modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
paulopirozelli/modelo-teste
d29bc570f84514271dbfe32b28f6ae16484ee515
2022-05-30T17:05:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:yelp_review_full", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
paulopirozelli
null
paulopirozelli/modelo-teste
3
null
transformers
22,500
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full model-index: - name: modelo-teste results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo-teste This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.1553 | 0.57 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
UBC-NLP/prags1
28205491df8e257d47bc84c617c4d77e997ad440
2022-06-02T22:53:46.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
UBC-NLP
null
UBC-NLP/prags1
3
null
transformers
22,501
--- license: cc-by-nc-3.0 --- PragS1: Pragmatic Masked Language Modeling with Hashtag_end dataset followed by Emoji-Based Surrogate Fine-Tuning You can load this model and use for downstream fine-tuning. For example: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('UBC-NLP/prags1', use_fast = True) model = AutoModelForSequenceClassification.from_pretrained('UBC-NLP/prags1',num_labels=lable_size) ``` More details are in our paper: ``` @inproceedings{zhang-abdul-mageed-2022-improving, title = "Improving Social Meaning Detection with Pragmatic Masking and Surrogate Fine-Tuning", author = "Zhang, Chiyu and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment {\&} Social Media Analysis", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wassa-1.14", pages = "141--156", } ```
UBC-NLP/prags2
95c13300979256cc9e75aa4995b620e226fac406
2022-06-02T22:52:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:cc-by-nc-3.0", "autotrain_compatible" ]
fill-mask
false
UBC-NLP
null
UBC-NLP/prags2
3
null
transformers
22,502
--- license: cc-by-nc-3.0 --- PragS2: Pragmatic Masked Language Modeling with Emoji_any dataset followed by Hashtag-Based Surrogate Fine-Tuning You can load this model and use for downstream fine-tuning. For example: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('UBC-NLP/prags2', use_fast = True) model = AutoModelForSequenceClassification.from_pretrained('UBC-NLP/prags2',num_labels=lable_size) ``` More details are in our paper: ``` @inproceedings{zhang-abdul-mageed-2022-improving, title = "Improving Social Meaning Detection with Pragmatic Masking and Surrogate Fine-Tuning", author = "Zhang, Chiyu and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment {\&} Social Media Analysis", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wassa-1.14", pages = "141--156", } ```
Splend1dchan/xtreme_s_xlsr_300m_t5lephone_minds14.en-US_2
c66f1c88c20f96178ebe6473dd0af1db795dabb9
2022-05-31T00:26:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_300m_t5lephone_minds14.en-US_2
3
null
transformers
22,503
Entry not found
Splend1dchan/xtreme_s_xlsr_300m_minds14.en-US_2
8f33d5aee43affb37c43c0a84c6ed2824c117026
2022-05-31T00:59:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "en-US", "dataset:xtreme_s", "transformers", "minds14", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_300m_minds14.en-US_2
3
null
transformers
22,504
--- language: - en-US license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - xtreme_s metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_minds14.en-US_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_minds14.en-US_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset. It achieves the following results on the evaluation set: - Loss: 0.5685 - F1: 0.8747 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6195 | 3.95 | 20 | 2.6348 | 0.0172 | 0.0816 | | 2.5925 | 7.95 | 40 | 2.6119 | 0.0352 | 0.0851 | | 2.1271 | 11.95 | 60 | 2.3066 | 0.1556 | 0.1986 | | 1.2618 | 15.95 | 80 | 1.3810 | 0.6877 | 0.7128 | | 0.5455 | 19.95 | 100 | 1.0403 | 0.6992 | 0.7270 | | 0.2571 | 23.95 | 120 | 0.8423 | 0.8160 | 0.8121 | | 0.3478 | 27.95 | 140 | 0.6500 | 0.8516 | 0.8440 | | 0.0732 | 31.95 | 160 | 0.7066 | 0.8123 | 0.8156 | | 0.1092 | 35.95 | 180 | 0.5878 | 0.8767 | 0.8759 | | 0.0271 | 39.95 | 200 | 0.5994 | 0.8578 | 0.8617 | | 0.4664 | 43.95 | 220 | 0.7830 | 0.8403 | 0.8440 | | 0.0192 | 47.95 | 240 | 0.5685 | 0.8747 | 0.8759 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
GiordanoB/mt5-base-finetuned-summarization-V2
ae682a4f3e8f62997e189ae0b853252513750024
2022-05-31T16:24:46.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
GiordanoB
null
GiordanoB/mt5-base-finetuned-summarization-V2
3
null
transformers
22,505
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-summarization-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-summarization-V2 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.3409 - Rouge1: 6.1259 - Rouge2: 1.4637 - Rougel: 5.3192 - Rougelsum: 5.7739 - Gen Len: 9.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 15 | 10.0266 | 6.7528 | 2.8064 | 5.9938 | 6.4352 | 10.0 | | No log | 2.0 | 30 | 8.4159 | 6.1259 | 1.4637 | 5.3192 | 5.7739 | 10.0714 | | No log | 3.0 | 45 | 8.3409 | 6.1259 | 1.4637 | 5.3192 | 5.7739 | 9.9286 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
hunkim/sentence-transformers-klue-bert-base
4ae8cfae6a1a0e4a480cbcaff9a5c9f56c0f6cbc
2022-05-31T06:46:31.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
hunkim
null
hunkim/sentence-transformers-klue-bert-base
3
null
sentence-transformers
22,506
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # hunkim/sentence-transformers-klue-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('hunkim/sentence-transformers-klue-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hunkim/sentence-transformers-klue-bert-base') model = AutoModel.from_pretrained('hunkim/sentence-transformers-klue-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hunkim/sentence-transformers-klue-bert-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
OneFly/xlm-roberta-base-finetuned-panx-de
660305eda07c6e57b994be6499d6ce1a959b0365
2022-05-31T14:01:40.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
OneFly
null
OneFly/xlm-roberta-base-finetuned-panx-de
3
1
transformers
22,507
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/hellokitty
4629aa368b95d831c96fc3fb057e01e2724dfb88
2022-05-31T08:42:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hellokitty
3
null
transformers
22,508
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476611165157355521/-lvlmsRT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hello Kitty</div> <div style="text-align: center; font-size: 14px;">@hellokitty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hello Kitty. | Data | Hello Kitty | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 286 | | Short tweets | 117 | | Tweets kept | 2815 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32b69c39/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hellokitty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1npkfvyz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1npkfvyz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hellokitty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Jorgeutd/distilbart-cnn-12-6-finetuned-xsum
f0d48cafba853789619207c1cd61c17437fde278
2022-05-31T14:48:25.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jorgeutd
null
Jorgeutd/distilbart-cnn-12-6-finetuned-xsum
3
null
transformers
22,509
Entry not found
ceggian/sbart_pt_reddit_softmax_32
b94bffa136d8236141ea213f62539d9da22cfe93
2022-06-01T07:41:57.000Z
[ "pytorch", "bart", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbart_pt_reddit_softmax_32
3
null
sentence-transformers
22,510
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jonahank/KlimaBERT
839102649c2670de6d0938e7147aefa308a48f65
2022-06-18T11:20:26.000Z
[ "pytorch", "bert", "text-classification", "da", "danish", "arxiv:1810.04805", "transformers", "climate change", "climate-classifier", "political quotes", "klimabert" ]
text-classification
false
jonahank
null
jonahank/KlimaBERT
3
3
transformers
22,511
--- language: - da - danish tags: - climate change - climate-classifier - political quotes - klimabert --- # Identifying and Analysing political quotes from the Danish Parliament related to climate change using NLP **KlimaBERT**, a sequence-classifier fine-tuned to predict whether political quotes are climate-related. When predicting the positive class 1, "climate-related", the model achieves a F1-score of 0.97, Precision of 0.97, and Recall of 0.97. The negative class, 0, is defined as "non-climate-related". KlimaBERT is fine-tuned using the pre-trained DaBERT-uncased model, on a training set of 1.000 manually labelled data-points. The training set contains both political quotes and summaries of bills from the [Danish Parliament](https://www.ft.dk/). The model is created to identify political quotes related to climate change, and performs best on official texts from the Danish Parliament. ### Fine-tuning To fine-tune a model similar to KlimaBERT, follow the [fine-tuning notebooks](https://github.com/jonahank/Vote-Prediction-Model/tree/main/climate_classifier) ### References BERT: Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805 DaBERT: Certainly (2021). Certainly has trained the most advanced danish bert model to date. https://www.certainly.io/blog/danish-bert-model/. ### Acknowledgements The resources are created through the work of my Master's thesis, so I would like to thank my supervisors [Leon Derczynski](https://www.derczynski.com/itu/) and [Vedran Sekara](https://vedransekara.github.io/) for the great support throughout the project! And a HUGE thanks to [Gustav Gyrst](https://github.com/Gyrst) for great sparring and co-development of the tools you find in this repo. ### Contact For any further help, questions, comments etc. feel free to contact the author Jonathan Kristensen on [LinedIn](https://www.linkedin.com/in/jonathan-kristensen-444a96104) or by creating a "discussion" on this model's page.
chrisvinsen/wav2vec2-19
ec30153fc7bd9494e36d2f537461502a41110f17
2022-06-02T09:03:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-19
3
null
transformers
22,512
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adnankhawaja/XLNET_RU
14a74f1202f0af05885b0e91859a40c69c248be8
2022-06-04T08:43:51.000Z
[ "pytorch", "xlnet", "transformers" ]
null
false
adnankhawaja
null
adnankhawaja/XLNET_RU
3
null
transformers
22,513
Entry not found
gianfrancodemarco/distilbert-base-uncased-finetuned-final-nlp
55eaebbe365366d32935b816a4e9e7da962811db
2022-06-01T12:46:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
gianfrancodemarco
null
gianfrancodemarco/distilbert-base-uncased-finetuned-final-nlp
3
null
transformers
22,514
Entry not found
lorenzkuhn/distilbert-base-uncased-finetuned-squad
dc8b0e8f07d93cfadd4e109e02f6e6a74fcdf00b
2022-06-06T10:52:07.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
lorenzkuhn
null
lorenzkuhn/distilbert-base-uncased-finetuned-squad
3
null
transformers
22,515
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2156 | 1.0 | 8235 | 1.1791 | | 0.9413 | 2.0 | 16470 | 1.2182 | | 0.7514 | 3.0 | 24705 | 1.3206 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
devprisha/DialoGPT-small-cassandroid
10aabf1abafcc3dbaaba20d7bb8adcaf6264a35d
2022-06-01T17:49:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
devprisha
null
devprisha/DialoGPT-small-cassandroid
3
null
transformers
22,516
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_paras_epochs_1_shard_1_squad2.0
521b58c8a993e5290cd1b1f5d9c2d49826fe74e6
2022-06-01T16:45:03.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_paras_epochs_1_shard_1_squad2.0
3
null
transformers
22,517
Entry not found
mohibhameed/wav2vec2-large-xls-r-urdu-colab
14dddcc1fb2fccaff26e0df6695e3ebe8c866be4
2022-06-02T19:45:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mohibhameed
null
mohibhameed/wav2vec2-large-xls-r-urdu-colab
3
null
transformers
22,518
Entry not found
lmqg/t5-large-subjqa-restaurants
bb970120430d1e8f6659b746e504c688e5697687
2022-06-02T22:06:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-restaurants
3
null
transformers
22,519
Entry not found
chrisvinsen/wav2vec2-final-1-lm-1
a87e676a7cf0fa4f04257027de8b785b99741916
2022-06-02T11:08:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-final-1-lm-1
3
null
transformers
22,520
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 WER 0.283 WER 0.129 with 2-Gram This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
serhanciftlikci/improved_adversarial_nli_model
4da750f11f5178f397a6ebcaefe541e0af3879c3
2022-06-02T19:38:38.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "license:mit" ]
text-classification
false
serhanciftlikci
null
serhanciftlikci/improved_adversarial_nli_model
3
null
transformers
22,521
--- license: mit ---
chrisvinsen/wav2vec2-23
7cc38e0dd1e3fc84e3353abb3dcee90c93b85dcb
2022-06-03T06:15:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-23
3
null
transformers
22,522
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-23 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1230 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.2642 | 1.37 | 200 | 2.9756 | 1.0 | | 2.8574 | 2.74 | 400 | 3.1631 | 1.0 | | 2.8588 | 4.11 | 600 | 3.1208 | 1.0 | | 2.8613 | 5.48 | 800 | 3.1113 | 1.0 | | 2.8599 | 6.85 | 1000 | 3.2679 | 1.0 | | 2.8577 | 8.22 | 1200 | 3.0904 | 1.0 | | 2.8575 | 9.59 | 1400 | 3.2444 | 1.0 | | 2.8538 | 10.96 | 1600 | 3.0674 | 1.0 | | 2.8564 | 12.33 | 1800 | 3.1957 | 1.0 | | 2.8555 | 13.7 | 2000 | 3.0881 | 1.0 | | 2.8542 | 15.07 | 2200 | 3.1488 | 1.0 | | 2.8538 | 16.44 | 2400 | 3.1184 | 1.0 | | 2.854 | 17.81 | 2600 | 3.1133 | 1.0 | | 2.8553 | 19.18 | 2800 | 3.1508 | 1.0 | | 2.8534 | 20.55 | 3000 | 3.0646 | 1.0 | | 2.8538 | 21.92 | 3200 | 3.1374 | 1.0 | | 2.8545 | 23.29 | 3400 | 3.1020 | 1.0 | | 2.8539 | 24.66 | 3600 | 3.1631 | 1.0 | | 2.8558 | 26.03 | 3800 | 3.1063 | 1.0 | | 2.8508 | 27.4 | 4000 | 3.1271 | 1.0 | | 2.8537 | 28.77 | 4200 | 3.1230 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
baru98/distilbert-base-uncased-finetuned-squad
cae0e53d50fc8a68dc17365ac1c9b91340227f7f
2022-06-03T13:54:01.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
baru98
null
baru98/distilbert-base-uncased-finetuned-squad
3
null
transformers
22,523
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2393 | 1.0 | 5475 | 1.1570 | | 0.9651 | 2.0 | 10950 | 1.0903 | | 0.7513 | 3.0 | 16425 | 1.1274 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Worldman/pega_570_articles
bc1d1eca5375467ebc4cb5a38c859e50c3d3cccf
2022-06-03T14:51:50.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Worldman
null
Worldman/pega_570_articles
3
null
transformers
22,524
--- tags: - generated_from_trainer model-index: - name: pega_570_articles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pega_570_articles This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
baru98/bert-base-cased-finetuned-squad
4885c1ecc3827cc66a8600ad18de1e497c55748e
2022-06-04T02:53:28.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
baru98
null
baru98/bert-base-cased-finetuned-squad
3
null
transformers
22,525
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 5.4212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 5.7012 | | No log | 2.0 | 14 | 5.5021 | | No log | 3.0 | 21 | 5.4212 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
yanekyuk/convberturk-keyword-extractor
ed8719caae12212ffad155ff7ae236730b3e06e9
2022-06-04T11:19:51.000Z
[ "pytorch", "convbert", "token-classification", "tr", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
yanekyuk
null
yanekyuk/convberturk-keyword-extractor
3
null
transformers
22,526
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 language: - tr widget: - text: "İngiltere'de düzenlenen Avrupa Tekvando ve Para Tekvando Şampiyonası’nda millî tekvandocular 5 altın, 2 gümüş ve 4 bronz olmak üzere 11, millî para tekvandocular ise 4 altın, 3 gümüş ve 1 bronz olmak üzere 8 madalya kazanarak takım halinde Avrupa şampiyonu oldu." - text: "Füme somon dedik ama aslında lox salamuralanmış somon anlamına geliyor, füme etme opsiyonel. Lox bagel, 1930'larda Eggs Benedict furyasında New Yorklu Yahudi cemaati tarafından koşer bir alternatif olarak çıkan bir lezzet. Günümüzde benim hangover yüreğim dâhil dünyanın birçok yerinde enfes bir kahvaltı sandviçi." - text: "Türkiye'de son aylarda sıklıkla tartışılan konut satışı karşılığında yabancılara vatandaşlık verilmesi konusunu beyin göçü kapsamında ele almak mümkün. Daha önce 250 bin dolar olan vatandaşlık bedeli yükselen tepkiler üzerine 400 bin dolara çıkarılmıştı. Türkiye'den göç eden iyi eğitimli kişilerin , gittikleri ülkelerde 250 bin dolar tutarında yabancı yatırıma denk olduğu göz önüne alındığında nitelikli insan gücünün yabancılara konut karşılığında satılan vatandaşlık bedelin eş olduğunu görüyoruz. Yurt dışına giden her bir vatandaşın yüksek teknolojili katma değer üreten sektörlere yapacağı katkılar göz önünde bulundurulduğunda bu açığın inşaat sektörüyle kapatıldığını da görüyoruz. Beyin göçü konusunda sadece ekonomik perspektiften bakıldığında bile kısa vadeli döviz kaynağı yaratmak için kullanılan vatandaşlık satışı yerine beyin göçünü önleyecek önlemler alınmasının ülkemize çok daha faydalı olacağı sonucunu çıkarıyoruz." - text: "Türkiye’de resmî verilere göre, 15 ve daha yukarı yaştaki kişilerde mevsim etkisinden arındırılmış işsiz sayısı, bu yılın ilk çeyreğinde bir önceki çeyreğe göre 50 bin kişi artarak 3 milyon 845 bin kişi oldu. Mevsim etkisinden arındırılmış işsizlik oranı ise 0,1 puanlık artışla %11,4 seviyesinde gerçekleşti. İşsizlik oranı, ilk çeyrekte geçen yılın aynı çeyreğine göre 1,7 puan azaldı." - text: "Boeing’in insansız uzay aracı Starliner, birtakım sorunlara rağmen Uluslararası Uzay İstasyonuna (ISS) ulaşarak ilk kez başarılı bir şekilde kenetlendi. Aracın ISS’te beş gün kalmasını takiben sorunsuz bir şekilde New Mexico’ya inmesi halinde Boeing, sonbaharda astronotları yörüngeye göndermek için Starliner’ı kullanabilir.\n\nNeden önemli? NASA’nın personal aracı üretmeyi durdurmasından kaynaklı olarak görevli astronotlar ve kozmonotlar, ISS’te Rusya’nın ürettiği uzay araçları ile taşınıyordu. Starliner’ın kendini kanıtlaması ise bu konuda Rusya’ya olan bağımlılığın potansiyel olarak ortadan kalkabileceği anlamına geliyor." model-index: - name: convberturk-keyword-extractor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convberturk-keyword-extractor This model is a fine-tuned version of [dbmdz/convbert-base-turkish-cased](https://huggingface.co/dbmdz/convbert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4098 - Precision: 0.6742 - Recall: 0.7035 - Accuracy: 0.9175 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:| | 0.174 | 1.0 | 1875 | 0.1920 | 0.6546 | 0.6869 | 0.9184 | 0.6704 | | 0.1253 | 2.0 | 3750 | 0.2030 | 0.6527 | 0.7317 | 0.9179 | 0.6900 | | 0.091 | 3.0 | 5625 | 0.2517 | 0.6499 | 0.7473 | 0.9163 | 0.6952 | | 0.0684 | 4.0 | 7500 | 0.2828 | 0.6633 | 0.7270 | 0.9167 | 0.6937 | | 0.0536 | 5.0 | 9375 | 0.3307 | 0.6706 | 0.7194 | 0.9180 | 0.6942 | | 0.0384 | 6.0 | 11250 | 0.3669 | 0.6655 | 0.7161 | 0.9157 | 0.6898 | | 0.0316 | 7.0 | 13125 | 0.3870 | 0.6792 | 0.7002 | 0.9176 | 0.6895 | | 0.0261 | 8.0 | 15000 | 0.4098 | 0.6742 | 0.7035 | 0.9175 | 0.6886 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mishtert/iec
aca6fe1297bdde608cd04315f9197abd1dcbc08c
2022-06-04T18:01:26.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "dataset:funsd", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
mishtert
null
mishtert/iec
3
null
transformers
22,527
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - funsd model_index: - name: layoutlmv2-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: funsd type: funsd args: funsd --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the funsd dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.9.0 - Tokenizers 0.10.3
Abdullah010/wav2vec2-urdu-asr-commom-voice-9.0_model_final
f16f5e49cb8ffaf789261b2327ddbe1360e09b31
2022-06-05T11:59:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Abdullah010
null
Abdullah010/wav2vec2-urdu-asr-commom-voice-9.0_model_final
3
null
transformers
22,528
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-urdu-asr-commom-voice-9.0_model_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-urdu-asr-commom-voice-9.0_model_final This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.9620 - Wer: 1.0059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.2331 | 1.47 | 300 | 4.0116 | 1.0 | | 3.3351 | 2.94 | 600 | 3.1680 | 1.0 | | 3.1149 | 4.41 | 900 | 2.9620 | 1.0059 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sayanmandal/t5-small_6_3-en-hi_en_LinCE
61731623c32678116553ef5de7ba031b075cdab6
2022-06-05T00:31:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
sayanmandal
null
sayanmandal/t5-small_6_3-en-hi_en_LinCE
3
null
transformers
22,529
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: t5-small_6_3-en-hi_en_LinCE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_6_3-en-hi_en_LinCE This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2034 - Bleu: 7.8135 - Gen Len: 39.5564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.99 | 94 | 3.5424 | 0.9187 | 16.7437 | | No log | 1.99 | 188 | 3.1434 | 1.2886 | 16.8158 | | No log | 2.99 | 282 | 2.9494 | 1.4577 | 16.7824 | | No log | 3.99 | 376 | 2.8233 | 1.4745 | 16.8879 | | No log | 4.99 | 470 | 2.7300 | 1.7116 | 16.6636 | | 3.6303 | 5.99 | 564 | 2.6589 | 1.7857 | 16.6302 | | 3.6303 | 6.99 | 658 | 2.6005 | 1.8572 | 16.4553 | | 3.6303 | 7.99 | 752 | 2.5456 | 2.139 | 16.3925 | | 3.6303 | 8.99 | 846 | 2.5023 | 2.3835 | 16.2911 | | 3.6303 | 9.99 | 940 | 2.4725 | 2.5607 | 16.3271 | | 2.9087 | 10.99 | 1034 | 2.4272 | 2.6614 | 16.3138 | | 2.9087 | 11.99 | 1128 | 2.3977 | 2.9623 | 16.3338 | | 2.9087 | 12.99 | 1222 | 2.3686 | 3.1248 | 16.2443 | | 2.9087 | 13.99 | 1316 | 2.3438 | 3.3294 | 16.3458 | | 2.9087 | 14.99 | 1410 | 2.3253 | 3.3885 | 16.3591 | | 2.6588 | 15.99 | 1504 | 2.3028 | 3.3985 | 16.3124 | | 2.6588 | 16.99 | 1598 | 2.2839 | 3.3772 | 16.3858 | | 2.6588 | 17.99 | 1692 | 2.2704 | 3.5804 | 16.3872 | | 2.6588 | 18.99 | 1786 | 2.2533 | 3.8751 | 16.2697 | | 2.6588 | 19.99 | 1880 | 2.2378 | 4.0003 | 16.3271 | | 2.6588 | 20.99 | 1974 | 2.2233 | 4.0271 | 16.3031 | | 2.5079 | 21.99 | 2068 | 2.2160 | 4.1898 | 16.3057 | | 2.5079 | 22.99 | 2162 | 2.2010 | 4.1216 | 16.3031 | | 2.5079 | 23.99 | 2256 | 2.1935 | 4.1311 | 16.2644 | | 2.5079 | 24.99 | 2350 | 2.1833 | 4.1373 | 16.3138 | | 2.5079 | 25.99 | 2444 | 2.1725 | 4.3471 | 16.3057 | | 2.4027 | 26.99 | 2538 | 2.1657 | 4.183 | 16.3298 | | 2.4027 | 27.99 | 2632 | 2.1611 | 4.2867 | 16.3351 | | 2.4027 | 28.99 | 2726 | 2.1531 | 4.2689 | 16.2737 | | 2.4027 | 29.99 | 2820 | 2.1482 | 4.4802 | 16.2644 | | 2.4027 | 30.99 | 2914 | 2.1443 | 4.469 | 16.231 | | 2.3251 | 31.99 | 3008 | 2.1375 | 4.5295 | 16.227 | | 2.3251 | 32.99 | 3102 | 2.1330 | 4.4799 | 16.2243 | | 2.3251 | 33.99 | 3196 | 2.1307 | 4.7124 | 16.2417 | | 2.3251 | 34.99 | 3290 | 2.1248 | 4.5954 | 16.3004 | | 2.3251 | 35.99 | 3384 | 2.1215 | 4.7455 | 16.215 | | 2.3251 | 36.99 | 3478 | 2.1166 | 4.6233 | 16.2016 | | 2.2818 | 37.99 | 3572 | 2.1147 | 4.6843 | 16.219 | | 2.2818 | 38.99 | 3666 | 2.1112 | 4.7068 | 16.2163 | | 2.2818 | 39.99 | 3760 | 2.1071 | 4.684 | 16.223 | | 2.2818 | 40.99 | 3854 | 2.1034 | 4.7323 | 16.2523 | | 2.2818 | 41.99 | 3948 | 2.0998 | 4.6406 | 16.2016 | | 2.2392 | 42.99 | 4042 | 2.1017 | 4.7609 | 16.1976 | | 2.2392 | 43.99 | 4136 | 2.1021 | 4.7634 | 16.2069 | | 2.2392 | 44.99 | 4230 | 2.0994 | 4.7854 | 16.1976 | | 2.2392 | 45.99 | 4324 | 2.0980 | 4.7562 | 16.2243 | | 2.2392 | 46.99 | 4418 | 2.0964 | 4.7921 | 16.219 | | 2.2192 | 47.99 | 4512 | 2.0970 | 4.8029 | 16.2377 | | 2.2192 | 48.99 | 4606 | 2.0967 | 4.7953 | 16.2176 | | 2.2192 | 49.99 | 4700 | 2.0968 | 4.819 | 16.2457 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ITESM/st_demo_3
8fb14d6efd7f60396fea33d276740709d57a77bb
2022-06-05T04:43:41.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
ITESM
null
ITESM/st_demo_3
3
null
transformers
22,530
Entry not found
EmileEsmaili/gpt2-p4k
05e0d6c24e76ae85c9707e2714655ec50575d55e
2022-06-09T14:55:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
EmileEsmaili
null
EmileEsmaili/gpt2-p4k
3
null
transformers
22,531
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-p4k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-p4k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
erickfm/t5-large-finetuned-bias-v7
f5392fdd07cccaf638180ac36559c61af7a2d426
2022-06-05T18:29:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-v7
3
null
transformers
22,532
Entry not found
Bistolero/german_2EP
4c361e94454b120157bd842d57316fe359746bfe
2022-06-05T18:43:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/german_2EP
3
null
transformers
22,533
Entry not found
Bistolero/ge_nl_64B_25K
fdcb3dd035131d1681c64eaae8e3c6b23cbedd1f
2022-06-05T20:42:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/ge_nl_64B_25K
3
null
transformers
22,534
Entry not found
chrisvinsen/xlsr-wav2vec2-final-lm
5efcdd00f411631c007ea251733c02bdda1fbdde
2022-06-06T01:26:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-final-lm
3
null
transformers
22,535
Entry not found
anlausch/aq_bert_gaq_mt
53b539bfb19e1971d4d71e6cc7eef198222f8fb5
2022-06-06T08:09:38.000Z
[ "pytorch", "bert", "transformers", "license:mit" ]
null
false
anlausch
null
anlausch/aq_bert_gaq_mt
3
null
transformers
22,536
--- license: mit --- Multi-task learning model (flat architecture) trained on GAQCorpus for 4 epochs with a learning rate of 2e-5 (optimised via grid search) in a similar way as in Lauscher et al. 2020 (see below). The original model was Tensorflow-based. This model corresponds to a reimplementation with Transformers & PyTorch. ``` @inproceedings{lauscher-etal-2020-rhetoric, title = "Rhetoric, Logic, and Dialectic: Advancing Theory-based Argument Quality Assessment in Natural Language Processing", author = "Lauscher, Anne and Ng, Lily and Napoles, Courtney and Tetreault, Joel", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2020.coling-main.402", doi = "10.18653/v1/2020.coling-main.402", pages = "4563--4574", abstract = "Though preceding work in computational argument quality (AQ) mostly focuses on assessing overall AQ, researchers agree that writers would benefit from feedback targeting individual dimensions of argumentation theory. However, a large-scale theory-based corpus and corresponding computational models are missing. We fill this gap by conducting an extensive analysis covering three diverse domains of online argumentative writing and presenting GAQCorpus: the first large-scale English multi-domain (community Q{\&}A forums, debate forums, review forums) corpus annotated with theory-based AQ scores. We then propose the first computational approaches to theory-based assessment, which can serve as strong baselines for future work. We demonstrate the feasibility of large-scale AQ annotation, show that exploiting relations between dimensions yields performance improvements, and explore the synergies between theory-based prediction and practical AQ assessment.", } ```
asahi417/lmqg-mt5-small-koquad
af41199edfb1f3a8ff4dce136d997cb35048d921
2022-06-08T22:41:52.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5-small-koquad
3
null
transformers
22,537
Entry not found
lewtun/distilroberta-base-finetuned-banking77
9a6c87e596835e157e66d051c2d3b753b6941618
2022-06-06T12:43:37.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/distilroberta-base-finetuned-banking77
3
null
transformers
22,538
Entry not found
Splend1dchan/xtreme_s_xlsr_300m_minds14
f09a41d6134e13b8db22ccfb901657d0307bddcf
2022-06-06T18:51:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_300m_minds14
3
null
transformers
22,539
Entry not found
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_punct
92e250aa38df1dbc25dbab39534e1adb73971846
2022-06-06T18:02:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
mmillet
null
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_punct
3
null
transformers
22,540
Entry not found
huggingtweets/dkostanjsak-nonewthing
ffa2cf0841a1c7a5278b1e8f6629cb528f0b6068
2022-06-06T14:56:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dkostanjsak-nonewthing
3
null
transformers
22,541
--- language: en thumbnail: http://www.huggingtweets.com/dkostanjsak-nonewthing/1654527393385/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1532336212412977152/TWPqTO8d_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1022510453895974912/Z-B8B9eT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">AI & Domagoj Kostanjšak</div> <div style="text-align: center; font-size: 14px;">@dkostanjsak-nonewthing</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from AI & Domagoj Kostanjšak. | Data | AI | Domagoj Kostanjšak | | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | | Retweets | 100 | 202 | | Short tweets | 237 | 179 | | Tweets kept | 2910 | 2866 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9p2u0a0m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dkostanjsak-nonewthing's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gp2198uq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gp2198uq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dkostanjsak-nonewthing') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cammy/wav2vec2-xlsr-greek-speech-emotion-recognition
5e14d306e204bf449f2024ddbd01a575a91e6fbe
2022-06-06T19:17:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
cammy
null
cammy/wav2vec2-xlsr-greek-speech-emotion-recognition
3
null
transformers
22,542
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xlsr-greek-speech-emotion-recognition results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-greek-speech-emotion-recognition This model is a fine-tuned version of [lighteternal/wav2vec2-large-xlsr-53-greek](https://huggingface.co/lighteternal/wav2vec2-large-xlsr-53-greek) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7699 - Accuracy: 0.8168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5594 | 0.22 | 100 | 0.7689 | 0.7649 | | 0.4341 | 0.44 | 200 | 0.6557 | 0.8045 | | 0.2925 | 0.66 | 300 | 0.7060 | 0.8094 | | 0.3846 | 0.88 | 400 | 0.7699 | 0.8168 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Cole/xlm-roberta-base-finetuned-panx-de
e084742673f76250dce92d820f9314c16da52d17
2022-06-08T15:27:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Cole
null
Cole/xlm-roberta-base-finetuned-panx-de
3
null
transformers
22,543
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8662369516855856 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1428 - F1: 0.8662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2499 | 1.0 | 1049 | 0.1916 | 0.8157 | | 0.1312 | 2.0 | 2098 | 0.1394 | 0.8479 | | 0.0809 | 3.0 | 3147 | 0.1428 | 0.8662 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
nestoralvaro/mt5-base-finetuned-xsum-mlsum___summary_text_google_mt5_base
8cacfd6057b42ba014e29f99b66d621e2af85b6c
2022-06-07T02:18:15.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:mlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nestoralvaro
null
nestoralvaro/mt5-base-finetuned-xsum-mlsum___summary_text_google_mt5_base
3
null
transformers
22,544
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-mlsum___summary_text_google_mt5_base results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum args: es metrics: - name: Rouge1 type: rouge value: 8.9973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-mlsum___summary_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 8.9973 - Rouge2: 0.9036 - Rougel: 7.6699 - Rougelsum: 7.716 - Gen Len: 10.2326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 66592 | nan | 8.9973 | 0.9036 | 7.6699 | 7.716 | 10.2326 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
enoriega/rule_learning_test
4eec796554c86cb69d0c441d7309a29c8a8138da
2022-06-07T05:19:20.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_test
3
null
transformers
22,545
--- license: apache-2.0 tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1764 | 0.32 | 20 | 0.2303 | | 0.145 | 0.64 | 40 | 0.1470 | | 0.129 | 0.96 | 60 | 0.1321 | | 0.1256 | 1.29 | 80 | 0.1265 | | 0.1304 | 1.61 | 100 | 0.1252 | | 0.1235 | 1.93 | 120 | 0.1260 | | 0.125 | 2.26 | 140 | 0.1261 | | 0.1263 | 2.58 | 160 | 0.1262 | | 0.1244 | 2.9 | 180 | 0.1256 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
Vkt/model-facebookptbrlarge
067c935f00d2734b00e80266cfd5b2bd0f376c80
2022-06-08T15:05:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Vkt
null
Vkt/model-facebookptbrlarge
3
null
transformers
22,546
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model-facebookptbrlarge results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-facebookptbrlarge This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-portuguese) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Wer: 0.1322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.8975 | 0.29 | 400 | 0.4131 | 0.3336 | | 0.5131 | 0.57 | 800 | 0.4103 | 0.3293 | | 0.4846 | 0.86 | 1200 | 0.3493 | 0.3028 | | 0.4174 | 1.14 | 1600 | 0.3055 | 0.2730 | | 0.4105 | 1.43 | 2000 | 0.3283 | 0.3041 | | 0.4028 | 1.72 | 2400 | 0.3539 | 0.3210 | | 0.386 | 2.0 | 2800 | 0.2925 | 0.2690 | | 0.3224 | 2.29 | 3200 | 0.2842 | 0.2665 | | 0.3122 | 2.57 | 3600 | 0.2781 | 0.2472 | | 0.3087 | 2.86 | 4000 | 0.2794 | 0.2692 | | 0.2878 | 3.15 | 4400 | 0.2795 | 0.2537 | | 0.2915 | 3.43 | 4800 | 0.2764 | 0.2478 | | 0.2816 | 3.72 | 5200 | 0.2761 | 0.2366 | | 0.283 | 4.0 | 5600 | 0.2641 | 0.2587 | | 0.2448 | 4.29 | 6000 | 0.2489 | 0.2417 | | 0.247 | 4.57 | 6400 | 0.2538 | 0.2422 | | 0.25 | 4.86 | 6800 | 0.2660 | 0.2306 | | 0.2256 | 5.15 | 7200 | 0.2477 | 0.2267 | | 0.2225 | 5.43 | 7600 | 0.2364 | 0.2195 | | 0.2217 | 5.72 | 8000 | 0.2319 | 0.2139 | | 0.2272 | 6.0 | 8400 | 0.2489 | 0.2427 | | 0.2016 | 6.29 | 8800 | 0.2404 | 0.2181 | | 0.1973 | 6.58 | 9200 | 0.2532 | 0.2273 | | 0.2101 | 6.86 | 9600 | 0.2590 | 0.2100 | | 0.1946 | 7.15 | 10000 | 0.2414 | 0.2108 | | 0.1845 | 7.43 | 10400 | 0.2485 | 0.2124 | | 0.1861 | 7.72 | 10800 | 0.2405 | 0.2124 | | 0.1851 | 8.01 | 11200 | 0.2449 | 0.2062 | | 0.1587 | 8.29 | 11600 | 0.2510 | 0.2048 | | 0.1694 | 8.58 | 12000 | 0.2290 | 0.2059 | | 0.1637 | 8.86 | 12400 | 0.2376 | 0.2063 | | 0.1594 | 9.15 | 12800 | 0.2307 | 0.1967 | | 0.1537 | 9.44 | 13200 | 0.2274 | 0.2017 | | 0.1498 | 9.72 | 13600 | 0.2322 | 0.2025 | | 0.1516 | 10.01 | 14000 | 0.2323 | 0.1971 | | 0.1336 | 10.29 | 14400 | 0.2249 | 0.1920 | | 0.134 | 10.58 | 14800 | 0.2258 | 0.2055 | | 0.138 | 10.86 | 15200 | 0.2250 | 0.1906 | | 0.13 | 11.15 | 15600 | 0.2423 | 0.1920 | | 0.1302 | 11.44 | 16000 | 0.2294 | 0.1849 | | 0.1253 | 11.72 | 16400 | 0.2193 | 0.1889 | | 0.1219 | 12.01 | 16800 | 0.2350 | 0.1869 | | 0.1149 | 12.29 | 17200 | 0.2350 | 0.1903 | | 0.1161 | 12.58 | 17600 | 0.2277 | 0.1899 | | 0.1129 | 12.87 | 18000 | 0.2416 | 0.1855 | | 0.1091 | 13.15 | 18400 | 0.2289 | 0.1815 | | 0.1073 | 13.44 | 18800 | 0.2383 | 0.1799 | | 0.1135 | 13.72 | 19200 | 0.2306 | 0.1819 | | 0.1075 | 14.01 | 19600 | 0.2283 | 0.1742 | | 0.0971 | 14.3 | 20000 | 0.2271 | 0.1851 | | 0.0967 | 14.58 | 20400 | 0.2395 | 0.1809 | | 0.1039 | 14.87 | 20800 | 0.2286 | 0.1808 | | 0.0984 | 15.15 | 21200 | 0.2303 | 0.1821 | | 0.0922 | 15.44 | 21600 | 0.2254 | 0.1745 | | 0.0882 | 15.73 | 22000 | 0.2280 | 0.1836 | | 0.0859 | 16.01 | 22400 | 0.2355 | 0.1779 | | 0.0832 | 16.3 | 22800 | 0.2347 | 0.1740 | | 0.0854 | 16.58 | 23200 | 0.2342 | 0.1739 | | 0.0874 | 16.87 | 23600 | 0.2316 | 0.1719 | | 0.0808 | 17.16 | 24000 | 0.2291 | 0.1730 | | 0.0741 | 17.44 | 24400 | 0.2308 | 0.1674 | | 0.0815 | 17.73 | 24800 | 0.2329 | 0.1655 | | 0.0764 | 18.01 | 25200 | 0.2514 | 0.1711 | | 0.0719 | 18.3 | 25600 | 0.2275 | 0.1578 | | 0.0665 | 18.58 | 26000 | 0.2367 | 0.1614 | | 0.0693 | 18.87 | 26400 | 0.2185 | 0.1593 | | 0.0662 | 19.16 | 26800 | 0.2266 | 0.1678 | | 0.0612 | 19.44 | 27200 | 0.2332 | 0.1602 | | 0.0623 | 19.73 | 27600 | 0.2283 | 0.1670 | | 0.0659 | 20.01 | 28000 | 0.2142 | 0.1626 | | 0.0581 | 20.3 | 28400 | 0.2198 | 0.1646 | | 0.063 | 20.59 | 28800 | 0.2251 | 0.1588 | | 0.0618 | 20.87 | 29200 | 0.2186 | 0.1554 | | 0.0549 | 21.16 | 29600 | 0.2251 | 0.1490 | | 0.058 | 21.44 | 30000 | 0.2366 | 0.1559 | | 0.0543 | 21.73 | 30400 | 0.2262 | 0.1535 | | 0.0529 | 22.02 | 30800 | 0.2358 | 0.1519 | | 0.053 | 22.3 | 31200 | 0.2198 | 0.1513 | | 0.0552 | 22.59 | 31600 | 0.2234 | 0.1503 | | 0.0492 | 22.87 | 32000 | 0.2191 | 0.1516 | | 0.0488 | 23.16 | 32400 | 0.2321 | 0.1500 | | 0.0479 | 23.45 | 32800 | 0.2152 | 0.1420 | | 0.0453 | 23.73 | 33200 | 0.2202 | 0.1453 | | 0.0485 | 24.02 | 33600 | 0.2235 | 0.1468 | | 0.0451 | 24.3 | 34000 | 0.2192 | 0.1455 | | 0.041 | 24.59 | 34400 | 0.2138 | 0.1438 | | 0.0435 | 24.87 | 34800 | 0.2335 | 0.1423 | | 0.0404 | 25.16 | 35200 | 0.2220 | 0.1409 | | 0.0374 | 25.45 | 35600 | 0.2366 | 0.1437 | | 0.0405 | 25.73 | 36000 | 0.2233 | 0.1428 | | 0.0385 | 26.02 | 36400 | 0.2208 | 0.1414 | | 0.0373 | 26.3 | 36800 | 0.2265 | 0.1420 | | 0.0365 | 26.59 | 37200 | 0.2174 | 0.1402 | | 0.037 | 26.88 | 37600 | 0.2249 | 0.1397 | | 0.0379 | 27.16 | 38000 | 0.2173 | 0.1374 | | 0.0354 | 27.45 | 38400 | 0.2212 | 0.1381 | | 0.034 | 27.73 | 38800 | 0.2313 | 0.1364 | | 0.0347 | 28.02 | 39200 | 0.2230 | 0.1356 | | 0.0318 | 28.31 | 39600 | 0.2231 | 0.1357 | | 0.0305 | 28.59 | 40000 | 0.2281 | 0.1366 | | 0.0307 | 28.88 | 40400 | 0.2259 | 0.1342 | | 0.0315 | 29.16 | 40800 | 0.2252 | 0.1332 | | 0.0314 | 29.45 | 41200 | 0.2218 | 0.1328 | | 0.0307 | 29.74 | 41600 | 0.2206 | 0.1322 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.1+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
ferjeffQ/roberta-base-bne-finetuned-amazon_reviews_multi
084870205dd5942a5e0854026d9bf4ed09fad5b8
2022-06-07T21:47:07.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ferjeffQ
null
ferjeffQ/roberta-base-bne-finetuned-amazon_reviews_multi
3
null
transformers
22,547
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.9325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1937 | 1.0 | 1250 | 0.1811 | 0.9327 | | 0.1005 | 2.0 | 2500 | 0.2207 | 0.9325 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
cammy/wa2vec2-5epochs
89e321db209cf56be92ae33956a7d5126714af41
2022-06-08T03:41:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
cammy
null
cammy/wa2vec2-5epochs
3
null
transformers
22,548
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wa2vec2-5epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wa2vec2-5epochs This model is a fine-tuned version of [lighteternal/wav2vec2-large-xlsr-53-greek](https://huggingface.co/lighteternal/wav2vec2-large-xlsr-53-greek) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3049 - Accuracy: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 454 | 0.7179 | 0.7599 | | 0.6962 | 2.0 | 908 | 0.3806 | 0.8911 | | 0.3776 | 3.0 | 1362 | 0.3299 | 0.9109 | | 0.2071 | 4.0 | 1816 | 0.3021 | 0.9257 | | 0.1262 | 5.0 | 2270 | 0.3049 | 0.9282 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Vlasta/randomWeightsBert
9153a688af0ad1dff6457a80e9c5e4a61c50897e
2022-06-08T09:41:10.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/randomWeightsBert
3
null
transformers
22,549
Entry not found
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR
20cdebd033c1147c8e845458acca2883570e2581
2022-06-08T12:23:01.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR
3
null
transformers
22,550
Entry not found
mmillet/rubert-base-cased_best_finetuned_emotion_experiment_augmented_anger_fear
0c29a32332be02e6a77ac8e272b01ce9db1cf390
2022-06-08T15:34:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mmillet
null
mmillet/rubert-base-cased_best_finetuned_emotion_experiment_augmented_anger_fear
3
null
transformers
22,551
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: rubert-base-cased_best_finetuned_emotion_experiment_augmented_anger_fear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-cased_best_finetuned_emotion_experiment_augmented_anger_fear This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4568 - Accuracy: 0.8779 - F1: 0.8777 - Precision: 0.8780 - Recall: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.2647 | 1.0 | 69 | 1.0075 | 0.6013 | 0.5671 | 0.6594 | 0.6013 | | 0.9091 | 2.0 | 138 | 0.7853 | 0.7171 | 0.7138 | 0.7169 | 0.7171 | | 0.7305 | 3.0 | 207 | 0.6264 | 0.7829 | 0.7811 | 0.7835 | 0.7829 | | 0.5446 | 4.0 | 276 | 0.4571 | 0.8466 | 0.8465 | 0.8470 | 0.8466 | | 0.4039 | 5.0 | 345 | 0.4035 | 0.8612 | 0.8606 | 0.8612 | 0.8612 | | 0.3144 | 6.0 | 414 | 0.3800 | 0.8653 | 0.8653 | 0.8665 | 0.8653 | | 0.2711 | 7.0 | 483 | 0.3731 | 0.8674 | 0.8673 | 0.8677 | 0.8674 | | 0.2289 | 8.0 | 552 | 0.4041 | 0.8737 | 0.8728 | 0.8746 | 0.8737 | | 0.1944 | 9.0 | 621 | 0.4002 | 0.8789 | 0.8785 | 0.8793 | 0.8789 | | 0.171 | 10.0 | 690 | 0.3939 | 0.8831 | 0.8827 | 0.8839 | 0.8831 | | 0.138 | 11.0 | 759 | 0.4106 | 0.8758 | 0.8754 | 0.8761 | 0.8758 | | 0.1141 | 12.0 | 828 | 0.4200 | 0.8810 | 0.8803 | 0.8804 | 0.8810 | | 0.1141 | 13.0 | 897 | 0.4426 | 0.8758 | 0.8756 | 0.8763 | 0.8758 | | 0.0961 | 14.0 | 966 | 0.4494 | 0.8758 | 0.8754 | 0.8761 | 0.8758 | | 0.0812 | 15.0 | 1035 | 0.4568 | 0.8779 | 0.8777 | 0.8780 | 0.8779 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_byt5-small_nofreeze_bs64_2
cf0566fd1f9e7fc37d835673e75fdb74b8ebcd2d
2022-06-10T13:23:26.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_byt5-small_nofreeze_bs64_2
3
null
transformers
22,552
Entry not found
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-fa-finetuned-ar
ffddd44c2a41d1841ae7170f54c9e09931e6ba49
2022-06-08T22:22:19.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "Abstractive Summarization", "ar", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-fa-finetuned-ar
3
null
transformers
22,553
--- tags: - mt5 - summarization - Abstractive Summarization - ar - generated_from_trainer datasets: - xlsum model-index: - name: mT5_multilingual_XLSum-finetuned-fa-finetuned-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-fa-finetuned-ar This model is a fine-tuned version of [ahmeddbahaa/mT5_multilingual_XLSum-finetuned-fa](https://huggingface.co/ahmeddbahaa/mT5_multilingual_XLSum-finetuned-fa) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.6352 - Rouge-1: 28.69 - Rouge-2: 11.6 - Rouge-l: 24.29 - Gen Len: 41.37 - Bertscore: 73.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/WLT-SciBERT-BC5CDR-Disease
74823dda9362271461cfd6afabe9cbe0096fee09
2022-06-09T11:23:22.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-SciBERT-BC5CDR-Disease
3
null
transformers
22,554
Entry not found
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned
857e6cb663ab08198dd3b2dcd84846f50bc099c3
2022-06-09T17:15:48.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
ajtamayoh
null
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned
3
null
transformers
22,555
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - Precision: 0.9012 - Recall: 0.6942 - F1: 0.7842 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0605 | 1.0 | 2568 | 0.0625 | 0.9400 | 0.6322 | 0.7560 | 0.9836 | | 0.0475 | 2.0 | 5136 | 0.0622 | 0.9533 | 0.6572 | 0.7781 | 0.9849 | | 0.0374 | 3.0 | 7704 | 0.0552 | 0.9261 | 0.6784 | 0.7831 | 0.9855 | | 0.0246 | 4.0 | 10272 | 0.0693 | 0.9381 | 0.6658 | 0.7788 | 0.9849 | | 0.0126 | 5.0 | 12840 | 0.0974 | 0.8918 | 0.6830 | 0.7735 | 0.9849 | | 0.0061 | 6.0 | 15408 | 0.0886 | 0.8771 | 0.7099 | 0.7847 | 0.9850 | | 0.0031 | 7.0 | 17976 | 0.0973 | 0.9012 | 0.6942 | 0.7842 | 0.9857 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
helliun/primary-secondary
7d7a4e641d05f609c6083c5d49b9e8f6528c6a3f
2022-06-09T18:49:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
helliun
null
helliun/primary-secondary
3
null
transformers
22,556
Entry not found
simecek/ZebrafishDNADeberta
ac137e5049b4552c2139247d0598299eb1973137
2022-06-10T05:01:11.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/ZebrafishDNADeberta
3
null
transformers
22,557
Entry not found
BigSalmon/InformalToFormalLincoln51
2b8f4e64f22de673e9832af1a2df81ea85fb6363
2022-06-10T02:22:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln51
3
null
transformers
22,558
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln51") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln51") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ```
huggingtweets/mcdonalds
61a17b5207f82f4ac9b4892aa3e278223251cff9
2022-06-10T03:58:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mcdonalds
3
null
transformers
22,559
--- language: en thumbnail: http://www.huggingtweets.com/mcdonalds/1654833493693/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513918204325728257/5-R-x-P__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">McDonald's</div> <div style="text-align: center; font-size: 14px;">@mcdonalds</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from McDonald's. | Data | McDonald's | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 15 | | Tweets kept | 3235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pc5eknt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mcdonalds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2utcnhg8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2utcnhg8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mcdonalds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flood/distilbert-base-uncased-finetuned-clinc
0943ed19cec73dd587924eb9a2216675aef056ca
2022-06-10T07:21:47.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
flood
null
flood/distilbert-base-uncased-finetuned-clinc
3
null
transformers
22,560
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7793 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2926 | 1.0 | 318 | 3.2834 | 0.7374 | | 2.6259 | 2.0 | 636 | 1.8736 | 0.8303 | | 1.5511 | 3.0 | 954 | 1.1612 | 0.8913 | | 1.0185 | 4.0 | 1272 | 0.8625 | 0.91 | | 0.8046 | 5.0 | 1590 | 0.7793 | 0.9161 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-large-japanese-unidic
9675b5636968956a2deaee015a815dcee45dc4d5
2022-06-19T00:15:35.000Z
[ "pytorch", "deberta-v2", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-unidic
3
null
transformers
22,561
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-large-japanese-unidic ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts with BertJapaneseTokenizer. You can fine-tune `deberta-large-japanese-unidic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic") ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
ajsmith201/t5-base-finetuned-bias-99c3c657
8b306affda3a81d7e79a427b015e93ad75fe9898
2022-06-10T13:27:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ajsmith201
null
ajsmith201/t5-base-finetuned-bias-99c3c657
3
null
transformers
22,562
Entry not found
Splend1dchan/wav2vec2-large-lv60_byt5-small_textdecoderonly_bs64
26bd9af05fabf879a0eddbe7151c0886fb5e1ff7
2022-06-13T02:46:21.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_byt5-small_textdecoderonly_bs64
3
null
transformers
22,563
Entry not found
LDD/bert_wwm_new
6fc8434c34857affa6fccf925f1d7c3902e05518
2022-06-14T05:44:42.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
LDD
null
LDD/bert_wwm_new
3
null
transformers
22,564
在chinese-bert-wwm的基础上进行新闻语料库的增量预训练,token采用的是hfl/chinese-bert-wwm-ext
edumunozsala/vit_base-224-in21k-ft-cifar100
130d4381d7783d872a65ff6bcb77101cb92ea5f9
2022-07-29T09:20:17.000Z
[ "pytorch", "vit", "image-classification", "es", "dataset:cifar100", "arxiv:2006.03677", "transformers", "sagemaker", "ImageClassification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
edumunozsala
null
edumunozsala/vit_base-224-in21k-ft-cifar100
3
null
transformers
22,565
--- language: es tags: - sagemaker - vit - ImageClassification - generated_from_trainer license: apache-2.0 datasets: - cifar100 metrics: - accuracy model-index: - name: vit_base-224-in21k-ft-cifar100 results: - task: name: Image Classification type: image-classification dataset: name: "Cifar100" type: cifar100 metrics: - name: Accuracy type: accuracy value: 0.9148 --- # Model vit_base-224-in21k-ft-cifar100 ## **A finetuned model for Image classification in Spanish** This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container, The base model is **Vision Transformer (base-sized model)** which is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.[Link to base model](https://huggingface.co/google/vit-base-patch16-224-in21k) ## Base model citation ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Dataset [Link to dataset description](http://www.cs.toronto.edu/~kriz/cifar.html) The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. This dataset,CIFAR100, is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Sizes of datasets: - Train dataset: 50,000 - Test dataset: 10,000 ## Intended uses & limitations This model is intented for Image Classification. ## Hyperparameters { "epochs": "5", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "1e-05", } ## Test results - Accuracy = 0.9148 ## Model in action ### Usage for Image Classification ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar100') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
Sebabrata/lmv2ubiai-pan8doc-06-11
0daa25e506ec555fc846d108080d29e930218b99
2022-06-11T12:25:03.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
Sebabrata
null
Sebabrata/lmv2ubiai-pan8doc-06-11
3
null
transformers
22,566
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2ubiai-pan8doc-06-11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2ubiai-pan8doc-06-11 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9633 - Dob Precision: 1.0 - Dob Recall: 1.0 - Dob F1: 1.0 - Dob Number: 2 - Fname Precision: 0.6667 - Fname Recall: 1.0 - Fname F1: 0.8 - Fname Number: 2 - Name Precision: 1.0 - Name Recall: 1.0 - Name F1: 1.0 - Name Number: 2 - Pan Precision: 1.0 - Pan Recall: 1.0 - Pan F1: 1.0 - Pan Number: 2 - Overall Precision: 0.8889 - Overall Recall: 1.0 - Overall F1: 0.9412 - Overall Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dob Precision | Dob Recall | Dob F1 | Dob Number | Fname Precision | Fname Recall | Fname F1 | Fname Number | Name Precision | Name Recall | Name F1 | Name Number | Pan Precision | Pan Recall | Pan F1 | Pan Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------:|:------------:|:--------:|:------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.1195 | 1.0 | 6 | 1.7519 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.6994 | 2.0 | 12 | 1.5117 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.5521 | 3.0 | 18 | 1.4130 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.4726 | 4.0 | 24 | 1.3410 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.395 | 5.0 | 30 | 1.2693 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.3131 | 6.0 | 36 | 1.2079 | 1.0 | 1.0 | 1.0 | 2 | 0.1667 | 0.5 | 0.25 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.3 | 0.375 | 0.3333 | 0.8929 | | 1.2474 | 7.0 | 42 | 1.1495 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1869 | 8.0 | 48 | 1.0942 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1369 | 9.0 | 54 | 1.0453 | 1.0 | 1.0 | 1.0 | 2 | 0.4 | 1.0 | 0.5714 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5455 | 0.75 | 0.6316 | 0.9464 | | 1.0882 | 10.0 | 60 | 1.0054 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 1.0 | 0.6667 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.7 | 0.875 | 0.7778 | 0.9643 | | 1.0482 | 11.0 | 66 | 0.9633 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 1.017 | 12.0 | 72 | 0.9368 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9825 | 13.0 | 78 | 0.9139 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.9459 | 14.0 | 84 | 0.8837 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9155 | 15.0 | 90 | 0.8472 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8819 | 16.0 | 96 | 0.8231 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8523 | 17.0 | 102 | 0.7957 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.8251 | 18.0 | 108 | 0.7681 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7982 | 19.0 | 114 | 0.7533 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7762 | 20.0 | 120 | 0.7283 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7558 | 21.0 | 126 | 0.7114 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7346 | 22.0 | 132 | 0.6889 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7116 | 23.0 | 138 | 0.6697 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6898 | 24.0 | 144 | 0.6593 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6748 | 25.0 | 150 | 0.6356 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6487 | 26.0 | 156 | 0.6142 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6312 | 27.0 | 162 | 0.6008 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6156 | 28.0 | 168 | 0.5855 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5961 | 29.0 | 174 | 0.5625 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5781 | 30.0 | 180 | 0.5553 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
LDD/bert_mlm_new2
21c6bb13976c3ca352397e0b62dad7ab6cf3c1f9
2022-06-14T05:43:18.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
LDD
null
LDD/bert_mlm_new2
3
null
transformers
22,567
在bert-base-chinese基础上进行新闻语料库的增量预训练的模型,token采用的是bert-base-chinese Model 模型导出时将生成 config.json 和 pytorch_model.bin 参数文件 Tokenizer 这是一个将纯文本转换为编码的过程。注意,Tokenizer 并不涉及将词转化为词向量的过程,仅仅是将纯文本分词,添加[MASK]标记、[SEP]、[CLS]标记,并转换为字典索引。Tokenizer 类导出时将分为三个文件 vocab.txt 词典文件,每一行为一个词或词的一部分 special_tokens_map.json 特殊标记的定义方式 tokenizer_config.json 配置文件,主要存储特殊的配置 模型的所有分词器都是在 PreTrainedTokenizer 中实现的,分词的结果主要有以下内容: "input ids": 顾名思义,是单词在词典中的编码 "token type ids":区分两个句子的编码 "attention mask":指定对哪些词进行self-Attention操作 "overflowing tokens":当指定最大长度时,溢出的单词 "num truncated tokens":溢出的token数量 "return special tokens mask":如果添加特殊标记,则这是[0,1]的列表,其中0指定特殊添加的标记,而1指定序列标记
evangeloc/t5-small-finetuned-xsum
4a260c27711ff90e39fe343cc17058177de7ddec
2022-06-12T07:32:54.000Z
[ "pytorch", "tf", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
evangeloc
null
evangeloc/t5-small-finetuned-xsum
3
null
transformers
22,568
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: evangeloc/t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # evangeloc/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7203 - Validation Loss: 2.4006 - Train Rouge1: 28.1689 - Train Rouge2: 7.9798 - Train Rougel: 22.6998 - Train Rougelsum: 22.7228 - Train Gen Len: 18.865 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.7203 | 2.4006 | 28.1689 | 7.9798 | 22.6998 | 22.7228 | 18.865 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
panapelli/RobertaModel
6b8a3b160641e25cdc974cce4c532450d60f5ea8
2022-06-11T21:31:03.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
panapelli
null
panapelli/RobertaModel
3
null
transformers
22,569
Entry not found
Averium/DialoGPT-medium-TailsBot
62ad9b8db7bced13974a8625e16d8a35fa59fd41
2022-06-16T23:58:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Averium
null
Averium/DialoGPT-medium-TailsBot
3
null
transformers
22,570
--- tags: - conversational --- # Miles Prower DialoGPT Model
AnonymousSub/fpdm_roberta_soup_model
7bfa68e60415ddf4bda976f917d7f8b7842c5ec4
2022-06-12T13:33:34.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/fpdm_roberta_soup_model
3
null
transformers
22,571
Entry not found
AnonymousSub/fpdm_roberta_soup_model_squad2.0
0cfadf712be202c37267b4cc68c301bb25b3185d
2022-06-12T15:16:32.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_roberta_soup_model_squad2.0
3
null
transformers
22,572
Entry not found
anu24/distilbert-base-uncased-finetuned-squad
be097acb07caa19b5e5f98b21f74165f72f25dfc
2022-07-10T14:24:22.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anu24
null
anu24/distilbert-base-uncased-finetuned-squad
3
null
transformers
22,573
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2109 | 1.0 | 5533 | 1.1506 | | 0.9581 | 2.0 | 11066 | 1.1300 | | 0.7508 | 3.0 | 16599 | 1.1503 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
IDEA-CCNL/Taiyi-Roberta-124M-D-v2
ed7cbcdde9fe0a920f51d6599183950a330b410c
2022-06-14T01:49:51.000Z
[ "pytorch", "roberta", "feature-extraction", "en", "transformers", "mutlimodal", "exbert", "license:apache-2.0" ]
feature-extraction
false
IDEA-CCNL
null
IDEA-CCNL/Taiyi-Roberta-124M-D-v2
3
null
transformers
22,574
--- language: - en license: apache-2.0 tags: - roberta - mutlimodal - exbert inference: false --- # Taiyi-Roberta-124M-D-v2 model (English) Based on pre-trained Roberta-base, we introduce multimodal information. For multimodal pre-training tasks, we design several special training objectives in our paper. Our code and details of pre-training tasks will be made publicly available upon paper acceptance. This is the second version of Taiyi-Roberta-124M-D. The pre-training datasets are MSCOCO, VG and SBU. "D" implies a special training method. # Taiyi (太乙) Taiyi models are a branch of the Fengshenbang (封神榜) series of models. The models in Taiyi are pre-trained with multimodal pre-training strategies. # Usage ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained("IDEA-CCNL/Taiyi-Roberta-124M-D-v2") model = RobertaModel.from_pretrained("IDEA-CCNL/Taiyi-Roberta-124M-D-v2") ``` # GLUE | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |---------------------------------|------|------|------|-------|------|-------|------|------| | Robert-base (official) | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 | | Roberta-base (local) | 87.0 | 91.3 | 92.5 | 94.2 | 62.8 | 90.6 | 92.9 | 78.0 | | Taiyi-Roberta-124M-D (local) | 87.1 | 91.8 | 92.3 | 94.5 | 62.6 | 90.4 | 92.4 | 78.7 | | Taiyi-Roberta-124M-D-v2 (local) | 87.1 | 91.9 | 92.4 | 94.5 | 65.5 | 91.0 | 93.0 | 79.8 | The local test settings are: Sequence length: 128, Batch size: 32, Learning rate: 3e-5 # Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_textdecoderonly_bs64
a51dc78a996ce23ed34c014c6938be9d0919e688
2022-06-15T01:37:27.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_textdecoderonly_bs64
3
null
transformers
22,575
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.6_topk30_epoch3
609abb64e337f0c4a565c3c2ddf3a07c5c90a16c
2022-06-13T08:10:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.6_topk30_epoch3
3
null
transformers
22,576
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.6_topk20_epoch3
a33c763246d722d5888fde44a0b175730b1533a5
2022-06-13T09:43:59.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.6_topk20_epoch3
3
null
transformers
22,577
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk50_epoch3
172318d9d2bea3bcfe07bc3208170e4061a449ad
2022-06-13T11:18:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk50_epoch3
3
null
transformers
22,578
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk40_epoch3
f23e69b0efe9742b87c131f0e921279e1d445074
2022-06-13T12:51:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk40_epoch3
3
null
transformers
22,579
Entry not found
JeremiahZ/roberta-base-mrpc
9cae29b5783a394582ff96ac29a3c6a8e0a4b4fc
2022-06-13T13:49:41.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
JeremiahZ
null
JeremiahZ/roberta-base-mrpc
3
null
transformers
22,580
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.9019607843137255 - name: F1 type: f1 value: 0.9295774647887324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4898 - Accuracy: 0.9020 - F1: 0.9296 - Combined Score: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk30_epoch3
369bf822b841b77c8877f6b67acb23af7b3680e8
2022-06-13T14:24:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.5_topk30_epoch3
3
null
transformers
22,581
Entry not found
Fdu4e/oryzhach
0380c05955df57e24c1c84cc0b6f258ef703bd21
2022-06-14T18:07:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Fdu4e
null
Fdu4e/oryzhach
3
null
transformers
22,582
Entry not found
eslamxm/mt5-base-finetuned-en-cnn
52a35a57022c5fa98253b57a1596714d97ce925c
2022-06-14T06:15:18.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "en", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-en-cnn
3
null
transformers
22,583
--- license: apache-2.0 tags: - summarization - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: mt5-base-finetuned-en-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-en-cnn This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 3.1286 - Rouge-1: 22.84 - Rouge-2: 10.11 - Rouge-l: 21.8 - Gen Len: 19.0 - Bertscore: 87.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
JeremiahZ/roberta-base-mnli
a852739baf468858f8a0227cca4b164bbca9b932
2022-06-14T03:59:44.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
JeremiahZ
null
JeremiahZ/roberta-base-mnli
3
null
transformers
22,584
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: roberta-base-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-mnli This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base/) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7539 - eval_accuracy: 0.8697 - eval_runtime: 25.5655 - eval_samples_per_second: 384.581 - eval_steps_per_second: 48.073 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
micamorales/bertin-NLI-abs
d89c9048515c81f80345afcd0b220b580b987a72
2022-06-14T18:53:59.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
micamorales
null
micamorales/bertin-NLI-abs
3
null
transformers
22,585
Entry not found
jkhan447/sarcasm-detection-RoBerta-base-CR-POS
1757cd5120442c728e3bc6d51a860bac59f47a52
2022-06-14T16:55:38.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-RoBerta-base-CR-POS
3
null
transformers
22,586
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-CR-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-CR-POS This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Accuracy: 0.4977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
JeremiahZ/roberta-base-cola
f283bc9ccbfbdd4b0433d3a3a5805d3ab8d7954f
2022-06-14T08:52:16.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
JeremiahZ
null
JeremiahZ/roberta-base-cola
3
null
transformers
22,587
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6232164195970928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 1.0571 - Matthews Correlation: 0.6232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5497 | 1.0 | 535 | 0.5504 | 0.4613 | | 0.3786 | 2.0 | 1070 | 0.4850 | 0.5470 | | 0.2733 | 3.0 | 1605 | 0.5036 | 0.5792 | | 0.2204 | 4.0 | 2140 | 0.5532 | 0.6139 | | 0.164 | 5.0 | 2675 | 0.9516 | 0.5934 | | 0.1351 | 6.0 | 3210 | 0.9051 | 0.5754 | | 0.1065 | 7.0 | 3745 | 0.9006 | 0.6161 | | 0.0874 | 8.0 | 4280 | 0.9457 | 0.6157 | | 0.0579 | 9.0 | 4815 | 1.0372 | 0.6007 | | 0.0451 | 10.0 | 5350 | 1.0571 | 0.6232 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
JeremiahZ/roberta-base-rte
9a2ec0a50256a4bfe23bef2c30f41e0b65c88432
2022-06-20T14:02:32.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
JeremiahZ
null
JeremiahZ/roberta-base-rte
3
null
transformers
22,588
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.7978339350180506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-rte This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.5446 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7023 | 0.4729 | | No log | 2.0 | 312 | 0.6356 | 0.6895 | | No log | 3.0 | 468 | 0.5177 | 0.7617 | | 0.6131 | 4.0 | 624 | 0.6238 | 0.7473 | | 0.6131 | 5.0 | 780 | 0.5446 | 0.7978 | | 0.6131 | 6.0 | 936 | 0.9697 | 0.7545 | | 0.2528 | 7.0 | 1092 | 1.1004 | 0.7690 | | 0.2528 | 8.0 | 1248 | 1.1937 | 0.7726 | | 0.2528 | 9.0 | 1404 | 1.3313 | 0.7726 | | 0.1073 | 10.0 | 1560 | 1.3534 | 0.7726 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
JeremiahZ/roberta-base-stsb
a74276c24d98c8fa35e52248feadcea51e4e519f
2022-06-14T10:05:52.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
JeremiahZ
null
JeremiahZ/roberta-base-stsb
3
null
transformers
22,589
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: roberta-base-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.907904999413384 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-stsb This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 - Pearson: 0.9101 - Spearmanr: 0.9079 - Combined Score: 0.9090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | No log | 1.0 | 360 | 0.6202 | 0.8787 | 0.8813 | 0.8800 | | 1.6425 | 2.0 | 720 | 0.4864 | 0.9008 | 0.8992 | 0.9000 | | 0.3629 | 3.0 | 1080 | 0.4201 | 0.9043 | 0.9016 | 0.9030 | | 0.3629 | 4.0 | 1440 | 0.4686 | 0.9052 | 0.9003 | 0.9027 | | 0.2212 | 5.0 | 1800 | 0.4622 | 0.9061 | 0.9031 | 0.9046 | | 0.1556 | 6.0 | 2160 | 0.3952 | 0.9086 | 0.9065 | 0.9075 | | 0.1162 | 7.0 | 2520 | 0.4271 | 0.9081 | 0.9070 | 0.9075 | | 0.1162 | 8.0 | 2880 | 0.4169 | 0.9094 | 0.9075 | 0.9085 | | 0.0887 | 9.0 | 3240 | 0.4383 | 0.9091 | 0.9074 | 0.9083 | | 0.0717 | 10.0 | 3600 | 0.4155 | 0.9101 | 0.9079 | 0.9090 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Yama/yamaen
788161b3a9874cefbaa98af368d59097f41c9cc8
2022-06-14T11:35:49.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Yama
null
Yama/yamaen
3
null
transformers
22,590
Entry not found
tuni/distilbert-base-uncased-finetuned-mnli
0826761951a4a76e8fff0242402eed6f13ae9624
2022-06-15T12:57:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tuni
null
tuni/distilbert-base-uncased-finetuned-mnli
3
null
transformers
22,591
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8204788588894549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6574 - Accuracy: 0.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5188 | 1.0 | 24544 | 0.4979 | 0.8047 | | 0.4153 | 2.0 | 49088 | 0.4845 | 0.8147 | | 0.3008 | 3.0 | 73632 | 0.5631 | 0.8204 | | 0.2226 | 4.0 | 98176 | 0.6574 | 0.8205 | | 0.189 | 5.0 | 122720 | 0.8209 | 0.8194 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_t5lephonev2-small_textdecoderonly_bs64
91d01c8931b0ae4cfcf728a5f952a474905e5efc
2022-06-16T00:09:29.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephonev2-small_textdecoderonly_bs64
3
null
transformers
22,592
Entry not found
HrayrMSint/bert-base-uncased-issues-128
3ef2b7cdfe6084e75c7b1a1a6c08db87cf79d240
2022-06-15T10:29:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
HrayrMSint
null
HrayrMSint/bert-base-uncased-issues-128
3
null
transformers
22,593
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0987 | 1.0 | 291 | 1.6066 | | 1.631 | 2.0 | 582 | 1.4775 | | 1.4933 | 3.0 | 873 | 1.4646 | | 1.3984 | 4.0 | 1164 | 1.3314 | | 1.3377 | 5.0 | 1455 | 1.3122 | | 1.274 | 6.0 | 1746 | 1.2062 | | 1.2538 | 7.0 | 2037 | 1.2626 | | 1.192 | 8.0 | 2328 | 1.1832 | | 1.1612 | 9.0 | 2619 | 1.2055 | | 1.1489 | 10.0 | 2910 | 1.1605 | | 1.1262 | 11.0 | 3201 | 1.1925 | | 1.1022 | 12.0 | 3492 | 1.1309 | | 1.0892 | 13.0 | 3783 | 1.1692 | | 1.0812 | 14.0 | 4074 | 1.2384 | | 1.0666 | 15.0 | 4365 | 1.0822 | | 1.0533 | 16.0 | 4656 | 1.2432 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0 - Datasets 2.2.2 - Tokenizers 0.10.3
jkhan447/sarcasm-detection-Bert-base-uncased-CR-POS
127b9c92421e8fce22480490d4090cdb438dedfd
2022-06-15T12:59:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-Bert-base-uncased-CR-POS
3
null
transformers
22,594
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-CR-POS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-CR-POS This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1816 - Accuracy: 0.5783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
jhmin/bert-base-uncased-emotion
beaaf0b58c0a949498d71f41713451e522d7dc8c
2022-06-15T09:44:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jhmin
null
jhmin/bert-base-uncased-emotion
3
null
transformers
22,595
Entry not found
erickfm/fiery-sweep-4
e8c04373496c24ea11defbe6708d743ffb86cdc3
2022-06-15T12:21:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/fiery-sweep-4
3
null
transformers
22,596
Entry not found
erickfm/vibrant-sweep-5
4847c687c8ac7d3c353df86b5f6c7651d0ee32f0
2022-06-15T15:03:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/vibrant-sweep-5
3
null
transformers
22,597
Entry not found
erickfm/chocolate-sweep-7
67f17c1b3a3e24375e4fa926e616ec01136a2941
2022-06-15T18:10:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/chocolate-sweep-7
3
null
transformers
22,598
Entry not found
Splend1dchan/wav2vec2-large-lv60_mt5-small_textdecoderonly_bs64
e120e9d174d8cd63c7cafe5756fbd7969db71451
2022-06-17T18:16:55.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5-small_textdecoderonly_bs64
3
null
transformers
22,599
Entry not found