modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
TheLongSentance/t5_mimic_final_chkpnt20000
be7e23ba010f58821565c2f0f242d9d47b9f5995
2021-09-16T08:14:05.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt20000
2
null
transformers
23,500
Entry not found
TheLongSentance/t5_mimic_final_chkpnt225000
ea507a51fcd7d9879f757af224ddad6a52d1c993
2021-09-16T10:12:27.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt225000
2
null
transformers
23,501
Entry not found
TheLongSentance/t5_mimic_final_chkpnt75000
db4a2fde5525a5d54674321f57e018dcab3be504
2021-09-16T08:42:21.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt75000
2
null
transformers
23,502
Entry not found
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr3e4c_chkpnt20000
89c50451dec60b448fd5201da1d86f5588cb6a33
2021-09-15T20:03:54.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr3e4c_chkpnt20000
2
null
transformers
23,503
Entry not found
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt5000
beb05df6ab0de1d8fcb54985a71b0fd1f4caf756
2021-09-15T18:14:45.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt5000
2
null
transformers
23,504
Entry not found
Thejas/DialoGPT-small-Stewei
d5a415ecb189006a4ead753a50f078674c11f69e
2021-11-04T05:19:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Thejas
null
Thejas/DialoGPT-small-Stewei
2
null
transformers
23,505
--- tags: - conversational --- #Stewie DialoGPT Model
TingChenChang/bert-base-chinese-finetuned-squad-colab
31389a825ea6569e931615d9b598daeb25593af7
2021-09-09T01:35:35.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
TingChenChang
null
TingChenChang/bert-base-chinese-finetuned-squad-colab
2
null
transformers
23,506
Entry not found
TingChenChang/bert-multi-cased-finetuned-xquadv1-finetuned-squad-colab
ee94a3f363e55f73114404c5fc05f7897a340899
2021-09-13T04:57:07.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
TingChenChang
null
TingChenChang/bert-multi-cased-finetuned-xquadv1-finetuned-squad-colab
2
null
transformers
23,507
Entry not found
Titantoe/IceBERT-finetuned-ner
b36bfdb88dea2fcaad0472af9c639557d51e6f1a
2021-10-04T22:31:18.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
Titantoe
null
Titantoe/IceBERT-finetuned-ner
2
null
transformers
23,508
--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: IceBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8920083733530353 - name: Recall type: recall value: 0.8655753375552635 - name: F1 type: f1 value: 0.8785930867192238 - name: Accuracy type: accuracy value: 0.9855436530476731 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Precision: 0.8920 - Recall: 0.8656 - F1: 0.8786 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0519 | 1.0 | 2904 | 0.0731 | 0.8700 | 0.8564 | 0.8631 | 0.9832 | | 0.026 | 2.0 | 5808 | 0.0749 | 0.8771 | 0.8540 | 0.8654 | 0.9840 | | 0.0159 | 3.0 | 8712 | 0.0772 | 0.8920 | 0.8656 | 0.8786 | 0.9855 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Tito/T5small_model2_learning_rate_2e-4-finetuned-en-to-de
f30caeb57d6755a952c175d7d351065a46bebb4c
2021-12-06T23:39:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tito
null
Tito/T5small_model2_learning_rate_2e-4-finetuned-en-to-de
2
null
transformers
23,509
Entry not found
Toadally/DialoGPT-small-david_mast
512c8a7b2915395df83ef8d51cada23a7bcfd384
2022-02-02T14:50:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Toadally
null
Toadally/DialoGPT-small-david_mast
2
null
transformers
23,510
--- tags: - conversational --- # Mast DialoGPT Model
Tofu05/DialoGPT-large-boon2
d98b9002b9f3a14fb8cabe29b4dbd09ea132b562
2022-01-30T11:45:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tofu05
null
Tofu05/DialoGPT-large-boon2
2
null
transformers
23,511
--- tags: - conversational --- # Boon 2 DialoGPT Model
Tr1ex/DialoGPT-small-rick
089cf892d5dc23195c8a1974add76638a61fd670
2022-01-08T11:38:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tr1ex
null
Tr1ex/DialoGPT-small-rick
2
null
transformers
23,512
--- tags: - conversational --- # Rick DialoGPT Model
Transabrar/bert-base-uncased-finetuned-bertbero
9429e26c7ad302b8c2209a43f2d67dc6ec62da78
2021-10-19T21:59:42.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/bert-base-uncased-finetuned-bertbero
2
null
transformers
23,513
Entry not found
Transabrar/roberta-large-finetuned-abrar
ad33e6fb37619918d6f66d82a8c14ce52017275e
2021-10-10T20:23:33.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/roberta-large-finetuned-abrar
2
null
transformers
23,514
Entry not found
TrimPeachu/Deadpool
b25f699c080b59c8534b9339fc7f0254d964ce08
2021-08-29T06:58:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TrimPeachu
null
TrimPeachu/Deadpool
2
null
transformers
23,515
--- tags: - conversational --- #Deadpool DialoGPT Model
TuhinColumbia/QAGenmodelBARTELI51
52f89776b81aa2d4c79104d8b07ecf620ce99fdd
2021-09-29T19:02:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/QAGenmodelBARTELI51
2
null
transformers
23,516
Entry not found
TuhinColumbia/QAGenmodelBARTELI5CC
fe76789730515b341d4b44c1dfcd7cbe724aca26
2021-10-10T05:57:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/QAGenmodelBARTELI5CC
2
null
transformers
23,517
Entry not found
TuhinColumbia/portugesepoetrymany
80e9bd5d6a6f7a1045aabd96c0cbc5150383d9f4
2021-09-03T22:24:38.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/portugesepoetrymany
2
null
transformers
23,518
Entry not found
TurkuNLP/wikibert-base-bg-cased
10536da67d7846cb0d83ea2f0ec5549b9fc36dbe
2020-05-24T19:58:50.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-bg-cased
2
null
transformers
23,519
Entry not found
TurkuNLP/wikibert-base-ca-cased
7b258d41ab6e101c68d54cc1a6ca5ec11f226cc0
2020-05-24T19:58:56.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ca-cased
2
null
transformers
23,520
Entry not found
TurkuNLP/wikibert-base-da-cased
32af50bcd8c11f419064eb1a5d0524584c75b727
2020-05-24T19:59:06.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-da-cased
2
null
transformers
23,521
Entry not found
TurkuNLP/wikibert-base-de-cased
263fde37923fb96fe2197dbb43bd0dbeff276ba9
2020-05-24T19:59:14.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-de-cased
2
null
transformers
23,522
Entry not found
TurkuNLP/wikibert-base-es-cased
26e915842f1ccdc17dbdf2a01f51312f079dfdab
2020-05-24T19:59:29.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-es-cased
2
null
transformers
23,523
Entry not found
TurkuNLP/wikibert-base-fi-cased
a72b9e7e8ab0848d0da82223f4bbfb1ccede41d6
2020-05-24T19:59:52.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-fi-cased
2
null
transformers
23,524
Entry not found
TurkuNLP/wikibert-base-ga-cased
e03f5e8028baf49577e8f573a78dd320259dc0a8
2020-05-24T20:00:02.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ga-cased
2
null
transformers
23,525
Entry not found
TurkuNLP/wikibert-base-hu-cased
00f7e02d07acc39d2aeea75c3a91e31468c1c9af
2020-05-24T20:00:28.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-hu-cased
2
null
transformers
23,526
Entry not found
TurkuNLP/wikibert-base-nl-cased
79d84b5e75a05bf2c96aeb7cf72b55fa33739736
2020-05-24T20:01:07.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-nl-cased
2
null
transformers
23,527
Entry not found
TurkuNLP/wikibert-base-no-cased
7093fe72daf1810f6fec38e05a7f7623abe47aac
2020-05-24T20:01:12.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-no-cased
2
null
transformers
23,528
Entry not found
TurkuNLP/wikibert-base-pt-cased
89df590f3002b8dd00fcdb1ad0be74dd2b7b7b7f
2020-05-24T20:01:22.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-pt-cased
2
null
transformers
23,529
Entry not found
TurkuNLP/wikibert-base-ro-cased
f63b076f4c8161dfcbc952aad3806a95992a17ba
2020-05-24T20:01:27.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ro-cased
2
null
transformers
23,530
Entry not found
TurkuNLP/wikibert-base-sl-cased
9cd5de2179f5c4e00528327dd7f59c40eaaefd72
2020-05-24T20:01:43.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-sl-cased
2
null
transformers
23,531
Entry not found
TurkuNLP/wikibert-base-sr-cased
875e924523a257e74914af8bebf7690ff3d72bd1
2020-05-24T20:01:48.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-sr-cased
2
null
transformers
23,532
Entry not found
TurkuNLP/wikibert-base-tr-cased
d44ff88f0ef8a54f9e1eee694e6dc6fb6bdda2e1
2020-05-24T20:02:06.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-tr-cased
2
null
transformers
23,533
Entry not found
TurkuNLP/wikibert-base-uk-cased
3bea2ac81dd4716145cd5b0522550a01633fe62c
2020-05-24T20:02:13.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-uk-cased
2
null
transformers
23,534
Entry not found
UWB-AIR/Czert-B-base-cased-long-zero-shot
e9af7f6ce54ffbef9ca4e56352c41c4a463bb6e3
2022-05-03T13:49:35.000Z
[ "pytorch", "longformer", "feature-extraction", "arxiv:2103.13031", "transformers", "cs", "fill-mask" ]
feature-extraction
false
UWB-AIR
null
UWB-AIR/Czert-B-base-cased-long-zero-shot
2
null
transformers
23,535
--- tags: - cs - fill-mask --- # CZERT This repository keeps trained Czert-B-base-cased-long-zero-shot model for the paper [Czert – Czech BERT-like Model for Language Representation ](https://arxiv.org/abs/2103.13031) For more information, see the paper This is long version of Czert-B-base-cased created without any finetunning on long documents. Positional embedings were created by simply repeating the positional embeddings of the original Czert-B model. For tokenization, please use BertTokenizer. Cannot be used with AutoTokenizer. ## Available Models You can download **MLM & NSP only** pretrained models ~~[CZERT-A-v1](https://air.kiv.zcu.cz/public/CZERT-A-czert-albert-base-uncased.zip) [CZERT-B-v1](https://air.kiv.zcu.cz/public/CZERT-B-czert-bert-base-cased.zip)~~ After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true. Both mistakes are repaired in v2. [CZERT-A-v2](https://air.kiv.zcu.cz/public/CZERT-A-v2-czert-albert-base-uncased.zip) [CZERT-B-v2](https://air.kiv.zcu.cz/public/CZERT-B-v2-czert-bert-base-cased.zip) or choose from one of **Finetuned Models** | | Models | | - | - | | Sentiment Classification<br> (Facebook or CSFD) | [CZERT-A-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-A_fb.zip) <br> [CZERT-B-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-B_fb.zip) <br> [CZERT-A-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-A_csfd.zip) <br> [CZERT-B-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-B_csfd.zip) | Semantic Text Similarity <br> (Czech News Agency) | [CZERT-A-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-A-sts-CNA.zip) <br> [CZERT-B-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-B-sts-CNA.zip) | Named Entity Recognition | [CZERT-A-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-A-ner-CNEC-cased.zip) <br> [CZERT-B-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-B-ner-CNEC-cased.zip) <br>[PAV-ner-CNEC](https://air.kiv.zcu.cz/public/PAV-ner-CNEC-cased.zip) <br> [CZERT-A-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-A-ner-BSNLP-cased.zip)<br>[CZERT-B-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-B-ner-BSNLP-cased.zip) <br>[PAV-ner-BSNLP](https://air.kiv.zcu.cz/public/PAV-ner-BSNLP-cased.zip) | | Morphological Tagging<br> | [CZERT-A-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-A-morphtag-126k-cased.zip)<br>[CZERT-B-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-B-morphtag-126k-cased.zip) | | Semantic Role Labelling |[CZERT-A-srl](https://air.kiv.zcu.cz/public/CZERT-A-srl-cased.zip)<br> [CZERT-B-srl](https://air.kiv.zcu.cz/public/CZERT-B-srl-cased.zip) | ## How to Use CZERT? ### Sentence Level Tasks We evaluate our model on two sentence level tasks: * Sentiment Classification, * Semantic Text Similarity. <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) model = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1) or self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True) --> ### Document Level Tasks We evaluate our model on one document level task * Multi-label Document Classification. ### Token Level Tasks We evaluate our model on three token level tasks: * Named Entity Recognition, * Morphological Tagging, * Semantic Role Labelling. ## Downstream Tasks Fine-tuning Results ### Sentiment Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:----:|:------------------------:|:------------------------:|:------------------------:|:-----------------------:|:--------------------------------:| | FB | 71.72 ± 0.91 | 73.87 ± 0.50 | 59.50 ± 0.47 | 72.47 ± 0.72 | **76.55** ± **0.14** | | CSFD | 82.80 ± 0.14 | 82.51 ± 0.14 | 75.40 ± 0.18 | 79.58 ± 0.46 | **84.79** ± **0.26** | Average F1 results for the Sentiment Classification task. For more information, see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Text Similarity | | **mBERT** | **Pavlov** | **Albert-random** | **Czert-A** | **Czert-B** | |:-------------|:--------------:|:--------------:|:-----------------:|:--------------:|:----------------------:| | STA-CNA | 83.335 ± 0.063 | 83.593 ± 0.050 | 43.184 ± 0.125 | 82.942 ± 0.106 | **84.345** ± **0.028** | | STS-SVOB-img | 79.367 ± 0.486 | 79.900 ± 0.810 | 15.739 ± 2.992 | 79.444 ± 0.338 | **83.744** ± **0.395** | | STS-SVOB-hl | 78.833 ± 0.296 | 76.996 ± 0.305 | 33.949 ± 1.807 | 75.089 ± 0.806 | **79.827 ± 0.469** | Comparison of Pearson correlation achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on semantic text similarity. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Multi-label Document Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:-----:|:------------:|:------------:|:------------:|:------------:|:-------------------:| | AUROC | 97.62 ± 0.08 | 97.80 ± 0.06 | 94.35 ± 0.13 | 97.49 ± 0.07 | **98.00** ± **0.04** | | F1 | 83.04 ± 0.16 | 84.08 ± 0.14 | 72.44 ± 0.22 | 82.27 ± 0.17 | **85.06** ± **0.11** | Comparison of F1 and AUROC score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on multi-label document classification. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Morphological Tagging | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------------------|:---------------|:---------------|:---------------|:---------------|:---------------| | Universal Dependencies | 99.176 ± 0.006 | 99.211 ± 0.008 | 96.590 ± 0.096 | 98.713 ± 0.008 | **99.300 ± 0.009** | Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on morphological tagging task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Role Labelling <div id="tab:SRL"> | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep | |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:| | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \- | \- | | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 | SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031). </div> ### Named Entity Recognition | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------|:---------------|:---------------|:---------------|:---------------|:---------------| | CNEC | **86.225 ± 0.208** | **86.565 ± 0.198** | 34.635 ± 0.343 | 72.945 ± 0.227 | 86.274 ± 0.116 | | BSNLP 2019 | 84.006 ± 1.248 | **86.699 ± 0.370** | 19.773 ± 0.938 | 48.859 ± 0.605 | **86.729 ± 0.344** | Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ## Licence This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/ ## How should I cite CZERT? For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031): ``` @article{sido2021czert, title={Czert -- Czech BERT-like Model for Language Representation}, author={Jakub Sido and Ondřej Pražák and Pavel Přibáň and Jan Pašek and Michal Seják and Miloslav Konopík}, year={2021}, eprint={2103.13031}, archivePrefix={arXiv}, primaryClass={cs.CL}, journal={arXiv preprint arXiv:2103.13031}, } ```
Ulto/pythonCoPilot2
e9dec1104cfea71b976247a2a7ff80b4ed7c15aa
2021-11-22T00:24:53.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Ulto
null
Ulto/pythonCoPilot2
2
null
transformers
23,536
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 427 | 4.3782 | | 4.6698 | 2.0 | 854 | 4.0718 | | 3.3953 | 3.0 | 1281 | 4.0479 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Unbabel/XLM-R-11L
d80859986f9e9bb4a7ca091da303a1df354c4bf3
2022-01-05T19:55:41.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-11L
2
null
transformers
23,537
Entry not found
Unbabel/XLM-R-22L
7995ea43cf7b7757efec6b0e4df71448803fae3c
2022-01-05T21:22:06.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-22L
2
null
transformers
23,538
Entry not found
Unbabel/XLM-R-9L
dbf1c2ad290a0002581aa9c5e5957c6e0f0ed09e
2022-01-05T19:42:43.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-9L
2
null
transformers
23,539
Entry not found
Username1/Wenger
96a1c522ff8433efab35fb957bc7c80f70db61c3
2021-09-11T18:58:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Username1
null
Username1/Wenger
2
null
transformers
23,540
--- tags: - conversational --- # Wenger
VaibhS/quantized_model
db170b6cf1423f79d57e535102f5ba87ebbef30a
2022-01-04T20:36:45.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
VaibhS
null
VaibhS/quantized_model
2
null
transformers
23,541
Entry not found
VariableZee/DialoGPT-small-ivylia03
651bb0b28175de763ae3c7746b05b88b29621c12
2021-10-27T08:50:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VariableZee
null
VariableZee/DialoGPT-small-ivylia03
2
null
transformers
23,542
--- tags: - conversational ---
Vasanth/en-ta-translator
345afb79465bd5e4ddd0177c1659bece2a36b088
2022-02-18T03:50:38.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Vasanth
null
Vasanth/en-ta-translator
2
null
transformers
23,543
Entry not found
Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever
af3d1c02f3be0e62b64cdf10846a012ab575c612
2022-02-09T00:44:30.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Vasanth
null
Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever
2
null
sentence-transformers
23,544
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever') model = AutoModel.from_pretrained('Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Vasanth/multi-qa-MiniLM-L6-cos-v1-qa-squad2-retriever) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8144 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2443, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
VishalArun/DialoGPT-medium-harrypotter
74d228dfdc335d84ed3d5b54b6cdfc07a4f98120
2021-08-29T10:12:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VishalArun
null
VishalArun/DialoGPT-medium-harrypotter
2
null
transformers
23,545
--- tags: - conversational --- # Harry Potter DialoGPT Model
Vitafeu/DialoGPT-medium-ricksanchez
0d88f26929ee040765e97220f4f40a0530b8f3be
2021-09-16T08:59:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Vitafeu
null
Vitafeu/DialoGPT-medium-ricksanchez
2
null
transformers
23,546
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
VoVanPhuc/Phobert2Roberta
4d8281862be8b9b38a2ee650b79e7fb64020fd59
2021-08-26T07:38:48.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
VoVanPhuc
null
VoVanPhuc/Phobert2Roberta
2
null
transformers
23,547
Entry not found
VoVanPhuc/Roberta2Phobert
1c1e8055c300c844a74b1c3f710038bf64a320f6
2021-08-26T07:37:35.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
VoVanPhuc
null
VoVanPhuc/Roberta2Phobert
2
null
transformers
23,548
Entry not found
Wikidepia/IndoConvBERT-base
37a849691847717f991f8c0189c40f25b11d0e53
2021-04-02T07:22:25.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "transformers" ]
feature-extraction
false
Wikidepia
null
Wikidepia/IndoConvBERT-base
2
null
transformers
23,549
--- inference: false language: id --- # IndoConvBERT Base Model IndoConvBERT is a ConvBERT model pretrained on Indo4B. ## Pretraining details We follow a different training procedure: instead of using a two-phase approach, that pre-trains the model for 90% with 128 sequence length and 10% with 512 sequence length, we pre-train the model with 512 sequence length for 1M steps on a v3-8 TPU. The current version of the model is trained on Indo4B and small Twitter dump. ## Acknowledgement Big thanks to TFRC (TensorFlow Research Cloud) for providing free TPU.
WikinewsSum/bart-large-cnn-multi-en-wiki-news
2a170805a336bb1e802a722ed9bfeb0af2d9b6e6
2020-07-01T08:31:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bart-large-cnn-multi-en-wiki-news
2
null
transformers
23,550
Entry not found
WikinewsSum/bart-large-multi-de-wiki-news
bb515e241a24534c26db001f5aa1792c92b80141
2020-07-01T08:27:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bart-large-multi-de-wiki-news
2
null
transformers
23,551
Entry not found
WikinewsSum/bart-large-multi-en-wiki-news
8faa3b18f415790ddd11575c49b0a053576069d8
2020-07-01T08:33:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bart-large-multi-en-wiki-news
2
null
transformers
23,552
Entry not found
WikinewsSum/t5-base-multi-combine-wiki-news
1d1bdcfc84a40d2480296fcdac71dcaf3da537d7
2021-06-23T10:37:43.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/t5-base-multi-combine-wiki-news
2
null
transformers
23,553
Entry not found
WikinewsSum/t5-base-multi-de-wiki-news
ffbf9a2e21f8be7f6c337c2e4ed6159f7169edbc
2021-06-23T10:39:29.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/t5-base-multi-de-wiki-news
2
null
transformers
23,554
Entry not found
Wilson2021/mymodel1007
3262ef75dcb3f880387764c7eadf6c471097f61d
2021-11-04T14:46:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wilson2021
null
Wilson2021/mymodel1007
2
null
transformers
23,555
Entry not found
WoutN2001/james3
c733b081cbab51415cc309bca47fc617746be97b
2021-11-09T12:47:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
WoutN2001
null
WoutN2001/james3
2
null
transformers
23,556
--- tags: - conversational --- # waaaa
Wzf/bert_fintuuing
718a8f7e6101d5c3ccddd7817c3e967e5f717a88
2021-07-17T03:41:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wzf
null
Wzf/bert_fintuuing
2
null
transformers
23,557
Entry not found
XuguangAi/DialoGPT-small-Harry
655a1f34590013fd141c5089718636f6a96b09e5
2021-12-03T06:18:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
XuguangAi
null
XuguangAi/DialoGPT-small-Harry
2
null
transformers
23,558
--- tags: - conversational --- # Harry
YYJ/KunquChat
7c41f818aaeb7ce2396a721de119f6692a79b687
2021-12-23T07:21:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
YYJ
null
YYJ/KunquChat
2
null
transformers
23,559
# 经典昆曲欣赏 期末作业 ## KunquChat Author: 1900012921 俞跃江
Yankee/TEST21
a0fcd23d88dbc2ffbb56af7f0d04496099510e8f
2022-01-29T05:13:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Yankee
null
Yankee/TEST21
2
null
transformers
23,560
Entry not found
Yanzhu/bertweetfr_ner
6c91439ac07f7d2fe1cde1b9e228b31958ba796e
2021-09-29T14:46:25.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Yanzhu
null
Yanzhu/bertweetfr_ner
2
null
transformers
23,561
French NER model for tweets. Fine-tuned on the CAP2017 dataset. label_list = ['O', 'B-person', 'I-person', 'B-musicartist', 'I-musicartist', 'B-org', 'I-org', 'B-geoloc', 'I-geoloc', 'B-product', 'I-product', 'B-transportLine', 'I-transportLine', 'B-media', 'I-media', 'B-sportsteam', 'I-sportsteam', 'B-event', 'I-event', 'B-tvshow', 'I-tvshow', 'B-movie', 'I-movie', 'B-facility', 'I-facility', 'B-other', 'I-other']
Yoshisaur/kono-chat
6087bb323d62ff718c01bd481ade8f02cc0604af
2022-02-08T20:49:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Yoshisaur
null
Yoshisaur/kono-chat
2
null
transformers
23,562
Entry not found
ZYW/en-de-es-model
18f2a74f71a3b6cd572d79057f2eb8ee8a8ecfad
2021-05-29T17:28:09.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/en-de-es-model
2
null
transformers
23,563
--- model-index: - name: en-de-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/en-de-model
80b428e960ec7c174bd077fad1919e7610fc4454
2021-05-29T17:52:17.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/en-de-model
2
null
transformers
23,564
--- model-index: - name: en-de-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/squad-en-de-es-vi-zh-model
c1d23da63a828e4a74dfd8b86f803bb115cc86f7
2021-05-29T21:46:39.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/squad-en-de-es-vi-zh-model
2
null
transformers
23,565
--- model-index: - name: squad-en-de-es-vi-zh-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZYW/test-squad-trained
d6428fbfc69f8ab19d9032f2070603dc45859426
2021-05-26T02:38:39.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/test-squad-trained
2
null
transformers
23,566
--- model-index: - name: test-squad-trained --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-squad-trained This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.2026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.988 | 1.0 | 5486 | 1.1790 | | 0.7793 | 2.0 | 10972 | 1.2026 | | 0.8068 | 3.0 | 16458 | 1.2026 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.3
Zane/Ricky3
eb4d627fc1fcc8acfa771aee802cd441d4567506
2021-07-29T14:50:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
Zane
null
Zane/Ricky3
2
null
transformers
23,567
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-small-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-small-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Zen1/test1
200244e51a723fb98b8199f71cc1ec18cc96bcbd
2022-01-15T15:06:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zen1
null
Zen1/test1
2
null
transformers
23,568
--- tags: - conversational --- # My Awesome Model
ZikXewen/wav2vec2-large-xlsr-53-thai-demo
097161310c6a35544399c1c2f09d494d31c86add
2021-07-05T18:21:43.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
ZikXewen
null
ZikXewen/wav2vec2-large-xlsr-53-thai-demo
2
null
transformers
23,569
Entry not found
Zixtrauce/BrandonBot
059e25dc9f7c33af76b4a02d6be0e32d16181012
2021-12-31T06:28:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zixtrauce
null
Zixtrauce/BrandonBot
2
null
transformers
23,570
--- tags: - conversational --- #BrandonBot
Zixtrauce/BrandonBot2
b8039371765ab2515a1185bc862d7dc6f34d3e11
2022-01-01T22:09:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zixtrauce
null
Zixtrauce/BrandonBot2
2
null
transformers
23,571
--- tags: - conversational --- #BrandonBot2
a01709042/DialoGPT-medium
d97bb1e9a4a3cf9d1465d7318078dda439da2869
2022-01-05T02:52:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
a01709042
null
a01709042/DialoGPT-medium
2
null
transformers
23,572
--- tags: - conversational --- # DialoGPT model fine tuned to conservative muslim discord messages
aadelucia/GPT2_medium_narrative_finetuned_large
30855d6bbacac0f1513f5e420e456f096726e968
2021-12-10T17:45:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
aadelucia
null
aadelucia/GPT2_medium_narrative_finetuned_large
2
null
transformers
23,573
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
aadelucia/GPT2_small_narrative_finetuned_medium
85f03d51a37b93df5c12fe1128771809c85305c2
2021-12-10T18:48:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
aadelucia
null
aadelucia/GPT2_small_narrative_finetuned_medium
2
null
transformers
23,574
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
abanoub1412/finetuning
e2c860dfd385b1bb48a2e883ff3edad6f1b21bd0
2021-07-04T19:43:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abanoub1412
null
abanoub1412/finetuning
2
null
transformers
23,575
Entry not found
abarbosa/c4-aristo-roberta-large
22022f76f8ea07815f4c308fa80913beccae022c
2021-06-24T04:21:15.000Z
[ "pytorch", "roberta", "multiple-choice", "transformers", "model-index" ]
multiple-choice
false
abarbosa
null
abarbosa/c4-aristo-roberta-large
2
null
transformers
23,576
--- metrics: - accuracy model-index: - name: c4-aristo-roberta-large --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c4-aristo-roberta-large This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.0332 - Accuracy: 0.7370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8204 | 1.0 | 140 | 0.7246 | 0.7171 | | 0.5512 | 2.0 | 280 | 0.7441 | 0.7312 | | 0.3437 | 3.0 | 420 | 0.8940 | 0.7363 | | 0.291 | 4.0 | 560 | 1.0332 | 0.7370 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.10.0.dev20210620+cu113 - Datasets 1.6.2 - Tokenizers 0.10.2
abhi1nandy2/Europarl-roberta-base
e6bcf2a98570febacbd8956cb623435167bc0d80
2022-05-23T20:09:39.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "English", "dataset:Europarl", "transformers", "Europarl", "autotrain_compatible" ]
fill-mask
false
abhi1nandy2
null
abhi1nandy2/Europarl-roberta-base
2
null
transformers
23,577
--- language: - English tags: - Europarl - roberta datasets: - Europarl --- Refer to https://aclanthology.org/2021.semeval-1.87/ ## Citation If you use this model in your work, please add the following citation - ``` @inproceedings{nandy-etal-2021-cs60075, title = "cs60075{\_}team2 at {S}em{E}val-2021 Task 1 : Lexical Complexity Prediction using Transformer-based Language Models pre-trained on various text corpora", author = "Nandy, Abhilash and Adak, Sayantan and Halder, Tanurima and Pokala, Sai Mahesh", booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.semeval-1.87", doi = "10.18653/v1/2021.semeval-1.87", pages = "678--682", abstract = "The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and others being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of 0.784 in sub-task 1 (single word) and 0.836 in sub-task 2 (multiple word expressions).", } ```
abjbpi/DS_small
9e37d83107cb1d05c0810fad11b26d9a77007c5d
2021-06-04T11:23:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
abjbpi
null
abjbpi/DS_small
2
null
transformers
23,578
--- tags: - conversational --- # Model v2
ad6398/gupshup_e2e_pegasus
582a0841cf4096bec43cb48a6f21d9fef09121eb
2021-09-07T09:54:59.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ad6398
null
ad6398/gupshup_e2e_pegasus
2
null
transformers
23,579
Entry not found
adalbertojunior/test-128-uncased-2
6684547d98d7ea17c9ca7a01007f6ddb0e22889e
2021-10-18T02:08:04.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test-128-uncased-2
2
null
transformers
23,580
Entry not found
adalbertojunior/test-128-uncased
2c6488b317e985de58194d67cc138b245fcaffc4
2021-10-05T13:44:37.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test-128-uncased
2
null
transformers
23,581
Entry not found
adalbertojunior/test-128
591be9335ad87746a0e71424a90ad46af309186b
2021-10-01T13:59:07.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test-128
2
null
transformers
23,582
Entry not found
adam1224/dummy-model
e9e214ca5b8c0d83f78c0e1b064c5aa7dbcd371d
2022-02-10T06:34:25.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adam1224
null
adam1224/dummy-model
2
null
transformers
23,583
Entry not found
adamlin/100perc
e7bc24c9018834e66be8a3a5af3b1bfb8a329681
2021-06-24T12:00:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-generation
false
adamlin
null
adamlin/100perc
2
null
transformers
23,584
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: 100perc results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 100perc This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 140 | 1.8292 | | No log | 2.0 | 280 | 1.7373 | | No log | 3.0 | 420 | 1.6889 | | 2.26 | 4.0 | 560 | 1.6515 | | 2.26 | 5.0 | 700 | 1.6258 | | 2.26 | 6.0 | 840 | 1.6063 | | 2.26 | 7.0 | 980 | 1.5873 | | 1.6847 | 8.0 | 1120 | 1.5749 | | 1.6847 | 9.0 | 1260 | 1.5634 | | 1.6847 | 10.0 | 1400 | 1.5513 | | 1.6073 | 11.0 | 1540 | 1.5421 | | 1.6073 | 12.0 | 1680 | 1.5352 | | 1.6073 | 13.0 | 1820 | 1.5270 | | 1.6073 | 14.0 | 1960 | 1.5203 | | 1.5545 | 15.0 | 2100 | 1.5142 | | 1.5545 | 16.0 | 2240 | 1.5089 | | 1.5545 | 17.0 | 2380 | 1.5048 | | 1.5156 | 18.0 | 2520 | 1.5009 | | 1.5156 | 19.0 | 2660 | 1.4970 | | 1.5156 | 20.0 | 2800 | 1.4935 | | 1.5156 | 21.0 | 2940 | 1.4897 | | 1.4835 | 22.0 | 3080 | 1.4865 | | 1.4835 | 23.0 | 3220 | 1.4851 | | 1.4835 | 24.0 | 3360 | 1.4820 | | 1.4565 | 25.0 | 3500 | 1.4787 | | 1.4565 | 26.0 | 3640 | 1.4774 | | 1.4565 | 27.0 | 3780 | 1.4749 | | 1.4565 | 28.0 | 3920 | 1.4748 | | 1.4326 | 29.0 | 4060 | 1.4728 | | 1.4326 | 30.0 | 4200 | 1.4692 | | 1.4326 | 31.0 | 4340 | 1.4692 | | 1.4326 | 32.0 | 4480 | 1.4668 | | 1.4126 | 33.0 | 4620 | 1.4664 | | 1.4126 | 34.0 | 4760 | 1.4659 | | 1.4126 | 35.0 | 4900 | 1.4643 | | 1.394 | 36.0 | 5040 | 1.4622 | | 1.394 | 37.0 | 5180 | 1.4629 | | 1.394 | 38.0 | 5320 | 1.4610 | | 1.394 | 39.0 | 5460 | 1.4623 | | 1.3775 | 40.0 | 5600 | 1.4599 | | 1.3775 | 41.0 | 5740 | 1.4600 | | 1.3775 | 42.0 | 5880 | 1.4580 | | 1.363 | 43.0 | 6020 | 1.4584 | | 1.363 | 44.0 | 6160 | 1.4577 | | 1.363 | 45.0 | 6300 | 1.4559 | | 1.363 | 46.0 | 6440 | 1.4545 | | 1.3484 | 47.0 | 6580 | 1.4568 | | 1.3484 | 48.0 | 6720 | 1.4579 | | 1.3484 | 49.0 | 6860 | 1.4562 | | 1.3379 | 50.0 | 7000 | 1.4558 | | 1.3379 | 51.0 | 7140 | 1.4556 | | 1.3379 | 52.0 | 7280 | 1.4581 | | 1.3379 | 53.0 | 7420 | 1.4554 | | 1.3258 | 54.0 | 7560 | 1.4561 | | 1.3258 | 55.0 | 7700 | 1.4553 | | 1.3258 | 56.0 | 7840 | 1.4555 | | 1.3258 | 57.0 | 7980 | 1.4572 | | 1.3158 | 58.0 | 8120 | 1.4551 | | 1.3158 | 59.0 | 8260 | 1.4573 | | 1.3158 | 60.0 | 8400 | 1.4561 | | 1.3072 | 61.0 | 8540 | 1.4557 | | 1.3072 | 62.0 | 8680 | 1.4548 | | 1.3072 | 63.0 | 8820 | 1.4547 | | 1.3072 | 64.0 | 8960 | 1.4556 | | 1.2986 | 65.0 | 9100 | 1.4555 | | 1.2986 | 66.0 | 9240 | 1.4566 | | 1.2986 | 67.0 | 9380 | 1.4558 | | 1.2916 | 68.0 | 9520 | 1.4565 | | 1.2916 | 69.0 | 9660 | 1.4552 | | 1.2916 | 70.0 | 9800 | 1.4558 | | 1.2916 | 71.0 | 9940 | 1.4553 | | 1.2846 | 72.0 | 10080 | 1.4579 | | 1.2846 | 73.0 | 10220 | 1.4572 | | 1.2846 | 74.0 | 10360 | 1.4572 | | 1.2792 | 75.0 | 10500 | 1.4564 | | 1.2792 | 76.0 | 10640 | 1.4576 | | 1.2792 | 77.0 | 10780 | 1.4571 | | 1.2792 | 78.0 | 10920 | 1.4580 | | 1.2736 | 79.0 | 11060 | 1.4578 | | 1.2736 | 80.0 | 11200 | 1.4583 | | 1.2736 | 81.0 | 11340 | 1.4576 | | 1.2736 | 82.0 | 11480 | 1.4580 | | 1.2699 | 83.0 | 11620 | 1.4575 | | 1.2699 | 84.0 | 11760 | 1.4583 | | 1.2699 | 85.0 | 11900 | 1.4588 | | 1.2664 | 86.0 | 12040 | 1.4590 | | 1.2664 | 87.0 | 12180 | 1.4593 | | 1.2664 | 88.0 | 12320 | 1.4582 | | 1.2664 | 89.0 | 12460 | 1.4591 | | 1.2627 | 90.0 | 12600 | 1.4595 | | 1.2627 | 91.0 | 12740 | 1.4585 | | 1.2627 | 92.0 | 12880 | 1.4590 | | 1.2613 | 93.0 | 13020 | 1.4590 | | 1.2613 | 94.0 | 13160 | 1.4598 | | 1.2613 | 95.0 | 13300 | 1.4592 | | 1.2613 | 96.0 | 13440 | 1.4597 | | 1.2591 | 97.0 | 13580 | 1.4593 | | 1.2591 | 98.0 | 13720 | 1.4593 | | 1.2591 | 99.0 | 13860 | 1.4597 | | 1.258 | 100.0 | 14000 | 1.4594 | ### Framework versions - Transformers 4.8.0 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
adamlin/NCBI_BERT_pubmed_mimic_uncased_base_transformers
a4e7e868f7fb071d0bf17fc4f6bf1899cf8f98c5
2019-12-25T17:05:13.000Z
[ "pytorch", "transformers" ]
null
false
adamlin
null
adamlin/NCBI_BERT_pubmed_mimic_uncased_base_transformers
2
null
transformers
23,585
Entry not found
adamlin/tmp
c2a97b19fad5180a8f568f2147e15c647c17b78e
2021-07-07T18:48:00.000Z
[ "pytorch", "mt5", "text2text-generation", "zh_CN", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
adamlin
null
adamlin/tmp
2
null
transformers
23,586
--- language: - zh_CN - zh_CN license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model_index: - name: tmp results: - task: name: Translation type: translation metric: name: Bleu type: bleu value: 0.0099 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0099 - Gen Len: 3.3917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 1 | nan | 0.0114 | 3.3338 | | No log | 2.0 | 2 | nan | 0.0114 | 3.3338 | | No log | 3.0 | 3 | nan | 0.0114 | 3.3338 | | No log | 4.0 | 4 | nan | 0.0114 | 3.3338 | | No log | 5.0 | 5 | nan | 0.0114 | 3.3338 | | No log | 6.0 | 6 | nan | 0.0114 | 3.3338 | | No log | 7.0 | 7 | nan | 0.0114 | 3.3338 | | No log | 8.0 | 8 | nan | 0.0114 | 3.3338 | | No log | 9.0 | 9 | nan | 0.0114 | 3.3338 | | No log | 10.0 | 10 | nan | 0.0114 | 3.3338 | | No log | 11.0 | 11 | nan | 0.0114 | 3.3338 | | No log | 12.0 | 12 | nan | 0.0114 | 3.3338 | | No log | 13.0 | 13 | nan | 0.0114 | 3.3338 | | No log | 14.0 | 14 | nan | 0.0114 | 3.3338 | | No log | 15.0 | 15 | nan | 0.0114 | 3.3338 | | No log | 16.0 | 16 | nan | 0.0114 | 3.3338 | | No log | 17.0 | 17 | nan | 0.0114 | 3.3338 | | No log | 18.0 | 18 | nan | 0.0114 | 3.3338 | | No log | 19.0 | 19 | nan | 0.0114 | 3.3338 | | No log | 20.0 | 20 | nan | 0.0114 | 3.3338 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.9.0 - Tokenizers 0.10.3
addy88/wav2vec-odia-stt
78b13b2777c5f33bd5aeb29ac50fbbe15e6bf36b
2021-12-19T15:56:01.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec-odia-stt
2
null
transformers
23,587
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-odia-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-odia-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-assamese-stt
85ddc928e281ab1e779dec01949e055c008c8c7f
2021-12-19T16:55:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-assamese-stt
2
null
transformers
23,588
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/addy88/wav2vec2-assamese-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/addy88/wav2vec2-assamese-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-dogri-stt
d199c9e21ef97ad3afa5f9391698efb286b2ab8b
2021-12-19T16:43:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-dogri-stt
2
null
transformers
23,589
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-dogri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-dogri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-large-xls-r-300m-hindi-colab
24704948cfdaea65b5e3f9c742b3450cb965401a
2021-12-09T13:07:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-large-xls-r-300m-hindi-colab
2
null
transformers
23,590
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
adhisetiawan/test-vit
a2d0af0108bcd555a35fd31851d648eb20c67dca
2021-11-25T16:44:43.000Z
[ "pytorch", "vit", "feature-extraction", "transformers" ]
feature-extraction
false
adhisetiawan
null
adhisetiawan/test-vit
2
null
transformers
23,591
Entry not found
adhisetiawan/vit-resisc45
27a8086680cd3fa4b3d209a345e229be1fed86c5
2022-01-16T02:52:55.000Z
[ "pytorch", "vit", "feature-extraction", "transformers" ]
feature-extraction
false
adhisetiawan
null
adhisetiawan/vit-resisc45
2
null
transformers
23,592
Entry not found
adilism/wav2vec2-large-xlsr-kyrgyz
1569d7aa1aa4606ea36940d39360f7df61592b76
2021-07-05T18:50:45.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ky", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
adilism
null
adilism/wav2vec2-large-xlsr-kyrgyz
2
null
transformers
23,593
--- language: ky datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: {Wav2Vec2-XLSR-53 Kyrgyz by adilism} results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ky type: common_voice args: ky metrics: - name: Test WER type: wer value: 34.08 --- # Wav2Vec2-Large-XLSR-53-Kyrgyz Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kyrgyz using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ky", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Kyrgyz test data of Common Voice: ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ky", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kyrgyz") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", "—", "–", "”"] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.08 % ## Training The Common Voice `train` and `validation` datasets were used for training.
aditeyabaral/additionalpretrained-bert-base-cased
4cf545788e4f50a82e495641d0bf58ed2a83d120
2021-10-21T09:49:57.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-bert-base-cased
2
null
transformers
23,594
Entry not found
aditeyabaral/additionalpretrained-bert-hinglish-big
ecc086a5872ad6789675aba8a70338083b702ee2
2021-10-20T18:23:17.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-bert-hinglish-big
2
null
transformers
23,595
Entry not found
aditeyabaral/additionalpretrained-contrastive-roberta-base
5551ead972a0164390463ca2ef1c6ae9d09e8e78
2021-11-13T13:28:39.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-contrastive-roberta-base
2
null
transformers
23,596
Entry not found
aditeyabaral/additionalpretrained-distilbert-hinglish-big
d8bfa36593580a9a8b658c18ae1e34ce844817b9
2021-10-20T18:31:29.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-distilbert-hinglish-big
2
null
transformers
23,597
Entry not found
aditeyabaral/additionalpretrained-distilbert-hinglish-small
3b24b84599512d428c23e36a846d26e5532ff9ce
2021-10-20T18:33:10.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-distilbert-hinglish-small
2
null
transformers
23,598
Entry not found
aditeyabaral/bert-hinglish-small
7561ccbab9be1f1fbd98e303b3e0b99835074def
2021-09-25T23:45:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aditeyabaral
null
aditeyabaral/bert-hinglish-small
2
null
transformers
23,599
Entry not found