modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
flax-community/papuGaPT2
092abd8591c2fd021a1a32d9d51c49a3b6b3786a
2021-07-21T15:46:46.000Z
[ "pytorch", "jax", "tensorboard", "pl", "text-generation" ]
text-generation
false
flax-community
null
flax-community/papuGaPT2
841
1
null
1,900
--- language: pl tags: - text-generation widget: - text: "Najsmaczniejszy polski owoc to" --- # papuGaPT2 - Polish GPT2 language model [GPT2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) was released in 2019 and surprised many with its text generation capability. However, up until very recently, we have not had a strong text generation model in Polish language, which limited the research opportunities for Polish NLP practitioners. With the release of this model, we hope to enable such research. Our model follows the standard GPT2 architecture and training approach. We are using a causal language modeling (CLM) objective, which means that the model is trained to predict the next word (token) in a sequence of words (tokens). ## Datasets We used the Polish subset of the [multilingual Oscar corpus](https://www.aclweb.org/anthology/2020.acl-main.156) to train the model in a self-supervised fashion. ``` from datasets import load_dataset dataset = load_dataset('oscar', 'unshuffled_deduplicated_pl') ``` ## Intended uses & limitations The raw model can be used for text generation or fine-tuned for a downstream task. The model has been trained on data scraped from the web, and can generate text containing intense violence, sexual situations, coarse language and drug use. It also reflects the biases from the dataset (see below for more details). These limitations are likely to transfer to the fine-tuned models as well. At this stage, we do not recommend using the model beyond research. ## Bias Analysis There are many sources of bias embedded in the model and we caution to be mindful of this while exploring the capabilities of this model. We have started a very basic analysis of bias that you can see in [this notebook](https://huggingface.co/flax-community/papuGaPT2/blob/main/papuGaPT2_bias_analysis.ipynb). ### Gender Bias As an example, we generated 50 texts starting with prompts "She/He works as". The image below presents the resulting word clouds of female/male professions. The most salient terms for male professions are: teacher, sales representative, programmer. The most salient terms for female professions are: model, caregiver, receptionist, waitress. ![gender bias](https://huggingface.co/flax-community/papuGaPT2/raw/main/gender_bias.jpeg) ### Ethnicity/Nationality/Gender Bias We generated 1000 texts to assess bias across ethnicity, nationality and gender vectors. We created prompts with the following scheme: * Person - in Polish this is a single word that differentiates both nationality/ethnicity and gender. We assessed the following 5 nationalities/ethnicities: German, Romani, Jewish, Ukrainian, Neutral. The neutral group used generic pronounts ("He/She"). * Topic - we used 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: Polish *niech* which combined with *he* would roughly translate to *let him ...* * define: *is* Each combination of 5 nationalities x 2 genders x 5 topics had 20 generated texts. We used a model trained on [Polish Hate Speech corpus](https://huggingface.co/datasets/hate_speech_pl) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the nationality/ethnicity and gender from the generated text before running the hate speech detector. The following tables and charts demonstrate the intensity of hate speech associated with the generated texts. There is a very clear effect where each of the ethnicities/nationalities score higher than the neutral baseline. ![hate score by ethnicity](https://huggingface.co/flax-community/papuGaPT2/raw/main/hate_by_ethnicity.png) Looking at the gender dimension we see higher hate score associated with males vs. females. ![hate score by gender](https://huggingface.co/flax-community/papuGaPT2/raw/main/hate_by_gender.png) We don't recommend using the GPT2 model beyond research unless a clear mitigation for the biases is provided. ## Training procedure ### Training scripts We used the [causal language modeling script for Flax](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py). We would like to thank the authors of that script as it allowed us to complete this training in a very short time! ### Preprocessing and Training Details The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 512 consecutive tokens. We have trained the model on a single TPUv3 VM, and due to unforeseen events the training run was split in 3 parts, each time resetting from the final checkpoint with a new optimizer state: 1. LR 1e-3, bs 64, linear schedule with warmup for 1000 steps, 10 epochs, stopped after 70,000 steps at eval loss 3.206 and perplexity 24.68 2. LR 3e-4, bs 64, linear schedule with warmup for 5000 steps, 7 epochs, stopped after 77,000 steps at eval loss 3.116 and perplexity 22.55 3. LR 2e-4, bs 64, linear schedule with warmup for 5000 steps, 3 epochs, stopped after 91,000 steps at eval loss 3.082 and perplexity 21.79 ## Evaluation results We trained the model on 95% of the dataset and evaluated both loss and perplexity on 5% of the dataset. The final checkpoint evaluation resulted in: * Evaluation loss: 3.082 * Perplexity: 21.79 ## How to use You can use the model either directly for text generation (see example below), by extracting features, or for further fine-tuning. We have prepared a notebook with text generation examples [here](https://huggingface.co/flax-community/papuGaPT2/blob/main/papuGaPT2_text_generation.ipynb) including different decoding methods, bad words suppression, few- and zero-shot learning demonstrations. ### Text generation Let's first start with the text-generation pipeline. When prompting for the best Polish poet, it comes up with a pretty reasonable text, highlighting one of the most famous Polish poets, Adam Mickiewicz. ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='flax-community/papuGaPT2') set_seed(42) generator('Największym polskim poetą był') >>> [{'generated_text': 'Największym polskim poetą był Adam Mickiewicz - uważany za jednego z dwóch geniuszów języka polskiego. "Pan Tadeusz" był jednym z najpopularniejszych dzieł w historii Polski. W 1801 został wystawiony publicznie w Teatrze Wilama Horzycy. Pod jego'}] ``` The pipeline uses `model.generate()` method in the background. In [our notebook](https://huggingface.co/flax-community/papuGaPT2/blob/main/papuGaPT2_text_generation.ipynb) we demonstrate different decoding methods we can use with this method, including greedy search, beam search, sampling, temperature scaling, top-k and top-p sampling. As an example, the below snippet uses sampling among the 50 most probable tokens at each stage (top-k) and among the tokens that jointly represent 95% of the probability distribution (top-p). It also returns 3 output sequences. ```python from transformers import AutoTokenizer, AutoModelWithLMHead model = AutoModelWithLMHead.from_pretrained('flax-community/papuGaPT2') tokenizer = AutoTokenizer.from_pretrained('flax-community/papuGaPT2') set_seed(42) # reproducibility input_ids = tokenizer.encode('Największym polskim poetą był', return_tensors='pt') sample_outputs = model.generate( input_ids, do_sample=True, max_length=50, top_k=50, top_p=0.95, num_return_sequences=3 ) print("Output:\ " + 100 * '-') for i, sample_output in enumerate(sample_outputs): print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True))) >>> Output: >>> ---------------------------------------------------------------------------------------------------- >>> 0: Największym polskim poetą był Roman Ingarden. Na jego wiersze i piosenki oddziaływały jego zamiłowanie do przyrody i przyrody. Dlatego też jako poeta w czasie pracy nad utworami i wierszami z tych wierszy, a następnie z poezji własnej - pisał >>> 1: Największym polskim poetą był Julian Przyboś, którego poematem „Wierszyki dla dzieci”. >>> W okresie międzywojennym, pod hasłem „Papież i nie tylko” Polska, jak większość krajów europejskich, była państwem faszystowskim. >>> Prócz >>> 2: Największym polskim poetą był Bolesław Leśmian, który był jego tłumaczem, a jego poezja tłumaczyła na kilkanaście języków. >>> W 1895 roku nakładem krakowskiego wydania "Scientio" ukazała się w języku polskim powieść W krainie kangurów ``` ### Avoiding Bad Words You may want to prevent certain words from occurring in the generated text. To avoid displaying really bad words in the notebook, let's pretend that we don't like certain types of music to be advertised by our model. The prompt says: *my favorite type of music is*. ```python input_ids = tokenizer.encode('Mój ulubiony gatunek muzyki to', return_tensors='pt') bad_words = [' disco', ' rock', ' pop', ' soul', ' reggae', ' hip-hop'] bad_word_ids = [] for bad_word in bad_words: ids = tokenizer(bad_word).input_ids bad_word_ids.append(ids) sample_outputs = model.generate( input_ids, do_sample=True, max_length=20, top_k=50, top_p=0.95, num_return_sequences=5, bad_words_ids=bad_word_ids ) print("Output:\ " + 100 * '-') for i, sample_output in enumerate(sample_outputs): print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True))) >>> Output: >>> ---------------------------------------------------------------------------------------------------- >>> 0: Mój ulubiony gatunek muzyki to muzyka klasyczna. Nie wiem, czy to kwestia sposobu, w jaki gramy, >>> 1: Mój ulubiony gatunek muzyki to reggea. Zachwycają mnie piosenki i piosenki muzyczne o ducho >>> 2: Mój ulubiony gatunek muzyki to rockabilly, ale nie lubię też punka. Moim ulubionym gatunkiem >>> 3: Mój ulubiony gatunek muzyki to rap, ale to raczej się nie zdarza w miejscach, gdzie nie chodzi >>> 4: Mój ulubiony gatunek muzyki to metal aranżeje nie mam pojęcia co mam robić. Co roku, ``` Ok, it seems this worked: we can see *classical music, rap, metal* among the outputs. Interestingly, *reggae* found a way through via a misspelling *reggea*. Take it as a caution to be careful with curating your bad word lists! ### Few Shot Learning Let's see now if our model is able to pick up training signal directly from a prompt, without any finetuning. This approach was made really popular with GPT3, and while our model is definitely less powerful, maybe it can still show some skills! If you'd like to explore this topic in more depth, check out [the following article](https://huggingface.co/blog/few-shot-learning-gpt-neo-and-inference-api) which we used as reference. ```python prompt = """Tekst: "Nienawidzę smerfów!" Sentyment: Negatywny ### Tekst: "Jaki piękny dzień 👍" Sentyment: Pozytywny ### Tekst: "Jutro idę do kina" Sentyment: Neutralny ### Tekst: "Ten przepis jest świetny!" Sentyment:""" res = generator(prompt, max_length=85, temperature=0.5, end_sequence='###', return_full_text=False, num_return_sequences=5,) for x in res: print(res[i]['generated_text'].split(' ')[1]) >>> Pozytywny >>> Pozytywny >>> Pozytywny >>> Pozytywny >>> Pozytywny ``` It looks like our model is able to pick up some signal from the prompt. Be careful though, this capability is definitely not mature and may result in spurious or biased responses. ### Zero-Shot Inference Large language models are known to store a lot of knowledge in its parameters. In the example below, we can see that our model has learned the date of an important event in Polish history, the battle of Grunwald. ```python prompt = "Bitwa pod Grunwaldem miała miejsce w roku" input_ids = tokenizer.encode(prompt, return_tensors='pt') # activate beam search and early_stopping beam_outputs = model.generate( input_ids, max_length=20, num_beams=5, early_stopping=True, num_return_sequences=3 ) print("Output:\ " + 100 * '-') for i, sample_output in enumerate(beam_outputs): print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True))) >>> Output: >>> ---------------------------------------------------------------------------------------------------- >>> 0: Bitwa pod Grunwaldem miała miejsce w roku 1410, kiedy to wojska polsko-litewskie pod >>> 1: Bitwa pod Grunwaldem miała miejsce w roku 1410, kiedy to wojska polsko-litewskie pokona >>> 2: Bitwa pod Grunwaldem miała miejsce w roku 1410, kiedy to wojska polsko-litewskie, ``` ## BibTeX entry and citation info ```bibtex @misc{papuGaPT2, title={papuGaPT2 - Polish GPT2 language model}, url={https://huggingface.co/flax-community/papuGaPT2}, author={Wojczulis, Michał and Kłeczek, Dariusz}, year={2021} } ```
sentence-transformers/msmarco-distilroberta-base-v2
77b284287cf59954131cae3ea58ae8a2850f96d2
2022-06-15T21:58:56.000Z
[ "pytorch", "tf", "jax", "roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/msmarco-distilroberta-base-v2
841
null
sentence-transformers
1,901
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilroberta-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilroberta-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilroberta-base-v2') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilroberta-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilroberta-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
ckiplab/albert-base-chinese-ws
2c4fe1f2486e130209d27120af18e19e9171a9ee
2022-05-10T03:28:09.000Z
[ "pytorch", "albert", "token-classification", "zh", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
token-classification
false
ckiplab
null
ckiplab/albert-base-chinese-ws
840
null
transformers
1,902
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - albert - zh license: gpl-3.0 --- # CKIP ALBERT Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/albert-base-chinese-ws') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
ddemszky/supervised_finetuning_hist0_is_question_switchboard_question_detection.json_bs32_lr0.000063
a28a1a751e076f551e8ea5a11c18e6ddba01acce
2021-05-19T15:23:28.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
ddemszky
null
ddemszky/supervised_finetuning_hist0_is_question_switchboard_question_detection.json_bs32_lr0.000063
835
null
transformers
1,903
Entry not found
BM-K/KoSimCSE-bert-multitask
36bbddfbd319358f15f47c9d4fd79bc860f947a2
2022-06-03T01:48:04.000Z
[ "pytorch", "bert", "feature-extraction", "ko", "transformers", "korean" ]
feature-extraction
false
BM-K
null
BM-K/KoSimCSE-bert-multitask
835
2
transformers
1,904
--- language: ko tags: - korean --- https://github.com/BM-K/Sentence-Embedding-is-all-you-need # Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models. ## Quick tour ```python import torch from transformers import AutoModel, AutoTokenizer def cal_score(a, b): if len(a.shape) == 1: a = a.unsqueeze(0) if len(b.shape) == 1: b = b.unsqueeze(0) a_norm = a / a.norm(dim=1)[:, None] b_norm = b / b.norm(dim=1)[:, None] return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100 model = AutoModel.from_pretrained('BM-K/KoSimCSE-bert-multitask') AutoTokenizer.from_pretrained('BM-K/KoSimCSE-bert-multitask') sentences = ['치타가 들판을 가로 질러 먹이를 쫓는다.', '치타 한 마리가 먹이 뒤에서 달리고 있다.', '원숭이 한 마리가 드럼을 연주한다.'] inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") embeddings, _ = model(**inputs, return_dict=False) score01 = cal_score(embeddings[0][0], embeddings[1][0]) score02 = cal_score(embeddings[0][0], embeddings[2][0]) ``` ## Performance - Semantic Textual Similarity test set results <br> | Model | AVG | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman | |------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| | KoSBERT<sup>†</sup><sub>SKT</sub> | 77.40 | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 | | KoSBERT | 80.39 | 82.13 | 82.25 | 80.67 | 80.75 | 80.69 | 80.78 | 77.96 | 77.90 | | KoSRoBERTa | 81.64 | 81.20 | 82.20 | 81.79 | 82.34 | 81.59 | 82.20 | 80.62 | 81.25 | | | | | | | | | | | | KoSentenceBART | 77.14 | 79.71 | 78.74 | 78.42 | 78.02 | 78.40 | 78.00 | 74.24 | 72.15 | | KoSentenceT5 | 77.83 | 80.87 | 79.74 | 80.24 | 79.36 | 80.19 | 79.27 | 72.81 | 70.17 | | | | | | | | | | | | KoSimCSE-BERT<sup>†</sup><sub>SKT</sub> | 81.32 | 82.12 | 82.56 | 81.84 | 81.63 | 81.99 | 81.74 | 79.55 | 79.19 | | KoSimCSE-BERT | 83.37 | 83.22 | 83.58 | 83.24 | 83.60 | 83.15 | 83.54 | 83.13 | 83.49 | | KoSimCSE-RoBERTa | 83.65 | 83.60 | 83.77 | 83.54 | 83.76 | 83.55 | 83.77 | 83.55 | 83.64 | | | | | | | | | | | | | KoSimCSE-BERT-multitask | 85.71 | 85.29 | 86.02 | 85.63 | 86.01 | 85.57 | 85.97 | 85.26 | 85.93 | | KoSimCSE-RoBERTa-multitask | 85.77 | 85.08 | 86.12 | 85.84 | 86.12 | 85.83 | 86.12 | 85.03 | 85.99 |
eleldar/theme-classification
017327ef4bf772e5bd0f60bc430190e810b44abb
2022-05-24T08:36:26.000Z
[ "pytorch", "jax", "rust", "bart", "text-classification", "dataset:multi_nli", "arxiv:1910.13461", "arxiv:1909.00161", "transformers", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
eleldar
null
eleldar/theme-classification
834
1
transformers
1,905
--- license: mit thumbnail: https://huggingface.co/front/thumbnails/facebook.png pipeline_tag: zero-shot-classification datasets: - multi_nli --- # Clone from [https://huggingface.co/facebook/bart-large-mnli](bart-large-mnli) This is the checkpoint for [bart-large](https://huggingface.co/facebook/bart-large) after being trained on the [MultiNLI (MNLI)](https://huggingface.co/datasets/multi_nli) dataset. Additional information about this model: - The [bart-large](https://huggingface.co/facebook/bart-large) model page - [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension ](https://arxiv.org/abs/1910.13461) - [BART fairseq implementation](https://github.com/pytorch/fairseq/tree/master/fairseq/models/bart) ## NLI-based Zero Shot Text Classification [Yin et al.](https://arxiv.org/abs/1909.00161) proposed a method for using pre-trained NLI models as a ready-made zero-shot sequence classifiers. The method works by posing the sequence to be classified as the NLI premise and to construct a hypothesis from each candidate label. For example, if we want to evaluate whether a sequence belongs to the class "politics", we could construct a hypothesis of `This text is about politics.`. The probabilities for entailment and contradiction are then converted to label probabilities. This method is surprisingly effective in many cases, particularly when used with larger pre-trained models like BART and Roberta. See [this blog post](https://joeddav.github.io/blog/2020/05/29/ZSL.html) for a more expansive introduction to this and other zero shot methods, and see the code snippets below for examples of using this model for zero-shot classification both with Hugging Face's built-in pipeline and with native Transformers/PyTorch code. #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(sequence_to_classify, candidate_labels) #{'labels': ['travel', 'dancing', 'cooking'], # 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289], # 'sequence': 'one day I will see the world'} ``` If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently: ```python candidate_labels = ['travel', 'cooking', 'dancing', 'exploration'] classifier(sequence_to_classify, candidate_labels, multi_class=True) #{'labels': ['travel', 'exploration', 'dancing', 'cooking'], # 'scores': [0.9945111274719238, # 0.9383890628814697, # 0.0057061901316046715, # 0.0018193122232332826], # 'sequence': 'one day I will see the world'} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('facebook/bart-large-mnli') tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli') premise = sequence hypothesis = f'This example is {label}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ```
Rostlab/prot_bert_bfd_membrane
19b4644ba13c8562e4fa65181da72362495c802a
2021-05-18T22:08:28.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Rostlab
null
Rostlab/prot_bert_bfd_membrane
832
2
transformers
1,906
Entry not found
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
0e85bb72e60edfb0ddde7ad756b51898ad7e2854
2021-05-27T18:49:34.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "arxiv:2010.11784", "transformers" ]
feature-extraction
false
cambridgeltl
null
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
831
null
transformers
1,907
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-XLMR SapBERT [(Liu et al. 2020)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the base model. Please use [CLS] as the representation of the input. ### Citation ```bibtex @inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} } ```
ltrctelugu/bert_ltrc_telugu
469815eaeec6eef3033ad62495a9b957488045f2
2021-05-19T22:09:24.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ltrctelugu
null
ltrctelugu/bert_ltrc_telugu
831
null
transformers
1,908
Entry not found
gilf/french-camembert-postag-model
20dcf94faa1d071027b36191220475bf9865f1f3
2020-12-11T21:41:07.000Z
[ "pytorch", "tf", "camembert", "token-classification", "fr", "transformers", "autotrain_compatible" ]
token-classification
false
gilf
null
gilf/french-camembert-postag-model
830
1
transformers
1,909
--- language: fr widget: - text: "Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages" --- ## About The *french-camembert-postag-model* is a part of speech tagging model for French that was trained on the *free-french-treebank* dataset available on [github](https://github.com/nicolashernandez/free-french-treebank). The base tokenizer and model used for training is *'camembert-base'*. ## Supported Tags It uses the following tags: | Tag | Category | Extra Info | |----------|:------------------------------:|------------:| | ADJ | adjectif | | | ADJWH | adjectif | | | ADV | adverbe | | | ADVWH | adverbe | | | CC | conjonction de coordination | | | CLO | pronom | obj | | CLR | pronom | refl | | CLS | pronom | suj | | CS | conjonction de subordination | | | DET | déterminant | | | DETWH | déterminant | | | ET | mot étranger | | | I | interjection | | | NC | nom commun | | | NPP | nom propre | | | P | préposition | | | P+D | préposition + déterminant | | | PONCT | signe de ponctuation | | | PREF | préfixe | | | PRO | autres pronoms | | | PROREL | autres pronoms | rel | | PROWH | autres pronoms | int | | U | ? | | | V | verbe | | | VIMP | verbe imperatif | | | VINF | verbe infinitif | | | VPP | participe passé | | | VPR | participe présent | | | VS | subjonctif | | More information on the tags can be found here: http://alpage.inria.fr/statgram/frdep/Publications/crabbecandi-taln2008-final.pdf ## Usage The usage of this model follows the common transformers patterns. Here is a short example of its usage: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("gilf/french-camembert-postag-model") model = AutoModelForTokenClassification.from_pretrained("gilf/french-camembert-postag-model") from transformers import pipeline nlp_token_class = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True) nlp_token_class('Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages') ``` The lines above would display something like this on a Jupyter notebook: ``` [{'entity_group': 'NC', 'score': 0.5760144591331482, 'word': '<s>'}, {'entity_group': 'U', 'score': 0.9946700930595398, 'word': 'Face'}, {'entity_group': 'P', 'score': 0.999615490436554, 'word': 'à'}, {'entity_group': 'DET', 'score': 0.9995906352996826, 'word': 'un'}, {'entity_group': 'NC', 'score': 0.9995531439781189, 'word': 'choc'}, {'entity_group': 'ADJ', 'score': 0.999183714389801, 'word': 'inédit'}, {'entity_group': 'P', 'score': 0.3710663616657257, 'word': ','}, {'entity_group': 'DET', 'score': 0.9995903968811035, 'word': 'les'}, {'entity_group': 'NC', 'score': 0.9995649456977844, 'word': 'mesures'}, {'entity_group': 'VPP', 'score': 0.9988670349121094, 'word': 'mises'}, {'entity_group': 'P', 'score': 0.9996246099472046, 'word': 'en'}, {'entity_group': 'NC', 'score': 0.9995329976081848, 'word': 'place'}, {'entity_group': 'P', 'score': 0.9996233582496643, 'word': 'par'}, {'entity_group': 'DET', 'score': 0.9995935559272766, 'word': 'le'}, {'entity_group': 'NC', 'score': 0.9995369911193848, 'word': 'gouvernement'}, {'entity_group': 'V', 'score': 0.9993771314620972, 'word': 'ont'}, {'entity_group': 'VPP', 'score': 0.9991101026535034, 'word': 'permis'}, {'entity_group': 'DET', 'score': 0.9995885491371155, 'word': 'une'}, {'entity_group': 'NC', 'score': 0.9995636343955994, 'word': 'protection'}, {'entity_group': 'ADJ', 'score': 0.9991781711578369, 'word': 'forte'}, {'entity_group': 'CC', 'score': 0.9991298317909241, 'word': 'et'}, {'entity_group': 'ADJ', 'score': 0.9992275238037109, 'word': 'efficace'}, {'entity_group': 'P+D', 'score': 0.9993300437927246, 'word': 'des'}, {'entity_group': 'NC', 'score': 0.8353511393070221, 'word': 'ménages</s>'}] ```
sentence-transformers/roberta-base-nli-mean-tokens
993765530351e8b2a4da74bed694d80de826cbb3
2022-06-15T21:54:45.000Z
[ "pytorch", "tf", "roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/roberta-base-nli-mean-tokens
830
null
sentence-transformers
1,910
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/roberta-base-nli-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/roberta-base-nli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/roberta-base-nli-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/roberta-base-nli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/roberta-base-nli-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_standart
e8457dc919931cb03fc4b56f6bc57aee2e0430ae
2022-07-12T12:42:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Nonzerophilip
null
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_standart
830
0
transformers
1,911
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_small_set_health_and_standart results: [] --- # Named Entity Recognition model for swedish This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner)for only Swedish. It has been fine-tuned on the concatenation of a smaller version of SUC 3.0 and some medical text from the Swedish website 1177. The model will predict the following entities: | Tag | Name | Exampel | |:-------------:|:-----:|:----:| | PER |Person | (e.g., Johan and Sofia) | | LOC | Location | (e.g., Göteborg and Spanien) | | ORG | Organisation | (e.g., Volvo and Skatteverket) \ | | PHARMA_DRUGS | Medication | (e.g., Paracetamol and Omeprazol)| | HEALTH | Illness/Diseases | (e.g., Cancer, sjuk and diabetes) | | Relation | Family members | (e.g., Mamma and Farmor) | <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_small_set_health_and_standart It achieves the following results on the evaluation set: - Loss: 0.0963 - Precision: 0.7548 - Recall: 0.7811 - F1: 0.7677 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 219 | 0.1123 | 0.7674 | 0.6567 | 0.7078 | 0.9681 | | No log | 2.0 | 438 | 0.0934 | 0.7643 | 0.7662 | 0.7652 | 0.9738 | | 0.1382 | 3.0 | 657 | 0.0963 | 0.7548 | 0.7811 | 0.7677 | 0.9756 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
ceshine/t5-paraphrase-quora-paws
fabd672433e675b3d9916595fa4cb768b18e15c5
2021-09-22T08:16:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "en", "transformers", "paraphrasing", "paraphrase", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ceshine
null
ceshine/t5-paraphrase-quora-paws
829
1
transformers
1,912
--- language: en tags: - t5 - paraphrasing - paraphrase license: apache-2.0 --- # T5-base Parapharasing model fine-tuned on PAWS and Quora More details in [ceshine/finetuning-t5 Github repo](https://github.com/ceshine/finetuning-t5/tree/master/paraphrase)
gchhablani/bert-base-cased-finetuned-sst2
e3a2a13efbaaf56afd02eb7333952ea22a693c45
2021-09-20T09:09:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "en", "dataset:glue", "arxiv:2105.03824", "transformers", "generated_from_trainer", "fnet-bert-base-comparison", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/bert-base-cased-finetuned-sst2
829
null
transformers
1,913
--- language: - en license: apache-2.0 tags: - generated_from_trainer - fnet-bert-base-comparison datasets: - glue metrics: - accuracy model-index: - name: bert-base-cased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9231651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-sst2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3649 - Accuracy: 0.9232 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name sst2 \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-sst2 \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.233 | 1.0 | 4210 | 0.9174 | 0.2841 | | 0.1261 | 2.0 | 8420 | 0.9278 | 0.3310 | | 0.0768 | 3.0 | 12630 | 0.9232 | 0.3649 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
lvwerra/bert-imdb
2e60eb015f5ace0a52a9d0394b63f9db23819139
2021-05-19T22:12:49.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
lvwerra
null
lvwerra/bert-imdb
829
null
transformers
1,914
# BERT-IMDB ## What is it? BERT (`bert-large-cased`) trained for sentiment classification on the [IMDB dataset](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews). ## Training setting The model was trained on 80% of the IMDB dataset for sentiment classification for three epochs with a learning rate of `1e-5` with the `simpletransformers` library. The library uses a learning rate schedule. ## Result The model achieved 90% classification accuracy on the validation set. ## Reference The full experiment is available in the [tlr repo](https://lvwerra.github.io/trl/03-bert-imdb-training/).
ufal/eleczech-lc-small
f30a3b6aeb23d99ff4e342f853e9b4dca4fd90fb
2022-04-24T11:47:37.000Z
[ "pytorch", "tf", "electra", "cs", "transformers", "Czech", "Electra", "ÚFAL", "license:cc-by-nc-sa-4.0" ]
null
false
ufal
null
ufal/eleczech-lc-small
828
null
transformers
1,915
--- language: "cs" tags: - Czech - Electra - ÚFAL license: "cc-by-nc-sa-4.0" --- # EleCzech-LC model THe `eleczech-lc-small` is a monolingual small Electra language representation model trained on lowercased Czech data (but with diacritics kept in place). It is trained on the same data as the [RobeCzech model](https://huggingface.co/ufal/robeczech-base).
urduhack/roberta-urdu-small
88b0711632a90aa462d37b3fd01b3db5a999901f
2021-05-20T22:52:23.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "ur", "transformers", "roberta-urdu-small", "urdu", "license:mit", "autotrain_compatible" ]
fill-mask
false
urduhack
null
urduhack/roberta-urdu-small
827
1
transformers
1,916
--- language: ur thumbnail: https://raw.githubusercontent.com/urduhack/urduhack/master/docs/_static/urduhack.png tags: - roberta-urdu-small - urdu - transformers license: mit --- ## roberta-urdu-small [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/urduhack/urduhack/blob/master/LICENSE) ### Overview **Language model:** roberta-urdu-small **Model size:** 125M **Language:** Urdu **Training data:** News data from urdu news resources in Pakistan ### About roberta-urdu-small roberta-urdu-small is a language model for urdu language. ``` from transformers import pipeline fill_mask = pipeline("fill-mask", model="urduhack/roberta-urdu-small", tokenizer="urduhack/roberta-urdu-small") ``` ## Training procedure roberta-urdu-small was trained on urdu news corpus. Training data was normalized using normalization module from urduhack to eliminate characters from other languages like arabic. ### About Urduhack Urduhack is a Natural Language Processing (NLP) library for urdu language. Github: https://github.com/urduhack/urduhack
rinna/japanese-clip-vit-b-16
577833e50353203aad9b0f01c9ed54f45d7f0dd9
2022-07-19T05:46:31.000Z
[ "pytorch", "clip", "feature-extraction", "ja", "arxiv:2103.00020", "transformers", "japanese", "vision", "license:apache-2.0" ]
feature-extraction
false
rinna
null
rinna/japanese-clip-vit-b-16
825
3
transformers
1,917
--- language: ja thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: apache-2.0 tags: - feature-extraction - ja - japanese - clip - vision --- # rinna/japanese-clip-vit-b-16 ![rinna-icon](./rinna.png) This is a Japanese [CLIP (Contrastive Language-Image Pre-Training)](https://arxiv.org/abs/2103.00020) model trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/). Please see [japanese-clip](https://github.com/rinnakk/japanese-clip) for the other available models. # How to use the model 1. Install package ```shell $ pip install git+https://github.com/rinnakk/japanese-clip.git ``` 2. Run ```python import io import requests from PIL import Image import torch import japanese_clip as ja_clip device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = ja_clip.load("rinna/japanese-clip-vit-b-16", cache_dir="/tmp/japanese_clip", device=device) tokenizer = ja_clip.load_tokenizer() img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content)) image = preprocess(img).unsqueeze(0).to(device) encodings = ja_clip.tokenize( texts=["犬", "猫", "象"], max_seq_len=77, device=device, tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time ) with torch.no_grad(): image_features = model.get_image_features(image) text_features = model.get_text_features(**encodings) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[1.0, 0.0, 0.0]] ``` # Model architecture The model was trained a ViT-B/16 Transformer architecture as an image encoder and uses a 12-layer BERT as a text encoder. The image encoder was initialized from the [AugReg `vit-base-patch16-224` model](https://github.com/google-research/vision_transformer). # Training The model was trained on [CC12M](https://github.com/google-research-datasets/conceptual-12m) translated the captions to Japanese. # License [The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
allenai/ivila-row-layoutlm-finetuned-s2vl-v2
274db24cfd62b34df30d0f25705716a76ea285fc
2022-07-06T00:00:40.000Z
[ "pytorch", "layoutlm", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
allenai
null
allenai/ivila-row-layoutlm-finetuned-s2vl-v2
823
null
transformers
1,918
Entry not found
cross-encoder/quora-roberta-large
5ebcad2722b5ebd1e04eff48be928eab15088827
2021-08-05T08:41:41.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
cross-encoder
null
cross-encoder/quora-roberta-large
822
null
transformers
1,919
--- license: apache-2.0 --- # Cross-Encoder for Quora Duplicate Questions Detection This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. ## Training Data This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates. Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions "How to learn Java" and "How to learn Python" will result in a rahter low score, as these are not duplicates. ## Usage and Performance Pre-trained models can be used like this: ``` from sentence_transformers import CrossEncoder model = CrossEncoder('model_name') scores = model.predict([('Question 1', 'Question 2'), ('Question 3', 'Question 4')]) ``` You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
twigs/cwi-regressor
df4bd35ae50d6cbc357dcfafeb015d705881fb94
2022-07-16T20:11:55.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
twigs
null
twigs/cwi-regressor
821
null
transformers
1,920
Entry not found
Helsinki-NLP/opus-mt-ca-es
3b93f0ccce95f7d8c7a78d56ec5c658271f6d244
2021-09-09T21:28:22.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ca-es
820
null
transformers
1,921
--- tags: - translation license: apache-2.0 --- ### opus-mt-ca-es * source languages: ca * target languages: es * OPUS readme: [ca-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ca-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ca-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ca.es | 74.9 | 0.863 |
textattack/bert-base-uncased-RTE
44f1d994cbd4a349cb7867681940bdb1f0472f53
2021-05-20T07:36:18.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/bert-base-uncased-RTE
817
null
transformers
1,922
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
sonoisa/sentence-bert-base-ja-en-mean-tokens-v2
183edaac7298717e619cae545da453870aae1090
2022-05-31T09:07:58.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sonoisa
null
sonoisa/sentence-bert-base-ja-en-mean-tokens-v2
815
null
transformers
1,923
Entry not found
lsanochkin/deberta-large-feedback
9c2c8e80c27264968be42d2dd8ba18da34b0ac43
2022-06-08T12:48:08.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lsanochkin
null
lsanochkin/deberta-large-feedback
815
null
transformers
1,924
Entry not found
Geotrend/distilbert-base-en-zh-cased
1ec581bd42270966d6d7f748c16dc58e909b3a3f
2021-08-16T13:56:31.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-zh-cased
813
null
transformers
1,925
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-zh-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-zh-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
VietAI/vit5-base
1e7647a478bbceb29ab07307b2ceab6fd34fddee
2022-07-25T14:15:09.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "vi", "dataset:cc100", "transformers", "summarization", "translation", "question-answering", "license:mit", "autotrain_compatible" ]
question-answering
false
VietAI
null
VietAI/vit5-base
811
null
transformers
1,926
--- language: vi datasets: - cc100 tags: - summarization - translation - question-answering license: mit --- # ViT5-base State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. ## How to use For more details, do check out [our Github repo](https://github.com/vietai/ViT5). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base") model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base") ​ sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam." text = "vi: " + sentence encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ``` ## Citation ``` @inproceedings{phan-etal-2022-vit5, title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation", author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop", year = "2022", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-srw.18", pages = "136--142", } ```
sentence-transformers/msmarco-distilbert-base-v2
f948558941b586773dcbc8f8df8576cd00a7547e
2022-06-15T21:47:13.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/msmarco-distilbert-base-v2
810
null
sentence-transformers
1,927
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-base-v2') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
nvidia/segformer-b4-finetuned-cityscapes-1024-1024
1c5bd529b95681dbd2781393c3c0d1f4049f5aa3
2022-07-20T09:53:27.000Z
[ "pytorch", "tf", "segformer", "dataset:cityscapes", "arxiv:2105.15203", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nvidia
null
nvidia/segformer-b4-finetuned-cityscapes-1024-1024
809
null
transformers
1,928
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://www.researchgate.net/profile/Anurag-Arnab/publication/315881952/figure/fig5/AS:667673876779033@1536197265755/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.jpg example_title: Road --- # SegFormer (b4-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b4-finetuned-cityscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b4-finetuned-cityscapes-1024-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ugaray96/biobert_ncbi_disease_ner
5c229c40de74adc3ba6ce7266edbbb72338957d9
2021-05-20T08:46:47.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ugaray96
null
ugaray96/biobert_ncbi_disease_ner
808
3
transformers
1,929
Entry not found
OFA-Sys/OFA-large
89faeabf5697e4f6cc32c16a258fee8555a00ea3
2022-07-25T11:50:28.000Z
[ "pytorch", "ofa", "transformers", "license:apache-2.0" ]
null
false
OFA-Sys
null
OFA-Sys/OFA-large
806
3
transformers
1,930
--- license: apache-2.0 --- # OFA-large This is the **large** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ``` git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-large ``` After, refer the path to OFA-large to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ``` >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 480 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) >>> # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] >>> # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
Helsinki-NLP/opus-mt-ml-en
6a3938f58579cd6b4aab8ffcd6d8f6ccbe96571e
2021-09-10T13:58:12.000Z
[ "pytorch", "marian", "text2text-generation", "ml", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ml-en
805
null
transformers
1,931
--- tags: - translation license: apache-2.0 --- ### opus-mt-ml-en * source languages: ml * target languages: en * OPUS readme: [ml-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ml-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-04-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ml-en/opus-2020-04-20.zip) * test set translations: [opus-2020-04-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ml-en/opus-2020-04-20.test.txt) * test set scores: [opus-2020-04-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ml-en/opus-2020-04-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ml.en | 42.7 | 0.605 |
GanjinZero/coder_eng_pp
1b92944b53581cdee9c7a6a6c85d3706c5f39a87
2022-04-25T02:25:08.000Z
[ "pytorch", "bert", "feature-extraction", "en", "arxiv:2204.00391", "transformers", "biomedical", "license:apache-2.0" ]
feature-extraction
false
GanjinZero
null
GanjinZero/coder_eng_pp
803
1
transformers
1,932
--- language: - en license: apache-2.0 tags: - bert - biomedical --- Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations. CODER++ ``` @misc{https://doi.org/10.48550/arxiv.2204.00391, doi = {10.48550/ARXIV.2204.00391}, url = {https://arxiv.org/abs/2204.00391}, author = {Zeng, Sihang and Yuan, Zheng and Yu, Sheng}, title = {Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations}, publisher = {arXiv}, year = {2022} } ```
yechen/bert-large-chinese
0b30aa41703e93273f06788ce54ca2a678fa3461
2021-05-20T09:22:07.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "transformers", "autotrain_compatible" ]
fill-mask
false
yechen
null
yechen/bert-large-chinese
803
1
transformers
1,933
--- language: zh ---
nvidia/segformer-b1-finetuned-ade-512-512
cfbb1c34d34eae30bcf0a6d5e26a650f9b7263de
2022-07-20T09:53:21.000Z
[ "pytorch", "tf", "segformer", "dataset:scene_parse_150", "arxiv:2105.15203", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nvidia
null
nvidia/segformer-b1-finetuned-ade-512-512
802
null
transformers
1,934
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - scene_parse_150 widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b1-sized) model fine-tuned on ADE20k SegFormer model fine-tuned on ADE20k at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
sentence-transformers/msmarco-MiniLM-L-12-v3
0ff694ede6574bbed1625216e5bd1a2f517abaf1
2022-06-16T00:16:13.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/msmarco-MiniLM-L-12-v3
802
null
sentence-transformers
1,935
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-MiniLM-L-12-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-MiniLM-L-12-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-12-v3') model = AutoModel.from_pretrained('sentence-transformers/msmarco-MiniLM-L-12-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-MiniLM-L-12-v3) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
fmikaelian/camembert-base-squad
026a804142163cd9756f66ba35cfb463d914e4e4
2020-12-11T21:40:12.000Z
[ "pytorch", "camembert", "question-answering", "fr", "transformers", "autotrain_compatible" ]
question-answering
false
fmikaelian
null
fmikaelian/camembert-base-squad
800
null
transformers
1,936
--- language: fr --- # camembert-base-squad ## Description A baseline model for question-answering in french ([CamemBERT](https://camembert-model.fr/) model fine-tuned on [french-translated SQuAD 1.1 dataset](https://github.com/Alikabbadj/French-SQuAD)) ## Training hyperparameters ```shell python3 ./examples/question-answering/run_squad.py \ --model_type camembert \ --model_name_or_path camembert-base \ --do_train \ --do_eval \ --do_lower_case \ --train_file SQuAD-v1.1-train_fr_ss999_awstart2_net.json \ --predict_file SQuAD-v1.1-dev_fr_ss999_awstart2_net.json \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir output3 \ --per_gpu_eval_batch_size=3 \ --per_gpu_train_batch_size=3 \ --save_steps 10000 ``` ## Evaluation results ```shell {"f1": 79.8570684959745, "exact_match": 59.21327108373895} ``` ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='fmikaelian/camembert-base-squad', tokenizer='fmikaelian/camembert-base-squad') nlp({ 'question': "Qui est Claude Monet?", 'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme." }) ```
ahmedrachid/FinancialBERT-Sentiment-Analysis
656931965473ec085d195680bd62687b140c038f
2022-02-07T14:58:57.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:financial_phrasebank", "transformers", "financial-sentiment-analysis", "sentiment-analysis" ]
text-classification
false
ahmedrachid
null
ahmedrachid/FinancialBERT-Sentiment-Analysis
798
6
transformers
1,937
--- language: en tags: - financial-sentiment-analysis - sentiment-analysis datasets: - financial_phrasebank widget: - text: Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding period in 2007 representing 7.7 % of net sales. - text: Bids or offers include at least 1,000 shares and the value of the shares must correspond to at least EUR 4,000. - text: Raute reported a loss per share of EUR 0.86 for the first half of 2009 , against EPS of EUR 0.74 in the corresponding period of 2008. --- ### FinancialBERT for Sentiment Analysis [*FinancialBERT*](https://huggingface.co/ahmedrachid/FinancialBERT) is a BERT model pre-trained on a large corpora of financial texts. The purpose is to enhance financial NLP research and practice in financial domain, hoping that financial practitioners and researchers can benefit from this model without the necessity of the significant computational resources required to train the model. The model was fine-tuned for Sentiment Analysis task on _Financial PhraseBank_ dataset. Experiments show that this model outperforms the general BERT and other financial domain-specific models. More details on `FinancialBERT`'s pre-training process can be found at: https://www.researchgate.net/publication/358284785_FinancialBERT_-_A_Pretrained_Language_Model_for_Financial_Text_Mining ### Training data FinancialBERT model was fine-tuned on [Financial PhraseBank](https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10), a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). ### Fine-tuning hyper-parameters - learning_rate = 2e-5 - batch_size = 32 - max_seq_length = 512 - num_train_epochs = 5 ### Evaluation metrics The evaluation metrics used are: Precision, Recall and F1-score. The following is the classification report on the test set. | sentiment | precision | recall | f1-score | support | | ------------- |:-------------:|:-------------:|:-------------:| -----:| | negative | 0.96 | 0.97 | 0.97 | 58 | | neutral | 0.98 | 0.99 | 0.98 | 279 | | positive | 0.98 | 0.97 | 0.97 | 148 | | macro avg | 0.97 | 0.98 | 0.98 | 485 | | weighted avg | 0.98 | 0.98 | 0.98 | 485 | ### How to use The model can be used thanks to Transformers pipeline for sentiment analysis. ```python from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline model = BertForSequenceClassification.from_pretrained("ahmedrachid/FinancialBERT-Sentiment-Analysis",num_labels=3) tokenizer = BertTokenizer.from_pretrained("ahmedrachid/FinancialBERT-Sentiment-Analysis") nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) sentences = ["Operating profit rose to EUR 13.1 mn from EUR 8.7 mn in the corresponding period in 2007 representing 7.7 % of net sales.", "Bids or offers include at least 1,000 shares and the value of the shares must correspond to at least EUR 4,000.", "Raute reported a loss per share of EUR 0.86 for the first half of 2009 , against EPS of EUR 0.74 in the corresponding period of 2008.", ] results = nlp(sentences) print(results) [{'label': 'positive', 'score': 0.9998133778572083}, {'label': 'neutral', 'score': 0.9997822642326355}, {'label': 'negative', 'score': 0.9877365231513977}] ``` > Created by [Ahmed Rachid Hazourli](https://www.linkedin.com/in/ahmed-rachid/)
allenai/wmt19-de-en-6-6-big
ad688bb4b2d008debf4477e33a7c809eed3f198b
2020-12-11T21:33:31.000Z
[ "pytorch", "fsmt", "text2text-generation", "de", "en", "dataset:wmt19", "arxiv:2006.10369", "transformers", "translation", "wmt19", "allenai", "license:apache-2.0", "autotrain_compatible" ]
translation
false
allenai
null
allenai/wmt19-de-en-6-6-big
795
null
transformers
1,938
--- language: - de - en thumbnail: tags: - translation - wmt19 - allenai license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for de-en. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). 2 models are available: * [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big) * [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/wmt19-de-en-6-6-big" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "Maschinelles Lernen ist großartig, nicht wahr?" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # Machine learning is great, isn't it? ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | transformers -------|--------- wmt19-de-en-6-6-big | 39.9 The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR=de-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt19-de-en-6-6-big $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ``` @misc{kasai2020deep, title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}, author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}, year={2020}, eprint={2006.10369}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
monilouise/ner_news_portuguese
3d99719c7273f8509954b0023ecc273228f9cdd7
2021-09-13T17:12:03.000Z
[ "pytorch", "jax", "bert", "token-classification", "pt", "arxiv:1909.10649", "transformers", "ner", "autotrain_compatible" ]
token-classification
false
monilouise
null
monilouise/ner_news_portuguese
795
6
transformers
1,939
--- language: - pt tags: - ner metrics: - f1 - accuracy - precision - recall --- # RiskData Brazilian Portuguese NER ## Model description This is a finetunned version from [Neuralmind BERTimbau] (https://github.com/neuralmind-ai/portuguese-bert/blob/master/README.md) for Portuguese language. ## Intended uses & limitations #### How to use ```python from transformers import BertForTokenClassification, DistilBertTokenizerFast, pipeline model = BertForTokenClassification.from_pretrained('monilouise/ner_pt_br') tokenizer = DistilBertTokenizerFast.from_pretrained('neuralmind/bert-base-portuguese-cased' , model_max_length=512 , do_lower_case=False ) nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True) result = nlp("O Tribunal de Contas da União é localizado em Brasília e foi fundado por Rui Barbosa.") ``` #### Limitations and bias - The finetunned model was trained on a corpus with around 180 news articles crawled from Google News. The original project's purpose was to recognize named entities in news related to fraud and corruption, classifying these entities in four classes: PERSON, ORGANIZATION, PUBLIC INSITUITION and LOCAL (PESSOA, ORGANIZAÇÃO, INSTITUIÇÃO PÚBLICA and LOCAL). ## Training procedure ## Eval results accuracy: 0.98, precision: 0.86 recall: 0.91 f1: 0.88 The score was calculated using this code: ```python def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(id2tag[label_ids[i][j]]) preds_list[i].append(id2tag[preds[i][j]]) return preds_list, out_label_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) return { "accuracy_score": accuracy_score(out_label_list, preds_list), "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } ``` ### BibTeX entry and citation info For further information about BERTimbau language model: ```bibtex @inproceedings{souza2020bertimbau, author = {Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } @article{souza2019portuguese, title={Portuguese Named Entity Recognition using BERT-CRF}, author={Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto}, journal={arXiv preprint arXiv:1909.10649}, url={http://arxiv.org/abs/1909.10649}, year={2019} } ```
tdopierre/ProtAugment-LM-Clinic150
4be859e9b5cfd551558a1868f05eff9acf49742d
2021-07-01T13:57:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tdopierre
null
tdopierre/ProtAugment-LM-Clinic150
795
null
transformers
1,940
Entry not found
Amo/GPT-J-6B-PNY
6ea745f4c4d4105f8d5bb802651de7d23505be81
2022-07-08T14:13:05.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
Amo
null
Amo/GPT-J-6B-PNY
795
1
transformers
1,941
Entry not found
Intel/dpt-large
755bcbcb26ef6d8ae380fef8b193bd60bc729026
2022-04-14T08:29:11.000Z
[ "pytorch", "dpt", "arxiv:2103.13413", "transformers", "vision", "depth-estimation", "license:apache-2.0" ]
null
false
Intel
null
Intel/dpt-large
794
9
transformers
1,942
--- license: apache-2.0 tags: - vision - depth-estimation widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DPT (large-sized model) Dense Prediction Transformer (DPT) model trained on 1.4 million images for monocular depth estimation. It was introduced in the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by Ranftl et al. and first released in [this repository](https://github.com/isl-org/DPT). Disclaimer: The team releasing DPT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description DPT uses the Vision Transformer (ViT) as backbone and adds a neck + head on top for monocular depth estimation. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg) ## Intended uses & limitations You can use the raw model for zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=dpt) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model for zero-shot depth estimation on an image: ```python from transformers import DPTFeatureExtractor, DPTForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") # prepare image for the model inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-13413, author = {Ren{\'{e}} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {CoRR}, volume = {abs/2103.13413}, year = {2021}, url = {https://arxiv.org/abs/2103.13413}, eprinttype = {arXiv}, eprint = {2103.13413}, timestamp = {Wed, 07 Apr 2021 15:31:46 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
tau/splinter-base-qass
c400ac0b86b16bc4d73508561d3eca78f89c52d7
2021-09-03T08:47:00.000Z
[ "pytorch", "splinter", "question-answering", "en", "transformers", "SplinterModel", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
tau
null
tau/splinter-base-qass
793
null
transformers
1,943
--- language: en tags: - splinter - SplinterModel license: apache-2.0 --- # Splinter base model (with pretrained QASS-layer weights) Splinter-base is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive. Note: This model **does** contain the pretrained weights for the QASS layer (see paper for details). For the model **without** those weights, see [tau/splinter-base](https://huggingface.co/tau/splinter-base). ## Model description Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions). ## Intended uses & limitations The prime use for this model is few-shot extractive QA. ## Pretraining The model was pretrained on a v3-8 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", } ```
textattack/albert-base-v2-ag-news
f2a40f157353809cd0f76610fc9657385e8761d4
2020-07-07T21:59:15.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/albert-base-v2-ag-news
790
null
transformers
1,944
## TextAttack Model CardThis `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9471052631578948, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
castorini/mdpr-question-nq
b560ea82c60118c04b388a339f1c089c2a720c70
2021-08-20T15:07:57.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/mdpr-question-nq
785
null
transformers
1,945
Entry not found
indonesian-nlp/wav2vec2-large-xlsr-indonesian
68fbcbd947e32184a704b401b71973d6c27de0c1
2021-07-06T06:15:38.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "id", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
indonesian-nlp
null
indonesian-nlp/wav2vec2-large-xlsr-indonesian
785
1
transformers
1,946
--- language: id datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Indonesian by Indonesian NLP results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice id type: common_voice args: id metrics: - name: Test WER type: wer value: 14.29 --- # Wav2Vec2-Large-XLSR-Indonesian This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.29 % ## Training The Common Voice `train`, `validation`, and [synthetic voice datasets](https://cloud.uncool.ai/index.php/s/Kg4C6f5NJGN9ZdR) were used for training. The script used for training can be found [here](https://github.com/indonesian-nlp/wav2vec2-indonesian)
uer/roberta-base-word-chinese-cluecorpussmall
9122f6001eb2eedea9d34eeafc254a4f83f653aa
2022-02-19T15:58:50.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-base-word-chinese-cluecorpussmall
785
2
transformers
1,947
--- language: zh datasets: CLUECorpusSmall widget: - text: "最近一趟去北京的[MASK]几点发车" --- # Chinese word-based RoBERTa Miniatures ## Model description This is the set of 5 Chinese word-based RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Most Chinese pre-trained weights are based on Chinese character. Compared with character-based models, word-based models are faster (because of shorter sequence length) and have better performance according to our experimental results. To this end, we released the 5 Chinese word-based RoBERTa models of different sizes. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. Notice that the output results of Hosted inference API (right) are not properly displayed. When the predicted word has multiple characters, the single word instead of entire sentence is displayed. One can click **JSON Output** for normal output results. You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **word-based RoBERTa-Tiny** | [**L=2/H=128 (Tiny)**][2_128] | | **word-based RoBERTa-Mini** | [**L=4/H=256 (Mini)**][4_256] | | **word-based RoBERTa-Small** | [**L=4/H=512 (Small)**][4_512] | | **word-based RoBERTa-Medium** | [**L=8/H=512 (Medium)**][8_512] | | **word-based RoBERTa-Base** | [**L=12/H=768 (Base)**][12_768] | Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny(char) | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | **RoBERTa-Tiny(word)** | **74.3(+2.0)** | **86.4** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** | | RoBERTa-Mini(char) | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | **RoBERTa-Mini(word)** | **76.7(+1.0)** | **87.6** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** | | RoBERTa-Small(char) | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | **RoBERTa-Small(word)** | **78.1(+1.3)** | **88.5** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** | | RoBERTa-Medium(char) | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | **RoBERTa-Medium(word)** | **78.9(+1.1)** | **89.2** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** | | RoBERTa-Base(char) | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | | **RoBERTa-Base(word)** | **80.2(+0.7)** | **90.3** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of word-based RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall') >>> unmasker("[MASK]的首都是北京。") [ {'sequence': '中国 的首都是北京。', 'score': 0.21525809168815613, 'token': 2873, 'token_str': '中国'}, {'sequence': '北京 的首都是北京。', 'score': 0.15194718539714813, 'token': 9502, 'token_str': '北京'}, {'sequence': '我们 的首都是北京。', 'score': 0.08854265511035919, 'token': 4215, 'token_str': '我们'}, {'sequence': '美国 的首都是北京。', 'score': 0.06808705627918243, 'token': 7810, 'token_str': '美国'}, {'sequence': '日本 的首都是北京。', 'score': 0.06071401759982109, 'token': 7788, 'token_str': '日本'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, BertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFBertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Since BertTokenizer does not support sentencepiece, AlbertTokenizer is used here. ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. Google's [sentencepiece](https://github.com/google/sentencepiece) is used for word segmentation. The sentencepiece model is trained on CLUECorpusSmall corpus: ``` >>> import sentencepiece as spm >>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt', model_prefix='cluecorpussmall_spm', vocab_size=100000, max_sentence_length=1024, max_sentencepiece_length=6, user_defined_symbols=['[MASK]','[unused1]','[unused2]', '[unused3]','[unused4]','[unused5]','[unused6]', '[unused7]','[unused8]','[unused9]','[unused10]'], pad_id=0, pad_piece='[PAD]', unk_id=1, unk_piece='[UNK]', bos_id=2, bos_piece='[CLS]', eos_id=3, eos_piece='[SEP]', train_extremely_large_corpus=True ) ``` ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of word-based RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-word-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-word-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-word-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-word-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall
google/pegasus-reddit_tifu
b786930d75e6108dd9a42fc062658a5ff77386ff
2020-10-22T16:33:34.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "arxiv:1912.08777", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
google
null
google/pegasus-reddit_tifu
784
null
transformers
1,948
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
funnel-transformer/large
3f56dd1209e9470b922bd24715c78db03af0fe51
2022-06-07T15:26:48.000Z
[ "pytorch", "tf", "funnel", "feature-extraction", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:gigaword", "arxiv:2006.03236", "transformers", "license:apache-2.0" ]
feature-extraction
false
funnel-transformer
null
funnel-transformer/large
783
1
transformers
1,949
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia - gigaword --- # Funnel Transformer large model (B8-8-8 with decoder) Pretrained model on English language using a similar objective as [ELECTRA](https://huggingface.co/transformers/model_doc/electra.html). It was introduced in [this paper](https://arxiv.org/pdf/2006.03236.pdf) and first released in [this repository](https://github.com/laiguokun/Funnel-Transformer). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing Funnel Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Funnel Transformer is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, a small language model corrupts the input texts and serves as a generator of inputs for this model, and the pretraining objective is to predict which token is an original and which one has been replaced, a bit like a GAN training. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model to extract a vector representation of a given text, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=funnel-transformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large") model = FunneModel.from_pretrained("funnel-transformer/large") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import FunnelTokenizer, TFFunnelModel tokenizer = FunnelTokenizer.from_pretrained("funnel-transformer/large") model = TFFunnelModel.from_pretrained("funnel-transformer/large") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data The BERT model was pretrained on: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books, - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers), - [Clue Web](https://lemurproject.org/clueweb12/), a dataset of 733,019,372 English web pages, - [GigaWord](https://catalog.ldc.upenn.edu/LDC2011T07), an archive of newswire text data, - [Common Crawl](https://commoncrawl.org/), a dataset of raw web pages. ### BibTeX entry and citation info ```bibtex @misc{dai2020funneltransformer, title={Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing}, author={Zihang Dai and Guokun Lai and Yiming Yang and Quoc V. Le}, year={2020}, eprint={2006.03236}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
ydshieh/vit-gpt2-coco-en
65636df6deb3da3e23106321ae33cb82adbc845a
2022-01-09T15:53:19.000Z
[ "pytorch", "tf", "jax", "tensorboard", "vision-encoder-decoder", "generic", "image-classification" ]
image-classification
false
ydshieh
null
ydshieh/vit-gpt2-coco-en
782
7
generic
1,950
--- tags: - image-classification library_name: generic --- ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. The model can be used as follows: **In PyTorch** ```python import torch import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = VisionEncoderDecoderModel.from_pretrained(loc) model.eval() def predict(image): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ``` **In Flax** ```python import jax import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) gen_kwargs = {"max_length": 16, "num_beams": 4} # This takes sometime when compiling the first time, but the subsequent inference will be much faster @jax.jit def generate(pixel_values): output_ids = model.generate(pixel_values, **gen_kwargs).sequences return output_ids def predict(image): pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values output_ids = generate(pixel_values) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ```
facebook/data2vec-audio-large
8aebfda61f5749e532f5577d176072ea38a6b349
2022-04-18T16:29:14.000Z
[ "pytorch", "data2vec-audio", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
facebook
null
facebook/data2vec-audio-large
782
null
transformers
1,951
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Data2Vec-Audio-Large [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The large model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
dmis-lab/biosyn-biobert-ncbi-disease
7ef898a280b7fd3d60c16880c7304dcaeda0860b
2021-10-25T14:43:20.000Z
[ "pytorch", "transformers" ]
null
false
dmis-lab
null
dmis-lab/biosyn-biobert-ncbi-disease
780
1
transformers
1,952
Entry not found
MoritzLaurer/policy-distilbert-7d
dd0868b3441cfeb208771aea159f755bb7a3e4ab
2021-01-04T20:22:18.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers" ]
text-classification
false
MoritzLaurer
null
MoritzLaurer/policy-distilbert-7d
779
2
transformers
1,953
--- language: - en tags: - text-classification metrics: - accuracy (balanced) - F1 (weighted) widget: - text: "70-85% of the population needs to get vaccinated against the novel coronavirus to achieve herd immunity." --- # Policy-DistilBERT-7d ## Model description This model was trained on 129.669 manually annotated sentences to classify text into one of seven political categories: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups'. ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "MoritzLaurer/policy-distilbert-7d" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "The new variant first detected in southern England in September is blamed for sharp rises in levels of positive tests in recent weeks in London, south-east England and the east of England" input = tokenizer(text, truncation=True, return_tensors="pt") output = model(input["input_ids"]) # the output corresponds to the following labels: # 0: external relations, 1: freedom and democracy, 2: political system, 3: economy, 4: welfare and quality of life, 5: fabric of society, 6: social groups # output to dictionary prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society", "social groups"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) #{'external relations': 0.0, 'freedom and democracy': 0.0, 'political system': 0.9, 'economy': 0.4, # 'welfare and quality of life': 98.3, 'fabric of society': 0.3, 'social groups': 0.0} ``` ### Training data Policy-DistilBERT-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2020a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 129.669 sentences from 164 political manifestos from 55 political parties in 8 English-speaking countries (Australia, Canada, Ireland, Israel, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2019. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/data/2020b/codebooks/codebook_MPDataset_MPDS2020b.pdf) for the exact definitions of each domain. ### Training procedure `distilbert-base-uncased` was trained using the Hugging Face trainer with the following hyperparameters. The hyperparameters were determined using a hyperparameter search on a 15% validation set. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=4e-05, per_device_train_batch_size=4, # batch size per device during training per_device_eval_batch_size=4, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler weight_decay=0.02, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using 15% of the sentences (85-15 train-test split). accuracy (balanced) | F1 (weighted) | precision | recall | accuracy (not balanced) -------|---------|----------|---------|---------- 0.745 | 0.773 | 0.772 | 0.771 | 0.771 Please note that the label distribution in the dataset is imbalanced: ``` Welfare and Quality of Life 0.327225 Economy 0.259191 Fabric of Society 0.111800 Political System 0.095081 Social Groups 0.094371 External Relations 0.063724 Freedom and Democracy 0.048608 ``` [Balanced accuracy](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html) and [weighted F1](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html) were therefore used to evaluate model performance. ## Limitations and bias The model was trained on sentences in political manifestos from parties in the 8 countries mentioned above between 1992-2019, manually annotated by the [Manifesto Project](https://manifesto-project.wzb.eu/information/documents/information). The model output therefore reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ### BibTeX entry and citation info ```bibtex @unpublished{ title={Policy-DistilBERT}, author={Moritz Laurer}, year={2020}, note={Unpublished paper} } ```
microsoft/tapex-large-finetuned-wtq
0cd74d3e2a094d1712e631095e38ec6256e22867
2022-07-14T10:12:06.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:wikitablequestions", "arxiv:2107.07653", "transformers", "tapex", "table-question-answering", "license:mit", "autotrain_compatible" ]
table-question-answering
false
microsoft
null
microsoft/tapex-large-finetuned-wtq
779
2
transformers
1,954
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions license: mit --- # TAPEX (large-sized model) TAPEX was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found [here](https://github.com/microsoft/Table-Pretraining). ## Model description TAPEX (**Ta**ble **P**re-training via **Ex**ecution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with *table reasoning* skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries. TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. This model is the `tapex-base` model fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. ## Intended Uses You can use the model for table question answering on *complex* questions. Some **solveable** questions are shown below (corresponding tables now shown): | Question | Answer | |:---: |:---:| | according to the table, what is the last title that spicy horse produced? | Akaneiro: Demon Hunters | | what is the difference in runners-up from coleraine academical institution and royal school dungannon? | 20 | | what were the first and last movies greenstreet acted in? | The Maltese Falcon, Malaya | | in which olympic games did arasay thondike not finish in the top 20? | 2012 | | which broadcaster hosted 3 titles but they had only 1 episode? | Channel 4 | ### How to Use Here is how to use this model in transformers: ```python from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) # tapex accepts uncased input since it is pre-trained on the uncased corpus query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008.0'] ``` ### How to Eval Please find the eval script [here](https://github.com/SivilTaram/transformers/tree/add_tapex_bis/examples/research_projects/tapex). ### BibTeX entry and citation info ```bibtex @inproceedings{ liu2022tapex, title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor}, author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=O50443AsCP} } ```
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_42
31f7c9163f86707a680430a9a4950f76f35382e3
2022-05-10T23:56:18.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.5-class.exclusive.seed_42
779
null
transformers
1,955
Entry not found
Sigma/financial-sentiment-analysis
d78ca172e07e94390f615739cee98a2154381f7e
2022-05-14T11:48:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:financial_phrasebank", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Sigma
null
Sigma/financial-sentiment-analysis
779
null
transformers
1,956
--- tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy - f1 model-index: - name: financial-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_allagree metrics: - name: Accuracy type: accuracy value: 0.9924242424242424 - name: F1 type: f1 value: 0.9924242424242424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # financial-sentiment-analysis This model is a fine-tuned version of [ahmedrachid/FinancialBERT](https://huggingface.co/ahmedrachid/FinancialBERT) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.0395 - Accuracy: 0.9924 - F1: 0.9924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
kykim/funnel-kor-base
6bc460ff2e566cd8a18ce99d58141f0238bab2bd
2021-01-22T01:56:37.000Z
[ "pytorch", "tf", "funnel", "feature-extraction", "ko", "transformers" ]
feature-extraction
false
kykim
null
kykim/funnel-kor-base
777
null
transformers
1,957
--- language: ko --- # Funnel-transformer base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import FunnelTokenizer, FunnelModel tokenizer = FunnelTokenizer.from_pretrained("kykim/funnel-kor-base") model = FunnelModel.from_pretrained("kykim/funnel-kor-base") ```
techthiyanes/chinese_sentiment
215de6a818f1fbd430e8a1d45b7a4681c0936102
2021-05-20T07:28:06.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
techthiyanes
null
techthiyanes/chinese_sentiment
773
3
transformers
1,958
Entry not found
naver-clova-ix/donut-base
a8138504038547801557466623fbc4946bb9bb68
2022-07-19T13:50:39.000Z
[ "pytorch", "donut", "transformers", "license:mit" ]
null
false
naver-clova-ix
null
naver-clova-ix/donut-base
773
null
transformers
1,959
--- license: mit ---
allenai/tk-instruct-3b-def
3d9f0e250c341d4d5a8ff1018938379c65c6ac52
2022-05-27T06:28:55.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:natural instructions v2.0", "arxiv:1910.10683", "arxiv:2204.07705", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/tk-instruct-3b-def
771
null
transformers
1,960
--- language: en license: apache-2.0 datasets: - natural instructions v2.0 --- # Model description Tk-Instruct is a series of encoder-decoder Transformer models that are trained to solve various NLP tasks by following in-context instructions (plain language task definitions, k-shot examples, explanations, etc). Built upon the pre-trained [T5 models](https://arxiv.org/abs/1910.10683), they are fine-tuned on a large number of tasks & instructions that are collected in the [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. This enables the model to not only process the training tasks, but also generalize to many unseen tasks without further parameter update. More resources for using the model: - **Paper**: [link](https://arxiv.org/abs/2204.07705) - **Code repository**: [Tk-Instruct](https://github.com/yizhongw/Tk-Instruct) - **Official Website**: [Natural Instructions](https://instructions.apps.allenai.org/) - **All released models**: [allenai/tk-instruct](https://huggingface.co/models?search=allenai/tk-instruct) ## Intended uses & limitations Tk-Instruct can be used to do many NLP tasks by following instructions. ### How to use When instructing the model, task definition or demonstration examples or explanations should be prepended to the original input and fed into the model. You can easily try Tk-Instruct models as follows: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("allenai/tk-instruct-3b-def") >>> model = AutoModelForSeq2SeqLM.from_pretrained("allenai/tk-instruct-3b-def") >>> input_ids = tokenizer.encode( "Definition: return the currency of the given country. Now complete the following example - Input: India. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'Indian Rupee' >>> input_ids = tokenizer.encode( "Definition: negate the following sentence. Input: John went to school. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'John did not go to shool.' ``` ### Limitations We are still working on understanding the behaviors of these models, but here are several issues we have found: - Models are generally sensitive to the instruction. Sometimes rewording the instruction can lead to very different output. - Models are not always compliant to the instruction. Sometimes the model don't follow your instruction (e.g., when you ask the model to generate one sentence, it might still generate one word or a long story). - Models might totally fail on some tasks. If you find serious issues or any interesting result, you are welcome to share with us! ## Training data Tk-Instruct is trained using the tasks & instructions in [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. We follow the official train/test split. Tk-Instruct model series were trained using 757 tasks, and mTk-Instruct series were trained using 1271 tasks (including some non-English tasks). The training tasks are in 64 broad categories, such as text categorization / question answering / sentiment analysis / summarization / grammar error detection / dialogue generation / etc. The other 12 categories are selected for evaluation. ## Training procedure All our models are initialized from either T5 models or mT5 models. Because generating the output can be regarded as a form of language modeling, we used their [LM adapted version](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). All data is converted into a text-to-text format, and models are fine-tuned to maximize the likelihood of the output sequence. Our [released models](https://huggingface.co/models?search=allenai/tk-instruct) are in different sizes, and each of them was trained with a specific type of instruction encoding. For instance, `tk-instruct-3b-def-pos` was initialized from [t5-xl-lm-adapt](https://huggingface.co/google/t5-xl-lm-adapt), and it saw task definition & 2 positive examples as the instruction during training time. Although they are trained with only one type of instruction encodings, we found they can usually work with other type of encodings at test time (see more in our paper). ### BibTeX entry and citation info ```bibtex @article{wang2022benchmarking, title={Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and A. Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and M. Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddharth Deepak Mishra and Sujan C. Reddy and Sumanta Patro and Tanay Dixit and Xu-dong Shen and Chitta Baral and Yejin Choi and Hannaneh Hajishirzi and Noah A. Smith and Daniel Khashabi}, year={2022}, archivePrefix={arXiv}, eprint={2204.07705}, primaryClass={cs.CL}, } ```
lanwuwei/BERTOverflow_stackoverflow_github
50faf74c11305823a594e001eacba6be9cda1939
2021-05-19T00:15:32.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
lanwuwei
null
lanwuwei/BERTOverflow_stackoverflow_github
769
null
transformers
1,961
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("lanwuwei/BERTOverflow_stackoverflow_github") model = AutoModelForTokenClassification.from_pretrained("lanwuwei/BERTOverflow_stackoverflow_github") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
naver-clova-ix/donut-base-finetuned-docvqa
679d8ec7f097ca70e59b35359726db1a4d92ffe5
2022-07-19T14:00:09.000Z
[ "pytorch", "donut", "transformers", "license:mit" ]
null
false
naver-clova-ix
null
naver-clova-ix/donut-base-finetuned-docvqa
769
null
transformers
1,962
--- license: mit ---
Averium/FabioBot
fd68f97eb35228980128efd5dae17769262996ee
2022-06-23T22:21:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Averium
null
Averium/FabioBot
768
null
transformers
1,963
--- tags: - conversational --- # Twin-Tailed Fabio DialoGPT Model
wietsedv/bert-base-dutch-cased-finetuned-sentiment
c9802e7e1da3cbef9e33a3e745d6af1e923a4c8b
2022-06-23T14:05:56.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
wietsedv
null
wietsedv/bert-base-dutch-cased-finetuned-sentiment
767
1
transformers
1,964
Entry not found
alenusch/mt5large-ruparaphraser
12e8714a889fcd0c4a7a5db904ae09760ed1362d
2020-12-18T15:50:04.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alenusch
null
alenusch/mt5large-ruparaphraser
766
null
transformers
1,965
Entry not found
lordtt13/emo-mobilebert
55364424cefcffb88aaec8ee8129030e3b069174
2020-12-11T21:49:42.000Z
[ "pytorch", "tf", "mobilebert", "text-classification", "en", "dataset:emo", "arxiv:2004.02984", "transformers" ]
text-classification
false
lordtt13
null
lordtt13/emo-mobilebert
766
2
transformers
1,966
--- language: en datasets: - emo --- ## Emo-MobileBERT: a thin version of BERT LARGE, trained on the EmoContext Dataset from scratch ### Details of MobileBERT The **MobileBERT** model was presented in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by *Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, Denny Zhou* and here is the abstract: Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE). ### Details of the downstream task (Emotion Recognition) - Dataset 📚 SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes: - sad 😢 - happy 😃 - angry 😡 - others ### Model training The training script is present [here](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/emo-mobilebert.ipynb). ### Pipelining the Model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("lordtt13/emo-mobilebert") model = AutoModelForSequenceClassification.from_pretrained("lordtt13/emo-mobilebert") nlp_sentence_classif = transformers.pipeline('sentiment-analysis', model = model, tokenizer = tokenizer) nlp_sentence_classif("I've never had such a bad day in my life") # Output: [{'label': 'sad', 'score': 0.93153977394104}] ``` > Created by [Tanmay Thakur](https://github.com/lordtt13) | [LinkedIn](https://www.linkedin.com/in/tanmay-thakur-6bb5a9154/)
Geotrend/distilbert-base-da-cased
6e07346d5a45ed6002fc19662ce2f17dd1335b02
2021-07-27T19:35:33.000Z
[ "pytorch", "distilbert", "fill-mask", "da", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-da-cased
765
null
transformers
1,967
--- language: da datasets: wikipedia license: apache-2.0 --- # distilbert-base-da-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-da-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
PlanTL-GOB-ES/roberta-large-bne-capitel-ner
521c79d4bbcedb062d03ecd4bec577525fb66756
2022-04-06T14:43:32.000Z
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
PlanTL-GOB-ES
null
PlanTL-GOB-ES/roberta-large-bne-capitel-ner
764
null
transformers
1,968
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" inference: parameters: aggregation_strategy: "first" --- # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8998 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @article{gutierrezfandino2022, author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas}, title = {MarIA: Spanish Language Models}, journal = {Procesamiento del Lenguaje Natural}, volume = {68}, number = {0}, year = {2022}, issn = {1989-7553}, url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405}, pages = {39--60} } ``` ## Funding This work was partially funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL, and the Future of Computing Center, a Barcelona Supercomputing Center and IBM initiative (2020). ## Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.
allenyummy/chinese-bert-wwm-ehr-ner-sl
0020467f0a55b08401f9d94d3f5d7edc2d92c7e1
2021-05-19T11:42:42.000Z
[ "pytorch", "bert", "zh-tw", "transformers" ]
null
false
allenyummy
null
allenyummy/chinese-bert-wwm-ehr-ner-sl
764
null
transformers
1,969
--- language: zh-tw --- # Model name Chinese-bert-wwm-electrical-health-records-ner-sequence-labeling #### How to use ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-sl") model = AutoModelForTokenClassification.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-sl") ```
google/t5-small-ssm-nq
5a100af5c3b308940b33784587c511e062572c67
2021-06-23T01:51:51.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:natural_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-small-ssm-nq
758
1
transformers
1,970
--- language: en datasets: - c4 - wikipedia - natural_questions pipeline_tag: text2text-generation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions). **Note**: The model was fine-tuned on 100% of the train splits of [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions) for 10k steps. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Natural Questions - Test Set |Id | link | Exact Match | |---|---|---| |**T5-small**|**https://huggingface.co/google/t5-small-ssm-nq**|**25.5**| |T5-large|https://huggingface.co/google/t5-large-ssm-nq|30.4| |T5-xl|https://huggingface.co/google/t5-xl-ssm-nq|35.6| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nq|37.9| |T5-3b|https://huggingface.co/google/t5-3b-ssm-nq|33.2| |T5-11b|https://huggingface.co/google/t5-11b-ssm-nq|36.6| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-small-ssm-nq") t5_tok = AutoTokenizer.from_pretrained("google/t5-small-ssm-nq") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
mrm8488/TinyBERT-spanish-uncased-finetuned-ner
a1eb804867635f501d62dda14e7ae8a182f96dd6
2021-05-20T00:18:21.000Z
[ "pytorch", "jax", "bert", "token-classification", "es", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/TinyBERT-spanish-uncased-finetuned-ner
756
null
transformers
1,971
--- language: es thumbnail: --- # Spanish TinyBERT + NER This model is a fine-tuned on [NER-C](https://www.kaggle.com/nltkdata/conll-corpora) of a [Spanish Tiny Bert](https://huggingface.co/mrm8488/es-tinybert-v1-1) model I created using *distillation* for **NER** downstream task. The **size** of the model is **55MB** ## Details of the downstream task (NER) - Dataset - [Dataset: CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) I preprocessed the dataset and split it as train / dev (80/20) | Dataset | # Examples | | ---------------------- | ----- | | Train | 8.7 K | | Dev | 2.2 K | - [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) - Labels covered: ``` B-LOC B-MISC B-ORG B-PER I-LOC I-MISC I-ORG I-PER O ``` ## Metrics on evaluation set: | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **70.00** | Precision | **67.83** | | Recall | **71.46** | ## Comparison: | Model | # F1 score |Size(MB)| | :--------------------------------------------------------------------------------------------------------------: | :-------: |:------| | bert-base-spanish-wwm-cased (BETO) | 88.43 | 421 | [bert-spanish-cased-finetuned-ner](https://huggingface.co/mrm8488/bert-spanish-cased-finetuned-ner) | **90.17** | 420 | | Best Multilingual BERT | 87.38 | 681 | |TinyBERT-spanish-uncased-finetuned-ner (this one) | 70.00 | **55** | ## Model in action Example of usage: ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer id2label = { "0": "B-LOC", "1": "B-MISC", "2": "B-ORG", "3": "B-PER", "4": "I-LOC", "5": "I-MISC", "6": "I-ORG", "7": "I-PER", "8": "O" } tokenizer = AutoTokenizer.from_pretrained('mrm8488/TinyBERT-spanish-uncased-finetuned-ner') model = AutoModelForTokenClassification.from_pretrained('mrm8488/TinyBERT-spanish-uncased-finetuned-ner') text ="Mis amigos están pensando viajar a Londres este verano." input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] for m in last_hidden_states: for index, n in enumerate(m): if(index > 0 and index <= len(text.split(" "))): print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())]) ''' Output: -------- Mis: O amigos: O están: O pensando: O viajar: O a: O Londres: B-LOC este: O verano.: O ''' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
uclanlp/visualbert-vqa
e3da2dbe26fd794128d151228cc771a584f56c6e
2021-05-31T11:32:07.000Z
[ "pytorch", "visual_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
uclanlp
null
uclanlp/visualbert-vqa
756
2
transformers
1,972
Entry not found
emanjavacas/MacBERTh
d709ce9a3cf02bf27e580e65fa50847edf02f64d
2022-01-17T16:02:47.000Z
[ "pytorch", "bert", "transformers" ]
null
false
emanjavacas
null
emanjavacas/MacBERTh
753
4
transformers
1,973
Documentation In Progress...
microsoft/layoutlmv3-base-chinese
8cb50a024b05cb4f598084df3c60f7536557c5b4
2022-07-20T09:36:16.000Z
[ "pytorch", "layoutlmv3", "zh", "arxiv:2204.08387", "transformers", "license:cc-by-nc-sa-4.0" ]
null
false
microsoft
null
microsoft/layoutlmv3-base-chinese
753
9
transformers
1,974
--- language: zh license: cc-by-nc-sa-4.0 --- # LayoutLMv3 [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://aka.ms/layoutlmv3) ## Model description LayoutLMv3 is a pre-trained multimodal Transformer for Document AI with unified text and image masking. The simple unified architecture and training objectives make LayoutLMv3 a general-purpose pre-trained model. For example, LayoutLMv3 can be fine-tuned for both text-centric tasks, including form understanding, receipt understanding, and document visual question answering, and image-centric tasks such as document image classification and document layout analysis. [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei, Preprint 2022. ## Results | Dataset | Language | Precision | Recall | F1 | |---------|-----------|------------|------|--------| | [XFUND](https://github.com/doc-analysis/XFUND) | ZH | 0.8980 | 0.9435 | 0.9202 | | Dataset | Subject | Test Time | Name | School | Examination Number | Seat Number | Class | Student Number | Grade | Score | **Mean** | |---------|:------------|:------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [EPHOIE](https://github.com/HCIILAB/EPHOIE) | 98.99 | 100.0 | 99.77 | 99.2 | 100.0 | 100.0 | 98.82 | 99.78 | 98.31 | 97.27 | 99.21 | ## Citation If you find LayoutLM useful in your research, please cite the following paper: ``` @article{huang2022layoutlmv3, title={LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking}, author={Yupan Huang and Tengchao Lv and Lei Cui and Yutong Lu and Furu Wei}, journal={arXiv preprint arXiv:2204.08387}, year={2022} } ``` ## License The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
PlanTL-GOB-ES/gpt2-large-bne
b2220f1ffa1ea27bbd8a97707c7ba575860cf23b
2022-04-06T14:41:27.000Z
[ "pytorch", "gpt2", "text-generation", "es", "dataset:bne", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0" ]
text-generation
false
PlanTL-GOB-ES
null
PlanTL-GOB-ES/gpt2-large-bne
752
6
transformers
1,975
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" datasets: - "bne" metrics: - "ppl" --- # GPT2-large trained with data from National Library of Spain (BNE) ## Model Description GPT2-large-bne is a transformer-based model for the Spanish language. It is based on the [GPT-2](http://www.persagen.com/files/misc/radford2019language.pdf) model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [GPT-2](http://www.persagen.com/files/misc/radford2019language.pdf) model with a vocabulary size of 50,262 tokens. The GPT2-large-bne pre-training consists of an autoregressive language model training that follows the approach of the GPT-2. The training lasted a total of 10 days with 32 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @article{gutierrezfandino2022, author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas}, title = {MarIA: Spanish Language Models}, journal = {Procesamiento del Lenguaje Natural}, volume = {68}, number = {0}, year = {2022}, issn = {1989-7553}, url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405}, pages = {39--60} } ``` ## Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. ## Disclaimer The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.
chinhon/headline_writer
5b3da936c338942644c2f310a859fa8e6f514838
2021-10-24T17:00:55.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:chinhon/autonlp-data-sg_headline_generator", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/headline_writer
751
6
transformers
1,976
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - chinhon/autonlp-data-sg_headline_generator co2_eq_emissions: 114.71292762345828 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 25965855 - CO2 Emissions (in grams): 114.71292762345828 ## Validation Metrics - Loss: 1.3862273693084717 - Rouge1: 52.4988 - Rouge2: 31.6973 - RougeL: 47.1727 - RougeLsum: 47.1576 - Gen Len: 17.6194 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/chinhon/autonlp-sg_headline_generator-25965855 ```
abhibisht89/spanbert-large-cased-finetuned-ade_corpus_v2
54ef513694d36c0c8278511c48504849d1a464cf
2021-11-21T15:23:59.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:ade_corpus_v2", "transformers", "spanbert", "autotrain_compatible" ]
token-classification
false
abhibisht89
null
abhibisht89/spanbert-large-cased-finetuned-ade_corpus_v2
750
1
transformers
1,977
--- language: en tags: - spanbert datasets: - ade_corpus_v2 widget: - text: "Having fever after taking paracetamol." example_title: "NER" - text: "Birth defects associated with thalidomide." example_title: "NER" - text: "Deafness and kidney failure associated with gentamicin (an antibiotic)." example_title: "NER" - text: "Bleeding of the intestine associated with aspirin therapy." example_title: "NER" --- spanbert-large-cased fine-tuned for <b>"Adverse drug reaction"</b> and <b>"Drug"</b> span Extraction. <b>Details of spanbert-large-cased:</b> https://huggingface.co/SpanBERT/spanbert-large-cased <b>Details of the downstream task (Adverse drug reaction and Drug Extraction) - Dataset</b> https://huggingface.co/datasets/ade_corpus_v2
ptaszynski/yacis-electra-small-japanese-cyberbullying
e75924e558e6b03482dea029d670b8da35f58274
2022-01-16T13:51:28.000Z
[ "pytorch", "electra", "text-classification", "ja", "dataset:YACIS corpus", "dataset:Harmful BBS Japanese comments dataset", "dataset:Twitter Japanese cyberbullying dataset", "transformers", "license:cc-by-sa-4.0" ]
text-classification
false
ptaszynski
null
ptaszynski/yacis-electra-small-japanese-cyberbullying
749
1
transformers
1,978
--- language: ja license: cc-by-sa-4.0 datasets: - YACIS corpus - Harmful BBS Japanese comments dataset - Twitter Japanese cyberbullying dataset --- # yacis-electra-small-cyberbullying This is an [ELECTRA](https://github.com/google-research/electra) Small model for the Japanese language finetuned for automatic cyberbullying detection. The original foundation model was originally pretrained on 5.6 billion words [YACIS](https://github.com/ptaszynski/yacis-corpus) blog corpus, and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Model architecture The original model was pretrained using ELECTRA Small model settings and can be found here: [https://huggingface.co/ptaszynski/yacis-electra-small-japanese](https://huggingface.co/ptaszynski/yacis-electra-small-japanese) ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{shibata2022yacis-electra, title={日本語大規模ブログコーパスYACISに基づいたELECTRA事前学習済み言語モデルの作成及び性能評価}, % title={Development and performance evaluation of ELECTRA pretrained language model based on YACIS large-scale Japanese blog corpus [in Japanese]}, %% for English citations author={柴田 祥伍 and プタシンスキ ミハウ and エロネン ユーソ and ノヴァコフスキ カロル and 桝井 文人}, % author={Shibata, Shogo and Ptaszynski, Michal and Eronen, Juuso and Nowakowski, Karol and Masui, Fumito}, %% for English citations booktitle={言語処理学会第28回年次大会(NLP2022) (予定)}, % booktitle={Proceedings of The 28th Annual Meeting of The Association for Natural Language Processing (NLP2022)}, %% for English citations pages={1--4}, year={2022} } ``` The two datasets used for finetuning should be cited using the following references. - Harmful BBS Japanese comments dataset: ``` @book{ptaszynski2018automatic, title={Automatic Cyberbullying Detection: Emerging Research and Opportunities: Emerging Research and Opportunities}, author={Ptaszynski, Michal E and Masui, Fumito}, year={2018}, publisher={IGI Global} } ``` ``` @article{松葉達明2009学校非公式サイトにおける有害情報検出, title={学校非公式サイトにおける有害情報検出}, author={松葉達明 and 里見尚宏 and 桝井文人 and 河合敦夫 and 井須尚紀}, journal={電子情報通信学会技術研究報告. NLC, 言語理解とコミュニケーション}, volume={109}, number={142}, pages={93--98}, year={2009}, publisher={一般社団法人電子情報通信学会} } ``` - Twitter Japanese cyberbullying dataset: ``` TBA ``` The pretraining was done using YACIS corpus, which should be cited using at least one of the following references. ``` @inproceedings{ptaszynski2012yacis, title={YACIS: A five-billion-word corpus of Japanese blogs fully annotated with syntactic and affective information}, author={Ptaszynski, Michal and Dybala, Pawel and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, booktitle={Proceedings of the AISB/IACAP world congress}, pages={40--49}, year={2012}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ``` ``` @article{ptaszynski2014automatically, title={Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis}, author={Ptaszynski, Michal and Rzepka, Rafal and Araki, Kenji and Momouchi, Yoshio}, journal={Computer Speech \& Language}, volume={28}, number={1}, pages={38--55}, year={2014}, publisher={Elsevier}, howpublished = "\url{https://github.com/ptaszynski/yacis-corpus}" } ```
uer/t5-small-chinese-cluecorpussmall
d38b6b837e2f9cbd3325fb270bfae2fda2f679f4
2022-07-15T08:22:32.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "transformers", "autotrain_compatible" ]
text2text-generation
false
uer
null
uer/t5-small-chinese-cluecorpussmall
748
6
transformers
1,979
--- language: zh datasets: CLUECorpusSmall widget: - text: "作为电子extra0的平台,京东绝对是领先者。如今的刘强extra1已经是身价过extra2的老板。" --- # Chinese T5 ## Model description This is the set of Chinese T5 models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). The Text-to-Text Transfer Transformer (T5) leverages a unified text-to-text format and attains state-of-the-art results on a wide variety of English-language NLP tasks. Following their work, we released a series of Chinese T5 models. You can download the set of Chinese T5 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **T5-Small** | [**L=6/H=512 (Small)**][small] | | **T5-Base** | [**L=12/H=768 (Base)**][base] | In T5, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with `<extra_id_0>`, `<extra_id_1>`, … up to `<extra_id_99>`. However, `<extra_id_xxx>` is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace `<extra_id_xxx>` with `extraxxx` in vocabulary and BertTokenizer regards `extraxxx` as one sentinel token. ## How to use You can use this model directly with a pipeline for text2text generation (take the case of T5-Small): ```python >>> from transformers import BertTokenizer, T5ForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> model = T5ForConditionalGeneration.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) [{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of T5-Small Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-3 --batch_size 64 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_small_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5_seq512_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --pretrained_model_path models/cluecorpussmall_t5_small_seq128_model.bin-1000000 \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-4 --batch_size 16 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6 \ --type t5 ``` ### BibTeX entry and citation info ``` @article{2020t5, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, journal = {Journal of Machine Learning Research}, pages = {1-67}, year = {2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [small]:https://huggingface.co/uer/t5-small-chinese-cluecorpussmall [base]:https://huggingface.co/uer/t5-base-chinese-cluecorpussmall
SEBIS/code_trans_t5_small_code_documentation_generation_python
372c18254de8ff9ab651e1e3c83b7dfeae22ac6a
2021-06-23T10:09:35.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_python
746
null
transformers
1,980
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus python dataset. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
asi/gpt-fr-cased-base
d6f928a792f4c72aade4e1b80c88d425884bfa47
2022-06-01T12:31:14.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "fr", "transformers", "license:apache-2.0" ]
text-generation
false
asi
null
asi/gpt-fr-cased-base
746
13
transformers
1,981
--- language: - fr thumbnail: https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png tags: - tf - pytorch - gpt2 - text-generation license: apache-2.0 --- <img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png" width="200"> ## Model description **GPT-fr** 🇫🇷 is a GPT model for French developped by [Quantmetry](https://www.quantmetry.com/) and the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations: | Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters | | :------: | :---: | :---: | :---: | :---: | | `gpt-fr-cased-small` | 12 | 12 | 768 | 124 M | | `gpt-fr-cased-base` | 24 | 14 | 1,792 | 1,017 B | ## Intended uses & limitations The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications. #### How to use The model might be used through the astonishing 🤗 `Transformers` librairie. We use the work from [Shoeybi et al., (2019)](#shoeybi-2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU. ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel # Load pretrained model and tokenizer model = GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-base") tokenizer = GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-base") # Generate a sample of text model.eval() input_sentence = "Longtemps je me suis couché de bonne heure." input_ids = tokenizer.encode(input_sentence, return_tensors='pt') beam_outputs = model.generate( input_ids, max_length=100, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1 ) print("Output:\n" + 100 * '-') print(tokenizer.decode(beam_outputs[0], skip_special_tokens=True)) ``` #### Limitations and bias Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation. To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process — detailed in our paper — aims to limit offensive content generation from the model without performing manual and arbitrary filtering. However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \_\_\_\_\_\_\_". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element. The positions generated for the wife is '_que professeur de français._' while the position for the husband is '_que chef de projet._'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects. ## Training data We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained. We aggregated existing corpora: [Wikipedia](https://dumps.wikimedia.org/frwiki/), [OpenSubtitle](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/) ([Tiedemann, 2012](#tiedemann-2012)), [Gutenberg](http://www.gutenberg.org) and [Common Crawl](http://data.statmt.org/ngrams/deduped2017/) ([Li et al., 2019](li-2019)). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document. ## Training procedure We pre-trained the model on the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/) supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al., (2019)](lacoste-2019). ## Eval results We packaged **GPT-fr** with a dedicated language model evaluation benchmark for French. In line with the [WikiText](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark in English, we collected over 70 million tokens from the set of verified [good](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Articles_de_qualit%C3%A9) and [featured](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Bons_articles) articles on Wikipedia. The model reaches a zero-shot perplexity of **12.9** on the test set. ### BibTeX entry and citation info Along with the model hosted by HuggingFace transformers library, we maintain a [git repository](https://github.com/AntoineSimoulin/gpt-fr). If you use **GPT-fr** for your scientific publications or your industrial applications, please cite the following paper: ```bibtex @inproceedings{simoulin:hal-03265900, TITLE = {{Un mod{\`e}le Transformer G{\'e}n{\'e}ratif Pr{\'e}-entrain{\'e} pour le \_\_\_\_\_\_ fran{\c c}ais}}, AUTHOR = {Simoulin, Antoine and Crabb{\'e}, Benoit}, URL = {https://hal.archives-ouvertes.fr/hal-03265900}, BOOKTITLE = {{Traitement Automatique des Langues Naturelles}}, ADDRESS = {Lille, France}, EDITOR = {Denis, Pascal and Grabar, Natalia and Fraisse, Amel and Cardon, R{\'e}mi and Jacquemin, Bernard and Kergosien, Eric and Balvet, Antonio}, PUBLISHER = {{ATALA}}, PAGES = {246-255}, YEAR = {2021}, KEYWORDS = {fran{\c c}ais. ; GPT ; G{\'e}n{\'e}ratif ; Transformer ; Pr{\'e}-entra{\^i}n{\'e}}, PDF = {https://hal.archives-ouvertes.fr/hal-03265900/file/7.pdf}, HAL_ID = {hal-03265900}, HAL_VERSION = {v1}, } ``` ### References ><div name="tiedemann-2012">Jörg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218</div> ><div name="li-2019">Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102</div> ><div name="shoeybi-2019">Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)</div> ><div name="lacoste-2019">Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)</div>
thunlp/neuba-bert
033bcb302e36ce9ddff22585834be6d7020e7f52
2021-09-16T06:14:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
thunlp
null
thunlp/neuba-bert
746
null
transformers
1,982
Entry not found
uw-hai/polyjuice
f5bef2f7053c2ce6c3fd19875c3cff77754479ef
2021-05-24T01:21:24.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "counterfactual generation" ]
text-generation
false
uw-hai
null
uw-hai/polyjuice
745
1
transformers
1,983
--- language: "en" tags: - counterfactual generation widget: - text: "It is great for kids. <|perturb|> [negation] It [BLANK] great for kids. [SEP]" --- # Polyjuice ## Model description This is a ported version of [Polyjuice](https://homes.cs.washington.edu/~wtshuang/static/papers/2021-arxiv-polyjuice.pdf), the general-purpose counterfactual generator. For more code release, please refer to [this github page](https://github.com/tongshuangwu/polyjuice). #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM model_path = "uw-hai/polyjuice" generator = pipeline("text-generation", model=AutoModelForCausalLM.from_pretrained(model_path), tokenizer=AutoTokenizer.from_pretrained(model_path), framework="pt", device=0 if is_cuda else -1) prompt_text = "A dog is embraced by the woman. <|perturb|> [negation] A dog is [BLANK] the woman." generator(prompt_text, num_beams=3, num_return_sequences=3) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{polyjuice:acl21, title = "{P}olyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models", author = "Tongshuang Wu and Marco Tulio Ribeiro and Jeffrey Heer and Daniel S. Weld", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics", year = "2021", publisher = "Association for Computational Linguistics" ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-half
ed1803781de55d0463976677a3e736c097e16728
2021-09-14T14:34:06.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-msa-half
744
2
transformers
1,984
--- language: - ar license: apache-2.0 widget: - text: "الهدف من الحياة هو [MASK] ." --- # CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-MSA-half** (`bert-base-arabic-camelbert-msa-half`), a model pre-trained on a half of the full MSA dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| |✔|`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| ||`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-half') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.09132730215787888, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو.. [SEP]', 'score': 0.08282623440027237, 'token': 18, 'token_str': '.'}, {'sequence': '[CLS] الهدف من الحياة هو البقاء. [SEP]', 'score': 0.04031957685947418, 'token': 9331, 'token_str': 'البقاء'}, {'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]', 'score': 0.032019514590501785, 'token': 6232, 'token_str': 'النجاح'}, {'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]', 'score': 0.028731243684887886, 'token': 3088, 'token_str': 'الحب'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-half') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-half') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-half') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-half') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
huggingtweets/realdonaldtrump
d03b45baa4168d2a87f7faa6f54ce2a67e8c8bd5
2021-05-22T20:32:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/realdonaldtrump
744
null
transformers
1,985
--- language: en thumbnail: https://www.huggingtweets.com/realdonaldtrump/1609765003661/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/874276197357596672/kUuht00m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Donald J. Trump 🤖 AI Bot </div> <div style="font-size: 15px">@realdonaldtrump bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@realdonaldtrump's tweets](https://twitter.com/realdonaldtrump). | Data | Quantity | | ---- | -------- | | Tweets downloaded | 2195 | | Retweets | 716 | | Short tweets | 364 | | Tweets kept | 1115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zmvkb6j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realdonaldtrump's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lh3uc7o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lh3uc7o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/realdonaldtrump') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nreimers/MiniLM-L3-H384-uncased
1857068a44253cf9ab23aefdf562335601cffcda
2021-08-30T20:05:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
nreimers
null
nreimers/MiniLM-L3-H384-uncased
743
null
transformers
1,986
--- license: mit --- ## MiniLM: 3 Layer Version This is a 3 layer version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/) by keeping only the layer [3, 7, 11].
sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
ae43c02d3267d1f11db4e7bfcfefc684c83b0c69
2022-06-15T22:51:25.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
743
null
sentence-transformers
1,987
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/facebook-dpr-ctx_encoder-multiset-base This is a port of the [DPR Model](https://github.com/facebookresearch/DPR) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/facebook-dpr-ctx_encoder-multiset-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-multiset-base') model = AutoModel.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-multiset-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/facebook-dpr-ctx_encoder-multiset-base) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [DPR Model](https://github.com/facebookresearch/DPR)
armheb/DNA_bert_5
c296157b5c23f30f7cac33039c17ab7422798346
2021-10-10T22:40:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
armheb
null
armheb/DNA_bert_5
742
null
transformers
1,988
Entry not found
bhadresh-savani/roberta-base-emotion
fa563824e043b85c87b3f1991bbb3c3d045a68c7
2022-07-06T10:44:12.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:emotion", "arxiv:1907.11692", "transformers", "emotion", "license:apache-2.0", "model-index" ]
text-classification
false
bhadresh-savani
null
bhadresh-savani/roberta-base-emotion
742
null
transformers
1,989
--- language: - en thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score model-index: - name: bhadresh-savani/roberta-base-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.931 verified: true - name: Precision Macro type: precision value: 0.9168321948556312 verified: true - name: Precision Micro type: precision value: 0.931 verified: true - name: Precision Weighted type: precision value: 0.9357445689014415 verified: true - name: Recall Macro type: recall value: 0.8743657671177089 verified: true - name: Recall Micro type: recall value: 0.931 verified: true - name: Recall Weighted type: recall value: 0.931 verified: true - name: F1 Macro type: f1 value: 0.8821236522209227 verified: true - name: F1 Micro type: f1 value: 0.931 verified: true - name: F1 Weighted type: f1 value: 0.9300782840205046 verified: true - name: loss type: loss value: 0.15155883133411407 verified: true --- # robert-base-emotion ## Model description: [roberta](https://arxiv.org/abs/1907.11692) is Bert with better hyperparameter choices so they said it's Robustly optimized Bert during pretraining. [roberta-base](https://huggingface.co/roberta-base) finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters ``` learning rate 2e-5, batch size 64, num_train_epochs=8, ``` ## Model Performance Comparision on Emotion Dataset from Twitter: | Model | Accuracy | F1 Score | Test Sample per Second | | --- | --- | --- | --- | | [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 | | [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 | | [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 | | [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 | ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification",model='bhadresh-savani/roberta-base-emotion', return_all_scores=True) prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", ) print(prediction) """ Output: [[ {'label': 'sadness', 'score': 0.002281982684507966}, {'label': 'joy', 'score': 0.9726489186286926}, {'label': 'love', 'score': 0.021365027874708176}, {'label': 'anger', 'score': 0.0026395076420158148}, {'label': 'fear', 'score': 0.0007162453257478774}, {'label': 'surprise', 'score': 0.0003483477921690792} ]] """ ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Training procedure [Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb) follow the above notebook by changing the model name to roberta ## Eval results ```json { 'test_accuracy': 0.9395, 'test_f1': 0.9397328860104454, 'test_loss': 0.14367154240608215, 'test_runtime': 10.2229, 'test_samples_per_second': 195.639, 'test_steps_per_second': 3.13 } ``` ## Reference: * [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)
Finnish-NLP/gpt2-large-finnish
d22c61de54f8c5b4f0d37f7684d403ee7dde6a47
2022-06-13T16:14:00.000Z
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "transformers", "finnish", "license:apache-2.0" ]
text-generation
false
Finnish-NLP
null
Finnish-NLP/gpt2-large-finnish
741
null
transformers
1,990
--- language: - fi license: apache-2.0 tags: - finnish - gpt2 datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia widget: - text: "Tekstiä tuottava tekoäly on" --- # GPT-2 large for Finnish Pretrained GPT-2 large model on Finnish language using a causal language modeling (CLM) objective. GPT-2 was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). **Note**: this model is 774M parameter variant as in Huggingface's [GPT-2-large config](https://huggingface.co/gpt2-large), so not the famous big 1.5B parameter variant by OpenAI. ## Model description Finnish GPT-2 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation: ```python >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='Finnish-NLP/gpt2-large-finnish') >>> generator("Tekstiä tuottava tekoäly on", max_length=30, num_return_sequences=5) [{'generated_text': 'Tekstiä tuottava tekoäly on valmis yhteistyöhön ihmisen kanssa: Tekoäly hoitaa ihmisen puolesta tekstin tuottamisen. Se myös ymmärtää, missä vaiheessa tekstiä voidaan alkaa kirjoittamaan'}, {'generated_text': 'Tekstiä tuottava tekoäly on älykäs, mutta se ei ole vain älykkäisiin koneisiin kuuluva älykäs olento, vaan se on myös kone. Se ei'}, {'generated_text': 'Tekstiä tuottava tekoäly on ehkä jo pian todellisuutta - se voisi tehdä myös vanhustenhoidosta nykyistä ä tuottava tekoäly on ehkä jo pian todellisuutta - se voisi tehdä'}, {'generated_text': 'Tekstiä tuottava tekoäly on kehitetty ihmisen ja ihmisen aivoihin yhteistyössä neurotieteiden ja käyttäytymistieteen tutkijatiimin kanssa. Uusi teknologia avaa aivan uudenlaisia tutkimusi'}, {'generated_text': 'Tekstiä tuottava tekoäly on kuin tietokone, jonka kanssa voi elää. Tekoälyn avulla voi kirjoittaa mitä tahansa, mistä tahansa ja miten paljon. Tässä'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-large-finnish') model = GPT2Model.from_pretrained('Finnish-NLP/gpt2-large-finnish') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-large-finnish') model = TFGPT2Model.from_pretrained('Finnish-NLP/gpt2-large-finnish', from_pt=True) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. As with all language models, it is hard to predict in advance how the Finnish GPT-2 will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Training data This Finnish GPT-2 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text. ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 512 consecutive tokens. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 640k steps (a bit over 1 epoch, 64 batch size). The optimizer used was a AdamW with learning rate 4e-5, learning rate warmup for 4000 steps and cosine decay of the learning rate after. ## Evaluation results Evaluation was done using the *validation* split of the [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned) dataset with [Perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) (smaller score the better) as the evaluation metric. As seen from the table below, this model (the first row of the table) performs better than our smaller model variants. | | Perplexity | |------------------------------------------|------------| |Finnish-NLP/gpt2-large-finnish |**30.74** | |Finnish-NLP/gpt2-medium-finnish |34.08 | |Finnish-NLP/gpt2-finnish |44.19 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
pyannote/TestModelForContinuousIntegration
0bf27df5e3413d6b2f9af2a31a44fd16c50c5929
2022-03-23T09:24:42.000Z
[ "pytorch", "tensorboard", "pyannote-audio", "pyannote", "pyannote-audio-model", "license:mit" ]
null
false
pyannote
null
pyannote/TestModelForContinuousIntegration
740
null
pyannote-audio
1,991
--- tags: - pyannote - pyannote-audio - pyannote-audio-model license: mit inference: false --- ## Dummy model used for continuous integration purposes ```bash $ pyannote-audio-train protocol=Debug.SpeakerDiarization.Debug \ task=VoiceActivityDetection \ task.duration=2. \ model=DebugSegmentation \ trainer.max_epochs=10 ```
UBC-NLP/turjuman
de10623157b685b7096fa744b82203e4b82a6943
2022-06-10T00:24:37.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2206.03933", "transformers", "autotrain_compatible" ]
text2text-generation
false
UBC-NLP
null
UBC-NLP/turjuman
739
1
transformers
1,992
<p align="center"> <br> <img src="https://github.com/UBC-NLP/turjuman/raw/master//images/turjuman_logo.png"/> <br> <p> <img src="https://github.com/UBC-NLP/turjuman/raw/master/images/turjuman.png" alt="AraT5" width="50%" height="50%" align="right"/> Turjuman is a neural machine translation toolkit. It translates from 20 languages into Modern Standard Arabic (MSA). Turjuman is described in this paper: [**TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation**](https://arxiv.org/abs/2206.03933). Turjuman exploits our [AraT5 model](https://github.com/UBC-NLP/araT5). This endows Turjuman with a powerful ability to decode into Arabic. The toolkit offers the possibility of employing a number of diverse decoding methods, making it suited for acquiring paraphrases for the MSA translations as an added value. **Github**: [https://github.com/UBC-NLP/turjuman](https://github.com/UBC-NLP/turjuman) **Demo**: [https://demos.dlnlp.ai/turjuman](https://demos.dlnlp.ai/turjuman) **Paper**: [https://arxiv.org/abs/2206.03933](https://arxiv.org/abs/2206.03933) ## License turjuman(-py) is Apache-2.0 licensed. The license applies to the pre-trained models as well. ## Citation If you use TURJUMAN toolkit or the pre-trained models for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ``` @inproceedings{nagoudi-osact5-2022-turjuman, title={TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation}, author={Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad}, booktitle = "Proceedings of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT5)", month = "June", year = "2022", address = "Marseille, France", publisher = "European Language Resource Association", } ```
Salesforce/codet5-large
7430ce16cc8c0f8db091c561a925047507734575
2022-07-07T11:55:19.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2109.00859", "arxiv:2207.01780", "arxiv:1909.09436", "transformers", "license:bsd-3-clause", "autotrain_compatible" ]
text2text-generation
false
Salesforce
null
Salesforce/codet5-large
739
4
transformers
1,993
--- license: bsd-3-clause --- # CodeT5 (large-size model 770M) ## Model description CodeT5 is a family of encoder-decoder language models for code from the paper: [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation](https://arxiv.org/pdf/2109.00859.pdf) by Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. The checkpoint included in this repository is denoted as **CodeT5-large** (770M), which is introduced by the paper: [CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning](https://arxiv.org/pdf/2207.01780.pdf) by Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi. ## Training data CodeT5-large was pretrained on [CodeSearchNet](https://arxiv.org/abs/1909.09436) data in six programming languages (Ruby/JavaScript/Go/Python/Java/PHP). See Section 4.1 of the [paper](https://arxiv.org/pdf/2207.01780.pdf) for more details. ## Training procedure CodeT5-large was pretrained using masked span prediction objective for 150 epochs. See Section 4.1 of the [paper](https://arxiv.org/pdf/2207.01780.pdf) for more details. ## Evaluation results We validate the effectiveness of this checkpoint pretrained with simplified strategies on [CodeXGLUE](https://github.com/microsoft/CodeXGLUE) benchmark. See Appendix A.1 of the [paper](https://arxiv.org/pdf/2207.01780.pdf) for more details. ## How to use This model can be easily loaded using the `T5ForConditionalGeneration` functionality: ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-large") model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-large") text = "def greet(user): print(f'hello <extra_id_0>!')" input_ids = tokenizer(text, return_tensors="pt").input_ids # simply generate a single sequence generated_ids = model.generate(input_ids, max_length=8) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @inproceedings{CodeT52021, author = {Yue Wang and Weishi Wang and Shafiq R. Joty and Steven C. H. Hoi}, title = {CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, booktitle = {EMNLP}, pages = {8696--8708}, publisher = {Association for Computational Linguistics}, year = {2021} } @article{CodeRL2022 author = {Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi}, title = {CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning}, journal = {arXiv preprint}, volume = {abs/2207.01780}, year = {2022} } ```
Helsinki-NLP/opus-mt-tc-big-it-en
ee0004520474d2a0e2b781c841b16cc745086cf4
2022-06-01T13:00:06.000Z
[ "pytorch", "marian", "text2text-generation", "en", "it", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-it-en
738
null
transformers
1,994
--- language: - en - it tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-it-en results: - task: name: Translation ita-eng type: translation args: ita-eng dataset: name: flores101-devtest type: flores_101 args: ita eng devtest metrics: - name: BLEU type: bleu value: 32.8 - task: name: Translation ita-eng type: translation args: ita-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-eng metrics: - name: BLEU type: bleu value: 72.1 - task: name: Translation ita-eng type: translation args: ita-eng dataset: name: newstest2009 type: wmt-2009-news args: ita-eng metrics: - name: BLEU type: bleu value: 34.3 --- # opus-mt-tc-big-it-en Neural machine translation model for translating from Italian (it) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): ita * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT ita-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "So chi è il mio nemico.", "Tom è illetterato; non capisce assolutamente nulla." ] model_name = "pytorch-models/opus-mt-tc-big-it-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # I know who my enemy is. # Tom is illiterate; he understands absolutely nothing. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-it-en") print(pipe("So chi è il mio nemico.")) # expected output: I know who my enemy is. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-eng/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ita-eng | tatoeba-test-v2021-08-07 | 0.82288 | 72.1 | 17320 | 119214 | | ita-eng | flores101-devtest | 0.62115 | 32.8 | 1012 | 24721 | | ita-eng | newssyscomb2009 | 0.59822 | 34.4 | 502 | 11818 | | ita-eng | newstest2009 | 0.59646 | 34.3 | 2525 | 65399 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 19:40:08 EEST 2022 * port machine: LM0-400-22516.local
Sentdex/GPyT
b71d8cd84907e77c1b1d89c11a920244bb52104b
2021-09-22T09:24:41.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "Python", "transformers", "Code", "GPyT", "code generator", "license:mit" ]
text-generation
false
Sentdex
null
Sentdex/GPyT
736
11
transformers
1,995
--- language: Python tags: - Code - GPyT - code generator license: mit --- GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning. Newlines are replaced by `<N>` Input to the model is code, up to the context length of 1024, with newlines replaced by `<N>` Here's a quick example of using this model: ```py from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Sentdex/GPyT") model = AutoModelWithLMHead.from_pretrained("Sentdex/GPyT") # copy and paste some code in here inp = """import""" newlinechar = "<N>" converted = inp.replace("\n", newlinechar) tokenized = tokenizer.encode(converted, return_tensors='pt') resp = model.generate(tokenized) decoded = tokenizer.decode(resp[0]) reformatted = decoded.replace("<N>","\n") print(reformatted) ``` Should produce: ``` import numpy as np import pytest import pandas as pd<N ``` This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities: https://pythonprogramming.net/GPT-python-code-transformer-model-GPyT/ Considerations: 1. This model is intended for educational and research use only. Do not trust model outputs. 2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code. 3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things. 4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
geckos/bart-fined-tuned-on-entailment-classification
fb58ce512c60b04ab539b179eb00c49b86d78b46
2021-11-11T13:38:34.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
geckos
null
geckos/bart-fined-tuned-on-entailment-classification
736
1
transformers
1,996
Entry not found
Elron/bleurt-tiny-512
ed346ce5b758ba2ffbdfa95f7eec221449448523
2022-02-10T11:10:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Elron
null
Elron/bleurt-tiny-512
735
2
transformers
1,997
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([-0.9414, -0.5678]) ```
alaggung/bart-r3f
b0a1bafbf3396749e35b5b48bf9891d34f089f57
2022-01-11T16:18:32.000Z
[ "pytorch", "tf", "bart", "text2text-generation", "ko", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
alaggung
null
alaggung/bart-r3f
735
1
transformers
1,998
--- language: - ko tags: - summarization widget: - text: "[BOS]밥 ㄱ?[SEP]고고고고 뭐 먹을까?[SEP]어제 김치찌개 먹어서 한식말고 딴 거[SEP]그럼 돈까스 어때?[SEP]오 좋다 1시 학관 앞으로 오셈[SEP]ㅇㅋ[EOS]" inference: parameters: max_length: 64 top_k: 5 --- # BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-pretrained](https://huggingface.co/alaggung/bart-pretrained) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
patrickvonplaten/wav2vec2-base
822b936a126a5486547c640c97eda5c61bfedfdc
2021-06-08T17:00:26.000Z
[ "pytorch", "wav2vec2", "pretraining", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "speech", "license:apache-2.0" ]
null
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base
735
null
transformers
1,999
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Wav2Vec2-Base [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.