modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
β | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
β | likes
float64 0
712
β | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gaunernst/bert-L12-H256-uncased | 87dd2de5d342ae985eee7078380e6f5b06b41bb0 | 2022-07-02T08:54:10.000Z | [
"pytorch",
"bert",
"transformers",
"license:apache-2.0"
] | null | false | gaunernst | null | gaunernst/bert-L12-H256-uncased | 2 | null | transformers | 26,500 | ---
license: apache-2.0
---
|
huggingtweets/crimseyvt | d0e03351665c501a6b33538fd7f7fd1ba729bfca | 2022-07-02T10:12:34.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/crimseyvt | 2 | null | transformers | 26,501 | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1388858833582297095/5_Fg641d_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">CrimseyVT~</div>
<div style="text-align: center; font-size: 14px;">@crimseyvt</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from CrimseyVT~.
| Data | CrimseyVT~ |
| --- | --- |
| Tweets downloaded | 1417 |
| Retweets | 195 |
| Short tweets | 182 |
| Tweets kept | 1040 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vwlwiq1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crimseyvt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x7shpw89) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x7shpw89/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crimseyvt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Neha2608/xlm-roberta-base-finetuned-panx-de-fr | 0ab399fc94ef25934d18cd69a0629fe8a3ea5896 | 2022-07-02T11:39:59.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Neha2608 | null | Neha2608/xlm-roberta-base-finetuned-panx-de-fr | 2 | null | transformers | 26,502 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1644
- F1: 0.8617
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 |
| 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 |
| 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Neha2608/xlm-roberta-base-finetuned-panx-fr | 5e1ded7dc4b8058a48a2a0b5c9aeed423232902e | 2022-07-02T11:59:36.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Neha2608 | null | Neha2608/xlm-roberta-base-finetuned-panx-fr | 2 | null | transformers | 26,503 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.835464333781965
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2867
- F1: 0.8355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5817 | 1.0 | 191 | 0.3395 | 0.7854 |
| 0.2617 | 2.0 | 382 | 0.2856 | 0.8278 |
| 0.1708 | 3.0 | 573 | 0.2867 | 0.8355 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
SelamatPagi/xlm-roberta-base-finetuned-panx-de | f3d0a5864b97ca3f024d220bc2fae380a4ce136d | 2022-07-02T12:16:51.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | SelamatPagi | null | SelamatPagi/xlm-roberta-base-finetuned-panx-de | 2 | null | transformers | 26,504 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8620945214069894
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1372
- F1: 0.8621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 |
| 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 |
| 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Neha2608/xlm-roberta-base-finetuned-panx-en | aeec941bc63580d03400b22e152301e3742193eb | 2022-07-02T12:35:18.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Neha2608 | null | Neha2608/xlm-roberta-base-finetuned-panx-en | 2 | null | transformers | 26,505 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.692179700499168
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3921
- F1: 0.6922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 |
| 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 |
| 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
kidzy/distilbert-base-uncased-distilled-clinc | b4983ed5c7ada698b02ce5c33a656a12e7726a3a | 2022-07-02T14:18:20.000Z | [
"pytorch",
"distilbert",
"text-classification",
"dataset:clinc_oos",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-classification | false | kidzy | null | kidzy/distilbert-base-uncased-distilled-clinc | 2 | null | transformers | 26,506 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9470967741935484
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2653
- Accuracy: 0.9471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 1.5714 | 0.7371 |
| 1.9106 | 2.0 | 636 | 0.7918 | 0.8655 |
| 1.9106 | 3.0 | 954 | 0.4652 | 0.9110 |
| 0.7184 | 4.0 | 1272 | 0.3420 | 0.9345 |
| 0.3443 | 5.0 | 1590 | 0.3015 | 0.9439 |
| 0.3443 | 6.0 | 1908 | 0.2834 | 0.9442 |
| 0.2513 | 7.0 | 2226 | 0.2732 | 0.9445 |
| 0.2214 | 8.0 | 2544 | 0.2693 | 0.9465 |
| 0.2214 | 9.0 | 2862 | 0.2673 | 0.9452 |
| 0.2117 | 10.0 | 3180 | 0.2653 | 0.9471 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
scaccomatto/autotrain-dataset-en-5-mini-1-50-truncate-1076038122 | 765bfea2b9d4f38d9d93612b12ba4492ffe543ab | 2022-07-02T14:59:36.000Z | [
"pytorch",
"bart",
"text2text-generation",
"en",
"dataset:scaccomatto/autotrain-data-dataset-en-5-mini-1-50-truncate",
"transformers",
"autotrain",
"co2_eq_emissions",
"autotrain_compatible"
] | text2text-generation | false | scaccomatto | null | scaccomatto/autotrain-dataset-en-5-mini-1-50-truncate-1076038122 | 2 | null | transformers | 26,507 | ---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain π€"
datasets:
- scaccomatto/autotrain-data-dataset-en-5-mini-1-50-truncate
co2_eq_emissions: 6.1987408118248375
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 1076038122
- CO2 Emissions (in grams): 6.1987408118248375
## Validation Metrics
- Loss: 0.5054866671562195
- Rouge1: 76.4469
- Rouge2: 72.6874
- RougeL: 76.3128
- RougeLsum: 76.2952
- Gen Len: 19.3856
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/scaccomatto/autotrain-dataset-en-5-mini-1-50-truncate-1076038122
``` |
scaccomatto/autotrain-dataset-en-5-mini-1-50-num-1076338146 | d13a0053bcd9bc1a2ac2e1323aaa809449056602 | 2022-07-02T15:13:42.000Z | [
"pytorch",
"bart",
"text2text-generation",
"en",
"dataset:scaccomatto/autotrain-data-dataset-en-5-mini-1-50-num",
"transformers",
"autotrain",
"co2_eq_emissions",
"autotrain_compatible"
] | text2text-generation | false | scaccomatto | null | scaccomatto/autotrain-dataset-en-5-mini-1-50-num-1076338146 | 2 | null | transformers | 26,508 | ---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain π€"
datasets:
- scaccomatto/autotrain-data-dataset-en-5-mini-1-50-num
co2_eq_emissions: 5.239170170576799
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 1076338146
- CO2 Emissions (in grams): 5.239170170576799
## Validation Metrics
- Loss: 0.6177766919136047
- Rouge1: 76.4034
- Rouge2: 72.6118
- RougeL: 76.233
- RougeLsum: 76.2601
- Gen Len: 18.6275
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/scaccomatto/autotrain-dataset-en-5-mini-1-50-num-1076338146
``` |
tner/roberta-large-tweetner-2021 | a8043252a4628563ec9c63092aa98346234d241f | 2022-07-07T03:21:12.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/roberta-large-tweetner-2021 | 2 | null | transformers | 26,509 | Entry not found |
tner/roberta-large-tweetner-2020-2021-concat | 74372e7bba305489c7bf4e7ae9e698901b35c1ba | 2022-07-07T23:30:54.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/roberta-large-tweetner-2020-2021-concat | 2 | null | transformers | 26,510 | Entry not found |
gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446 | 035aff603d9c1a161fe7642425a75bc4dd4b4fce | 2022-07-02T23:02:11.000Z | [
"pytorch",
"bert",
"text-classification",
"en",
"dataset:gabrielaltay/autotrain-data-at-test-bb-tmp-scitail",
"dataset:bigscience-biomedical/tmp-scitail",
"transformers",
"autotrain",
"model-index",
"co2_eq_emissions"
] | text-classification | false | gabrielaltay | null | gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446 | 2 | null | transformers | 26,511 | ---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain \U0001F917"
datasets:
- gabrielaltay/autotrain-data-at-test-bb-tmp-scitail
- bigscience-biomedical/tmp-scitail
co2_eq_emissions: 0.030427681636382462
model-index:
- name: gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: bigscience-biomedical/tmp-scitail
type: bigscience-biomedical/tmp-scitail
config: scitail_bigbio_te
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.7714016933207902
verified: true
- name: Precision
type: precision
value: 0.7829787234042553
verified: true
- name: Recall
type: recall
value: 0.8598130841121495
verified: true
- name: AUC
type: auc
value: 0.8606862462169141
verified: true
- name: F1
type: f1
value: 0.8195991091314032
verified: true
- name: loss
type: loss
value: 0.46928563714027405
verified: true
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 1078438446
- CO2 Emissions (in grams): 0.030427681636382462
## Validation Metrics
- Loss: 0.440134197473526
- Accuracy: 0.808282208588957
- Precision: 0.7823613086770982
- Recall: 0.8500772797527048
- AUC: 0.8850060812225493
- F1: 0.8148148148148148
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("gabrielaltay/autotrain-at-test-bb-tmp-scitail-1078438446", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |
Elliotte/Hubert-base-superb | ea736d410031f0a6050c8ea84bf932a4fd6fa64b | 2022-07-03T15:27:20.000Z | [
"pytorch",
"tensorboard",
"hubert",
"automatic-speech-recognition",
"dataset:superb",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | Elliotte | null | Elliotte/Hubert-base-superb | 2 | null | transformers | 26,512 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- superb
model-index:
- name: Hubert-base-superb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Hubert-base-superb
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6712
- Wer: 0.4781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.7884 | 0.8 | 500 | 0.8900 | 0.6940 |
| 0.6603 | 1.6 | 1000 | 0.7378 | 0.6103 |
| 0.5401 | 2.4 | 1500 | 0.7107 | 0.5762 |
| 0.4604 | 3.2 | 2000 | 0.6563 | 0.5320 |
| 0.3936 | 4.0 | 2500 | 0.6315 | 0.5244 |
| 0.3186 | 4.8 | 3000 | 0.6525 | 0.5007 |
| 0.2727 | 5.6 | 3500 | 0.6553 | 0.4855 |
| 0.2296 | 6.4 | 4000 | 0.6712 | 0.4781 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
tner/twitter-roberta-base-dec2021-tweetner-2021 | 8ec44074951852e525801524f8567f7897839cae | 2022-07-07T10:12:44.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/twitter-roberta-base-dec2021-tweetner-2021 | 2 | null | transformers | 26,513 | Entry not found |
tner/twitter-roberta-base-dec2021-tweetner-2020-2021-concat | fe5a1d21c56e627a9dc6c855b56a54c794f1ad37 | 2022-07-07T18:02:51.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/twitter-roberta-base-dec2021-tweetner-2020-2021-concat | 2 | null | transformers | 26,514 | Entry not found |
tner/roberta-base-tweetner-2021 | bb5afe99c8478ab5875abaefc18e50d848817036 | 2022-07-11T22:23:52.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/roberta-base-tweetner-2021 | 2 | null | transformers | 26,515 | Entry not found |
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_70 | cf98befa10c7b13e45429a896f944424f92b4971 | 2022-07-03T13:29:19.000Z | [
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | BBarbarestani | null | BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_70 | 2 | null | transformers | 26,516 | Entry not found |
shubhamitra/tmp | ca8a73efadd6853b97356eede03ce7e9738de94d | 2022-07-03T12:50:54.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers",
"generated_from_trainer",
"model-index"
] | text-classification | false | shubhamitra | null | shubhamitra/tmp | 2 | null | transformers | 26,517 | ---
tags:
- generated_from_trainer
model-index:
- name: tmp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tmp
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log | 1.0 | 498 | 0.0483 | 0.7486 | 0.8563 | 0.9171 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Tokenizers 0.12.1
|
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50_2 | ba8290712af856bdb497334807406b096b1ae479 | 2022-07-05T01:30:47.000Z | [
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | BBarbarestani | null | BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_50_2 | 2 | null | transformers | 26,518 | Entry not found |
haesun/xlm-roberta-base-finetuned-panx-it | 4f16e1f81484a16a756f8a5ed90b59e22f1055e9 | 2022-07-05T00:58:00.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | haesun | null | haesun/xlm-roberta-base-finetuned-panx-it | 2 | null | transformers | 26,519 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8289473684210525
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2403
- F1: 0.8289
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.668 | 1.0 | 105 | 0.2886 | 0.7818 |
| 0.2583 | 2.0 | 210 | 0.2421 | 0.8202 |
| 0.1682 | 3.0 | 315 | 0.2403 | 0.8289 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
haesun/xlm-roberta-base-finetuned-panx-en | bb189c77c622e451d3c001384a0de1d38c071d60 | 2022-07-05T01:11:50.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | haesun | null | haesun/xlm-roberta-base-finetuned-panx-en | 2 | null | transformers | 26,520 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.6994475138121546
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3848
- F1: 0.6994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0435 | 1.0 | 74 | 0.5169 | 0.5532 |
| 0.4719 | 2.0 | 148 | 0.4224 | 0.6630 |
| 0.3424 | 3.0 | 222 | 0.3848 | 0.6994 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
haesun/xlm-roberta-base-finetuned-panx-all | c5464c48ab1d3b69b7aca57fe245f77bbc3ef575 | 2022-07-05T01:33:56.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | haesun | null | haesun/xlm-roberta-base-finetuned-panx-all | 2 | null | transformers | 26,521 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1387
- F1: 0.8856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2967 | 1.0 | 1252 | 0.1817 | 0.8284 |
| 0.1576 | 2.0 | 2504 | 0.1521 | 0.8597 |
| 0.0996 | 3.0 | 3756 | 0.1387 | 0.8856 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/mattyglesias | bc00853b152ec70a16c15c4fbac602ed98000cac | 2022-07-04T22:20:15.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/mattyglesias | 2 | null | transformers | 26,522 | ---
language: en
thumbnail: http://www.huggingtweets.com/mattyglesias/1656973210167/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1516223147284082698/DbtV01ez_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Yglesias</div>
<div style="text-align: center; font-size: 14px;">@mattyglesias</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Matthew Yglesias.
| Data | Matthew Yglesias |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 408 |
| Short tweets | 163 |
| Tweets kept | 2678 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mo3hke3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattyglesias's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/491avjbi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/491avjbi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/mattyglesias')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
google/owlvit-base-patch16 | e1ab91248635e59130c75690e34433721095ec4d | 2022-07-21T11:45:53.000Z | [
"pytorch",
"owlvit",
"transformers",
"license:apache-2.0"
] | null | false | google | null | google/owlvit-base-patch16 | 2 | null | transformers | 26,523 | ---
license: apache-2.0
---
|
google/owlvit-large-patch14 | f8095a645b8638cf7757fe2d4fa040e0fc0c93db | 2022-07-21T12:29:18.000Z | [
"pytorch",
"owlvit",
"transformers",
"license:apache-2.0"
] | null | false | google | null | google/owlvit-large-patch14 | 2 | null | transformers | 26,524 | ---
license: apache-2.0
---
|
HekmatTaherinejad/swin-tiny-patch4-window7-224-finetuned-eurosat | 3a2309cdec5029ef9d4411741d02a074e6f55f46 | 2022-07-05T09:17:32.000Z | [
"pytorch",
"tensorboard",
"swin",
"image-classification",
"dataset:imagefolder",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | image-classification | false | HekmatTaherinejad | null | HekmatTaherinejad/swin-tiny-patch4-window7-224-finetuned-eurosat | 2 | null | transformers | 26,525 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.98
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0653
- Accuracy: 0.98
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.203 | 1.0 | 190 | 0.1294 | 0.9574 |
| 0.2017 | 2.0 | 380 | 0.0773 | 0.9763 |
| 0.1563 | 3.0 | 570 | 0.0653 | 0.98 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
nawta/wav2vec2-onomatopoeia-finetune_smalldata3 | 18c708d57e4c2e5a4e889408f80f090b425ed1d6 | 2022-07-05T09:39:49.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers"
] | automatic-speech-recognition | false | nawta | null | nawta/wav2vec2-onomatopoeia-finetune_smalldata3 | 2 | null | transformers | 26,526 | Entry not found |
arashba/xlm-roberta-base-finetuned-panx-de | f110474667be94a29a04c746b18c3010192f2497 | 2022-07-05T12:05:52.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | arashba | null | arashba/xlm-roberta-base-finetuned-panx-de | 2 | null | transformers | 26,527 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8620945214069894
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1372
- F1: 0.8621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 |
| 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 |
| 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jakka/t5_small_NCC_lm-finetuned-sv-frp-classifier-3 | ac93d4d14bf066ae595f3df87fa2e1ff0bdee51a | 2022-07-05T13:57:55.000Z | [
"pytorch",
"t5",
"text2text-generation",
"dataset:norwegian_parliament",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | jakka | null | jakka/t5_small_NCC_lm-finetuned-sv-frp-classifier-3 | 2 | null | transformers | 26,528 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- norwegian_parliament
model-index:
- name: t5_small_NCC_lm-finetuned-sv-frp-classifier-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_small_NCC_lm-finetuned-sv-frp-classifier-3
This model is a fine-tuned version of [north/t5_small_NCC_lm](https://huggingface.co/north/t5_small_NCC_lm) on the norwegian_parliament dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Sequence Accuracy: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sequence Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|
| No log | 1.0 | 113 | nan | 0.0 |
| No log | 2.0 | 226 | nan | 0.0 |
| No log | 3.0 | 339 | nan | 0.0 |
| No log | 4.0 | 452 | nan | 0.0 |
| 0.0 | 5.0 | 565 | nan | 0.0 |
| 0.0 | 6.0 | 678 | nan | 0.0 |
| 0.0 | 7.0 | 791 | nan | 0.0 |
| 0.0 | 8.0 | 904 | nan | 0.0 |
| 0.0 | 9.0 | 1017 | nan | 0.0 |
| 0.0 | 10.0 | 1130 | nan | 0.0 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.0
- Datasets 2.3.2
- Tokenizers 0.11.0
|
Eleven/xlm-roberta-base-finetuned-panx-fr | c3fc0c014e82b7ae93b11e6f570de21c4b06f441 | 2022-07-05T16:36:53.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Eleven | null | Eleven/xlm-roberta-base-finetuned-panx-fr | 2 | null | transformers | 26,529 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.835464333781965
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2867
- F1: 0.8355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5817 | 1.0 | 191 | 0.3395 | 0.7854 |
| 0.2617 | 2.0 | 382 | 0.2856 | 0.8278 |
| 0.1708 | 3.0 | 573 | 0.2867 | 0.8355 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Eleven/xlm-roberta-base-finetuned-panx-it | f779dbb8e8a05314c7a6dd68b67a488829af7612 | 2022-07-05T16:53:50.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Eleven | null | Eleven/xlm-roberta-base-finetuned-panx-it | 2 | null | transformers | 26,530 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8247845711940912
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2421
- F1: 0.8248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.809 | 1.0 | 70 | 0.3380 | 0.7183 |
| 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 |
| 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Eleven/xlm-roberta-base-finetuned-panx-en | 437bc45a0508dcd5a881c4644b4777a18ea93bf6 | 2022-07-05T17:09:52.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | Eleven | null | Eleven/xlm-roberta-base-finetuned-panx-en | 2 | null | transformers | 26,531 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.692179700499168
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3921
- F1: 0.6922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 |
| 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 |
| 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/donaldtusk | fc76e1125a644ffb7f08b972f0685e9f28dddafb | 2022-07-05T20:21:55.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/donaldtusk | 2 | null | transformers | 26,532 | ---
language: en
thumbnail: http://www.huggingtweets.com/donaldtusk/1657052510922/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/990605878993793024/7uuCR4hP_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Donald Tusk</div>
<div style="text-align: center; font-size: 14px;">@donaldtusk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Donald Tusk.
| Data | Donald Tusk |
| --- | --- |
| Tweets downloaded | 910 |
| Retweets | 194 |
| Short tweets | 32 |
| Tweets kept | 684 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pclez81/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donaldtusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oogjdqv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oogjdqv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/donaldtusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
venturaville/xlm-roberta-base-finetuned-panx-de | 1f947e9bfdaac585f23d5e081a4ed7af79251b89 | 2022-07-25T15:02:55.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | venturaville | null | venturaville/xlm-roberta-base-finetuned-panx-de | 2 | null | transformers | 26,533 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8632527372262775
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1367
- F1: 0.8633
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2582 | 1.0 | 525 | 0.1653 | 0.8238 |
| 0.1301 | 2.0 | 1050 | 0.1417 | 0.8439 |
| 0.0841 | 3.0 | 1575 | 0.1367 | 0.8633 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_60_2 | 77968628649e69c2a486cbdee35e33a66b8a86c9 | 2022-07-06T00:26:19.000Z | [
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | BBarbarestani | null | BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_60_2 | 2 | null | transformers | 26,534 | Entry not found |
elasticdotventures/distilbert-base-uncased-finetuned-squad | d319bde49ff764f17b9b84ebba31331f8649544c | 2022-07-06T09:03:44.000Z | [
"pytorch",
"distilbert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | elasticdotventures | null | elasticdotventures/distilbert-base-uncased-finetuned-squad | 2 | null | transformers | 26,535 | Entry not found |
BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_70_2 | 90f05b8cdf7a0a316ccb95fe24db61b50878874a | 2022-07-06T10:00:15.000Z | [
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | BBarbarestani | null | BBarbarestani/RoBERTa_HateXplain_Target_Span_Detection_UQS_Threshold_70_2 | 2 | null | transformers | 26,536 | Entry not found |
sumitrsch/xlm_R_large_multiconer22_hi | cc0ac072270957c21d125bd06838dad0c2171110 | 2022-07-06T12:26:37.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | token-classification | false | sumitrsch | null | sumitrsch/xlm_R_large_multiconer22_hi | 2 | null | transformers | 26,537 | ---
license: afl-3.0
---
Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task. https://colab.research.google.com/drive/17WyqwdoRNnzImeik6wTRE5uuj9QQnkXA#scrollTo=nYtUtmyDFAqP |
chiendvhust/distilbert-base-uncased-finetuned-squad | f841bbf809a731e0c347eabab214c9750afa22d4 | 2022-07-06T14:46:49.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | chiendvhust | null | chiendvhust/distilbert-base-uncased-finetuned-squad | 2 | null | transformers | 26,538 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2178
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2747 | 1.0 | 5533 | 1.2178 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
sumitrsch/Indic-bert_multiconer22_bn | 158aa18da626934027dddfd3b7a2e4d9056ab14f | 2022-07-06T12:32:40.000Z | [
"pytorch",
"albert",
"token-classification",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | token-classification | false | sumitrsch | null | sumitrsch/Indic-bert_multiconer22_bn | 2 | 1 | transformers | 26,539 | ---
license: afl-3.0
---
Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track.
https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO |
paola-md/recipe-test | ee53fe4b58ab1ec6f7ecce1b01f48ab3dd0f2456 | 2022-07-06T10:32:13.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | fill-mask | false | paola-md | null | paola-md/recipe-test | 2 | null | transformers | 26,540 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: recipe-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# recipe-test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3675 | 1.0 | 16 | 3.0009 |
| 3.0062 | 2.0 | 32 | 2.9583 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
sumitrsch/xlm_R_large_multiconer22_bn | 236307e19f49d16c233d3f0d5c3f6c47991b8e92 | 2022-07-06T12:32:05.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | token-classification | false | sumitrsch | null | sumitrsch/xlm_R_large_multiconer22_bn | 2 | 1 | transformers | 26,541 | ---
license: afl-3.0
---
Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track.
https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO |
sumitrsch/mbert_multiconer22_hi | e7ff741cd2847ce73a773c27232e212237bfd25c | 2022-07-06T12:25:50.000Z | [
"pytorch",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | sumitrsch | null | sumitrsch/mbert_multiconer22_hi | 2 | null | transformers | 26,542 | Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task. https://colab.research.google.com/drive/17WyqwdoRNnzImeik6wTRE5uuj9QQnkXA#scrollTo=nYtUtmyDFAqP |
sumitrsch/mbert_multiconer22_bn | fa0e2d64571372017d49817b4001f72b4c158bc0 | 2022-07-06T12:30:50.000Z | [
"pytorch",
"bert",
"token-classification",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | token-classification | false | sumitrsch | null | sumitrsch/mbert_multiconer22_bn | 2 | 1 | transformers | 26,543 | ---
license: afl-3.0
---
Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track.
https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO |
saekomdalkom/t5-small-finetuned-xsum | bff666bb7d70fb588bd0b38f187dce7f45efc799 | 2022-07-06T15:25:39.000Z | [
"pytorch",
"t5",
"text2text-generation",
"dataset:xsum",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | saekomdalkom | null | saekomdalkom/t5-small-finetuned-xsum | 2 | null | transformers | 26,544 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
args: default
metrics:
- name: Rouge1
type: rouge
value: 28.3577
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4783
- Rouge1: 28.3577
- Rouge2: 7.759
- Rougel: 22.274
- Rougelsum: 22.2869
- Gen Len: 18.8298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 2.7158 | 1.0 | 12753 | 2.4783 | 28.3577 | 7.759 | 22.274 | 22.2869 | 18.8298 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/zanza47 | 996c4fa9cdc1bd845c289000c4f826762e2bafbc | 2022-07-06T16:45:17.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/zanza47 | 2 | null | transformers | 26,545 | ---
language: en
thumbnail: http://www.huggingtweets.com/zanza47/1657125860989/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1312214716941393920/sX37K0us_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Detective Zanza (Commissions! 1/3 full)</div>
<div style="text-align: center; font-size: 14px;">@zanza47</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Detective Zanza (Commissions! 1/3 full).
| Data | Detective Zanza (Commissions! 1/3 full) |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 1157 |
| Short tweets | 284 |
| Tweets kept | 1801 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/383lput2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zanza47's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dipzmx4r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dipzmx4r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zanza47')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ManqingLiu/xlm-roberta-base-finetuned-panx-de | 5efb0f766a121f7d1e95dc69d813135143e65a7d | 2022-07-06T18:16:00.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | ManqingLiu | null | ManqingLiu/xlm-roberta-base-finetuned-panx-de | 2 | null | transformers | 26,546 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8627004891366169
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1363
- F1: 0.8627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 |
| 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 |
| 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/carterhiggins | d8482b97a6307c8f2eadc8c2c7a1c23dc85b240e | 2022-07-07T01:27:42.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/carterhiggins | 2 | null | transformers | 26,547 | ---
language: en
thumbnail: http://www.huggingtweets.com/carterhiggins/1657157256503/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296229510510030849/0dyqAcul_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Carter Higgins</div>
<div style="text-align: center; font-size: 14px;">@carterhiggins</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Carter Higgins.
| Data | Carter Higgins |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 538 |
| Short tweets | 573 |
| Tweets kept | 2136 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/302150se/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carterhiggins's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38d6gnmr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38d6gnmr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/carterhiggins')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ChauNguyen23/distilbert-base-uncased-finetuned-imdb | 66ff33ced6b085477555d578681685d2fa24214b | 2022-07-07T02:54:46.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"dataset:imdb",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | fill-mask | false | ChauNguyen23 | null | ChauNguyen23/distilbert-base-uncased-finetuned-imdb | 2 | null | transformers | 26,548 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4897 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Vikasbhandari/TRY | cb5b03c982314b195cfceb8077895e7bf35e7b20 | 2022-07-07T12:17:31.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | Vikasbhandari | null | Vikasbhandari/TRY | 2 | null | transformers | 26,549 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: TRY
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TRY
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4234
- eval_wer: 0.3884
- eval_runtime: 51.9275
- eval_samples_per_second: 32.353
- eval_steps_per_second: 4.044
- epoch: 7.03
- step: 3500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
AdilOcd/t5large1 | e5688a30a6b72dc26f54cff91067ada388d458c1 | 2022-07-08T01:40:30.000Z | [
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | AdilOcd | null | AdilOcd/t5large1 | 2 | null | transformers | 26,550 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5large1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5large1
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Mascariddu8/distilbert-base-uncased-finetuned-imdb-accelerate | 2bfe7b2d45cc94709bf0072d9a9ed8046e470d5e | 2022-07-07T18:11:07.000Z | [
"pytorch",
"distilbert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | Mascariddu8 | null | Mascariddu8/distilbert-base-uncased-finetuned-imdb-accelerate | 2 | null | transformers | 26,551 | Entry not found |
jonatasgrosman/exp_w2v2t_en_wav2vec2_s878 | a7ed9807d8230457cbb16e690a06f269bf647e4a | 2022-07-08T03:56:34.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wav2vec2_s878 | 2 | null | transformers | 26,552 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wav2vec2_s878
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_wav2vec2_s924 | f113a0112a313ed0bda61b8bf7b08fbf8e5f74de | 2022-07-08T04:12:02.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wav2vec2_s924 | 2 | null | transformers | 26,553 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wav2vec2_s924
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_wav2vec2_s203 | 531d2d8ccc28b1b469d5306f6bbe4ce487233b06 | 2022-07-08T04:24:19.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wav2vec2_s203 | 2 | null | transformers | 26,554 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wav2vec2_s203
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-100k_s807 | 5a33e0b54063c9e82a8d0b239d367624a4e41023 | 2022-07-08T04:33:29.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-100k_s807 | 2 | null | transformers | 26,555 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-100k_s807
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-100k_s421 | d38a9e03f4843c1f105d1759341611d2549edc78 | 2022-07-08T04:43:53.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-100k_s421 | 2 | null | transformers | 26,556 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-100k_s421
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-100k_s364 | 61b7784f66d5ab805ed089fcfd1172ebdda19817 | 2022-07-08T04:56:51.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-100k_s364 | 2 | null | transformers | 26,557 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-100k_s364
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xlsr-53_s870 | 40787267c1a087081439363d677c3dfbb1e91c96 | 2022-07-08T05:07:22.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xlsr-53_s870 | 2 | null | transformers | 26,558 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xlsr-53_s870
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xlsr-53_s769 | 8e8fc38c913c10dfbc5ccd0fcb1fd319e96592d6 | 2022-07-08T05:19:10.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xlsr-53_s769 | 2 | null | transformers | 26,559 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xlsr-53_s769
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xlsr-53_s279 | 4ffcb1c77f46b4962515a4ea915f01515872b5d5 | 2022-07-08T05:26:47.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xlsr-53_s279 | 2 | null | transformers | 26,560 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xlsr-53_s279
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech_s870 | 09712fb82027e2509a90ab355017fdff06bcee63 | 2022-07-08T05:31:32.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech_s870 | 2 | null | transformers | 26,561 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech_s870
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech_s227 | 9dc8c8b988725bfb863e93690281f5cf7c7e5daf | 2022-07-08T05:36:00.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech_s227 | 2 | null | transformers | 26,562 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech_s227
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_hubert_s875 | 021cb5b660918c1abbf6c07953ae5636f4840760 | 2022-07-08T05:46:21.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_hubert_s875 | 2 | null | transformers | 26,563 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_hubert_s875
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_hubert_s596 | ad9e9a61307b59b2594ced028af40d0f2a91e2fa | 2022-07-08T05:50:29.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_hubert_s596 | 2 | null | transformers | 26,564 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_hubert_s596
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_hubert_s877 | ed23e3d9d2ebcc3f31376a56d4cd988681a42b19 | 2022-07-08T05:55:00.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_hubert_s877 | 2 | null | transformers | 26,565 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_hubert_s877
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-sv_s320 | acfcf901ef2fc377396de7f1106ef6b0e89171e0 | 2022-07-08T06:07:23.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-sv_s320 | 2 | null | transformers | 26,566 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-sv_s320
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-sv_s438 | 4c443170949abf4295991c738aae504e75a24156 | 2022-07-08T06:11:38.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-sv_s438 | 2 | null | transformers | 26,567 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-sv_s438
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_no-pretraining_s883 | e6a51c56712629eef5441ba00595803af69fb645 | 2022-07-08T06:16:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_no-pretraining_s883 | 2 | null | transformers | 26,568 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_no-pretraining_s883
Fine-tuned randomly initialized wav2vec2 model for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_no-pretraining_s289 | d3846176b90254995c1961f5080b62ce9e82b4af | 2022-07-08T06:21:53.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_no-pretraining_s289 | 2 | null | transformers | 26,569 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_no-pretraining_s289
Fine-tuned randomly initialized wav2vec2 model for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_no-pretraining_s852 | 330ebe54b4d2219cffbdc64e023054867aedbcea | 2022-07-08T06:27:19.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_no-pretraining_s852 | 2 | null | transformers | 26,570 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_no-pretraining_s852
Fine-tuned randomly initialized wav2vec2 model for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_wavlm_s767 | ad9bf701ee4281ce2e7620a87883a704be067aa7 | 2022-07-08T06:33:36.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wavlm_s767 | 2 | null | transformers | 26,571 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wavlm_s767
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_wavlm_s461 | d0af76c9b7d070e03d8a91bc01d859cc2a7cc396 | 2022-07-08T06:40:13.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wavlm_s461 | 2 | null | transformers | 26,572 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wavlm_s461
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_wavlm_s990 | aa6179e21c769207312e6a580df247168812359f | 2022-07-08T06:48:30.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_wavlm_s990 | 2 | null | transformers | 26,573 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_wavlm_s990
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s377 | d31fb03caec3116a935662bbc6eebf0a2d5fc30e | 2022-07-08T06:52:52.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-ml_s377 | 2 | null | transformers | 26,574 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-ml_s377
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s103 | b53da00aa09e9116c344e5e909985134d08d9edd | 2022-07-08T06:58:31.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-ml_s103 | 2 | null | transformers | 26,575 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-ml_s103
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s756 | dcd90e7b4eb1d1423e38f8ad80b9b9aaa86dce8c | 2022-07-08T07:05:35.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-ml_s756 | 2 | null | transformers | 26,576 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-ml_s756
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-fr_s118 | 9e94ec787bad8d3ba30b94772a59507009b73705 | 2022-07-08T07:12:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-fr_s118 | 2 | null | transformers | 26,577 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-fr_s118
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-fr_s691 | f5020321c6a1374f4143585421755d3f4f4849dc | 2022-07-08T07:20:48.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-fr_s691 | 2 | null | transformers | 26,578 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-fr_s691
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-fr_s51 | e62de7a25db301c26d864b4524ad097a8baacee4 | 2022-07-08T07:29:19.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-fr_s51 | 2 | null | transformers | 26,579 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-fr_s51
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-es_s952 | 3e265f0be47e0c9da045894d0f6050bd62cdbe8b | 2022-07-08T07:36:55.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-es_s952 | 2 | null | transformers | 26,580 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-es_s952
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-es_s474 | 13a2edc8868934a8567416e445ef6b06b267faca | 2022-07-08T07:45:27.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-es_s474 | 2 | null | transformers | 26,581 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-es_s474
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-es_s186 | 4893feae151ffc6fd7ebcf932b9418fd27116652 | 2022-07-08T07:54:17.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-es_s186 | 2 | null | transformers | 26,582 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-es_s186
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-nl_s169 | ad418f92caabd0fa017e38f1df656840218877c4 | 2022-07-08T08:00:33.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-nl_s169 | 2 | null | transformers | 26,583 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-nl_s169
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-nl_s281 | 7255060ca0c6b16721b4197af9fb048b56868c7a | 2022-07-08T08:09:32.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-nl_s281 | 2 | null | transformers | 26,584 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-nl_s281
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-nl_s980 | daf48cad71373eebe553eb3bd3b2126c9cccc7e8 | 2022-07-08T08:17:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-nl_s980 | 2 | null | transformers | 26,585 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-nl_s980
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-sat_s456 | 5b4cf70e56aa20393744f4d20acf4c1e156f6d3d | 2022-07-08T08:26:50.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-sat_s456 | 2 | null | transformers | 26,586 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-sat_s456
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-sat_s251 | d636ec9a5e6dd256552ff0adeb32c7b120d0a1c7 | 2022-07-08T08:36:54.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-sat_s251 | 2 | null | transformers | 26,587 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-sat_s251
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_unispeech-sat_s459 | b49cd8731a1e61570a92f4527f46e9a71f44d913 | 2022-07-08T08:46:57.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_unispeech-sat_s459 | 2 | null | transformers | 26,588 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_unispeech-sat_s459
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xls-r_s957 | b90af1deb90bd3f6e6516853b9c902f53429400c | 2022-07-08T08:54:52.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xls-r_s957 | 2 | null | transformers | 26,589 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xls-r_s957
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xls-r_s732 | 2e67c873c0827bbcc42b18e1aae6807fbae49325 | 2022-07-08T09:02:46.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xls-r_s732 | 2 | null | transformers | 26,590 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xls-r_s732
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_xls-r_s468 | 8fba84c5fa5e46eec3670a12535b6e53622133f8 | 2022-07-08T09:10:45.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_xls-r_s468 | 2 | null | transformers | 26,591 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_xls-r_s468
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s863 | e730eca18440657cc27198def533b369154ef79d | 2022-07-08T09:19:20.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s863 | 2 | null | transformers | 26,592 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_r-wav2vec2_s863
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s93 | fb6aeecc9ce6fd1a3a8bf9855eede7e0ae7779ea | 2022-07-08T09:28:53.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s93 | 2 | null | transformers | 26,593 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_r-wav2vec2_s93
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
huggingtweets/markzero | ae4e371e25fed40b67f271447955a5e327291e70 | 2022-07-08T09:34:56.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/markzero | 2 | null | transformers | 26,594 | ---
language: en
thumbnail: http://www.huggingtweets.com/markzero/1657272867878/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1540882647232266249/rccHZ22G_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">π€ AI BOT π€</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">mark zero dot earth</div>
<div style="text-align: center; font-size: 14px;">@markzero</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from mark zero dot earth.
| Data | mark zero dot earth |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 1045 |
| Short tweets | 155 |
| Tweets kept | 2006 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28cw7iz6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markzero's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ekslgmqq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ekslgmqq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/markzero')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s44 | cc187fb3b22a4bb1c11af4a454ed4f025837bc6d | 2022-07-08T09:36:19.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s44 | 2 | null | transformers | 26,595 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_r-wav2vec2_s44
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-it_s859 | 07502747e4b6998699976e6f2e9c18e06c878bea | 2022-07-08T09:52:16.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-it_s859 | 2 | null | transformers | 26,596 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-it_s859
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-it_s515 | 4c700e6e8f957a2f4ed86ed9d4985c38de99e8c8 | 2022-07-08T09:58:38.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-it_s515 | 2 | null | transformers | 26,597 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-it_s515
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_en_vp-it_s250 | be541291b396cc16b6ed65eb6a5e4dcf767aa282 | 2022-07-08T10:03:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"en",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_en_vp-it_s250 | 2 | null | transformers | 26,598 | ---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_en_vp-it_s250
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_th_wav2vec2_s729 | 4cfc3427ef2af8f4b764507319655f79e0c52747 | 2022-07-08T10:11:02.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"th",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_th_wav2vec2_s729 | 2 | null | transformers | 26,599 | ---
language:
- th
license: apache-2.0
tags:
- automatic-speech-recognition
- th
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_th_wav2vec2_s729
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.