modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tner/bertweet-base-tweetner-2020-2021-concat
6c4af2fa2c137015cf53fb02533cfdd79a6aa38b
2022-07-09T21:19:27.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-base-tweetner-2020-2021-concat
3
null
transformers
22,700
Entry not found
tner/bertweet-base-tweetner-2020-2021-continuous
183a3ebea8060d2e3774a20971b87c02c0b793d0
2022-07-11T22:19:54.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-base-tweetner-2020-2021-continuous
3
null
transformers
22,701
Entry not found
huggingtweets/06melihgokcek
3fb3f4e45bce3940bb268e12de2091df7e14d4f3
2022-07-10T03:44:22.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/06melihgokcek
3
null
transformers
22,702
--- language: en thumbnail: http://www.huggingtweets.com/06melihgokcek/1657424657914/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419298461/Baskan_0383_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">İbrahim Melih Gökçek</div> <div style="text-align: center; font-size: 14px;">@06melihgokcek</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from İbrahim Melih Gökçek. | Data | İbrahim Melih Gökçek | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 457 | | Short tweets | 307 | | Tweets kept | 2473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/b48osocr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @06melihgokcek's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3d3h0tqk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3d3h0tqk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/06melihgokcek') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
freedomking/ernie-ctm-base
1119e9d725d617eca648f15c9db5ed2123d72c02
2022-07-10T08:04:18.000Z
[ "pytorch", "bert", "transformers" ]
null
false
freedomking
null
freedomking/ernie-ctm-base
3
null
transformers
22,703
## Introduction ### ERNIE-CTM(ERNIE for Chinese Text Mining) ERNIE-CTM是适用于中文文本挖掘任务的预训练语言模型,拥有更全面的汉字字表集合,更优的中文文本挖掘任务表现,与PaddleNLP深度结合,提供更加便捷的应用实践。 ### ERNIE-CTM特点 * 全面的中文汉字字表扩充 ERNIE-CTM的字符集包含2万+汉字,以及中文常用符号(常用标点、汉语拼音、编号)、部分外语符号(假名、单位)等,大幅减少中文解析挖掘任务中UNK(未识别字符)引发的标注问题。同时,ERNIE-CTM使用了embedding分解,可以更加灵活地扩充应用字表。 * 更加适配中文文本挖掘任务 ERNIE-CTM中在每个表示后面添加了全局信息,在序列特征上叠加了全局的信息,使得在文本挖掘任务上有更加强力的表现。 * 支持多种特征训练的模型结构 ERNIE-CTM的模型结构中,支持多种特征训练,用户可按照自己的需求任意添加任务及对应特征训练模型,而无需考虑任务之间的冲突所造成的灾难性遗忘。 More detail: https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/text_to_knowledge/ernie-ctm
jonatasgrosman/exp_w2v2t_de_unispeech_s62
a86ddd4bc5b10e5b1bfe02816b715df58067eac5
2022-07-10T10:27:30.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_de_unispeech_s62
3
null
transformers
22,704
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_de_unispeech_s62 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_de_unispeech-ml_s257
d85a098f6e7de4770aebaf55300a0b182bc85917
2022-07-10T11:23:57.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_de_unispeech-ml_s257
3
null
transformers
22,705
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_de_unispeech-ml_s257 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
aws-ai/dse-distilbert-base
693ab0e22dc55bb5d874f8bb5fee9cf96cb385d8
2022-07-10T19:30:47.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
aws-ai
null
aws-ai/dse-distilbert-base
3
null
transformers
22,706
Entry not found
tner/bertweet-large-tweetner-2021
ed88a7b40dee511204af2a5ae43e5a7b19e5350a
2022-07-10T23:35:59.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-large-tweetner-2021
3
null
transformers
22,707
Entry not found
tner/bertweet-large-tweetner-2020-2021-concat
c7ea4500bfb934b11f476d61fabec1f806a30389
2022-07-10T23:40:22.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-large-tweetner-2020-2021-concat
3
null
transformers
22,708
Entry not found
tner/bertweet-large-tweetner-2020-2021-continuous
743ab58636b3392864131174decc4b0784e40991
2022-07-12T14:04:23.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-large-tweetner-2020-2021-continuous
3
null
transformers
22,709
Entry not found
tner/roberta-base-tweetner-random
d19995989585bd5aef0565684dc6a2d99423ae27
2022-07-11T00:42:21.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-base-tweetner-random
3
null
transformers
22,710
Entry not found
tner/bert-base-tweetner-random
c3454cb2a2411c6cd69081b87263eef9e804b1c6
2022-07-11T10:46:53.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-base-tweetner-random
3
null
transformers
22,711
Entry not found
tner/bert-large-tweetner-random
c751c9020aab5d4d0a19b673b8f4e8ba9735941e
2022-07-11T11:24:07.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-large-tweetner-random
3
null
transformers
22,712
Entry not found
jonatasgrosman/exp_w2v2t_es_unispeech-ml_s474
4e8b4414542f07abdf8f24f4509ded87599e2c76
2022-07-11T11:58:24.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_es_unispeech-ml_s474
3
null
transformers
22,713
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_unispeech-ml_s474 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
tner/bert-base-tweetner-2021
9d2adb1c6142a05535fb96894c03be6afb2fac49
2022-07-11T22:18:29.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-base-tweetner-2021
3
null
transformers
22,714
Entry not found
tner/bert-base-tweetner-2020-2021-concat
f92ec913df8e24b271e9f3dab7fc91757d309af5
2022-07-11T22:19:54.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-base-tweetner-2020-2021-concat
3
null
transformers
22,715
Entry not found
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s809
b98696228157e00a52fe2ef676af79f2453f0ec9
2022-07-11T16:26:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s809
3
null
transformers
22,716
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s809 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s227
f0daf989047e48c27b19a9695d9a234fd6cd141a
2022-07-11T16:34:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_es_r-wav2vec2_s227
3
null
transformers
22,717
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_r-wav2vec2_s227 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
tner/twitter-roberta-base-dec2021-tweetner-random
a404d7f11373654b95a716b67065287ca6b05e0e
2022-07-11T16:46:32.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/twitter-roberta-base-dec2021-tweetner-random
3
null
transformers
22,718
Entry not found
jonatasgrosman/exp_w2v2t_es_vp-it_s320
5de0d6e39d36d7b67e8b97f9708a4b34dba891d1
2022-07-11T16:48:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_es_vp-it_s320
3
null
transformers
22,719
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-it_s320 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
tner/bert-large-tweetner-2021
84e3a47f802749cc7d41e3fa13464f15c87d3bbb
2022-07-12T09:26:24.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-large-tweetner-2021
3
null
transformers
22,720
Entry not found
tner/bert-large-tweetner-2020-2021-concat
4894c9c252d2080da9555ffd55c6734797b7ace9
2022-07-12T09:30:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-large-tweetner-2020-2021-concat
3
null
transformers
22,721
Entry not found
JasonXu/lab4
dc36008d1753bb4db4b54fc4e53518d4c9096f38
2022-07-12T10:09:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
JasonXu
null
JasonXu/lab4
3
null
transformers
22,722
Entry not found
Hamzaaa/wav2vec2-base-960h-finetuned-trained-Crema_only
97cb7ab9592c9476de74a41a75d9f0bf7643501b
2022-07-12T11:29:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-960h-finetuned-trained-Crema_only
3
null
transformers
22,723
Entry not found
Team-PIXEL/pixel-base-finetuned-pos-ud-english-ewt
53b7d1d7888b8ab99c109207915625674697c7c7
2022-07-13T00:49:16.000Z
[ "pytorch", "pixel", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-pos-ud-english-ewt
3
null
transformers
22,724
Entry not found
Hamzaaa/wav2vec2-base-960h-finetuned-trained-greek
eee025c058322f3594418e3f09a2ed4840f0bd61
2022-07-13T09:43:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-960h-finetuned-trained-greek
3
null
transformers
22,725
Entry not found
KeLiu/QETRA_Java
2fff2f6feff6acb498f904ba74b716177f6ca634
2022-07-13T13:32:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KeLiu
null
KeLiu/QETRA_Java
3
null
transformers
22,726
Entry not found
KeLiu/QETRA_CSharp
2c18c20ac9af2cc5fa1150fa115e82e9d9ea0912
2022-07-13T13:37:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KeLiu
null
KeLiu/QETRA_CSharp
3
null
transformers
22,727
Entry not found
RJ3vans/ElectraSSCCVspanTagger
0b32f8746519367add17a36d3aba939cc28f3470
2022-07-13T23:34:28.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RJ3vans
null
RJ3vans/ElectraSSCCVspanTagger
3
null
transformers
22,728
Entry not found
ghadeermobasher/OriginalBiomedNLP-PubMedBERT-base-uncased-abstract-BioRED-CD-128-32-30
d6a4a32a649171257e9d5c4c4e6610a9901a0c4d
2022-07-13T17:22:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/OriginalBiomedNLP-PubMedBERT-base-uncased-abstract-BioRED-CD-128-32-30
3
null
transformers
22,729
Entry not found
ghadeermobasher/Modified-BiomedNLP-PubMedBERT-base-uncased-abstract-BioRED-CD-128-32-30
24f6e9e365e3a965af3aadea87eab6929e0d631f
2022-07-13T17:23:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modified-BiomedNLP-PubMedBERT-base-uncased-abstract-BioRED-CD-128-32-30
3
null
transformers
22,730
Entry not found
ghadeermobasher/Originalbiobert-v1.1-BioRED-CD-128-32-30
83b03b89e698ca3b3de02d65e6485d0f89d754e9
2022-07-13T17:47:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Originalbiobert-v1.1-BioRED-CD-128-32-30
3
null
transformers
22,731
--- tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: Originalbiobert-v1.1-BioRED-CD-128-32-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Originalbiobert-v1.1-BioRED-CD-128-32-30 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 0.9994 - Recall: 1.0 - F1: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.10.3
ghadeermobasher/OriginalBiomedNLP-bluebert_pubmed_uncased_L-12_H-768_A-12-BioRED_Dis-256-16-5
3f51d473871e9284181e3faa738f1d39948804de
2022-07-13T20:25:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/OriginalBiomedNLP-bluebert_pubmed_uncased_L-12_H-768_A-12-BioRED_Dis-256-16-5
3
null
transformers
22,732
Entry not found
ghadeermobasher/Modifiedbluebert_pubmed_uncased_L-12_H-768_A-12-BioRED-Dis-256-16-5
1f126c9421c2a27c78dcb67a85b2535588203cb5
2022-07-13T20:25:32.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modifiedbluebert_pubmed_uncased_L-12_H-768_A-12-BioRED-Dis-256-16-5
3
null
transformers
22,733
Entry not found
Hamzaaa/wav2vec2-base-finetuned-Saveee
23415d57f6afe07ffd58b4d71c0014bf32fa6fca
2022-07-15T22:09:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-finetuned-Saveee
3
null
transformers
22,734
Entry not found
Lyla/dummy-model
cd45a21359a8c7d9dc990f7197a54ca3496e427b
2022-07-17T05:01:48.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Lyla
null
Lyla/dummy-model
3
null
transformers
22,735
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_3982742
191761613c46d18db07e9a8bd6825d207baf30b3
2022-07-19T05:58:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_3982742
3
null
transformers
22,736
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_6585777
7a9c6f39dbdeb2414f98325ac8aa917c7347b4e6
2022-07-19T06:24:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_6585777
3
null
transformers
22,737
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_23419
637c37d4518e14e0cefd4b51ddf9a0b05b17ee6e
2022-07-19T06:28:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_23419
3
null
transformers
22,738
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_2470973
4cd8dd3e50c6e3ed6e09a743f094204d933335ec
2022-07-19T06:51:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_2470973
3
null
transformers
22,739
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_6864530
aa869026e56bd1319b1a4b462ece87a3c5246cbe
2022-07-19T07:51:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_6864530
3
null
transformers
22,740
Entry not found
Siyong/MT_RN_LM
4a9352389350351e3b002a21d95a3f79f1d37000
2022-07-20T03:25:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MT_RN_LM
3
null
transformers
22,741
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 - Wer: 0.6375 - Cer: 0.3170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.0564 | 2.36 | 2000 | 2.3456 | 0.9628 | 0.5549 | | 0.5071 | 4.73 | 4000 | 2.0652 | 0.9071 | 0.5115 | | 0.3952 | 7.09 | 6000 | 2.3649 | 0.9108 | 0.4628 | | 0.3367 | 9.46 | 8000 | 1.7615 | 0.8253 | 0.4348 | | 0.2765 | 11.82 | 10000 | 1.6151 | 0.7937 | 0.4087 | | 0.2493 | 14.18 | 12000 | 1.4976 | 0.7881 | 0.3905 | | 0.2318 | 16.55 | 14000 | 1.6731 | 0.8160 | 0.3925 | | 0.2074 | 18.91 | 16000 | 1.5822 | 0.7658 | 0.3913 | | 0.1825 | 21.28 | 18000 | 1.5442 | 0.7361 | 0.3704 | | 0.1824 | 23.64 | 20000 | 1.5988 | 0.7621 | 0.3711 | | 0.1699 | 26.0 | 22000 | 1.4261 | 0.7119 | 0.3490 | | 0.158 | 28.37 | 24000 | 1.7482 | 0.7658 | 0.3648 | | 0.1385 | 30.73 | 26000 | 1.4103 | 0.6784 | 0.3348 | | 0.1199 | 33.1 | 28000 | 1.5214 | 0.6636 | 0.3273 | | 0.116 | 35.46 | 30000 | 1.4288 | 0.7212 | 0.3486 | | 0.1071 | 37.83 | 32000 | 1.5344 | 0.7138 | 0.3411 | | 0.1007 | 40.19 | 34000 | 1.4501 | 0.6691 | 0.3237 | | 0.0943 | 42.55 | 36000 | 1.5367 | 0.6859 | 0.3265 | | 0.0844 | 44.92 | 38000 | 1.5321 | 0.6599 | 0.3273 | | 0.0762 | 47.28 | 40000 | 1.6721 | 0.6264 | 0.3142 | | 0.0778 | 49.65 | 42000 | 1.6666 | 0.6375 | 0.3170 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1
Aktsvigun/bart-base_abssum_wikihow_all_9467153
3047235cb8554629a051dff3bc5c74a76705be5f
2022-07-20T08:10:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_9467153
3
null
transformers
22,742
Entry not found
PSW/bart-base-convsumm-xsum-cnndm-bs0.25
eae37d20818642f95df4ff4b2bacc08a91b8bacf
2022-07-21T01:10:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/bart-base-convsumm-xsum-cnndm-bs0.25
3
null
transformers
22,743
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_42
266a2f1fa8fc3f251330b664444943f1d4c6dbf8
2022-07-21T01:54:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_42
3
null
transformers
22,744
Entry not found
PSW/bart-base-pretrained-on-xsum-cnndm-bs0.25
c7707ac4c4fababe2f258d05f8ecdf550ca4c994
2022-07-21T02:08:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/bart-base-pretrained-on-xsum-cnndm-bs0.25
3
null
transformers
22,745
Entry not found
trevorj/BART_reddit_media_lifestyle_sports
5e69238089d20b2cec13a812db8cf85a1d26e158
2022-07-21T15:24:59.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
trevorj
null
trevorj/BART_reddit_media_lifestyle_sports
3
null
transformers
22,746
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_3878022
ebe1dfc0da79b1686532ccff37b628827f13e08e
2022-07-21T11:55:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_3878022
3
null
transformers
22,747
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_705525
b3c1e5ac81b58cde40f04c0cdd358d8be50c4634
2022-07-21T15:00:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_705525
3
null
transformers
22,748
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_5537116
a1f897953cd18816e95ced6114b08c56e46115ef
2022-07-22T02:12:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_5537116
3
null
transformers
22,749
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-d-nce
299489979184aa59878dd126e299dc0c32ae0e03
2022-07-25T00:06:45.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-d-nce
3
null
transformers
22,750
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-a-nce
adb6ef4718fc2e5dcf93e9291e8155699478ec82
2022-07-24T21:21:12.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-a-nce
3
null
transformers
22,751
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-b-nce
ba35b178dadceb5266c4ccdd508bb1c1b0f904af
2022-07-24T22:16:20.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-b-nce
3
null
transformers
22,752
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-c-nce
b793652a1ffb8017e523884b647bef2b4c584495
2022-07-24T23:10:50.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-c-nce
3
null
transformers
22,753
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-e-nce
90295a65ceb5f1854ad5873adc082474a5ff4107
2022-07-25T01:02:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-e-nce
3
null
transformers
22,754
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-d-nce
84afd0b6814b58d11a712f19b9a09fe6dbda2c36
2022-07-25T00:25:45.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-d-nce
3
null
transformers
22,755
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-a-nce
c249af31247e4785bbf281376828381942e323ba
2022-07-24T21:39:29.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-a-nce
3
null
transformers
22,756
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-b-nce
befc0ec3c05aca23e625ec48747a70975316c6b2
2022-07-24T22:34:32.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-b-nce
3
null
transformers
22,757
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-c-nce
776c7d7f077ce26ea2da3c931a497ffac073ec35
2022-07-24T23:30:24.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-c-nce
3
null
transformers
22,758
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-d-nce
30c2236082d75726713ad5710954f30e756cfb33
2022-07-25T00:44:25.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-d-nce
3
null
transformers
22,759
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-a-nce
79138e4ff24bef7d8ca9454b07d9e140e3697aa9
2022-07-24T21:57:49.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-a-nce
3
null
transformers
22,760
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-b-nce
58904a386c7211fa7a53d72493023f17eef4e2c2
2022-07-24T22:52:53.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-b-nce
3
null
transformers
22,761
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-c-nce
53128ae75bd40c425a2c265124432c0fdabfde77
2022-07-24T23:48:09.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-c-nce
3
null
transformers
22,762
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-nce
7318f95226d68c8c60e5ff0d9f81821439354aa5
2022-07-25T01:39:52.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-nce
3
null
transformers
22,763
Entry not found
ManqingLiu/distilbert-base-uncased-distilled-clinc
9e75fc5a79bd25fdf8dfd71d2536b0575262a818
2022-07-22T18:06:51.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ManqingLiu
null
ManqingLiu/distilbert-base-uncased-distilled-clinc
3
null
transformers
22,764
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9390322580645162 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0990 - Accuracy: 0.9390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0901 | 1.0 | 318 | 0.6293 | 0.7026 | | 0.4796 | 2.0 | 636 | 0.2666 | 0.8661 | | 0.2386 | 3.0 | 954 | 0.1553 | 0.9148 | | 0.1591 | 4.0 | 1272 | 0.1238 | 0.9271 | | 0.1309 | 5.0 | 1590 | 0.1121 | 0.9339 | | 0.118 | 6.0 | 1908 | 0.1065 | 0.9371 | | 0.11 | 7.0 | 2226 | 0.1033 | 0.9394 | | 0.1057 | 8.0 | 2544 | 0.1002 | 0.9377 | | 0.1032 | 9.0 | 2862 | 0.0995 | 0.9384 | | 0.1014 | 10.0 | 3180 | 0.0990 | 0.9390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
relbert/relbert-roberta-large-semeval2012-average-prompt-e-triplet
d28c229b6f4ff5fee8c72a1a5e7839fc32732739
2022-07-24T20:40:34.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-e-triplet
3
null
transformers
22,765
Entry not found
ilana/tiny-bert-sst2-distilled
c0613a089954ac0a9903a1e8acd83943fdeb1cff
2022-07-23T19:23:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ilana
null
ilana/tiny-bert-sst2-distilled
3
null
transformers
22,766
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: tiny-bert-sst2-distilled results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0017 - eval_accuracy: 0.7477 - eval_runtime: 0.3985 - eval_samples_per_second: 2188.296 - eval_steps_per_second: 17.567 - epoch: 1.0 - step: 527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.708803333901887e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
techsword/wav2vec-fame-frisian
06cda281ebbd3275dd5acac9c7777e1e8424b8fe
2022-07-23T21:07:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
techsword
null
techsword/wav2vec-fame-frisian
3
null
transformers
22,767
Entry not found
PanNorek/distilroberta-base-disaster-tweets
e59cbc46ab68eb10efa1ee9726e784cd2fc77a57
2022-07-23T21:58:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
PanNorek
null
PanNorek/distilroberta-base-disaster-tweets
3
null
transformers
22,768
Entry not found
zluvolyote/DEREXP_home
1aa6cbaa57e1f9a689c85f0f657d7bf931eacb37
2022-07-23T22:34:33.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
zluvolyote
null
zluvolyote/DEREXP_home
3
null
transformers
22,769
Entry not found
schnell/test
2de951481085575c4999d192fc10bd763abc38ef
2022-07-24T06:06:36.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
schnell
null
schnell/test
3
null
transformers
22,770
--- tags: - generated_from_trainer model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-synthetic-generated-only
43e200a333e62fb8a15043d242eb45cc7af8b093
2022-07-24T22:50:35.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-synthetic-generated-only
3
null
transformers
22,771
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-generated-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-generated-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - F1: 0.9839 - Precision: 0.9849 - Recall: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.009 | 1.0 | 10387 | 0.0104 | 0.9722 | 0.9919 | 0.9533 | | 0.0013 | 2.0 | 20774 | 0.0067 | 0.9825 | 0.9844 | 0.9805 | | 0.0006 | 3.0 | 31161 | 0.0077 | 0.9843 | 0.9902 | 0.9786 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
zluvolyote/DEREXP_Regression_6k
70267d9292f28a8ddea5b6d1d2785a8b490a8f07
2022-07-26T00:51:31.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
zluvolyote
null
zluvolyote/DEREXP_Regression_6k
3
null
transformers
22,772
Entry not found
wuhuaguo/distilbert-base-uncased-finetuned-cola
9a736ac9e38a23fed8378d1fda0a7bae7a00a7b7
2022-07-25T05:29:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wuhuaguo
null
wuhuaguo/distilbert-base-uncased-finetuned-cola
3
null
transformers
22,773
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5489250601752835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8115 - Matthews Correlation: 0.5489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5223 | 1.0 | 535 | 0.5400 | 0.4165 | | 0.349 | 2.0 | 1070 | 0.5125 | 0.4738 | | 0.2392 | 3.0 | 1605 | 0.5283 | 0.5411 | | 0.1791 | 4.0 | 2140 | 0.7506 | 0.5301 | | 0.127 | 5.0 | 2675 | 0.8115 | 0.5489 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
hecsi/distilbert-base-uncased-finetuned-emotion
c2c1fbac3726227f8bcfb67af7e2448f8db5a6e5
2022-07-25T06:09:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
hecsi
null
hecsi/distilbert-base-uncased-finetuned-emotion
3
null
transformers
22,774
Entry not found
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False__bert-base-uncased
f49f28aaf0d73800d687a4c3984481436b50c857
2022-07-25T18:49:04.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False__bert-base-uncased
3
null
transformers
22,775
Entry not found
jaeyeon/korean-aihub-learning-math-1-test
fc89cbcd6c93fc449e3c75c5d1c13874f1662a5d
2022-07-26T03:41:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/korean-aihub-learning-math-1-test
3
null
transformers
22,776
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-math-1-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-math-1-test This model is a fine-tuned version of [kresnik/wav2vec2-large-xlsr-korean](https://huggingface.co/kresnik/wav2vec2-large-xlsr-korean) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2537 - Wer: 0.4765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 35 | 29.8031 | 1.0 | | No log | 2.0 | 70 | 5.7158 | 1.0 | | 19.8789 | 3.0 | 105 | 4.5005 | 1.0 | | 19.8789 | 4.0 | 140 | 4.3677 | 0.9984 | | 19.8789 | 5.0 | 175 | 3.8013 | 0.9882 | | 3.9785 | 6.0 | 210 | 2.4132 | 0.8730 | | 3.9785 | 7.0 | 245 | 1.5867 | 0.7045 | | 3.9785 | 8.0 | 280 | 1.3179 | 0.6082 | | 1.2266 | 9.0 | 315 | 1.2431 | 0.6066 | | 1.2266 | 10.0 | 350 | 1.1791 | 0.5384 | | 1.2266 | 11.0 | 385 | 1.0994 | 0.5298 | | 0.3916 | 12.0 | 420 | 1.1552 | 0.5196 | | 0.3916 | 13.0 | 455 | 1.1495 | 0.5486 | | 0.3916 | 14.0 | 490 | 1.1340 | 0.5290 | | 0.2488 | 15.0 | 525 | 1.2208 | 0.5525 | | 0.2488 | 16.0 | 560 | 1.1682 | 0.5024 | | 0.2488 | 17.0 | 595 | 1.1479 | 0.5008 | | 0.1907 | 18.0 | 630 | 1.1735 | 0.4882 | | 0.1907 | 19.0 | 665 | 1.2302 | 0.4914 | | 0.1461 | 20.0 | 700 | 1.2497 | 0.4890 | | 0.1461 | 21.0 | 735 | 1.2434 | 0.4914 | | 0.1461 | 22.0 | 770 | 1.2031 | 0.5031 | | 0.1147 | 23.0 | 805 | 1.2451 | 0.4976 | | 0.1147 | 24.0 | 840 | 1.2746 | 0.4937 | | 0.1147 | 25.0 | 875 | 1.2405 | 0.4828 | | 0.0892 | 26.0 | 910 | 1.2228 | 0.4929 | | 0.0892 | 27.0 | 945 | 1.2642 | 0.4898 | | 0.0892 | 28.0 | 980 | 1.2586 | 0.4843 | | 0.0709 | 29.0 | 1015 | 1.2518 | 0.4788 | | 0.0709 | 30.0 | 1050 | 1.2537 | 0.4765 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ankhitan/1000-model5
afce4c103fbe130cc7f4b929c4afa966311f9dec
2022-07-25T15:38:09.000Z
[ "pytorch", "segformer", "transformers" ]
null
false
Ankhitan
null
Ankhitan/1000-model5
3
null
transformers
22,777
Entry not found
jonatasgrosman/exp_w2v2r_en_xls-r_accent_us-0_england-10_s35
a5a962a123a4f09f462734b7496782a548df3749
2022-07-25T15:31:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2r_en_xls-r_accent_us-0_england-10_s35
3
null
transformers
22,778
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_xls-r_accent_us-0_england-10_s35 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__bert-base-uncased
983a47046b130eccf4cf93cc3cebd22b328ed37f
2022-07-26T01:58:14.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__bert-base-uncased
3
null
transformers
22,779
Entry not found
enoriega/rule_learning_1mm_many_negatives_spanpred_avg_corrected
e8f7dd6394d526de26ee147652cae3ff8668e52c
2022-07-26T04:16:46.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
enoriega
null
enoriega/rule_learning_1mm_many_negatives_spanpred_avg_corrected
3
null
transformers
22,780
Entry not found
BigSalmon/InformalToFormalLincoln57Paraphrase
28c0fb97ab9d7cd7c09a7aa886024fb868017fef
2022-07-26T01:56:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln57Paraphrase
3
null
transformers
22,781
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln57Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln57Paraphrase") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ```
jinwooChoi/SKKU_AP_SA_HJW_KBT1
df6fa2e0dd22d53d7abfddbe1871cce75d4a2c67
2022-07-26T06:45:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_HJW_KBT1
3
null
transformers
22,782
Entry not found
jinwooChoi/SKKU_AP_SA_HJW_SMALL1
6ed123439e3d6cdc8b455f1f16468ed1eeffbf5d
2022-07-26T07:09:26.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_HJW_SMALL1
3
null
transformers
22,783
Entry not found
SummerChiam/rust_image_classification_5
7d60c9b9a0ae75931c2b3b7c610944af151c3d07
2022-07-26T15:16:23.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/rust_image_classification_5
3
null
transformers
22,784
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rust_image_classification_5 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9392405152320862 --- # rust_image_classification_5 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### nonrust ![nonrust](images/nonrust.png) #### rust ![rust](images/rust.png)
vijayrag/distilbert-base-uncased-finetuned-emotion
18fb9275408dab8fc03f230f6aa492af02745890
2022-07-26T19:40:57.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vijayrag
null
vijayrag/distilbert-base-uncased-finetuned-emotion
3
null
transformers
22,785
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9273204837245832 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2178 - Accuracy: 0.9275 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8381 | 1.0 | 250 | 0.3130 | 0.9075 | 0.9054 | | 0.2443 | 2.0 | 500 | 0.2178 | 0.9275 | 0.9273 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
helliun/article_sent_pol
5733cdad3cf05fc2aa6cad37392d08c03a302166
2022-07-26T21:53:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
helliun
null
helliun/article_sent_pol
3
null
transformers
22,786
Entry not found
huggingtweets/lookinmyeyesboy-mcstoryfeed-mono93646057
34e3e62c1decedaff76fb2d45500e2886ac729b0
2022-07-27T08:10:20.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lookinmyeyesboy-mcstoryfeed-mono93646057
3
null
transformers
22,787
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1234927574809182209/TTjRcchM_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1302461614478811137/J8gENyLO_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1248778001220882432/yDL7saMY_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MCStoryBot & Look Into My Eyes Boy & 𝐓𝐡𝐞 𝐌𝐞𝐠𝐚𝐥𝐢𝐭𝐡</div> <div style="text-align: center; font-size: 14px;">@lookinmyeyesboy-mcstoryfeed-mono93646057</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MCStoryBot & Look Into My Eyes Boy & 𝐓𝐡𝐞 𝐌𝐞𝐠𝐚𝐥𝐢𝐭𝐡. | Data | MCStoryBot | Look Into My Eyes Boy | 𝐓𝐡𝐞 𝐌𝐞𝐠𝐚𝐥𝐢𝐭𝐡 | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3244 | 3249 | | Retweets | 0 | 170 | 39 | | Short tweets | 0 | 209 | 15 | | Tweets kept | 3250 | 2865 | 3195 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/futewq5a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lookinmyeyesboy-mcstoryfeed-mono93646057's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wsp763m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wsp763m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lookinmyeyesboy-mcstoryfeed-mono93646057') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mughalk4/mBERT-Hindi-Mono
a0960ddb9808f910b4a893fbb53b66ae59876f77
2022-07-28T06:06:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mughalk4
null
mughalk4/mBERT-Hindi-Mono
3
null
transformers
22,788
Entry not found
olemeyer/zero_shot_issue_classification_bart-large-32-d
894f627852701c5dbbf6b3f72697dd0426f09e3f
2022-07-29T08:57:03.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
olemeyer
null
olemeyer/zero_shot_issue_classification_bart-large-32-d
3
null
transformers
22,789
Entry not found
Junmai/KR-Data2VecText-v1
27f6bb039642c21c798d162dde96fe01ade74c1e
2022-07-28T09:34:46.000Z
[ "pytorch", "data2vec-text", "feature-extraction", "transformers" ]
feature-extraction
false
Junmai
null
Junmai/KR-Data2VecText-v1
3
null
transformers
22,790
Entry not found
AlexKolosov/my_first_model
23f43428f4a8ef709ebd932f800e46a23dd91c67
2022-07-28T14:14:33.000Z
[ "pytorch", "resnet", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
AlexKolosov
null
AlexKolosov/my_first_model
3
null
transformers
22,791
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: my_first_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_first_model This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6853 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6918 | 1.0 | 23 | 0.6895 | 0.8 | | 0.7019 | 2.0 | 46 | 0.6859 | 0.6 | | 0.69 | 3.0 | 69 | 0.6853 | 0.6 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
maesneako/ES_corlec_DeepESP-gpt2-spanish
819ba746145811603cbdb3e7103a8a41927725a1
2022-07-28T22:04:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
maesneako
null
maesneako/ES_corlec_DeepESP-gpt2-spanish
3
null
transformers
22,792
--- license: mit tags: - generated_from_trainer model-index: - name: ES_corlec_DeepESP-gpt2-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ES_corlec_DeepESP-gpt2-spanish This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.2471 | 0.4 | 2000 | 4.2111 | | 4.1503 | 0.79 | 4000 | 4.1438 | | 4.0749 | 1.19 | 6000 | 4.1077 | | 4.024 | 1.59 | 8000 | 4.0857 | | 3.9855 | 1.98 | 10000 | 4.0707 | | 3.9465 | 2.38 | 12000 | 4.0605 | | 3.9277 | 2.78 | 14000 | 4.0533 | | 3.9159 | 3.17 | 16000 | 4.0482 | | 3.8918 | 3.57 | 18000 | 4.0448 | | 3.8789 | 3.97 | 20000 | 4.0421 | | 3.8589 | 4.36 | 22000 | 4.0402 | | 3.8554 | 4.76 | 24000 | 4.0387 | | 3.8509 | 5.15 | 26000 | 4.0377 | | 3.8389 | 5.55 | 28000 | 4.0370 | | 3.8288 | 5.95 | 30000 | 4.0365 | | 3.8293 | 6.34 | 32000 | 4.0362 | | 3.8202 | 6.74 | 34000 | 4.0360 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
LanaKru/wikineural-multilingual-ner-finetuned-ner
8bc24ba6f67d457283cd5a784d408b621b29e139
2022-07-29T09:36:52.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:skript", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
LanaKru
null
LanaKru/wikineural-multilingual-ner-finetuned-ner
3
null
transformers
22,793
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - skript metrics: - precision - recall - f1 - accuracy model-index: - name: wikineural-multilingual-ner-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: skript type: skript config: myscript split: train args: myscript metrics: - name: Precision type: precision value: 0.9007335298553506 - name: Recall type: recall value: 0.9301946902654867 - name: F1 type: f1 value: 0.9152270827528559 - name: Accuracy type: accuracy value: 0.9653644982020269 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wikineural-multilingual-ner-finetuned-ner This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the skript dataset. It achieves the following results on the evaluation set: - Loss: 0.1243 - Precision: 0.9007 - Recall: 0.9302 - F1: 0.9152 - Accuracy: 0.9654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 298 | 0.1179 | 0.8975 | 0.8981 | 0.8978 | 0.9592 | | 0.104 | 2.0 | 596 | 0.1161 | 0.9051 | 0.9201 | 0.9126 | 0.9648 | | 0.104 | 3.0 | 894 | 0.1243 | 0.9007 | 0.9302 | 0.9152 | 0.9654 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SafiUllahShahid/EnGECmodel
d40d47e74749874460f2c7227230a2c06355bc75
2022-07-29T08:12:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
SafiUllahShahid
null
SafiUllahShahid/EnGECmodel
3
null
transformers
22,794
--- license: apache-2.0 ---
SummerChiam/pond_image_classification_3
0b5e0a2229c7c4b9bc72cc73ed27be851da90a86
2022-07-29T07:03:07.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_3
3
null
transformers
22,795
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_3 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9974489808082581 --- # pond_image_classification_3 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
asparius/combined-2
e53282e3ea5faf394782ab6121d09dd52f27f521
2022-07-29T17:20:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
asparius
null
asparius/combined-2
3
null
transformers
22,796
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: combined-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # combined-2 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7317 - Accuracy: 0.8828 - F1: 0.8866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-dagpap22-only
8f48df280ce0d40e5397262267c6446f665b7355
2022-07-29T20:05:17.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-dagpap22-only
3
null
transformers
22,797
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-dagpap22-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-dagpap22-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0037 - F1: 0.9995 - Precision: 0.9992 - Recall: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.1804 | 1.0 | 669 | 0.0222 | 0.9971 | 0.9975 | 0.9967 | | 0.0402 | 2.0 | 1338 | 0.0069 | 0.9990 | 0.9992 | 0.9989 | | 0.0046 | 3.0 | 2007 | 0.0037 | 0.9995 | 0.9992 | 0.9997 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
13on/gpt2-wishes
769284ebaceeb7518f5f7f9fbc35ad94f8c59fe4
2022-02-17T16:06:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
13on
null
13on/gpt2-wishes
2
null
transformers
22,798
Entry not found
1Basco/DialoGPT-small-jake
839591d80ac1a678eb46623e888599b3ddea18f5
2021-09-22T03:32:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
1Basco
null
1Basco/DialoGPT-small-jake
2
null
transformers
22,799
--- tags: - conversational --- #Jake Peralta DialoGPT Model