modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
jonatasgrosman/exp_w2v2t_it_vp-100k_s449 | 76cbb34cfc7aa892c277c37ccdbcee79ebce52b5 | 2022-07-08T19:01:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-100k_s449 | 2 | null | transformers | 26,700 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-100k_s449
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
huggingtweets/_anushkasharmaa | 84afd581cc7f37d41d37565201c4229ccd75df93 | 2022-07-08T19:04:13.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/_anushkasharmaa | 2 | null | transformers | 26,701 | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1544699011642171392/mEzKAPWL_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Anushka Sharma</div>
<div style="text-align: center; font-size: 14px;">@_anushkasharmaa</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Anushka Sharma.
| Data | Anushka Sharma |
| --- | --- |
| Tweets downloaded | 431 |
| Retweets | 129 |
| Short tweets | 80 |
| Tweets kept | 222 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z7v8rf0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_anushkasharmaa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qxdz9eg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qxdz9eg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/_anushkasharmaa')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
jonatasgrosman/exp_w2v2t_it_vp-100k_s358 | 55e10b052935bab77f3e4d376b0273f7960c5b5c | 2022-07-08T19:05:46.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-100k_s358 | 2 | null | transformers | 26,702 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-100k_s358
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xlsr-53_s387 | 595d707de8e476caec5caa97a5c22903868a6f28 | 2022-07-08T19:09:45.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xlsr-53_s387 | 2 | null | transformers | 26,703 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xlsr-53_s387
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xlsr-53_s237 | ed0affa2a883d78401eaef1c4a61de3acfa5b7b3 | 2022-07-08T19:12:58.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xlsr-53_s237 | 2 | null | transformers | 26,704 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xlsr-53_s237
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xlsr-53_s79 | 1de453033bdcab0db8c9a144d6a245e8c8e6361e | 2022-07-08T19:16:35.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xlsr-53_s79 | 2 | null | transformers | 26,705 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xlsr-53_s79
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech_s714 | bc88e58780d56bc4e31ffcb97bcedf35e5fcce50 | 2022-07-08T19:20:02.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech_s714 | 2 | null | transformers | 26,706 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech_s714
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech_s626 | 579ef119ba31b5a8a93767e13d974c2cc37c4fff | 2022-07-08T19:23:51.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech_s626 | 2 | null | transformers | 26,707 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech_s626
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech_s156 | c52675968f981a3fc866899f9d837768d848e5c5 | 2022-07-08T19:27:36.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech_s156 | 2 | null | transformers | 26,708 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech_s156
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_hubert_s722 | d71779504448205087aa46f365411ea1ddcc4bd5 | 2022-07-08T19:30:54.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_hubert_s722 | 2 | null | transformers | 26,709 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_hubert_s722
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_hubert_s21 | b3c4c4cc3f62182cc91644edae5b5b94e621e86e | 2022-07-08T19:37:22.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_hubert_s21 | 2 | null | transformers | 26,710 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_hubert_s21
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_hubert_s474 | a198274e60fddc1a228b27e51debb6369156de3e | 2022-07-08T19:40:35.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_hubert_s474 | 2 | null | transformers | 26,711 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_hubert_s474
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-sv_s791 | e2a61ecadac3f7cb3238cb91d9569e10539502a9 | 2022-07-08T19:44:09.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-sv_s791 | 2 | null | transformers | 26,712 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-sv_s791
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-sv_s149 | 422551a341c41597998632d38c21801896a22759 | 2022-07-08T19:47:29.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-sv_s149 | 2 | null | transformers | 26,713 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-sv_s149
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-sv_s1 | d6662142b3de03328160b43993b33487f8c6c068 | 2022-07-08T19:51:06.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-sv_s1 | 2 | null | transformers | 26,714 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-sv_s1
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_no-pretraining_s615 | 9ebb422a252e9aea7ed72b3469e76bf8d6e883fd | 2022-07-08T19:55:28.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_no-pretraining_s615 | 2 | null | transformers | 26,715 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_no-pretraining_s615
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_no-pretraining_s842 | 8701b90611612fbc83d824aa501bd6aa0d888088 | 2022-07-08T19:58:51.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_no-pretraining_s842 | 2 | null | transformers | 26,716 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_no-pretraining_s842
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_no-pretraining_s764 | 262a8f1ec983235fe7906fb331188bc6efeebdbe | 2022-07-08T20:02:47.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_no-pretraining_s764 | 2 | null | transformers | 26,717 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_no-pretraining_s764
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_wavlm_s895 | 4a6d513ec92fec4d167d574ea8868d246682bed8 | 2022-07-08T20:09:44.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_wavlm_s895 | 2 | null | transformers | 26,718 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_wavlm_s895
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_wavlm_s25 | 41c9c6a3117ae856efae28b13ddf75d23ce50359 | 2022-07-08T20:13:30.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_wavlm_s25 | 2 | null | transformers | 26,719 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_wavlm_s25
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-ml_s213 | e37623a41c475aa1d3bd0fe1fa520b3776f75567 | 2022-07-08T20:16:37.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-ml_s213 | 2 | null | transformers | 26,720 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-ml_s213
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-ml_s246 | 4a357fb104ea9254065c8b668421e830dd78cee0 | 2022-07-08T20:20:05.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-ml_s246 | 2 | null | transformers | 26,721 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-ml_s246
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-ml_s784 | 0ecc87b8dd6db754b70712b7b43aab0030062568 | 2022-07-08T20:23:31.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-ml_s784 | 2 | null | transformers | 26,722 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-ml_s784
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-fr_s821 | 370856b51df145c3fc8174c70766fb6ed5554d16 | 2022-07-08T20:27:50.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-fr_s821 | 2 | null | transformers | 26,723 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-fr_s821
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-fr_s579 | bc8c6fda9172202f8d2cc79f1545f264adcc7acf | 2022-07-08T20:32:13.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-fr_s579 | 2 | null | transformers | 26,724 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-fr_s579
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-fr_s557 | 29128deecea0e8547dbe1dd48fb032b97ad2e4ea | 2022-07-08T20:35:34.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-fr_s557 | 2 | null | transformers | 26,725 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-fr_s557
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-es_s33 | 56ab3820dc5e4cb61653d8eebdd5975520b955d4 | 2022-07-08T20:39:11.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-es_s33 | 2 | null | transformers | 26,726 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-es_s33
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-es_s496 | db98f18235704a6c3f6f861af36987d1f11cf196 | 2022-07-08T20:42:33.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-es_s496 | 2 | null | transformers | 26,727 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-es_s496
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-es_s878 | 2d4abb127a6b8a6519c6f9f0e220adb8a1a3f006 | 2022-07-08T20:47:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-es_s878 | 2 | null | transformers | 26,728 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-es_s878
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
huggingtweets/redo | 68672fd8f6f9b1b9b860e94473d01c081d36bb95 | 2022-07-08T21:02:22.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/redo | 2 | null | transformers | 26,729 | ---
language: en
thumbnail: http://www.huggingtweets.com/redo/1657314137996/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/809537557943881728/GU7lSXyY_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Gregory Renard</div>
<div style="text-align: center; font-size: 14px;">@redo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Gregory Renard.
| Data | Gregory Renard |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 579 |
| Short tweets | 62 |
| Tweets kept | 2602 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hp88bd4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @redo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ncfpyxs) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ncfpyxs/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/redo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
jonatasgrosman/exp_w2v2t_it_vp-nl_s27 | 0677593b3ef62b0b405af36e746fd59af0ea136f | 2022-07-08T20:51:06.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-nl_s27 | 2 | null | transformers | 26,730 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-nl_s27
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-nl_s222 | da53bcf94ee904e11a98965a6aaf55890561644e | 2022-07-08T20:54:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-nl_s222 | 2 | null | transformers | 26,731 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-nl_s222
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-nl_s335 | 980e324a760e42ee231f02976960f40224529df7 | 2022-07-08T20:58:20.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-nl_s335 | 2 | null | transformers | 26,732 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-nl_s335
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-sat_s500 | 60afae3a1027380a8be50699307eadfa341ac386 | 2022-07-08T21:10:22.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-sat_s500 | 2 | null | transformers | 26,733 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-sat_s500
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-sat_s306 | 7eb6122ea76c6130bb33c8dc2649372b4d63ea62 | 2022-07-08T21:48:04.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-sat_s306 | 2 | null | transformers | 26,734 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-sat_s306
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_unispeech-sat_s692 | cfc5ff6c6e2c81056d398919afce7324d2e2dbed | 2022-07-08T21:56:35.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_unispeech-sat_s692 | 2 | null | transformers | 26,735 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_unispeech-sat_s692
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xls-r_s417 | 43b5d97a2e0f29a36bad5c30ed2196dce43722fb | 2022-07-08T22:22:06.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xls-r_s417 | 2 | null | transformers | 26,736 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xls-r_s417
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xls-r_s226 | 5eef06e6df547a55e4beb633c2d4bcfbc60c5888 | 2022-07-08T22:28:27.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xls-r_s226 | 2 | null | transformers | 26,737 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xls-r_s226
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_xls-r_s156 | 0de093bf53ff7829124a9a55a2819f9c2a190119 | 2022-07-08T22:33:51.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_xls-r_s156 | 2 | null | transformers | 26,738 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_xls-r_s156
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s317 | 8a0b587733d6bb9f2de8a72d3457123a56083326 | 2022-07-08T22:37:57.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s317 | 2 | null | transformers | 26,739 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_r-wav2vec2_s317
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s646 | 8cfd419f750d876786283e0a33c6dce2c4ed3497 | 2022-07-08T22:41:20.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s646 | 2 | null | transformers | 26,740 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_r-wav2vec2_s646
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s578 | 160b7d385a4ca4a42c1da9171fae1f88330d0feb | 2022-07-08T22:44:54.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_r-wav2vec2_s578 | 2 | null | transformers | 26,741 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_r-wav2vec2_s578
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-it_s324 | a775b71cfc3db0596d7b2430398e82a6f74ff65c | 2022-07-08T22:48:14.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-it_s324 | 2 | null | transformers | 26,742 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-it_s324
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-it_s411 | 7bb0a26dfc637b02ccfbb03b7086e035f669b771 | 2022-07-08T22:51:42.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-it_s411 | 2 | null | transformers | 26,743 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-it_s411
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_it_vp-it_s965 | ab60c0b44b0342ce6a0609ef3b1d11f64c328306 | 2022-07-08T22:55:05.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"it",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_it_vp-it_s965 | 2 | null | transformers | 26,744 | ---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- it
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_it_vp-it_s965
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-fr_s438 | 0048d545718140690d6aad311a8dd5ab52335b49 | 2022-07-09T01:03:57.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-fr_s438 | 2 | null | transformers | 26,745 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-fr_s438
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-fr_s179 | a547076c0cf09a0a6c01ed16c57aaf85fb6d1f59 | 2022-07-09T01:07:16.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-fr_s179 | 2 | null | transformers | 26,746 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-fr_s179
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-es_s169 | 3a865415343bc81da8d1860abe6f59b965b70d5a | 2022-07-09T01:10:31.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-es_s169 | 2 | null | transformers | 26,747 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-es_s169
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-es_s281 | c919aa13ca7b533bfc2ed4a83fa2c59596238745 | 2022-07-09T01:13:47.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-es_s281 | 2 | null | transformers | 26,748 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-es_s281
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-es_s980 | b6a692fe04646dcce0a19ec10046125f4e04f5cc | 2022-07-09T01:17:07.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-es_s980 | 2 | null | transformers | 26,749 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-es_s980
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-nl_s863 | cf228355e61a87cfe8ca1e86403d7b60690368a2 | 2022-07-09T01:20:23.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-nl_s863 | 2 | null | transformers | 26,750 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-nl_s863
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-nl_s93 | c540aabd184130c7126eb1b3b1ea716e9b7d9013 | 2022-07-09T01:23:53.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-nl_s93 | 2 | null | transformers | 26,751 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-nl_s93
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-nl_s44 | 900ab7b0e6d62908fd2c022d10516dfb062c5370 | 2022-07-09T01:27:14.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-nl_s44 | 2 | null | transformers | 26,752 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-nl_s44
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s655 | d876baeb3923982188036c036cf5d22bf4acbce7 | 2022-07-09T01:30:33.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s655 | 2 | null | transformers | 26,753 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_unispeech-sat_s655
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s115 | 90066e0f759e213769cc7ae52b1b0dc26bd3153f | 2022-07-09T01:33:39.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s115 | 2 | null | transformers | 26,754 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_unispeech-sat_s115
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s26 | 7bf7b1d986b9d3ba7d3e1f406306f0d15d85f70d | 2022-07-09T01:36:57.000Z | [
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_unispeech-sat_s26 | 2 | null | transformers | 26,755 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_unispeech-sat_s26
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_xls-r_s515 | bd11242f1b4fcb0f3f28b1f61959776a325d3811 | 2022-07-09T01:40:22.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_xls-r_s515 | 2 | null | transformers | 26,756 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_xls-r_s515
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_xls-r_s250 | fced91821a14eebe0b7fe9609407f95e5b2ed74c | 2022-07-09T01:43:44.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_xls-r_s250 | 2 | null | transformers | 26,757 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_xls-r_s250
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_xls-r_s859 | 529abcccb31b327648bf6197898fdd1d634b6dcf | 2022-07-09T01:47:09.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_xls-r_s859 | 2 | null | transformers | 26,758 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_xls-r_s859
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s456 | 7c0c0f41b3d562a59fda81b9f71a0687a3435518 | 2022-07-09T01:50:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s456 | 2 | null | transformers | 26,759 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_r-wav2vec2_s456
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s251 | a277c4ac5e3e1e2511caace77e52189f6b2ac34e | 2022-07-09T01:54:18.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s251 | 2 | null | transformers | 26,760 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_r-wav2vec2_s251
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s459 | 773d1d99f2ab1d4eb1de8657441a94dfb750b4b1 | 2022-07-09T01:57:35.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_r-wav2vec2_s459 | 2 | null | transformers | 26,761 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_r-wav2vec2_s459
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-it_s878 | 38426a406538d2c31350ebfc65e77d54223f5cb1 | 2022-07-09T02:00:45.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-it_s878 | 2 | null | transformers | 26,762 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-it_s878
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_fr_vp-it_s203 | de7be11480c495ec59a1b91ae0d48ce914d3bf99 | 2022-07-09T02:04:23.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"fr",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_fr_vp-it_s203 | 2 | null | transformers | 26,763 | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- fr
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_fr_vp-it_s203
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
okite97/xlm-roberta-base-finetune-panx-de | a7695d9511ca28b37f5d680c2320c352b788bcd0 | 2022-07-09T02:30:05.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetune-panx-de | 2 | null | transformers | 26,764 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetune-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8611443210930829
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetune-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1405
- F1: 0.8611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 |
| 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 |
| 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okite97/xlm-roberta-base-finetuned-panx-de-fr | 97ed8a35613950bd68c02dad316e4ed5409ae627 | 2022-07-09T03:10:18.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetuned-panx-de-fr | 2 | null | transformers | 26,765 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1196
- F1: 0.8973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2837 | 1.0 | 1073 | 0.1775 | 0.8379 |
| 0.1446 | 2.0 | 2146 | 0.1301 | 0.8767 |
| 0.0917 | 3.0 | 3219 | 0.1196 | 0.8973 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okite97/xlm-roberta-base-finetuned-panx-fr | 90d496532f89dcb35ba71589e18e08b6e3e825b1 | 2022-07-09T03:29:41.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetuned-panx-fr | 2 | null | transformers | 26,766 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.809109176155392
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3390
- F1: 0.8091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6995 | 1.0 | 144 | 0.3922 | 0.7317 |
| 0.3222 | 2.0 | 288 | 0.3372 | 0.7958 |
| 0.208 | 3.0 | 432 | 0.3390 | 0.8091 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okite97/xlm-roberta-base-finetuned-panx-it | 26cc6a3a53b2bb10ae025a67b4cb330fdc5bf311 | 2022-07-09T03:46:31.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetuned-panx-it | 2 | null | transformers | 26,767 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8289473684210525
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2403
- F1: 0.8289
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.668 | 1.0 | 105 | 0.2886 | 0.7818 |
| 0.2583 | 2.0 | 210 | 0.2421 | 0.8202 |
| 0.1682 | 3.0 | 315 | 0.2403 | 0.8289 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okite97/xlm-roberta-base-finetuned-panx-en | d5d6b64d6d89b091e42f46e21dbe11c54ecfb7fc | 2022-07-09T04:03:37.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetuned-panx-en | 2 | null | transformers | 26,768 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.6994475138121546
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3848
- F1: 0.6994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0435 | 1.0 | 74 | 0.5169 | 0.5532 |
| 0.4719 | 2.0 | 148 | 0.4224 | 0.6630 |
| 0.3424 | 3.0 | 222 | 0.3848 | 0.6994 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
okite97/xlm-roberta-base-finetuned-panx-all | 1bc0865670bfc6e641b6682aa47cdb621d0dd620 | 2022-07-09T04:33:41.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | okite97 | null | okite97/xlm-roberta-base-finetuned-panx-all | 2 | null | transformers | 26,769 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1883
- F1: 0.8538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2967 | 1.0 | 1109 | 0.2050 | 0.8180 |
| 0.1571 | 2.0 | 2218 | 0.1880 | 0.8415 |
| 0.0983 | 3.0 | 3327 | 0.1883 | 0.8538 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s451 | 576c41e8f8ae6316a410b174b05cb841d857b87e | 2022-07-09T13:41:24.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s451 | 2 | null | transformers | 26,770 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wav2vec2_s451
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s818 | c7dc11e00a14e3e5c8c02591b95de40665645401 | 2022-07-09T14:06:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s818 | 2 | null | transformers | 26,771 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wav2vec2_s818
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s732 | 985447570c91ffdc99bc5cd2e9b7eb077689fac5 | 2022-07-09T14:33:48.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wav2vec2_s732 | 2 | null | transformers | 26,772 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wav2vec2_s732
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s108 | 983eee09088e95fa68b03061cc67762c8b502959 | 2022-07-09T15:01:41.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s108 | 2 | null | transformers | 26,773 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-100k_s108
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s904 | cb264fb4b8d5062d50a30d3c574c47c7d53f7425 | 2022-07-09T15:16:59.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s904 | 2 | null | transformers | 26,774 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-100k_s904
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
huangjia/xlm-roberta-base-finetuned-panx-de | f69700072620892b96db3675aaf52f0f4eb1a0ed | 2022-07-09T15:39:43.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | huangjia | null | huangjia/xlm-roberta-base-finetuned-panx-de | 2 | null | transformers | 26,775 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8550872422388397
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1333
- F1: 0.8551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 263 | 0.1573 | 0.8137 |
| 0.2142 | 2.0 | 526 | 0.1386 | 0.8466 |
| 0.2142 | 3.0 | 789 | 0.1333 | 0.8551 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2
- Datasets 1.18.4
- Tokenizers 0.10.3
|
huangjia/xlm-roberta-base-finetuned-panx-de-fr | db938cf5a89b647be1ca3ee6ebfe1f4c88b7f24c | 2022-07-09T15:58:43.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | huangjia | null | huangjia/xlm-roberta-base-finetuned-panx-de-fr | 2 | null | transformers | 26,776 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1584
- F1: 0.8537
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.1776 | 0.8263 |
| 0.2394 | 2.0 | 716 | 0.1599 | 0.8447 |
| 0.2394 | 3.0 | 1074 | 0.1584 | 0.8537 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2
- Datasets 1.18.4
- Tokenizers 0.10.3
|
jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s847 | 6bc2933e3372fb5f4fbd578b7af9ff380cc83b83 | 2022-07-09T15:48:44.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-100k_s847 | 2 | null | transformers | 26,777 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-100k_s847
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s328 | 4d5c85d839f55c101857ab2cbf4aaf5fb3e7e974 | 2022-07-09T15:52:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s328 | 2 | null | transformers | 26,778 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_xlsr-53_s328
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s131 | 5b200e7d5046022fcc7ae3773b39deb562a9c8d0 | 2022-07-09T15:56:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s131 | 2 | null | transformers | 26,779 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_xlsr-53_s131
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s624 | 9ee84e5ec4459b37743b2a578dbb5af4e635f725 | 2022-07-09T16:00:26.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_xlsr-53_s624 | 2 | null | transformers | 26,780 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_xlsr-53_s624
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
huangjia/xlm-roberta-base-finetuned-panx-fr | 93a814a2fe4f97af3c595cf44173629ca64bb039 | 2022-07-09T16:05:20.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | huangjia | null | huangjia/xlm-roberta-base-finetuned-panx-fr | 2 | null | transformers | 26,781 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.8204272363150867
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2739
- F1: 0.8204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 96 | 0.3708 | 0.7672 |
| 0.506 | 2.0 | 192 | 0.2967 | 0.8130 |
| 0.506 | 3.0 | 288 | 0.2739 | 0.8204 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2
- Datasets 1.18.4
- Tokenizers 0.10.3
|
huangjia/xlm-roberta-base-finetuned-panx-it | 4b35a8a06e5b05efa9e29f18125689f1d34b88d4 | 2022-07-09T16:09:16.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"dataset:xtreme",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | huangjia | null | huangjia/xlm-roberta-base-finetuned-panx-it | 2 | null | transformers | 26,782 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.7938060309698453
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2687
- F1: 0.7938
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 35 | 0.4625 | 0.6674 |
| 0.7337 | 2.0 | 70 | 0.3035 | 0.7613 |
| 0.7337 | 3.0 | 105 | 0.2687 | 0.7938 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2
- Datasets 1.18.4
- Tokenizers 0.10.3
|
huangjia/xlm-roberta-base-finetuned-panx-all | 19cfa84d0da22407b2d9b7ae0bbb3aef52547aa6 | 2022-07-09T16:25:28.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | token-classification | false | huangjia | null | huangjia/xlm-roberta-base-finetuned-panx-all | 2 | null | transformers | 26,783 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1709
- F1: 0.8561
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 418 | 0.2042 | 0.8064 |
| 0.2421 | 2.0 | 836 | 0.1773 | 0.8376 |
| 0.2421 | 3.0 | 1254 | 0.1709 | 0.8561 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.2
- Datasets 1.18.4
- Tokenizers 0.10.3
|
jonatasgrosman/exp_w2v2t_sv-se_unispeech_s149 | cca43c32031d3248c3c4ecc5f509295a889b95c3 | 2022-07-09T16:18:55.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_unispeech_s149 | 2 | null | transformers | 26,784 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_unispeech_s149
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_unispeech_s449 | d7d4a0f5f47abd4fd77b5a551f98ab941f580724 | 2022-07-09T16:30:10.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_unispeech_s449 | 2 | null | transformers | 26,785 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_unispeech_s449
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_unispeech_s358 | d7327ba3ca79551f26d80203a11dac096c1ad0fe | 2022-07-09T16:37:28.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_unispeech_s358 | 2 | null | transformers | 26,786 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_unispeech_s358
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_hubert_s805 | f5ffae54ba92d6a565d6027ef855b8dd85c161db | 2022-07-09T16:45:49.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_hubert_s805 | 2 | null | transformers | 26,787 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_hubert_s805
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_hubert_s730 | 9c14b96f8db661000edd496a29b8e86f45942ad1 | 2022-07-09T16:53:37.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_hubert_s730 | 2 | null | transformers | 26,788 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_hubert_s730
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_hubert_s930 | beaa1908ecf26a40afcaffdf877bd4fcfd1b90ca | 2022-07-09T16:58:31.000Z | [
"pytorch",
"hubert",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_hubert_s930 | 2 | null | transformers | 26,789 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_hubert_s930
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s363 | 0c2a76da879be965e2dcdf98a0cdd5e5a5b2f12e | 2022-07-09T17:05:30.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s363 | 2 | null | transformers | 26,790 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-sv_s363
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s331 | 583c621de07e288cfe7689a0374081633e09a8a4 | 2022-07-09T17:20:04.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s331 | 2 | null | transformers | 26,791 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-sv_s331
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s116 | f3b51162eadc454c167ee9fbcb271b5dc3b0db85 | 2022-07-09T17:27:31.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_vp-sv_s116 | 2 | null | transformers | 26,792 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_vp-sv_s116
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s910 | 7dc449ca3f2a699c63aa7e5c3784bb93fe43be61 | 2022-07-09T17:30:44.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s910 | 2 | null | transformers | 26,793 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_no-pretraining_s910
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s705 | 1c5331f8041d1b170757ad4a77ea1e4401d914c9 | 2022-07-09T17:33:54.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s705 | 2 | null | transformers | 26,794 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_no-pretraining_s705
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s630 | b4319b63dce12122a3a6bdce13c2f33afec6e8f4 | 2022-07-09T17:37:13.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_no-pretraining_s630 | 2 | null | transformers | 26,795 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_no-pretraining_s630
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_wavlm_s132 | 2bb4cace8906467d4d13ed1fa7dfb69ea6eddffb | 2022-07-09T17:40:35.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wavlm_s132 | 2 | null | transformers | 26,796 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wavlm_s132
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_wavlm_s42 | 3be6432c00778eecd9c410d3179d542df9e93e17 | 2022-07-09T17:44:00.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wavlm_s42 | 2 | null | transformers | 26,797 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wavlm_s42
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_wavlm_s607 | d46f6989127a8a593469ac8c987d11d3f692a68f | 2022-07-09T17:47:17.000Z | [
"pytorch",
"wavlm",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_wavlm_s607 | 2 | null | transformers | 26,798 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_wavlm_s607
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_sv-se_unispeech-ml_s35 | 39886766cef5f5b9f2ccd3dbf84bfa2a0f453839 | 2022-07-09T17:50:40.000Z | [
"pytorch",
"unispeech",
"automatic-speech-recognition",
"sv-SE",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"license:apache-2.0"
] | automatic-speech-recognition | false | jonatasgrosman | null | jonatasgrosman/exp_w2v2t_sv-se_unispeech-ml_s35 | 2 | null | transformers | 26,799 | ---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- sv-SE
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_sv-se_unispeech-ml_s35
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (sv-SE)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.