modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
aditeyabaral/distilbert-hinglish-small
beafbb09337e24a069f3c83013bcd085efa97a73
2021-10-11T18:22:44.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aditeyabaral
null
aditeyabaral/distilbert-hinglish-small
2
null
transformers
23,600
Entry not found
aditeyabaral/sentencetransformer-bert-base-cased
48d1c8f4623cabe13269c126cdebaf27a65fdeb5
2021-10-21T09:50:09.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-bert-base-cased
2
null
sentence-transformers
23,601
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditeyabaral/sentencetransformer-distilbert-base-cased
486771141a031b9c62691b1ed03e901358b3d6e6
2021-10-21T22:30:29.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-distilbert-base-cased
2
null
sentence-transformers
23,602
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-distilbert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditeyabaral/sentencetransformer-roberta-base
c18c7bd01ab0720db0b86c80c3b7209e134301a9
2021-10-21T18:03:26.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-roberta-base
2
null
sentence-transformers
23,603
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditi2222/paragus_models
d0403754d7565373102e26d9e2da61b10b24f701
2021-11-30T08:46:57.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aditi2222
null
aditi2222/paragus_models
2
null
transformers
23,604
Entry not found
ahanadeb/wav2vec2-large-indian-instrument-emotion-classification-v1
0aa75595afb3bbcb19c391429c604eb08b7d00f0
2021-11-13T16:13:45.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
ahanadeb
null
ahanadeb/wav2vec2-large-indian-instrument-emotion-classification-v1
2
null
transformers
23,605
Entry not found
ahmedattia143/roberta_squadv1_base
455c5064bdbba95aff3d578cdd33deebe9f1d39e
2021-05-30T11:42:11.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ahmedattia143
null
ahmedattia143/roberta_squadv1_base
2
null
transformers
23,606
Entry not found
ainize/gpt2-rnm-with-only-rick
fdbb94fe3ba36778bfe1b8e0867e74aed9583f35
2021-05-21T12:06:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ainize
null
ainize/gpt2-rnm-with-only-rick
2
null
transformers
23,607
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Base model: e-tony/gpt2-rnm Epoch: 1 Train runtime: 3.4982 secs Loss: 3.0894 Training notebook: [Colab](https://colab.research.google.com/drive/1RawVxulLETFicWMY0YANUdP-H-e7Eeyc) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
airKlizz/distilbart-12-6-multi-combine-wiki-news
4958a58dff152ce70ea10168ed4668fb92f4c26f
2020-08-21T07:35:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/distilbart-12-6-multi-combine-wiki-news
2
null
transformers
23,608
Entry not found
airKlizz/mt5-base-germeval21-toxic
6756768841d413e65a19184a471c70d88023fcb9
2021-07-12T15:40:06.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/mt5-base-germeval21-toxic
2
null
transformers
23,609
Entry not found
airKlizz/mt5-small-wikinewssum-test
f1ba5ce743f8b3ac67fda44ea1e418b123fba939
2021-12-16T16:18:08.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-small-wikinewssum-test
2
null
transformers
23,610
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-wikinewssum-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-wikinewssum-test This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9354 - Rouge1: 6.8433 - Rouge2: 2.5498 - Rougel: 5.6114 - Rougelsum: 6.353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 661 | 3.2810 | 6.4161 | 2.403 | 5.3674 | 6.0329 | | No log | 2.0 | 1322 | 3.1515 | 6.9291 | 2.6826 | 5.6839 | 6.4359 | | No log | 3.0 | 1983 | 3.0565 | 6.7939 | 2.6113 | 5.6133 | 6.3126 | | No log | 4.0 | 2644 | 2.9815 | 6.0279 | 2.1637 | 4.9892 | 5.5962 | | No log | 5.0 | 3305 | 2.9645 | 6.3926 | 2.339 | 5.2716 | 5.9443 | | 3.9937 | 6.0 | 3966 | 2.9476 | 6.4739 | 2.3615 | 5.3473 | 6.0089 | | 3.9937 | 7.0 | 4627 | 2.9405 | 6.615 | 2.4309 | 5.4493 | 6.1445 | | 3.9937 | 8.0 | 5288 | 2.9354 | 6.8433 | 2.5498 | 5.6114 | 6.353 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airesearchth/wangchanberta-base-wiki-20210520-news-spm
fd4c28e90832c3b1450e7480bcc253f34c26b151
2021-07-16T00:22:43.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
airesearchth
null
airesearchth/wangchanberta-base-wiki-20210520-news-spm
2
null
transformers
23,611
Entry not found
airesearchth/wangchanberta-base-wiki-20210520-spm
07b9e704858a480a37c8fd770cd2474e46cafe67
2021-05-31T22:49:34.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
airesearchth
null
airesearchth/wangchanberta-base-wiki-20210520-spm
2
null
transformers
23,612
Entry not found
ajanco/yi_roberta_oscar
2204b607be641220bc8fe0ab168d563914d8a671
2022-01-18T03:14:14.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ajanco
null
ajanco/yi_roberta_oscar
2
null
transformers
23,613
Entry not found
akadriu/wav2vec2-large-xlsr-53-AL-colab
1178d64741428f7897161f42e3ec3c6382d95ada
2022-01-20T16:01:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-AL-colab
2
null
transformers
23,614
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-AL-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-AL-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5358 - Wer: 0.5443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9391 | 0.4 | 400 | 2.0722 | 0.9249 | | 0.8775 | 0.8 | 800 | 1.7171 | 0.6778 | | 0.665 | 1.2 | 1200 | 1.7250 | 0.6235 | | 0.6135 | 1.6 | 1600 | 1.4021 | 0.5847 | | 0.5795 | 2.0 | 2000 | 1.6191 | 0.5696 | | 0.5031 | 2.4 | 2400 | 1.6767 | 0.5586 | | 0.4933 | 2.8 | 2800 | 1.5358 | 0.5443 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
akadriu/wav2vec2-large-xlsr-53-AL
31235b9024117950df586df887fb51a50c1871cb
2022-02-17T00:15:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-AL
2
null
transformers
23,615
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-AL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-AL This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2712 - Wer: 0.6940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.073 | 8.0 | 200 | 1.0990 | 0.7002 | | 0.0561 | 16.0 | 400 | 1.1455 | 0.6805 | | 0.0378 | 24.0 | 600 | 1.2712 | 0.6940 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
akahana/indonesia-roberta-small
023c29690af6b3e7ef56908c7fb357150676cd8d
2021-12-08T04:51:44.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
akahana
null
akahana/indonesia-roberta-small
2
null
transformers
23,616
Entry not found
akhooli/gpt2-ar-poetry-aub_m
1cdcf9c07eff565937f6bdeb2e290693daf16d47
2021-05-21T12:29:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
akhooli
null
akhooli/gpt2-ar-poetry-aub_m
2
null
transformers
23,617
Entry not found
akr/distilbert-base-uncased-finetuned-squad
d8470f63912a1e632e76664beed7a20cedeb7bf8
2021-10-12T10:39:46.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
akr
null
akr/distilbert-base-uncased-finetuned-squad
2
null
transformers
23,618
Entry not found
akshaychaudhary/distilbert-base-uncased-finetuned-cloud2-ner
8271c60ade6c53a51ca88fd97251f0175250c6fb
2022-02-14T17:33:18.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akshaychaudhary
null
akshaychaudhary/distilbert-base-uncased-finetuned-cloud2-ner
2
null
transformers
23,619
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-cloud2-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud2-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8866 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 162 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.8447 | | No log | 2.0 | 324 | 0.8303 | 0.0 | 0.0 | 0.0 | 0.8465 | | No log | 3.0 | 486 | 0.8866 | 0.0 | 0.0 | 0.0 | 0.8453 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
alenusch/par_cls_bert
6c87f5103e5b37c457acf1f57686664deecbb321
2021-06-25T12:20:42.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
alenusch
null
alenusch/par_cls_bert
2
null
transformers
23,620
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way: ``` import torch import torch.nn as nn import os import copy import random import numpy as np import pandas as pd from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup from transformers.file_utils import ( cached_path, hf_bucket_url, is_remote_url, ) archive_file = hf_bucket_url( "alenusch/par_cls_bert", filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt", revision=None, mirror=None, ) resolved_archive_file = cached_path( archive_file, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, ) os.environ["TOKENIZERS_PARALLELISM"] = "false" class SentencePairClassifier(nn.Module): def __init__(self, bert_model): super(SentencePairClassifier, self).__init__() self.bert_layer = AutoModel.from_pretrained(bert_model) self.cls_layer = nn.Linear(768, 1) self.dropout = nn.Dropout(p=0.1) @autocast() def forward(self, input_ids, attn_masks, token_type_ids): cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False) logits = self.cls_layer(self.dropout(pooler_output)) return logits class CustomDataset(Dataset): def __init__(self, data, maxlen, bert_model): self.data = data self.tokenizer = AutoTokenizer.from_pretrained(bert_model) self.maxlen = maxlen self.targets = False def __len__(self): return len(self.data) def __getitem__(self, index): sent1 = str(self.data[index][0]) sent2 = str(self.data[index][1]) encoded_pair = self.tokenizer(sent1, sent2, padding='max_length', # Pad to max_length truncation=True, # Truncate to max_length max_length=self.maxlen, return_tensors='pt') # Return torch.Tensor objects token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens return token_ids, attn_masks, token_type_ids def get_probs_from_logits(logits): probs = torch.sigmoid(logits.unsqueeze(-1)) return probs.detach().cpu().numpy() def test_prediction(net, device, dataloader, with_labels=False): net.eval() probs_all = [] with torch.no_grad(): for seq, attn_masks, token_type_ids in tqdm(dataloader): seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device) logits = net(seq, attn_masks, token_type_ids) probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1) probs_all += probs.tolist() return probs_all device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert") if torch.cuda.device_count() > 1: cls_model = nn.DataParallel(model) cls_model.load_state_dict(torch.load(resolved_archive_file)) cls_model.to(device) variants = [["sentence1", "sentence2"]] test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert") test_loader = DataLoader(test_set, batch_size=16, num_workers=5) res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False) ```
alex6095/SanctiMoly-Bart
c5c5d2e12a6af357517e9eedbd751baa5a0569d8
2021-12-12T21:44:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alex6095
null
alex6095/SanctiMoly-Bart
2
null
transformers
23,621
Entry not found
alex6095/SanctiMolyOH_Cpu
2e944455aa4f44cb50115bcd46d2f6b9e62cb145
2021-12-13T01:25:55.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
alex6095
null
alex6095/SanctiMolyOH_Cpu
2
null
transformers
23,622
alex6095/SanctiMolyOH_Cpu
alexaapo/greek_legal_bert_v1
9cbd5f6be8b2ab598592052043fbfa3087062945
2021-12-01T11:00:04.000Z
[ "pytorch", "transformers" ]
null
false
alexaapo
null
alexaapo/greek_legal_bert_v1
2
null
transformers
23,623
Entry not found
alexcruz0202/t5_boolq
41c8ebc056e561db08f2f161e46553052980f7da
2021-06-23T11:06:38.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alexcruz0202
null
alexcruz0202/t5_boolq
2
null
transformers
23,624
t5_boolq
alexrfelicio/t5-small-finetuned-en-to-de
aebde3d93248055935a5682e9296e63ca39ea100
2021-11-30T23:07:35.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
alexrfelicio
null
alexrfelicio/t5-small-finetuned-en-to-de
2
null
transformers
23,625
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: t5-small-finetuned-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 136 | 1.7446 | 9.0564 | 17.8356 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
alexrfelicio/t5-small-finetuned128-en-to-de
5892177f8cd7a38ee966f3d3154f0a12d4c9e4b1
2021-12-02T21:27:03.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
alexrfelicio
null
alexrfelicio/t5-small-finetuned128-en-to-de
2
null
transformers
23,626
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: t5-small-finetuned128-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned128-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
alexrfelicio/t5-small-finetuned32-en-to-de
b05c59545ec5f6805c6d73e16e8a76a821c1b8d2
2021-12-02T22:39:31.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
alexrfelicio
null
alexrfelicio/t5-small-finetuned32-en-to-de
2
null
transformers
23,627
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: t5-small-finetuned32-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned32-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.4226 | 21.9554 | 17.8089 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
alexyalunin/my-awesome-model
4b12f4c1e8e114ee401508c0e0fad98a1f082da2
2022-01-24T16:09:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
alexyalunin
null
alexyalunin/my-awesome-model
2
null
transformers
23,628
# RuBio for paper: dsdfsfsdf
algomuffin/dummy
7aeaf9b87b6f8960b8b60f236ca373e5af6e7a7f
2021-11-17T10:27:54.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
algomuffin
null
algomuffin/dummy
2
null
transformers
23,629
Entry not found
ali2066/finetuned_token_2e-05_16_02_2022-01_30_30
848816697b23a8268b3d7712fd3db26575f6f584
2022-02-16T00:32:55.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-01_30_30
2
null
transformers
23,630
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-01_30_30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-01_30_30 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - Precision: 0.3384 - Recall: 0.3492 - F1: 0.3437 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3180 | 0.0985 | 0.1648 | 0.1233 | 0.8643 | | No log | 2.0 | 76 | 0.2667 | 0.1962 | 0.2698 | 0.2272 | 0.8926 | | No log | 3.0 | 114 | 0.2374 | 0.2268 | 0.3005 | 0.2585 | 0.9062 | | No log | 4.0 | 152 | 0.2305 | 0.2248 | 0.3247 | 0.2657 | 0.9099 | | No log | 5.0 | 190 | 0.2289 | 0.2322 | 0.3166 | 0.2679 | 0.9102 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-01_55_54
537decb45d1a09398bfeccfb64dd9701eb18fec6
2022-02-16T01:18:01.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-01_55_54
2
null
transformers
23,631
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-01_55_54 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-01_55_54 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_18_19
f8c8e8cd6c36588cde75a0a935011317474b1d76
2022-02-16T13:20:37.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-14_18_19
2
null
transformers
23,632
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_18_19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_18_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_20_41
fb9ab591918bd292eace0cd94b59abccbc6b98fd
2022-02-16T13:23:18.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-14_20_41
2
null
transformers
23,633
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_20_41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_20_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_32_56
411356fcfb56281aca463726c6086ab4aad4b865
2022-02-16T13:35:14.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-14_32_56
2
null
transformers
23,634
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_32_56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_32_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_19_24
a5c5d5507e41b434d46900bf80d2c2c15be04e7e
2022-02-16T15:22:34.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_3e-05_all_16_02_2022-16_19_24
2
null
transformers
23,635
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_19_24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_19_24 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01
78813d5e0c3aebbfce270aa69f6b20af054a65ec
2022-02-16T19:32:19.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01
2
null
transformers
23,636
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_30_01 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1577 - Precision: 0.4469 - Recall: 0.5280 - F1: 0.4841 - Accuracy: 0.9513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3553 | 0.1068 | 0.0810 | 0.0922 | 0.8412 | | No log | 2.0 | 76 | 0.2812 | 0.2790 | 0.4017 | 0.3293 | 0.8684 | | No log | 3.0 | 114 | 0.2793 | 0.3086 | 0.4586 | 0.3689 | 0.8747 | | No log | 4.0 | 152 | 0.2766 | 0.3057 | 0.4190 | 0.3535 | 0.8763 | | No log | 5.0 | 190 | 0.2805 | 0.2699 | 0.4845 | 0.3467 | 0.8793 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
dbcbef0af3f2fd67997b7d412dab3d5ab489b51c
2022-02-16T19:47:45.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
2
null
transformers
23,637
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1500 - Precision: 0.4739 - Recall: 0.5250 - F1: 0.4981 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3183 | 0.2024 | 0.2909 | 0.2387 | 0.8499 | | No log | 2.0 | 76 | 0.3092 | 0.2909 | 0.4181 | 0.3431 | 0.8548 | | No log | 3.0 | 114 | 0.2928 | 0.2923 | 0.4855 | 0.3650 | 0.8647 | | No log | 4.0 | 152 | 0.3098 | 0.2832 | 0.4605 | 0.3507 | 0.8641 | | No log | 5.0 | 190 | 0.3120 | 0.2470 | 0.4374 | 0.3157 | 0.8654 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05
b1774a42cd1ebb7239d97cfb03b3c60b7db84a62
2022-02-16T20:06:17.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05
2
null
transformers
23,638
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_editorials_16_02_2022-21_05_05 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1114 - Precision: 0.0637 - Recall: 0.0080 - F1: 0.0141 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.0921 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 2.0 | 30 | 0.0816 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 3.0 | 45 | 0.0781 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 4.0 | 60 | 0.0746 | 0.08 | 0.0110 | 0.0193 | 0.9801 | | No log | 5.0 | 75 | 0.0737 | 0.08 | 0.0110 | 0.0193 | 0.9801 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
alina1997/marian_en_de_test
6c89e736d001cee8e163c83601be8eef36e4faa1
2022-02-28T13:31:36.000Z
[ "pytorch", "marian", "text2text-generation", "en", "de", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
alina1997
null
alina1997/marian_en_de_test
2
null
transformers
23,639
--- language: - en - de tags: - generated_from_trainer metrics: - bleu model-index: - name: trained_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trained_model This model is a fine-tuned version of [opus-mt-en-de](https://huggingface.co/opus-mt-en-de) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4519 - Bleu: 27.6198 - Gen Len: 106.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 3 | 1.4519 | 27.6198 | 106.0 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.0 - Datasets 1.18.3 - Tokenizers 0.10.3
alireza7/ARMAN-MSR-persian-base-tebyan
4ce9e5393269dc57c12a0bb9b39645fe16923c5c
2021-09-29T19:16:58.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-tebyan
2
null
transformers
23,640
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-wiki-summary
f116b1862282392b130a4dd7b64b7f55b67ddc84
2021-09-29T19:17:13.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-wiki-summary
2
null
transformers
23,641
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-qqp
b5f506fafe45c13d70b14441c43a5c477ddeac70
2021-09-29T19:18:12.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-parsinlu-qqp
2
null
transformers
23,642
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-movie
01dd1df0535125edabb44af0d76a343f1025c4b4
2021-09-29T19:18:54.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-movie
2
null
transformers
23,643
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-PN-summary
eda31842040689a2b5d419770bde879dc4c02c1e
2021-09-29T19:20:30.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-PN-summary
2
null
transformers
23,644
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-food
868a23c9a65ed703b25e51dd6b9c211c0eac6c34
2021-09-29T19:20:50.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-food
2
null
transformers
23,645
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-movie
e25783e2545b5dfa4fe61f2286617551ec7e5c18
2021-09-29T19:20:57.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-parsinlu-sentiment-movie
2
null
transformers
23,646
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-perkey-title
7dcb61730f1d68a28a8f164b1d957b8dcbee6b09
2021-09-29T19:21:19.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-perkey-title
2
null
transformers
23,647
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-PN-summary
e9c73a5d3c56f95fba0bc89e4606850eff04771b
2021-09-29T19:22:43.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-PN-summary
2
null
transformers
23,648
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/PEGASUS-persian-base-PN-summary
4416e06275504351c90119cd49f631e2a673a4fd
2021-09-29T19:25:02.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-PN-summary
2
null
transformers
23,649
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/PEGASUS-persian-base-parsinlu-sentiment-food
c3e53456c9e1e8f3a4eaf763254aa166aa105053
2021-09-29T19:25:24.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-parsinlu-sentiment-food
2
null
transformers
23,650
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/PEGASUS-persian-base-perkey-title
ba960c96582a48184e85f98faab5fb50062ecb1d
2021-09-29T19:25:52.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-perkey-title
2
null
transformers
23,651
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alistvt/bert-base-uncased-pretrain-finetuned-coqa-falt
1882b55239bf933929fdd9202923e18dba392997
2022-01-25T19:05:51.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
alistvt
null
alistvt/bert-base-uncased-pretrain-finetuned-coqa-falt
2
null
transformers
23,652
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-pretrain-finetuned-coqa-falt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrain-finetuned-coqa-falt This model is a fine-tuned version of [alistvt/bert-base-uncased-pretrained-mlm-coqa-stories](https://huggingface.co/alistvt/bert-base-uncased-pretrained-mlm-coqa-stories) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4039 | 0.29 | 2000 | 3.0921 | | 3.1438 | 0.59 | 4000 | 2.8826 | | 3.0252 | 0.88 | 6000 | 2.7885 | | 2.7112 | 1.18 | 8000 | 2.7720 | | 2.6703 | 1.47 | 10000 | 2.7581 | | 2.6432 | 1.77 | 12000 | 2.7316 | | 2.385 | 2.06 | 14000 | 2.7798 | | 2.3314 | 2.36 | 16000 | 2.7836 | | 2.3433 | 2.65 | 18000 | 2.7650 | | 2.3604 | 2.95 | 20000 | 2.7585 | | 2.2232 | 3.24 | 22000 | 2.8120 | | 2.2094 | 3.53 | 24000 | 2.7945 | | 2.2306 | 3.83 | 26000 | 2.8125 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories
9168ae7f0230ffd72e66654d327fcfc6e1a1787b
2022-01-21T13:17:32.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
alistvt
null
alistvt/bert-base-uncased-pretrained-mlm-coqa-stories
2
null
transformers
23,653
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-pretrained-mlm-coqa-stories results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-pretrained-mlm-coqa-stories This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0573 | 1.0 | 2479 | 1.8805 | | 1.9517 | 2.0 | 4958 | 1.8377 | | 1.9048 | 3.0 | 7437 | 1.8310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
alokmatta/wav2vec2-large-xlsr-53-sw
125fde65ac78845894cc4b67f57ea21c807ce371
2021-07-05T19:12:57.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sw", "dataset:ALFFA,Gamayun & IWSLT", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
alokmatta
null
alokmatta/wav2vec2-large-xlsr-53-sw
2
null
transformers
23,654
--- language: sw datasets: - ALFFA,Gamayun & IWSLT metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Swahili XLSR-53 Wav2Vec2.0 Large results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: ALFFA sw args: sw metrics: - name: Test WER type: wer value: WIP --- # Wav2Vec2-Large-XLSR-53-Swahili Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swahili using the following datasets: - [ALFFA](http://www.openslr.org/25/), - [Gamayun](https://gamayun.translatorswb.org/download/gamayun-5k-english-swahili/) - [IWSLT](https://iwslt.org/2021/low-resource) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw") model = Wav2Vec2ForCTC.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw").to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def load_file_to_data(file): batch = {} speech, _ = torchaudio.load(file) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq return batch def predict(data): features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") input_values = features.input_values.to("cuda") attention_mask = features.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) return processor.batch_decode(pred_ids) predict(load_file_to_data('./demo.wav')) ``` **Test Result**: 40 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1_RL6TQv_Yiu_xbWXu4ycbzdCdXCqEQYU?usp=sharing)
alvinkobe/DialoGPT-medium-steve_biko
7f79c2559fe0c8828418d73b1b1dc3c5dc0c163a
2021-09-09T03:03:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
alvinkobe
null
alvinkobe/DialoGPT-medium-steve_biko
2
null
transformers
23,655
--- tags: - conversational --- # Frank Talks DialoGPT Model
am-shb/bert-base-multilingual-uncased-finetuned
5bc7fc8380ddbd5868ea216b02f5f97563fd990b
2022-02-06T00:05:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
am-shb
null
am-shb/bert-base-multilingual-uncased-finetuned
2
null
transformers
23,656
--- tags: - generated_from_trainer model-index: - name: '57463134' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 57463134 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
am-shb/bert-base-multilingual-uncased-pretrained
d60a23f6ee4025ee60c6c6e05bc61808d5745c5d
2022-02-10T14:49:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
am-shb
null
am-shb/bert-base-multilingual-uncased-pretrained
2
null
transformers
23,657
--- tags: - generated_from_trainer model-index: - name: bert-base-multilingual-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
ami-wav2vec2/ami-dummy
cca00b7bce3dc086774fe25891a7be1530258247
2021-10-12T16:08:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/ami-dummy
2
null
transformers
23,658
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: ami-dummy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ami-dummy This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 94.6519 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 2.46 | 15 | 102.9094 | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin3
e1135bad5257e58dd236e4938ab0020152a55a44
2021-10-22T08:56:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin3
2
null
transformers
23,659
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.9953 - Wer: 0.4577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.7412 | 1.07 | 2500 | 2.9356 | 0.9925 | | 2.0224 | 2.13 | 5000 | 2.0951 | 0.5730 | | 1.9017 | 3.2 | 7500 | 1.8801 | 0.5070 | | 1.8356 | 4.27 | 10000 | 2.0530 | 0.4778 | | 1.8002 | 5.33 | 12500 | 1.9465 | 0.4620 | | 1.7424 | 6.4 | 15000 | 1.9561 | 0.4529 | | 1.7406 | 7.47 | 17500 | 1.9190 | 0.4477 | | 1.7046 | 8.53 | 20000 | 1.8138 | 0.4402 | | 1.6784 | 9.6 | 22500 | 1.8275 | 0.4385 | | 1.6657 | 10.67 | 25000 | 1.7603 | 0.4307 | | 1.6618 | 11.73 | 27500 | 1.7269 | 0.4249 | | 1.6037 | 12.8 | 30000 | 1.7071 | 0.4272 | | 1.639 | 13.87 | 32500 | 1.6559 | 0.4234 | | 1.614 | 14.93 | 35000 | 1.7535 | 0.4237 | | 1.6044 | 16.0 | 37500 | 1.7945 | 0.4200 | | 1.5685 | 17.06 | 40000 | 1.7135 | 0.4170 | | 1.6194 | 18.13 | 42500 | 1.8712 | 0.4161 | | 1.566 | 19.2 | 45000 | 1.8720 | 0.4176 | | 1.5572 | 20.26 | 47500 | 1.7077 | 0.4135 | | 1.5715 | 21.33 | 50000 | 1.7538 | 0.4143 | | 1.5595 | 22.4 | 52500 | 1.8135 | 0.4133 | | 1.5465 | 23.46 | 55000 | 1.8119 | 0.4134 | | 1.5369 | 24.53 | 57500 | 1.7565 | 0.4086 | | 1.5392 | 25.6 | 60000 | 1.7323 | 0.4101 | | 1.5383 | 26.66 | 62500 | 1.7516 | 0.4097 | | 1.5266 | 27.73 | 65000 | 1.7961 | 0.4104 | | 1.525 | 28.8 | 67500 | 1.7472 | 0.4094 | | 1.5779 | 29.86 | 70000 | 1.7600 | 0.4096 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin5
bf9b4bca9d7f0983a131603af9561a7493f46a76
2021-11-04T05:22:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin5
2
null
transformers
23,660
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin5 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5392 - Wer: 0.4481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.8839 | 2.16 | 2500 | 1.7172 | 0.6249 | | 1.5323 | 4.31 | 5000 | 1.4628 | 0.4930 | | 1.4325 | 6.47 | 7500 | 1.3856 | 0.4495 | | 1.3461 | 8.62 | 10000 | 1.3695 | 0.4350 | | 1.3249 | 10.78 | 12500 | 1.3640 | 0.4294 | | 1.3288 | 12.93 | 15000 | 1.3429 | 0.4220 | | 1.2503 | 15.09 | 17500 | 1.3325 | 0.4171 | | 1.2587 | 17.24 | 20000 | 1.3201 | 0.4108 | | 1.2135 | 19.4 | 22500 | 1.3329 | 0.4083 | | 1.2154 | 21.55 | 25000 | 1.3341 | 0.4057 | | 1.2162 | 23.71 | 27500 | 1.3291 | 0.4046 | | 1.2062 | 25.86 | 30000 | 1.3305 | 0.4031 | | 1.1853 | 28.02 | 32500 | 1.3299 | 0.4023 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_single-vumichien2
cbb08f9a68af481e90faa22a4f785ad713c3ffb3
2021-10-23T00:46:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_single-vumichien2
2
null
transformers
23,661
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_single-vumichien2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_single-vumichien2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 0.0 | 0.53 | 2500 | nan | 1.0 | | 0.0 | 1.06 | 5000 | nan | 1.0 | | 0.0 | 1.59 | 7500 | nan | 1.0 | | 0.0 | 2.12 | 10000 | nan | 1.0 | | 0.0 | 2.64 | 12500 | nan | 1.0 | | 0.0 | 3.17 | 15000 | nan | 1.0 | | 0.0 | 3.7 | 17500 | nan | 1.0 | | 0.0 | 4.23 | 20000 | nan | 1.0 | | 0.0 | 4.76 | 22500 | nan | 1.0 | | 0.0 | 5.29 | 25000 | nan | 1.0 | | 0.0 | 5.82 | 27500 | nan | 1.0 | | 0.0 | 6.35 | 30000 | nan | 1.0 | | 0.0 | 6.87 | 32500 | nan | 1.0 | | 0.0 | 7.4 | 35000 | nan | 1.0 | | 0.0 | 7.93 | 37500 | nan | 1.0 | | 0.0 | 8.46 | 40000 | nan | 1.0 | | 0.0 | 8.99 | 42500 | nan | 1.0 | | 0.0 | 9.52 | 45000 | nan | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-nithin8
781e9487d4027810a7622606ffe28144dc2c2013
2021-11-29T08:20:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-nithin8
2
null
transformers
23,662
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-nithin8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-nithin8 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4945 - Wer: 0.4291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.336 | 2.16 | 2500 | 1.2807 | 0.4097 | | 1.216 | 4.31 | 5000 | 1.2406 | 0.3931 | | 1.1353 | 6.47 | 7500 | 1.2145 | 0.3801 | | 1.0674 | 8.62 | 10000 | 1.1930 | 0.3825 | | 1.0223 | 10.78 | 12500 | 1.2283 | 0.3907 | | 1.009 | 12.93 | 15000 | 1.2266 | 0.3810 | | 0.8998 | 15.09 | 17500 | 1.2719 | 0.3839 | | 0.8912 | 17.24 | 20000 | 1.2889 | 0.3867 | | 0.8459 | 19.4 | 22500 | 1.3031 | 0.3941 | | 0.8193 | 21.55 | 25000 | 1.3543 | 0.3862 | | 0.8048 | 23.71 | 27500 | 1.3533 | 0.3858 | | 0.7663 | 25.86 | 30000 | 1.3941 | 0.3993 | | 0.7311 | 28.02 | 32500 | 1.4745 | 0.3937 | | 0.716 | 30.17 | 35000 | 1.4788 | 0.3989 | | 0.6868 | 32.33 | 37500 | 1.4966 | 0.3925 | | 0.6558 | 34.48 | 40000 | 1.5457 | 0.3901 | | 0.6473 | 36.64 | 42500 | 1.5662 | 0.3944 | | 0.631 | 38.79 | 45000 | 1.5689 | 0.3956 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.00005_8
2199af8410466e4bae712d90f991652cad2248f3
2021-11-18T02:36:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.00005_8
2
null
transformers
23,663
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.00005_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.00005_8 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4987 - Wer: 0.4569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.8603 | 0.86 | 1000 | 2.8296 | 1.0 | | 1.4382 | 1.72 | 2000 | 1.4212 | 0.4776 | | 1.3 | 2.59 | 3000 | 1.3231 | 0.4330 | | 1.2322 | 3.45 | 4000 | 1.2824 | 0.4251 | | 1.1741 | 4.31 | 5000 | 1.2740 | 0.4187 | | 1.1268 | 5.17 | 6000 | 1.2600 | 0.4161 | | 1.0911 | 6.03 | 7000 | 1.2624 | 0.4076 | | 1.0701 | 6.9 | 8000 | 1.2607 | 0.4076 | | 1.0426 | 7.76 | 9000 | 1.2629 | 0.4091 | | 1.0273 | 8.62 | 10000 | 1.2596 | 0.4117 | | 1.0294 | 9.48 | 11000 | 1.2663 | 0.4077 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0001_8
581454925f7711e643d94d7315d25b8e6ea814f3
2021-11-21T00:08:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0001_8
2
null
transformers
23,664
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.0001_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.0001_8 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5037 - Wer: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5659 | 0.86 | 1000 | 1.4888 | 0.5013 | | 1.2886 | 1.72 | 2000 | 1.2864 | 0.4171 | | 1.1701 | 2.59 | 3000 | 1.2319 | 0.3958 | | 1.108 | 3.45 | 4000 | 1.2009 | 0.4006 | | 1.0407 | 4.31 | 5000 | 1.2137 | 0.3888 | | 0.9785 | 5.17 | 6000 | 1.2017 | 0.3927 | | 0.948 | 6.03 | 7000 | 1.2107 | 0.3952 | | 0.9191 | 6.9 | 8000 | 1.2195 | 0.3867 | | 0.8844 | 7.76 | 9000 | 1.2227 | 0.3901 | | 0.8538 | 8.62 | 10000 | 1.2389 | 0.3968 | | 0.854 | 9.48 | 11000 | 1.2514 | 0.3939 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
amoghsgopadi/wav2vec2-large-xlsr-kn
8fe9e06a881196a2f6d0a4104a1d46f67d4b9cad
2021-07-05T19:21:53.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "kn", "dataset:openslr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
amoghsgopadi
null
amoghsgopadi/wav2vec2-large-xlsr-kn
2
null
transformers
23,665
--- language: kn datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Kannada by Amogh Gopadi results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR kn type: openslr metrics: - name: Test WER type: wer value: 27.08 --- # Wav2Vec2-Large-XLSR-53-Kannada Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kannada using the [OpenSLR SLR79](http://openslr.org/79/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Kannada `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For a sample, see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn") model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Kannada data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn") model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 27.08 % ## Training 90% of the OpenSLR Kannada dataset was used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/github/amoghgopadi/wav2vec2-xlsr-kannada/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Kannada_ASR.ipynb).
anas-awadalla/bert-base-uncased-few-shot-k-128-finetuned-squad-seed-42
7cc0f5c499fa13860db50a57fd272a87ddd4aa83
2022-02-21T18:55:00.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-128-finetuned-squad-seed-42
2
null
transformers
23,666
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-128-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 12.93282876064333, 'f1': 21.98821604201723} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/bert-medium-finetuned-squad
9097431eddefccad27b93d3e91550dd631a3c362
2022-01-24T01:10:28.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-medium-finetuned-squad
2
null
transformers
23,667
Results: {'exact_match': 76.82119205298014, 'f1': 84.69734248389383}
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
57374c3a0d153e07225a3328fdb57560429c4e38
2021-08-23T05:38:50.000Z
[ "pytorch", "distilbert", "question-answering", "en", "dataset:squad_v2", "dataset:mit_restaurant", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
2
null
transformers
23,668
--- language: - en tags: - generated_from_trainer datasets: - squad_v2 - mit_restaurant model_index: - name: distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat
26a4c79a59710cc9945924619cc77d9b9ac86c89
2021-08-11T17:03:38.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat
2
null
transformers
23,669
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi
c4b0cb24bdf480899c39ae6fd492f45f8e81ed66
2021-07-29T03:14:48.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi
2
null
transformers
23,670
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg-with-multi results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
04f5e6c6f04a72b277b24afecd761f0a94b2fb0d
2021-07-27T07:50:09.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
2
null
transformers
23,671
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andikarachman/DialoGPT-small-sheldon
3cd1ac2ee5de069b33e2f57d0d9b54177887341c
2021-12-11T14:51:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
andikarachman
null
andikarachman/DialoGPT-small-sheldon
2
null
transformers
23,672
--- tags: - conversational --- # My Awesome Model
anduush/DialoGPT-small-Rick
b161edcd584b0ef06365ec3ecaca0e97814f4594
2021-08-27T07:25:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
anduush
null
anduush/DialoGPT-small-Rick
2
null
transformers
23,673
--- tags: - conversational --- # Rick and Morty DialoGPT Model
angiquer/twitterko-electra-base-generator
8ae013ba1db21970c700dd84e81bb83203d9b46a
2020-07-10T01:44:00.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
angiquer
null
angiquer/twitterko-electra-base-generator
2
null
transformers
23,674
Entry not found
anhtunguyen98/xlm-base-vi-en
f57b337cf56fb8cba52c1a29a626265dea95a307
2021-10-10T10:16:56.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
anhtunguyen98
null
anhtunguyen98/xlm-base-vi-en
2
null
transformers
23,675
Entry not found
aniltrkkn/wav2vec2-large-xlsr-53-turkish
40506d7c277e7d8421f1e57ed8baee9584e901f5
2021-07-05T19:34:22.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aniltrkkn
null
aniltrkkn/wav2vec2-large-xlsr-53-turkish
2
0
transformers
23,676
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2-Large-XLSR-53-Turkish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 17.46 --- # Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from unicode_tr import unicode_tr test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower()) \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.46 % ## Training unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish. Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments: --num_train_epochs="30" \\ --per_device_train_batch_size="32" \\ --evaluation_strategy="steps" \\ --activation_dropout="0.055" \\ --attention_dropout="0.094" \\ --feat_proj_dropout="0.04" \\ --hidden_dropout="0.047" \\ --layerdrop="0.041" \\ --learning_rate="2.34e-4" \\ --mask_time_prob="0.082" \\ --warmup_steps="250" \\ All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
anjulRajendraSharma/wavlm-base-libri-clean-100
ab5465eea0c0f1579435e1ec50576054d4277576
2022-01-28T16:52:47.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
anjulRajendraSharma
null
anjulRajendraSharma/wavlm-base-libri-clean-100
2
null
transformers
23,677
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: wavlm-libri-clean-100h-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8664 | 0.17 | 300 | 2.8439 | 1.0 | | 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 | | 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 | | 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 | | 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 | | 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 | | 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 | | 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 | | 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 | | 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 | | 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.0 - Tokenizers 0.10.3
anton-l/wav2vec2-large-xlsr-53-chuvash
cd5a3410b2d21900037043d333888a63b0cdabd3
2021-07-05T19:40:17.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "cv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-chuvash
2
null
transformers
23,678
--- language: cv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Chuvash XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cv type: common_voice args: cv metrics: - name: Test WER type: wer value: 40.01 --- # Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/cv.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/cv/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/cv/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 40.01 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](github.com)
anton-l/wav2vec2-large-xlsr-53-estonian
71f1af393d576d4eedd4654e1edf27f3c0426609
2021-07-05T19:44:33.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "et", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-estonian
2
null
transformers
23,679
--- language: et datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Estonian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice et type: common_voice args: et metrics: - name: Test WER type: wer value: 30.74 --- # Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/et.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/et/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/et/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 30.74 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](github.com)
anton-l/wav2vec2-large-xlsr-53-latvian
74621107cd9fd6661849cf052da6db1636166858
2021-07-05T20:00:29.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-latvian
2
null
transformers
23,680
--- language: lv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Latvian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice lv type: common_voice args: lv metrics: - name: Test WER type: wer value: 26.89 --- # Wav2Vec2-Large-XLSR-53-Latvian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Latvian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Latvian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lv.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lv/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/lv/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 26.89 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xls-r-300m-as
1e288941bc533a80ef3df7eafc203eccc653beb7
2022-03-23T18:32:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "as", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-as
2
1
transformers
23,681
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-as results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: as metrics: - type: wer value: 56.995 name: Test WER - name: Test CER type: cer value: 20.39 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |
anuragshas/wav2vec2-large-xlsr-53-ia
02a426bcbf0fdc935bf523cb9cd22b821447112b
2021-07-05T21:04:27.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ia", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-ia
2
null
transformers
23,682
--- language: ia datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Interlingua results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ia type: common_voice args: ia metrics: - name: Test WER type: wer value: 22.08 --- # Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Interlingua test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model.to("cuda") chars_to_ignore_regex = '[\.\,\!\?\-\"\:\;\'\“\”]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.08 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xlsr-53-vietnamese
ae41602462f0789331ad20dc825805df42e79852
2021-07-05T21:37:41.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "vi", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-vietnamese
2
null
transformers
23,683
--- language: vi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Vietnamese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 66.78 --- # Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 66.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-xls-r-1b-hi-cv8
29e985f94f926e3b2e2967f5b69be5c78aeddaeb
2022-01-30T15:20:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-1b-hi-cv8
2
null
transformers
23,684
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6780 - Wer: 0.3670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.514 | 2.07 | 400 | 1.4589 | 0.8531 | | 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 | | 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 | | 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 | | 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 | | 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 | | 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 | | 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 | | 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 | | 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 | | 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 | | 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 | | 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 | | 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 | | 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 | | 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 | | 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 | | 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 | | 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 | | 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 | | 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 | | 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 | | 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 | | 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm
b5c4a33c89d120476632e71a31f6434dc91fcfff
2022-02-06T16:11:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm
2
null
transformers
23,685
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.6693 - Wer: 0.5921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.9504 | 18.18 | 400 | 4.6730 | 1.0 | | 3.3766 | 36.36 | 800 | 3.3464 | 1.0 | | 3.1128 | 54.55 | 1200 | 3.0177 | 0.9980 | | 1.7966 | 72.73 | 1600 | 0.8733 | 0.8039 | | 1.4085 | 90.91 | 2000 | 0.5555 | 0.6458 | | 1.1731 | 109.09 | 2400 | 0.4930 | 0.6438 | | 1.0271 | 127.27 | 2800 | 0.4780 | 0.6093 | | 0.9045 | 145.45 | 3200 | 0.4647 | 0.6578 | | 0.807 | 163.64 | 3600 | 0.4505 | 0.5925 | | 0.741 | 181.82 | 4000 | 0.4746 | 0.6025 | | 0.6706 | 200.0 | 4400 | 0.5004 | 0.5844 | | 0.6186 | 218.18 | 4800 | 0.4984 | 0.5997 | | 0.5508 | 236.36 | 5200 | 0.5298 | 0.5636 | | 0.5123 | 254.55 | 5600 | 0.5410 | 0.5110 | | 0.4623 | 272.73 | 6000 | 0.5591 | 0.5383 | | 0.4281 | 290.91 | 6400 | 0.5775 | 0.5600 | | 0.4045 | 309.09 | 6800 | 0.5924 | 0.5580 | | 0.3651 | 327.27 | 7200 | 0.5671 | 0.5684 | | 0.343 | 345.45 | 7600 | 0.6083 | 0.5945 | | 0.3085 | 363.64 | 8000 | 0.6243 | 0.5728 | | 0.2941 | 381.82 | 8400 | 0.6245 | 0.5580 | | 0.2735 | 400.0 | 8800 | 0.6458 | 0.5804 | | 0.262 | 418.18 | 9200 | 0.6566 | 0.5824 | | 0.2578 | 436.36 | 9600 | 0.6558 | 0.5965 | | 0.2388 | 454.55 | 10000 | 0.6598 | 0.5993 | | 0.2328 | 472.73 | 10400 | 0.6700 | 0.6041 | | 0.2286 | 490.91 | 10800 | 0.6684 | 0.5957 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm
ba0a3d8a4a176ddf028a4d0a356141b6c673dd45
2022-02-03T12:28:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm
2
null
transformers
23,686
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.6864 - Wer: 0.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.3322 | 14.81 | 400 | 3.7450 | 1.0 | | 3.2662 | 29.63 | 800 | 3.2571 | 0.9996 | | 1.6408 | 44.44 | 1200 | 0.9098 | 0.8162 | | 1.2289 | 59.26 | 1600 | 0.6757 | 0.7099 | | 1.0551 | 74.07 | 2000 | 0.6417 | 0.7044 | | 0.966 | 88.89 | 2400 | 0.6365 | 0.6789 | | 0.8713 | 103.7 | 2800 | 0.6617 | 0.6954 | | 0.8055 | 118.52 | 3200 | 0.6371 | 0.6762 | | 0.7489 | 133.33 | 3600 | 0.6798 | 0.6911 | | 0.7073 | 148.15 | 4000 | 0.6567 | 0.6731 | | 0.6609 | 162.96 | 4400 | 0.6742 | 0.6840 | | 0.6435 | 177.78 | 4800 | 0.6862 | 0.6633 | | 0.6282 | 192.59 | 5200 | 0.6865 | 0.6731 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-ta-cv8
49bd874f83ce638061af7841cf8cef92470bb9d9
2022-01-31T05:05:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-ta-cv8
2
null
transformers
23,687
Entry not found
anuragshas/wav2vec2-xlsr-53-rm-vallader-with-lm
2f164ad5aad44a75eface5536215bddefd98d74b
2022-01-26T16:38:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xlsr-53-rm-vallader-with-lm
2
null
transformers
23,688
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xlsr-53-rm-vallader-with-lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-rm-vallader-with-lm This model is a fine-tuned version of [anuragshas/wav2vec2-large-xlsr-53-rm-vallader](https://huggingface.co/anuragshas/wav2vec2-large-xlsr-53-rm-vallader) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4552 - Wer: 0.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.112 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2379 | 3.12 | 100 | 0.4041 | 0.3396 | | 0.103 | 6.25 | 200 | 0.4400 | 0.3337 | | 0.0664 | 9.38 | 300 | 0.4239 | 0.3315 | | 0.0578 | 12.5 | 400 | 0.4303 | 0.3267 | | 0.0446 | 15.62 | 500 | 0.4575 | 0.3274 | | 0.041 | 18.75 | 600 | 0.4451 | 0.3223 | | 0.0402 | 21.88 | 700 | 0.4507 | 0.3206 | | 0.0374 | 25.0 | 800 | 0.4649 | 0.3208 | | 0.0371 | 28.12 | 900 | 0.4552 | 0.3206 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
any0019/text_style_mlm_negative
c14b1afa75ebf5e1daeba4bce8da237abd89269e
2021-12-14T13:35:28.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
any0019
null
any0019/text_style_mlm_negative
2
null
transformers
23,689
Entry not found
any0019/text_style_mlm_positive
6ce89b12e724a952e16077bb99505f2079b97dc1
2021-12-14T13:33:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
any0019
null
any0019/text_style_mlm_positive
2
null
transformers
23,690
Entry not found
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616
37acd8afeb489002683e52713a0946e0d426970b
2021-05-18T23:47:28.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616
2
null
transformers
23,691
Entry not found
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2
21d86fb48424d6cc038efed96582058f7f4e95fe
2021-05-18T23:47:46.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2
2
null
transformers
23,692
Entry not found
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2_covid-qna
5cab273aeabca3366902bdb89d16ff49840240db
2021-05-18T23:48:03.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2_covid-qna
2
null
transformers
23,693
Entry not found
aodiniz/bert_uncased_L-2_H-128_A-2_squad2
6bd8aabce03a51e70c3db6cde5453025c6dc7fa7
2021-05-18T23:48:20.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-128_A-2_squad2
2
null
transformers
23,694
Entry not found
aodiniz/bert_uncased_L-4_H-512_A-8_squad2
f84ef949edc4bedcfb98db41ffb1c3ac43a373c0
2021-05-18T23:54:35.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-512_A-8_squad2
2
null
transformers
23,695
Entry not found
aodiniz/bert_uncased_L-6_H-128_A-2_squad2
4d9a1c5e8044ec59f89b2e3f62989f5711ceecc2
2021-05-18T23:59:48.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-6_H-128_A-2_squad2
2
null
transformers
23,696
Entry not found
aorona/dickens
983601700a8290ea112074c1bbbc1bfa62f24f38
2021-08-03T19:39:45.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
aorona
null
aorona/dickens
2
null
transformers
23,697
Entry not found
arampacha/wav2vec2-xls-r-300m-hy-cv
4a79394c375e008eda5234faa2519942a380c1dd
2022-02-16T19:45:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hy-AM", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-300m-hy-cv
2
null
transformers
23,698
--- language: - hy-AM license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hy datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Wer: 0.6569 **Note**: If you aim for best performance use [this model](https://huggingface.co/arampacha/wav2vec2-xls-r-300m-hy). It is trained using noizy student procedure and achieves considerably better results. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.167 | 16.67 | 100 | 3.5599 | 1.0 | | 3.2645 | 33.33 | 200 | 3.1771 | 1.0 | | 3.1509 | 50.0 | 300 | 3.1321 | 1.0 | | 3.0757 | 66.67 | 400 | 2.8594 | 1.0 | | 2.5274 | 83.33 | 500 | 1.5286 | 0.9797 | | 1.6826 | 100.0 | 600 | 0.8058 | 0.7974 | | 1.2868 | 116.67 | 700 | 0.6713 | 0.7279 | | 1.1262 | 133.33 | 800 | 0.6308 | 0.7034 | | 1.0408 | 150.0 | 900 | 0.6056 | 0.6745 | | 0.9617 | 166.67 | 1000 | 0.5891 | 0.6569 | | 0.9196 | 183.33 | 1100 | 0.5913 | 0.6432 | | 0.8853 | 200.0 | 1200 | 0.5924 | 0.6347 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64
32ab30933e822d69020e702ec3ca3505a4f507bc
2021-12-03T00:53:06.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aretw0
null
aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64
2
null
transformers
23,699
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-dataset_20-input_64 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 8.6652 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20-input_64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4335 - Bleu: 8.6652 - Gen Len: 18.2596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6351 | 1.0 | 7629 | 1.4335 | 8.6652 | 18.2596 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3