modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
202015004/wav2vec2-base-timit-demo-colab
b8137a46f661c0fd3a321c12fafe40adff8bc490
2022-02-21T03:49:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
202015004
null
202015004/wav2vec2-base-timit-demo-colab
2
null
transformers
22,800
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6259 - Wer: 0.3544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6744 | 0.5 | 500 | 2.9473 | 1.0 | | 1.4535 | 1.01 | 1000 | 0.7774 | 0.6254 | | 0.7376 | 1.51 | 1500 | 0.6923 | 0.5712 | | 0.5848 | 2.01 | 2000 | 0.5445 | 0.5023 | | 0.4492 | 2.51 | 2500 | 0.5148 | 0.4958 | | 0.4006 | 3.02 | 3000 | 0.5283 | 0.4781 | | 0.3319 | 3.52 | 3500 | 0.5196 | 0.4628 | | 0.3424 | 4.02 | 4000 | 0.5285 | 0.4551 | | 0.2772 | 4.52 | 4500 | 0.5060 | 0.4532 | | 0.2724 | 5.03 | 5000 | 0.5216 | 0.4422 | | 0.2375 | 5.53 | 5500 | 0.5376 | 0.4443 | | 0.2279 | 6.03 | 6000 | 0.6051 | 0.4308 | | 0.2091 | 6.53 | 6500 | 0.5084 | 0.4423 | | 0.2029 | 7.04 | 7000 | 0.5083 | 0.4242 | | 0.1784 | 7.54 | 7500 | 0.6123 | 0.4297 | | 0.1774 | 8.04 | 8000 | 0.5749 | 0.4339 | | 0.1542 | 8.54 | 8500 | 0.5110 | 0.4033 | | 0.1638 | 9.05 | 9000 | 0.6324 | 0.4318 | | 0.1493 | 9.55 | 9500 | 0.6100 | 0.4152 | | 0.1591 | 10.05 | 10000 | 0.5508 | 0.4022 | | 0.1304 | 10.55 | 10500 | 0.5090 | 0.4054 | | 0.1234 | 11.06 | 11000 | 0.6282 | 0.4093 | | 0.1218 | 11.56 | 11500 | 0.5817 | 0.3941 | | 0.121 | 12.06 | 12000 | 0.5741 | 0.3999 | | 0.1073 | 12.56 | 12500 | 0.5818 | 0.4149 | | 0.104 | 13.07 | 13000 | 0.6492 | 0.3953 | | 0.0934 | 13.57 | 13500 | 0.5393 | 0.4083 | | 0.0961 | 14.07 | 14000 | 0.5510 | 0.3919 | | 0.0965 | 14.57 | 14500 | 0.5896 | 0.3992 | | 0.0921 | 15.08 | 15000 | 0.5554 | 0.3947 | | 0.0751 | 15.58 | 15500 | 0.6312 | 0.3934 | | 0.0805 | 16.08 | 16000 | 0.6732 | 0.3948 | | 0.0742 | 16.58 | 16500 | 0.5990 | 0.3884 | | 0.0708 | 17.09 | 17000 | 0.6186 | 0.3869 | | 0.0679 | 17.59 | 17500 | 0.5837 | 0.3848 | | 0.072 | 18.09 | 18000 | 0.5831 | 0.3775 | | 0.0597 | 18.59 | 18500 | 0.6562 | 0.3843 | | 0.0612 | 19.1 | 19000 | 0.6298 | 0.3756 | | 0.0514 | 19.6 | 19500 | 0.6746 | 0.3720 | | 0.061 | 20.1 | 20000 | 0.6236 | 0.3788 | | 0.054 | 20.6 | 20500 | 0.6012 | 0.3718 | | 0.0521 | 21.11 | 21000 | 0.6053 | 0.3778 | | 0.0494 | 21.61 | 21500 | 0.6154 | 0.3772 | | 0.0468 | 22.11 | 22000 | 0.6052 | 0.3747 | | 0.0413 | 22.61 | 22500 | 0.5877 | 0.3716 | | 0.0424 | 23.12 | 23000 | 0.5786 | 0.3658 | | 0.0403 | 23.62 | 23500 | 0.5828 | 0.3658 | | 0.0391 | 24.12 | 24000 | 0.5913 | 0.3685 | | 0.0312 | 24.62 | 24500 | 0.5850 | 0.3625 | | 0.0316 | 25.13 | 25000 | 0.6029 | 0.3611 | | 0.0282 | 25.63 | 25500 | 0.6312 | 0.3624 | | 0.0328 | 26.13 | 26000 | 0.6312 | 0.3621 | | 0.0258 | 26.63 | 26500 | 0.5891 | 0.3581 | | 0.0256 | 27.14 | 27000 | 0.6259 | 0.3546 | | 0.0255 | 27.64 | 27500 | 0.6315 | 0.3587 | | 0.0249 | 28.14 | 28000 | 0.6547 | 0.3579 | | 0.025 | 28.64 | 28500 | 0.6237 | 0.3565 | | 0.0228 | 29.15 | 29000 | 0.6187 | 0.3559 | | 0.0209 | 29.65 | 29500 | 0.6259 | 0.3544 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
AJ/DialoGPT-small-ricksanchez
7b8045b6dfdccf9a10bcc70229a18acde13f91ff
2021-09-27T00:10:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AJ
null
AJ/DialoGPT-small-ricksanchez
2
null
transformers
22,801
--- tags: - conversational --- # Uses DialoGPT
AKulk/wav2vec2-base-timit-epochs10
082d4d832d62f218c45f62f6ab1cf67cdd0ff7ed
2022-02-14T12:49:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AKulk
null
AKulk/wav2vec2-base-timit-epochs10
2
null
transformers
22,802
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-epochs10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs10 This model is a fine-tuned version of [AKulk/wav2vec2-base-timit-epochs5](https://huggingface.co/AKulk/wav2vec2-base-timit-epochs5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
AT/distilroberta-base-finetuned-wikitext2
6640ec8b5927f44939410bdea44337f8db0d7e55
2022-01-19T08:22:36.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
AT
null
AT/distilroberta-base-finetuned-wikitext2
2
null
transformers
22,803
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
AVSilva/bertimbau-large-fine-tuned-md
23de596a0b7fb907eb74fcc3e2a5195ff3e83912
2022-02-03T17:19:02.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
AVSilva
null
AVSilva/bertimbau-large-fine-tuned-md
2
null
transformers
22,804
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
AVSilva/bertimbau-large-fine-tuned-sd
3659caf43a0ff417c814280813d2a1566c5bd515
2021-12-15T20:43:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
AVSilva
null
AVSilva/bertimbau-large-fine-tuned-sd
2
null
transformers
22,805
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
Aastha/wav2vec2-base-timit-demo-colab
43177f07b31c9b65bcd34555b8379b1803395fd5
2022-01-22T15:04:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-base-timit-demo-colab
2
null
transformers
22,806
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4812 - Wer: 0.3557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4668 | 4.0 | 500 | 1.3753 | 0.9895 | | 0.6126 | 8.0 | 1000 | 0.4809 | 0.4350 | | 0.2281 | 12.0 | 1500 | 0.4407 | 0.4033 | | 0.1355 | 16.0 | 2000 | 0.4590 | 0.3765 | | 0.0923 | 20.0 | 2500 | 0.4754 | 0.3707 | | 0.0654 | 24.0 | 3000 | 0.4719 | 0.3557 | | 0.0489 | 28.0 | 3500 | 0.4812 | 0.3557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Abhishek4/Cuad_Finetune_roberta
b0da9f5eb4c652783b7e49ccc7cd1aaf4537be92
2022-02-13T23:18:24.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Abhishek4
null
Abhishek4/Cuad_Finetune_roberta
2
null
transformers
22,807
Entry not found
AccurateIsaiah/DialoGPT-small-sinclair
0b303f1cd69976dedbbe716d82659e5283b22018
2021-11-23T00:58:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AccurateIsaiah
null
AccurateIsaiah/DialoGPT-small-sinclair
2
null
transformers
22,808
--- tags: - conversational --- # Un Filtered brain upload of sinclair
AdharshJolly/HarryPotterBot-Model
02a71becf1e50023c82a77e08d709502c05c1338
2021-11-04T07:48:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AdharshJolly
null
AdharshJolly/HarryPotterBot-Model
2
null
transformers
22,809
--- tags: - conversational --- # Harry Potter DialoGPT Model
AethiQs-Max/AethiQs_GemBERT_bertje_50k
7eac1013243a6e9225338e69bebc8b156b0591db
2021-06-23T14:59:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AethiQs-Max
null
AethiQs-Max/AethiQs_GemBERT_bertje_50k
2
null
transformers
22,810
Entry not found
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_30-epoch_30
83c63a5086c0ae8f4cdf8834d66351ce9e053534
2021-08-05T14:23:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AethiQs-Max
null
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_30-epoch_30
2
null
transformers
22,811
Entry not found
AethiQs-Max/s3-v1-20_epochs
6be8b14979bd2bec7e10fd029baa7731925a0b20
2021-08-08T15:36:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AethiQs-Max
null
AethiQs-Max/s3-v1-20_epochs
2
null
transformers
22,812
Entry not found
AiPorter/DialoGPT-small-Back_to_the_future
c9d68d55cce14c41c64dec7d13e8745e20cdd2a3
2022-02-23T00:04:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AiPorter
null
AiPorter/DialoGPT-small-Back_to_the_future
2
null
transformers
22,813
--- tags: - conversational --- # Back to the Future DialoGPT Model
AidenGO/KDXF_Bert4MaskedLM
d20459254dd5af2d65a05a4e857b3e9f396db499
2021-08-02T11:27:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AidenGO
null
AidenGO/KDXF_Bert4MaskedLM
2
null
transformers
22,814
Entry not found
Akashpb13/Hausa_xlsr
ea90b9ea39c3996cf26982ee571414b828f8a2a9
2022-03-23T18:35:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/Hausa_xlsr
2
1
transformers
22,815
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - ha - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Hausa_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 --- # Akashpb13/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
Akashpb13/xlsr_hungarian_new
8975b4bc38fa44d262dc6165b87f30ba56659809
2022-03-23T18:33:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hu", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/xlsr_hungarian_new
2
1
transformers
22,816
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/xlsr_hungarian_new results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 0.2851621517163838 - name: Test CER type: cer value: 0.06112982522287432 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 47.15 --- # Akashpb13/xlsr_hungarian_new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - hu dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other and dev datasets): - Loss: 0.197464 - Wer: 0.330094 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice hungarian train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000095637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 16 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 4.785300 | 0.952295 | 0.796236 | | 1000 | 0.535800 | 0.217474 | 0.381613 | | 1500 | 0.258400 | 0.205524 | 0.345056 | | 2000 | 0.202800 | 0.198680 | 0.336264 | | 2500 | 0.182700 | 0.197464 | 0.330094 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/xlsr_hungarian_new --dataset mozilla-foundation/common_voice_8_0 --config hu --split test ```
Akashpb13/xlsr_maltese_wav2vec2
9aeea3e43cf8508d68de553d366c558a84745523
2021-07-05T14:09:58.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "mt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/xlsr_maltese_wav2vec2
2
null
transformers
22,817
--- language: mt datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Maltese by Akash PB results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice mt type: common_voice args: {lang_id} metrics: - name: Test WER type: wer value: 29.42 --- # Wav2Vec2-Large-XLSR-53-Maltese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Maltese using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys model_name = "Akashpb13/xlsr_maltese_wav2vec2" device = "cuda" chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\)\\(\\*)]' model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "mt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` **Test Result**: 29.42 %
AlbertHSU/ChineseFoodBert
f07e72878cb15caf04eecdd983e41854ed3a90c4
2022-01-12T17:26:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AlbertHSU
null
AlbertHSU/ChineseFoodBert
2
1
transformers
22,818
Entry not found
Aleksandar/distilbert-srb-base-cased-oscar
f8a9d22cbe771335e5cb55b182745085ced82044
2021-09-22T12:19:26.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
Aleksandar
null
Aleksandar/distilbert-srb-base-cased-oscar
2
null
transformers
22,819
--- tags: - generated_from_trainer model_index: - name: distilbert-srb-base-cased-oscar results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-srb-base-cased-oscar This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aleksandar/distilbert-srb-ner
5d3c89f63aed4e52c2016b682c1fb329447fe8d0
2021-09-09T06:27:16.000Z
[ "pytorch", "distilbert", "token-classification", "sr", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/distilbert-srb-ner
2
null
transformers
22,820
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy language: - sr model_index: - name: distilbert-srb-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: sr metric: name: Accuracy type: accuracy value: 0.9576561462374611 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-srb-ner This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2972 - Precision: 0.8871 - Recall: 0.9100 - F1: 0.8984 - Accuracy: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3818 | 1.0 | 625 | 0.2175 | 0.8175 | 0.8370 | 0.8272 | 0.9306 | | 0.198 | 2.0 | 1250 | 0.1766 | 0.8551 | 0.8732 | 0.8640 | 0.9458 | | 0.1423 | 3.0 | 1875 | 0.1702 | 0.8597 | 0.8763 | 0.8679 | 0.9473 | | 0.079 | 4.0 | 2500 | 0.1774 | 0.8674 | 0.8875 | 0.8773 | 0.9515 | | 0.0531 | 5.0 | 3125 | 0.2011 | 0.8688 | 0.8965 | 0.8825 | 0.9522 | | 0.0429 | 6.0 | 3750 | 0.2082 | 0.8769 | 0.8970 | 0.8868 | 0.9538 | | 0.032 | 7.0 | 4375 | 0.2268 | 0.8764 | 0.8916 | 0.8839 | 0.9528 | | 0.0204 | 8.0 | 5000 | 0.2423 | 0.8726 | 0.8959 | 0.8841 | 0.9529 | | 0.0148 | 9.0 | 5625 | 0.2522 | 0.8774 | 0.8991 | 0.8881 | 0.9538 | | 0.0125 | 10.0 | 6250 | 0.2544 | 0.8823 | 0.9024 | 0.8922 | 0.9559 | | 0.0108 | 11.0 | 6875 | 0.2592 | 0.8780 | 0.9041 | 0.8909 | 0.9553 | | 0.007 | 12.0 | 7500 | 0.2672 | 0.8877 | 0.9056 | 0.8965 | 0.9571 | | 0.0048 | 13.0 | 8125 | 0.2714 | 0.8879 | 0.9089 | 0.8982 | 0.9583 | | 0.0049 | 14.0 | 8750 | 0.2872 | 0.8873 | 0.9068 | 0.8970 | 0.9573 | | 0.0034 | 15.0 | 9375 | 0.2915 | 0.8883 | 0.9114 | 0.8997 | 0.9577 | | 0.0027 | 16.0 | 10000 | 0.2890 | 0.8865 | 0.9103 | 0.8983 | 0.9581 | | 0.0028 | 17.0 | 10625 | 0.2885 | 0.8877 | 0.9085 | 0.8980 | 0.9576 | | 0.0014 | 18.0 | 11250 | 0.2928 | 0.8860 | 0.9073 | 0.8965 | 0.9577 | | 0.0013 | 19.0 | 11875 | 0.2963 | 0.8856 | 0.9099 | 0.8976 | 0.9576 | | 0.001 | 20.0 | 12500 | 0.2972 | 0.8871 | 0.9100 | 0.8984 | 0.9577 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aleksandar/electra-srb-ner-setimes
45095f192dd8b8b054b7ebb3a63dc73a3b155a17
2021-09-22T12:19:32.000Z
[ "pytorch", "electra", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/electra-srb-ner-setimes
2
null
transformers
22,821
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: electra-srb-ner-setimes results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9546789604788638 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-srb-ner-setimes This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2804 - Precision: 0.8286 - Recall: 0.8081 - F1: 0.8182 - Accuracy: 0.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 104 | 0.2981 | 0.6737 | 0.6113 | 0.6410 | 0.9174 | | No log | 2.0 | 208 | 0.2355 | 0.7279 | 0.6701 | 0.6978 | 0.9307 | | No log | 3.0 | 312 | 0.2079 | 0.7707 | 0.7062 | 0.7371 | 0.9402 | | No log | 4.0 | 416 | 0.2078 | 0.7689 | 0.7479 | 0.7582 | 0.9449 | | 0.2391 | 5.0 | 520 | 0.2089 | 0.8083 | 0.7476 | 0.7767 | 0.9484 | | 0.2391 | 6.0 | 624 | 0.2199 | 0.7981 | 0.7726 | 0.7851 | 0.9487 | | 0.2391 | 7.0 | 728 | 0.2528 | 0.8205 | 0.7749 | 0.7971 | 0.9511 | | 0.2391 | 8.0 | 832 | 0.2265 | 0.8074 | 0.8003 | 0.8038 | 0.9524 | | 0.2391 | 9.0 | 936 | 0.2843 | 0.8265 | 0.7716 | 0.7981 | 0.9504 | | 0.0378 | 10.0 | 1040 | 0.2450 | 0.8024 | 0.8019 | 0.8021 | 0.9520 | | 0.0378 | 11.0 | 1144 | 0.2550 | 0.8116 | 0.7986 | 0.8051 | 0.9519 | | 0.0378 | 12.0 | 1248 | 0.2706 | 0.8208 | 0.7957 | 0.8081 | 0.9532 | | 0.0378 | 13.0 | 1352 | 0.2664 | 0.8040 | 0.8035 | 0.8038 | 0.9530 | | 0.0378 | 14.0 | 1456 | 0.2571 | 0.8011 | 0.8110 | 0.8060 | 0.9529 | | 0.0099 | 15.0 | 1560 | 0.2673 | 0.8051 | 0.8129 | 0.8090 | 0.9534 | | 0.0099 | 16.0 | 1664 | 0.2733 | 0.8074 | 0.8087 | 0.8081 | 0.9529 | | 0.0099 | 17.0 | 1768 | 0.2835 | 0.8254 | 0.8074 | 0.8163 | 0.9543 | | 0.0099 | 18.0 | 1872 | 0.2771 | 0.8222 | 0.8081 | 0.8151 | 0.9545 | | 0.0099 | 19.0 | 1976 | 0.2776 | 0.8237 | 0.8084 | 0.8160 | 0.9546 | | 0.0044 | 20.0 | 2080 | 0.2804 | 0.8286 | 0.8081 | 0.8182 | 0.9547 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aleksandar1932/gpt2-rock-124439808
13f190f5bea40c18cee91b1d5f512f362d74b0c1
2022-01-19T17:23:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt2-rock-124439808
2
null
transformers
22,822
Entry not found
Aleksandar1932/gpt2-soul
0e67ea4c10ffaa9cb84223f15c81652e41c6499a
2022-03-18T23:53:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt2-soul
2
null
transformers
22,823
Entry not found
Aleksandar1932/gpt2-spanish-classics
aef9a3f1f3bd6cfd15121d49432abc0dceda4187
2022-03-19T00:07:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt2-spanish-classics
2
null
transformers
22,824
Entry not found
AllwynJ/HarryBoy
51794f2dbc5aac3b32d62d0c067eec4527967a96
2021-09-07T17:42:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AllwynJ
null
AllwynJ/HarryBoy
2
null
transformers
22,825
--- tags: - conversational --- #HarryBoy
Amalq/roberta-base-finetuned-schizophreniaReddit2
4833404b92f95e3543b3b288ce290058a46c7f0c
2021-12-20T05:41:28.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Amalq
null
Amalq/roberta-base-finetuned-schizophreniaReddit2
2
null
transformers
22,826
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-schizophreniaReddit2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Amirosein/roberta
d2f41324b98cb1a9dd59f43f305c5e5c0ed0403e
2021-09-06T13:41:15.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Amirosein
null
Amirosein/roberta
2
null
transformers
22,827
Entry not found
AndrewMcDowell/wav2vec2-xls-r-1b-arabic
1adf2a34e972a931e7f8ba8cf77c345a8f9d8626
2022-02-01T08:13:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AndrewMcDowell
null
AndrewMcDowell/wav2vec2-xls-r-1b-arabic
2
null
transformers
22,828
--- language: - ar license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 1.1373 - Wer: 0.8607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.2416 | 0.84 | 500 | 1.2867 | 0.8875 | | 2.3089 | 1.67 | 1000 | 1.8336 | 0.9548 | | 2.3614 | 2.51 | 1500 | 1.5937 | 0.9469 | | 2.5234 | 3.35 | 2000 | 1.9765 | 0.9867 | | 2.5373 | 4.19 | 2500 | 1.9062 | 0.9916 | | 2.5703 | 5.03 | 3000 | 1.9772 | 0.9915 | | 2.4656 | 5.86 | 3500 | 1.8083 | 0.9829 | | 2.4339 | 6.7 | 4000 | 1.7548 | 0.9752 | | 2.344 | 7.54 | 4500 | 1.6146 | 0.9638 | | 2.2677 | 8.38 | 5000 | 1.5105 | 0.9499 | | 2.2074 | 9.21 | 5500 | 1.4191 | 0.9357 | | 2.3768 | 10.05 | 6000 | 1.6663 | 0.9665 | | 2.3804 | 10.89 | 6500 | 1.6571 | 0.9720 | | 2.3237 | 11.72 | 7000 | 1.6049 | 0.9637 | | 2.317 | 12.56 | 7500 | 1.5875 | 0.9655 | | 2.2988 | 13.4 | 8000 | 1.5357 | 0.9603 | | 2.2906 | 14.24 | 8500 | 1.5637 | 0.9592 | | 2.2848 | 15.08 | 9000 | 1.5326 | 0.9537 | | 2.2381 | 15.91 | 9500 | 1.5631 | 0.9508 | | 2.2072 | 16.75 | 10000 | 1.4565 | 0.9395 | | 2.197 | 17.59 | 10500 | 1.4304 | 0.9406 | | 2.198 | 18.43 | 11000 | 1.4230 | 0.9382 | | 2.1668 | 19.26 | 11500 | 1.3998 | 0.9315 | | 2.1498 | 20.1 | 12000 | 1.3920 | 0.9258 | | 2.1244 | 20.94 | 12500 | 1.3584 | 0.9153 | | 2.0953 | 21.78 | 13000 | 1.3274 | 0.9054 | | 2.0762 | 22.61 | 13500 | 1.2933 | 0.9073 | | 2.0587 | 23.45 | 14000 | 1.2516 | 0.8944 | | 2.0363 | 24.29 | 14500 | 1.2214 | 0.8902 | | 2.0302 | 25.13 | 15000 | 1.2087 | 0.8871 | | 2.0071 | 25.96 | 15500 | 1.1953 | 0.8786 | | 1.9882 | 26.8 | 16000 | 1.1738 | 0.8712 | | 1.9772 | 27.64 | 16500 | 1.1647 | 0.8672 | | 1.9585 | 28.48 | 17000 | 1.1459 | 0.8635 | | 1.944 | 29.31 | 17500 | 1.1414 | 0.8616 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Andrija/SRoBERTa-base
cd6df96eece039e11e4dd726ead8c0b204af1d4d
2021-08-09T19:41:34.000Z
[ "pytorch", "roberta", "fill-mask", "hr", "sr", "dataset:oscar", "dataset:leipzig", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Andrija
null
Andrija/SRoBERTa-base
2
null
transformers
22,829
--- datasets: - oscar - leipzig language: - hr - sr tags: - masked-lm widget: - text: "Ovo je početak <mask>." license: apache-2.0 --- # Transformer language model for Croatian and Serbian Trained on 3GB datasets that contain Croatian and Serbian language for two epochs. Leipzig and OSCAR datasets # Information of dataset | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa-base` | 80M | Second | Leipzig Corpus and OSCAR (3 GB of text) |
AnonymousSub/AR_EManuals-BERT
ddf509723349598a7d6f23e9a69bd846a09c9bed
2022-01-12T11:32:11.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_EManuals-BERT
2
null
transformers
22,830
Entry not found
AnonymousSub/AR_EManuals-RoBERTa
0993104955b4a40dc0d9be443af1338d74cd48fc
2022-01-12T11:38:46.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_EManuals-RoBERTa
2
null
transformers
22,831
Entry not found
AnonymousSub/AR_bert-base-uncased
0d8cf9911bc0d76b7c396d5c86960122c3e406bd
2022-01-12T11:46:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_bert-base-uncased
2
null
transformers
22,832
Entry not found
AnonymousSub/AR_rule_based_bert_triplet_epochs_1_shard_1
9dc04a82bd49757cff625f995f559270b934e656
2022-01-10T23:12:46.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_bert_triplet_epochs_1_shard_1
2
null
transformers
22,833
Entry not found
AnonymousSub/AR_rule_based_hier_triplet_epochs_1_shard_1
be8acb687c0ed327d53967e21e4cb3d06e2f575f
2022-01-11T02:24:42.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_hier_triplet_epochs_1_shard_1
2
null
transformers
22,834
Entry not found
AnonymousSub/AR_rule_based_only_classfn_twostage_epochs_1_shard_1
b2e118d50c6477837ff04cf24bc7a56132963a25
2022-01-11T01:50:15.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_only_classfn_twostage_epochs_1_shard_1
2
null
transformers
22,835
Entry not found
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
ef5cb6c1fe3716300f906593a30c2433a750e51c
2022-01-06T12:05:53.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
2
null
transformers
22,836
Entry not found
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_1
c82650e0d18dd695908f02524930060526b3395c
2022-01-06T20:10:47.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_1
2
null
transformers
22,837
Entry not found
AnonymousSub/AR_rule_based_roberta_only_classfn_epochs_1_shard_1
abc1756db6bf5b934733f2858433a28e6306d97c
2022-01-06T15:44:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_only_classfn_epochs_1_shard_1
2
null
transformers
22,838
Entry not found
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
57e13298de5b6499ca63b6480926fb65a61053e4
2022-01-06T10:54:54.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
2
null
transformers
22,839
Entry not found
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
48c9308751222922c85d6a823ae39165538deddb
2022-01-06T07:52:06.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
2
null
transformers
22,840
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
51f7a4624bd79446768cc65a4e066aaaeb0c7c9c
2022-01-06T14:48:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
2
null
transformers
22,841
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
991d98bab02f9655f220b185d7043961f27ebb73
2022-01-06T15:08:33.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
2
null
transformers
22,842
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
9791313320b7d60554f717f6f686b512e85188da
2022-01-06T08:11:28.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
2
null
transformers
22,843
Entry not found
AnonymousSub/AR_rule_based_twostagetriplet_hier_epochs_1_shard_1
3f76c0570011cece9f9ba47f4473dcdac56751c4
2022-01-10T23:30:55.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_twostagetriplet_hier_epochs_1_shard_1
2
null
transformers
22,844
Entry not found
AnonymousSub/AR_specter
dee58272b4fd341de72883cae21af4fab60a8189
2022-01-12T12:16:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_specter
2
null
transformers
22,845
Entry not found
AnonymousSub/EManuals_RoBERTa_squad2.0
bc2d3c0ed0b0b73ff51817a95719741b323f6299
2022-01-17T19:10:32.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/EManuals_RoBERTa_squad2.0
2
null
transformers
22,846
Entry not found
AnonymousSub/SDR_HF_model_base
37aa7a998e37ad0905e7e77a55f7fe95f3d80e47
2022-01-11T18:51:20.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SDR_HF_model_base
2
null
transformers
22,847
Entry not found
AnonymousSub/SR_EManuals-BERT
935bb2df79ac75b4099d57dea855c9d0aecd5e3a
2022-01-12T11:28:14.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_EManuals-BERT
2
null
transformers
22,848
Entry not found
AnonymousSub/SR_EManuals-RoBERTa
549d2759791d0ec12428ed62ae7559808dc6fb0b
2022-01-12T11:22:29.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_EManuals-RoBERTa
2
null
transformers
22,849
Entry not found
AnonymousSub/SR_cline
ac3c263820e170d800066c06905e3a1a7f96cdcc
2022-01-12T10:58:10.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_cline
2
null
transformers
22,850
Entry not found
AnonymousSub/SR_rule_based_bert_triplet_epochs_1_shard_1
acc52150c347369e6e84f57a8a2ff2b631298ca3
2022-01-11T00:20:20.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_bert_triplet_epochs_1_shard_1
2
null
transformers
22,851
Entry not found
AnonymousSub/SR_rule_based_hier_quadruplet_epochs_1_shard_1
d5e2a8fbba2ba67e97b40c71df189d4dc83841a2
2022-01-10T23:25:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_hier_quadruplet_epochs_1_shard_1
2
null
transformers
22,852
Entry not found
AnonymousSub/SR_rule_based_only_classfn_epochs_1_shard_1
130e8ad57a63d490e2428a4eacbdceab5f23ea22
2022-01-11T01:50:18.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_only_classfn_epochs_1_shard_1
2
null
transformers
22,853
Entry not found
AnonymousSub/SR_rule_based_roberta_bert_quadruplet_epochs_1_shard_1
d447c26a39f0d2a4e5b58d9f55b02ca1be5accac
2022-01-12T09:30:25.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_bert_quadruplet_epochs_1_shard_1
2
null
transformers
22,854
Entry not found
AnonymousSub/SR_rule_based_roberta_bert_quadruplet_epochs_1_shard_10
ba3b105bd0ea8a49dd2b633aa3b34bfdc1b4c03f
2022-01-06T06:51:36.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_bert_quadruplet_epochs_1_shard_10
2
null
transformers
22,855
Entry not found
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_1
801b82969ab7d8344fb78850c25272582c0bd666
2022-01-06T08:03:18.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_1
2
null
transformers
22,856
Entry not found
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_10
5e05246d3157a459ec6a45064291398f570fa661
2022-01-06T07:27:11.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_10
2
null
transformers
22,857
Entry not found
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
3b5d2e94ae3f0bb5595678a9c6741a8cd1018088
2022-01-23T17:10:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
2
null
transformers
22,858
Entry not found
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_10
f4917ed6ad1d5418d5c31a1ce86ebb5222471927
2022-01-06T09:14:41.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_10
2
null
transformers
22,859
Entry not found
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
99c148491404c6f84155690d36e4ac59e5eafa3c
2022-01-06T07:07:00.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
2
null
transformers
22,860
Entry not found
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
a0c2611d9de2418d1af804fcb9c269912811fc06
2022-01-06T08:02:52.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
2
null
transformers
22,861
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
d5f33dc871134a1b635f674b4aa180195be65fe2
2022-01-06T04:32:33.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
2
null
transformers
22,862
Entry not found
AnonymousSub/SR_rule_based_twostage_quadruplet_epochs_1_shard_1
5723c772af6525230004454c6925f16c5e5b1b99
2022-01-10T21:37:49.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_twostage_quadruplet_epochs_1_shard_1
2
null
transformers
22,863
Entry not found
AnonymousSub/SR_rule_based_twostagetriplet_epochs_1_shard_1
dc654f5766adb88baa7b0aa9d996ab459d0f08e5
2022-01-11T00:39:00.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_twostagetriplet_epochs_1_shard_1
2
null
transformers
22,864
Entry not found
AnonymousSub/bert-base-uncased_squad2.0
6cd360b4aa161f6157f2560fab7d84883b945f9c
2022-01-17T15:39:30.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/bert-base-uncased_squad2.0
2
null
transformers
22,865
Entry not found
AnonymousSub/bert_triplet_epochs_1_shard_10
e8176c8e1cf04eb168a0aa9503d8a9d9c5b35b99
2022-01-04T08:12:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_triplet_epochs_1_shard_10
2
null
transformers
22,866
Entry not found
AnonymousSub/consert-techqa
f551c91ce7624437f5edeefb1ee747d1c1ef44dc
2021-09-30T19:23:00.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/consert-techqa
2
null
transformers
22,867
Entry not found
AnonymousSub/declutr-biomed-roberta-papers
cfb4134d89497360b22a501d28a4c5bc87bf76cb
2021-10-25T03:42:14.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AnonymousSub
null
AnonymousSub/declutr-biomed-roberta-papers
2
null
transformers
22,868
Entry not found
AnonymousSub/declutr-model-emanuals
808fbf96ea927b22b175c62f971c689fa54488dd
2021-09-06T03:59:22.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AnonymousSub
null
AnonymousSub/declutr-model-emanuals
2
null
transformers
22,869
Entry not found
AnonymousSub/declutr-model_squad2.0
aec762024df44e4abb5f7b87816fb8f0f24d35bd
2022-01-17T19:40:34.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/declutr-model_squad2.0
2
null
transformers
22,870
Entry not found
AnonymousSub/declutr-roberta-papers
70d7e9a01b7411be7c4f7b2be932a621c5931dea
2021-10-22T13:10:04.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AnonymousSub
null
AnonymousSub/declutr-roberta-papers
2
null
transformers
22,871
Entry not found
AnonymousSub/roberta-base_squad2.0
2da16b47c45d5704d91de2180ceeba6e0734114f
2022-01-17T18:14:36.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/roberta-base_squad2.0
2
null
transformers
22,872
Entry not found
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_1
c74fafbc3adae81e57476df9d0b429812054c58a
2021-12-22T17:00:15.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_1
2
null
transformers
22,873
Entry not found
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_1
46221712dd8fd9488cd71eea1cc5d79494a66e63
2021-12-22T16:57:35.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_1
2
null
transformers
22,874
Entry not found
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_10
229b885af5c65b8beafb04265d8b788181d722ad
2022-01-04T08:15:03.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_10
2
null
transformers
22,875
Entry not found
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10
63ea19cc1b10fb36cbca410a869a66b4e90ec50c
2022-01-04T08:17:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10
2
null
transformers
22,876
Entry not found
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1
eecb6fd986f3c7614a00d4ddea5caf554c23ce49
2021-12-22T16:58:21.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1
2
null
transformers
22,877
Entry not found
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0
04b6df518ee8dc579440e51bb7f5044dbd580760
2022-01-17T20:30:13.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0
2
null
transformers
22,878
Entry not found
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
57ce714e5ebc4aae5a96724c1717a769ef8482a9
2022-01-19T01:03:21.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
2
null
transformers
22,879
Entry not found
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1
af66789df045fddb48885c245435b7499d46807a
2021-12-22T17:01:01.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1
2
null
transformers
22,880
Entry not found
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
e6468b4dea88ff878d2b983203bf444d500f7ee9
2022-01-18T02:01:35.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
2
null
transformers
22,881
Entry not found
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1
1b82288a8497e4dfb4d0e9a5089ca57eb24202ad
2021-12-22T16:35:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1
2
null
transformers
22,882
Entry not found
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
37f2d68ce1df1820514080ca5c8d123d4905bb6d
2022-01-04T08:25:50.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
2
null
transformers
22,883
Entry not found
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
25895e8e6bd7ac6216728e74275d78360666b158
2022-01-20T18:26:45.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
2
null
transformers
22,884
Entry not found
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10
e38b56989ab5230317a630be7faf6e74a4dadc0f
2022-01-04T22:07:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10
2
null
transformers
22,885
Entry not found
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
371ed25e65dc53e674d1481c50f3e0578da91b39
2022-01-04T22:06:02.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
2
null
transformers
22,886
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
b10166236e81dc5223fb7f6f88469003d87f2411
2022-01-04T22:11:52.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
2
null
transformers
22,887
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_squad2.0
3d86b0e0d3b167e25ac0277cb6c7f6572a7cbf02
2022-01-20T20:46:45.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_squad2.0
2
null
transformers
22,888
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
94773ea8ed2e2e5f8ec3c5de4d2e089d47b4e239
2022-01-18T23:58:05.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
2
null
transformers
22,889
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1
77f504fcb3750c3f22794f4d493637ae361835e6
2022-01-04T22:09:16.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1
2
null
transformers
22,890
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10
f10a22c41c45662d101e78e3bd0ab9a08b754f28
2022-01-04T22:10:08.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10
2
null
transformers
22,891
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_squad2.0
c07d38b12947f098685a6d00903c7df27a279973
2022-01-18T00:19:10.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_squad2.0
2
null
transformers
22,892
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10
92e9fddd0336568641d3ab6bafa08208cf13d3c6
2022-01-04T22:04:09.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10
2
null
transformers
22,893
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
b86bd72552e9e2b9e59c43b1eedd9c7d3e9e314f
2022-01-05T10:13:40.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
2
null
transformers
22,894
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
c11909ea74ec7f9d034bb21386a818656953f36c
2022-01-05T10:15:02.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
2
null
transformers
22,895
Entry not found
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
c2b6190351bc7ef548ee8430d2637dff19b99702
2022-01-05T10:18:05.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
2
null
transformers
22,896
Entry not found
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
8721f3dcad887e106a917ff6759f7f15002f9318
2022-01-18T04:22:45.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
2
null
transformers
22,897
Entry not found
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
90fb00f7ec583883aa0e96a24fe76c15f714fbd3
2022-01-05T10:20:47.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
2
null
transformers
22,898
Entry not found
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
620f1ee37e80cc057fe276859d02392032149dff
2022-01-05T10:16:00.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
2
null
transformers
22,899
Entry not found