modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
DeskDown/MarianMixFT_en-ms
485eace2ea9655bcd97f3f79c08c88dbdc17741f
2022-01-15T00:24:58.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-ms
2
null
transformers
23,000
Entry not found
DeskDown/MarianMixFT_en-th
90cbdbc06354fcd01290e3557fa5750f20e3d8cb
2022-01-14T19:34:06.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-th
2
null
transformers
23,001
Entry not found
DeskDown/MarianMix_en-zh_to_vi-ms-hi-ja
c804ffb8de64463293b59fee223400e3c47ff5f5
2022-01-12T14:11:06.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMix_en-zh_to_vi-ms-hi-ja
2
null
transformers
23,002
Entry not found
Dilmk2/DialoGPT-small-harrypotter
3c5157e1bf282c58ce24939e9b15f290a030d04a
2021-08-26T16:56:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dilmk2
null
Dilmk2/DialoGPT-small-harrypotter
2
null
transformers
23,003
--- tags: - conversational --- # Harry Potter DialoGPT Model
DimaOrekhov/transformer-method-name
b195b4ac1d539ed231364c9f5884c83674029a4b
2020-12-28T00:39:31.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DimaOrekhov
null
DimaOrekhov/transformer-method-name
2
null
transformers
23,004
Entry not found
Dongmin/testmodel
9f7173e20ce3e4751cb6a8a7b74a25851cba9a40
2021-09-10T08:34:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Dongmin
null
Dongmin/testmodel
2
1
transformers
23,005
Entry not found
Doogie/Wayne_NLP_mT5
a645ba0f569b5b20de6aa220407335f4a87a0efb
2022-03-24T02:02:30.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Doogie
null
Doogie/Wayne_NLP_mT5
2
null
transformers
23,006
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: Wayne_NLP_mT5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wayne_NLP_mT5 This model was trained only english datasets. if you want trained korean + english model go to wayne_mulang_mT5. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+3fd9dcf - Datasets 1.18.3 - Tokenizers 0.11.0
Doogie/ke-t5-base-ko-AIHub-paper-summary
979c9f32bbbfcecf7ce5bf1d47770bd83f6e6f09
2021-12-27T08:03:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Doogie
null
Doogie/ke-t5-base-ko-AIHub-paper-summary
2
null
transformers
23,007
Entry not found
Doohae/roberta
9e73137a4806394808c735e018370549f7822e86
2021-12-03T05:29:34.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Doohae
null
Doohae/roberta
2
null
transformers
23,008
Model for Extraction-based MRC original model : klue/roberta-large Designed for ODQA Competition
Dragoniod1596/DialoGPT-small-Legacies
0e570380ff3d0d8d64261b2078bf595d4167bf12
2021-10-15T13:13:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dragoniod1596
null
Dragoniod1596/DialoGPT-small-Legacies
2
null
transformers
23,009
--- tags: - conversational --- # Legacies DialoGPT Model
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10
2f55395d73f0d69791472aa8b7e7437c5fa17819
2022-03-24T11:56:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "br", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10
2
null
transformers
23,010
--- language: - br license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-br-d10 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: br metrics: - type: wer value: 0.5230357484228637 name: Test WER - name: Test CER type: cer value: 0.1880661144228536 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: br metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d10 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1382 - Wer: 0.4895 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d10 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.611 | 0.68 | 100 | 5.8492 | 1.0 | | 3.8176 | 1.35 | 200 | 3.2181 | 1.0 | | 3.0457 | 2.03 | 300 | 3.0902 | 1.0 | | 2.2632 | 2.7 | 400 | 1.4882 | 0.9426 | | 1.1965 | 3.38 | 500 | 1.1396 | 0.7950 | | 0.984 | 4.05 | 600 | 1.0216 | 0.7583 | | 0.8036 | 4.73 | 700 | 1.0258 | 0.7202 | | 0.7061 | 5.41 | 800 | 0.9710 | 0.6820 | | 0.689 | 6.08 | 900 | 0.9731 | 0.6488 | | 0.6063 | 6.76 | 1000 | 0.9442 | 0.6569 | | 0.5215 | 7.43 | 1100 | 1.0221 | 0.6671 | | 0.4965 | 8.11 | 1200 | 0.9266 | 0.6181 | | 0.4321 | 8.78 | 1300 | 0.9050 | 0.5991 | | 0.3762 | 9.46 | 1400 | 0.9801 | 0.6134 | | 0.3747 | 10.14 | 1500 | 0.9210 | 0.5747 | | 0.3554 | 10.81 | 1600 | 0.9720 | 0.6051 | | 0.3148 | 11.49 | 1700 | 0.9672 | 0.6099 | | 0.3176 | 12.16 | 1800 | 1.0120 | 0.5966 | | 0.2915 | 12.84 | 1900 | 0.9490 | 0.5653 | | 0.2696 | 13.51 | 2000 | 0.9394 | 0.5819 | | 0.2569 | 14.19 | 2100 | 1.0197 | 0.5667 | | 0.2395 | 14.86 | 2200 | 0.9771 | 0.5608 | | 0.2367 | 15.54 | 2300 | 1.0516 | 0.5678 | | 0.2153 | 16.22 | 2400 | 1.0097 | 0.5679 | | 0.2092 | 16.89 | 2500 | 1.0143 | 0.5430 | | 0.2046 | 17.57 | 2600 | 1.0884 | 0.5631 | | 0.1937 | 18.24 | 2700 | 1.0113 | 0.5648 | | 0.1752 | 18.92 | 2800 | 1.0056 | 0.5470 | | 0.164 | 19.59 | 2900 | 1.0340 | 0.5508 | | 0.1723 | 20.27 | 3000 | 1.0743 | 0.5615 | | 0.1535 | 20.95 | 3100 | 1.0495 | 0.5465 | | 0.1432 | 21.62 | 3200 | 1.0390 | 0.5333 | | 0.1561 | 22.3 | 3300 | 1.0798 | 0.5590 | | 0.1384 | 22.97 | 3400 | 1.1716 | 0.5449 | | 0.1359 | 23.65 | 3500 | 1.1154 | 0.5420 | | 0.1356 | 24.32 | 3600 | 1.0883 | 0.5387 | | 0.1355 | 25.0 | 3700 | 1.1114 | 0.5504 | | 0.1158 | 25.68 | 3800 | 1.1171 | 0.5388 | | 0.1166 | 26.35 | 3900 | 1.1335 | 0.5403 | | 0.1165 | 27.03 | 4000 | 1.1374 | 0.5248 | | 0.1064 | 27.7 | 4100 | 1.0336 | 0.5298 | | 0.0987 | 28.38 | 4200 | 1.0407 | 0.5216 | | 0.104 | 29.05 | 4300 | 1.1012 | 0.5350 | | 0.0894 | 29.73 | 4400 | 1.1016 | 0.5310 | | 0.0912 | 30.41 | 4500 | 1.1383 | 0.5302 | | 0.0972 | 31.08 | 4600 | 1.0851 | 0.5214 | | 0.0832 | 31.76 | 4700 | 1.1705 | 0.5311 | | 0.0859 | 32.43 | 4800 | 1.0750 | 0.5192 | | 0.0811 | 33.11 | 4900 | 1.0900 | 0.5180 | | 0.0825 | 33.78 | 5000 | 1.1271 | 0.5196 | | 0.07 | 34.46 | 5100 | 1.1289 | 0.5141 | | 0.0689 | 35.14 | 5200 | 1.0960 | 0.5101 | | 0.068 | 35.81 | 5300 | 1.1377 | 0.5050 | | 0.0776 | 36.49 | 5400 | 1.0880 | 0.5194 | | 0.0642 | 37.16 | 5500 | 1.1027 | 0.5076 | | 0.0607 | 37.84 | 5600 | 1.1293 | 0.5119 | | 0.0607 | 38.51 | 5700 | 1.1229 | 0.5103 | | 0.0545 | 39.19 | 5800 | 1.1168 | 0.5103 | | 0.0562 | 39.86 | 5900 | 1.1206 | 0.5073 | | 0.0484 | 40.54 | 6000 | 1.1710 | 0.5019 | | 0.0499 | 41.22 | 6100 | 1.1511 | 0.5100 | | 0.0455 | 41.89 | 6200 | 1.1488 | 0.5009 | | 0.0475 | 42.57 | 6300 | 1.1196 | 0.4944 | | 0.0413 | 43.24 | 6400 | 1.1654 | 0.4996 | | 0.0389 | 43.92 | 6500 | 1.0961 | 0.4930 | | 0.0428 | 44.59 | 6600 | 1.0955 | 0.4938 | | 0.039 | 45.27 | 6700 | 1.1323 | 0.4955 | | 0.0352 | 45.95 | 6800 | 1.1040 | 0.4930 | | 0.0334 | 46.62 | 6900 | 1.1382 | 0.4942 | | 0.0338 | 47.3 | 7000 | 1.1264 | 0.4911 | | 0.0307 | 47.97 | 7100 | 1.1216 | 0.4881 | | 0.0286 | 48.65 | 7200 | 1.1459 | 0.4894 | | 0.0348 | 49.32 | 7300 | 1.1419 | 0.4906 | | 0.0329 | 50.0 | 7400 | 1.1382 | 0.4895 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3
625e2dd7896d173b712df159cf6a8b4ff949ed94
2022-03-24T11:52:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3
2
null
transformers
23,011
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - hi - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-d3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: vot metrics: - name: Test WER type: wer value: 0.4204111781361566 - name: Test CER type: cer value: 0.13869169624556316 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 42.04 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-d3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7988 - Wer: 0.3713 ###Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000388 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2826 | 1.36 | 200 | 3.5253 | 1.0 | | 2.7019 | 2.72 | 400 | 1.1744 | 0.7360 | | 0.7358 | 4.08 | 600 | 0.7781 | 0.5501 | | 0.4942 | 5.44 | 800 | 0.7590 | 0.5345 | | 0.4056 | 6.8 | 1000 | 0.6885 | 0.4776 | | 0.3243 | 8.16 | 1200 | 0.7195 | 0.4861 | | 0.2785 | 9.52 | 1400 | 0.7473 | 0.4930 | | 0.2448 | 10.88 | 1600 | 0.7201 | 0.4574 | | 0.2155 | 12.24 | 1800 | 0.7686 | 0.4648 | | 0.2039 | 13.6 | 2000 | 0.7440 | 0.4624 | | 0.1792 | 14.96 | 2200 | 0.7815 | 0.4658 | | 0.1695 | 16.33 | 2400 | 0.7678 | 0.4557 | | 0.1598 | 17.68 | 2600 | 0.7468 | 0.4393 | | 0.1568 | 19.05 | 2800 | 0.7440 | 0.4422 | | 0.1391 | 20.41 | 3000 | 0.7656 | 0.4317 | | 0.1283 | 21.77 | 3200 | 0.7892 | 0.4299 | | 0.1194 | 23.13 | 3400 | 0.7646 | 0.4192 | | 0.1116 | 24.49 | 3600 | 0.8156 | 0.4330 | | 0.1111 | 25.85 | 3800 | 0.7661 | 0.4322 | | 0.1023 | 27.21 | 4000 | 0.7419 | 0.4276 | | 0.1007 | 28.57 | 4200 | 0.8488 | 0.4245 | | 0.0925 | 29.93 | 4400 | 0.8062 | 0.4070 | | 0.0918 | 31.29 | 4600 | 0.8412 | 0.4218 | | 0.0813 | 32.65 | 4800 | 0.8045 | 0.4087 | | 0.0805 | 34.01 | 5000 | 0.8411 | 0.4113 | | 0.0774 | 35.37 | 5200 | 0.7664 | 0.3943 | | 0.0666 | 36.73 | 5400 | 0.8082 | 0.3939 | | 0.0655 | 38.09 | 5600 | 0.7948 | 0.4000 | | 0.0617 | 39.45 | 5800 | 0.8084 | 0.3932 | | 0.0606 | 40.81 | 6000 | 0.8223 | 0.3841 | | 0.0569 | 42.18 | 6200 | 0.7892 | 0.3832 | | 0.0544 | 43.54 | 6400 | 0.8326 | 0.3834 | | 0.0508 | 44.89 | 6600 | 0.7952 | 0.3774 | | 0.0492 | 46.26 | 6800 | 0.7923 | 0.3756 | | 0.0459 | 47.62 | 7000 | 0.7925 | 0.3701 | | 0.0423 | 48.98 | 7200 | 0.7988 | 0.3713 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1
f121e9452644f27af97d2a3ab286030ac47b5c57
2022-03-24T11:56:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1
2
null
transformers
23,012
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4393 - name: Test CER type: cer value: 0.1036 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - Wer: 0.4402 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.972 | 3.23 | 100 | 3.7498 | 1.0 | | 3.3401 | 6.45 | 200 | 3.2320 | 1.0 | | 3.2046 | 9.68 | 300 | 3.1741 | 0.9806 | | 2.4031 | 12.9 | 400 | 1.0579 | 0.8996 | | 1.0427 | 16.13 | 500 | 0.7989 | 0.7557 | | 0.741 | 19.35 | 600 | 0.6405 | 0.6299 | | 0.5699 | 22.58 | 700 | 0.6129 | 0.5928 | | 0.4607 | 25.81 | 800 | 0.6548 | 0.5695 | | 0.3827 | 29.03 | 900 | 0.6268 | 0.5190 | | 0.3282 | 32.26 | 1000 | 0.5919 | 0.5016 | | 0.2764 | 35.48 | 1100 | 0.5953 | 0.4805 | | 0.2335 | 38.71 | 1200 | 0.5717 | 0.4728 | | 0.2106 | 41.94 | 1300 | 0.5674 | 0.4569 | | 0.1859 | 45.16 | 1400 | 0.5685 | 0.4502 | | 0.1592 | 48.39 | 1500 | 0.5684 | 0.4402 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2
368adc84067e85cffae452eb08020e12124b69e6
2022-03-24T11:56:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2
2
null
transformers
23,013
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4654228855721393 - name: Test CER type: cer value: 0.11351049990708047 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.5328 - Wer: 0.4596 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.5979 | 3.23 | 100 | 3.5602 | 1.0 | | 3.303 | 6.45 | 200 | 3.2238 | 1.0 | | 3.2034 | 9.68 | 300 | 3.2002 | 0.9888 | | 2.7986 | 12.9 | 400 | 1.2408 | 0.9210 | | 1.3869 | 16.13 | 500 | 0.7973 | 0.7462 | | 1.0228 | 19.35 | 600 | 0.6722 | 0.6788 | | 0.8311 | 22.58 | 700 | 0.6100 | 0.6150 | | 0.717 | 25.81 | 800 | 0.6236 | 0.6013 | | 0.6264 | 29.03 | 900 | 0.6031 | 0.5575 | | 0.5494 | 32.26 | 1000 | 0.5656 | 0.5309 | | 0.4781 | 35.48 | 1100 | 0.5289 | 0.4996 | | 0.4311 | 38.71 | 1200 | 0.5375 | 0.4768 | | 0.3902 | 41.94 | 1300 | 0.5246 | 0.4703 | | 0.3508 | 45.16 | 1400 | 0.5382 | 0.4696 | | 0.3199 | 48.39 | 1500 | 0.5328 | 0.4596 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-kk-with-LM
11eae4c4a5518393cf981cc9d7d7781b2149688f
2022-03-24T11:52:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "kk", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-kk-with-LM
2
null
transformers
23,014
--- language: - kk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - kk - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-kk-with-LM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 0.4355 - name: Test CER type: cer value: 0.10469915859660263 - name: Test WER (+LM) type: wer value: 0.417 - name: Test CER (+LM) type: cer value: 0.10319098269566598 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: kk metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: kk metrics: - name: Test WER type: wer value: 41.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: kk metrics: - name: Test WER type: wer value: 67.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 0.451 # Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-kk-with-LM --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Kazakh language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.6799 | 9.09 | 200 | 3.6119 | 1.0 | | 3.1332 | 18.18 | 400 | 2.5352 | 1.005 | | 1.0465 | 27.27 | 600 | 0.6169 | 0.682 | | 0.3452 | 36.36 | 800 | 0.6572 | 0.607 | | 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 | | 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 | | 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 | | 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 | | 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 | | 0.087 | 90.89 | 2000 | 0.7199 | 0.521 | | 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 | | 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 | | 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 | | 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 | | 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 | | 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Command !python eval.py \ --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 \ --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs
DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1
1777871a3a5ca946f9030f8947c997a41bf0c4fa
2022-03-24T11:52:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1
2
null
transformers
23,015
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - pa-IN - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-pa-IN-dx1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pa-IN metrics: - name: Test WER type: wer value: 0.48725989807918463 - name: Test CER type: cer value: 0.1687305197540224 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pa-IN metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0855 - Wer: 0.4755 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4607 | 9.26 | 500 | 2.7746 | 1.0416 | | 0.3442 | 18.52 | 1000 | 0.9114 | 0.5911 | | 0.2213 | 27.78 | 1500 | 0.9687 | 0.5751 | | 0.1242 | 37.04 | 2000 | 1.0204 | 0.5461 | | 0.0998 | 46.3 | 2500 | 1.0250 | 0.5233 | | 0.0727 | 55.56 | 3000 | 1.1072 | 0.5382 | | 0.0605 | 64.81 | 3500 | 1.0588 | 0.5073 | | 0.0458 | 74.07 | 4000 | 1.0818 | 0.5069 | | 0.0338 | 83.33 | 4500 | 1.0948 | 0.5108 | | 0.0223 | 92.59 | 5000 | 1.0986 | 0.4775 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-kk-n2
a3503fd07ee232e8656f5a3328164b52d12c82c0
2022-03-24T11:54:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "kk", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-300m-kk-n2
2
null
transformers
23,016
--- language: - kk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - kk - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-kk-n2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tt metrics: - name: Test WER type: wer value: 0.4355 - name: Test CER type: cer value: 0.10469915859660263 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 0.451 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Kazakh language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.6799 | 9.09 | 200 | 3.6119 | 1.0 | | 3.1332 | 18.18 | 400 | 2.5352 | 1.005 | | 1.0465 | 27.27 | 600 | 0.6169 | 0.682 | | 0.3452 | 36.36 | 800 | 0.6572 | 0.607 | | 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 | | 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 | | 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 | | 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 | | 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 | | 0.087 | 90.89 | 2000 | 0.7199 | 0.521 | | 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 | | 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 | | 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 | | 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 | | 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 | | 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-mt-o1
e209a6297d63c7d0f0265340804da656eb7e3ea4
2022-03-24T11:57:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-300m-mt-o1
2
null
transformers
23,017
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-mt-o1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt metrics: - name: Test WER type: wer value: 0.2378369069146646 - name: Test CER type: cer value: 0.050364163712536256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mt metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1987 - Wer: 0.1920 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Maltese language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1721 | 18.02 | 2000 | 0.3831 | 0.4066 | | 0.7849 | 36.04 | 4000 | 0.2191 | 0.2417 | | 0.6723 | 54.05 | 6000 | 0.2056 | 0.2134 | | 0.6015 | 72.07 | 8000 | 0.2008 | 0.2031 | | 0.5386 | 90.09 | 10000 | 0.1967 | 0.1953 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
c18e9118724b13320d97a2b810f6061b38473b96
2022-03-23T18:35:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "rm-sursilv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
2
null
transformers
23,018
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-rm-sursilv-d11 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: rm-sursilv metrics: - type: wer value: 0.24094169578811844 name: Test WER - name: Test CER type: cer value: 0.049832791672554284 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: rm-sursilv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 0.2415 #### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 125.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 | | 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 | | 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 | | 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 | | 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 | | 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 | | 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1
0085fe6a858a974f8c2128ff737a16bbdf2232e0
2022-03-24T11:57:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "rm-vallader", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1
2
null
transformers
23,019
--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - rm-vallader - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-rm-vallader-d1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-vallader metrics: - name: Test WER type: wer value: 0.26472007722007723 - name: Test CER type: cer value: 0.05860608074430969 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 0.2831 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1 --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Vallader language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.927 | 15.15 | 500 | 2.9196 | 1.0 | | 1.3835 | 30.3 | 1000 | 0.5879 | 0.5866 | | 0.7415 | 45.45 | 1500 | 0.3077 | 0.3316 | | 0.5575 | 60.61 | 2000 | 0.2735 | 0.2954 | | 0.4581 | 75.76 | 2500 | 0.2707 | 0.2802 | | 0.3977 | 90.91 | 3000 | 0.2785 | 0.2809 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-sl-a2
15a0866dd66aa8f59734895ee6f947935e9bc110
2022-03-24T11:57:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-sl-a2
2
null
transformers
23,020
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-sl-a2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: 0.560722380639029 - name: Test CER type: cer value: 0.2279626093074681 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 56.07 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 56.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ##Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
EasthShin/Chatbot-LisaSimpson-DialoGPT
575b7cdca4406fd38619563e754a27da546c65f0
2021-07-27T09:43:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
EasthShin
null
EasthShin/Chatbot-LisaSimpson-DialoGPT
2
null
transformers
23,021
Entry not found
Ebtihal/AraDiaBERTo_V1
a1a25afe637b00847db26a6b15ac04c48aac892b
2021-09-17T14:04:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraDiaBERTo_V1
2
null
transformers
23,022
Entry not found
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian
4b1e5ac99ae6535f9857936d3b9ae388541e9aec
2022-07-17T17:39:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "russian-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian
2
2
transformers
23,023
--- language: ru datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - ru - russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and M-AILABS in Russian results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 24.80 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and M-AILABS in Russian [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using the Common Voice 7.0 and M-AILABS. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Einmalumdiewelt/T5-Large_GNAD
2b1c2f725e1fbb4f09bd138bd82061894eeb4263
2022-01-13T14:48:46.000Z
[ "pytorch", "t5", "text2text-generation", "de", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Einmalumdiewelt
null
Einmalumdiewelt/T5-Large_GNAD
2
null
transformers
23,024
--- language: - de license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-Large_GNAD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-Large_GNAD This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4908 - Rouge1: 23.7414 - Rouge2: 8.4496 - Rougel: 16.7827 - Rougelsum: 19.8331 - Gen Len: 53.14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
EleutherAI/enformer-191k
2452a8c484d5dcf9290f5400dc0dc448517b72c8
2022-02-23T12:18:31.000Z
[ "pytorch", "enformer", "transformers", "license:apache-2.0" ]
null
false
EleutherAI
null
EleutherAI/enformer-191k
2
1
transformers
23,025
--- license: apache-2.0 inference: false --- # Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.45. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
Emi2160/DialoGPT-small-Neku
23b31e63815f7d61ff93e377c836a9015eae67c9
2021-06-03T14:04:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Emi2160
null
Emi2160/DialoGPT-small-Neku
2
null
transformers
23,026
--- tags: - conversational --- # My Awesome Model
EmileAjar/DialoGPT-small-harrypotter
0ecbbd86635a65c31225d7fbc6e6b4e55096a4e1
2021-08-28T00:29:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
EmileAjar
null
EmileAjar/DialoGPT-small-harrypotter
2
null
transformers
23,027
--- tags : - conversational --- # Harry Potter DialoGPT Model
Emran/ClinicalBERT_ICD10_Full_200_epoch
acda3f8ca744e2a97173f71548c282b694f5f7e9
2021-10-13T10:57:15.000Z
[ "pytorch", "bert", "transformers" ]
null
false
Emran
null
Emran/ClinicalBERT_ICD10_Full_200_epoch
2
null
transformers
23,028
Entry not found
Erfan/mT5-base_Farsi_Title_Generator_plus
e56692735a2b28617161def5247f99310a773f64
2022-02-10T13:43:30.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Erfan
null
Erfan/mT5-base_Farsi_Title_Generator_plus
2
1
transformers
23,029
Entry not found
Erfan/mT5-small_Farsi_Title_Generator
b5562ce5028a2fe9553b5e9ef52d569f3ec6c3c9
2021-12-11T17:06:05.000Z
[ "pytorch", "mt5", "text2text-generation", "fa", "transformers", "Title-Generation", "autotrain_compatible" ]
text2text-generation
false
Erfan
null
Erfan/mT5-small_Farsi_Title_Generator
2
1
transformers
23,030
--- language: - fa tags: - Title-Generation metrics: - ROUGH ---
EstoyDePaso/DialoGPT-small-harrypotter
503c7390ce9ff0b81da7fe28bcc01f9fe90e5145
2021-09-19T19:04:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
EstoyDePaso
null
EstoyDePaso/DialoGPT-small-harrypotter
2
null
transformers
23,031
--- tags: - conversational --- # Harry Potter DialoGPT Model
Evgen/model_awara_text
765df7b8e6df26c378dc64b0d6352bed0f9fb878
2022-02-09T07:56:40.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Evgen
null
Evgen/model_awara_text
2
null
transformers
23,032
Entry not found
Exilon/DialoGPT-large-quirk
02c8b42ceda9fb042ee4b5434c6e18e32eb6d3f1
2021-12-08T09:37:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Exilon
null
Exilon/DialoGPT-large-quirk
2
null
transformers
23,033
--- tags: - conversational --- # Quirk DialoGPT Model
EzioDD/house
820d408b33d56e1dd9358063666d5d2d030dad5c
2021-12-31T09:41:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
EzioDD
null
EzioDD/house
2
null
transformers
23,034
--- tags: - conversational --- #house small GPT
FFF000/dialogpt-FFF
b690e50949a48a431cd6f5559baa47478fc7b13f
2021-12-22T13:21:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
FFF000
null
FFF000/dialogpt-FFF
2
null
transformers
23,035
--- tags: conversational --- # FFF dialog model
FOFer/distilbert-base-uncased-finetuned-squad
f184653a482d15b06332310fc1022f1418b2d0ba
2022-02-23T04:37:46.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FOFer
null
FOFer/distilbert-base-uncased-finetuned-squad
2
null
transformers
23,036
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2169 | 1.0 | 8235 | 1.1950 | | 0.9396 | 2.0 | 16470 | 1.2540 | | 0.7567 | 3.0 | 24705 | 1.4306 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Film8844/wangchanberta-ner
95d1a6201412ce0a779dea66327d15863cd7ef08
2022-02-15T03:48:10.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Film8844
null
Film8844/wangchanberta-ner
2
null
transformers
23,037
Entry not found
Finnish-NLP/electra-base-generator-finnish
5e18a40e71b475212511eef55e538f0db186970d
2022-06-13T16:14:44.000Z
[ "pytorch", "electra", "fill-mask", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "transformers", "finnish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Finnish-NLP
null
Finnish-NLP/electra-base-generator-finnish
2
null
transformers
23,038
--- language: - fi license: apache-2.0 tags: - finnish - electra datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia widget: - text: "Moikka olen [MASK] kielimalli." --- # ELECTRA for Finnish Pretrained ELECTRA model on Finnish language using a replaced token detection (RTD) objective. ELECTRA was introduced in [this paper](https://openreview.net/pdf?id=r1xMH1BtvB) and first released at [this page](https://github.com/google-research/electra). **Note**: this model is the ELECTRA generator model intented to be used for the fill-mask task. The ELECTRA discriminator model intented to be used for fine-tuning on downstream tasks like text classification is released here [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish) ## Model description Finnish ELECTRA is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN). This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ELECTRA model as inputs. ## Intended uses & limitations You can use this generator model mainly just for the fill-mask task. For other tasks, check the [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish) model instead. ### How to use Here is how to use this model directly with a pipeline for fill-mask task: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Finnish-NLP/electra-base-generator-finnish') >>> unmasker("Moikka olen [MASK] kielimalli.") [{'score': 0.0708453431725502, 'token': 4619, 'token_str': 'suomalainen', 'sequence': 'Moikka olen suomalainen kielimalli.'}, {'score': 0.042563650757074356, 'token': 1153, 'token_str': 'uusi', 'sequence': 'Moikka olen uusi kielimalli.'}, {'score': 0.03219178691506386, 'token': 591, 'token_str': 'hyvä', 'sequence': 'Moikka olen hyvä kielimalli.'}, {'score': 0.03175133094191551, 'token': 3134, 'token_str': 'vanha', 'sequence': 'Moikka olen vanha kielimalli.'}, {'score': 0.019662367179989815, 'token': 25583, 'token_str': 'ranskalainen', 'sequence': 'Moikka olen ranskalainen kielimalli.'}] ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish ELECTRA model was pretrained on the combination of five datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 2e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after. Training code was from the official [ELECTRA repository](https://github.com/google-research/electra) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/electra/CHEATSHEET.md). ## Evaluation results For evaluation results, check the [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish) model repository instead. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Firat/distilbert-base-uncased-finetuned-squad
8f1fb3d867effd2f9d7f71fabb2299f28451e297
2022-01-26T19:05:23.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Firat
null
Firat/distilbert-base-uncased-finetuned-squad
2
null
transformers
23,039
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2856 | 1.0 | 2767 | 1.1919 | | 1.012 | 2.0 | 5534 | 1.1332 | | 0.8512 | 3.0 | 8301 | 1.1460 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.18.0 - Tokenizers 0.10.3
FirmanBr/FirmanBrilianBert
33388e51dc2f9839cacb309e0818d7e13962cba2
2021-05-18T18:35:52.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
FirmanBr
null
FirmanBr/FirmanBrilianBert
2
null
transformers
23,040
Entry not found
FirmanBr/FirmanIndoLanguageModel
6716a241c2b5c03c63bf6973db988a8509de9464
2021-05-18T18:37:51.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
FirmanBr
null
FirmanBr/FirmanIndoLanguageModel
2
null
transformers
23,041
Entry not found
FitoDS/xls-r-ab-test
92ad3cab4ee90a4b226b48dcc7bfbbe9c044bca5
2022-01-25T13:49:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
FitoDS
null
FitoDS/xls-r-ab-test
2
null
transformers
23,042
--- language: - ab tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - AB dataset. It achieves the following results on the evaluation set: - Loss: 133.5167 - Wer: 18.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
FosterPatch/GoT-test
c7ea37e4ef7593eba404a6bff29c30590e7ca726
2021-10-22T22:22:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
FosterPatch
null
FosterPatch/GoT-test
2
null
transformers
23,043
--- tags: - conversational --- # Chat Bot Test
Francesco/resnet101-224-1k
3096dc19a0ac27ea94f5af1ba1f44bca7537da2e
2022-02-23T11:52:02.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet101-224-1k
2
null
transformers
23,044
Entry not found
Francesco/resnet26-224-1k
b55f30d2b50829164425846535f40cdfedfa2f95
2022-02-23T11:49:59.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet26-224-1k
2
null
transformers
23,045
Entry not found
Frederick0291/t5-small-finetuned-billsum
be9187abf042c6fe559f5002187ce42b2550190e
2021-09-21T08:33:18.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:billsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Frederick0291
null
Frederick0291/t5-small-finetuned-billsum
2
null
transformers
23,046
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: t5-small-finetuned-billsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum args: default metrics: - name: Rouge1 type: rouge value: 16.6044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.0972 - Rouge1: 16.6044 - Rouge2: 12.8656 - Rougel: 15.7876 - Rougelsum: 15.9784 - Gen Len: 18.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.3854 | 1.0 | 2369 | 2.0972 | 16.6044 | 12.8656 | 15.7876 | 15.9784 | 18.9948 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Frederick0291/t5-small-finetuned-xsum
474139923b2abd64e49cb3ec2da8f5d4479816c7
2021-09-20T12:01:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Frederick0291
null
Frederick0291/t5-small-finetuned-xsum
2
null
transformers
23,047
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum-finetuned-billsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-finetuned-billsum This model is a fine-tuned version of [Frederick0291/t5-small-finetuned-xsum](https://huggingface.co/Frederick0291/t5-small-finetuned-xsum) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 330 | 1.8540 | 32.9258 | 14.9104 | 27.1067 | 27.208 | 18.8437 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
FutureFanatik/DialoGPT-small-rick
48afbc415d3d378670129d629100ddd323d62d81
2021-07-07T04:50:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
FutureFanatik
null
FutureFanatik/DialoGPT-small-rick
2
null
transformers
23,048
Entry not found
GKLMIP/electra-khmer-base-uncased
43981afa6280478659b5da14c0986df7c83245a4
2021-07-31T05:29:24.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-khmer-base-uncased
2
null
transformers
23,049
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/roberta-hindi-devanagari
01638bde90af5e599d33b30502208648a874b64f
2021-10-13T13:44:42.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/roberta-hindi-devanagari
2
null
transformers
23,050
If you use our model, please consider citing our paper: ``` @InProceedings{, author="Huang, Xixuan and Lin, Nankai and Li, Kexin and Wang, Lianxi and Gan SuiFu", title="HinPLMs: Pre-trained Language Models for Hindi", booktitle="The International Conference on Asian Language Processing", year="2021", publisher="IEEE Xplore" } ```
GPL/bioasq-1m-tsdae-msmarco-distilbert-margin-mse
939b5b1ca2be943794b05cf86d30ab5fe2f3ab06
2022-04-19T16:49:04.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/bioasq-1m-tsdae-msmarco-distilbert-margin-mse
2
null
transformers
23,051
Entry not found
GPL/cqadupstack-msmarco-distilbert-gpl
6d12956e518a1c997e282b3254b5a668a737e63f
2022-04-19T15:19:20.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/cqadupstack-msmarco-distilbert-gpl
2
null
sentence-transformers
23,052
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/cqadupstack-tsdae-msmarco-distilbert-gpl
41146c3835ea43fa9eead473b834ba93fe367ca4
2022-04-19T15:30:49.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/cqadupstack-tsdae-msmarco-distilbert-gpl
2
null
sentence-transformers
23,053
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/trec-covid-v2-tsdae-msmarco-distilbert-margin-mse
1e17d93a81469a87506de6deedb95fd934aa4b55
2022-04-19T16:49:32.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/trec-covid-v2-tsdae-msmarco-distilbert-margin-mse
2
null
transformers
23,054
Entry not found
Gabriel/paraphrase-multi-mpnet-base-atkins
1eaa31465ca066c3ba94b49f50e41feb9a1ba92a
2021-07-22T13:36:01.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Gabriel
null
Gabriel/paraphrase-multi-mpnet-base-atkins
2
null
sentence-transformers
23,055
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1526 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Galuh/wav2vec2-large-xlsr-indonesian
82bbac6b4566ca3f6f5fc3ca5d083cf63a3754d3
2021-07-05T14:21:19.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "id", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Galuh
null
Galuh/wav2vec2-large-xlsr-indonesian
2
1
transformers
23,056
--- language: id datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Indonesian by Galuh results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice id type: common_voice args: id metrics: - name: Test WER type: wer value: 21.07 --- # Wav2Vec2-Large-XLSR-Indonesian This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 18.32 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/galuhsahid/wav2vec2-indonesian) (will be available soon)
Galuh/xlsr-indonesian
f6f8eb90a12bcae47cd9bdf20f6f389f3ab680df
2021-07-05T14:23:33.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Galuh
null
Galuh/xlsr-indonesian
2
null
transformers
23,057
Entry not found
Gantenbein/ADDI-CH-RoBERTa
efe56ae4e09394789879dfe9dea4f1f7814f45c8
2021-06-01T13:54:05.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-CH-RoBERTa
2
null
transformers
23,058
Entry not found
Gantenbein/ADDI-FI-GPT2
9f926ca25b438424f288e6448bf7a17a9dc596d9
2021-06-01T14:11:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gantenbein
null
Gantenbein/ADDI-FI-GPT2
2
null
transformers
23,059
Entry not found
Gantenbein/ADDI-IT-GPT2
060a8d4deecb6e8dd1f14de834a333126652f8d5
2021-06-01T14:25:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gantenbein
null
Gantenbein/ADDI-IT-GPT2
2
null
transformers
23,060
Entry not found
Gantenbein/ADDI-IT-RoBERTa
0236f56f1121dffcf100d4d4c894855c3a749c4d
2021-06-01T14:25:12.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-IT-RoBERTa
2
null
transformers
23,061
Entry not found
Gappy/DialoGPT-small-Zhongli
4d8dc71ec00406eb5a8e605cdcd151f29c1e206c
2021-09-06T02:34:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Gappy
null
Gappy/DialoGPT-small-Zhongli
2
null
transformers
23,062
--- tags: - conversational --- # Zhongli DialoGPT Model
Gastron/asr-crdnn-librispeech
5aa5a52d9d8a87463ae40d3d8a2c5443bf9945ee
2021-02-26T15:23:04.000Z
[ "en", "dataset:librispeech", "ASR", "CTC", "Attention", "pytorch", "license:apache-2.0" ]
null
false
Gastron
null
Gastron/asr-crdnn-librispeech
2
null
null
23,063
--- language: "en" thumbnail: tags: - ASR - CTC - Attention - pytorch license: "apache-2.0" datasets: - librispeech metrics: - wer - cer --- # CRDNN with CTC/Attention and RNNLM trained on LibriSpeech This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on LibriSpeech (EN) within SpeechBrain. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given ASR model performance are: | Release | hyperparams file | Test WER | Model link | GPUs | |:-------------:|:---------------------------:| -----:| -----:| --------:| | 20-05-22 | BPE_1000.yaml | 3.08 | Not Available | 1xV100 32GB | | 20-05-22 | BPE_5000.yaml | 2.89 | Not Available | 1xV100 32GB | ## Pipeline description This ASR system is composed with 3 different but linked blocks: 1. Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. 2. Neural language model (RNNLM) trained on the full 10M words dataset. 3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalisation and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. ## Intended uses & limitations This model has been primilarly developed to be run within SpeechBrain as a pretrained ASR model for the english language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks detailed above can be extracted and connected to you custom pipeline as long as SpeechBrain is installed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install \\we hide ! SpeechBrain is still private :p ``` Also, for this model, you need SentencePiece. Install with ``` pip install sentencepiece ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="Gastron/asr-crdnn-librispeech") asr_model.transcribe_file("path_to_your_file.wav") ``` ### Obtaining encoded features The SpeechBrain EncoderDecoderASR() class also provides an easy way to encode the speech signal without running the decoding phase by calling ``EncoderDecoderASR.encode_batch()`` #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/speechbrain/speechbrain}}, } ```
GenDelport/DialoGPT-small-harrypotter
fb1f22b02d751dd7cc1569751c1d4c352464fa05
2021-09-03T10:59:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
GenDelport
null
GenDelport/DialoGPT-small-harrypotter
2
null
transformers
23,064
--- tags: - conversational --- #Harry Potter DialoGPT Model
Geotrend/bert-base-en-fr-da-ja-vi-cased
71f618d9117833262b27aac3d3c88f4a50d80b9b
2021-05-18T19:17:37.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-da-ja-vi-cased
2
null
transformers
23,065
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-da-ja-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-da-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-da-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-lt-no-pl-cased
a8b3f756feedc85f96f33fe759f4270e70d0a3ff
2021-05-18T19:25:38.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-lt-no-pl-cased
2
null
transformers
23,066
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-lt-no-pl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-lt-no-pl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-lt-no-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-it-cased
72d9a5cf8570ad18f06b8bb77e64477486ba7a05
2021-05-18T19:32:13.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-it-cased
2
null
transformers
23,067
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-lt-cased
c9bd56e49e971fb6a5e439d26d9390840732f2dd
2021-05-18T19:38:31.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-lt-cased
2
null
transformers
23,068
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-lt-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-lt-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-lt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-no-cased
d6e909aec37efb6e101ebf1800c2a1205751aea8
2021-05-18T19:40:40.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-no-cased
2
null
transformers
23,069
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-no-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-no-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-ja-cased
5c7f7560b2aadda499a0ac10c1fb41e86b462290
2021-05-18T19:59:21.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-ja-cased
2
null
transformers
23,070
--- language: ja datasets: wikipedia license: apache-2.0 --- # bert-base-ja-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ja-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-bg-cased
323e10664c9cee3ebebdc4843a283e24af25c693
2021-08-16T13:25:28.000Z
[ "pytorch", "distilbert", "fill-mask", "bg", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-bg-cased
2
null
transformers
23,071
--- language: bg datasets: wikipedia license: apache-2.0 --- # distilbert-base-bg-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-bg-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-el-cased
dd57977d64ccc470381a6a78244b2c78c5e6af59
2021-08-16T13:17:43.000Z
[ "pytorch", "distilbert", "fill-mask", "el", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-el-cased
2
null
transformers
23,072
--- language: el datasets: wikipedia license: apache-2.0 --- # distilbert-base-el-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-el-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-bg-cased
f9e571f75c2594fbfbc63ea90fce85172b09a4dd
2021-08-16T14:06:03.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-bg-cased
2
null
transformers
23,073
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-bg-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-bg-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-da-cased
216e0be2c16626c14461b17aad12118a791b8a83
2021-07-29T10:29:09.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-da-cased
2
null
transformers
23,074
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-da-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-da-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-ar-cased
6dcb66288e834c5d6649f9f35175b2d9de3fc69d
2021-07-27T12:29:21.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-ar-cased
2
null
transformers
23,075
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-uk-el-ro-cased
c638ac53446028684f6f68a7931ffa61e5053346
2021-07-28T13:34:16.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-uk-el-ro-cased
2
1
transformers
23,076
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-uk-el-ro-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-uk-el-ro-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-uk-el-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-zh-cased
c79c91029c5fcfcf34707f3e26f83e77f6a2f008
2021-07-28T12:29:43.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-zh-cased
2
null
transformers
23,077
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-zh-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-zh-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-pt-cased
f6611bb4e0e87d191cb5d1ca27030dc011c1f87b
2021-07-29T10:53:12.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-pt-cased
2
null
transformers
23,078
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-pt-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-pt-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-pt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-sw-cased
44a731342050f180223ba131bce366c7ec00964b
2021-08-16T13:49:20.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-sw-cased
2
null
transformers
23,079
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-sw-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-sw-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-sw-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-vi-cased
bd39086e3dc2e66859f0b9a3b377eb62b6a8655b
2021-08-16T13:45:28.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-vi-cased
2
null
transformers
23,080
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-it-cased
c5201e9308ca4b5c63965ffeb4e1b226cd9a6df3
2021-07-27T07:08:03.000Z
[ "pytorch", "distilbert", "fill-mask", "it", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-it-cased
2
1
transformers
23,081
--- language: it datasets: wikipedia license: apache-2.0 --- # distilbert-base-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-lt-cased
120fdff0f4996dba5125cdb3aff88c4dd1558931
2021-07-27T08:43:07.000Z
[ "pytorch", "distilbert", "fill-mask", "lt", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-lt-cased
2
null
transformers
23,082
--- language: lt datasets: wikipedia license: apache-2.0 --- # distilbert-base-lt-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-lt-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-lt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-no-cased
b16afc0586b623fbf1ccea573e25954c274e6542
2021-07-27T09:05:34.000Z
[ "pytorch", "distilbert", "fill-mask", "no", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-no-cased
2
null
transformers
23,083
--- language: no datasets: wikipedia license: apache-2.0 --- # distilbert-base-no-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-no-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-tr-cased
9c97458cc862e614e242d7d84e5700146b736d0d
2021-08-16T13:20:04.000Z
[ "pytorch", "distilbert", "fill-mask", "tr", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-tr-cased
2
null
transformers
23,084
--- language: tr datasets: wikipedia license: apache-2.0 --- # distilbert-base-tr-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-tr-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-tr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Gigworks/ASR_id
f07b56be72e9340c0664ff9b3e294c6b14f453f4
2021-10-22T07:28:30.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Gigworks
null
Gigworks/ASR_id
2
null
transformers
23,085
# Wav2Vec2-Large-XLSR-Indonesian Fine-tuned: facebook/wav2vec2-large-xlsr-53
GusNicho/distilbert-base-cased-finetuned
5f55c0fcae35241adc1c48224e476ce3c6caf47a
2022-01-12T07:41:34.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
GusNicho
null
GusNicho/distilbert-base-cased-finetuned
2
null
transformers
23,086
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3101 | 1.0 | 974 | 2.0502 | | 2.0831 | 2.0 | 1948 | 1.9627 | | 2.0198 | 3.0 | 2922 | 1.8998 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Haechang/t5-small-finetuned-xsum
883137eee6e5ee4def8f93eb64b5cbabed116781
2022-01-21T12:15:28.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Haechang
null
Haechang/t5-small-finetuned-xsum
2
null
transformers
23,087
Entry not found
HaitaoYang/bert_cn_bi-classification
e04bcc3a00da91ad4d98dd7c414d751a592d1a20
2021-09-04T11:14:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
HaitaoYang
null
HaitaoYang/bert_cn_bi-classification
2
null
transformers
23,088
Entry not found
Hamas/DialoGPT-large-jake
7d77c3867a357460e196cd58b45f51e55f96c158
2021-09-26T05:28:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hamas
null
Hamas/DialoGPT-large-jake
2
null
transformers
23,089
--- tags: - conversational --- # Jake DialoGPT-large-jake
HansAnonymous/DialoGPT-small-shrek
a2260161a6c331cc154dff971d6d6d96dc8130ed
2021-09-02T04:24:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HansAnonymous
null
HansAnonymous/DialoGPT-small-shrek
2
null
transformers
23,090
--- tags: - conversational --- # Shrek from Shrek DialoGPT Model
Haotian/distilgpt2-finetuned-wikitext2
07199338295b189f71f10ba951619a1472d87e49
2021-09-22T12:24:29.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Haotian
null
Haotian/distilgpt2-finetuned-wikitext2
2
null
transformers
23,091
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
HarrisDePerceptron/xls-r-300m-ur
5679334b30e2d2fd366a8db400ee787407996e01
2022-03-24T11:51:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
HarrisDePerceptron
null
HarrisDePerceptron/xls-r-300m-ur
2
null
transformers
23,092
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 47.38 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [HarrisDePerceptron/xls-r-300m-ur](https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.0517 - WER: 0.5151291512915129 - CER: 0.23689640940982254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2991 | 1.96 | 100 | 0.9769 | 0.6627 | | 1.3415 | 3.92 | 200 | 0.9701 | 0.6594 | | 1.2998 | 5.88 | 300 | 0.9678 | 0.6668 | | 1.2881 | 7.84 | 400 | 0.9650 | 0.6613 | | 1.2369 | 9.8 | 500 | 0.9392 | 0.6502 | | 1.2293 | 11.76 | 600 | 0.9536 | 0.6480 | | 1.1709 | 13.73 | 700 | 0.9265 | 0.6402 | | 1.1492 | 15.69 | 800 | 0.9636 | 0.6506 | | 1.1044 | 17.65 | 900 | 0.9305 | 0.6351 | | 1.0704 | 19.61 | 1000 | 0.9329 | 0.6280 | | 1.0039 | 21.57 | 1100 | 0.9413 | 0.6295 | | 0.9756 | 23.53 | 1200 | 0.9718 | 0.6185 | | 0.9633 | 25.49 | 1300 | 0.9731 | 0.6133 | | 0.932 | 27.45 | 1400 | 0.9659 | 0.6199 | | 0.9252 | 29.41 | 1500 | 0.9766 | 0.6196 | | 0.9172 | 31.37 | 1600 | 1.0052 | 0.6199 | | 0.8733 | 33.33 | 1700 | 0.9955 | 0.6203 | | 0.868 | 35.29 | 1800 | 1.0069 | 0.6240 | | 0.8547 | 37.25 | 1900 | 0.9783 | 0.6258 | | 0.8451 | 39.22 | 2000 | 0.9845 | 0.6052 | | 0.8374 | 41.18 | 2100 | 0.9496 | 0.6137 | | 0.8153 | 43.14 | 2200 | 0.9756 | 0.6122 | | 0.8134 | 45.1 | 2300 | 0.9712 | 0.6096 | | 0.8019 | 47.06 | 2400 | 0.9565 | 0.5970 | | 0.7746 | 49.02 | 2500 | 0.9864 | 0.6096 | | 0.7664 | 50.98 | 2600 | 0.9988 | 0.6092 | | 0.7708 | 52.94 | 2700 | 1.0181 | 0.6255 | | 0.7468 | 54.9 | 2800 | 0.9918 | 0.6148 | | 0.7241 | 56.86 | 2900 | 1.0150 | 0.6018 | | 0.7165 | 58.82 | 3000 | 1.0439 | 0.6063 | | 0.7104 | 60.78 | 3100 | 1.0016 | 0.6037 | | 0.6954 | 62.75 | 3200 | 1.0117 | 0.5970 | | 0.6753 | 64.71 | 3300 | 1.0191 | 0.6037 | | 0.6803 | 66.67 | 3400 | 1.0190 | 0.6033 | | 0.661 | 68.63 | 3500 | 1.0284 | 0.6007 | | 0.6597 | 70.59 | 3600 | 1.0060 | 0.5967 | | 0.6398 | 72.55 | 3700 | 1.0372 | 0.6048 | | 0.6105 | 74.51 | 3800 | 1.0048 | 0.6044 | | 0.6164 | 76.47 | 3900 | 1.0398 | 0.6148 | | 0.6354 | 78.43 | 4000 | 1.0272 | 0.6133 | | 0.5952 | 80.39 | 4100 | 1.0364 | 0.6081 | | 0.5814 | 82.35 | 4200 | 1.0418 | 0.6092 | | 0.6079 | 84.31 | 4300 | 1.0277 | 0.5967 | | 0.5748 | 86.27 | 4400 | 1.0362 | 0.6041 | | 0.5624 | 88.24 | 4500 | 1.0427 | 0.6007 | | 0.5767 | 90.2 | 4600 | 1.0370 | 0.5919 | | 0.5793 | 92.16 | 4700 | 1.0442 | 0.6011 | | 0.547 | 94.12 | 4800 | 1.0516 | 0.5982 | | 0.5513 | 96.08 | 4900 | 1.0461 | 0.5989 | | 0.5429 | 98.04 | 5000 | 1.0504 | 0.5996 | | 0.5404 | 100.0 | 5100 | 1.0517 | 0.5967 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Harveenchadha/vakyansh-wav2vec2-assamese-asm-8
eaf8f63ce2a5845351e27a26ec9c0c36a1482bd1
2021-12-17T17:42:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-assamese-asm-8
2
null
transformers
23,093
Entry not found
Harveenchadha/vakyansh-wav2vec2-bhojpuri-bhom-60
3802703b24e0583de4eb7067d30acf3404fd0fde
2021-12-17T17:46:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-bhojpuri-bhom-60
2
null
transformers
23,094
Entry not found
Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100
4466c36642f5bf5390aa938fa53f94b09c741285
2021-08-02T18:46:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100
2
null
transformers
23,095
Entry not found
Harveenchadha/vakyansh-wav2vec2-kannada-knm-560
0564782ee3f5a47f1db8af94bcdc942bb0d5bb29
2021-08-02T18:52:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-kannada-knm-560
2
null
transformers
23,096
Entry not found
Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8
0bddf3600b2d0f327e7316a49f265e57f7d95400
2021-12-17T17:50:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8
2
null
transformers
23,097
Entry not found
Harveenchadha/vakyansh-wav2vec2-marathi-mrm-100
82f3b0fac2c26ffd8965a031a90ad61132b233ee
2021-12-17T17:51:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-marathi-mrm-100
2
null
transformers
23,098
Entry not found
Harveenchadha/vakyansh-wav2vec2-odia-orm-100
9598398daf887755045258267702854ec8831066
2021-12-17T17:54:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-odia-orm-100
2
null
transformers
23,099
Entry not found