modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
lgodwangl/sent_conservative
64dd1a8b13262bbde088de371e96e014f3ad5ad2
2022-05-13T01:25:39.000Z
[ "pytorch", "perceiver", "text-classification", "transformers" ]
text-classification
false
lgodwangl
null
lgodwangl/sent_conservative
3
null
transformers
22,400
Entry not found
Milanmg/bert-base-multilingual
7fac3ff40f20c006544aa637a9dd2fe42f2b82f7
2022-05-13T05:06:21.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Milanmg
null
Milanmg/bert-base-multilingual
3
null
transformers
22,401
Entry not found
jkhan447/language-detection-Bert-base-uncased
5fded656790b4615a13edb78c9fd990727d6e685
2022-05-13T10:07:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/language-detection-Bert-base-uncased
3
null
transformers
22,402
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-Bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2231 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ceggian/sbert_pt_reddit_softmax_128
6b6df9cb98acda67e448cef24c0a92c775337a22
2022-05-13T04:46:30.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_softmax_128
3
null
sentence-transformers
22,403
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PSW/cnndm_0.1percent_minsimdel_seed1
83808fcd8979f638b8222cd6856e020a4080045f
2022-05-15T08:29:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimdel_seed1
3
null
transformers
22,404
Entry not found
manirai91/mbert-imdb
4db5877d83aca7080285401dec749b61b635988f
2022-05-13T11:30:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
manirai91
null
manirai91/mbert-imdb
3
null
transformers
22,405
Entry not found
peggyhuang/gpt2-qrecc
0fc1cfc5b1a2f1b28e4d542a17c31e2a68a9c700
2022-05-13T12:20:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
peggyhuang
null
peggyhuang/gpt2-qrecc
3
null
transformers
22,406
Entry not found
PSW/cnndm_0.1percent_minmaxswap_seed1
728c10525be12dfdc453024f3736f2b197685e6a
2022-05-16T04:27:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minmaxswap_seed1
3
null
transformers
22,407
Entry not found
peggyhuang/t5-base-qrecc
83c13c95733a5c84a4d24ea8046cf921d420e5fe
2022-05-13T16:23:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
peggyhuang
null
peggyhuang/t5-base-qrecc
3
null
transformers
22,408
Entry not found
Dizzykong/gpt2-example
8a8b56dc3ea9663cbdd5c352e416a71d8ccc0846
2022-05-13T18:21:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-example
3
null
transformers
22,409
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-example This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ali-issa/1-wav2vec2-arabic-gpu-colab
293bc8cbea13414c04848353c57e6205d9d8775e
2022-05-14T04:42:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/1-wav2vec2-arabic-gpu-colab
3
null
transformers
22,410
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-arabic-gpu-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-arabic-gpu-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9957 - Wer: 0.4651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 10.9081 | 0.35 | 100 | 5.2386 | 1.0 | | 3.2421 | 0.71 | 200 | 3.0640 | 1.0 | | 2.9774 | 1.06 | 300 | 2.8992 | 1.0 | | 2.8996 | 1.41 | 400 | 2.8520 | 1.0 | | 2.4167 | 1.77 | 500 | 1.8349 | 1.0 | | 1.312 | 2.12 | 600 | 1.1278 | 0.8972 | | 1.0832 | 2.47 | 700 | 0.9189 | 0.7763 | | 0.961 | 2.83 | 800 | 0.8498 | 0.7810 | | 0.7067 | 3.18 | 900 | 0.7832 | 0.6911 | | 0.6727 | 3.53 | 1000 | 0.7686 | 0.6817 | | 0.6869 | 3.89 | 1100 | 0.7178 | 0.6606 | | 0.5074 | 4.24 | 1200 | 0.7431 | 0.6371 | | 0.5298 | 4.59 | 1300 | 0.7370 | 0.6477 | | 0.522 | 4.95 | 1400 | 0.6710 | 0.6201 | | 0.4282 | 5.3 | 1500 | 0.7460 | 0.6336 | | 0.4448 | 5.65 | 1600 | 0.7355 | 0.5890 | | 0.4706 | 6.01 | 1700 | 0.7612 | 0.6254 | | 0.3831 | 6.36 | 1800 | 0.7308 | 0.6130 | | 0.3997 | 6.71 | 1900 | 0.7083 | 0.5907 | | 0.3968 | 7.07 | 2000 | 0.7919 | 0.5872 | | 0.3613 | 7.42 | 2100 | 0.7489 | 0.5942 | | 0.3746 | 7.77 | 2200 | 0.7261 | 0.5778 | | 0.3557 | 8.13 | 2300 | 0.7527 | 0.5749 | | 0.3539 | 8.48 | 2400 | 0.7762 | 0.5696 | | 0.3771 | 8.83 | 2500 | 0.7640 | 0.5766 | | 0.3148 | 9.19 | 2600 | 0.7394 | 0.5719 | | 0.3617 | 9.54 | 2700 | 0.8017 | 0.5713 | | 0.3852 | 9.89 | 2800 | 0.7286 | 0.5766 | | 0.3065 | 10.25 | 2900 | 0.7963 | 0.6042 | | 0.3454 | 10.6 | 3000 | 0.7685 | 0.5637 | | 0.3704 | 10.95 | 3100 | 0.8003 | 0.5584 | | 0.3243 | 11.31 | 3200 | 0.7872 | 0.5567 | | 0.3438 | 11.66 | 3300 | 0.8140 | 0.5619 | | 0.3227 | 12.01 | 3400 | 0.8192 | 0.5890 | | 0.2794 | 12.37 | 3500 | 0.8573 | 0.5866 | | 0.2941 | 12.72 | 3600 | 0.8054 | 0.5543 | | 0.2828 | 13.07 | 3700 | 0.8168 | 0.5584 | | 0.2638 | 13.43 | 3800 | 0.7975 | 0.5649 | | 0.2503 | 13.78 | 3900 | 0.8714 | 0.5432 | | 0.2357 | 14.13 | 4000 | 0.8058 | 0.5520 | | 0.2332 | 14.49 | 4100 | 0.8636 | 0.5637 | | 0.2423 | 14.84 | 4200 | 0.8774 | 0.5666 | | 0.2128 | 15.19 | 4300 | 0.8882 | 0.5531 | | 0.2151 | 15.55 | 4400 | 0.8291 | 0.5238 | | 0.2152 | 15.9 | 4500 | 0.8529 | 0.5631 | | 0.2039 | 16.25 | 4600 | 0.7924 | 0.5502 | | 0.2052 | 16.61 | 4700 | 0.8515 | 0.5625 | | 0.2054 | 16.96 | 4800 | 0.8428 | 0.5619 | | 0.1872 | 17.31 | 4900 | 0.8507 | 0.5367 | | 0.1795 | 17.67 | 5000 | 0.8774 | 0.5449 | | 0.1939 | 18.02 | 5100 | 0.8555 | 0.5432 | | 0.1667 | 18.37 | 5200 | 0.9200 | 0.5555 | | 0.1894 | 18.73 | 5300 | 0.8407 | 0.5508 | | 0.1773 | 19.08 | 5400 | 0.8522 | 0.5285 | | 0.1671 | 19.43 | 5500 | 0.8925 | 0.5379 | | 0.1651 | 19.79 | 5600 | 0.8111 | 0.5203 | | 0.1647 | 20.14 | 5700 | 0.8529 | 0.5179 | | 0.1588 | 20.49 | 5800 | 0.8181 | 0.5267 | | 0.1626 | 20.85 | 5900 | 0.8150 | 0.5302 | | 0.1385 | 21.2 | 6000 | 0.8691 | 0.5461 | | 0.1483 | 21.55 | 6100 | 0.9188 | 0.5420 | | 0.1572 | 21.91 | 6200 | 0.9482 | 0.5344 | | 0.133 | 22.26 | 6300 | 0.9386 | 0.5443 | | 0.1448 | 22.61 | 6400 | 0.9549 | 0.5314 | | 0.1443 | 22.97 | 6500 | 0.8743 | 0.5332 | | 0.14 | 23.32 | 6600 | 0.8278 | 0.5203 | | 0.1476 | 23.67 | 6700 | 0.8949 | 0.5244 | | 0.1597 | 24.03 | 6800 | 0.8842 | 0.5355 | | 0.1402 | 24.38 | 6900 | 0.8334 | 0.5097 | | 0.1459 | 24.73 | 7000 | 0.8227 | 0.5144 | | 0.1268 | 25.09 | 7100 | 0.8873 | 0.5173 | | 0.1294 | 25.44 | 7200 | 0.9022 | 0.5208 | | 0.1238 | 25.79 | 7300 | 0.8525 | 0.5291 | | 0.1213 | 26.15 | 7400 | 0.8545 | 0.5097 | | 0.1298 | 26.5 | 7500 | 0.8704 | 0.5320 | | 0.117 | 26.85 | 7600 | 0.8690 | 0.5021 | | 0.1087 | 27.21 | 7700 | 0.8968 | 0.5203 | | 0.1239 | 27.56 | 7800 | 0.8644 | 0.5244 | | 0.1125 | 27.91 | 7900 | 0.9177 | 0.5238 | | 0.1089 | 28.27 | 8000 | 0.9019 | 0.4997 | | 0.1086 | 28.62 | 8100 | 0.8404 | 0.4956 | | 0.1214 | 28.97 | 8200 | 0.9274 | 0.5026 | | 0.1066 | 29.33 | 8300 | 0.9177 | 0.5079 | | 0.1086 | 29.68 | 8400 | 0.9175 | 0.5191 | | 0.0963 | 30.04 | 8500 | 0.9508 | 0.5009 | | 0.1087 | 30.39 | 8600 | 0.9500 | 0.5344 | | 0.1045 | 30.74 | 8700 | 0.9291 | 0.5244 | | 0.1048 | 31.1 | 8800 | 0.9758 | 0.5250 | | 0.1017 | 31.45 | 8900 | 0.9174 | 0.5150 | | 0.108 | 31.8 | 9000 | 0.9436 | 0.5220 | | 0.101 | 32.16 | 9100 | 0.8894 | 0.5126 | | 0.0896 | 32.51 | 9200 | 0.9647 | 0.5126 | | 0.0981 | 32.86 | 9300 | 0.9165 | 0.5179 | | 0.0827 | 33.22 | 9400 | 0.8735 | 0.4932 | | 0.0993 | 33.57 | 9500 | 0.9213 | 0.4909 | | 0.0963 | 33.92 | 9600 | 0.8988 | 0.4915 | | 0.0796 | 34.28 | 9700 | 0.9873 | 0.5150 | | 0.0887 | 34.63 | 9800 | 0.9177 | 0.5120 | | 0.0951 | 34.98 | 9900 | 0.9614 | 0.5015 | | 0.0915 | 35.34 | 10000 | 0.9607 | 0.4962 | | 0.0813 | 35.69 | 10100 | 0.9585 | 0.5115 | | 0.086 | 36.04 | 10200 | 0.9877 | 0.4891 | | 0.0773 | 36.4 | 10300 | 0.9349 | 0.4915 | | 0.0755 | 36.75 | 10400 | 0.9216 | 0.4833 | | 0.0776 | 37.1 | 10500 | 0.9947 | 0.4827 | | 0.077 | 37.46 | 10600 | 0.9909 | 0.4868 | | 0.0798 | 37.81 | 10700 | 0.9571 | 0.4938 | | 0.0667 | 38.16 | 10800 | 1.0228 | 0.4927 | | 0.0797 | 38.52 | 10900 | 1.0108 | 0.4909 | | 0.0758 | 38.87 | 11000 | 0.9805 | 0.4950 | | 0.0672 | 39.22 | 11100 | 1.0143 | 0.4792 | | 0.0787 | 39.58 | 11200 | 0.9541 | 0.4762 | | 0.076 | 39.93 | 11300 | 0.8923 | 0.4792 | | 0.0781 | 40.28 | 11400 | 0.9096 | 0.4780 | | 0.0631 | 40.64 | 11500 | 1.0085 | 0.4786 | | 0.0659 | 40.99 | 11600 | 0.9783 | 0.4786 | | 0.0697 | 41.34 | 11700 | 0.9591 | 0.4833 | | 0.0569 | 41.7 | 11800 | 0.9853 | 0.4950 | | 0.0616 | 42.05 | 11900 | 0.9841 | 0.4792 | | 0.06 | 42.4 | 12000 | 0.9664 | 0.4733 | | 0.0605 | 42.76 | 12100 | 0.9817 | 0.4756 | | 0.0639 | 43.11 | 12200 | 0.9721 | 0.4715 | | 0.0552 | 43.46 | 12300 | 1.0123 | 0.4739 | | 0.0634 | 43.82 | 12400 | 0.9619 | 0.4750 | | 0.0583 | 44.17 | 12500 | 0.9861 | 0.4680 | | 0.0509 | 44.52 | 12600 | 0.9871 | 0.4674 | | 0.046 | 44.88 | 12700 | 1.0072 | 0.4686 | | 0.0516 | 45.23 | 12800 | 0.9809 | 0.4698 | | 0.0518 | 45.58 | 12900 | 0.9685 | 0.4580 | | 0.0542 | 45.94 | 13000 | 0.9710 | 0.4750 | | 0.0487 | 46.29 | 13100 | 0.9816 | 0.4733 | | 0.0422 | 46.64 | 13200 | 0.9670 | 0.4645 | | 0.0475 | 47.0 | 13300 | 0.9802 | 0.4686 | | 0.0452 | 47.35 | 13400 | 0.9812 | 0.4592 | | 0.0445 | 47.7 | 13500 | 0.9928 | 0.4633 | | 0.0463 | 48.06 | 13600 | 0.9883 | 0.4627 | | 0.0411 | 48.41 | 13700 | 0.9941 | 0.4668 | | 0.05 | 48.76 | 13800 | 0.9964 | 0.4680 | | 0.0503 | 49.12 | 13900 | 0.9932 | 0.4698 | | 0.0385 | 49.47 | 14000 | 0.9980 | 0.4645 | | 0.0389 | 49.82 | 14100 | 0.9957 | 0.4651 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
jtang9001/skynet_distilbert_1
f1bb780df48c8b06d8ba57766f6ba3db9eadd0f4
2022-05-15T01:18:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
jtang9001
null
jtang9001/skynet_distilbert_1
3
null
transformers
22,411
Entry not found
priansh/maeve-12-6-xsum
91ff0beaa72a5c8af5198dfefb914bd458c24b96
2022-05-16T13:55:59.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:xsum", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
text2text-generation
false
priansh
null
priansh/maeve-12-6-xsum
3
null
transformers
22,412
--- language: - en tags: - text2text-generation - pytorch license: "gpl-3.0" datasets: - xsum widget: - text: "President Biden met with Russia's Putin over the weekend to discuss a ceasefire in Ukraine." example_title: "Ukrainian Ceasefire" - text: "Acme Ventures recently led a seed round to provide over $2MM in funding to Aiko Mail, an AI startup tackling email." example_title: "VC Investment" - text: "In a shocking move, Florida has decided to formally secede from the United States, opting to sink into the Atlantic Ocean." example_title: "Florida secedes" --- # Maeve - XSUM Maeve is a language model that is similar to BART in structure but trained specially using a CAT (Conditionally Adversarial Transformer). This allows the model to learn to create long-form text from short entries with high degrees of control and coherence that are impossible to achieve with traditional transformers. This specific model has been trained on the XSUM dataset, and can invert summaries into full-length news articles. Feel free to try examples on the right!
DanDrai/distilbert-base-uncased-finetuned-imdb
83ead6de8473d8c31f2ad03ade37c7388e86d2c6
2022-05-15T09:24:33.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DanDrai
null
DanDrai/distilbert-base-uncased-finetuned-imdb
3
null
transformers
22,413
Entry not found
aliosm/sha3bor-poetry-diacritizer-canine-c
26e603bb35156e0b0f274573e350a059343f9ff9
2022-05-28T09:41:39.000Z
[ "pytorch", "canine", "token-classification", "ar", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
aliosm
null
aliosm/sha3bor-poetry-diacritizer-canine-c
3
null
transformers
22,414
--- language: ar license: mit widget: - text: "ุฅู† ุงู„ุนูŠูˆู† ุงู„ุชูŠ ููŠ ุทุฑูู‡ุง ุญูˆุฑ [ุดุทุฑ] ู‚ุชู„ู†ู†ุง ุซู… ู„ู… ูŠุญูŠูŠู† ู‚ุชู„ุงู†ุง" - text: "ุฅุฐุง ู…ุง ูุนู„ุช ุงู„ุฎูŠุฑ ุถูˆุนู ุดุฑู‡ู… [ุดุทุฑ] ูˆูƒู„ ุฅู†ุงุก ุจุงู„ุฐูŠ ููŠู‡ ูŠู†ุถุญ" - text: "ูˆุงุญุฑ ู‚ู„ุจุงู‡ ู…ู…ู† ู‚ู„ุจู‡ ุดุจู… [ุดุทุฑ] ูˆู…ู† ุจุฌุณู…ูŠ ูˆุญุงู„ูŠ ุนู†ุฏู‡ ุณู‚ู…" ---
aliosm/sha3bor-general-diacritizer-canine-s
22c4562078e558849a8ac8920e6f7ae77ba9662e
2022-05-28T09:41:34.000Z
[ "pytorch", "canine", "token-classification", "ar", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
aliosm
null
aliosm/sha3bor-general-diacritizer-canine-s
3
null
transformers
22,415
--- language: ar license: mit widget: - text: "ุชูˆูƒู„ุช ููŠ ุฑุฒู‚ูŠ ุนู„ู‰ ุงู„ู„ู‡ ุฎุงู„ู‚ูŠ ูˆุฃูŠู‚ู†ุช ุฃู† ุงู„ู„ู‡ ู„ุง ุดูƒ ุฑุงุฒู‚ูŠ." - text: "ุฃูŠ ุดุฎุต ูŠุชูˆู‚ู ุนู† ุงู„ุชุนู„ู… ู‡ูˆ ุนุฌูˆุฒุŒ ุณูˆุงุก ูƒุงู† ููŠ ุงู„ุนุดุฑูŠู† ุฃูˆ ุงู„ุซู…ุงู†ูŠู†." - text: "ุงู„ุญูŠุงุฉ ุฑูˆุงูŠุฉ ุฌู…ูŠู„ุฉ ุนู„ูŠูƒ ู‚ุฑุงุกุชู‡ุง ุญุชู‰ ุงู„ู†ู‡ุงูŠุฉุŒ ู„ุง ุชุชูˆู‚ู ุฃุจุฏุง ุนู†ุฏ ุณุทุฑ ุญุฒูŠู† ู‚ุฏ ุชูƒูˆู† ุงู„ู†ู‡ุงูŠุฉ ุฌู…ูŠู„ุฉ." ---
PSW/cnndm_0.1percent_minsimins_seed42
4d07118bb870772b8ab36e73595fed434a4f27dc
2022-05-15T20:46:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimins_seed42
3
null
transformers
22,416
Entry not found
khalidalt/all-mpnet-base-v2-tasky-classification
4ab309a6cbcc877aa9f4f65af04c9bf1db8b4f65
2022-05-15T22:16:03.000Z
[ "pytorch", "mpnet", "text-classification", "transformers" ]
text-classification
false
khalidalt
null
khalidalt/all-mpnet-base-v2-tasky-classification
3
null
transformers
22,417
--- widget: - text: "Satellites chart unlit territory and poverty hotspots." --- # all-mpnet-base-v2-tasky-classification
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_42
0b070d87aa674b04b6a9a428e2a8fce83d9eea48
2022-05-15T23:06:54.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_42
3
null
transformers
22,418
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_88
4b9281e9a6436736d02bee16cd7c9932623c56fb
2022-05-16T00:12:10.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_88
3
null
transformers
22,419
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_88
c1a9c9111b5fdac7328e0c9c8c087c63658bbaf7
2022-05-16T00:21:26.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_88
3
null
transformers
22,420
Entry not found
CEBaB/t5-base.CEBaB.absa.inclusive.seed_77
ece39d4a8824409a5612f8011040314f576530db
2022-05-16T01:42:51.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.inclusive.seed_77
3
null
transformers
22,421
Entry not found
PSW/cnndm_0.1percent_max2swap_seed27
af5ca15c357e5c6921dd1e43ab1e4cc75aff1791
2022-05-16T12:17:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_max2swap_seed27
3
null
transformers
22,422
Entry not found
huawei-noah/AutoTinyBERT-S2
c842a7d061a02223e8207877bd53a82654cfb84a
2022-05-16T14:52:36.000Z
[ "pytorch", "transformers", "license:other" ]
null
false
huawei-noah
null
huawei-noah/AutoTinyBERT-S2
3
null
transformers
22,423
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
oeg/roberta-finetuned-CPV_Spanish
2fa4faa439364ff2c06dfde576047ba2d993fb04
2022-05-17T09:15:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
oeg
null
oeg/roberta-finetuned-CPV_Spanish
3
null
transformers
22,424
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-CPV_Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-CPV_Spanish This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on a dataset derived from Spanish Public Procurement documents from 2019. The whole fine-tuning process is available in the following [Kaggle notebook](https://www.kaggle.com/code/marianavasloro/fine-tuned-roberta-for-spanish-cpv-codes). It achieves the following results on the evaluation set: - Loss: 0.0465 - F1: 0.7918 - Roc Auc: 0.8860 - Accuracy: 0.7376 - Coverage Error: 10.2744 - Label Ranking Average Precision Score: 0.7973 ## Intended uses & limitations This model only predicts the first two digits of the CPV codes. The list of divisions CPV codes is the following: | Division | English | Spanish | | | | |----------|:----------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------------------------------------------------------------------|:-:|:-:|:-:| | 03 | Agricultural, farming, fishing, forestry and related products | Productos de la agricultura, ganaderรญa, pesca, silvicultura y productos afines | | | | | 09 | Petroleum products, fuel, electricity and other sources of energy | Derivados del petrรณleo, combustibles, electricidad y otras fuentes de energรญa | | | | | 14 | Mining, basic metals and related products | Productos de la minerรญa, de metales de base y productos afines | | | | | 15 | Food, beverages, tobacco and related products | Alimentos, bebidas, tabaco y productos afines | | | | | 16 | Agricultural machinery | Maquinaria agrรญcola | | | | | 18 | Clothing, footwear, luggage articles and accessories | Prendas de vestir, calzado, artรญculos de viaje y accesorios | | | | | 19 | Leather and textile fabrics, plastic and rubber materials | Piel y textiles, materiales de plรกstico y caucho | | | | | 22 | Printed matter and related products | Impresos y productos relacionados | | | | | 24 | Chemical products | Productos quรญmicos | | | | | 30 | Office and computing machinery, equipment and supplies except furniture and software packages | Mรกquinas, equipo y artรญculos de oficina y de informรกtica, excepto mobiliario y paquetes de software | | | | | 31 | Electrical machinery, apparatus, equipment and consumables; lighting | Mรกquinas, aparatos, equipo y productos consumibles elรฉctricos; iluminaciรณn | | | | | 32 | Radio, television, communication, telecommunication and related equipment | Equipos de radio, televisiรณn, comunicaciones y telecomunicaciones y equipos conexos | | | | | 33 | Medical equipments, pharmaceuticals and personal care products | Equipamiento y artรญculos mรฉdicos, farmacรฉuticos y de higiene personal | | | | | 34 | Transport equipment and auxiliary products to transportation | Equipos de transporte y productos auxiliares | | | | | 35 | Security, fire | Equipo de seguridad, extinciรณn de incendios, policรญa y defensa | | | | | 37 | Musical instruments, sport goods, games, toys, handicraft, art materials and accessories | Instrumentos musicales, artรญculos deportivos, juegos, juguetes, artรญculos de artesanรญa, materiales artรญsticos y accesorios | | | | | 38 | Laboratory, optical and precision equipments (excl. glasses) | Equipo de laboratorio, รณptico y de precisiรณn (excepto gafas) | | | | | 39 | Furniture (incl. office furniture), furnishings, domestic appliances (excl. lighting) and cleaning products | Mobiliario (incluido el de oficina), complementos de mobiliario, aparatos electrodomรฉsticos (excluida la iluminaciรณn) y productos de limpieza | | | | | 41 | Collected and purified water | Agua recogida y depurada | | | | | 42 | Industrial machinery | Maquinaria industrial | | | | | 43 | Machinery for mining, quarrying, construction equipment | Maquinaria para la minerรญa y la explotaciรณn de canteras y equipo de construcciรณn | | | | | 44 | Construction structures and materials; auxiliary products to construction (except electric apparatus) | Estructuras y materiales de construcciรณn; productos auxiliares para la construcciรณn (excepto aparatos elรฉctricos) | | | | | 45 | Construction work | Trabajos de construcciรณn | | | | | 48 | Software package and information systems | Paquetes de software y sistemas de informaciรณn | | | | | 50 | Repair and maintenance services | Servicios de reparaciรณn y mantenimiento | | | | | 51 | Installation services (except software) | Servicios de instalaciรณn (excepto software) | | | | | 55 | Hotel, restaurant and retail trade services | Servicios comerciales al por menor de hostelerรญa y restauraciรณn | | | | | 60 | Transport services (excl. Waste transport) | Servicios de transporte (excluido el transporte de residuos) | | | | | 63 | Supporting and auxiliary transport services; travel agencies services | Servicios de transporte complementarios y auxiliares; servicios de agencias de viajes | | | | | 64 | Postal and telecommunications services | Servicios de correos y telecomunicaciones | | | | | 65 | Public utilities | Servicios pรบblicos | | | | | 66 | Financial and insurance services | Servicios financieros y de seguros | | | | | 70 | Real estate services | Servicios inmobiliarios | | | | | 71 | Architectural, construction, engineering and inspection services | Servicios de arquitectura, construcciรณn, ingenierรญa e inspecciรณn | | | | | 72 | IT services: consulting, software development, Internet and support | Servicios TI: consultorรญa, desarrollo de software, Internet y apoyo | | | | | 73 | Research and development services and related consultancy services | Servicios de investigaciรณn y desarrollo y servicios de consultorรญa conexos | | | | | 75 | Administration, defence and social security services | Servicios de administraciรณn pรบblica, defensa y servicios de seguridad social | | | | | 76 | Services related to the oil and gas industry | Servicios relacionados con la industria del gas y del petrรณleo | | | | | 77 | Agricultural, forestry, horticultural, aquacultural and apicultural services | Servicios agrรญcolas, forestales, hortรญcolas, acuรญcolas y apรญcolas | | | | | 79 | Business services: law, marketing, consulting, recruitment, printing and security | Servicios a empresas: legislaciรณn, mercadotecnia, asesorรญa, selecciรณn de personal, imprenta y seguridad | | | | | 80 | Education and training services | Servicios de enseรฑanza y formaciรณn | | | | | 85 | Health and social work services | Servicios de salud y asistencia social | | | | | 90 | Sewage, refuse, cleaning and environmental services | Servicios de alcantarillado, basura, limpieza y medio ambiente | | | | | 92 | Recreational, cultural and sporting services | Servicios de esparcimiento, culturales y deportivos | | | | | 98 | Other community, social and personal services | Otros servicios comunitarios, sociales o personales | | | | ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Coverage Error | Label Ranking Average Precision Score | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|:--------------:|:-------------------------------------:| | 0.0354 | 1.0 | 9054 | 0.0362 | 0.7560 | 0.8375 | 0.6963 | 14.0835 | 0.7357 | | 0.0311 | 2.0 | 18108 | 0.0331 | 0.7756 | 0.8535 | 0.7207 | 12.7880 | 0.7633 | | 0.0235 | 3.0 | 27162 | 0.0333 | 0.7823 | 0.8705 | 0.7283 | 11.5179 | 0.7811 | | 0.0157 | 4.0 | 36216 | 0.0348 | 0.7821 | 0.8699 | 0.7274 | 11.5836 | 0.7798 | | 0.011 | 5.0 | 45270 | 0.0377 | 0.7799 | 0.8787 | 0.7239 | 10.9173 | 0.7841 | | 0.008 | 6.0 | 54324 | 0.0395 | 0.7854 | 0.8787 | 0.7309 | 10.9042 | 0.7879 | | 0.0042 | 7.0 | 63378 | 0.0421 | 0.7872 | 0.8823 | 0.7300 | 10.5687 | 0.7903 | | 0.0025 | 8.0 | 72432 | 0.0439 | 0.7884 | 0.8867 | 0.7305 | 10.2220 | 0.7934 | | 0.0015 | 9.0 | 81486 | 0.0456 | 0.7889 | 0.8872 | 0.7316 | 10.1781 | 0.7945 | | 0.001 | 10.0 | 90540 | 0.0465 | 0.7918 | 0.8860 | 0.7376 | 10.2744 | 0.7973 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6 ### Aknowledgments This work has been supported by NextProcurement European Action (grant agreement INEA/CEF/ICT/A2020/2373713-Action 2020-ES-IA-0255) and the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Politรฉcnica de Madrid in the line Support for R&D projects for Beatriz Galindo researchers, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). We also acknowledge the participation of Jennifer Tabita for the preparation of the initial set of notebooks, and the AI4Gov master students from the first cohort for their validation of the approach. Source of the data: Ministerio de Hacienda.
waboucay/camembert-base-finetuned-xnli_fr_3_classes
922858c5361d8d7196ad23795445599f463eeb6b
2022-05-17T09:03:03.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-xnli_fr_3_classes
3
null
transformers
22,425
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 81.6 | 81.6 | | test | 82.2 | 82.3 |
ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum-new
b7ef0817037421b2e95cccccf887655514d3bf8a
2022-05-18T14:34:59.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "multilingual model", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ankitkupadhyay
null
ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum-new
3
null
transformers
22,426
--- license: apache-2.0 tags: - multilingual model - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-multilingual-xlsum-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-multilingual-xlsum-new This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the 45 languages of the XL-Sum dataset. It achieves the following results on the evaluation set: - Loss: 2.7679 - Rouge1: 9.1993 - Rouge2: 2.3416 - Rougel: 7.6684 - Rougelsum: 7.7074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.9684 | 1.0 | 1687 | 2.8902 | 8.0531 | 1.8357 | 6.7234 | 6.7401 | | 3.62 | 2.0 | 3374 | 2.8486 | 8.4881 | 2.0178 | 7.0542 | 7.0854 | | 3.3765 | 3.0 | 5061 | 2.7986 | 8.7796 | 2.2342 | 7.3363 | 7.3645 | | 3.5043 | 4.0 | 6748 | 2.7677 | 9.0486 | 2.3099 | 7.5493 | 7.5685 | | 3.338 | 5.0 | 8435 | 2.7679 | 9.1993 | 2.3416 | 7.6684 | 7.7074 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anton-l/emformer-base-librispeech
fdee6502eec45b1d37e46018572d595157d74454
2022-05-20T13:45:21.000Z
[ "pytorch", "emformer", "transformers", "license:apache-2.0" ]
null
false
anton-l
null
anton-l/emformer-base-librispeech
3
null
transformers
22,427
--- license: apache-2.0 ---
PSW/cnndm_0.5percent_minmaxswap_seed27
8276b955c9ae534a7ba7b699a52c7e0af8cb1001
2022-05-17T16:43:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minmaxswap_seed27
3
null
transformers
22,428
Entry not found
PSW/cnndm_0.5percent_minmaxswap_seed42
a55e50f6aac83ec055b06665fc7dc6a358998707
2022-05-17T17:55:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minmaxswap_seed42
3
null
transformers
22,429
Entry not found
CEBaB/gpt2.CEBaB.absa.exclusive.seed_99
0461b1967fc39247d1054beed295dce1109de27c
2022-05-17T20:49:45.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.exclusive.seed_99
3
null
transformers
22,430
Entry not found
Dizzykong/gpt2-medium-commands-chunked
7aa75047f202d4f647a4b97b42a440253d76c921
2022-05-18T00:20:56.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-medium-commands-chunked
3
null
transformers
22,431
--- tags: - generated_from_trainer model-index: - name: gpt2-medium-commands-chunked results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-commands-chunked This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
CEBaB/gpt2.CEBaB.absa.inclusive.seed_77
513edd1dfc376adcdda52b0ba1e397c41577841c
2022-05-18T00:20:29.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.inclusive.seed_77
3
null
transformers
22,432
Entry not found
olpa/distilbert-base-uncased-finetuned-emotion-olpa
dce034ead90fe249bbb9fe23dc4101ddc12b8995
2022-05-19T03:57:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
olpa
null
olpa/distilbert-base-uncased-finetuned-emotion-olpa
3
null
transformers
22,433
Entry not found
EddieChen372/distilbert-base-uncased-finetuned-imdb
9e230d2555a152cb42d507f1f0b1bcc8382478c3
2022-05-18T14:07:06.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
EddieChen372
null
EddieChen372/distilbert-base-uncased-finetuned-imdb
3
null
transformers
22,434
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7117 | 1.0 | 157 | 2.4976 | | 2.5773 | 2.0 | 314 | 2.4243 | | 2.5263 | 3.0 | 471 | 2.4348 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/lightcrypto-sergeynazarov
9e90080d2034d2a386f649a7b317da61de90eccf
2022-05-19T03:37:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lightcrypto-sergeynazarov
3
null
transformers
22,435
--- language: en thumbnail: http://www.huggingtweets.com/lightcrypto-sergeynazarov/1652931465147/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/751118197126991873/eSXubsCD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478019214212747264/LZmNClhs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sergey Nazarov & light</div> <div style="text-align: center; font-size: 14px;">@lightcrypto-sergeynazarov</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sergey Nazarov & light. | Data | Sergey Nazarov | light | | --- | --- | --- | | Tweets downloaded | 718 | 3237 | | Retweets | 162 | 367 | | Short tweets | 11 | 405 | | Tweets kept | 545 | 2465 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pe3nb090/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lightcrypto-sergeynazarov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1am840oh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1am840oh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lightcrypto-sergeynazarov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ceggian/bart_post_trained_reddit_batch32
2b6a15e07795cc871dc81855a5780c869a68bdb7
2022-05-30T10:53:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ceggian
null
ceggian/bart_post_trained_reddit_batch32
3
null
transformers
22,436
Entry not found
emmyapi/test
834f33e13e3f2a9b136ba84121d1ca7a32099e62
2022-05-19T08:52:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:billsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
emmyapi
null
emmyapi/test
3
null
transformers
22,437
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 495 | 2.5585 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
Matthijs/deeplabv3-mobilevit-x-small
de43fda9cfbb7f345d8e8f00513f672a4f7571b4
2022-05-19T12:57:42.000Z
[ "pytorch", "mobilevit", "transformers" ]
null
false
Matthijs
null
Matthijs/deeplabv3-mobilevit-x-small
3
null
transformers
22,438
Entry not found
Matthijs/deeplabv3-mobilevit-xx-small
eb35695b737a6dc9d5f3c6ba150a717c45fb5db1
2022-05-19T12:59:22.000Z
[ "pytorch", "mobilevit", "transformers" ]
null
false
Matthijs
null
Matthijs/deeplabv3-mobilevit-xx-small
3
null
transformers
22,439
Entry not found
jjezabek/bert-base-uncased-sst_bin
5fd77cd8a6f41fcc3733075454c2b8d2429ec9a6
2022-05-19T19:47:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/bert-base-uncased-sst_bin
3
null
transformers
22,440
Entry not found
EMBO/bert-base-cased_NER-task
7eae63aba7c9f941f00e6a4f50730644f50722b6
2022-05-20T13:16:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
EMBO
null
EMBO/bert-base-cased_NER-task
3
null
transformers
22,441
Entry not found
umangchaudhry/bert-emotion
1fef26b61fac3e8a33a0380de6be2effa96588e8
2022-05-20T16:56:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
umangchaudhry
null
umangchaudhry/bert-emotion
3
null
transformers
22,442
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Precision type: precision value: 0.7081377380103309 - name: Recall type: recall value: 0.709386945441909 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2350 - Precision: 0.7081 - Recall: 0.7094 - Fscore: 0.7082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8442 | 1.0 | 815 | 0.8653 | 0.7642 | 0.6192 | 0.6363 | | 0.5488 | 2.0 | 1630 | 0.9330 | 0.7116 | 0.6838 | 0.6912 | | 0.2713 | 3.0 | 2445 | 1.2350 | 0.7081 | 0.7094 | 0.7082 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
schoenml/bert-emotion
5de575e6607ea4975686d15505a4b2abd820841d
2022-05-23T15:19:45.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
schoenml
null
schoenml/bert-emotion
3
null
transformers
22,443
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Precision type: precision value: 0.7295622072449084 - name: Recall type: recall value: 0.7265951560457381 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1531 - Precision: 0.7296 - Recall: 0.7266 - Fscore: 0.7278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8418 | 1.0 | 815 | 0.8129 | 0.7960 | 0.6242 | 0.6420 | | 0.5222 | 2.0 | 1630 | 0.9663 | 0.7584 | 0.7196 | 0.7324 | | 0.2662 | 3.0 | 2445 | 1.1531 | 0.7296 | 0.7266 | 0.7278 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
miyagawaorj/distilbert-base-uncased-finetuned-clinc
5435e747f8f8c4c773184ffd5d9cc328939b26ec
2022-06-06T14:04:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
miyagawaorj
null
miyagawaorj/distilbert-base-uncased-finetuned-clinc
3
null
transformers
22,444
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9474193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2454 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.496 | 1.0 | 954 | 1.8019 | 0.8306 | | 1.0663 | 2.0 | 1908 | 0.5690 | 0.9174 | | 0.3267 | 3.0 | 2862 | 0.3128 | 0.9406 | | 0.1397 | 4.0 | 3816 | 0.2567 | 0.9445 | | 0.0846 | 5.0 | 4770 | 0.2454 | 0.9474 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.12.1
ey211/mt5-base-finetuned-dimensions-polisci
3ed3ffa2a56e9d5c70537801725b19a3c99712aa
2022-05-20T23:55:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ey211
null
ey211/mt5-base-finetuned-dimensions-polisci
3
null
transformers
22,445
--- license: apache-2.0 ---
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_epochs_1_shard_1_squad2.0
4f3170b88c2138125af64f0289ed61fdfc936379
2022-05-21T19:08:25.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_epochs_1_shard_1_squad2.0
3
null
transformers
22,446
Entry not found
brever/dummy
cd16a08c084d43a9c9968aaab48b09943e4c3688
2022-05-21T21:32:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
brever
null
brever/dummy
3
null
transformers
22,447
#DUmmy model
eslamxm/mt5-base-finetuned-arur
1e1758d054de97be3c3034ca7247695663452d8f
2022-05-22T22:54:44.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "arabic", "ar", "ur", "urdu", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-arur
3
null
transformers
22,448
--- license: apache-2.0 tags: - summarization - arabic - ar - ur - urdu - mt5 - Abstractive Summarization - generated_from_trainer model-index: - name: mt5-base-finetuned-ar-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-ar-fa This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0303 - Rouge-1: 26.73 - Rouge-2: 12.63 - Rouge-l: 23.96 - Gen Len: 18.99 - Bertscore: 71.41 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 3.7736 | 1.0 | 3287 | 3.2308 | 24.22 | 10.11 | 21.46 | 18.99 | 70.69 | | 3.3783 | 2.0 | 6574 | 3.1283 | 25.28 | 10.9 | 22.43 | 18.99 | 71.02 | | 3.2351 | 3.0 | 9861 | 3.0693 | 25.77 | 11.36 | 22.93 | 19.0 | 71.2 | | 3.1363 | 4.0 | 13148 | 3.0421 | 25.88 | 11.57 | 23.08 | 18.99 | 71.22 | | 3.0669 | 5.0 | 16435 | 3.0303 | 26.25 | 11.84 | 23.44 | 18.99 | 71.39 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ddrmaster1000/DialoGPT-medium-rick
32684d3aa75056732bdca5368de47ce43219d03b
2022-05-22T17:00:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ddrmaster1000
null
ddrmaster1000/DialoGPT-medium-rick
3
null
transformers
22,449
--- tags: - conversational --- # A poor discussion bot of Rick from Rick and Morty/
fujiki/t5-efficient-base_en2ja
fa98b2060e8a387239747d9fc7b82e69415a8979
2022-05-22T14:39:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fujiki
null
fujiki/t5-efficient-base_en2ja
3
null
transformers
22,450
Entry not found
renjithks/layoutlmv3-cord-ner
cd29319ed7cbd68d59db663042e15d2fb2b8aca1
2022-05-22T16:53:10.000Z
[ "pytorch", "tensorboard", "layoutlmv3", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
renjithks
null
renjithks/layoutlmv3-cord-ner
3
null
transformers
22,451
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-cord-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-cord-ner This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1215 - Precision: 0.9448 - Recall: 0.9520 - F1: 0.9484 - Accuracy: 0.9762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 113 | 0.1771 | 0.8485 | 0.8925 | 0.8700 | 0.9393 | | No log | 2.0 | 226 | 0.1584 | 0.8915 | 0.9146 | 0.9029 | 0.9524 | | No log | 3.0 | 339 | 0.1153 | 0.9160 | 0.9309 | 0.9234 | 0.9686 | | No log | 4.0 | 452 | 0.1477 | 0.9110 | 0.9136 | 0.9123 | 0.9592 | | 0.1562 | 5.0 | 565 | 0.0861 | 0.9363 | 0.9443 | 0.9403 | 0.9741 | | 0.1562 | 6.0 | 678 | 0.1165 | 0.9109 | 0.9415 | 0.9259 | 0.9673 | | 0.1562 | 7.0 | 791 | 0.1280 | 0.9278 | 0.9367 | 0.9322 | 0.9707 | | 0.1562 | 8.0 | 904 | 0.1122 | 0.9462 | 0.9453 | 0.9458 | 0.9762 | | 0.0224 | 9.0 | 1017 | 0.1265 | 0.9431 | 0.9539 | 0.9485 | 0.9771 | | 0.0224 | 10.0 | 1130 | 0.1215 | 0.9448 | 0.9520 | 0.9484 | 0.9762 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/t5-small-finetuned-squad-qgen
4d8d71e3eead33b0c7e86f59150fbfc91ed69925
2022-05-22T20:27:01.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-squad-qgen
3
null
transformers
22,452
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad metrics: - f1 model-index: - name: t5-small-finetuned-squad-qgen results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad args: plain_text metrics: - name: F1 type: f1 value: 0.36430000148070146 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-squad-qgen This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.3805 - Em: 0.0 - F1: 0.3643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Em | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---:|:------:| | 0.4449 | 1.0 | 2738 | 0.3992 | 0.0 | 0.3859 | | 0.4206 | 2.0 | 5476 | 0.3886 | 0.0 | 0.3781 | | 0.4092 | 3.0 | 8214 | 0.3837 | 0.0 | 0.3827 | | 0.4055 | 4.0 | 10952 | 0.3809 | 0.0 | 0.3747 | | 0.3997 | 5.0 | 13690 | 0.3805 | 0.0 | 0.3643 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
krotima1/mbart-at2h-c
e6dd707bd7b1517dc9f3480e7af0d6bef78b9246
2022-05-23T20:30:19.000Z
[ "pytorch", "mbart", "text2text-generation", "cs", "dataset:private Czech News Center dataset news-based", "transformers", "abstractive summarization", "mbart-cc25", "Czech", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
krotima1
null
krotima1/mbart-at2h-c
3
null
transformers
22,453
--- language: - cs - cs tags: - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - private Czech News Center dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (AT2H-C) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Abstract + Text to Headline`` (AT2H) which consists in generating a one- or two-sentence summary considered as a headline from a Czech news text. ## Dataset The model has been trained on the private CNC dataset provided by Czech News Center. The dataset includes 3/4M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were set to 512 tokens for the encoder and 64 for the decoder. ## Training The model has been trained on 4x NVIDIA Tesla V100 32GB for 15 hours, 4x NVIDIA Tesla A100 40GB for 10 hours, and 1x NVIDIA Tesla A100 40GB for 20 hours. During training, the model has seen 5984K documents corresponding to roughly 9 epochs. # Use Assuming that you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-at2h-c"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 64), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
globuslabs/ScholarBERT-XL
f64f197b4eff4d9dc77e0753bb65300c7b4c63c0
2022-05-24T03:15:05.000Z
[ "pytorch", "bert", "fill-mask", "en", "arxiv:2205.11342", "transformers", "science", "multi-displinary", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
globuslabs
null
globuslabs/ScholarBERT-XL
3
null
transformers
22,454
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT-XL_100 Model This is the **ScholarBERT-XL_100** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**221B tokens**). This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model has a total of 770M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 36 | | Hidden Size | 1280 | | Attention Heads | 20 | | Total Parameters | 770M | # Training Dataset The vocab and the model are pertrained on **100% of the PRD** scientific literature dataset. The PRD dataset is provided by Public.Resource.Org, Inc. (โ€œPublic Resourceโ€), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2022scholarbert, doi = {10.48550/ARXIV.2205.11342}, url = {https://arxiv.org/abs/2205.11342}, author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian}, title = {ScholarBERT: Bigger is Not Always Better}, publisher = {arXiv}, year = {2022} } ```
globuslabs/ScholarBERT_100_WB
148bc7163447475adef961d9c0533ab198b347f9
2022-05-24T03:17:57.000Z
[ "pytorch", "bert", "fill-mask", "en", "arxiv:2205.11342", "transformers", "science", "multi-displinary", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
globuslabs
null
globuslabs/ScholarBERT_100_WB
3
null
transformers
22,455
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT_100_WB Model This is the **ScholarBERT_100_WB** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**221B tokens**). Additionally, the pretraining data also includes the Wikipedia+BookCorpus, which are used to pretrain the [BERT-base](https://huggingface.co/bert-base-cased) and [BERT-large](https://huggingface.co/bert-large-cased) models. This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model is based on the same architecture as [BERT-large](https://huggingface.co/bert-large-cased) and has a total of 340M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 24 | | Hidden Size | 1024 | | Attention Heads | 16 | | Total Parameters | 340M | # Training Dataset The vocab and the model are pertrained on **100% of the PRD** scientific literature dataset and the Wikipedia+BookCorpus. The PRD dataset is provided by Public.Resource.Org, Inc. (โ€œPublic Resourceโ€), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2022scholarbert, doi = {10.48550/ARXIV.2205.11342}, url = {https://arxiv.org/abs/2205.11342}, author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian}, title = {ScholarBERT: Bigger is Not Always Better}, publisher = {arXiv}, year = {2022} } ```
PSW/samsum_percent10_minsimins
fa7735659fb17ff8a2adce19f745ba0f55282283
2022-05-23T03:03:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_percent10_minsimins
3
null
transformers
22,456
Entry not found
prodm93/gpt2-rn-abstract-model-v1
fbdc81ba0fef2f6b3d96d05cd51a16b5becb0d26
2022-05-23T05:45:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prodm93
null
prodm93/gpt2-rn-abstract-model-v1
3
null
transformers
22,457
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance__food.2-class.exclusive.seed_42
80641e40ce0de04af4f3b46c74b906a3236ac88a
2022-05-24T12:07:34.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance__food.2-class.exclusive.seed_42
3
null
transformers
22,458
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service__food.2-class.exclusive.seed_43
86783dfaa7bd58100bb57aedcafe05d48d9e821d
2022-05-24T10:03:28.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service__food.2-class.exclusive.seed_43
3
null
transformers
22,459
Entry not found
CEBaB/gpt2.CEBaB.causalm.service__food.2-class.exclusive.seed_44
97a7517df40701a7cc7286b3149fad73b8e20cb6
2022-05-24T10:05:09.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.service__food.2-class.exclusive.seed_44
3
null
transformers
22,460
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_sents_epochs_1_shard_1_squad2.0
9e95d3a09b16c7c32c4368dba7c1ff88da474f94
2022-05-23T19:53:48.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_shuffled_sents_epochs_1_shard_1_squad2.0
3
null
transformers
22,461
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise__food.5-class.exclusive.seed_45
4e847502f94296f1a44e03aa4d94850081889993
2022-05-24T10:10:00.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise__food.5-class.exclusive.seed_45
3
null
transformers
22,462
Entry not found
KoichiYasuoka/deberta-small-japanese-luw-upos
d6a07913d5ff39d68627ebf88d6635fc470f3dd5
2022-05-24T06:33:06.000Z
[ "pytorch", "deberta-v2", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-small-japanese-luw-upos
3
null
transformers
22,463
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" --- # deberta-small-japanese-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on ้’็ฉบๆ–‡ๅบซ texts for POS-tagging and dependency-parsing, derived from [deberta-small-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-small-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-small-japanese-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-small-japanese-luw-upos") s="ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-small-japanese-luw-upos") print(nlp("ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
JorenGij/DT-inventory
74a29eeb3a0ef00d2e0f18a891d0d6544b81e229
2022-05-24T11:19:01.000Z
[ "pytorch", "decision_transformer", "transformers" ]
null
false
JorenGij
null
JorenGij/DT-inventory
3
null
transformers
22,464
Entry not found
kimcando/test2
8ac400a228f3d77ccc32895e35028c611500b8fa
2022-05-24T13:06:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
kimcando
null
kimcando/test2
3
null
transformers
22,465
Entry not found
Satyamatury/satya-matury-asr-task-2-hindidata
5fd44f3c08eaaef9804421a71a9c1e66cf5ebe7e
2022-06-17T07:55:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Satyamatury
null
Satyamatury/satya-matury-asr-task-2-hindidata
3
null
transformers
22,466
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: satya-matury-asr-task-2-hindidata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # satya-matury-asr-task-2-hindidata This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.0972 - Wer: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.6515 | 44.42 | 400 | 3.0972 | 0.9942 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
vreese2414/autotrain-test-frank-896929583
361ddd30ea78862b439bec51a3bf82a55af0934a
2022-05-24T15:20:01.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:vreese2414/autotrain-data-test-frank", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
vreese2414
null
vreese2414/autotrain-test-frank-896929583
3
null
transformers
22,467
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - vreese2414/autotrain-data-test-frank co2_eq_emissions: 20.85550802376653 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 896929583 - CO2 Emissions (in grams): 20.85550802376653 ## Validation Metrics - Loss: 0.8998094797134399 - Accuracy: 0.717983651226158 - Macro F1: 0.6850466044284794 - Micro F1: 0.717983651226158 - Weighted F1: 0.7093970537930665 - Macro Precision: 0.692166692035814 - Micro Precision: 0.717983651226158 - Weighted Precision: 0.7181745683190863 - Macro Recall: 0.6985625924834511 - Micro Recall: 0.717983651226158 - Weighted Recall: 0.717983651226158 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vreese2414/autotrain-test-frank-896929583 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vreese2414/autotrain-test-frank-896929583", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vreese2414/autotrain-test-frank-896929583", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
anablasi/model_10k_lm
7f42034359c3824e99a3db119ab6a0894dd0c7a4
2022-05-24T17:03:38.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
anablasi
null
anablasi/model_10k_lm
3
null
transformers
22,468
Entry not found
castorini/afriteva_base
4f358f728fce8ba7ffe0a642e19672ad96e2215f
2022-05-24T20:20:02.000Z
[ "pytorch", "t5", "text2text-generation", "om", "am", "rw", "rn", "ha", "ig", "pcm", "so", "sw", "ti", "yo", "multilingual", "T5", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/afriteva_base
3
null
transformers
22,469
Hugging Face's logo --- language: - om - am - rw - rn - ha - ig - pcm - so - sw - ti - yo - multilingual - T5 --- # afriteva_base ## Model desription AfriTeVa base is a multilingual sequence to sequence model pretrained on 10 African languages ## Languages Afaan Oromoo(orm), Amharic(amh), Gahuza(gah), Hausa(hau), Igbo(igb), Nigerian Pidgin(pcm), Somali(som), Swahili(swa), Tigrinya(tig), Yoruba(yor) ### More information on the model, dataset: ### The model - 229M parameters encoder-decoder architecture (T5-like) - 12 layers, 12 attention heads and 512 token sequence length ### The dataset - Multilingual: 10 African languages listed above - 143 Million Tokens (1GB of text data) - Tokenizer Vocabulary Size: 70,000 tokens ## Intended uses & limitations `afriteva_base` is pre-trained model and primarily aimed at being fine-tuned on multilingual sequence-to-sequence tasks. ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriteva_base") >>> model = AutoModelForSeq2SeqLM.from_pretrained("castorini/afriteva_base") >>> src_text = "ร“ hรนn แปฬ lรกti di ara wa bรญ?" >>> tgt_text = "Would you like to be?" >>> model_inputs = tokenizer(src_text, return_tensors="pt") >>> with tokenizer.as_target_tokenizer(): labels = tokenizer(tgt_text, return_tensors="pt").input_ids >>> model(**model_inputs, labels=labels) # forward pass ``` ## Training Procedure For information on training procedures, please refer to the AfriTeVa [paper](#) or [repository](https://github.com/castorini/afriteva) ## BibTex entry and Citation info coming soon ...
castorini/afriteva_large
f3011e8d0c29644740a8bfaed5acece8f1ca8b55
2022-05-24T20:20:55.000Z
[ "pytorch", "t5", "text2text-generation", "om", "am", "rw", "rn", "ha", "ig", "pcm", "so", "sw", "ti", "yo", "multilingual", "T5", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/afriteva_large
3
1
transformers
22,470
Hugging Face's logo --- language: - om - am - rw - rn - ha - ig - pcm - so - sw - ti - yo - multilingual - T5 --- # afriteva_large ## Model desription AfriTeVa large is a sequence to sequence model pretrained on 10 African languages ## Languages Afaan Oromoo(orm), Amharic(amh), Gahuza(gah), Hausa(hau), Igbo(igb), Nigerian Pidgin(pcm), Somali(som), Swahili(swa), Tigrinya(tig), Yoruba(yor) ### More information on the model, dataset: ### The model - 745M parameters encoder-decoder architecture (T5-like) - 12 layers, 12 attention heads and 512 token sequence length ### The dataset - Multilingual: 10 African languages listed above - 143 Million Tokens (1GB of text data) - Tokenizer Vocabulary Size: 70,000 tokens ## Intended uses & limitations `afriteva_large` is pre-trained model and primarily aimed at being fine-tuned on multilingual sequence-to-sequence tasks. ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriteva_large") >>> model = AutoModelForSeq2SeqLM.from_pretrained("castorini/afriteva_large") >>> src_text = "ร“ hรนn แปฬ lรกti di ara wa bรญ?" >>> tgt_text = "Would you like to be?" >>> model_inputs = tokenizer(src_text, return_tensors="pt") >>> with tokenizer.as_target_tokenizer(): labels = tokenizer(tgt_text, return_tensors="pt").input_ids >>> model(**model_inputs, labels=labels) # forward pass ``` ## Training Procedure For information on training procedures, please refer to the AfriTeVa [paper](#) or [repository](https://github.com/castorini/afriteva) ## BibTex entry and Citation info coming soon ...
mehnaazasad/bert-emotion
5435003ecd4a60a117c40cb023dd2e33e1569ad3
2022-05-25T03:35:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mehnaazasad
null
mehnaazasad/bert-emotion
3
null
transformers
22,471
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Precision type: precision value: 0.9390697170516101 - name: Recall type: recall value: 0.9190197699656729 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.2037 - Precision: 0.9391 - Recall: 0.9190 - Fscore: 0.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8561 | 1.0 | 815 | 0.7844 | 0.7575 | 0.6081 | 0.6253 | | 0.5337 | 2.0 | 1630 | 0.9080 | 0.7567 | 0.7236 | 0.7325 | | 0.2573 | 3.0 | 2445 | 1.1670 | 0.7262 | 0.7255 | 0.7253 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tanapatentlm/patentdeberta_base_total_512
d3e891810f112f4fefa1cd91472cda50d8635ada
2022-05-26T09:55:34.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tanapatentlm
null
tanapatentlm/patentdeberta_base_total_512
3
null
transformers
22,472
Entry not found
rickySaka/fre-med
b22e837b1637122696739ae9e3f35273266f17f4
2022-05-26T12:20:42.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rickySaka
null
rickySaka/fre-med
3
null
transformers
22,473
Entry not found
aioxlabs/dvoice-fongbe
fe1f698871a1b200486fd79e67be6d9ff5a32c34
2022-05-28T08:20:03.000Z
[ "wav2vec2", "feature-extraction", "fon", "dataset:commonvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
aioxlabs
null
aioxlabs/dvoice-fongbe
3
null
speechbrain
22,474
--- language: "fon" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Fongbe (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [ALFFA](https://github.com/besacier/ALFFA_PUBLIC) Fongbe dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 4.16 | 9.19 | 3.98 | 9.00 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Fongbe) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="aioxlabs/dvoice-fongbe", savedir="pretrained_models/asr-wav2vec2-dvoice-fon") asr_model.transcribe_file('./the_path_to_your_audio_file') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training To train the model from scratch, please see our GitHub tutorial [here](https://github.com/AIOXLABS/DVoice). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # About DVoice DVoice is a community initiative that aims to provide Africa low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrived from social medias. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola and Soninke. For this project, AIOX Labs the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network and System Security, Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
xrverse/distilbert-base-uncased-finetuned-emotion
676f5cce1c1824ae00022f82536be017f80ae0b8
2022-05-26T17:48:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
xrverse
null
xrverse/distilbert-base-uncased-finetuned-emotion
3
null
transformers
22,475
Entry not found
finiteautomata/pepe-es
d51c2714f4db04fae4fbc865153c761c9e552f5f
2022-05-26T17:45:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
finiteautomata
null
finiteautomata/pepe-es
3
null
transformers
22,476
Entry not found
castorini/mdpr-tied-pft-nq
fbaab0fd02572e96a2d6a65bf41046735ffa6a24
2022-05-26T21:15:13.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/mdpr-tied-pft-nq
3
null
transformers
22,477
Entry not found
natdon/DialoGPT_Michael_Scott
1ea0213c180be902afde027575c651d945ab6edd
2022-05-27T18:53:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
natdon
null
natdon/DialoGPT_Michael_Scott
3
null
transformers
22,478
--- tags: - conversational widget: - text: "Wow this is hard" - text: "What do you think of Toby?" - text: "I love you" - text: "How was prison" - text: "What are you saying?" - text: "My name is Toby" - text: "You should fire Toby" inference: parameters: max_length: 100 no_repeat_ngram_size: 3 do_sample: True top_k: 100 top_p: 0.7 temperature: 0.7 --- # Michael Scott (The Office) DialoGPT Model
febreze/distilbert-base-uncased-finetuned-emotion
308f8123a852f0e057e9a8312325f8a93e2594e3
2022-05-31T21:29:29.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
febreze
null
febreze/distilbert-base-uncased-finetuned-emotion
3
null
transformers
22,479
Entry not found
WangZeJun/simcse-tiny-chinese-wiki
11ea1b4ca4124c93f22e53a2e417dd0cbd2b6744
2022-06-14T09:16:50.000Z
[ "pytorch", "bert", "transformers" ]
null
false
WangZeJun
null
WangZeJun/simcse-tiny-chinese-wiki
3
null
transformers
22,480
https://github.com/zejunwang1/bertorch
WangZeJun/batchneg-tiny-chinese
aef0085e2cdf83c1ff1e2d66adcdca32601f1755
2022-06-14T09:16:06.000Z
[ "pytorch", "bert", "transformers" ]
null
false
WangZeJun
null
WangZeJun/batchneg-tiny-chinese
3
null
transformers
22,481
https://github.com/zejunwang1/bertorch
adache/xlm-roberta-base-finetuned-panx-de
3733302969df674eb9ca6cdb3d82d543b6e70ec1
2022-06-01T05:55:12.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
adache
null
adache/xlm-roberta-base-finetuned-panx-de
3
null
transformers
22,482
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PontifexMaximus/Arabic2
2236aacb8b2b384126607616549a63f180021613
2022-07-09T16:55:10.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/Arabic2
3
null
transformers
22,483
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_infopankki type: opus_infopankki args: ar-en metrics: - name: Bleu type: bleu value: 53.5086 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 0.7636 - Bleu: 53.5086 - Gen Len: 13.5728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 278 | 1.5114 | 35.2767 | 14.2084 | | 1.6677 | 2.0 | 556 | 1.4025 | 37.5243 | 14.0245 | | 1.6677 | 3.0 | 834 | 1.3223 | 39.4262 | 13.8101 | | 1.4743 | 4.0 | 1112 | 1.2567 | 40.7045 | 13.8533 | | 1.4743 | 5.0 | 1390 | 1.2001 | 41.8356 | 13.8083 | | 1.3428 | 6.0 | 1668 | 1.1504 | 43.2448 | 13.6958 | | 1.3428 | 7.0 | 1946 | 1.1072 | 44.177 | 13.6783 | | 1.2595 | 8.0 | 2224 | 1.0701 | 45.17 | 13.6587 | | 1.1829 | 9.0 | 2502 | 1.0345 | 45.9612 | 13.6706 | | 1.1829 | 10.0 | 2780 | 1.0042 | 46.9009 | 13.6236 | | 1.1188 | 11.0 | 3058 | 0.9760 | 47.7478 | 13.6205 | | 1.1188 | 12.0 | 3336 | 0.9505 | 48.3082 | 13.6283 | | 1.0735 | 13.0 | 3614 | 0.9270 | 48.9782 | 13.6203 | | 1.0735 | 14.0 | 3892 | 0.9060 | 49.5541 | 13.6311 | | 1.0269 | 15.0 | 4170 | 0.8869 | 49.9905 | 13.6222 | | 1.0269 | 16.0 | 4448 | 0.8700 | 50.4806 | 13.6047 | | 0.9983 | 17.0 | 4726 | 0.8538 | 50.9186 | 13.6159 | | 0.9647 | 18.0 | 5004 | 0.8398 | 51.3492 | 13.6146 | | 0.9647 | 19.0 | 5282 | 0.8271 | 51.7219 | 13.5275 | | 0.9398 | 20.0 | 5560 | 0.8156 | 52.0177 | 13.5756 | | 0.9398 | 21.0 | 5838 | 0.8053 | 52.3619 | 13.5807 | | 0.9206 | 22.0 | 6116 | 0.7963 | 52.6051 | 13.5652 | | 0.9206 | 23.0 | 6394 | 0.7885 | 52.8322 | 13.5669 | | 0.9012 | 24.0 | 6672 | 0.7818 | 52.9402 | 13.5701 | | 0.9012 | 25.0 | 6950 | 0.7762 | 53.1182 | 13.5695 | | 0.8965 | 26.0 | 7228 | 0.7717 | 53.1596 | 13.5612 | | 0.8836 | 27.0 | 7506 | 0.7681 | 53.3116 | 13.5719 | | 0.8836 | 28.0 | 7784 | 0.7656 | 53.4399 | 13.5758 | | 0.8777 | 29.0 | 8062 | 0.7642 | 53.4805 | 13.5737 | | 0.8777 | 30.0 | 8340 | 0.7636 | 53.5086 | 13.5728 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
monsoon-nlp/czech-movie-rating-2
c6a95ad2a7999fe16d07f0803ccf0cfe2ebb8b83
2022-05-27T09:25:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
monsoon-nlp
null
monsoon-nlp/czech-movie-rating-2
3
null
transformers
22,484
Entry not found
jkhan447/language-detection-Bert-base-uncased-additional
10aba1c8f3b2ceaec8f801ed7678a6c9634576cb
2022-05-27T13:02:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/language-detection-Bert-base-uncased-additional
3
null
transformers
22,485
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-Bert-base-uncased-additional results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased-additional This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/david_lynch
7fe77b2efd4ac3a8ad1a21440c495c2eef88be4a
2022-06-19T13:12:27.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/david_lynch
3
null
transformers
22,486
--- language: en thumbnail: http://www.huggingtweets.com/david_lynch/1655644342827/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/63730229/DL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">David Lynch</div> <div style="text-align: center; font-size: 14px;">@david_lynch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from David Lynch. | Data | David Lynch | | --- | --- | | Tweets downloaded | 912 | | Retweets | 29 | | Short tweets | 21 | | Tweets kept | 862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/do5yghsd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @david_lynch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ddgwjhcj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ddgwjhcj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/david_lynch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/parishilton
c86644d06daf05375058104a4bbf6925b0939675
2022-05-27T11:11:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/parishilton
3
null
transformers
22,487
--- language: en thumbnail: http://www.huggingtweets.com/parishilton/1653649884348/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519127596868374528/AyJv6gmG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ParisHilton.eth</div> <div style="text-align: center; font-size: 14px;">@parishilton</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ParisHilton.eth. | Data | ParisHilton.eth | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 1563 | | Short tweets | 407 | | Tweets kept | 1241 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17bxqhg6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @parishilton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8b45v2wu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8b45v2wu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/parishilton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jplu/adel-dbpedia-rerank
3537e8bd4e44bd8ddc672880d4690f9432d88ddf
2022-05-27T22:01:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jplu
null
jplu/adel-dbpedia-rerank
3
null
transformers
22,488
Entry not found
nizamudma/bart-finetuned-cnn-3
fbbd369289559c18efa4885e8d492589985a0b6e
2022-05-29T13:54:17.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nizamudma
null
nizamudma/bart-finetuned-cnn-3
3
null
transformers
22,489
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bart-finetuned-cnn-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 40.201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-cnn-3 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-3](https://huggingface.co/sshleifer/distilbart-xsum-12-3) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.0751 - Rouge1: 40.201 - Rouge2: 18.8482 - Rougel: 29.4439 - Rougelsum: 37.416 - Gen Len: 56.7545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.276 | 1.0 | 8883 | 2.1762 | 39.6581 | 18.3333 | 28.7765 | 36.7688 | 58.5386 | | 2.0806 | 2.0 | 17766 | 2.0909 | 40.0328 | 18.8026 | 29.417 | 37.3508 | 56.6804 | | 1.9615 | 3.0 | 26649 | 2.0751 | 40.201 | 18.8482 | 29.4439 | 37.416 | 56.7545 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs16_forMINDS.en.all
d8036f41f6091a719b2e76666f9e072e30ead63c
2022-05-30T01:08:01.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs16_forMINDS.en.all
3
null
transformers
22,490
wav2vec2 -> t5lephone bs = 16 dropout = 0.1 performance : 40% { "architectures": [ "SpeechMixEEDT5" ], "decoder": { "_name_or_path": "voidful/phoneme_byt5", "add_cross_attention": true, "architectures": [ "T5ForConditionalGeneration" ], "bad_words_ids": null, "bos_token_id": null, "chunk_size_feed_forward": 0, "cross_attention_hidden_size": null, "d_ff": 3584, "d_kv": 64, "d_model": 1472, "decoder_start_token_id": 0, "diversity_penalty": 0.0, "do_sample": false, "dropout_rate": 0.1, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 1, "feed_forward_proj": "gated-gelu", "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_factor": 1.0, "is_decoder": true, "is_encoder_decoder": true, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_epsilon": 1e-06, "length_penalty": 1.0, "max_length": 20, "min_length": 0, "model_type": "t5", "no_repeat_ngram_size": 0, "num_beam_groups": 1, "num_beams": 1, "num_decoder_layers": 4, "num_heads": 6, "num_layers": 12, "num_return_sequences": 1, "output_attentions": false, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "pruned_heads": {}, "relative_attention_max_distance": 128, "relative_attention_num_buckets": 32, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": false, "tokenizer_class": "ByT5Tokenizer", "top_k": 50, "top_p": 1.0, "torch_dtype": "float32", "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_cache": true, "vocab_size": 384 }, "encoder": { "_name_or_path": "facebook/wav2vec2-large-lv60", "activation_dropout": 0.1, "adapter_kernel_size": 3, "adapter_stride": 2, "add_adapter": false, "add_cross_attention": false, "apply_spec_augment": true, "architectures": [ "Wav2Vec2ForPreTraining" ], "attention_dropout": 0.1, "bad_words_ids": null, "bos_token_id": 1, "chunk_size_feed_forward": 0, "classifier_proj_size": 256, "codevector_dim": 768, "contrastive_logits_temperature": 0.1, "conv_bias": true, "conv_dim": [ 512, 512, 512, 512, 512, 512, 512 ], "conv_kernel": [ 10, 3, 3, 3, 3, 2, 2 ], "conv_stride": [ 5, 2, 2, 2, 2, 2, 2 ], "cross_attention_hidden_size": null, "ctc_loss_reduction": "sum", "ctc_zero_infinity": false, "decoder_start_token_id": null, "diversity_loss_weight": 0.1, "diversity_penalty": 0.0, "do_sample": false, "do_stable_layer_norm": true, "early_stopping": false, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 2, "feat_extract_activation": "gelu", "feat_extract_dropout": 0.0, "feat_extract_norm": "layer", "feat_proj_dropout": 0.1, "feat_quantizer_dropout": 0.0, "final_dropout": 0.1, "finetuning_task": null, "forced_bos_token_id": null, "forced_eos_token_id": null, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout": 0.1, "hidden_dropout_prob": 0.1, "hidden_size": 1024, "id2label": { "0": "LABEL_0", "1": "LABEL_1" }, "initializer_range": 0.02, "intermediate_size": 4096, "is_decoder": false, "is_encoder_decoder": false, "label2id": { "LABEL_0": 0, "LABEL_1": 1 }, "layer_norm_eps": 1e-05, "layerdrop": 0.0, "length_penalty": 1.0, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.05, "max_length": 20, "min_length": 0, "model_type": "wav2vec2", "no_repeat_ngram_size": 0, "num_adapter_layers": 3, "num_attention_heads": 16, "num_beam_groups": 1, "num_beams": 1, "num_codevector_groups": 2, "num_codevectors_per_group": 320, "num_conv_pos_embedding_groups": 16, "num_conv_pos_embeddings": 128, "num_feat_extract_layers": 7, "num_hidden_layers": 24, "num_negatives": 100, "num_return_sequences": 1, "output_attentions": false, "output_hidden_size": 1024, "output_hidden_states": false, "output_scores": false, "pad_token_id": 0, "prefix": null, "problem_type": null, "proj_codevector_dim": 768, "pruned_heads": {}, "remove_invalid_values": false, "repetition_penalty": 1.0, "return_dict": true, "return_dict_in_generate": false, "sep_token_id": null, "task_specific_params": null, "tdnn_dilation": [ 1, 2, 3, 1, 1 ], "tdnn_dim": [ 512, 512, 512, 512, 1500 ], "tdnn_kernel": [ 5, 3, 3, 1, 1 ], "temperature": 1.0, "tie_encoder_decoder": false, "tie_word_embeddings": true, "tokenizer_class": null, "top_k": 50, "top_p": 1.0, "torch_dtype": null, "torchscript": false, "transformers_version": "4.17.0", "typical_p": 1.0, "use_bfloat16": false, "use_weighted_layer_sum": false, "vocab_size": 32, "xvector_output_dim": 512 }, "is_encoder_decoder": true, "model_type": "speechmix", "torch_dtype": "float32", "transformers_version": null }
knurm/my-finetuned-xml-roberta2
d098a3c65233a31c7efd18ffc11f68e0867efb71
2022-05-29T19:48:10.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
knurm
null
knurm/my-finetuned-xml-roberta2
3
null
transformers
22,491
--- license: mit tags: - generated_from_trainer model-index: - name: my-finetuned-xml-roberta2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-xml-roberta2 This model is a fine-tuned version of [knurm/my-finetuned-xml-roberta](https://huggingface.co/knurm/my-finetuned-xml-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4491 | 1.0 | 5652 | 3.3339 | | 3.171 | 2.0 | 11304 | 3.2681 | | 2.9518 | 3.0 | 16956 | 3.3003 | | 2.7305 | 4.0 | 22608 | 3.3447 | | 2.5974 | 5.0 | 28260 | 3.4644 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
stevemobs/deberta-base-finetuned-squad1-newsqa
73ddebd0c775849482b6d6c03fab0bc1c64b4087
2022-05-29T21:46:10.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-finetuned-squad1-newsqa
3
null
transformers
22,492
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-finetuned-squad1-newsqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-squad1-newsqa This model is a fine-tuned version of [stevemobs/deberta-base-finetuned-squad1](https://huggingface.co/stevemobs/deberta-base-finetuned-squad1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6703 | 1.0 | 17307 | 0.7207 | | 0.4775 | 2.0 | 34614 | 0.7556 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Santarabantoosoo/Clinical-Longformer-MLM-opnote
65cf2903c19e382d9ff830095c651d42e5160d42
2022-05-30T08:23:25.000Z
[ "pytorch", "tensorboard", "longformer", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Santarabantoosoo
null
Santarabantoosoo/Clinical-Longformer-MLM-opnote
3
null
transformers
22,493
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-MLM-opnote results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-MLM-opnote This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 266 | 0.9606 | | 1.1655 | 2.0 | 532 | 0.8677 | | 1.1655 | 3.0 | 798 | 0.8195 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.10.1 - Datasets 2.2.1 - Tokenizers 0.12.1
Violetto/my-dialogue-summarization-model
a9049baccbba00af43f14d28b0e6323d0a11c662
2022-05-31T07:41:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Violetto
null
Violetto/my-dialogue-summarization-model
3
null
transformers
22,494
Entry not found
AbhilashDatta/T5_qgen-squad_v1
c56492073e432cc6def9bb1455bf2777f97e7f01
2022-05-30T16:19:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
AbhilashDatta
null
AbhilashDatta/T5_qgen-squad_v1
3
null
transformers
22,495
--- license: afl-3.0 --- # Question generation using T5 transformer trained on SQuAD <h2> <i>Input format: context: "..." answer: "..." </i></h2> Import the pretrained model as well as tokenizer: ``` from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_qgen-squad_v1') tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_qgen-squad_v1') ``` Then use the tokenizer to encode/decode and model to generate: ``` input = "context: My name is Abhilash Datta. answer: Abhilash" batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt') inputs_batch = batch['input_ids'][0] inputs_batch = torch.unsqueeze(inputs_batch, 0) ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True) ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id] print(ques_batch) ``` Output: ``` ['what is my name'] ```
Splend1dchan/xtreme_s_xlsr_300m_minds14.en-US
c8b593fe3f4ebedccab6c8ad5e0a856f8a40dc40
2022-05-30T09:36:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Splend1dchan
null
Splend1dchan/xtreme_s_xlsr_300m_minds14.en-US
3
null
transformers
22,496
{'eval_loss': 0.8433557152748108, 'eval_f1': 0.7774690927124368, 'eval_accuracy': 0.7943262411347518, 'eval_runtime': 15.6704, 'eval_samples_per_second': 17.996, 'eval_steps_per_second': 1.149, 'epoch': 49.73}
jkhan447/sarcasm-detection-RoBerta-base-CR
2c536ba4c833e1f822f2984662bcb1a7565778f9
2022-05-30T14:57:19.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-RoBerta-base-CR
3
null
transformers
22,497
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-CR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-CR This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0240 - Accuracy: 0.726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
wuesten/sentiment-analysis-fh-kiel
3532cd2a1d9bb2a7ff1f2bae18e998911870a5d2
2022-05-30T19:17:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
wuesten
null
wuesten/sentiment-analysis-fh-kiel
3
1
transformers
22,498
# Sentiment Analysis For an university project at the University of Applied Sciences Kiel, we conducted a sentiment analysis with the aim of classifying restaurant ratings. The model of "nlptown/bert-base-multilingual-uncased-sentiment" was used as a pre-trained transformer. As a starting value, an accuracy of 63% was already achieved. Based on this, the transformer was fine-tuned to yelp ratings from Hamburg. After that, an accuracy of 82% was achieved.
srini98/distilbert-base-uncasedclassification
8c2d39e6a535caa372d161e23f38f8e02ff8aed3
2022-05-30T15:59:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
srini98
null
srini98/distilbert-base-uncasedclassification
3
null
transformers
22,499
Entry not found