 0.6876 | 0.1375 | | 0.1514 | 26.27 | 41000 | 0.6835 | 0.1376 | | 0.1344 | 26.91 | 42000 | 0.6987 | 0.1372 | | 0.1267 | 27.55 | 43000 | 0.7026 | 0.1362 | | 0.1384 | 28.19 | 44000 | 0.7021 | 0.1366 | | 0.1264 | 28.83 | 45000 | 0.7016 | 0.1355 | | 0.1227 | 29.47 | 46000 | 0.6970 | 0.1352 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
crabz/slovakbert-upos
6e97f3283ef756771374064d469e7cac377e852a
2022-03-06T12:31:41.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
crabz
null
crabz/slovakbert-upos
1
null
transformers
30,729
--- license: mit inference: false ---
crabz/distil-slovakbert-upos
9156f9ef1d2a819eb746bb05ff45a8ab87f6bc6a
2022-03-06T12:38:56.000Z
[ "pytorch", "roberta", "token-classification", "dataset:universal_dependencies", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
crabz
null
crabz/distil-slovakbert-upos
1
null
transformers
30,730
--- tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy inference: false model-index: - name: distil-slovakbert-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies sk_snk type: universal_dependencies args: sk_snk metrics: - name: Precision type: precision value: 0.9771104035797263 - name: Recall type: recall value: 0.9785418821096173 - name: F1 type: f1 value: 0.9778256189451022 - name: Accuracy type: accuracy value: 0.9800851200513933 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-slovakbert-upos This model is a fine-tuned version of [crabz/distil-slovakbert](https://huggingface.co/crabz/distil-slovakbert) on the universal_dependencies sk_snk dataset. It achieves the following results on the evaluation set: - Loss: 0.1207 - Precision: 0.9771 - Recall: 0.9785 - F1: 0.9778 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 266 | 0.2168 | 0.9570 | 0.9554 | 0.9562 | 0.9610 | | 0.3935 | 2.0 | 532 | 0.1416 | 0.9723 | 0.9736 | 0.9730 | 0.9740 | | 0.3935 | 3.0 | 798 | 0.1236 | 0.9722 | 0.9735 | 0.9728 | 0.9747 | | 0.0664 | 4.0 | 1064 | 0.1195 | 0.9722 | 0.9741 | 0.9732 | 0.9766 | | 0.0664 | 5.0 | 1330 | 0.1160 | 0.9764 | 0.9772 | 0.9768 | 0.9789 | | 0.0377 | 6.0 | 1596 | 0.1194 | 0.9763 | 0.9776 | 0.9770 | 0.9790 | | 0.0377 | 7.0 | 1862 | 0.1188 | 0.9740 | 0.9755 | 0.9748 | 0.9777 | | 0.024 | 8.0 | 2128 | 0.1188 | 0.9762 | 0.9777 | 0.9769 | 0.9793 | | 0.024 | 9.0 | 2394 | 0.1207 | 0.9774 | 0.9789 | 0.9781 | 0.9802 | | 0.0184 | 10.0 | 2660 | 0.1207 | 0.9771 | 0.9785 | 0.9778 | 0.9801 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.11.0
willcai/wav2vec2-large-xls-r-300m-tr-colab
880c495acdf1823b7cc5fc76bf6f1a496c4fdf9a
2022-03-08T03:06:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2-large-xls-r-300m-tr-colab
1
null
transformers
30,731
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4121 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1868 | 1.83 | 400 | 0.9812 | 0.8398 | | 0.691 | 3.67 | 800 | 0.5571 | 0.6298 | | 0.3555 | 5.5 | 1200 | 0.4676 | 0.4779 | | 0.2451 | 7.34 | 1600 | 0.4572 | 0.4541 | | 0.1844 | 9.17 | 2000 | 0.4743 | 0.4389 | | 0.1541 | 11.01 | 2400 | 0.4583 | 0.4300 | | 0.1277 | 12.84 | 2800 | 0.4565 | 0.3950 | | 0.1122 | 14.68 | 3200 | 0.4761 | 0.4087 | | 0.0975 | 16.51 | 3600 | 0.4654 | 0.3786 | | 0.0861 | 18.35 | 4000 | 0.4503 | 0.3667 | | 0.0775 | 20.18 | 4400 | 0.4600 | 0.3581 | | 0.0666 | 22.02 | 4800 | 0.4350 | 0.3504 | | 0.0627 | 23.85 | 5200 | 0.4211 | 0.3349 | | 0.0558 | 25.69 | 5600 | 0.4390 | 0.3333 | | 0.0459 | 27.52 | 6000 | 0.4218 | 0.3185 | | 0.0439 | 29.36 | 6400 | 0.4121 | 0.3112 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
sunitha/CV_Custom_DS
1a0a98bb254338bb58c9454045723b27ba8ad9cb
2022-03-06T06:26:13.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/CV_Custom_DS
1
null
transformers
30,732
Entry not found
Freak55/DialoGPT-small-Phoenix-Wright
7e947c22c67f82200d26fb20e0096048710e2de9
2022-03-06T06:59:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Freak55
null
Freak55/DialoGPT-small-Phoenix-Wright
1
null
transformers
30,733
--- tags: - conversational ---
P4RZ1V4L/DialoGPT-medium-tonystark
80727bbdeee4f10643fa6ee783ebef8dc88b32cf
2022-03-06T10:22:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
P4RZ1V4L
null
P4RZ1V4L/DialoGPT-medium-tonystark
1
null
transformers
30,734
--- tags: - conversational --- 0 Tony Stark DialoGPT Model
akadriu/wav2vec2-large-xlsr-53-Total2e-4_4
f4432a42bfdc0c2df2961aa5c92d925a467e6845
2022-03-06T19:58:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-Total2e-4_4
1
null
transformers
30,735
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-Total2e-4_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Total2e-4_4 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2474 - Wer: 0.1951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.5015 | 0.1 | 200 | 2.9261 | 0.9707 | | 2.9197 | 0.2 | 400 | 2.7757 | 0.9707 | | 1.7594 | 0.3 | 600 | 0.6117 | 0.5746 | | 1.0908 | 0.4 | 800 | 0.4673 | 0.4530 | | 0.9441 | 0.5 | 1000 | 0.4142 | 0.4010 | | 0.8688 | 0.6 | 1200 | 0.3909 | 0.3675 | | 0.849 | 0.7 | 1400 | 0.3649 | 0.3360 | | 0.8223 | 0.8 | 1600 | 0.3532 | 0.3334 | | 0.821 | 0.9 | 1800 | 0.3513 | 0.3185 | | 0.7839 | 1.0 | 2000 | 0.3373 | 0.3039 | | 0.714 | 1.1 | 2200 | 0.3210 | 0.2922 | | 0.7129 | 1.2 | 2400 | 0.3216 | 0.2860 | | 0.7076 | 1.3 | 2600 | 0.3279 | 0.2843 | | 0.73 | 1.4 | 2800 | 0.3111 | 0.2662 | | 0.7256 | 1.5 | 3000 | 0.3032 | 0.2625 | | 0.72 | 1.6 | 3200 | 0.3066 | 0.2571 | | 0.6754 | 1.7 | 3400 | 0.2999 | 0.2581 | | 0.6859 | 1.8 | 3600 | 0.2935 | 0.2562 | | 0.6966 | 1.9 | 3800 | 0.2858 | 0.2469 | | 0.6791 | 2.0 | 4000 | 0.2857 | 0.2393 | | 0.6412 | 2.1 | 4200 | 0.2815 | 0.2392 | | 0.6356 | 2.2 | 4400 | 0.2836 | 0.2343 | | 0.6048 | 2.3 | 4600 | 0.2824 | 0.2422 | | 0.6473 | 2.4 | 4800 | 0.2805 | 0.2316 | | 0.659 | 2.5 | 5000 | 0.2775 | 0.2262 | | 0.6412 | 2.6 | 5200 | 0.2729 | 0.2249 | | 0.6167 | 2.7 | 5400 | 0.2719 | 0.2227 | | 0.6226 | 2.8 | 5600 | 0.2661 | 0.2193 | | 0.6168 | 2.9 | 5800 | 0.2615 | 0.2172 | | 0.6145 | 3.0 | 6000 | 0.2608 | 0.2148 | | 0.593 | 3.1 | 6200 | 0.2643 | 0.2123 | | 0.5919 | 3.2 | 6400 | 0.2617 | 0.2131 | | 0.6115 | 3.3 | 6600 | 0.2589 | 0.2114 | | 0.5859 | 3.4 | 6800 | 0.2591 | 0.2100 | | 0.5919 | 3.5 | 7000 | 0.2564 | 0.2103 | | 0.5873 | 3.6 | 7200 | 0.2572 | 0.2074 | | 0.561 | 3.7 | 7400 | 0.2561 | 0.2056 | | 0.5808 | 3.8 | 7600 | 0.2538 | 0.2062 | | 0.5701 | 3.9 | 7800 | 0.2517 | 0.2029 | | 0.5722 | 4.0 | 8000 | 0.2523 | 0.2007 | | 0.5508 | 4.1 | 8200 | 0.2570 | 0.2023 | | 0.5591 | 4.2 | 8400 | 0.2502 | 0.2029 | | 0.5697 | 4.3 | 8600 | 0.2478 | 0.1991 | | 0.5689 | 4.4 | 8800 | 0.2492 | 0.2021 | | 0.5345 | 4.5 | 9000 | 0.2498 | 0.2005 | | 0.5726 | 4.6 | 9200 | 0.2492 | 0.1983 | | 0.5382 | 4.7 | 9400 | 0.2487 | 0.1974 | | 0.5614 | 4.8 | 9600 | 0.2481 | 0.1957 | | 0.5568 | 4.9 | 9800 | 0.2477 | 0.1955 | | 0.5631 | 5.0 | 10000 | 0.2474 | 0.1951 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
adalbertojunior/test-256-uncased-3
c3160aa02e4da52d5c1fa8f7327dc3218c1fe877
2022-03-06T13:38:25.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test-256-uncased-3
1
null
transformers
30,736
Entry not found
princeton-nlp/datamux-ner-2
d291b4d93253607a578d4d6de39192c6d2bc2c29
2022-03-06T17:06:14.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-ner-2
1
null
transformers
30,737
Entry not found
princeton-nlp/datamux-ner-5
2d7be9d3bf0126fe7feec8b392ed9a1f546d7342
2022-03-06T17:08:02.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-ner-5
1
null
transformers
30,738
Entry not found
princeton-nlp/datamux-ner-20
07ae7c4c793789af6bf7d283b7924a4b6fb1884f
2022-03-06T17:12:26.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-ner-20
1
null
transformers
30,739
Entry not found
princeton-nlp/datamux-ner-40
d00597575e3ba5072b1bcf4c0ec77fb37beed7db
2022-03-06T17:13:45.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-ner-40
1
null
transformers
30,740
Entry not found
phosseini/atomic-bert-large
35da6e6c896b3b7218e0b6b1137d915e55d3f581
2022-04-13T05:15:32.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
phosseini
null
phosseini/atomic-bert-large
1
null
transformers
30,741
Entry not found
nairaxo/dev-darija
0778688a465028635a95776bdbfce93b55282fb6
2022-03-20T05:58:06.000Z
[ "wav2vec2", "feature-extraction", "ar", "dataset:commonvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
nairaxo
null
nairaxo/dev-darija
1
null
speechbrain
30,742
--- language: "ar" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # About DVoice DVoice is a community initiative that aims to provide African languages and dialects with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each language. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling the recordings. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola and Soninke. This Darija ASR model is the first results that we obtained with the constructed dataset. # wav2vec 2.0 with CTC/Attention trained on DVoice Darija (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [DVoice](https://zenodo.org/record/6342622) Darija dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 5.51 | 18.46 | 5.85 | 18.28 | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Darija) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="nairaxo/dvoice-darija", savedir="pretrained_models/asr-wav2vec2-dvoice-dar") asr_model.transcribe_file('./the_path_to_your_audio_file') ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training To train the model from scratch, please see our GitHub tutorial [here](https://github.com/AIOXLABS/DVoice). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
Splend1dchan/byt5small-squad-5000
0b6bf2a8bf75bb12b3ee6e1422a8b6d0c85956cd
2022-03-07T04:39:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5small-squad-5000
1
null
transformers
30,743
Byt5 trained on squad, input = 512, output = 256, 5000 steps Tokenizer is Byt5
akshaychaudhary/distilbert-base-uncased-finetuned-devops-ner
2c66a0bbb09196ba020939cb5c3be2046c8522ba
2022-03-07T06:58:51.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akshaychaudhary
null
akshaychaudhary/distilbert-base-uncased-finetuned-devops-ner
1
null
transformers
30,744
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-devops-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-devops-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6065 - Precision: 0.0254 - Recall: 0.1371 - F1: 0.0428 - Accuracy: 0.7637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 144 | 0.8566 | 0.0300 | 0.1573 | 0.0503 | 0.7742 | | No log | 2.0 | 288 | 1.3542 | 0.0283 | 0.1532 | 0.0477 | 0.7641 | | No log | 3.0 | 432 | 1.6065 | 0.0254 | 0.1371 | 0.0428 | 0.7637 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Splend1dchan/byt5small-squad
9423c0514b6b4007f950344694fa70c5cfa2aa34
2022-03-07T15:36:09.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5small-squad
1
null
transformers
30,745
Entry not found
Kevincp560/distilbart-cnn-12-3-finetuned-pubmed
6f187736946ff2604fb4bda678c2a2e057b3ab03
2022-03-07T15:55:27.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/distilbart-cnn-12-3-finetuned-pubmed
1
null
transformers
30,746
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-cnn-12-3-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 40.5642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-3-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-3](https://huggingface.co/sshleifer/distilbart-cnn-12-3) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.1743 - Rouge1: 40.5642 - Rouge2: 16.9812 - Rougel: 25.3449 - Rougelsum: 36.46 - Gen Len: 141.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.469 | 1.0 | 4000 | 2.2956 | 38.3713 | 15.2594 | 23.6734 | 34.1634 | 141.707 | | 2.2527 | 2.0 | 8000 | 2.1994 | 39.5939 | 16.2376 | 24.6363 | 35.5106 | 141.831 | | 2.0669 | 3.0 | 12000 | 2.1780 | 40.078 | 16.6705 | 25.1119 | 35.9605 | 141.8475 | | 1.9275 | 4.0 | 16000 | 2.1669 | 40.0825 | 16.6169 | 24.9702 | 36.0191 | 141.928 | | 1.8102 | 5.0 | 20000 | 2.1743 | 40.5642 | 16.9812 | 25.3449 | 36.46 | 141.95 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
sunitha/AQG_CV_Squad
3c26561d0335136dc6b0f4ba64a7b6ce7d9f56ec
2022-03-07T10:39:11.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/AQG_CV_Squad
1
null
transformers
30,747
Entry not found
Splend1dchan/byt5small-glue-mprc2
3bd79d32b9f531382dc1d168207162039321a126
2022-03-07T12:47:22.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5small-glue-mprc2
1
null
transformers
30,748
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: byt5small-glue-mprc2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5small-glue-mprc2 This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.6.0a0+bf2bbd9 - Datasets 1.12.1 - Tokenizers 0.11.6
kenjis2542/mt5-small-finetuned-5k-th-to-en
08dfb7e5d9ca2d2e6db75c1d162ed0d962c7b987
2022-03-07T14:11:40.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
kenjis2542
null
kenjis2542/mt5-small-finetuned-5k-th-to-en
1
null
transformers
30,749
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-small-finetuned-5k-th-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-5k-th-to-en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
pki/wav2vec2-large-xlsr-53
58efcbc8e00a47cdb595097005612239642721e7
2022-03-07T18:37:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
pki
null
pki/wav2vec2-large-xlsr-53
1
null
transformers
30,750
Entry not found
huggingtweets/lilbratmia-littlehorney-plusbibi1
214916780a0f611bf2146dea159df8bba9cf30a6
2022-03-07T21:45:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lilbratmia-littlehorney-plusbibi1
1
null
transformers
30,751
--- language: en thumbnail: http://www.huggingtweets.com/lilbratmia-littlehorney-plusbibi1/1646689525715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386970823681052680/oA_4HBKl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500892464772751365/6uhqt-Jx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483439308166123530/vKFDbs48_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bibi und Anna & Vanny_Bunny™ & 💞 Mia 💞</div> <div style="text-align: center; font-size: 14px;">@lilbratmia-littlehorney-plusbibi1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bibi und Anna & Vanny_Bunny™ & 💞 Mia 💞. | Data | Bibi und Anna | Vanny_Bunny™ | 💞 Mia 💞 | | --- | --- | --- | --- | | Tweets downloaded | 1818 | 3230 | 3247 | | Retweets | 9 | 503 | 134 | | Short tweets | 341 | 343 | 1189 | | Tweets kept | 1468 | 2384 | 1924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hm55g9hx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lilbratmia-littlehorney-plusbibi1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dezdv7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dezdv7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lilbratmia-littlehorney-plusbibi1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jiobiala24/wav2vec2-base-cv
c519af7b9d11f5bfa06346391772b4c0f57c392c
2022-03-08T05:42:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jiobiala24
null
jiobiala24/wav2vec2-base-cv
1
null
transformers
30,752
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-cv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1562 - Wer: 0.3804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.563 | 3.18 | 500 | 2.9826 | 1.0 | | 2.0012 | 6.37 | 1000 | 0.9528 | 0.5354 | | 0.4841 | 9.55 | 1500 | 0.8838 | 0.4325 | | 0.2748 | 12.74 | 2000 | 0.9437 | 0.4130 | | 0.1881 | 15.92 | 2500 | 0.9603 | 0.4005 | | 0.1426 | 19.11 | 3000 | 1.0605 | 0.3955 | | 0.1134 | 22.29 | 3500 | 1.0733 | 0.3897 | | 0.0963 | 25.48 | 4000 | 1.1387 | 0.3835 | | 0.0829 | 28.66 | 4500 | 1.1562 | 0.3804 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
cammy/bart-large-cnn-10k-pad-early-lit
2a73127266509fae59242accbb4c678184380913
2022-03-08T08:20:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-10k-pad-early-lit
1
null
transformers
30,753
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-10k-pad-early-lit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-10k-pad-early-lit This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3758 - Rouge1: 27.7351 - Rouge2: 13.1664 - Rougel: 21.6559 - Rougelsum: 24.648 - Gen Len: 69.343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2516 | 1.0 | 9998 | 0.3540 | 28.1151 | 13.3875 | 22.1496 | 25.1745 | 66.578 | | 0.1747 | 2.0 | 19996 | 0.3758 | 27.7351 | 13.1664 | 21.6559 | 24.648 | 69.343 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
MrAnderson/bert-base-1024-full-trivia
3850926bcef3c06421a5610bd45f8c24ab25647b
2022-03-08T10:31:37.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/bert-base-1024-full-trivia
1
null
transformers
30,754
Entry not found
akshaychaudhary/distilbert-base-uncased-finetuned-devops1-ner
0f307ac0ec4e1db6ff274db2e20dc7bbd60e0bfa
2022-03-08T09:58:20.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akshaychaudhary
null
akshaychaudhary/distilbert-base-uncased-finetuned-devops1-ner
1
null
transformers
30,755
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-devops1-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-devops1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9870 - Precision: 0.0572 - Recall: 0.2689 - F1: 0.0944 - Accuracy: 0.7842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.6027 | 0.0484 | 0.2269 | 0.0798 | 0.7861 | | No log | 2.0 | 144 | 0.8631 | 0.0573 | 0.2857 | 0.0955 | 0.7771 | | No log | 3.0 | 216 | 0.9870 | 0.0572 | 0.2689 | 0.0944 | 0.7842 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Ariana2022/tape_katy
e20847414d0383946775de43b348ae763eec2780
2022-03-08T23:02:16.000Z
[ "pytorch", "bert", "transformers" ]
null
false
Ariana2022
null
Ariana2022/tape_katy
1
null
transformers
30,756
Entry not found
sanchit-gandhi/wav2vec2-2-rnd-2-layer
aa2b68fecaa314329ca9ecbea1652afd526ae13e
2022-03-09T09:50:11.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-2-layer
1
null
transformers
30,757
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 5.2188 - Wer: 0.9238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7093 | 6.73 | 1500 | 5.7514 | 1.2104 | | 5.642 | 13.45 | 3000 | 5.2188 | 0.9238 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/xlm-roberta-base-finetuned-panx-de
649d7900cd399ff0620fb3bd66a3cb9dff7f3d3f
2022-03-09T10:06:47.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
DrishtiSharma
null
DrishtiSharma/xlm-roberta-base-finetuned-panx-de
1
null
transformers
30,758
Entry not found
AlekseyKorshuk/roberta-base-finetuned-ner
0798cc9cb690af53a42c89639a7ebaf78df94bdf
2022-03-08T12:33:32.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
AlekseyKorshuk
null
AlekseyKorshuk/roberta-base-finetuned-ner
1
null
transformers
30,759
Entry not found
Ramil/wav2vec2-large-xlsr-300m-turkish
2a06bf2eabdc05c1651bbb1d8e8f8e629d231a0e
2022-04-05T11:45:00.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Ramil
null
Ramil/wav2vec2-large-xlsr-300m-turkish
1
null
transformers
30,760
Entry not found
ctoraman/RoBERTa-TR-medium-morph-16k
f4f48d530f902825dd14da96e8fc64c7bb047d9d
2022-04-20T06:57:10.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-morph-16k
1
null
transformers
30,761
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Morph-level 16k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 16.7k. ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
OrfeasTsk/bert-base-uncased-finetuned-triviaqa-large-batch
631b709b588913a6284eed31cba1613ec1bc9f87
2022-03-08T18:35:17.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-triviaqa-large-batch
1
null
transformers
30,762
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
OrfeasTsk/bert-base-uncased-finetuned-squadv2-large-batch
64fa5226d891c120383402983d27e03097d778da
2022-03-08T18:34:54.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-squadv2-large-batch
1
null
transformers
30,763
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
anton-l/xtreme_s_xlsr_minds14_fr
6e9d9f91f4770fc564f93c63282e9d1836ce0865
2022-03-11T13:39:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:xtreme_s", "transformers", "automatic-speech-recognition", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_minds14_fr
1
1
transformers
30,764
--- license: apache-2.0 tags: - automatic-speech-recognition - google/xtreme_s - generated_from_trainer datasets: - xtreme_s metrics: - accuracy model-index: - name: xtreme_s_xlsr_minds14_fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_minds14_fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.FR-FR dataset. It achieves the following results on the evaluation set: - Loss: 0.3922 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9751 | 10.0 | 50 | 2.0203 | 0.3462 | | 0.4275 | 20.0 | 100 | 0.7434 | 0.7981 | | 0.2484 | 30.0 | 150 | 0.7686 | 0.8462 | | 0.0263 | 40.0 | 200 | 0.3922 | 0.9135 | | 0.0118 | 50.0 | 250 | 0.4859 | 0.9038 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln26
1aa1cf715a5c2dd1708c97d91d98bbbe903559a6
2022-03-18T02:37:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln26
1
null
transformers
30,765
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln26") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln26") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
M-Quan/wav2vec2-demo
bbbd238e2f6da3ccdf65a783e3473b82540f0c8e
2022-03-09T06:20:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
M-Quan
null
M-Quan/wav2vec2-demo
1
null
transformers
30,766
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4239 - Wer: 0.3508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4093 | 4.0 | 500 | 1.2405 | 0.8685 | | 0.5597 | 8.0 | 1000 | 0.4538 | 0.4437 | | 0.2113 | 12.0 | 1500 | 0.4106 | 0.3749 | | 0.1188 | 16.0 | 2000 | 0.4609 | 0.3775 | | 0.0776 | 20.0 | 2500 | 0.4239 | 0.3508 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
YoungDeuk/t5-small-finetuned-xsum
7e2caa442b26c743a6c6e087c44d6e8492c49821
2022-03-09T01:51:02.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
YoungDeuk
null
YoungDeuk/t5-small-finetuned-xsum
1
null
transformers
30,767
Entry not found
Splend1dchan/byt5small-squad1024-from6000steps
c72adc6af5876908a3cecad9ea72cecab7513a94
2022-03-10T18:47:29.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5small-squad1024-from6000steps
1
null
transformers
30,768
Entry not found
anton-l/xtreme_s_xlsr_covost2_ru_en
8160776e83cb2318ee2f2c8a8f81dada2b74756f
2022-03-10T16:04:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_covost2_ru_en
1
null
transformers
30,769
Entry not found
akshaychaudhary/distilbert-base-uncased-finetuned-combinedmodel1-ner
88ec7ebbf7660bcc9db7b9b5485ba48466266d81
2022-03-09T12:59:14.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akshaychaudhary
null
akshaychaudhary/distilbert-base-uncased-finetuned-combinedmodel1-ner
1
null
transformers
30,770
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-combinedmodel1-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-combinedmodel1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3126 - Precision: 0.0289 - Recall: 0.1443 - F1: 0.0481 - Accuracy: 0.7058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 312 | 1.5290 | 0.0431 | 0.2278 | 0.0725 | 0.6990 | | 0.1106 | 2.0 | 624 | 2.0923 | 0.0341 | 0.1722 | 0.0569 | 0.7041 | | 0.1106 | 3.0 | 936 | 2.3126 | 0.0289 | 0.1443 | 0.0481 | 0.7058 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
jfealko/wav2vec2-large-xls-r-300m-irish-local
ad5ea3d78844c3705614056273e72de5052fd567
2022-03-09T15:01:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jfealko
null
jfealko/wav2vec2-large-xls-r-300m-irish-local
1
null
transformers
30,771
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-irish-local results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-irish-local This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.0788 - Wer: 0.7527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.3839 | 2.94 | 50 | 3.3021 | 1.0 | | 3.0703 | 5.88 | 100 | 3.1749 | 1.0 | | 3.1744 | 8.82 | 150 | 3.0452 | 1.0 | | 2.9719 | 11.76 | 200 | 2.9767 | 1.0 | | 2.9539 | 14.71 | 250 | 2.9992 | 1.0 | | 2.9438 | 17.65 | 300 | 2.9767 | 1.0 | | 2.9296 | 20.59 | 350 | 2.9475 | 1.0 | | 2.9269 | 23.53 | 400 | 2.9402 | 1.0 | | 2.9116 | 26.47 | 450 | 2.9255 | 1.0 | | 2.8326 | 29.41 | 500 | 2.7238 | 1.0 | | 2.5758 | 32.35 | 550 | 2.3599 | 0.9900 | | 2.1242 | 35.29 | 600 | 1.8478 | 0.9491 | | 1.4603 | 38.24 | 650 | 1.5991 | 0.9002 | | 1.0287 | 41.18 | 700 | 1.5931 | 0.8434 | | 0.7687 | 44.12 | 750 | 1.6493 | 0.8253 | | 0.571 | 47.06 | 800 | 1.6889 | 0.8057 | | 0.4598 | 50.0 | 850 | 1.7521 | 0.7978 | | 0.3902 | 52.94 | 900 | 1.9074 | 0.7975 | | 0.318 | 55.88 | 950 | 1.9352 | 0.8133 | | 0.3026 | 58.82 | 1000 | 2.0157 | 0.8028 | | 0.2862 | 61.76 | 1050 | 1.9231 | 0.7720 | | 0.2696 | 64.71 | 1100 | 1.9256 | 0.7644 | | 0.2528 | 67.65 | 1150 | 2.0277 | 0.7741 | | 0.2051 | 70.59 | 1200 | 1.9921 | 0.7550 | | 0.2018 | 73.53 | 1250 | 2.0416 | 0.7615 | | 0.187 | 76.47 | 1300 | 2.0861 | 0.7635 | | 0.1749 | 79.41 | 1350 | 2.0926 | 0.7577 | | 0.1713 | 82.35 | 1400 | 2.0632 | 0.7533 | | 0.1518 | 85.29 | 1450 | 2.0903 | 0.7542 | | 0.16 | 88.24 | 1500 | 2.0788 | 0.7527 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ra1/t5-small-finetuned-xsum
40e3421948fa2fb25131048992d8abfaaf0c7f22
2022-03-16T16:50:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ra1
null
ra1/t5-small-finetuned-xsum
1
null
transformers
30,772
Entry not found
vymn/Brain
9b6a77b3dc080104a4c5eee290698d1b21163191
2022-03-11T23:58:10.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vymn
null
vymn/Brain
1
null
transformers
30,773
Entry not found
negfir/squeezebert-uncased-finetuned-squad
a6f42c1088851bbc2488e5a4bc903d7e7d754faa
2022-03-09T18:39:58.000Z
[ "pytorch", "tensorboard", "squeezebert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
negfir
null
negfir/squeezebert-uncased-finetuned-squad
1
null
transformers
30,774
Entry not found
negfir/Distill_SQuAD
b852ec1545fe092017fdb9665ce8dcde9e33c7e8
2022-03-30T16:08:53.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/Distill_SQuAD
1
null
transformers
30,775
Entry not found
paopow/t5_base2
deb3cc8b206fc31827734ca4c6036843d5aaece5
2022-03-10T01:26:26.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
paopow
null
paopow/t5_base2
1
null
transformers
30,776
Entry not found
BeanBoi50404/DialoGPT-small-PeppaPigButBetter
d46dd8f1cd9fda62c7f32add6468682d0073e9c6
2022-03-10T03:27:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BeanBoi50404
null
BeanBoi50404/DialoGPT-small-PeppaPigButBetter
1
null
transformers
30,777
--- tags: - conversational --- #Peppa Pig DialoGPT Model
cammy/bart-large-cnn-100k-lit-evalMA
cbb495b33c2328ec49e4c224a84de245156877b3
2022-03-11T10:34:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100k-lit-evalMA
1
null
transformers
30,778
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn-100k-lit-evalMA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100k-lit-evalMA This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.7715 - eval_rouge1: 29.7037 - eval_rouge2: 15.0234 - eval_rougeL: 23.5169 - eval_rougeLsum: 26.8682 - eval_gen_len: 68.1209 - eval_runtime: 28898.0987 - eval_samples_per_second: 0.346 - eval_steps_per_second: 0.346 - epoch: 1.0 - step: 100000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-100-lit-evalMA
c2fbdf1744fd39a8f0a7fa4110b084eab568d075
2022-03-10T07:49:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA
1
null
transformers
30,779
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn-100-lit-evalMA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-lit-evalMA This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.1514 - eval_rouge1: 27.8026 - eval_rouge2: 11.2998 - eval_rougeL: 21.4708 - eval_rougeLsum: 24.6333 - eval_gen_len: 62.5 - eval_runtime: 25.6587 - eval_samples_per_second: 0.39 - eval_steps_per_second: 0.39 - epoch: 2.0 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
ArnavL/yelp-pretrained
1a3014cb14dbdb15ecd961dbe0bb2f7d2a8bea2e
2022-03-10T06:45:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
ArnavL
null
ArnavL/yelp-pretrained
1
null
transformers
30,780
--- license: mit ---
M-Quan/wav2vec2-E
00b1800c738ed7bead2cfb721a4848d70f60e782
2022-03-10T13:41:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
M-Quan
null
M-Quan/wav2vec2-E
1
null
transformers
30,781
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-E This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4832 - Wer: 0.3432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5034 | 4.0 | 500 | 1.1620 | 0.8995 | | 0.5738 | 8.0 | 1000 | 0.4625 | 0.4396 | | 0.2142 | 12.0 | 1500 | 0.4791 | 0.3965 | | 0.1219 | 16.0 | 2000 | 0.4677 | 0.3703 | | 0.0854 | 20.0 | 2500 | 0.4782 | 0.3544 | | 0.0587 | 24.0 | 3000 | 0.4680 | 0.3516 | | 0.044 | 28.0 | 3500 | 0.4832 | 0.3432 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
huak95/LST_classic-th-to-en-pt2.2
10446ea17c3b36c29cb3101cb6d0bff541ed19f4
2022-03-10T10:30:15.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
huak95
null
huak95/LST_classic-th-to-en-pt2.2
1
null
transformers
30,782
Entry not found
huak95/tmp_trainer
8add6db14eace5786f2784aadac6fec97310fa24
2022-03-10T10:53:21.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
huak95
null
huak95/tmp_trainer
1
null
transformers
30,783
--- tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model is a fine-tuned version of [pong/opus-mt-en-mul-finetuned-en-to-th](https://huggingface.co/pong/opus-mt-en-mul-finetuned-en-to-th) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huak95/TNANA-attacut-th-to-en-pt2
854edb03f1e987270149f99b967a3174a7745dc4
2022-03-11T03:17:16.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
huak95
null
huak95/TNANA-attacut-th-to-en-pt2
1
null
transformers
30,784
Entry not found
Prime2911/DialoGPT-small-handsomejack
222b45605c57d9aaaffa09e4a248a8ea6129f5c2
2022-03-10T18:28:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Prime2911
null
Prime2911/DialoGPT-small-handsomejack
1
null
transformers
30,785
--- tags: - conversational --- # Handsome Jack DialoGPT Model
mfleck/wav2vec2-large-xls-r-300m-german-with-lm
33d2fb075f558104f2bc172bafd75efe8b31f42f
2022-03-18T16:48:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mfleck
null
mfleck/wav2vec2-large-xls-r-300m-german-with-lm
1
0
transformers
30,786
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-german-with-lm results: [] --- # wav2vec2-large-xls-r-300m-german-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the German set of the Common Voice dataset. It achieves a Word Error Rate of 8,8 percent on the evaluation set ## Model description German wav2vec2-xls-r-300m trained on the full train set of Common Voice dataset with a n-gram language model. Full code available in [my Github repository](https://github.com/MichaelFleck92/asr-wav2vec) ## Citation Feel free to cite this work by ``` @misc{mfleck/wav2vec2-large-xls-r-300m-german-with-lm, title={XLS-R-300 Wav2Vec2 German with language model}, author={Fleck, Michael}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mfleck/wav2vec2-large-xls-r-300m-german-with-lm}}, year={2022} } ``` ## Intended uses & limitations Inference Usage ```python from transformers import pipeline pipe = pipeline(model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm") output = pipe("/path/to/file.wav",chunk_length_s=5, stride_length_s=1) print(output["text"]) ``` ## Training and evaluation data Script used for training (takes about 80 hours on a single A100 40GB) ```python import random import re import json from typing import Any, Dict, List, Optional, Union import pandas as pd import numpy as np import torch # import soundfile from datasets import load_dataset, load_metric, Audio from dataclasses import dataclass, field from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, TrainingArguments, Trainer, Wav2Vec2ForCTC ''' Most parts of this script are following the tutorial: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2 ''' common_voice_train = load_dataset("common_voice", "de", split="train+validation") # Use train dataset with less training data #common_voice_train = load_dataset("common_voice", "de", split="train[:3%]") common_voice_test = load_dataset("common_voice", "de", split="test") # Remove unused columns common_voice_train = common_voice_train.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) # Remove batches with chars which do not exist in German print(len(common_voice_train)) regex = "[^A-Za-zäöüÄÖÜß,?.! ]+" common_voice_train = common_voice_train.filter(lambda example: bool(re.search(regex, example['sentence']))==False) common_voice_test = common_voice_test.filter(lambda example: bool(re.search(regex, example['sentence']))==False) print(len(common_voice_train)) # Remove special chars from transcripts chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower() return batch common_voice_train = common_voice_train.map(remove_special_characters, num_proc=10) common_voice_test = common_voice_test.map(remove_special_characters, num_proc=10) # Show some random transcripts to proof that preprocessing worked as expected def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) print(str(dataset[picks])) show_random_elements(common_voice_train.remove_columns(["path","audio"])) # Extract all chars which exist in datasets and add wav2vek tokens def extract_all_chars(batch): all_text = " ".join(batch["sentence"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocab_train = common_voice_train.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_train.column_names) vocab_test = common_voice_test.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_test.column_names) vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))} vocab_dict vocab_dict["|"] = vocab_dict[" "] del vocab_dict[" "] vocab_dict["[UNK]"] = len(vocab_dict) vocab_dict["[PAD]"] = len(vocab_dict) len(vocab_dict) with open('vocab.json', 'w') as vocab_file: json.dump(vocab_dict, vocab_file) # Create tokenizer and repo at Huggingface tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|") repo_name = "wav2vec2-large-xls-r-300m-german-with-lm" tokenizer.push_to_hub(repo_name) print("pushed to hub") # Create feature extractor and processor feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # Cast audio column common_voice_train = common_voice_train.cast_column("audio", Audio(sampling_rate=16_000)) common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000)) # Convert audio signal to array and 16khz sampling rate def prepare_dataset(batch): audio = batch["audio"] # batched output is "un-batched" batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] # Save an audio file to check if it gets loaded correctly # soundfile.write("/home/debian/trainnew/test.wav",batch["input_values"],audio["sampling_rate"]) batch["input_length"] = len(batch["input_values"]) with processor.as_target_processor(): batch["labels"] = processor(batch["sentence"]).input_ids return batch common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names) common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names) print("dataset prepared") @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.Wav2Vec2Processor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). """ processor: Wav2Vec2Processor padding: Union[bool, str] = True def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, return_tensors="pt", ) with self.processor.as_target_processor(): labels_batch = self.processor.pad( label_features, padding=self.padding, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Use word error rate as metric wer_metric = load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} # Model and training parameters model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-300m", attention_dropout=0.094, hidden_dropout=0.01, feat_proj_dropout=0.04, mask_time_prob=0.08, layerdrop=0.04, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) model.freeze_feature_extractor() training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=20, gradient_checkpointing=True, fp16=True, save_steps=5000, eval_steps=5000, logging_steps=100, learning_rate=1e-4, warmup_steps=500, save_total_limit=3, push_to_hub=True, ) trainer = Trainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=common_voice_train, eval_dataset=common_voice_test, tokenizer=processor.feature_extractor, ) # Start fine tuning trainer.train() # When done push final model to Huggingface hub trainer.push_to_hub() ``` The model achieves a Word Error Rate of 8,8% using the following script: ```python import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline # load dataset dataset = load_dataset("common_voice", "de", split="test") # use only 1% of data #dataset = load_dataset("common_voice", "de", split="test[:1%]") # load processor feature_extractor = AutoFeatureExtractor.from_pretrained("mfleck/wav2vec2-large-xls-r-300m-german-with-lm") sampling_rate = feature_extractor.sampling_rate dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline # device=0 means GPU, use device=-1 for CPU asr = pipeline("automatic-speech-recognition", model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm", device=0) # Remove batches with chars which do not exist in German regex = "[^A-Za-zäöüÄÖÜß,?.! ]+" dataset = dataset.filter(lambda example: bool(re.search(regex, example['sentence']))==False) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' # map function to decode audio def map_to_pred(batch): prediction = asr(batch["audio"]["array"], chunk_length_s=5, stride_length_s=1) # Print automatic generated transcript #print(str(prediction)) batch["prediction"] = prediction["text"] text = batch["sentence"] batch["target"] = re.sub(chars_to_ignore_regex, "", text.lower()) + " " return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print results result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" print(result_str) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1396 | 1.42 | 5000 | 0.1449 | 0.1479 | | 0.1169 | 2.83 | 10000 | 0.1285 | 0.1286 | | 0.0938 | 4.25 | 15000 | 0.1277 | 0.1230 | | 0.0924 | 5.67 | 20000 | 0.1305 | 0.1191 | | 0.0765 | 7.09 | 25000 | 0.1256 | 0.1158 | | 0.0749 | 8.5 | 30000 | 0.1186 | 0.1092 | | 0.066 | 9.92 | 35000 | 0.1173 | 0.1068 | | 0.0581 | 11.34 | 40000 | 0.1225 | 0.1030 | | 0.0582 | 12.75 | 45000 | 0.1153 | 0.0999 | | 0.0507 | 14.17 | 50000 | 0.1182 | 0.0971 | | 0.0491 | 15.59 | 55000 | 0.1136 | 0.0939 | | 0.045 | 17.01 | 60000 | 0.1140 | 0.0914 | | 0.0395 | 18.42 | 65000 | 0.1160 | 0.0902 | | 0.037 | 19.84 | 70000 | 0.1148 | 0.0882 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
OrfeasTsk/bert-base-uncased-finetuned-quac-large-batch
6a5357f24e19e5a4261b3d11f2c08d1868934704
2022-03-10T17:29:10.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-quac-large-batch
1
null
transformers
30,787
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
OrfeasTsk/bert-base-uncased-finetuned-newsqa-large-batch
a9fd527d78f7bf6b23f49d21045d04546f97a765
2022-03-10T21:28:01.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-newsqa-large-batch
1
null
transformers
30,788
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
atlantis/xlm-roberta-base-finetuned-panx-de
d1010e2c35999f5d0a7fbd985418f702fd8d8b9d
2022-03-11T01:17:07.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
atlantis
null
atlantis/xlm-roberta-base-finetuned-panx-de
1
null
transformers
30,789
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8550872422388397 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1333 - F1: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1573 | 0.8137 | | 0.2142 | 2.0 | 526 | 0.1386 | 0.8466 | | 0.2142 | 3.0 | 789 | 0.1333 | 0.8551 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.10.3
lijingxin/xlm-roberta-base-finetuned-panx-it
b7821118c4ad48a7a9f0951e1f1449486d86642d
2022-03-11T02:22:47.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
lijingxin
null
lijingxin/xlm-roberta-base-finetuned-panx-it
1
null
transformers
30,790
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.830592105263158 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2400 - F1: 0.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8118 | 1.0 | 70 | 0.3471 | 0.7047 | | 0.2869 | 2.0 | 140 | 0.2679 | 0.8043 | | 0.1762 | 3.0 | 210 | 0.2400 | 0.8306 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
lijingxin/xlm-roberta-base-finetuned-panx-en
56ebad957c94f2472d305b22f472a6bfac9e773e
2022-03-11T02:25:33.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
lijingxin
null
lijingxin/xlm-roberta-base-finetuned-panx-en
1
null
transformers
30,791
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7043040804918949 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3814 - F1: 0.7043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1472 | 1.0 | 50 | 0.5820 | 0.4600 | | 0.5186 | 2.0 | 100 | 0.4105 | 0.6645 | | 0.3599 | 3.0 | 150 | 0.3814 | 0.7043 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
lijingxin/xlm-roberta-base-finetuned-panx-all
40f4214673ceaa946bd53fb536cd50d456ee2244
2022-03-11T02:47:18.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
lijingxin
null
lijingxin/xlm-roberta-base-finetuned-panx-all
1
null
transformers
30,792
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - F1: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3036 | 1.0 | 835 | 0.1888 | 0.8068 | | 0.1585 | 2.0 | 1670 | 0.1763 | 0.8415 | | 0.1027 | 3.0 | 2505 | 0.1748 | 0.8555 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
SAI2-EXP/TNANA-en-th-align-finetuned
d7c0f8504a14b794ca3e6ee43a84625f5f936aa5
2022-03-10T10:52:48.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SAI2-EXP
null
SAI2-EXP/TNANA-en-th-align-finetuned
1
null
transformers
30,793
Entry not found
momo/MOTOD_fine-tuning
ed8a52a62e27a1514355f678c16a8acb2231ec20
2022-03-11T06:48:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
momo
null
momo/MOTOD_fine-tuning
1
null
transformers
30,794
--- license: apache-2.0 ---
ChanP/finetuned-th-to-en
0e83377c162255bb9f74fef3fee8a8e839df4f0a
2022-03-11T08:04:42.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ChanP
null
ChanP/finetuned-th-to-en
1
null
transformers
30,795
Hi
zuppif/maskformer-swin-large-coco
34622e04b9f0fafd212809f2e665735fd9f757a3
2022-03-11T14:21:44.000Z
[ "pytorch", "maskformer", "transformers" ]
null
false
zuppif
null
zuppif/maskformer-swin-large-coco
1
null
transformers
30,796
Entry not found
zuppif/maskformer-swin-tiny-coco
ab304130d9a84af0042a9d38e1af58e38714c224
2022-03-11T14:24:53.000Z
[ "pytorch", "maskformer", "transformers" ]
null
false
zuppif
null
zuppif/maskformer-swin-tiny-coco
1
null
transformers
30,797
Entry not found
zuppif/maskformer-swin-base-coco
41a395d4677c6721a52b353746e731e8d91d234d
2022-03-11T14:25:46.000Z
[ "pytorch", "maskformer", "transformers" ]
null
false
zuppif
null
zuppif/maskformer-swin-base-coco
1
null
transformers
30,798
Entry not found
zuppif/maskformer-swin-base-ade
2414a16c60f1463efcba694a0b4ff6b8a764a4cf
2022-03-11T14:27:01.000Z
[ "pytorch", "maskformer", "transformers" ]
null
false
zuppif
null
zuppif/maskformer-swin-base-ade
1
null
transformers
30,799
Entry not found