modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
google/multiberts-seed_2-step_1800k
65f204330ef345286cd6bb9c59b2167a920468da
2021-11-06T02:06:17.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1800k
2
null
transformers
24,000
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1800k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1900k
271eed868855d8e78e84d57f53b51d82c7800bc8
2021-11-06T02:08:03.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1900k
2
null
transformers
24,001
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_500k
5159428a0989623e6c705beb4d110d3e3bff6ffb
2021-11-06T01:44:21.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_500k
2
null
transformers
24,002
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_600k
04dfbd13247e1c0d6880deb708d360632819427a
2021-11-06T01:45:59.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_600k
2
null
transformers
24,003
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_800k
02178e8202d205e5773864b9cc348f5af23059b3
2021-11-06T01:49:23.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_800k
2
null
transformers
24,004
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_800k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_800k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1900k
2b2ab91a25b88566ecad948060c3ae8e38ea5e7b
2021-11-06T02:58:09.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1900k
2
null
transformers
24,005
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_200k
ae6080735c646999469bc91372aee1fb83a155a5
2021-11-06T02:28:36.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_200k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_200k
2
null
transformers
24,006
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_200k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 200k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 200k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_200k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_200k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_60k
8668b7a48d2eb49f4339807afff8b3fa42909342
2021-11-06T02:16:32.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_60k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_60k
2
null
transformers
24,007
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_60k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 60k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 60k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_60k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_60k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_80k
02402bb9ed0e0ace5c4725a926aa4398690fd981
2021-11-06T02:18:12.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_80k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_80k
2
null
transformers
24,008
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_80k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 80k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 80k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_80k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_80k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_4-step_1900k
d2b8ff6818d08bc028f21417c103d2d0be799817
2021-11-06T03:49:07.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_4", "multiberts-seed_4-step_1900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_4-step_1900k
2
null
transformers
24,009
--- language: en tags: - multiberts - multiberts-seed_4 - multiberts-seed_4-step_1900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 4, Step 1900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #4, captured at step 1900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_1900k') model = TFBertModel.from_pretrained("google/multiberts-seed_4-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_1900k') model = BertModel.from_pretrained("google/multiberts-seed_4-step_1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_4-step_700k
3d584d8805ba53a364d8bc2358e1ce64918ec093
2021-11-06T03:28:51.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_4", "multiberts-seed_4-step_700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_4-step_700k
2
null
transformers
24,010
--- language: en tags: - multiberts - multiberts-seed_4 - multiberts-seed_4-step_700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 4, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #4, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_700k') model = TFBertModel.from_pretrained("google/multiberts-seed_4-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_700k') model = BertModel.from_pretrained("google/multiberts-seed_4-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/t5-efficient-base-dl6
5b76c68a7670a8c6b7f684d451c3f8a70ef9bc9a
2022-02-15T10:52:09.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-base-dl6
2
null
transformers
24,011
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-BASE-DL6 (Deep-Narrow version) T5-Efficient-BASE-DL6 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-dl6** - is of model type **Base** with the following variations: - **dl** is **6** It has **166.29** million parameters and thus requires *ca.* **665.15 MB** of memory in full precision (*fp32*) or **332.57 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-base-ff2000
375aec73fb9734dd41a8c0cc1bf7fc389506a4f3
2022-02-15T10:52:46.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-base-ff2000
2
null
transformers
24,012
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-BASE-FF2000 (Deep-Narrow version) T5-Efficient-BASE-FF2000 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-ff2000** - is of model type **Base** with the following variations: - **ff** is **2000** It has **185.18** million parameters and thus requires *ca.* **740.73 MB** of memory in full precision (*fp32*) or **370.37 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-large-dl12
fc3c40afdfd60e9e5783582e3ec97860cd34788b
2022-02-15T10:54:42.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-dl12
2
null
transformers
24,013
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-DL12 (Deep-Narrow version) T5-Efficient-LARGE-DL12 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-dl12** - is of model type **Large** with the following variations: - **dl** is **12** It has **536.34** million parameters and thus requires *ca.* **2145.37 MB** of memory in full precision (*fp32*) or **1072.69 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-dl8
11320d618027c8e2ddfcb41ddaae8e15d97b27a6
2022-02-15T10:56:37.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-dl8
2
null
transformers
24,014
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-DL8 (Deep-Narrow version) T5-Efficient-SMALL-DL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-dl8** - is of model type **Small** with the following variations: - **dl** is **8** It has **68.92** million parameters and thus requires *ca.* **275.66 MB** of memory in full precision (*fp32*) or **137.83 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el16-dl2
a17fe8750aa034eefa2983df496e47ed9aca1460
2022-02-15T10:56:56.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el16-dl2
2
null
transformers
24,015
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL16-DL2 (Deep-Narrow version) T5-Efficient-SMALL-EL16-DL2 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el16-dl2** - is of model type **Small** with the following variations: - **el** is **16** - **dl** is **2** It has **75.21** million parameters and thus requires *ca.* **300.83 MB** of memory in full precision (*fp32*) or **150.42 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el8-dl4
d46c8d93c05a40fe910117029b86c05aa4a4dcf9
2022-02-15T10:50:08.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el8-dl4
2
null
transformers
24,016
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL8-DL4 (Deep-Narrow version) T5-Efficient-SMALL-EL8-DL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el8-dl4** - is of model type **Small** with the following variations: - **el** is **8** - **dl** is **4** It has **58.42** million parameters and thus requires *ca.* **233.69 MB** of memory in full precision (*fp32*) or **116.84 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-tiny-dl6
61c31f15834a01a2105602f50f56a98bb1ee6b7f
2022-02-15T10:54:21.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-tiny-dl6
2
null
transformers
24,017
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-TINY-DL6 (Deep-Narrow version) T5-Efficient-TINY-DL6 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-dl6** - is of model type **Tiny** with the following variations: - **dl** is **6** It has **23.98** million parameters and thus requires *ca.* **95.94 MB** of memory in full precision (*fp32*) or **47.97 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-tiny-dl8
e961034a5df01dbab4f3427b58f6aa4c9279d841
2022-02-15T10:54:24.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-tiny-dl8
2
null
transformers
24,018
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-TINY-DL8 (Deep-Narrow version) T5-Efficient-TINY-DL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-dl8** - is of model type **Tiny** with the following variations: - **dl** is **8** It has **26.09** million parameters and thus requires *ca.* **104.34 MB** of memory in full precision (*fp32*) or **52.17 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-xxl-ssm-wqo
da3431783746255a5589fdce382b0b4a92132711
2020-12-07T08:47:04.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:web_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-xxl-ssm-wqo
2
null
transformers
24,019
--- language: en datasets: - c4 - wikipedia - web_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Web Questions - Test Set |Id | link | Exact Match | |---|---|---| |T5-11b|https://huggingface.co/google/t5-11b-ssm-wqo|40.8| |**T5-xxl**|**https://huggingface.co/google/t5-xxl-ssm-wqo**|**42.8**| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-xxl-ssm-wqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-xxl-ssm-wqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/tapas-tiny-masklm
4f6ed0e42165c2c8ff3766d08b516252b8e16bd6
2021-11-29T14:14:53.000Z
[ "pytorch", "tf", "tapas", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
google
null
google/tapas-tiny-masklm
2
null
transformers
24,020
This model corresponds to **tapas_masklm_tiny_reset** of the [original repository](https://github.com/google-research/tapas). Here's how you can use it: ```python from transformers import TapasTokenizer, TapasForMaskedLM import pandas as pd import torch tokenizer = TapasTokenizer.from_pretrained("google/tapas-tiny-masklm") model = TapasForMaskedLM.from_pretrained("google/tapas-tiny-masklm") data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Age': ["56", "45", "59"], 'Number of movies': ["87", "53", "69"] } table = pd.DataFrame.from_dict(data) query = "How many movies has Leonardo [MASK] Caprio played in?" # prepare inputs inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt") # forward pass outputs = model(**inputs) # return top 5 values and predictions masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False) logits = outputs.logits[0, masked_index.item(), :] probs = logits.softmax(dim=0) values, predictions = probs.topk(5) for value, pred in zip(values, predictions): print(f"{tokenizer.decode([pred])} with confidence {value}") ```
groar/gpt-neo-1.3B-finetuned-escape3
0444b22f1fa2b0686e772dd095a579c2119cb042
2022-02-14T15:17:25.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
groar
null
groar/gpt-neo-1.3B-finetuned-escape3
2
null
transformers
24,021
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-1.3B-finetuned-escape3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape3 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
gusintheshell/DialoGPT-small-rickbot
e78c153437ae404b84edaec9a27feae14f2fa7b4
2021-08-29T00:42:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gusintheshell
null
gusintheshell/DialoGPT-small-rickbot
2
null
transformers
24,022
--- tags: - conversational --- # Rick bot
gwangjogong/quora-insincere-electra-small
33e68d584bc7afdf0f9aa171382ca8a9a176102a
2021-06-17T05:11:09.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
gwangjogong
null
gwangjogong/quora-insincere-electra-small
2
null
transformers
24,023
Entry not found
haji2438/bertweet-base-SNS_BRANDS_50k
4a908f42c664f512e530e55ae8900fc42eca3ebb
2022-01-24T03:51:35.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
haji2438
null
haji2438/bertweet-base-SNS_BRANDS_50k
2
null
transformers
24,024
--- tags: - generated_from_trainer model-index: - name: bertweet-base-SNS_BRANDS_50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_50k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0787 | 1.0 | 1465 | 0.0751 | | 0.0662 | 2.0 | 2930 | 0.0628 | | 0.053 | 3.0 | 4395 | 0.0531 | | 0.0452 | 4.0 | 5860 | 0.0490 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
haji2438/test_Com_bertweet_fine_tuned
393839a912f51af2520af11cb60fda8fdc10e586
2022-01-10T18:26:35.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
haji2438
null
haji2438/test_Com_bertweet_fine_tuned
2
null
transformers
24,025
Entry not found
halimara/model_sentence_bert
724f7b915e8c162c932f3af9eeb0ed57ab19ffa7
2021-10-01T13:40:15.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
halimara
null
halimara/model_sentence_bert
2
null
transformers
24,026
ham19za/model
2183b8ff1e25f178af8fa1553ef64b4f25a1c670
2021-09-03T14:09:34.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
ham19za
null
ham19za/model
2
null
transformers
24,027
Entry not found
hama/Doctor_Bot
ced1db33f321cbe2a3e769a5302a5d023ff9bc7d
2021-09-11T18:05:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hama
null
hama/Doctor_Bot
2
null
transformers
24,028
--- tags: - conversational --- # DOC DialoGPT Model
hama/me0.01
97a234007c2d681971377dd094f4aeabc49c42dd
2021-11-06T19:48:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hama
null
hama/me0.01
2
null
transformers
24,029
--- tags: - conversational --- # me 101
hangmu/9.4AIstudy
b0cf06ca8bc620707c16fa2914b1e639dbe5298b
2021-09-05T11:42:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hangmu
null
hangmu/9.4AIstudy
2
null
transformers
24,030
Entry not found
hanseokhyeon/bert-badword-base
ba4de31ec337cc66567c446d58e87d5286daa3ca
2021-05-19T18:00:19.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
hanseokhyeon
null
hanseokhyeon/bert-badword-base
2
null
transformers
24,031
Entry not found
hanseokhyeon/bert-badword-puri-2400
0ffff51964b9712baa9aff8883a5354d4533fd3f
2021-05-19T18:10:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
hanseokhyeon
null
hanseokhyeon/bert-badword-puri-2400
2
null
transformers
24,032
Entry not found
harish/AStitchInLanguageModels-Task2_EN_BERTTokenizedNoPreTrain
060fcb8ac3a9ac72066887d79a85b2b3e7218dd1
2021-08-20T12:00:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/AStitchInLanguageModels-Task2_EN_BERTTokenizedNoPreTrain
2
null
transformers
24,033
Entry not found
harish/AStitchInLanguageModels-Task2_PT_mBERTTokenizedSelectReplacePreTrain
6fc4eb06fdc396ec727e10f00c13b48b4cc9f6f2
2021-08-20T12:25:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/AStitchInLanguageModels-Task2_PT_mBERTTokenizedSelectReplacePreTrain
2
null
transformers
24,034
Entry not found
harish/BERT-Plus-CxG-100K
86e9d73c5b5cc2b6981f005aa21028c17057ae02
2021-05-19T18:21:36.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
harish
null
harish/BERT-Plus-CxG-100K
2
null
transformers
24,035
Entry not found
harish/BERT-Plus-CxG-20K
f88b8b555a123f18ae7ca1f27125b98ea77f4bcb
2021-05-19T18:22:32.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
harish
null
harish/BERT-Plus-CxG-20K
2
null
transformers
24,036
Entry not found
harish/EN-AStitchTask1A-BERTBaseCased-FalseFalse-0-3-BEST
1fe324eae610d1d7073a21c03b610572c4789630
2021-09-05T00:05:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/EN-AStitchTask1A-BERTBaseCased-FalseFalse-0-3-BEST
2
null
transformers
24,037
Entry not found
harish/EN-AStitchTask1A-BERTBaseCased-TrueTrue-0-3-BEST
f0c98c90fbcd7ad2e4ae04eecebf7c11949dc5e1
2021-09-05T00:13:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/EN-AStitchTask1A-BERTBaseCased-TrueTrue-0-3-BEST
2
null
transformers
24,038
Entry not found
harish/PT-FalseFalse-0_2_BEST
15549cb7ceccc13ba1e8133cba4ec2ce01ca4d6b
2021-05-19T18:32:16.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-FalseFalse-0_2_BEST
2
null
transformers
24,039
Entry not found
harish/PT-UP-xlmR-FalseFalse-0_0_BEST
2b0f74d7ce7b74f04371b84aa48984c83106c0d2
2021-06-28T14:36:22.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-UP-xlmR-FalseFalse-0_0_BEST
2
null
transformers
24,040
Entry not found
harish/PT-UP-xlmR-OneShot-FalseTrue-0_2_BEST
9895698f8f2faba143e214cb7bf36120bc9fbafa
2021-06-28T15:52:47.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-UP-xlmR-OneShot-FalseTrue-0_2_BEST
2
null
transformers
24,041
Entry not found
harish/PT-UP-xlmR-TrueTrue-0_4_BEST
81e97e0226f8be2cd6823c76481cf7616d2d2305
2021-06-28T14:33:05.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-UP-xlmR-TrueTrue-0_4_BEST
2
null
transformers
24,042
Entry not found
harish/PT-XLM_R-FalseFalse-0_2_BEST
e93cf5ff336bf7366bf272aa1a8d12a9ce430060
2021-05-09T10:25:56.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-XLM_R-FalseFalse-0_2_BEST
2
null
transformers
24,043
Entry not found
harish/PT-XLM_R-FalseTrue-0_2_BEST
519749c184df23243ca80cd537cb2023ea70d7e4
2021-05-09T00:56:11.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-XLM_R-FalseTrue-0_2_BEST
2
null
transformers
24,044
Entry not found
harish/PT-v3-dev-test-all-PreTrain-e6-all
cb57a32346a71544a5445a6a01e122094fdea423
2021-05-19T18:49:04.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/PT-v3-dev-test-all-PreTrain-e6-all
2
null
transformers
24,045
Entry not found
haritzpuerto/MetaQA
4d9a6d913c833415e627bc174638befab2b2c9a0
2022-02-15T10:57:45.000Z
[ "pytorch", "bert", "transformers" ]
null
false
haritzpuerto
null
haritzpuerto/MetaQA
2
null
transformers
24,046
Entry not found
helmi0695/det5-base
6ed35e141c201080775c1b3f39974d8569afda49
2021-10-18T15:05:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
helmi0695
null
helmi0695/det5-base
2
null
transformers
24,047
Entry not found
hendrixcosta/bertoso
7ad47d03cc4f43d9bac48729adf66fd8a5f27bd0
2021-05-19T18:58:51.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
hendrixcosta
null
hendrixcosta/bertoso
2
null
transformers
24,048
Entry not found
hf-internal-testing/tiny-random-hubert
8132718dad3c31c2dd3d5e13b988a94681b01408
2021-09-17T19:25:54.000Z
[ "pytorch", "tf", "hubert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-hubert
2
null
transformers
24,049
Entry not found
hf-internal-testing/tiny-random-ibert
e42afa46847fd616ea8ab641f6b7d1471d263649
2021-09-17T19:26:06.000Z
[ "pytorch", "ibert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-ibert
2
null
transformers
24,050
Entry not found
hf-test/xls-r-ab-test
3287e21137ac96500ff1d4d915d7a472462ac0f3
2022-01-09T00:36:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
hf-test
null
hf-test/xls-r-ab-test
2
null
transformers
24,051
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8787 - Wer: 1.3460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
hfl/chinese-legal-electra-large-discriminator
0f99abbeb1c316db79055e591c8f5d0eeff48d18
2021-01-22T05:19:50.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
null
false
hfl
null
hfl/chinese-legal-electra-large-discriminator
2
1
transformers
24,052
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hgiyt/ar-monomodel-mberttok
6d8274e4241e46e2afdbb273410714f6c3ac030b
2021-05-19T19:28:13.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/ar-monomodel-mberttok
2
null
transformers
24,053
Entry not found
hgiyt/fi-mbertmodel-monotok-adapter
b061973ee057da70c54f3afbcd83e202536dd40e
2021-05-19T19:32:58.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/fi-mbertmodel-monotok-adapter
2
null
transformers
24,054
Entry not found
hgiyt/id-mbertmodel-mberttok
1846a3610d8b87628037c9fcadf37d4adc43c640
2021-05-19T19:39:54.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/id-mbertmodel-mberttok
2
null
transformers
24,055
Entry not found
hgiyt/id-monomodel-mberttok
6d47929ad98d1919f1c242fcf2d27c83ef0e9c25
2021-05-19T19:43:23.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/id-monomodel-mberttok
2
null
transformers
24,056
Entry not found
hgiyt/tr-monomodel-mberttok
3425aa866472fa7a9c4aa61b560618b68b178250
2021-05-19T19:56:10.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/tr-monomodel-mberttok
2
null
transformers
24,057
Entry not found
hgiyt/tr-monomodel-monotok
8cf390dfa3b2abfe8ce631ad1f4b4609f43ac57f
2021-05-19T19:58:31.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/tr-monomodel-monotok
2
null
transformers
24,058
Entry not found
hiiamsid/est5-base-qg
2bdf024494b04f6bdf27ccb7b551d6813933fcc0
2021-10-07T09:26:49.000Z
[ "pytorch", "t5", "text2text-generation", "es", "transformers", "spanish", "question generation", "qg", "license:mit", "autotrain_compatible" ]
text2text-generation
false
hiiamsid
null
hiiamsid/est5-base-qg
2
null
transformers
24,059
--- language: ["es"] tags: - spanish - question generation - qg Datasets: - SQUAD license: mit --- This is the finetuned model of hiiamsid/est5-base for Question Generation task. * Here input is the context only and output is questions. No information regarding answers were given to model. * Unfortunately, due to lack of sufficient resources it is fine tuned with batch_size=10 and num_seq_len=256. So, if too large context is given model may not get information about last portions. ``` from transformers import T5ForConditionalGeneration, T5Tokenizer MODEL_NAME = 'hiiamsid/est5-base-qg' model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME) tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME) model.cuda(); model.eval(); def generate_question(text, beams=10, grams=2, num_return_seq=10,max_size=256): x = tokenizer(text, return_tensors='pt', padding=True).to(model.device) out = model.generate(**x, no_repeat_ngram_size=grams, num_beams=beams, num_return_sequences=num_return_seq, max_length=max_size) return tokenizer.decode(out[0], skip_special_tokens=True) print(generate_question('Any context in spanish from which question is to be generated')) ``` ## Citing & Authors - Datasets : [squad_es](https://huggingface.co/datasets/squad_es) - Model : [hiiamsid/est5-base](hiiamsid/est5-base)
hiiii23/distilbert-base-uncased-finetuned-squad
3e2cc6b3aa8a5a92b1b3cdec6f9f6462dc0db108
2021-10-10T13:02:48.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
hiiii23
null
hiiii23/distilbert-base-uncased-finetuned-squad
2
null
transformers
24,060
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
hireddivas/DialoGPT-small-ray
37a21aab8fda420112840bf785bf740a41334996
2021-11-03T05:56:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hireddivas
null
hireddivas/DialoGPT-small-ray
2
null
transformers
24,061
--- tags: - conversational --- GPT-2 chatbot - talk to Ray Smuckles
hireddivas/dialoGPT-small-phil
22d4bb31d2f37255fb4763c6930cdbb67de4afbc
2021-11-01T05:27:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hireddivas
null
hireddivas/dialoGPT-small-phil
2
null
transformers
24,062
--- tags: - conversational --- GPT-2 model trained on Phil from Eastenders
hkunlp/from_all_T5_large_prefix_sql2text2
3e8223b2c6bc17680eb331ff4a5a8f44259d0115
2022-01-11T18:18:48.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_sql2text2
2
null
transformers
24,063
Entry not found
hkunlp/from_all_T5_large_prefix_webqsp2
9837dc5f771988435c5074b173584d805ed5e8bd
2022-01-11T16:27:43.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_webqsp2
2
null
transformers
24,064
Entry not found
hongjehong/hjh_kobart_summarizer
e1216c8976ada2b22070f0c66f3fed261a4eaf84
2021-10-11T16:14:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hongjehong
null
hongjehong/hjh_kobart_summarizer
2
null
transformers
24,065
Entry not found
howey/bert-base-uncased-mrpc
23d4cf0be1560d96f26add1b1182d0e1ab4fb8cb
2021-05-26T14:47:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/bert-base-uncased-mrpc
2
null
transformers
24,066
Entry not found
howey/electra-base-cola
573ea54f9d4eb2e1f4b2aecf5d08539da4b7772c
2021-05-24T08:40:52.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-base-cola
2
null
transformers
24,067
Entry not found
howey/electra-base-qnli
bd0cb1cc9b114acf69cd514abaf5093ec3ec71c2
2021-05-18T15:10:19.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-base-qnli
2
null
transformers
24,068
Entry not found
howey/electra-large-cola
52a16bfbad0533fc40701b41a79290810c9c4f2f
2021-06-04T06:25:15.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-cola
2
1
transformers
24,069
Entry not found
howey/electra-large-mrpc
88206cbd71e3a0f6d19ddcaadb156f51905e6be1
2021-06-04T06:14:31.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-mrpc
2
null
transformers
24,070
Entry not found
howey/electra-large-qnli
452b134794df5ccf2582cfbab173fe1de7202575
2021-06-04T06:31:46.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-qnli
2
null
transformers
24,071
Entry not found
howey/electra-large-stsb
cf06fc0884d5f08e4e11c3c0a844c0634e1b50cf
2021-06-04T06:28:12.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-stsb
2
null
transformers
24,072
Entry not found
howey/roberta-large-rte
6b154931035643eb223908224c5c5aa9cf56d829
2021-06-03T14:16:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/roberta-large-rte
2
null
transformers
24,073
Entry not found
howey/roberta-large-stsb
9bc1f6c22f899f46a8d7a9d835b0759148ff240e
2021-06-03T11:42:49.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/roberta-large-stsb
2
null
transformers
24,074
Entry not found
hrdipto/wav2vec2-xls-r-timit-tokenizer
995ecf7fd736a934f449765fcebba000358e921c
2021-12-21T11:49:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hrdipto
null
hrdipto/wav2vec2-xls-r-timit-tokenizer
2
null
transformers
24,075
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 | | 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 | | 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 | | 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 | | 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 | | 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 | | 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingartists/25-17
14ac1f8fa22e35a60f1f08610a36e75ce72f5904
2021-09-10T12:55:59.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/25-17", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/25-17
2
null
transformers
24,076
--- language: en datasets: - huggingartists/25-17 tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="https://genius.com/artists/25-17"> <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 25/17. Dataset is available [here](https://huggingface.co/datasets/huggingartists/25-17). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/25-17") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1iuytbjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 25/17's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/25-17') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/25-17") model = AutoModelWithLMHead.from_pretrained("huggingartists/25-17") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/5opka
54d1722eacd367b5dc9bdedb2e0373e14b6acb9e
2021-09-16T15:23:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/5opka", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/5opka
2
null
transformers
24,077
--- language: en datasets: - huggingartists/5opka tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c56dce03a151e17a9626e55e6c295bb1.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div> <a href="https://genius.com/artists/5opka"> <div style="text-align: center; font-size: 14px;">@5opka</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 5opka. Dataset is available [here](https://huggingface.co/datasets/huggingartists/5opka). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5opka") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1o2s4fw8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5opka's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/5opka') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/5opka") model = AutoModelWithLMHead.from_pretrained("huggingartists/5opka") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/aikko
78249774ba43454f90ea19f1c50008a14db87e7f
2021-09-12T14:10:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/aikko", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/aikko
2
null
transformers
24,078
--- language: en datasets: - huggingartists/aikko tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="https://genius.com/artists/aikko"> <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ⁣aikko. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aikko). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aikko") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1cfdpsrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ⁣aikko's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aikko') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aikko") model = AutoModelWithLMHead.from_pretrained("huggingartists/aikko") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/architects
424167f586c0c06f3310d5cd0309f1bb1c04c132
2021-11-11T18:00:17.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/architects", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/architects
2
null
transformers
24,079
--- language: en datasets: - huggingartists/architects tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d2cd8787bdf913fc1518987f971c6bd3.960x960x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Architects</div> <a href="https://genius.com/artists/architects"> <div style="text-align: center; font-size: 14px;">@architects</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Architects. Dataset is available [here](https://huggingface.co/datasets/huggingartists/architects). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/architects") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/licizuue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Architects's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1a9mrzf8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1a9mrzf8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/architects') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/architects") model = AutoModelWithLMHead.from_pretrained("huggingartists/architects") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bones
52c43eb599f2f704dc2cb344ecd3bdc3694a9297
2021-10-02T23:03:17.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/bones", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/bones
2
null
transformers
24,080
--- language: en datasets: - huggingartists/bones tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/564dc935d7c601860b155b359d8ddf9d.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BONES</div> <a href="https://genius.com/artists/bones"> <div style="text-align: center; font-size: 14px;">@bones</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from BONES. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bones). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bones") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/26h7sojw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BONES's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1yr1mvc2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1yr1mvc2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bones') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bones") model = AutoModelWithLMHead.from_pretrained("huggingartists/bones") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/boris-grebenshikov
9cb590c72d7a827a4842368d2caf8f2b33855028
2021-11-10T08:53:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/boris-grebenshikov", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/boris-grebenshikov
2
null
transformers
24,081
--- language: en datasets: - huggingartists/boris-grebenshikov tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/491c2f003f52c9837809b86faef7b764.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Борис Гребенщиков (Boris Grebenshikov)</div> <a href="https://genius.com/artists/boris-grebenshikov"> <div style="text-align: center; font-size: 14px;">@boris-grebenshikov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Борис Гребенщиков (Boris Grebenshikov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/boris-grebenshikov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/boris-grebenshikov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3nb43gls/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Борис Гребенщиков (Boris Grebenshikov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34p8ye7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34p8ye7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/boris-grebenshikov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/boris-grebenshikov") model = AutoModelWithLMHead.from_pretrained("huggingartists/boris-grebenshikov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/duran-duran
0a2c0e460c897379905e4643c8d81f876731af51
2021-08-10T12:53:45.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/duran-duran", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/duran-duran
2
null
transformers
24,082
--- language: en datasets: - huggingartists/duran-duran tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/95697394e4f58c9aa507e408f51008db.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Duran Duran</div> <a href="https://genius.com/artists/duran-duran"> <div style="text-align: center; font-size: 14px;">@duran-duran</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Duran Duran. Dataset is available [here](https://huggingface.co/datasets/huggingartists/duran-duran). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/duran-duran") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/dy133fuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Duran Duran's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/386u7cc3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/duran-duran') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/duran-duran") model = AutoModelWithLMHead.from_pretrained("huggingartists/duran-duran") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/egor-letov
e355cf06d0bb232ad73e1f3d8b8c6a2ac01faef7
2022-02-13T20:16:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/egor-letov", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/egor-letov
2
null
transformers
24,083
--- language: en datasets: - huggingartists/egor-letov tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/faa3dae99bf1fe365927608fd55c745a.330x330x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Егор Летов (Egor Letov)</div> <a href="https://genius.com/artists/egor-letov"> <div style="text-align: center; font-size: 14px;">@egor-letov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Егор Летов (Egor Letov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/egor-letov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-letov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1omrcegx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Егор Летов (Egor Letov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/egor-letov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/egor-letov") model = AutoModelWithLMHead.from_pretrained("huggingartists/egor-letov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/florence-the-machine
909dd0ec2c77404c9cbb635f24d06e951dbda11f
2021-08-10T09:03:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/florence-the-machine", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/florence-the-machine
2
null
transformers
24,084
--- language: en datasets: - huggingartists/florence-the-machine tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/99d09eb55276442d715ac14f06173a4e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Florence + The Machine</div> <a href="https://genius.com/artists/florence-the-machine"> <div style="text-align: center; font-size: 14px;">@florence-the-machine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Florence + The Machine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/florence-the-machine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/florence-the-machine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/icjt5evm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Florence + The Machine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zfb9y24) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zfb9y24/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/florence-the-machine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/florence-the-machine") model = AutoModelWithLMHead.from_pretrained("huggingartists/florence-the-machine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/john-lennon
366cb36d88836cba9ef362c3f46ab5f81af07489
2021-09-10T10:37:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/john-lennon", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/john-lennon
2
null
transformers
24,085
--- language: en datasets: - huggingartists/john-lennon tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de14b272004b51dea8071e7cba21cbac.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">John Lennon</div> <a href="https://genius.com/artists/john-lennon"> <div style="text-align: center; font-size: 14px;">@john-lennon</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from John Lennon. Dataset is available [here](https://huggingface.co/datasets/huggingartists/john-lennon). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/john-lennon") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/f3d8fseh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on John Lennon's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/36mtogkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/36mtogkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/john-lennon') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/john-lennon") model = AutoModelWithLMHead.from_pretrained("huggingartists/john-lennon") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/lady-gaga
ca0671f5f5916768122e5b22521944b92bfb113e
2022-03-08T20:28:19.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/lady-gaga", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/lady-gaga
2
null
transformers
24,086
--- language: en datasets: - huggingartists/lady-gaga tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e7e76c378cb43b4b1ff03947d5c0481a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <a href="https://genius.com/artists/lady-gaga"> <div style="text-align: center; font-size: 14px;">@lady-gaga</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Lady Gaga. Dataset is available [here](https://huggingface.co/datasets/huggingartists/lady-gaga). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/lady-gaga") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/17c0d4ej/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lady Gaga's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2j7yp9qd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/lady-gaga') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/lady-gaga") model = AutoModelWithLMHead.from_pretrained("huggingartists/lady-gaga") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/led-zeppelin
a16dd5fa0e56e9257a89e38b6c2d33b8be0f6e06
2022-02-15T22:19:29.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/led-zeppelin", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/led-zeppelin
2
null
transformers
24,087
--- language: en datasets: - huggingartists/led-zeppelin tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e4763bba12e6411077a3e573cd290da0.433x433x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Led Zeppelin</div> <a href="https://genius.com/artists/led-zeppelin"> <div style="text-align: center; font-size: 14px;">@led-zeppelin</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Led Zeppelin. Dataset is available [here](https://huggingface.co/datasets/huggingartists/led-zeppelin). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/led-zeppelin") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/cpexpb1w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Led Zeppelin's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/led-zeppelin') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/led-zeppelin") model = AutoModelWithLMHead.from_pretrained("huggingartists/led-zeppelin") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/madonna
d439efe98de06421da387560af3b81b51ba10037
2022-06-16T21:35:29.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/madonna", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/madonna
2
null
transformers
24,088
--- language: en datasets: - huggingartists/madonna tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/676c1c425eaa8e7600136c56af6dfada.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madonna</div> <a href="https://genius.com/artists/madonna"> <div style="text-align: center; font-size: 14px;">@madonna</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Madonna. Dataset is available [here](https://huggingface.co/datasets/huggingartists/madonna). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/madonna") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2abhif57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Madonna's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2eok9fmu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2eok9fmu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/madonna') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/madonna") model = AutoModelWithLMHead.from_pretrained("huggingartists/madonna") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/mayot
c0ecdce0f18fa2e97ec8c0ff42f7968ca055e7c7
2021-09-29T17:40:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/mayot", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/mayot
2
null
transformers
24,089
--- language: en datasets: - huggingartists/mayot tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1d4b4adcdf1f58e1899ee5557375ef7c.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MAYOT</div> <a href="https://genius.com/artists/mayot"> <div style="text-align: center; font-size: 14px;">@mayot</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MAYOT. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mayot). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mayot") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lf4wcx85/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MAYOT's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mayot') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mayot") model = AutoModelWithLMHead.from_pretrained("huggingartists/mayot") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/rex-orange-county
8a1569494d4a7c8944fc83cc01c0b231e1301e77
2021-09-12T20:31:29.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/rex-orange-county", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/rex-orange-county
2
null
transformers
24,090
--- language: en datasets: - huggingartists/rex-orange-county tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/348ad82a8d34eaff777b6743ca0f2d70.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rex Orange County</div> <a href="https://genius.com/artists/rex-orange-county"> <div style="text-align: center; font-size: 14px;">@rex-orange-county</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rex Orange County. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rex-orange-county). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rex-orange-county") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3by3xc64/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rex Orange County's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1bwctmad) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1bwctmad/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rex-orange-county') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rex-orange-county") model = AutoModelWithLMHead.from_pretrained("huggingartists/rex-orange-county") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/shadowraze
29b8eef4d680bcc471852e73b21acd64020f2488
2021-10-15T02:02:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/shadowraze", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/shadowraze
2
null
transformers
24,091
--- language: en datasets: - huggingartists/shadowraze tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e2576b95c2049862de20cbd0f1a4e0d7.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​shadowraze</div> <a href="https://genius.com/artists/shadowraze"> <div style="text-align: center; font-size: 14px;">@shadowraze</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​shadowraze. Dataset is available [here](https://huggingface.co/datasets/huggingartists/shadowraze). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/shadowraze") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/pkbkflsq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​shadowraze's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/shadowraze') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/shadowraze") model = AutoModelWithLMHead.from_pretrained("huggingartists/shadowraze") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/slava-marlow
20c3f884844989fa4371d003c51d9eefd40f71ed
2021-10-16T10:37:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/slava-marlow", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/slava-marlow
2
null
transformers
24,092
--- language: en datasets: - huggingartists/slava-marlow tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e308b1bc9eeb159ecfa9d807d715f095.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SLAVA MARLOW</div> <a href="https://genius.com/artists/slava-marlow"> <div style="text-align: center; font-size: 14px;">@slava-marlow</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from SLAVA MARLOW. Dataset is available [here](https://huggingface.co/datasets/huggingartists/slava-marlow). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/slava-marlow") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1fdcz1s5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on SLAVA MARLOW's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/slava-marlow') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/slava-marlow") model = AutoModelWithLMHead.from_pretrained("huggingartists/slava-marlow") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/system-of-a-down
1d377cd8aa06534364f99932e353a5a049fcaa67
2021-09-12T12:08:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/system-of-a-down", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/system-of-a-down
2
null
transformers
24,093
--- language: en datasets: - huggingartists/system-of-a-down tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5688d59e74bfc07b0531636114f56c1e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">System of a Down</div> <a href="https://genius.com/artists/system-of-a-down"> <div style="text-align: center; font-size: 14px;">@system-of-a-down</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from System of a Down. Dataset is available [here](https://huggingface.co/datasets/huggingartists/system-of-a-down). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/system-of-a-down") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3m1sikv8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on System of a Down's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/system-of-a-down') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/system-of-a-down") model = AutoModelWithLMHead.from_pretrained("huggingartists/system-of-a-down") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/the-notorious-big
999a3ba5104445275f065a938bdbb22d5876c619
2021-10-08T17:26:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/the-notorious-big", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/the-notorious-big
2
null
transformers
24,094
--- language: en datasets: - huggingartists/the-notorious-big tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/664976b54a605d6ac0df2415a8ccac16.564x564x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Notorious B.I.G.</div> <a href="https://genius.com/artists/the-notorious-big"> <div style="text-align: center; font-size: 14px;">@the-notorious-big</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Notorious B.I.G.. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-notorious-big). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-notorious-big") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/wkvasju4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Notorious B.I.G.'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1coezuy2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1coezuy2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-notorious-big') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-notorious-big") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-notorious-big") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/the-the-pigs
97e49981e119e69bbe5616a3a0086252f578384e
2021-09-11T06:35:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/the-the-pigs", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/the-the-pigs
2
null
transformers
24,095
--- language: en datasets: - huggingartists/the-the-pigs tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2f1fd1b951237ad3387096f392d41fa5.720x720x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The ‘’Вепри’’ (The Pigs)</div> <a href="https://genius.com/artists/the-the-pigs"> <div style="text-align: center; font-size: 14px;">@the-the-pigs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The ‘’Вепри’’ (The Pigs). Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-the-pigs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-the-pigs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/7yh65db9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The ‘’Вепри’’ (The Pigs)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/65gj1lk1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/65gj1lk1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-the-pigs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-the-pigs") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-the-pigs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/till-lindemann
7a017ad13ad0356c6106df796df8d44cfac0a5f3
2021-09-15T11:46:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/till-lindemann", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/till-lindemann
2
null
transformers
24,096
--- language: en datasets: - huggingartists/till-lindemann tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/48d6ca7ca17a9dfc9ad3034e71533a89.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Till Lindemann</div> <a href="https://genius.com/artists/till-lindemann"> <div style="text-align: center; font-size: 14px;">@till-lindemann</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Till Lindemann. Dataset is available [here](https://huggingface.co/datasets/huggingartists/till-lindemann). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/till-lindemann") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2xh6fyqt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Till Lindemann's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/till-lindemann') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/till-lindemann") model = AutoModelWithLMHead.from_pretrained("huggingartists/till-lindemann") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/twenty-one-pilots
377bdcaecb61b592b2cf0d38705de1406b378727
2021-08-14T06:54:43.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/twenty-one-pilots", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/twenty-one-pilots
2
null
transformers
24,097
--- language: en datasets: - huggingartists/twenty-one-pilots tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5ab9e38cf86aa170734fea1731610abc.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​twenty one pilots</div> <a href="https://genius.com/artists/twenty-one-pilots"> <div style="text-align: center; font-size: 14px;">@twenty-one-pilots</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​twenty one pilots. Dataset is available [here](https://huggingface.co/datasets/huggingartists/twenty-one-pilots). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/twenty-one-pilots") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wr3j4nk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​twenty one pilots's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/twenty-one-pilots') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/twenty-one-pilots") model = AutoModelWithLMHead.from_pretrained("huggingartists/twenty-one-pilots") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/aaroisosaari
2b59c4db0980965ba374e00b2a1b59d497d85e46
2021-05-21T17:19:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aaroisosaari
2
null
transformers
24,098
--- language: en thumbnail: https://www.huggingtweets.com/aaroisosaari/1603799247165/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314155784771600384/07jkE1Oq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Aaro Isosaari 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@aaroisosaari bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@aaroisosaari's tweets](https://twitter.com/aaroisosaari). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>435</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>246</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>28</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>161</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2j18yjsh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aaroisosaari's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/12mzkb8p) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/12mzkb8p/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/aaroisosaari'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/adhitadselvaraj
a6a1c7840f1c0a04d6fd683e7336db43dfed1549
2021-05-21T17:39:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/adhitadselvaraj
2
null
transformers
24,099
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1295249742801203206/F3Wl-EIy_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Adhita 😷 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@adhitadselvaraj bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@adhitadselvaraj's tweets](https://twitter.com/adhitadselvaraj). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3209</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>649</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>521</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2039</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/27pmox1m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adhitadselvaraj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3m21mvy6) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3m21mvy6/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/adhitadselvaraj'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)