modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
abdouaziiz/pretraining-wav2vec2.0
0c62dbf035da18daf798461507306cde867ce753
2022-07-25T16:35:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
abdouaziiz
null
abdouaziiz/pretraining-wav2vec2.0
7
null
transformers
14,700
Entry not found
sdadas/st-polish-paraphrase-from-mpnet
091936fc301009b86fcde596fe86707c84587e8c
2022-07-25T19:30:56.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
sdadas
null
sdadas/st-polish-paraphrase-from-mpnet
7
null
sentence-transformers
14,701
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sdadas/st-polish-paraphrase-from-mpnet This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sdadas/st-polish-paraphrase-from-mpnet') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sdadas/st-polish-paraphrase-from-mpnet') model = AutoModel.from_pretrained('sdadas/st-polish-paraphrase-from-mpnet') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sdadas/st-polish-paraphrase-from-mpnet) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/fireship_dev-hacksultan-prathkum
b38265a861d9ea2f2b1568eb6ab6c14b1a3336fd
2022-07-25T23:02:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fireship_dev-hacksultan-prathkum
7
null
transformers
14,702
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547203581366874113/OW-xVizu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1451624172266868739/lpi5wPb4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1436819851566219267/HEffZjvP_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratham & Name cannot be blank & Fireship</div> <div style="text-align: center; font-size: 14px;">@fireship_dev-hacksultan-prathkum</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratham & Name cannot be blank & Fireship. | Data | Pratham | Name cannot be blank | Fireship | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3242 | 2081 | | Retweets | 650 | 598 | 721 | | Short tweets | 252 | 605 | 114 | | Tweets kept | 2345 | 2039 | 1246 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rmu05er/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fireship_dev-hacksultan-prathkum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qzxq4v7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qzxq4v7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fireship_dev-hacksultan-prathkum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
enoriega/rule_learning_1mm_many_negatives_spanpred_margin_avg
fd357316696b483c776356d76aa23556e5e6f9b8
2022-07-27T14:45:37.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_1mm_many_negatives_spanpred_margin_avg
7
null
transformers
14,703
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_1mm_many_negatives_spanpred_margin_avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_1mm_many_negatives_spanpred_margin_avg This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Margin Accuracy: 0.8897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.3867 | 0.16 | 20 | 0.4023 | 0.8187 | | 0.3506 | 0.32 | 40 | 0.3381 | 0.8523 | | 0.3195 | 0.48 | 60 | 0.3096 | 0.8613 | | 0.3052 | 0.64 | 80 | 0.2957 | 0.8640 | | 0.2859 | 0.8 | 100 | 0.2922 | 0.8679 | | 0.297 | 0.96 | 120 | 0.2871 | 0.8688 | | 0.2717 | 1.12 | 140 | 0.2761 | 0.8732 | | 0.2671 | 1.28 | 160 | 0.2751 | 0.8743 | | 0.2677 | 1.44 | 180 | 0.2678 | 0.8757 | | 0.2693 | 1.6 | 200 | 0.2627 | 0.8771 | | 0.2675 | 1.76 | 220 | 0.2573 | 0.8813 | | 0.2732 | 1.92 | 240 | 0.2546 | 0.8858 | | 0.246 | 2.08 | 260 | 0.2478 | 0.8869 | | 0.2355 | 2.24 | 280 | 0.2463 | 0.8871 | | 0.2528 | 2.4 | 300 | 0.2449 | 0.8886 | | 0.2512 | 2.56 | 320 | 0.2443 | 0.8892 | | 0.2527 | 2.72 | 340 | 0.2441 | 0.8893 | | 0.2346 | 2.88 | 360 | 0.2424 | 0.8895 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
JoAmps/distilbert-base-uncased-finetuned-emotion
c23e00c5e2e761903138fbfdaf53e9cc881cc8e5
2022-07-26T11:34:39.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JoAmps
null
JoAmps/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,704
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9243485103663568 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2256 - Accuracy: 0.9245 - F1: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8577 | 1.0 | 250 | 0.3235 | 0.9095 | 0.9064 | | 0.2562 | 2.0 | 500 | 0.2256 | 0.9245 | 0.9243 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
sysresearch101/t5-large-finetuned-xsum
7dc62521b8aa4cc5d1e6f49b203e6858e6c69319
2022-07-27T04:53:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sysresearch101
null
sysresearch101/t5-large-finetuned-xsum
7
null
transformers
14,705
Entry not found
affahrizain/distilbert-base-uncased-mlm-finetuned-imdb
1264b3ff4b4918e524cbf35c0ef0aa4865b0fbc4
2022-07-26T20:44:44.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
affahrizain
null
affahrizain/distilbert-base-uncased-mlm-finetuned-imdb
7
null
transformers
14,706
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-mlm-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-mlm-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7029 | 1.0 | 391 | 0.6418 | | 0.6557 | 2.0 | 782 | 0.6315 | | 0.6482 | 3.0 | 1173 | 0.6268 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
olemeyer/zero_shot_issue_classification_bart-large-32-a
db0122fb5c1e91571850b1dc1bf7b4f46af59fe9
2022-07-26T23:46:56.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
olemeyer
null
olemeyer/zero_shot_issue_classification_bart-large-32-a
7
null
transformers
14,707
Entry not found
eclat12450/fine-tuned-NSPKcBert-v2-10
c4389b5ab6ca8176e8f75c64c5f46377213be754
2022-07-29T03:33:50.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
eclat12450
null
eclat12450/fine-tuned-NSPKcBert-v2-10
7
null
transformers
14,708
Entry not found
nguyenbh/vit-demo
c2367c5bcc87ad9082621208b784294a771e115e
2022-07-27T23:34:32.000Z
[ "pytorch", "vit", "image-classification", "transformers" ]
image-classification
false
nguyenbh
null
nguyenbh/vit-demo
7
null
transformers
14,709
Entry not found
Junmai/KR-Roberta-large-v1
09f85c8b909629a3ab017cc81c3e36264e7acfc8
2022-07-28T09:28:17.000Z
[ "pytorch", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
Junmai
null
Junmai/KR-Roberta-large-v1
7
null
transformers
14,710
Entry not found
mayank-01/finetuning-sentiment-model-3000-samples
e609afe3ddd0c79a1621c0197172544d9f91cc96
2022-07-28T11:10:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mayank-01
null
mayank-01/finetuning-sentiment-model-3000-samples
7
null
transformers
14,711
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.8831168831168831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Accuracy: 0.88 - F1: 0.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yanaiela/roberta-base-epoch_1
8dd1326b7449aa3c6ae14ee74f1d8a90a996dae3
2022-07-29T22:41:07.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_1", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_1
7
null
transformers
14,712
--- language: en tags: - roberta-base - roberta-base-epoch_1 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 1 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_1. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_2
66731b9551d5b34dcbb9a96f868c1a060aafd29b
2022-07-29T22:41:25.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_2", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_2
7
null
transformers
14,713
--- language: en tags: - roberta-base - roberta-base-epoch_2 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 2 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_2. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_3
355e6f8bab81916249e079be7f55f89d5cfaed65
2022-07-29T22:41:43.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_3", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_3
7
null
transformers
14,714
--- language: en tags: - roberta-base - roberta-base-epoch_3 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 3 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_3. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_4
57c8dca5a2748adc371bda426f04d28fcd3fb00f
2022-07-29T22:42:03.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_4", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_4
7
null
transformers
14,715
--- language: en tags: - roberta-base - roberta-base-epoch_4 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 4 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_4. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_5
5021242ed12778e6ed58fb1ef32b1335088dc3df
2022-07-29T22:42:26.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_5", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_5
7
null
transformers
14,716
--- language: en tags: - roberta-base - roberta-base-epoch_5 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 5 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_5. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_6
c1e332286992744dc880fd3c2326e2b0fc1e43f4
2022-07-29T22:42:43.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_6", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_6
7
null
transformers
14,717
--- language: en tags: - roberta-base - roberta-base-epoch_6 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 6 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_6. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_10
cb4be1c7af712dcb595f02a39e6f3a0f554ee2d6
2022-07-29T22:43:59.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_10", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_10
7
null
transformers
14,718
--- language: en tags: - roberta-base - roberta-base-epoch_10 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 10 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_10. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_11
6e445228d52beb07a1bb8d811477d0a5c6526a49
2022-07-29T22:44:17.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_11", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_11
7
null
transformers
14,719
--- language: en tags: - roberta-base - roberta-base-epoch_11 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 11 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_11. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_14
8e81a939250661666b576b815426f40f4ad25624
2022-07-29T22:45:11.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_14", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_14
7
null
transformers
14,720
--- language: en tags: - roberta-base - roberta-base-epoch_14 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 14 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_14. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_15
88bd78ed1c4aa49874ee9c1b318484e5c5b92407
2022-07-29T22:45:30.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_15", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_15
7
null
transformers
14,721
--- language: en tags: - roberta-base - roberta-base-epoch_15 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 15 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_15. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_16
0f759040d18260a1efa632220ca8a3cca9017408
2022-07-29T22:45:49.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_16", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_16
7
null
transformers
14,722
--- language: en tags: - roberta-base - roberta-base-epoch_16 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 16 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_16. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_17
3c06592362e380e31a77031134b46cf514e720af
2022-07-29T22:46:08.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_17", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_17
7
null
transformers
14,723
--- language: en tags: - roberta-base - roberta-base-epoch_17 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 17 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_17. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_18
e13ee72ba99904ad73cc6757ad57786f5a92243e
2022-07-29T22:46:26.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_18", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_18
7
null
transformers
14,724
--- language: en tags: - roberta-base - roberta-base-epoch_18 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 18 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_18. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_19
07ce83a380660996b04a7a46fdfec28ae06a43b0
2022-07-29T22:46:46.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_19", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_19
7
null
transformers
14,725
--- language: en tags: - roberta-base - roberta-base-epoch_19 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 19 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_19. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_20
955181e8ca4200bbe6d5fd278c61eb0d54d044db
2022-07-29T22:47:06.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_20", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_20
7
null
transformers
14,726
--- language: en tags: - roberta-base - roberta-base-epoch_20 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 20 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_20. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_24
c3e82803379c65f7ead75df3f7727a72b63ab81e
2022-07-29T22:48:18.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_24", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_24
7
null
transformers
14,727
--- language: en tags: - roberta-base - roberta-base-epoch_24 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 24 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_24. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_27
d257b2730ca267be90b008f26e1e43350b550c77
2022-07-29T22:49:16.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_27", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_27
7
null
transformers
14,728
--- language: en tags: - roberta-base - roberta-base-epoch_27 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 27 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_27. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_28
53d4cd2df4930ada4e5221cb4f57570bf72704a0
2022-07-29T22:49:33.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_28", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_28
7
null
transformers
14,729
--- language: en tags: - roberta-base - roberta-base-epoch_28 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 28 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_28. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_30
c09f9481fbe5db416d890b9abe1670dd4ac70472
2022-07-29T22:50:11.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_30", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_30
7
null
transformers
14,730
--- language: en tags: - roberta-base - roberta-base-epoch_30 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 30 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_30. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_36
6ae65571f12df5c22e6240eb35e1e6554e07b647
2022-07-29T22:52:02.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_36", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_36
7
null
transformers
14,731
--- language: en tags: - roberta-base - roberta-base-epoch_36 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 36 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_36. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_37
b686192ce690730bed2dc3b94c567cf7cd056b05
2022-07-29T22:52:26.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_37", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_37
7
null
transformers
14,732
--- language: en tags: - roberta-base - roberta-base-epoch_37 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 37 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_37. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_40
f519fef8374477cc374b879526e3b552667c2ab3
2022-07-29T22:53:26.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_40", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_40
7
null
transformers
14,733
--- language: en tags: - roberta-base - roberta-base-epoch_40 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 40 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_40. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_46
f4fa41e5fc26add2b51e4a0b29a178ab683e8e3c
2022-07-29T22:55:54.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_46", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_46
7
null
transformers
14,734
--- language: en tags: - roberta-base - roberta-base-epoch_46 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 46 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_46. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_52
0dcdfb9177d0e3e3fe737310ec11342ee2f37682
2022-07-29T22:58:22.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_52", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_52
7
null
transformers
14,735
--- language: en tags: - roberta-base - roberta-base-epoch_52 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 52 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_52. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_54
de72ccb4af0d5ad0d62a61addb4d528b5f929290
2022-07-29T22:59:09.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_54", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_54
7
null
transformers
14,736
--- language: en tags: - roberta-base - roberta-base-epoch_54 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 54 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_54. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_65
c4692122bca4c09a067688e3f75711aef03ee877
2022-07-29T23:03:14.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_65", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_65
7
null
transformers
14,737
--- language: en tags: - roberta-base - roberta-base-epoch_65 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 65 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_65. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_71
91cf97511a003e4eb56fd96239fd3d767eb6aaa3
2022-07-29T23:05:36.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_71", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_71
7
null
transformers
14,738
--- language: en tags: - roberta-base - roberta-base-epoch_71 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 71 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_71. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_72
23257d36c0870a9a20db58f6247f2b9aa039d01b
2022-07-29T23:05:57.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_72", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_72
7
null
transformers
14,739
--- language: en tags: - roberta-base - roberta-base-epoch_72 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 72 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_72. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
huggingtweets/ottorothmund
94fe2feed89d4e7afc1d4e33e7726d1b160b69e2
2022-07-29T21:17:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ottorothmund
7
null
transformers
14,740
--- language: en thumbnail: http://www.huggingtweets.com/ottorothmund/1659129434156/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1538410659125264386/l3bzndr9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Otto☀︎Rothmund</div> <div style="text-align: center; font-size: 14px;">@ottorothmund</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Otto☀︎Rothmund. | Data | Otto☀︎Rothmund | | --- | --- | | Tweets downloaded | 3196 | | Retweets | 643 | | Short tweets | 818 | | Tweets kept | 1735 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/799fj72y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ottorothmund's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3auf5ulc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3auf5ulc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ottorothmund') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
arvkevi/output
2db7d01dabab9ebd5d26b8812244fa825b696aab
2022-07-29T02:49:09.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
arvkevi
null
arvkevi/output
7
null
transformers
14,741
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sundaresanms96/finetuning-sentiment-bert-base-cased
2cce7cba123c90b3dceda932c1540f60a46d89e0
2022-07-29T04:27:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sundaresanms96
null
sundaresanms96/finetuning-sentiment-bert-base-cased
7
null
transformers
14,742
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-bert-base-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3414 - Accuracy: 0.8846 - F1: 0.9176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
abdouaziiz/pretraining2
4d5081b35a28b4d5a29fc010ef4532e6e92bba69
2022-07-29T12:11:32.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
abdouaziiz
null
abdouaziiz/pretraining2
7
null
transformers
14,743
Entry not found
alfredcs/vit-cifar-10-2
efba011fa8fe039476a975a7db723ceb13566db2
2022-07-29T21:44:22.000Z
[ "pytorch", "vit", "image-classification", "transformers", "license:apache-2.0" ]
image-classification
false
alfredcs
null
alfredcs/vit-cifar-10-2
7
null
transformers
14,744
--- license: apache-2.0 ---
AIDA-UPM/MSTSb_paraphrase-multilingual-MiniLM-L12-v2
28fc8ed60064fd7984e0feebafec601426ce14cc
2021-07-21T18:02:53.000Z
[ "pytorch", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
AIDA-UPM
null
AIDA-UPM/MSTSb_paraphrase-multilingual-MiniLM-L12-v2
6
null
sentence-transformers
14,745
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1438 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 288, "weight_decay": 0.05 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AIDA-UPM/MSTSb_paraphrase-xlm-r-multilingual-v1
fc4842f09face5ffc4fca4fa56f2651991023b1e
2021-11-07T08:25:22.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
AIDA-UPM
null
AIDA-UPM/MSTSb_paraphrase-xlm-r-multilingual-v1
6
null
sentence-transformers
14,746
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # AIDA-UPM/MSTSb_paraphrase-xlm-r-multilingual-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1438 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 4e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 288, "weight_decay": 0.1 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Aimendo/autonlp-triage-35248482
528497d7ac1681046865517f84c8792e878da274
2021-11-23T08:03:14.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Aimendo/autonlp-data-triage", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Aimendo
null
Aimendo/autonlp-triage-35248482
6
null
transformers
14,747
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Aimendo/autonlp-data-triage co2_eq_emissions: 7.989144645413398 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 35248482 - CO2 Emissions (in grams): 7.989144645413398 ## Validation Metrics - Loss: 0.13783401250839233 - Accuracy: 0.9728654124457308 - Macro F1: 0.949537871674076 - Micro F1: 0.9728654124457308 - Weighted F1: 0.9732422812610365 - Macro Precision: 0.9380372699332605 - Micro Precision: 0.9728654124457308 - Weighted Precision: 0.974548513256663 - Macro Recall: 0.9689346153591594 - Micro Recall: 0.9728654124457308 - Weighted Recall: 0.9728654124457308 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Aimendo/autonlp-triage-35248482 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Aleksandar/electra-srb-ner
4b51dbcba35be4d5c1eac751f977d4985832c1b7
2021-09-07T22:28:30.000Z
[ "pytorch", "electra", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/electra-srb-ner
6
null
transformers
14,748
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model_index: - name: electra-srb-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: sr metric: name: Accuracy type: accuracy value: 0.9568394937134688 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-srb-ner This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3406 - Precision: 0.8934 - Recall: 0.9087 - F1: 0.9010 - Accuracy: 0.9568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3686 | 1.0 | 625 | 0.2108 | 0.8326 | 0.8494 | 0.8409 | 0.9335 | | 0.1886 | 2.0 | 1250 | 0.1784 | 0.8737 | 0.8713 | 0.8725 | 0.9456 | | 0.1323 | 3.0 | 1875 | 0.1805 | 0.8654 | 0.8870 | 0.8760 | 0.9468 | | 0.0675 | 4.0 | 2500 | 0.2018 | 0.8736 | 0.8880 | 0.8807 | 0.9502 | | 0.0425 | 5.0 | 3125 | 0.2162 | 0.8818 | 0.8945 | 0.8881 | 0.9512 | | 0.0343 | 6.0 | 3750 | 0.2492 | 0.8790 | 0.8928 | 0.8859 | 0.9513 | | 0.0253 | 7.0 | 4375 | 0.2562 | 0.8821 | 0.9006 | 0.8912 | 0.9525 | | 0.0142 | 8.0 | 5000 | 0.2788 | 0.8807 | 0.9013 | 0.8909 | 0.9524 | | 0.0114 | 9.0 | 5625 | 0.2793 | 0.8861 | 0.9002 | 0.8931 | 0.9534 | | 0.0095 | 10.0 | 6250 | 0.2967 | 0.8887 | 0.9034 | 0.8960 | 0.9550 | | 0.008 | 11.0 | 6875 | 0.2993 | 0.8899 | 0.9067 | 0.8982 | 0.9556 | | 0.0048 | 12.0 | 7500 | 0.3215 | 0.8887 | 0.9038 | 0.8962 | 0.9545 | | 0.0034 | 13.0 | 8125 | 0.3242 | 0.8897 | 0.9068 | 0.8982 | 0.9554 | | 0.003 | 14.0 | 8750 | 0.3311 | 0.8884 | 0.9085 | 0.8983 | 0.9559 | | 0.0025 | 15.0 | 9375 | 0.3383 | 0.8943 | 0.9062 | 0.9002 | 0.9562 | | 0.0011 | 16.0 | 10000 | 0.3346 | 0.8941 | 0.9112 | 0.9026 | 0.9574 | | 0.0015 | 17.0 | 10625 | 0.3362 | 0.8944 | 0.9081 | 0.9012 | 0.9567 | | 0.001 | 18.0 | 11250 | 0.3464 | 0.8877 | 0.9100 | 0.8987 | 0.9559 | | 0.0012 | 19.0 | 11875 | 0.3415 | 0.8944 | 0.9089 | 0.9016 | 0.9568 | | 0.0005 | 20.0 | 12500 | 0.3406 | 0.8934 | 0.9087 | 0.9010 | 0.9568 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Alireza1044/albert-base-v2-qnli
69a25402725c8a1bfac50d24d3cbd0e779918061
2021-07-27T15:39:56.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-qnli
6
null
transformers
14,749
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metric: name: Accuracy type: accuracy value: 0.9137836353651839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3608 - Accuracy: 0.9138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
AlirezaBaneshi/testPersianQA
b9da3f9d0312318991945208d445a20fce7a4ccd
2022-02-01T13:39:46.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AlirezaBaneshi
null
AlirezaBaneshi/testPersianQA
6
null
transformers
14,750
Entry not found
AnjanBiswas/distilbert-base-uncased-finetuned-emotion
33e597c5cb4a1c2046b7741056a9497105685e92
2022-01-31T23:42:22.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
AnjanBiswas
null
AnjanBiswas/distilbert-base-uncased-finetuned-emotion
6
null
transformers
14,751
Entry not found
AnonymousSub/bert-base-uncased_wikiqa
43a114c09759a600368db50d5094ea587c3c68d9
2022-01-22T20:38:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/bert-base-uncased_wikiqa
6
null
transformers
14,752
Entry not found
AnonymousSub/consert-s10-AR
3c2b8a30b19b8e74e1858fed20ced000c42e3770
2021-10-03T05:06:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/consert-s10-AR
6
null
transformers
14,753
Entry not found
AnonymousSub/dummy_2
38af22d8f06ff98662dc03dedc611f445857bfa7
2021-11-03T07:34:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/dummy_2
6
null
transformers
14,754
Entry not found
AnonymousSub/hier_triplet_epochs_1_shard_1
2a60119e45b3a6e5cd3ea5e03590e9000b6c8db6
2021-12-22T16:56:47.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/hier_triplet_epochs_1_shard_1
6
null
transformers
14,755
Entry not found
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
34dd9cc580038f48ee95bebe45ec7d6d8bc0ce4e
2022-01-04T08:18:54.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
6
null
transformers
14,756
Entry not found
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
e1f6c2991af087ba5a3285b7c49961781447c26c
2022-01-23T08:46:33.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
6
null
transformers
14,757
Entry not found
AnonymousSub/specter-bert-model_copy_wikiqa
dad9825780bf7781cb6fb67ebacf92feaa1d92cc
2022-01-23T06:47:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/specter-bert-model_copy_wikiqa
6
null
transformers
14,758
Entry not found
Anthos23/my-awesome-model
596590fd6afbef20c4a6c557c8f372d3f6eb17f3
2022-02-23T11:09:10.000Z
[ "pytorch", "tf", "roberta", "text-classification", "transformers" ]
text-classification
false
Anthos23
null
Anthos23/my-awesome-model
6
null
transformers
14,759
Entry not found
Apoorva/k2t-test
cb1c4e229319e7474f06eec357e8c7e392ae7293
2022-01-06T19:38:56.000Z
[ "pytorch", "t5", "text2text-generation", "en", "transformers", "keytotext", "k2t", "Keywords to Sentences", "model-index", "autotrain_compatible" ]
text2text-generation
false
Apoorva
null
Apoorva/k2t-test
6
null
transformers
14,760
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences model-index: - name: k2t-test --- Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
ArtemisZealot/DialoGTP-small-Qkarin
a56be3b66c7c316dd9415223453bf105dfb82cc7
2021-09-05T17:58:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ArtemisZealot
null
ArtemisZealot/DialoGTP-small-Qkarin
6
null
transformers
14,761
--- tags: - conversational --- #Okarin Bot
Ayran/DialoGPT-small-gandalf
736ddce565170d127d421e6eccaf232d71b30aa2
2021-09-10T17:27:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Ayran
null
Ayran/DialoGPT-small-gandalf
6
null
transformers
14,762
--- tags: - conversational --- # Gandalf DialoGPT Model
Azaghast/GPT2-SCP-ContainmentProcedures
facbe5cc1a5b12f3b4ae59474c3a026ab7a91dc9
2022-06-08T23:37:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Azaghast
null
Azaghast/GPT2-SCP-ContainmentProcedures
6
null
transformers
14,763
Entry not found
BigSalmon/ParaphraseParentheses
710ccb1964704511e341e033b71f10502d94c75e
2021-12-13T00:11:39.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/ParaphraseParentheses
6
null
transformers
14,764
This can be used to paraphrase. I recommend using the code I have attached below. You can generate it without using LogProbs, but you are likely to be best served by manually examining the most likely outputs. If this interests you, check out https://huggingface.co/BigSalmon/MrLincoln12 or my other MrLincoln repos. ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/Parentheses") ``` Example Prompt: ``` *** The Milwaukee Bucks are for sure in title contention. The Milwaukee Bucks are ( virtually assured / all but certain to / on the cusp of / well positioned for ) title contention. *** Discord is an up-and-coming platform, attracting people from all walks of life. Discord is ( an / a ) ( up-and-coming platform / platform in the ascendant / medium on the rise ), ( drawing in / wooing / winning over ) ( people / individuals / consumers / audiences ) from all ( walks of life / corners of the universe / horizons )... *** HuggingFace is an amazing company. HuggingFace is an ( ``` ``` import torch prompt = "Insert Your Prompt Here. It is Best To Have a Few Examples Before Like The Example Prompt Shows." text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(500) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] for i in range(500): m = ([best_words[i]]) m = str(m) m = m.replace("[' ", "").replace("']", "") print(m) ```
Blaine-Mason/hackMIT-finetuned-sst2
9aeeeb2b57a12d0277cb5fdf4825791caf893886
2021-08-25T00:31:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer" ]
text-classification
false
Blaine-Mason
null
Blaine-Mason/hackMIT-finetuned-sst2
6
null
transformers
14,765
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: hackMIT-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.8027522935779816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hackMIT-finetuned-sst2 This model is a fine-tuned version of [Blaine-Mason/hackMIT-finetuned-sst2](https://huggingface.co/Blaine-Mason/hackMIT-finetuned-sst2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1086 - Accuracy: 0.8028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.033238621168611e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0674 | 1.0 | 4210 | 1.1086 | 0.8028 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
CLAck/en-vi
e0bcfb55e1c8489d0e11fdfe4208654dd767e64e
2022-02-15T11:28:50.000Z
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
CLAck
null
CLAck/en-vi
6
null
transformers
14,766
--- language: - en - vi tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This is a finetuning of a MarianMT pretrained on English-Chinese. The target language pair is English-Vietnamese. The first phase of training (mixed) is performed on a dataset containing both English-Chinese and English-Vietnamese sentences. The second phase of training (pure) is performed on a dataset containing only English-Vietnamese sentences. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-vi") tokenizer = AutoTokenizer.from_pretrained("CLAck/en-vi") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2vi>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 26.2407 | | 2.0 | 32.6016 | | 3.0 | 35.4060 | | 4.0 | 36.6737 | | 5.0 | 37.3774 | PURE | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 37.3169 | | 2.0 | 37.4407 | | 3.0 | 37.6696 | | 4.0 | 37.8765 | | 5.0 | 38.0105 |
CLTL/icf-levels-fac
ae01ad6e59c75306d3540c9e5801d90f2fd19f26
2021-11-08T12:13:55.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-fac
6
1
transformers
14,767
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Walking Functioning Levels (ICF d550) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing walking functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about walking functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 5 | Patient can walk independently anywhere: level surface, uneven surface, slopes, stairs. 4 | Patient can walk independently on level surface but requires help on stairs, inclines, uneven surface; or, patient can walk independently, but the walking is not fully normal. 3 | Patient requires verbal supervision for walking, without physical contact. 2 | Patient needs continuous or intermittent support of one person to help with balance and coordination. 1 | Patient needs firm continuous support from one person who helps carrying weight and with balance. 0 | Patient cannot walk or needs help from two or more people; or, patient walks on a treadmill. The predictions generated by the model might sometimes be outside of the scale (e.g. 5.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-fac', use_cuda=False, ) example = 'kan nog goed traplopen, maar flink ingeleverd aan conditie na Corona' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 4.2 ``` The raw outputs look like this: ``` [[4.20903111]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.70 | 0.66 mean squared error | 0.91 | 0.93 root mean squared error | 0.95 | 0.96 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-stm
a7a43451a2f7f1eddf758f7d98ec36d853a7eaed
2021-11-08T12:26:53.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-stm
6
1
transformers
14,768
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Emotional Functioning Levels (ICF b152) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing emotional functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about emotional functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with emotional functioning: emotions are appropriate, well regulated, etc. 3 | Slight problem with emotional functioning: irritable, gloomy, etc. 2 | Moderate problem with emotional functioning: negative emotions, such as fear, anger, sadness, etc. 1 | Severe problem with emotional functioning: intense negative emotions, such as fear, anger, sadness, etc. 0 | Flat affect, apathy, unstable, inappropriate emotions. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-stm', use_cuda=False, ) example = 'Naarmate het somatische beeld een herstellende trend laat zien, valt op dat patient zich depressief en suicidaal uit.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.60 ``` The raw outputs look like this: ``` [[1.60418844]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.76 | 0.68 mean squared error | 1.03 | 0.87 root mean squared error | 1.01 | 0.93 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
Cameron/BERT-eec-emotion
2fc079c57da8b927913e56c6203428f8040d8fc0
2021-05-18T17:25:51.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-eec-emotion
6
null
transformers
14,769
Entry not found
CenIA/albert-base-spanish-finetuned-pawsx
21a13b010f5723a8b05f42f74fa86e03a6a108e7
2022-01-02T00:14:18.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-base-spanish-finetuned-pawsx
6
null
transformers
14,770
Entry not found
CenIA/albert-tiny-spanish-finetuned-pawsx
6d127499bc95d590196130e706fa9e5bf9544336
2022-01-01T18:21:54.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-tiny-spanish-finetuned-pawsx
6
null
transformers
14,771
Entry not found
CenIA/bert-base-spanish-wwm-cased-finetuned-mldoc
e73c9975ad2e376ad952a967eb9897aeb94b6da7
2022-01-10T21:30:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-mldoc
6
null
transformers
14,772
Entry not found
CenIA/bert-base-spanish-wwm-cased-finetuned-xnli
bfc5be44427d4bfb45e6d0a169dde6e4d9a512af
2021-12-08T21:52:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-xnli
6
null
transformers
14,773
Entry not found
CenIA/bert-base-spanish-wwm-uncased-finetuned-mldoc
08d2dcda7bee9c05ab74e236209aad111e7f1c21
2022-01-11T03:27:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-mldoc
6
null
transformers
14,774
Entry not found
CenIA/bert-base-spanish-wwm-uncased-finetuned-xnli
d81d8f24d0d3a199f2452d4f5ad2f04d8b2c6f71
2021-12-08T22:03:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-xnli
6
null
transformers
14,775
Entry not found
CenIA/distillbert-base-spanish-uncased-finetuned-mldoc
17f1dd80d1041b0d8d04f86f86d19957f3764c75
2022-01-11T04:07:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-mldoc
6
null
transformers
14,776
Entry not found
CenIA/distillbert-base-spanish-uncased-finetuned-pos
9a86d59ec9dbb76a25920aa6a6947ee3856e01a2
2021-12-18T00:48:24.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-pos
6
null
transformers
14,777
Entry not found
Chakita/KannadaBERT
d6cbebccfd265cd7ed3cd2be0c85c36cd10e4d0e
2021-07-17T05:37:44.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
false
Chakita
null
Chakita/KannadaBERT
6
null
transformers
14,778
--- tags: - masked-lm - fill-in-the-blanks --- RoBERTa model trained on OSCAR Kannada corpus.
Chun/w-en2zh-otm
7e4aa3276f77d80b9d572222e1ced3d28cf55137
2021-08-25T02:01:07.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Chun
null
Chun/w-en2zh-otm
6
null
transformers
14,779
Entry not found
CleveGreen/FieldClassifier
d0b28b2b3d74a334a249a9454610a6520141a0c3
2021-08-17T17:43:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/FieldClassifier
6
null
transformers
14,780
Entry not found
CodeNinja1126/xlm-roberta-large-kor-mrc
d5fbc13e9f8f4273002afe4d3159c641158b1153
2021-05-19T06:11:31.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CodeNinja1126
null
CodeNinja1126/xlm-roberta-large-kor-mrc
6
null
transformers
14,781
Entry not found
Corvus/DialoGPT-medium-CaptainPrice
d26bc9fa8969efd15f3af399c94d2006b38d20f7
2021-09-20T10:17:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Corvus
null
Corvus/DialoGPT-medium-CaptainPrice
6
null
transformers
14,782
--- tags: - conversational --- # Captain Price DialoGPT Model
CouchCat/ma_ner_v6_distil
f617320068e97c211f70b94a53c9235c2cc1b6eb
2021-02-15T23:32:46.000Z
[ "pytorch", "distilbert", "token-classification", "en", "transformers", "ner", "license:mit", "autotrain_compatible" ]
token-classification
false
CouchCat
null
CouchCat/ma_ner_v6_distil
6
null
transformers
14,783
--- language: en license: mit tags: - ner widget: - text: "These shoes from Adidas fit quite well" --- ### Description A Named Entity Recognition model trained on a customer feedback data using DistilBert. Possible labels are: - PRD: for certain products - BRND: for brands ### Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v6_distil") model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v6_distil") ```
CracklesCreeper/Piglin-Talks-Harry-Potter
cf2991534b22e9b502d43261e7a674546170a3c4
2021-08-28T08:46:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
CracklesCreeper
null
CracklesCreeper/Piglin-Talks-Harry-Potter
6
null
transformers
14,784
--- tags: - conversational --- @Piglin Talks Harry Potter
Craig/paraphrase-MiniLM-L6-v2
7f1c6a384b3f870bdefcb13114cd8a9d2fd06dd1
2021-10-13T15:01:15.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
false
Craig
null
Craig/paraphrase-MiniLM-L6-v2
6
null
sentence-transformers
14,785
--- pipeline_tag: feature-extraction license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This is a clone of the original model, with `pipeline_tag` metadata changed to `feature-extraction`, so it can just return the embedded vector. Otherwise it is unchanged. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Cthyllax/DialoGPT-medium-PaladinDanse
a619aacbda5d86066008cb36a508938765dbce7e
2021-09-11T20:48:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Cthyllax
null
Cthyllax/DialoGPT-medium-PaladinDanse
6
null
transformers
14,786
--- tags: - conversational --- # Paladin Danse DialoGPT Model
Davlan/mt5_base_yor_eng_mt
82538184f9fc49759f3e0e6dd8f1f8cdde2909b9
2021-06-23T14:51:23.000Z
[ "pytorch", "mt5", "text2text-generation", "yo", "en", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/mt5_base_yor_eng_mt
6
null
transformers
14,787
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_yor_eng_mt ## Model description **mT5_base_yor_eng_mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned mT5-base model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for MT. ```python from transformers import MT5ForConditionalGeneration, T5Tokenizer model = MT5ForConditionalGeneration.from_pretrained("Davlan/mt5_base_yor_eng_mt") tokenizer = T5Tokenizer.from_pretrained("google/mt5-base") input_string = "Akọni ajìjàgbara obìnrin tó sun àtìmalé torí owó orí" inputs = tokenizer.encode(input_string, return_tensors="pt") generated_tokens = model.generate(inputs) results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 15.57 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By David Adelani ``` ```
DeepPavlov/marianmt-tatoeba-ruen
d9754a73a104462dc1345e0f26b75ed1e82ec041
2021-12-20T11:56:37.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeepPavlov
null
DeepPavlov/marianmt-tatoeba-ruen
6
null
transformers
14,788
Entry not found
DongHyoungLee/distilbert-base-uncased-finetuned-cola
3871872331915aa2d65391d097753a16de3e19cb
2021-10-16T11:30:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DongHyoungLee
null
DongHyoungLee/distilbert-base-uncased-finetuned-cola
6
null
transformers
14,789
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.535587402888147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7335 - Matthews Correlation: 0.5356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5309 | 1.0 | 535 | 0.5070 | 0.4239 | | 0.3568 | 2.0 | 1070 | 0.5132 | 0.4913 | | 0.24 | 3.0 | 1605 | 0.6081 | 0.4990 | | 0.1781 | 4.0 | 2140 | 0.7335 | 0.5356 | | 0.1243 | 5.0 | 2675 | 0.8705 | 0.5242 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Doogie/Waynehills-STT-doogie-server
817db5ade1395b4e7b4e0fadf43cbf41ac1006c0
2022-01-06T17:18:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Doogie
null
Doogie/Waynehills-STT-doogie-server
6
null
transformers
14,790
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: Waynehills-STT-doogie-server --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-STT-doogie-server This model is a fine-tuned version of [Doogie/Waynehills-STT-doogie-server](https://huggingface.co/Doogie/Waynehills-STT-doogie-server) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
DoyyingFace/bert-COVID-HATE-finetuned-test
4880150711c2b46757ba621344de3e6991300ab5
2022-02-10T02:42:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-COVID-HATE-finetuned-test
6
null
transformers
14,791
Entry not found
DoyyingFace/bert-cola-finetuned
bf99da87b705f17ecab36f87f94b0f708083eafd
2022-01-22T03:26:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-cola-finetuned
6
null
transformers
14,792
Entry not found
DoyyingFace/bert-wiki-comments-finetuned
1a297ae6489682c5eded951744afbeb57fe904f8
2022-01-23T17:26:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-wiki-comments-finetuned
6
null
transformers
14,793
Entry not found
ELiRF/NASCA
eaf1361bb43fc73b21d40feb13085efb0d897871
2022-04-29T09:18:12.000Z
[ "pytorch", "bart", "text2text-generation", "ca", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
ELiRF
null
ELiRF/NASCA
6
null
transformers
14,794
--- language: ca tags: - summarization widget: - text: "La Universitat Politècnica de València (UPV), a través del projecte Atenea “plataforma de dones, art i tecnologia” i en col·laboració amb les companyies tecnològiques Metric Salad i Zetalab, ha digitalitzat i modelat en 3D per a la 35a edició del Festival Dansa València, que se celebra del 2 al 10 d'abril, la primera peça de dansa en un metaverso específic. La peça No és amor, dirigida per Lara Misó, forma part de la programació d'aquesta edició del Festival Dansa València i explora la figura geomètrica del cercle des de totes les seues perspectives: espacial, corporal i compositiva. No és amor està inspirada en el treball de l'artista japonesa Yayoi Kusama i mira de prop les diferents facetes d'una obsessió. Així dona cabuda a la insistència, la repetició, el trastorn, la hipnosi i l'alliberament. El procés de digitalització, materialitzat per Metric Salad i ZetaLab, ha sigut complex respecte a uns altres ja realitzats a causa de l'enorme desafiament que comporta el modelatge en 3D de cossos en moviment al ritme de la composició de l'obra. L'objectiu era generar una experiència el més realista possible i fidedigna de l'original perquè el resultat final fora un procés absolutament immersiu.Així, el metaverso està compost per figures modelades en 3D al costat de quatre projeccions digitalitzades en pantalles flotants amb les quals l'usuari podrà interactuar segons es vaja acostant, bé mitjançant els comandaments de l'ordinador, bé a través d'ulleres de realitat virtual. L'objectiu és que quan l'usuari s'acoste a cadascuna de les projeccions tinga la sensació d'una immersió quasi completa en fondre's amb el contingut audiovisual que li genere una experiència intimista i molt real." --- **IMPORTANT:** On the 5th of April 2022, we detected a mistake in the configuration file; thus, the model was not generating the summaries correctly, and it was underperforming in all scenarios. For this reason, if you had used the model until that day, we would be glad if you would re-evaluate the model if you are publishing some results with it. We apologize for the inconvenience and thank you for your understanding. # NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish. # The NASca model News Abstractive Summarization for Catalan (NASca) is a Transformer encoder-decoder model, with the same hyper-parameters than BART, to perform summarization of Catalan news articles. It is pre-trained on a combination of several self-supervised tasks that help to increase the abstractivity of the generated summaries. Four pre-training tasks have been combined: sentence permutation, text infilling, Gap Sentence Generation, and Next Segment Generation. Catalan newspapers, the Catalan subset of the OSCAR corpus and Wikipedia articles in Catalan were used for pre-training the model (9.3GB of raw text -2.5 millions of documents-). NASca is finetuned for the summarization task on 636.596 (document, summary) pairs from the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA). ### BibTeX entry ```bibtex @Article{app11219872, AUTHOR = {Ahuir, Vicent and Hurtado, Lluís-F. and González, José Ángel and Segarra, Encarna}, TITLE = {NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish}, JOURNAL = {Applied Sciences}, VOLUME = {11}, YEAR = {2021}, NUMBER = {21}, ARTICLE-NUMBER = {9872}, URL = {https://www.mdpi.com/2076-3417/11/21/9872}, ISSN = {2076-3417}, DOI = {10.3390/app11219872} } ```
EMBEDDIA/bertic-tweetsentiment
98551938159c6e7d0776c20fdd7baf79427253c1
2021-07-09T14:34:25.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
EMBEDDIA
null
EMBEDDIA/bertic-tweetsentiment
6
null
transformers
14,795
Entry not found
EMBO/sd-panelization
c476892a1212dd44da88d3b3126a933205b7ab11
2022-03-27T13:21:35.000Z
[ "pytorch", "jax", "roberta", "token-classification", "english", "dataset:EMBO/sd-nlp", "transformers", "license:agpl-3.0", "autotrain_compatible" ]
token-classification
false
EMBO
null
EMBO/sd-panelization
6
null
transformers
14,796
--- language: - english thumbnail: tags: - token classification - license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-panelization ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `PANELIZATION` task to perform 'parsing' or 'segmentation' of figure legends into fragments corresponding to sub-panels. Figures are usually composite representations of results obtained with heterogeneous experimental approaches and systems. Breaking figures into panels allows identifying more coherent descriptions of individual scientific experiments. ## Intended uses & limitations #### How to use The intended use of this model is for 'parsing' figure legends into sub-fragments corresponding to individual panels as used in SourceData annotations (https://sourcedata.embo.org). To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """Fig 4. a, Volume density of early (Avi) and late (Avd) autophagic vacuoles.a, Volume density of early (Avi) and late (Avd) autophagic vacuoles from four independent cultures. Examples of Avi and Avd are shown in b and c, respectively. Bars represent 0.4����m. d, Labelling density of cathepsin-D as estimated in two independent experiments. e, Labelling density of LAMP-1.""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-panelization') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [`EMBO/sd-nlp PANELIZATION`](https://huggingface.co/datasets/EMBO/sd-nlp) dataset which includes manually annotated examples. ## Training procedure The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine-tuned: EMBO/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: PANELIZATION - TTraining with 2175 examples. - Evaluating on 622 examples. - Training on 2 features: `O`, `B-PANEL_START` - Epochs: 1.3 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results Testing on 1802 examples from test set with `sklearn.metrics`: ``` precision recall f1-score support PANEL_START 0.89 0.95 0.92 5427 micro avg 0.89 0.95 0.92 5427 macro avg 0.89 0.95 0.92 5427 weighted avg 0.89 0.95 0.92 5427 ```
EhsanAghazadeh/bert-based-uncased-sst2-e3
2d14d69cd498812bebca5ee27b7da01dea6f21fb
2022-01-02T11:26:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e3
6
null
transformers
14,797
Entry not found
EhsanAghazadeh/bert-based-uncased-sst2-e5
9e8d7330603a7e972d20d79559ee660fd9d1dff7
2022-01-02T14:19:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e5
6
null
transformers
14,798
Entry not found
EthanChen0418/domain-cls-nine-classes
79acb0f68d410dc5e495ae9c3350c970802c1fb0
2021-09-27T04:35:15.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
EthanChen0418
null
EthanChen0418/domain-cls-nine-classes
6
null
transformers
14,799
Entry not found