modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
cocoaclef/DialoGPT-small-kohaku
1ab3547574b96508e6edd75445e27ce76a619af0
2021-11-12T18:39:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cocoaclef
null
cocoaclef/DialoGPT-small-kohaku
2
null
transformers
23,800
--- tags: - conversational --- # Kohaku DialoGPT Model
codeceejay/HIYACCENT_Wav2Vec2
ea52116d3f7234c7fefe0940b05546113e8caec3
2022-02-21T12:39:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
codeceejay
null
codeceejay/HIYACCENT_Wav2Vec2
2
1
transformers
23,801
HIYACCENT: An Improved Nigerian-Accented Speech Recognition System Based on Contrastive Learning The global objective of this research was to develop a more robust model for the Nigerian English Speakers whose English pronunciations are heavily affected by their mother tongue. For this, the Wav2Vec-HIYACCENT model was proposed which introduced a new layer to the Novel Facebook Wav2vec to capture the disparity between the baseline model and Nigerian English Speeches. A CTC loss was also inserted on top of the model which adds flexibility to the speech-text alignment. This resulted in over 20% improvement in the performance for NAE.T Fine-tuned facebook/wav2vec2-large on English using the UISpeech Corpus. When using this model, make sure that your speech input is sampled at 16kHz. The script used for training can be found here: https://github.com/amceejay/HIYACCENT-NE-Speech-Recognition-System ##Usage: The model can be used directly (without a language model) as follows... #Using the ASRecognition library: from asrecognition import ASREngine asr = ASREngine("fr", model_path="codeceejay/HIYACCENT_Wav2Vec2") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = asr.transcribe(audio_paths) ##Writing your own inference speech: import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "codeceejay/HIYACCENT_Wav2Vec2" SAMPLES = 10 #You can use common_voice/timit or Nigerian Accented Speeches can also be found here: https://openslr.org/70/ test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence)
coiour/mymodel001
dbc5986360e4f164a98af636cc82ef3197cbd3d9
2021-11-02T10:05:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
coiour
null
coiour/mymodel001
2
null
transformers
23,802
Entry not found
coldfir3/xlm-roberta-base-finetuned-panx-de-fr
6d9d35789a4f20ea8fb6e36edd69af2552e39d9a
2022-01-02T18:32:48.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
coldfir3
null
coldfir3/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
23,803
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - F1: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2885 | 1.0 | 715 | 0.1817 | 0.8287 | | 0.1497 | 2.0 | 1430 | 0.1618 | 0.8442 | | 0.0944 | 3.0 | 2145 | 0.1667 | 0.8582 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
coldfir3/xlm-roberta-base-finetuned-panx-en
efcf033852c5824d583d22bcde59c5e1ac7cb975
2022-01-02T19:20:00.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
coldfir3
null
coldfir3/xlm-roberta-base-finetuned-panx-en
2
null
transformers
23,804
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7075365579302588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3925 - F1: 0.7075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1493 | 1.0 | 50 | 0.5884 | 0.4748 | | 0.5135 | 2.0 | 100 | 0.4088 | 0.6623 | | 0.3558 | 3.0 | 150 | 0.3925 | 0.7075 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
coldfir3/xlm-roberta-base-finetuned-panx-it
d2806a88c10971bdd90dc6c640132f9cbbcaf863
2022-01-02T19:04:55.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
coldfir3
null
coldfir3/xlm-roberta-base-finetuned-panx-it
2
null
transformers
23,805
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.822805578342904 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2323 - F1: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8126 | 1.0 | 70 | 0.3361 | 0.7231 | | 0.2995 | 2.0 | 140 | 0.2526 | 0.8079 | | 0.1865 | 3.0 | 210 | 0.2323 | 0.8228 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
comodoro/wav2vec2-xls-r-300m-sk-cv8
caba6c9c8800778823ce75d96bed9ee2eb56ea3a
2022-03-24T11:55:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sk", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-sk-cv8
2
null
transformers
23,806
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Slovak comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sk metrics: - name: Test WER type: wer value: 49.6 - name: Test CER type: cer value: 13.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 81.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 80.26 --- # wav2vec2-xls-r-300m-cs-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set: - WER: 0.49575384615384616 - CER: 0.13333333333333333 ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sk-cv8 --dataset mozilla-foundation/common_voice_8_0 --split test --config sk ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-4 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
conjuring92/distilroberta-base-finetuned-toxic
eec88eef234e7b5c8943fab9083cc5a3c0b3d129
2022-02-01T18:24:09.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
conjuring92
null
conjuring92/distilroberta-base-finetuned-toxic
2
null
transformers
23,807
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-toxic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-toxic This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5338 | 1.0 | 313 | 2.3127 | | 2.4482 | 2.0 | 626 | 2.2985 | | 2.4312 | 3.0 | 939 | 2.2411 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0 - Datasets 1.18.1 - Tokenizers 0.10.3
countrysideid/opus-mt-en-zh-chk1
ce66f7c6d19c324e8931b2ab6d6c65db024d8b1e
2022-02-13T20:18:05.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
countrysideid
null
countrysideid/opus-mt-en-zh-chk1
2
null
transformers
23,808
Entry not found
cowTodd/adalm-bio-small
9276e6c18578a9ef1685fbce598f8639836ce9a4
2021-09-18T06:10:11.000Z
[ "pytorch", "transformers" ]
null
false
cowTodd
null
cowTodd/adalm-bio-small
2
null
transformers
23,809
Entry not found
cowTodd/adalm-cs-base
7602f985f91812d7c897d530fcf7e428fc50daec
2021-09-18T06:47:03.000Z
[ "pytorch", "transformers" ]
null
false
cowTodd
null
cowTodd/adalm-cs-base
2
null
transformers
23,810
Entry not found
crang/wav2vec2-large-xlsr-53-frisian
614a464e19279a663e177825ea29f6d70b2d3c64
2021-07-06T00:53:59.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fy-NL", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
crang
null
crang/wav2vec2-large-xlsr-53-frisian
2
null
transformers
23,811
--- language: fy-NL datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Frisian XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fy-NL type: common_voice args: fy-NL metrics: - name: Test WER type: wer value: 19.11 --- # Wav2Vec2-Large-XLSR-53-Frisian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Frisian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fy-NL", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian") model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Frisian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fy-NL", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian") model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\u2013\u2014\;\:\"\\%\\\]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.11 % ## Training The Common Voice `train` and `validation` datasets were used for training.
creat89/NER_FEDA_Cyrillic1
b43fd211dcd76e4310d53a73c0f7845721a4ea8e
2022-04-13T09:07:44.000Z
[ "pytorch", "bert", "multilingual", "ru", "bg", "mk", "uk", "fi", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Cyrillic1
2
null
transformers
23,812
--- license: mit language: - multilingual - ru - bg - mk - uk - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. CNE5 (GEOPOLIT, LOC, MEDIA, PER, ORG) 5. FactRuEval (LOC, ORG, PER) 6. NER-UK (LOC, MISC, ORG, PER) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Cyrillic2
764c362a60c32c6599b2c852b97bb447869e702c
2022-04-13T09:09:14.000Z
[ "pytorch", "bert", "multilingual", "ru", "bg", "mk", "uk", "fi", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Cyrillic2
2
null
transformers
23,813
--- license: mit language: - multilingual - ru - bg - mk - uk - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. CNE5 (GEOPOLIT, LOC, MEDIA, PER, ORG) 5. FactRuEval (LOC, ORG, PER) 6. NER-UK (LOC, MISC, ORG, PER) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. This models manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Latin1
929ca8fe0713909d777c9c2e50ef6aa36154b2c8
2022-04-13T09:02:03.000Z
[ "pytorch", "bert", "multilingual", "cs", "pl", "sl", "fi", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Latin1
2
null
transformers
23,814
--- license: mit language: - multilingual - cs - pl - sl - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. SSJ500k (LOC, MISC, ORG, PER) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Latin2
d432ceebacdec7f7eba6d0a9e5dec84b5206ee83
2022-04-13T09:03:00.000Z
[ "pytorch", "bert", "multilingual", "cs", "pl", "sl", "fi", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Latin2
2
null
transformers
23,815
--- license: mit language: - multilingual - cs - pl - sl - fi tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. SlavNER 17 (LOC, MISC, ORG, PER) 4. SSJ500k (LOC, MISC, ORG, PER) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 7. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Pl
58ded451efed1045143dfbebecbf77c2e6da8014
2022-04-13T09:37:07.000Z
[ "pytorch", "bert", "pl", "transformers", "polish_bert", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Pl
2
null
transformers
23,816
--- license: mit language: - pl tags: - polish_bert - ner --- This is a Polish NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on Polish BERT and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 5. KPWr (EVT, LOC, ORG, PER, PRO) 6. NKJP (DATE, GEOPOLIT, LOC, ORG, PER, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creat89/NER_FEDA_Uk
2769989d0add76fddbd43964faa2d4bf0cc1732f
2022-04-13T09:29:36.000Z
[ "pytorch", "bert", "multilingual", "uk", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Uk
2
null
transformers
23,817
--- license: mit language: - multilingual - uk tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. NER-UK (LOC, MISC, ORG, PER) 4. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date, GEOPOLIT: Geopolitical, You can select the tagset to use in the output by configuring the model. This models manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
creynier/wav2vec2-base-swbd-turn-small-3
bca0b45d6041f51bc33e1812b8bd66812b33f4c6
2022-02-28T16:21:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-small-3
2
null
transformers
23,818
Entry not found
csarron/clip-vit-base-patch16
90d892986e8b01839362119175cfea01052103d0
2022-02-05T22:36:40.000Z
[ "pytorch", "clip_vision_model", "transformers" ]
null
false
csarron
null
csarron/clip-vit-base-patch16
2
null
transformers
23,819
Entry not found
csikasote/wav2vec2-large-xls-r-1b-bemba-fds
4f945c9edb8663e074c67ee702364ef240e68f6f
2022-02-11T12:28:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "bem", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/wav2vec2-large-xls-r-1b-bemba-fds
2
null
transformers
23,820
--- license: apache-2.0 tags: - generated_from_trainer - bem - robust-speech-event model-index: - name: wav2vec2-large-xls-r-1b-bemba-fds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-bemba-fds This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the [BembaSpeech](https://github.com/csikasote/BembaSpeech) dataset. It achieves the following results on the evaluation set: - Loss: 0.2898 - Wer: 0.3435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7986 | 0.34 | 500 | 0.4549 | 0.7292 | | 0.5358 | 0.67 | 1000 | 0.3325 | 0.4491 | | 0.4559 | 1.01 | 1500 | 0.3090 | 0.3954 | | 0.3983 | 1.35 | 2000 | 0.3067 | 0.4105 | | 0.4067 | 1.68 | 2500 | 0.2838 | 0.3678 | | 0.3722 | 2.02 | 3000 | 0.2824 | 0.3762 | | 0.3286 | 2.36 | 3500 | 0.2810 | 0.3670 | | 0.3239 | 2.69 | 4000 | 0.2643 | 0.3501 | | 0.3187 | 3.03 | 4500 | 0.2838 | 0.3754 | | 0.2801 | 3.36 | 5000 | 0.2815 | 0.3507 | | 0.2806 | 3.7 | 5500 | 0.2725 | 0.3486 | | 0.2714 | 4.04 | 6000 | 0.2898 | 0.3435 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
cutiebunny639/DialoGPT-small-harry
24b6b2d150b7bae435b857dda6b8e5150f1f7293
2021-12-20T06:12:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cutiebunny639
null
cutiebunny639/DialoGPT-small-harry
2
null
transformers
23,821
--- tags: - conversational --- # Harry Potter DialoGPT Model
cwitcate/mymodel1001
43b7baeeb529936c644a6f7f742e1f7b99f5c17e
2021-11-02T09:23:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cwitcate
null
cwitcate/mymodel1001
2
null
transformers
23,822
Entry not found
cwtpc/wangchanberta-ner-8989
cd933ad5c47fc68a69790be752b4cf29322db23f
2022-02-15T03:48:11.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cwtpc
null
cwtpc/wangchanberta-ner-8989
2
null
transformers
23,823
## Hello World
cyclone/cyclone-ner
0ac1109c2f81d24c69a8a9891100e4e9b18284bc
2021-09-29T10:34:26.000Z
[ "pytorch", "bert", "transformers" ]
null
false
cyclone
null
cyclone/cyclone-ner
2
null
transformers
23,824
## Cyclone Chinese NER This model provides simplified Chinese NER model based on pretrained model BERT (specifically BERT + CRF) Currently, we only support 8 general type of entities ("address", "company", "government", "name", "organization", "position", "scene", "time") ### Usage from transformers import BertConfig config = BertConfig.from_pretrained("bert-base-chinese", num_labels=num_labels) model_path = "cyclone/cyclone-ner" tokenizer = CNerTokenizer.from_pretrained(model_path, do_lower_case=True) model = BertCrfForNer.from_pretrained(model_path, config=config)
cyl/adapter_t5-3b_mnli
a616aeb69841011774439aa26df9d0996bb0f9fb
2022-02-15T16:50:11.000Z
[ "pytorch", "transformers" ]
null
false
cyl
null
cyl/adapter_t5-3b_mnli
2
null
transformers
23,825
Entry not found
cyl/adapter_t5-3b_rte
40594200db13bed0c645332d4d9531ac8159dac1
2022-02-22T11:36:32.000Z
[ "pytorch", "transformers" ]
null
false
cyl
null
cyl/adapter_t5-3b_rte
2
null
transformers
23,826
Entry not found
d42kw01f/Tamil-RoBERTa
df391c767fb008f02c5601062e4f18a639f58a1f
2021-11-09T16:04:44.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
d42kw01f
null
d42kw01f/Tamil-RoBERTa
2
null
transformers
23,827
# Description: This is a smaller per-trained model on Tamil Language using Masked Language Modeling(MLM). And the model is trained on Oscar Tamil dataset. # How to Use: The model can be used directly with a pipeline for masked language modeling: ```python >>> from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline >>> tokenizer = AutoTokenizer.from_pretrained("d42kw01f/Tamil-RoBERTa") >>> model = AutoModelForMaskedLM.from_pretrained("d42kw01f/Tamil-RoBERTa") >>> fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> fill_mask("நான் வீட்டு <mask>.") ```
damien-ir/kosentelectra-generator-v4
5b84767f67475ffeefbab3e58baf745a47759748
2020-09-29T07:56:07.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
damien-ir
null
damien-ir/kosentelectra-generator-v4
2
null
transformers
23,828
Entry not found
danhsf/mt5-small-finetuned-hi-to-en
d73f43fe7d889adf60f7e1a58ec4d461f0002bfd
2021-11-30T01:29:56.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danhsf
null
danhsf/mt5-small-finetuned-hi-to-en
2
null
transformers
23,829
Entry not found
danny481/DialoGPT-small-datnguyenchatbot
8f5b3256e0d6f332f213a8eeaff382e3d1319f74
2021-12-29T11:41:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
danny481
null
danny481/DialoGPT-small-datnguyenchatbot
2
null
transformers
23,830
--- tags: - conversational --- #datnguyen
danny911kr/calm-mix-large
02143ab74b2e3b31b0eb324cc682a4782567626d
2021-09-16T07:23:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danny911kr
null
danny911kr/calm-mix-large
2
null
transformers
23,831
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
danurahul/Eddie_neo_j6
03bdd3137b24c0c4b52bedda69451fd848790124
2021-06-17T04:38:06.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/Eddie_neo_j6
2
null
transformers
23,832
Entry not found
danurahul/alex-gpt-L
06752b61b53c5ee6bd6a6a0e729ce8492a8df160
2021-05-21T15:13:43.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/alex-gpt-L
2
null
transformers
23,833
Entry not found
danurahul/doc2txt_model2
70555e11978cd3a19ba071805de488a37c57538f
2021-05-21T15:21:33.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/doc2txt_model2
2
null
transformers
23,834
Entry not found
danurahul/ghosh_dentist_med
e3a4023916e85e046a8bcfcc77cb7d1824599dd2
2021-07-07T11:48:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/ghosh_dentist_med
2
null
transformers
23,835
Entry not found
danurahul/yoav_gpt_neo1.3B_delimiter
f52ae73523fc116f927829beb25fb2b3ab9e0a08
2021-06-19T02:27:20.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/yoav_gpt_neo1.3B_delimiter
2
null
transformers
23,836
Entry not found
daqiao202/distilgpt2-finetuned-wikitext2
eed7fc6bb25aecba943743b1c75fb9d03a3cd70d
2021-11-16T02:28:45.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
daqiao202
null
daqiao202/distilgpt2-finetuned-wikitext2
2
null
transformers
23,837
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
darthboii/DialoGPT-small-Rick
308ce0fca4fd8171aec0b8cc980a731db0d96e2c
2021-09-15T11:11:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
darthboii
null
darthboii/DialoGPT-small-Rick
2
null
transformers
23,838
--- tags: - conversational --- # Rick DialoGPT Model
davidcechak/CDNA_bert_6
f655737c9eeca9c93a8fe81bb6ffb2551e1453b0
2022-01-25T17:12:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
davidcechak
null
davidcechak/CDNA_bert_6
2
null
transformers
23,839
Entry not found
dbmdz/electra-base-italian-mc4-cased-discriminator
ebb782a9c3a6bd5059b107d70a18dd17516be089
2021-08-23T21:39:18.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
dbmdz
null
dbmdz/electra-base-italian-mc4-cased-discriminator
2
1
transformers
23,840
Entry not found
dbmdz/electra-base-italian-mc4-cased-generator
96c044c8ebbb5a607ab1633d0713414155c68f1b
2021-08-23T21:47:11.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/electra-base-italian-mc4-cased-generator
2
null
transformers
23,841
Entry not found
ddobokki/vit-kogpt_trinity-coco-ko
2e8745b5b00189c63a4e752a3c2a434fe6a6f9db
2021-12-16T03:45:07.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
ddobokki
null
ddobokki/vit-kogpt_trinity-coco-ko
2
null
transformers
23,842
Entry not found
deepakvk/distilbert-base-uncased-distilled-squad-finetuned-squad
acc82c84d3a4890219183be5c6c4c706f041a379
2022-02-25T08:04:27.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
deepakvk
null
deepakvk/distilbert-base-uncased-distilled-squad-finetuned-squad
2
null
transformers
23,843
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
deepset/tapas-large-nq-reader
9eabad16555e448b11b4f3cee0d95bae420b2faa
2022-01-23T14:59:07.000Z
[ "pytorch", "tapas", "en", "transformers", "license:apache-2.0" ]
null
false
deepset
null
deepset/tapas-large-nq-reader
2
null
transformers
23,844
--- language: en tags: - tapas license: apache-2.0 --- This model contains the converted PyTorch checkpoint of the original Tensorflow model available in the [TaPas repository](https://github.com/google-research/tapas/blob/master/DENSE_TABLE_RETRIEVER.md#reader-models). It is described in Herzig et al.'s (2021) [paper](https://aclanthology.org/2021.naacl-main.43/) _Open Domain Question Answering over Tables via Dense Retrieval_. This model has 2 versions which can be used differing only in the table scoring head. The default one has an adapted table scoring head in order to be able to generate probabilities out of the logits. The other (non-default) version corredponds to the original checkpoint from the TaPas repository and can be accessed setting `revision="original"`. # Usage ## In Haystack If you want to use this model for question-answering over tables, you can load it in [Haystack](https://github.com/deepset-ai/haystack/): ```python from haystack.nodes import TableReader table_reader = TableReader(model_name_or_path="deepset/tapas-large-nq-reader") ```
deeq/delectra-generator
28f17a597444ab9c4b2cc53f5dabf2994bb187f1
2021-07-23T04:31:46.000Z
[ "pytorch", "electra", "fill-mask", "ko", "dataset:kowiki", "dataset:news", "transformers", "autotrain_compatible" ]
fill-mask
false
deeq
null
deeq/delectra-generator
2
null
transformers
23,845
--- language: ko datasets: - kowiki - news --- deeqELECTRA-base --- - model: electra-base-generator - vocab: bert-wordpiece, 35k - version: beta, 1.71M
demdecuong/stroke_simcse
ab1128ca88b3f7b9f24b20ef82e0c307b44fabe5
2021-05-31T13:59:11.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.08821", "transformers" ]
feature-extraction
false
demdecuong
null
demdecuong/stroke_simcse
2
null
transformers
23,846
This is finetune version of [SimCSE: Simple Contrastive Learning of Sentence Embeddings](https://arxiv.org/abs/2104.08821) , train unsupervised on 570K stroke sentences from : stroke books, quora medical, quora's stroke and human annotates. ### Extract sentence representation ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("demdecuong/stroke_simcse") model = AutoModel.from_pretrained("demdecuong/stroke_simcse") text = "What are disease related to red stroke's causes?" inputs = tokenizer(text, return_tensors='pt') outputs = model(**inputs)[1] ``` ### Build up embedding for database ``` database = [ 'What is the daily checklist for stroke returning home', 'What are some tips for stroke adapt new life', 'What should I consider when using nursing-home care' ] embedding = torch.zeros((len(database),768)) for i in range(len(database)): inputs = tokenizer(database[i], return_tensors="pt") outputs = model(**inputs)[1] embedding[i] = outputs print(embedding.shape) ``` ### Result On our Poc testset , which contains pairs of matching question related to stroke from human-generated. | Model | Top-1 Accuracy | | ------------- | ------------- | | SimCSE (supervised) | 75.83 | | SimCSE (ours) | 76.66 |
denden/iloko_model
0114a9b3ca90252ddd5071a261c6f638186ee0e2
2021-11-04T10:24:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
denden
null
denden/iloko_model
2
null
transformers
23,847
--- license: apache-2.0 tags: - generated_from_trainer pipeline_tag: automatic-speech-recognition model-index: name: iloko_model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iloko_model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Wer: 0.0840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2784 | 1.11 | 100 | 2.9875 | 1.0 | | 2.6899 | 2.22 | 200 | 2.6741 | 1.0 | | 2.6177 | 3.33 | 300 | 2.6516 | 1.0 | | 2.5327 | 4.44 | 400 | 2.4530 | 1.0 | | 0.8653 | 5.56 | 500 | 0.5227 | 0.6547 | | 0.3414 | 6.67 | 600 | 0.1830 | 0.2487 | | 0.2299 | 7.78 | 700 | 0.1212 | 0.1877 | | 0.1739 | 8.89 | 800 | 0.0843 | 0.1441 | | 0.1242 | 10.0 | 900 | 0.0766 | 0.1441 | | 0.1116 | 11.11 | 1000 | 0.0530 | 0.1145 | | 0.0861 | 12.22 | 1100 | 0.0442 | 0.1047 | | 0.1007 | 13.33 | 1200 | 0.0379 | 0.1023 | | 0.0613 | 14.44 | 1300 | 0.0291 | 0.1006 | | 0.0629 | 15.56 | 1400 | 0.0264 | 0.0961 | | 0.047 | 16.67 | 1500 | 0.0238 | 0.0935 | | 0.0797 | 17.78 | 1600 | 0.0226 | 0.0913 | | 0.034 | 18.89 | 1700 | 0.0197 | 0.0893 | | 0.0485 | 20.0 | 1800 | 0.0173 | 0.0905 | | 0.0402 | 21.11 | 1900 | 0.0148 | 0.0902 | | 0.0231 | 22.22 | 2000 | 0.0135 | 0.0891 | | 0.0512 | 23.33 | 2100 | 0.0134 | 0.0861 | | 0.0181 | 24.44 | 2200 | 0.0118 | 0.0842 | | 0.0371 | 25.56 | 2300 | 0.0116 | 0.0867 | | 0.0342 | 26.67 | 2400 | 0.0104 | 0.0863 | | 0.0344 | 27.78 | 2500 | 0.0100 | 0.0850 | | 0.0182 | 28.89 | 2600 | 0.0096 | 0.0839 | | 0.0171 | 30.0 | 2700 | 0.0095 | 0.0840 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
denden/new_iloko
d2370a1065791863f6459677e58e2ba7c7e65a47
2021-11-04T02:28:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "dataset:timit_asr", "transformers", "audio", "speech", "license:academic free license v3.0", "model-index" ]
automatic-speech-recognition
false
denden
null
denden/new_iloko
2
null
transformers
23,848
--- language: - en license: Academic Free License v3.0 tags: - audio # Example: audio - automatic-speech-recognition # Example: automatic-speech-recognition - speech # Example: speech pipeline_tag: automatic-speech-recognition datasets: - timit_asr # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - wer # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: iloko-model results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Iloko Speech Recognition # Optional. Example: Speech Recognition metrics: - type: wer # Required. Example: wer value: 0.009 # Required. Example: 20.90 name: TEST WETR # Optional. Example: Test WER # args: {arg_0} # Optional. Example for BLEU: max_order --- FINETUNED ILOKANO SPEECH RECOGNITION FROM WAV2VEC-XLSR-S3
deokisys/BCtest
096fe9f7e76a5f28437ad24616b29247a1ec33a8
2021-05-19T15:38:38.000Z
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
false
deokisys
null
deokisys/BCtest
2
null
transformers
23,849
Entry not found
df4rfrrf/DialoGPT-medium-Aerith
a6b0adf14e7b54373ec7bd283727c0a8c563ef4d
2021-09-02T11:37:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
df4rfrrf
null
df4rfrrf/DialoGPT-medium-Aerith
2
null
transformers
23,850
--- tags: - conversational --- #Aerith GPT model
diegozs97/chemprot-seed-0-1000k
9d16bffd3e1465251667e592aee8f08a575ea746
2021-12-07T01:03:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-1000k
2
null
transformers
23,851
Entry not found
diegozs97/chemprot-seed-0-1500k
22c4503af68ab41f150adb5e8d77b5c46b352ef7
2021-12-07T00:11:10.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-1500k
2
null
transformers
23,852
Entry not found
diegozs97/chemprot-seed-0-200k
5ff34dac86011874f87863fe6bf18bfddf03d632
2021-12-06T23:41:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-200k
2
null
transformers
23,853
Entry not found
diegozs97/chemprot-seed-0-60k
8a9f31c14bba8cf6a5438c140189dea86b2d5a9d
2021-12-06T23:31:10.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-60k
2
null
transformers
23,854
Entry not found
diegozs97/chemprot-seed-0-700k
ed139de422c8233f8ff31fc4d50625bd674f9282
2021-12-06T23:51:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-0-700k
2
null
transformers
23,855
Entry not found
diegozs97/chemprot-seed-1-2000k
657b1bcfbfe11c67542280388bb234c3f162496a
2021-12-07T01:31:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-2000k
2
null
transformers
23,856
Entry not found
diegozs97/chemprot-seed-1-200k
27177dbc8aa79802642cc48956a8b9cf5abd3141
2021-12-07T00:56:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-200k
2
null
transformers
23,857
Entry not found
diegozs97/chemprot-seed-1-400k
c6d896da01e396c99b0634d9f009d7a1e9220457
2021-12-07T01:02:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-1-400k
2
null
transformers
23,858
Entry not found
diegozs97/chemprot-seed-2-2000k
bbcf72e940867233afa27e5a7becb2ad45d1f625
2021-12-07T03:52:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-2000k
2
null
transformers
23,859
Entry not found
diegozs97/chemprot-seed-2-60k
5ecde83f4bef1db0d06418cc541a113e49011cac
2021-12-07T02:59:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-2-60k
2
null
transformers
23,860
Entry not found
diegozs97/chemprot-seed-3-1500k
c1b6776ffad16451c14a8244598cdcd29281338b
2021-12-07T06:24:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-1500k
2
null
transformers
23,861
Entry not found
diegozs97/chemprot-seed-3-2000k
55f53839fb137c48f4f2e0f427838a3028d175a8
2021-12-07T06:35:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-3-2000k
2
null
transformers
23,862
Entry not found
diegozs97/chemprot-seed-4-400k
b68d78505b10072ee942aad1f90e5163f3597cd6
2021-12-07T16:34:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/chemprot-seed-4-400k
2
null
transformers
23,863
Entry not found
diegozs97/sciie-seed-0-200k
2e1f3142851309fe25295964a535ade4bafd9ead
2021-12-08T21:34:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-200k
2
null
transformers
23,864
Entry not found
diegozs97/sciie-seed-0-60k
f4bc4c6b76ad3bb6fb7c0e7140127afe8adcdd95
2021-12-08T22:56:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-60k
2
null
transformers
23,865
Entry not found
diegozs97/sciie-seed-0-700k
d3b57395e95522612215e00b3bbb748d07f09e1d
2021-12-09T13:55:29.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-0-700k
2
null
transformers
23,866
Entry not found
diegozs97/sciie-seed-2-0k
97198db5dbe98079c4d77b981bcd64cc08fcc45a
2021-12-07T04:19:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-2-0k
2
null
transformers
23,867
Entry not found
diegozs97/sciie-seed-4-0k
6126177c67158d3d42ba7dff9cb267dd5918b4cd
2021-12-07T20:42:11.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-0k
2
null
transformers
23,868
Entry not found
diegozs97/sciie-seed-4-1000k
f8e5df45f1dd94e501b1c4ee2b2f5cf03fa9fa3f
2021-12-07T23:21:57.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-1000k
2
null
transformers
23,869
Entry not found
diegozs97/sciie-seed-4-1500k
f9869b8505f445345a6c40ab4d4275cb1700d21d
2021-12-07T23:32:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-1500k
2
null
transformers
23,870
Entry not found
diegozs97/sciie-seed-4-200k
4485d7b9a66e019ca09999930ce54b55854d4a01
2021-12-07T21:01:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-200k
2
null
transformers
23,871
Entry not found
diegozs97/sciie-seed-4-20k
9f44a1e7c5719144c9bff6d0cde3ea13439b6b8e
2021-12-07T20:46:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
diegozs97
null
diegozs97/sciie-seed-4-20k
2
null
transformers
23,872
Entry not found
distractedm1nd/wav2vec-en-finetuned-on-cryptocurrency
dcd6195e97868b03a9d073f08d60370f28409ffd
2021-07-06T01:32:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "audio", "license:mit" ]
automatic-speech-recognition
false
distractedm1nd
null
distractedm1nd/wav2vec-en-finetuned-on-cryptocurrency
2
null
transformers
23,873
--- language: en tags: - audio - automatic-speech-recognition metrics: - wer license: mit --- We took `facebook/wav2vec2-large-960h` and fine tuned it using 1400 audio clips (around 10-15 seconds each) from various cryptocurrency related podcasts. To label the data, we downloaded cryptocurrency podcasts from youtube with their subtitle data and split the clips up by sentence. We then compared the youtube transcription with `facebook/wav2vec2-large-960h` to correct many mistakes in the youtube transcriptions. We can probably achieve better results with more data clean up. On our data we achieved a WER of 13.1%. `facebook/wav2vec2-large-960h` only reached a WER of 27% on our data. ## Usage ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("distractedm1nd/wav2vec-en-finetuned-on-cryptocurrency") model = Wav2Vec2ForCTC.from_pretrained("distractedm1nd/wav2vec-en-finetuned-on-cryptocurrency" filename = "INSERT_FILENAME" audio, sampling_rate = sf.read(filename) input_values = processor(audio, return_tensors="pt", padding="longest", sampling_rate=sampling_rate).input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) tokenizer.batch_decode(predicted_ids ```
dkleczek/Polish_BART_base_OPI
c193c8479ce9ae64923aa2197d7d7ee37f31139e
2021-09-02T14:25:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dkleczek
null
dkleczek/Polish_BART_base_OPI
2
null
transformers
23,874
Entry not found
dkssud/wav2vec2-base-demo-colab
a2a6ae2b4f0d0c78d8c827209812b9ea0d52d125
2021-12-19T09:54:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dkssud
null
dkssud/wav2vec2-base-demo-colab
2
null
transformers
23,875
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4171 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0054 | 4.0 | 500 | 1.5456 | 0.9005 | | 0.8183 | 8.0 | 1000 | 0.4738 | 0.4839 | | 0.3019 | 12.0 | 1500 | 0.4280 | 0.4047 | | 0.1738 | 16.0 | 2000 | 0.4584 | 0.3738 | | 0.1285 | 20.0 | 2500 | 0.4418 | 0.3593 | | 0.1104 | 24.0 | 3000 | 0.4110 | 0.3479 | | 0.0828 | 28.0 | 3500 | 0.4171 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
dlarhkd1211/koelectra_adcode
87a36ef24f7ed1e1a09d1555de0f21171963e699
2021-08-11T06:29:17.000Z
[ "pytorch", "tf" ]
null
false
dlarhkd1211
null
dlarhkd1211/koelectra_adcode
2
null
null
23,876
Entry not found
dmis-lab/biosyn-biobert-bc5cdr-chemical
c0a1b2cf51b39cf353e730198d2a86622ca7e1f7
2021-10-25T03:52:02.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
dmis-lab
null
dmis-lab/biosyn-biobert-bc5cdr-chemical
2
null
transformers
23,877
Entry not found
donggyu/mnmt_decoder_ko
1d4eb55545bfcec585e04d8b6783966699ed155a
2021-12-20T06:22:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
donggyu
null
donggyu/mnmt_decoder_ko
2
null
transformers
23,878
Entry not found
doufulai/t5-question-generation-en-model-v1
e2f521b64ac16f36b28f8dd28dec68bc28ff6b90
2021-10-30T11:43:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
doufulai
null
doufulai/t5-question-generation-en-model-v1
2
null
transformers
23,879
Entry not found
dpalominop/biobert-giotto
72a85e7ca3107d6681ce0edb08638e453f505c11
2021-05-20T03:25:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dpalominop
null
dpalominop/biobert-giotto
2
null
transformers
23,880
Entry not found
duongsau/iqtree-similarity
213917d73042460e4900d56c8cec2a69bd2ead0a
2021-11-07T21:25:53.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
duongsau
null
duongsau/iqtree-similarity
2
null
transformers
23,881
Entry not found
eAsyle/roberta_base_custom_QA
443a0fb6cc03d003b341944cd8208db69ba7b476
2021-08-21T17:47:12.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
eAsyle
null
eAsyle/roberta_base_custom_QA
2
null
transformers
23,882
Entry not found
eAsyle/testABSA3
3b956a619f8ecf1e498500be356bf6ae51f5a09d
2021-08-22T16:10:22.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
eAsyle
null
eAsyle/testABSA3
2
null
transformers
23,883
Entry not found
edge2992/dummy-model
5aab228d43b9feca4c36a932a196ebcbbcfc356b
2021-12-05T06:45:36.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
edge2992
null
edge2992/dummy-model
2
null
transformers
23,884
Entry not found
edmondz/layoutlmv2-finetuned-funsd-test
6b50943e8d5ccec54a178452f812ae167f59de05
2021-10-18T08:38:55.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
edmondz
null
edmondz/layoutlmv2-finetuned-funsd-test
2
null
transformers
23,885
Entry not found
ekkasilina/small_baseline
670b04bb18f2a0fae1468d0b66c151cbe8b6e785
2021-10-26T14:03:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ekkasilina
null
ekkasilina/small_baseline
2
null
transformers
23,886
Entry not found
eldritch-axolotl/Rick
2ce283c892f013f9b3a1f98d68717cda7c0ec6f4
2022-01-19T12:20:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
eldritch-axolotl
null
eldritch-axolotl/Rick
2
null
transformers
23,887
--- tags: - conversational --- #Rick DialoGPT model
elgeish/cs224n-squad2.0-distilbert-base-uncased
a535a2603809b69e74872815ac150c61f6485db1
2020-12-11T21:39:04.000Z
[ "pytorch", "distilbert", "question-answering", "arxiv:2004.07067", "transformers", "autotrain_compatible" ]
question-answering
false
elgeish
null
elgeish/cs224n-squad2.0-distilbert-base-uncased
2
null
transformers
23,888
## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. ## Results ```json { "exact": 65.16946363935504, "f1": 67.87348075352251, "total": 6078, "HasAns_exact": 69.51890034364261, "HasAns_f1": 75.16667217179045, "HasAns_total": 2910, "NoAns_exact": 61.17424242424242, "NoAns_f1": 61.17424242424242, "NoAns_total": 3168, "best_exact": 65.16946363935504, "best_exact_thresh": 0.0, "best_f1": 67.87348075352243, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "distilbert-base-uncased-distilled-squad", "model_type": "distilbert", "num_train_epochs": 4, "per_gpu_train_batch_size": 32, "save_steps": 5000, "seed": 42, "train_batch_size": 32, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-roberta-base
163f9ed159e759182c1d83ca10ab3c2289ad60ef
2021-05-20T16:16:38.000Z
[ "pytorch", "jax", "roberta", "question-answering", "arxiv:2004.07067", "transformers", "autotrain_compatible" ]
question-answering
false
elgeish
null
elgeish/cs224n-squad2.0-roberta-base
2
null
transformers
23,889
## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. ## Results ```json { "exact": 75.32082922013821, "f1": 78.66699523704254, "total": 6078, "HasAns_exact": 74.84536082474227, "HasAns_f1": 81.83436324767868, "HasAns_total": 2910, "NoAns_exact": 75.75757575757575, "NoAns_f1": 75.75757575757575, "NoAns_total": 3168, "best_exact": 75.32082922013821, "best_exact_thresh": 0.0, "best_f1": 78.66699523704266, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "roberta-base", "model_type": "roberta", "num_train_epochs": 4, "per_gpu_train_batch_size": 16, "save_steps": 5000, "seed": 42, "train_batch_size": 16, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased)
eli4s/prunedBert-L12-h384-A6-finetuned
72c4e8575af09a1fa657aba75d001b542bf7ba1a
2021-07-30T10:40:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
eli4s
null
eli4s/prunedBert-L12-h384-A6-finetuned
2
2
transformers
23,890
This model was pretrained on the bookcorpus dataset using knowledge distillation. The particularity of this model is that even though it shares the same architecture as BERT, it has a hidden size of 384 (half the hidden size of BERT) and 6 attention heads (hence the same head size of BERT). The weights of the model were initialized by pruning the weights of bert-base-uncased. A knowledge distillation was performed using multiple loss functions to fine-tune the model. PS : the tokenizer is the same as the one of the model bert-base-uncased. To load the model \& tokenizer : ````python from transformers import AutoModelForMaskedLM, BertTokenizer model_name = "eli4s/prunedBert-L12-h384-A6-finetuned" model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) ```` To use it on a sentence : ````python import torch sentence = "Let's have a [MASK]." model.eval() inputs = tokenizer([sentence], padding='longest', return_tensors='pt') output = model(inputs['input_ids'], attention_mask=inputs['attention_mask']) mask_index = inputs['input_ids'].tolist()[0].index(103) masked_token = output['logits'][0][mask_index].argmax(axis=-1) predicted_token = tokenizer.decode(masked_token) print(predicted_token) ```` Or we can also predict the n most relevant predictions : ````python top_n = 5 vocab_size = model.config.vocab_size logits = output['logits'][0][mask_index].tolist() top_tokens = sorted(list(range(vocab_size)), key=lambda i:logits[i], reverse=True)[:top_n] tokenizer.decode(top_tokens) ````
eliasedwin7/MalayalamBERTo
79ee227a6b8c02b7e213c760346f0c8b60bbb915
2021-05-20T16:18:31.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
eliasedwin7
null
eliasedwin7/MalayalamBERTo
2
null
transformers
23,891
Entry not found
eliotm/t5-small-finetuned-en-to-ro-lr0.001
9a0e3a680048fdf17334b0dbb5e4b4eb44213c51
2021-12-03T01:45:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
eliotm
null
eliotm/t5-small-finetuned-en-to-ro-lr0.001
2
null
transformers
23,892
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-lr0.001 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 5.8837 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-lr0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.8309 - Bleu: 5.8837 - Gen Len: 18.2656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.9442 | 1.0 | 7629 | 1.8309 | 5.8837 | 18.2656 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
eliza-dukim/bert-base-multilingual-cased_korquad-v1
f37aee496157f5ca7df9480d5b222e858fcc1729
2021-10-13T16:22:41.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
eliza-dukim
null
eliza-dukim/bert-base-multilingual-cased_korquad-v1
2
null
transformers
23,893
## Boostcamp AI Tech Special Mission 01, Multi-lingual BERT for KorQuAD v1 {'exact_match': 69.89954970557672, 'f1': 77.40349093437989, 'epoch': 15.0}
elusive-magnolia/dummy-model
6cd9187db787c8d997094ae8fba8e0d7dc064bc6
2021-11-02T16:45:04.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
elusive-magnolia
null
elusive-magnolia/dummy-model
2
null
transformers
23,894
Entry not found
emillykkejensen/daT5-large
badbda5a855decd448ec2b88e085ef74f60ef2d8
2022-01-06T11:15:26.000Z
[ "pytorch", "mt5", "text2text-generation", "da", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
emillykkejensen
null
emillykkejensen/daT5-large
2
null
transformers
23,895
--- language: - da license: apache-2.0 --- ## daT5-large A smaller version of [Google's mt5-large](https://huggingface.co/google/mt5-base) model, where the original model is reduced to only include Danish embeddings. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emillykkejensen/daT5-large") model = AutoModel.from_pretrained("emillykkejensen/daT5-large") ``` ## Further reading [Gist](https://gist.github.com/emillykkejensen/8bf1b323495efc7252dee966e6bc1b5c) showing (in Danish) how the embeddings are extracted (for mt5-base) [Article](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) explaining how to do it by [David Dale](https://huggingface.co/cointegrated) ## Also check out [daT5-base](https://huggingface.co/emillykkejensen/daT5-base)
empushy/gpt2-alerts
685de99642741a071ce2c6aa9475a149a47751f0
2021-05-21T15:48:27.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
empushy
null
empushy/gpt2-alerts
2
null
transformers
23,896
Entry not found
empushy/gpt2-emulator
86ef5c098ee559f7348e6a2e819ac38a80180124
2021-05-22T19:04:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
empushy
null
empushy/gpt2-emulator
2
null
transformers
23,897
Entry not found
emre/wav2vec2-large-xlsr-53-demo-colab
0f1d6bdf6e19b7c92fb0666be511c673146ffc60
2022-01-24T10:54:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-large-xlsr-53-demo-colab
2
null
transformers
23,898
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3966 - Wer: 0.4834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1516 | 4.21 | 400 | 2.7673 | 1.0 | | 0.9134 | 8.42 | 800 | 0.4618 | 0.6418 | | 0.3273 | 12.63 | 1200 | 0.4188 | 0.5535 | | 0.2252 | 16.84 | 1600 | 0.4144 | 0.5232 | | 0.1692 | 21.05 | 2000 | 0.3995 | 0.5030 | | 0.1355 | 25.26 | 2400 | 0.4073 | 0.4920 | | 0.1172 | 29.47 | 2800 | 0.3966 | 0.4834 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Br-small
98f05c20a2f290188b4af43383fe62a88a9439a9
2022-03-24T11:55:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "br", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-Br-small
2
null
transformers
23,899
--- license: apache-2.0 language: br tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Br-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice br type: common_voice args: br metrics: - name: Test WER type: wer value: 66.75 --- # wav2vec2-xls-r-300m-Br-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Wer: 0.6675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7464 | 2.79 | 400 | 1.7474 | 1.1018 | | 1.1117 | 5.59 | 800 | 0.9434 | 0.8697 | | 0.6481 | 8.39 | 1200 | 0.9251 | 0.7910 | | 0.4754 | 11.19 | 1600 | 0.9208 | 0.7412 | | 0.3602 | 13.98 | 2000 | 0.9284 | 0.7232 | | 0.2873 | 16.78 | 2400 | 0.9299 | 0.6940 | | 0.2386 | 19.58 | 2800 | 1.0182 | 0.6927 | | 0.1971 | 22.38 | 3200 | 1.0456 | 0.6898 | | 0.1749 | 25.17 | 3600 | 1.0208 | 0.6769 | | 0.1487 | 27.97 | 4000 | 1.0573 | 0.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3