modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
gary109/ai-light-dance_pretrain2_wav2vec2-large-xlsr-53
ae2de075775ecb6c8ca56777b13cbbb7ee16de53
2022-07-22T00:15:32.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
gary109
null
gary109/ai-light-dance_pretrain2_wav2vec2-large-xlsr-53
7
null
transformers
14,600
Entry not found
Aktsvigun/bart-base_aeslc_8653685
77387b5efdd19a28d9584430a84db1d98d28dfa9
2022-07-07T15:31:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_8653685
7
null
transformers
14,601
Entry not found
Aktsvigun/bart-base_aeslc_4065329
e6a7919a2b3f695b3b1373f7f144ebc5150e5b9e
2022-07-07T15:15:40.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_4065329
7
null
transformers
14,602
Entry not found
Aktsvigun/bart-base_aeslc_9478495
e9fbaffd69bbb1d82df209e2679779a7d0684794
2022-07-07T15:40:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_9478495
7
null
transformers
14,603
Entry not found
Aktsvigun/bart-base_aeslc_4006598
cd106029c655cf98567719ea640c45c5fb55903c
2022-07-07T15:23:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_4006598
7
null
transformers
14,604
Entry not found
dminiotas05/distilbert-base-uncased-finetuned-ft500_6class
560dc5495b9e11111f2c823f408c09704adb0a2c
2022-07-07T11:11:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dminiotas05
null
dminiotas05/distilbert-base-uncased-finetuned-ft500_6class
7
null
transformers
14,605
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft500_6class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft500_6class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5162 - Accuracy: 0.356 - F1: 0.3347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.579 | 1.0 | 188 | 1.5575 | 0.2933 | 0.2521 | | 1.4527 | 2.0 | 376 | 1.5043 | 0.3227 | 0.2821 | | 1.3767 | 3.0 | 564 | 1.4982 | 0.34 | 0.2938 | | 1.3122 | 4.0 | 752 | 1.4784 | 0.368 | 0.3454 | | 1.2678 | 5.0 | 940 | 1.5162 | 0.356 | 0.3347 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
cherrypaca/puppies_classify
b54210f63ddf939ba3dc4f39883bef7973d6729c
2022-07-07T13:25:43.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
cherrypaca
null
cherrypaca/puppies_classify
7
null
transformers
14,606
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: puppies_classify results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # puppies_classify Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### husky ![husky](images/husky.jpg) #### pomeranian ![pomeranian](images/pomeranian.jpg)
MilaNLProc/hate-ita-xlm-r-base
2b7a3690840432b375b62edeedf6f861e1133a95
2022-07-07T15:32:15.000Z
[ "pytorch", "xlm-roberta", "text-classification", "it", "transformers", "text classification", "abusive language", "hate speech", "offensive language", "license:mit" ]
text-classification
false
MilaNLProc
null
MilaNLProc/hate-ita-xlm-r-base
7
null
transformers
14,607
--- language: it license: mit tags: - text classification - abusive language - hate speech - offensive language widget: - text: "Ci sono dei bellissimi capibara!" example_title: "Hate Speech Classification 1" - text: "Sei una testa di cazzo!!" example_title: "Hate Speech Classification 2" - text: "Ti odio!" example_title: "Hate Speech Classification 3" --- # [Debora Nozza](http://dnozza.github.io/) • [Federico Bianchi](https://federicobianchi.io/) • [Giuseppe Attanasio](https://gattanasio.cc/) # HATE-ITA Base HATE-ITA is a binary hate speech classification model for Italian social media text. <img src="https://raw.githubusercontent.com/MilaNLProc/hate-ita/main/hateita.png?token=GHSAT0AAAAAABTEBAJ4PNDWAMU3KKIGUOCSYWG4IBA" width="200"> ## Abstract Online hate speech is a dangerous phenomenon that can (and should) be promptly counteracted properly. While Natural Language Processing has been successfully used for the purpose, many of the research efforts are directed toward the English language. This choice severely limits the classification power in non-English languages. In this paper, we test several learning frameworks for identifying hate speech in Italian text. We release **HATE-ITA, a set of multi-language models trained on a large set of English data and available Italian datasets**. HATE-ITA performs better than mono-lingual models and seems to adapt well also on language-specific slurs. We believe our findings will encourage research in other mid-to-low resource communities and provide a valuable benchmarking tool for the Italian community. ## Model This model is the fine-tuned version of the [XLM-RoBERTa-base](https://huggingface.co/xlm-roberta-base) model. | Model | Download | | ------ | -------------------------| | `hate-ita` | [Link](https://huggingface.co/MilaNLProc/hate-ita) | | `hate-ita-xlm-r-base` | [Link](https://huggingface.co/MilaNLProc/hate-ita-xlm-r-base) | | `hate-ita-xlm-r-large` | [Link](https://huggingface.co/MilaNLProc/hate-ita-xlm-r-large) | ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification",model='MilaNLProc/hate-ita-xlm-r-base',top_k=2) prediction = classifier("ti odio") print(prediction) ``` ## Citation Please use the following BibTeX entry if you use this model in your project: ``` @inproceedings{nozza-etal-2022-hate-ita, title = {{HATE-ITA}: Hate Speech Detection in Italian Social Media Text}, author = "Nozza, Debora and Bianchi, Federico and Attanasio, Giuseppe", booktitle = "Proceedings of the 6th Workshop on Online Abuse and Harms", year = "2022", publisher = "Association for Computational Linguistics" } ``` ## Ethical Statement While promising, the results in this work should not be interpreted as a definitive assessment of the performance of hate speech detection in Italian. We are unsure if our model can maintain a stable and fair precision across the different targets and categories. HATE-ITA might overlook some sensible details, which practitioners should treat with care.
MilaNLProc/hate-ita-xlm-r-large
1e87ce28b1459edb2ab81174c536171a62ff11b9
2022-07-07T15:32:42.000Z
[ "pytorch", "xlm-roberta", "text-classification", "it", "transformers", "text classification", "abusive language", "hate speech", "offensive language", "license:mit" ]
text-classification
false
MilaNLProc
null
MilaNLProc/hate-ita-xlm-r-large
7
null
transformers
14,608
--- language: it license: mit tags: - text classification - abusive language - hate speech - offensive language widget: - text: "Ci sono dei bellissimi capibara!" example_title: "Hate Speech Classification 1" - text: "Sei una testa di cazzo!!" example_title: "Hate Speech Classification 2" - text: "Ti odio!" example_title: "Hate Speech Classification 3" --- # [Debora Nozza](http://dnozza.github.io/) • [Federico Bianchi](https://federicobianchi.io/) • [Giuseppe Attanasio](https://gattanasio.cc/) # HATE-ITA Base HATE-ITA is a binary hate speech classification model for Italian social media text. <img src="https://raw.githubusercontent.com/MilaNLProc/hate-ita/main/hateita.png?token=GHSAT0AAAAAABTEBAJ4PNDWAMU3KKIGUOCSYWG4IBA" width="200"> ## Abstract Online hate speech is a dangerous phenomenon that can (and should) be promptly counteracted properly. While Natural Language Processing has been successfully used for the purpose, many of the research efforts are directed toward the English language. This choice severely limits the classification power in non-English languages. In this paper, we test several learning frameworks for identifying hate speech in Italian text. We release **HATE-ITA, a set of multi-language models trained on a large set of English data and available Italian datasets**. HATE-ITA performs better than mono-lingual models and seems to adapt well also on language-specific slurs. We believe our findings will encourage research in other mid-to-low resource communities and provide a valuable benchmarking tool for the Italian community. ## Model This model is the fine-tuned version of the [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) model. | Model | Download | | ------ | -------------------------| | `hate-ita` | [Link](https://huggingface.co/MilaNLProc/hate-ita) | | `hate-ita-xlm-r-base` | [Link](https://huggingface.co/MilaNLProc/hate-ita-xlm-r-base) | | `hate-ita-xlm-r-large` | [Link](https://huggingface.co/MilaNLProc/hate-ita-xlm-r-large) | ## Usage ```python from transformers import pipeline classifier = pipeline("text-classification",model='MilaNLProc/hate-ita-xlm-r-large',top_k=2) prediction = classifier("ti odio") print(prediction) ``` ## Citation Please use the following BibTeX entry if you use this model in your project: ``` @inproceedings{nozza-etal-2022-hate-ita, title = {{HATE-ITA}: Hate Speech Detection in Italian Social Media Text}, author = "Nozza, Debora and Bianchi, Federico and Attanasio, Giuseppe", booktitle = "Proceedings of the 6th Workshop on Online Abuse and Harms", year = "2022", publisher = "Association for Computational Linguistics" } ``` ## Ethical Statement While promising, the results in this work should not be interpreted as a definitive assessment of the performance of hate speech detection in Italian. We are unsure if our model can maintain a stable and fair precision across the different targets and categories. HATE-ITA might overlook some sensible details, which practitioners should treat with care.
gemasphi/laprador_trained
d192f50685e5e12d72e87b2a0a96a1a3460b12a3
2022-07-07T14:25:10.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_trained
7
null
sentence-transformers
14,609
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_trained This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_trained') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_trained') model = AutoModel.from_pretrained('gemasphi/laprador_trained') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_trained) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Aayesha/t5-end2end-questions-generation
54bf3f7394e87fdff070988e954c1c8e14dad195
2022-07-09T19:40:26.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad_modified_for_t5_qg", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Aayesha
null
Aayesha/t5-end2end-questions-generation
7
null
transformers
14,610
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.8015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.609 | 0.34 | 100 | 1.9542 | | 2.0336 | 0.68 | 200 | 1.8015 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
juanna/kogpt2_krpoem
b7349ade6e4073ce772b02afa3f2e57435b5a5f1
2022-07-07T16:41:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
juanna
null
juanna/kogpt2_krpoem
7
null
transformers
14,611
Entry not found
gemasphi/laprador_untrained
b24c648c171ad4dbce99acbb4edfe380e835057a
2022-07-07T15:20:10.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_untrained
7
null
sentence-transformers
14,612
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_untrained This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_untrained') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_untrained') model = AutoModel.from_pretrained('gemasphi/laprador_untrained') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_untrained) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Mascariddu8/distilbert-base-uncased-finetuned-imdb
331f600440d88b0d12429bbfa391d79ee285af23
2022-07-07T17:47:28.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Mascariddu8
null
Mascariddu8/distilbert-base-uncased-finetuned-imdb
7
null
transformers
14,613
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/fairytale_bot23
9e2b7a50858808da5e977ad6828b188864fbf50c
2022-07-07T21:44:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fairytale_bot23
7
null
transformers
14,614
--- language: en thumbnail: http://www.huggingtweets.com/fairytale_bot23/1657230245911/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486954631464771591/cwgDTNXD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fairytale Generator</div> <div style="text-align: center; font-size: 14px;">@fairytale_bot23</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fairytale Generator. | Data | Fairytale Generator | | --- | --- | | Tweets downloaded | 315 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 315 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lznwr8t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fairytale_bot23's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fairytale_bot23') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
liamliang/demographics_race_v2
347f61674ade89e29ea829150b3bfa254089dc06
2022-07-07T21:54:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
liamliang
null
liamliang/demographics_race_v2
7
null
transformers
14,615
Entry not found
rahuldebdas79/finetuning-sentiment-model-3000-samples
6a80d05356ac8d6698b3ee5605a6c11a06c3af1b
2022-07-18T18:40:24.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
rahuldebdas79
null
rahuldebdas79/finetuning-sentiment-model-3000-samples
7
null
transformers
14,616
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8684210526315789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3157 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Rohit129/NER_multiconer22
b48510a215ca9f5ca1a7948cbb528bc422c810b1
2022-07-08T16:05:14.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Rohit129
null
Rohit129/NER_multiconer22
7
null
transformers
14,617
Entry not found
jonatasgrosman/exp_w2v2t_fr_wavlm_s766
d354cd94e485f19db13f4d2b4b50eb2dfa2f0d6d
2022-07-09T00:37:51.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_wavlm_s766
7
null
transformers
14,618
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_wavlm_s766 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
dgrinwald/swin-tiny-patch4-window7-224-finetuned-eurosat
bbd3546d725c1546f19f54dbf06eb6da2e61adb2
2022-07-09T20:17:28.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
dgrinwald
null
dgrinwald/swin-tiny-patch4-window7-224-finetuned-eurosat
7
null
transformers
14,619
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.8464730290456431 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3266 - Accuracy: 0.8465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2941 | 1.0 | 17 | 1.1717 | 0.4689 | | 1.0655 | 2.0 | 34 | 0.9397 | 0.5560 | | 0.8008 | 3.0 | 51 | 0.6153 | 0.7303 | | 0.7204 | 4.0 | 68 | 0.5665 | 0.7427 | | 0.6931 | 5.0 | 85 | 0.4670 | 0.7801 | | 0.6277 | 6.0 | 102 | 0.4328 | 0.8465 | | 0.5689 | 7.0 | 119 | 0.4078 | 0.8174 | | 0.6103 | 8.0 | 136 | 0.4060 | 0.8091 | | 0.5501 | 9.0 | 153 | 0.4842 | 0.7884 | | 0.6018 | 10.0 | 170 | 0.3780 | 0.8423 | | 0.5668 | 11.0 | 187 | 0.3551 | 0.8631 | | 0.5192 | 12.0 | 204 | 0.4514 | 0.8216 | | 0.5133 | 13.0 | 221 | 0.3598 | 0.8174 | | 0.5753 | 14.0 | 238 | 0.4172 | 0.8091 | | 0.4833 | 15.0 | 255 | 0.4685 | 0.8050 | | 0.5546 | 16.0 | 272 | 0.4474 | 0.7842 | | 0.5179 | 17.0 | 289 | 0.4570 | 0.7884 | | 0.5017 | 18.0 | 306 | 0.4218 | 0.8050 | | 0.4808 | 19.0 | 323 | 0.4094 | 0.8050 | | 0.4708 | 20.0 | 340 | 0.4693 | 0.7759 | | 0.5033 | 21.0 | 357 | 0.3141 | 0.8672 | | 0.4859 | 22.0 | 374 | 0.3687 | 0.8257 | | 0.516 | 23.0 | 391 | 0.3819 | 0.8216 | | 0.4822 | 24.0 | 408 | 0.3391 | 0.8506 | | 0.4748 | 25.0 | 425 | 0.3281 | 0.8506 | | 0.4914 | 26.0 | 442 | 0.3308 | 0.8631 | | 0.4354 | 27.0 | 459 | 0.3859 | 0.8133 | | 0.4297 | 28.0 | 476 | 0.3761 | 0.8133 | | 0.4747 | 29.0 | 493 | 0.2914 | 0.8672 | | 0.4395 | 30.0 | 510 | 0.3025 | 0.8548 | | 0.4279 | 31.0 | 527 | 0.3314 | 0.8506 | | 0.4327 | 32.0 | 544 | 0.4626 | 0.7842 | | 0.446 | 33.0 | 561 | 0.3499 | 0.8382 | | 0.4011 | 34.0 | 578 | 0.3408 | 0.8465 | | 0.4418 | 35.0 | 595 | 0.3159 | 0.8589 | | 0.484 | 36.0 | 612 | 0.3130 | 0.8548 | | 0.4119 | 37.0 | 629 | 0.2899 | 0.8589 | | 0.4453 | 38.0 | 646 | 0.3200 | 0.8465 | | 0.4074 | 39.0 | 663 | 0.3493 | 0.8465 | | 0.3937 | 40.0 | 680 | 0.3003 | 0.8672 | | 0.4222 | 41.0 | 697 | 0.3547 | 0.8299 | | 0.3922 | 42.0 | 714 | 0.3206 | 0.8589 | | 0.3973 | 43.0 | 731 | 0.4074 | 0.8133 | | 0.4118 | 44.0 | 748 | 0.3147 | 0.8589 | | 0.4088 | 45.0 | 765 | 0.3393 | 0.8506 | | 0.3635 | 46.0 | 782 | 0.3584 | 0.8257 | | 0.403 | 47.0 | 799 | 0.3240 | 0.8506 | | 0.3943 | 48.0 | 816 | 0.3536 | 0.8216 | | 0.4085 | 49.0 | 833 | 0.3270 | 0.8465 | | 0.3865 | 50.0 | 850 | 0.3266 | 0.8465 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
marifulhaque/wav2vec2-large-xls-r-300m-turkish-colab
ddba20e6fa28f8d77cabbc643c6d139fb1efac1c
2022-07-28T03:03:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
marifulhaque
null
marifulhaque/wav2vec2-large-xls-r-300m-turkish-colab
7
null
transformers
14,620
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4411 - Wer: 0.3271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8286 | 3.67 | 400 | 0.6899 | 0.7462 | | 0.4378 | 7.34 | 800 | 0.4803 | 0.5127 | | 0.2073 | 11.01 | 1200 | 0.4640 | 0.4584 | | 0.1386 | 14.68 | 1600 | 0.4355 | 0.4252 | | 0.1058 | 18.35 | 2000 | 0.4476 | 0.3789 | | 0.0819 | 22.02 | 2400 | 0.4248 | 0.3543 | | 0.0666 | 25.69 | 2800 | 0.4276 | 0.3399 | | 0.0525 | 29.36 | 3200 | 0.4411 | 0.3271 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ryo0634/luke-base-comp-concat-20181220
332a027d9fd160450a1bd94be29d67f313f0d9c7
2022-07-09T15:47:45.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/luke-base-comp-concat-20181220
7
null
transformers
14,621
Entry not found
NAACL2022/spider
581ed03a9a3b1901466b9f8430c952799153a418
2022-07-09T19:11:45.000Z
[ "pytorch", "dpr", "arxiv:2112.07708", "transformers" ]
null
false
NAACL2022
null
NAACL2022/spider
7
4
transformers
14,622
# Spider This is the unsupervised pretrained model discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708). ## Usage We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both. **Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token type ids are all 0-s. An example usage: ```python from transformers import AutoTokenizer, DPRContextEncoder tokenizer = AutoTokenizer.from_pretrained("tau/spider") model = DPRContextEncoder.from_pretrained("tau/spider") input_dict = tokenizer("title", "text", return_tensors="pt") del input_dict["token_type_ids"] outputs = model(**input_dict) ```
jonatasgrosman/exp_w2v2t_fa_wav2vec2_s321
ebd01c42bd9945ba8971a7809e715080d8cebd0e
2022-07-09T19:41:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fa", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fa_wav2vec2_s321
7
null
transformers
14,623
--- language: - fa license: apache-2.0 tags: - automatic-speech-recognition - fa datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fa_wav2vec2_s321 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fa_wavlm_s779
e523fac9049560b545e29ea4b61201d870d50f14
2022-07-09T22:40:13.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "fa", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fa_wavlm_s779
7
null
transformers
14,624
--- language: - fa license: apache-2.0 tags: - automatic-speech-recognition - fa datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fa_wavlm_s779 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ArnavL/roberta-realnews-agnews-0
de75299ce01086d731e1976799bc936f8bd25da2
2022-07-10T09:10:39.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
ArnavL
null
ArnavL/roberta-realnews-agnews-0
7
null
transformers
14,625
Entry not found
jonatasgrosman/exp_w2v2t_zh-cn_wavlm_s677
c718301a11d6611002f943bd4ab1421a1b553dfa
2022-07-10T01:36:46.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "zh-CN", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_zh-cn_wavlm_s677
7
null
transformers
14,626
--- language: - zh-CN license: apache-2.0 tags: - automatic-speech-recognition - zh-CN datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_zh-cn_wavlm_s677 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
faebots/image-gpt2
3f4511ade28f0f025a6458c32314ab3fb9edeb5b
2022-07-16T01:24:29.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
faebots
null
faebots/image-gpt2
7
null
transformers
14,627
Entry not found
ShooterRon/mt5-small_summarization
3886538695dab70d98547a1d3a0872d2eff6010c
2022-07-10T15:19:23.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ShooterRon
null
ShooterRon/mt5-small_summarization
7
null
transformers
14,628
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small_summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small_summarization This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1774 - Rouge1: 18.2118 - Rouge2: 6.6244 - Rougel: 15.4682 - Rougelsum: 15.3942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 17.7253 | 1.0 | 50 | 7.6921 | 6.677 | 1.1111 | 6.5586 | 6.6861 | | 9.8457 | 2.0 | 100 | 4.5604 | 12.8991 | 1.9103 | 11.2559 | 10.9036 | | 6.2403 | 3.0 | 150 | 3.9071 | 16.463 | 4.0695 | 14.3098 | 14.4065 | | 5.2032 | 4.0 | 200 | 3.4869 | 17.6601 | 4.0878 | 14.2931 | 14.2743 | | 4.8331 | 5.0 | 250 | 3.3472 | 18.5241 | 5.3312 | 15.8993 | 16.0559 | | 4.526 | 6.0 | 300 | 3.2346 | 19.0264 | 5.7839 | 15.8013 | 16.1208 | | 4.5378 | 7.0 | 350 | 3.1927 | 18.9843 | 6.992 | 16.3787 | 16.3574 | | 4.3278 | 8.0 | 400 | 3.1774 | 18.2118 | 6.6244 | 15.4682 | 15.3942 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
harr/my-awesome-model
9a4ea12b0721439f3746ba0797e9b3d2603b203e
2022-07-10T13:31:20.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
harr
null
harr/my-awesome-model
7
null
transformers
14,629
Entry not found
ryo0634/luke-base-comp-20201201
558a7354398d891886c4a2aeafa7890da7ceda99
2022-07-11T04:27:06.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/luke-base-comp-20201201
7
null
transformers
14,630
Entry not found
jonatasgrosman/exp_w2v2t_nl_vp-it_s449
e1f77af9f940a26a146e66ab97bd8ef8a011adf8
2022-07-11T07:20:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_nl_vp-it_s449
7
null
transformers
14,631
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-it_s449 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_xls-r_s635
af37c16f405eed4000898da2882cca9734c09a13
2022-07-11T09:42:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ru_xls-r_s635
7
null
transformers
14,632
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xls-r_s635 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
rajkumarrrk/gpt-2-fine-tuned-on-cnn-dm
6924a13bf906ffa1450796940ac40ee92cc87bdd
2022-07-11T11:36:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
rajkumarrrk
null
rajkumarrrk/gpt-2-fine-tuned-on-cnn-dm
7
null
transformers
14,633
--- license: apache-2.0 --- GPT-2 fine-tuned on CNN/DM summarization dataset. Training args:\ { "learning_rate": 0.0001\ "logging_steps": 5000\ "lr_scheduler_type": "cosine"\ "num_train_epochs": 2\ "per_device_train_batch_size": 12, # Total batch size: 36\ "weight_decay": 0.1\ } {"generation_kwargs": {"do_sample": true, "max_new_tokens": 100, "min_length": 50} Pre-processing to truncate the article to contain only 500 tokens. Post-processing to consider only first three sentences as the summary. Test split metrics: Meteor: 0.2562237219960531\ Rouge1: 0.3754558158439447\ Rouge2: 0.15532626375157227\ RougeL: 0.25813023509572597\ RougeLsum: 0.3489472885043494\ BLEU: 0.09285941365815623\ Bert_score: 0.87570951795246\
KeLiu/QETRA_Python
bfbb3b9551746f660a1d0493b2908dca2253a968
2022-07-11T14:39:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KeLiu
null
KeLiu/QETRA_Python
7
null
transformers
14,634
Entry not found
Sahara/finetuning-sentiment-model-3000-samples
a5adeb94a59f90eae02f94dfead931ff9b139d9a
2022-07-11T19:23:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sahara
null
Sahara/finetuning-sentiment-model-3000-samples
7
null
transformers
14,635
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8533333333333334 - name: F1 type: f1 value: 0.8562091503267975 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3322 - Accuracy: 0.8533 - F1: 0.8562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-distilbert-s
8ba0aad03662448d8d2d344522153626c5629816
2022-07-12T04:54:03.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-distilbert-s
7
null
transformers
14,636
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-s results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-s This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8594 | 1.0 | 844 | 1.4751 | | 1.4763 | 2.0 | 1688 | 1.3282 | | 1.3664 | 3.0 | 2532 | 1.2553 | | 1.2975 | 4.0 | 3376 | 1.2093 | | 1.2543 | 5.0 | 4220 | 1.1667 | | 1.2189 | 6.0 | 5064 | 1.1472 | | 1.1944 | 7.0 | 5908 | 1.1251 | | 1.1737 | 8.0 | 6752 | 1.1018 | | 1.1549 | 9.0 | 7596 | 1.0950 | | 1.1387 | 10.0 | 8440 | 1.0796 | | 1.1295 | 11.0 | 9284 | 1.0713 | | 1.1166 | 12.0 | 10128 | 1.0639 | | 1.1078 | 13.0 | 10972 | 1.0485 | | 1.099 | 14.0 | 11816 | 1.0431 | | 1.0951 | 15.0 | 12660 | 1.0425 | | 1.0874 | 16.0 | 13504 | 1.0323 | | 1.0828 | 17.0 | 14348 | 1.0368 | | 1.0802 | 18.0 | 15192 | 1.0339 | | 1.0798 | 19.0 | 16036 | 1.0247 | | 1.0758 | 20.0 | 16880 | 1.0321 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-distilbert-upper-tIs
8541d61105c8c4b83eceed734745b300ffc1ac5c
2022-07-12T10:28:07.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-distilbert-upper-tIs
7
null
transformers
14,637
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilbert-upper-tIs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilbert-upper-tIs This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.67 | 1.0 | 1353 | 1.2945 | | 1.2965 | 2.0 | 2706 | 1.1547 | | 1.1904 | 3.0 | 4059 | 1.0846 | | 1.1272 | 4.0 | 5412 | 1.0407 | | 1.0857 | 5.0 | 6765 | 1.0039 | | 1.0549 | 6.0 | 8118 | 0.9802 | | 1.03 | 7.0 | 9471 | 0.9660 | | 1.01 | 8.0 | 10824 | 0.9474 | | 0.9931 | 9.0 | 12177 | 0.9365 | | 0.9807 | 10.0 | 13530 | 0.9252 | | 0.9691 | 11.0 | 14883 | 0.9105 | | 0.9601 | 12.0 | 16236 | 0.9079 | | 0.9503 | 13.0 | 17589 | 0.8979 | | 0.9436 | 14.0 | 18942 | 0.8930 | | 0.9371 | 15.0 | 20295 | 0.8875 | | 0.9322 | 16.0 | 21648 | 0.8851 | | 0.9279 | 17.0 | 23001 | 0.8801 | | 0.9254 | 18.0 | 24354 | 0.8812 | | 0.9227 | 19.0 | 25707 | 0.8768 | | 0.9232 | 20.0 | 27060 | 0.8746 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ppsingh/bert-base-uncased-finetuned-osdg
610e7ad7a8b52b2e22bce70f4bcbbda732b3b6a0
2022-07-12T13:26:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ppsingh
null
ppsingh/bert-base-uncased-finetuned-osdg
7
null
transformers
14,638
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-osdg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-osdg This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5716 - F1 Score: 0.8359 - Accuracy: 0.8726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.6505 | 1.0 | 830 | 0.5662 | 0.8140 | 0.8577 | | 0.4115 | 2.0 | 1660 | 0.5699 | 0.8249 | 0.8625 | | 0.2334 | 3.0 | 2490 | 0.5716 | 0.8359 | 0.8726 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/piotrikonowicz1
28810c715d8d89dfff8c6a01d4fca17555874fa4
2022-07-12T14:00:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/piotrikonowicz1
7
null
transformers
14,639
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/770622589664460802/bgUHfTNZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Piotr Ikonowicz</div> <div style="text-align: center; font-size: 14px;">@piotrikonowicz1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Piotr Ikonowicz. | Data | Piotr Ikonowicz | | --- | --- | | Tweets downloaded | 133 | | Retweets | 3 | | Short tweets | 13 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/156jwrd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piotrikonowicz1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w029u281) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w029u281/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piotrikonowicz1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/reillocity
d6b9c3e8386f5b00906fd63886a9b9c2b0d018e2
2022-07-25T06:40:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/reillocity
7
null
transformers
14,640
--- language: en thumbnail: http://www.huggingtweets.com/reillocity/1658731242865/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1268284452586700800/BtFzXFsw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Collier</div> <div style="text-align: center; font-size: 14px;">@reillocity</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Collier. | Data | Matt Collier | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 35 | | Short tweets | 38 | | Tweets kept | 3177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20sr7og7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @reillocity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3i5czu5f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3i5czu5f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/reillocity') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ariesutiono/scibert-lm-const-finetuned-20
17069c17096c3da87ad9ae066e29bd565a1a7ad0
2022-07-13T00:15:55.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:conll2003", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
ariesutiono
null
ariesutiono/scibert-lm-const-finetuned-20
7
null
transformers
14,641
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: scibert-lm-const-finetuned-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert-lm-const-finetuned-20 This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 2.0099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6081 | 1.0 | 118 | 2.9156 | | 2.7954 | 2.0 | 236 | 2.5940 | | 2.5762 | 3.0 | 354 | 2.5017 | | 2.4384 | 4.0 | 472 | 2.3923 | | 2.3391 | 5.0 | 590 | 2.2996 | | 2.2417 | 6.0 | 708 | 2.3180 | | 2.2161 | 7.0 | 826 | 2.2336 | | 2.1918 | 8.0 | 944 | 2.2465 | | 2.1494 | 9.0 | 1062 | 2.1871 | | 2.1215 | 10.0 | 1180 | 2.1566 | | 2.1015 | 11.0 | 1298 | 2.1849 | | 2.05 | 12.0 | 1416 | 2.1092 | | 2.0653 | 13.0 | 1534 | 2.2221 | | 2.0261 | 14.0 | 1652 | 2.1572 | | 2.0117 | 15.0 | 1770 | 2.1452 | | 1.9845 | 16.0 | 1888 | 2.1433 | | 1.9791 | 17.0 | 2006 | 2.1225 | | 1.9979 | 18.0 | 2124 | 2.0777 | | 1.9688 | 19.0 | 2242 | 2.1765 | | 1.9873 | 20.0 | 2360 | 2.0099 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt-EN
0ad3ff538a075813eb8a09e5773d1d579f3514fe
2022-07-13T01:19:02.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt-EN
7
null
transformers
14,642
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt-EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt-EN This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7564 - Accuracy: 0.8640 - F1: 0.6845 - Precision: 0.5877 - Recall: 0.8197 - Mae: 0.1360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3793 | 1.0 | 2395 | 0.3475 | 0.8460 | 0.6309 | 0.5550 | 0.7309 | 0.1540 | | 0.3471 | 2.0 | 4790 | 0.3255 | 0.8580 | 0.6526 | 0.5830 | 0.7411 | 0.1420 | | 0.3075 | 3.0 | 7185 | 0.3426 | 0.8379 | 0.6451 | 0.5324 | 0.8183 | 0.1621 | | 0.2634 | 4.0 | 9580 | 0.3034 | 0.8856 | 0.7112 | 0.6521 | 0.7821 | 0.1144 | | 0.2439 | 5.0 | 11975 | 0.4210 | 0.8656 | 0.6844 | 0.5928 | 0.8094 | 0.1344 | | 0.2212 | 6.0 | 14370 | 0.5260 | 0.8698 | 0.6904 | 0.6035 | 0.8067 | 0.1302 | | 0.1855 | 7.0 | 16765 | 0.5626 | 0.8739 | 0.6967 | 0.6146 | 0.8040 | 0.1261 | | 0.1666 | 8.0 | 19160 | 0.6727 | 0.8647 | 0.6834 | 0.5905 | 0.8108 | 0.1353 | | 0.147 | 9.0 | 21555 | 0.6287 | 0.8743 | 0.6962 | 0.6163 | 0.7999 | 0.1257 | | 0.1367 | 10.0 | 23950 | 0.7564 | 0.8640 | 0.6845 | 0.5877 | 0.8197 | 0.1360 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
srini98/distilbert-base-uncased-finetuned-clinic
2bf5cab19281cc5ab1c501b7cd4c160814b5b05e
2022-07-13T04:12:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
srini98
null
srini98/distilbert-base-uncased-finetuned-clinic
7
null
transformers
14,643
Entry not found
abx/bert-finetuned-ner
65ae06c307fa4884db98d655e59365427c88136f
2022-07-13T06:15:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
abx
null
abx/bert-finetuned-ner
7
null
transformers
14,644
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9341713529606351 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9422756089422756 - name: Accuracy type: accuracy value: 0.9861070230176017 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Precision: 0.9342 - Recall: 0.9505 - F1: 0.9423 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0865 | 1.0 | 1756 | 0.0667 | 0.9166 | 0.9379 | 0.9271 | 0.9829 | | 0.0397 | 2.0 | 3512 | 0.0560 | 0.9337 | 0.9522 | 0.9428 | 0.9867 | | 0.0194 | 3.0 | 5268 | 0.0623 | 0.9342 | 0.9505 | 0.9423 | 0.9861 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
morenolq/thext-ai-scibert
b4de7e5ac8d4e99875537582336843177a1863f2
2022-07-13T17:01:04.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "regression" ]
text-classification
false
morenolq
null
morenolq/thext-ai-scibert
7
null
transformers
14,645
--- language: "en" tags: - bert - regression - pytorch pipeline: - text-classification widget: - text: "We propose a new approach, based on Transformer-based encoding, to highlight extraction. To the best of our knowledge, this is the first attempt to use transformer architectures to address automatic highlight generation. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "We design a context-aware sentence-level regressor, in which the semantic similarity between candidate sentences and highlights is estimated by also attending the contextual knowledge provided by the other paper sections. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "Fig. 2, Fig. 3, Fig. 4 show the effect of varying the number K of selected highlights on the extraction performance. As expected, recall values increase while increasing the number of selected highlights, whereas precision values show an opposite trend. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." --- # General Information This model is trained on journal publications of belonging to the domain: **Artificial Intelligence**. This is an `allenai/scibert_scivocab_cased` model trained in the scientific domain. The model is trained with regression objective to estimate the relevance of a sentence according to the provided context (e.g., the abstract of the scientific paper). The model is used in the paper 'Transformer-based highlights extraction from scientific papers' published in Knowledge-Based Systems scientific journal. The model is able to achieve state-of-the-art performance in the task of highlights extraction from scientific papers. Access to the full paper: [here](https://doi.org/10.1016/j.knosys.2022.109382). # Usage: For detailed usage please use the official repository https://github.com/MorenoLaQuatra/THExt . # References: If you find it useful, please cite the following paper: ```bibtex @article{thext, title={Transformer-based highlights extraction from scientific papers}, author={La Quatra, Moreno and Cagliero, Luca}, journal={Knowledge-Based Systems}, pages={109382}, year={2022}, publisher={Elsevier} } ```
Hamzaaa/wav2vec2-base-finetuned-crema
7a523dc420d780d1253cb977e612763ec65bab19
2022-07-13T14:13:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-finetuned-crema
7
null
transformers
14,646
Entry not found
jpalojarvi/finetuning-sentiment-model-3000-samples
1c77659b26f187a95f2311746349e4cb6d669b12
2022-07-13T14:48:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jpalojarvi
null
jpalojarvi/finetuning-sentiment-model-3000-samples
7
null
transformers
14,647
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8590604026845637 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3239 - Accuracy: 0.86 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NinaXiao/distilroberta-base-finetuned-wikitext2
dd8dcfb640c906f7bdaad574eb6c335d8c7fd72a
2022-07-14T07:02:45.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
NinaXiao
null
NinaXiao/distilroberta-base-finetuned-wikitext2
7
null
transformers
14,648
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 285 | 2.0524 | | 2.2183 | 2.0 | 570 | 1.9742 | | 2.2183 | 3.0 | 855 | 1.9947 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ghadeermobasher/Modifiedbluebert_pubmed_uncased_L-12_H-768_A-12-BioRED-Dis-128-32-30
491bf01437f110163d8c05b72866952422549f08
2022-07-13T18:16:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modifiedbluebert_pubmed_uncased_L-12_H-768_A-12-BioRED-Dis-128-32-30
7
null
transformers
14,649
Entry not found
ghadeermobasher/OriginalBiomedNLP-bluebert_pubmed_uncased_L-12_H-768_A-12-BioRED_Dis-128-32-30
270aafc0b45efe6f7d6899ce88d9a4e1f7891929
2022-07-13T19:59:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/OriginalBiomedNLP-bluebert_pubmed_uncased_L-12_H-768_A-12-BioRED_Dis-128-32-30
7
null
transformers
14,650
Entry not found
ghadeermobasher/Originalbiobert-v1.1-BioRED-CD-256-16-5
9b3e0ff0023589f850ba00e479101937cdf08831
2022-07-13T19:49:36.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Originalbiobert-v1.1-BioRED-CD-256-16-5
7
null
transformers
14,651
Entry not found
jslowik/distilbert-base-uncased-finetuned-emotion
40e303b070eee4daefeee9141761f28fd37b2471
2022-07-14T15:05:25.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jslowik
null
jslowik/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,652
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9262423473736914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2156 - Accuracy: 0.9265 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.814 | 1.0 | 250 | 0.3075 | 0.907 | 0.9048 | | 0.2481 | 2.0 | 500 | 0.2156 | 0.9265 | 0.9262 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
eltonpan/codeparrot-ds-2
be6f8fb26d27f6d70916362902c924143ecf9bd8
2022-07-15T07:31:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
eltonpan
null
eltonpan/codeparrot-ds-2
7
null
transformers
14,653
Entry not found
KyleYu1054/sound_classification_hubert
a578716ebfa8b52ee9edc3c2c8cdd13f953c18aa
2022-07-14T23:46:17.000Z
[ "pytorch", "hubert", "transformers" ]
null
false
KyleYu1054
null
KyleYu1054/sound_classification_hubert
7
null
transformers
14,654
Entry not found
Sayan01/tiny-bert-qnli128-distilled
5200b747c21521f583ef032b2a9308029adadfbc
2022-07-15T07:26:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-qnli128-distilled
7
null
transformers
14,655
Entry not found
Ankhitan/segformer-b0-finetuned-segments-sidewalk-11
e8722a68344636719b08f21629247b38b7d2faea
2022-07-15T21:08:13.000Z
[ "pytorch", "segformer", "transformers" ]
null
false
Ankhitan
null
Ankhitan/segformer-b0-finetuned-segments-sidewalk-11
7
null
transformers
14,656
Entry not found
Hadjer/distilbert-base-uncased-finetuned-squad
1a080ce87039254c72734c400c84fecca0ec2a61
2022-07-16T09:47:27.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Hadjer
null
Hadjer/distilbert-base-uncased-finetuned-squad
7
null
transformers
14,657
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1564 - eval_runtime: 147.0781 - eval_samples_per_second: 73.322 - eval_steps_per_second: 4.583 - epoch: 1.0 - step: 5533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ClassCat/roberta-small-basque
b9da71ab553c597e8028fc455f3f0fca6f7f72dc
2022-07-19T13:04:27.000Z
[ "pytorch", "roberta", "fill-mask", "eu", "dataset:cc100", "dataset:oscar", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ClassCat
null
ClassCat/roberta-small-basque
7
1
transformers
14,658
--- language: eu license: cc-by-sa-4.0 datasets: - cc100 - oscar widget: - text: "Euria egingo <mask> gaur ?" - text: "<mask> umeari liburua eman dio." - text: "Zein da zure <mask> ?" --- ## RoBERTa Basque small model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses approximately half the size of RoBERTa base model parameters. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * Subset of [CC-100/eu](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data * Subset of [oscar](https://huggingface.co/datasets/oscar) ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-small-basque') unmasker("Zein da zure <mask> ?") ```
ClassCat/gpt2-small-basque-v2
a1382909ca2e4b10ba4325d93bdfce54a44d7104
2022-07-20T12:38:57.000Z
[ "pytorch", "gpt2", "text-generation", "eu", "dataset:cc100", "dataset:oscar", "transformers", "license:cc-by-sa-4.0" ]
text-generation
false
ClassCat
null
ClassCat/gpt2-small-basque-v2
7
1
transformers
14,659
--- language: eu license: cc-by-sa-4.0 datasets: - cc100 - oscar widget: - text: "Zein da zure" - text: "Euria egingo" - text: "Nola dakizu ?" --- ## GPT2 Basque small model Version 2 (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses approximately half the size of GPT2 base model parameters. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * Subset of [CC-100/eu](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data * Subset of [oscar](https://huggingface.co/datasets/oscar) ### Usage ```python from transformers import pipeline generator = pipeline('text-generation', model='ClassCat/gpt2-small-basque-v2') generator("Zein da zure ", max_length=50, num_return_sequences=5) ```
tanfiona/unicausal-pair-baseline
0f5275781d846ea154b938d86fcb4c9d060a397d
2022-07-17T07:17:09.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "license:unknown" ]
text-classification
false
tanfiona
null
tanfiona/unicausal-pair-baseline
7
null
transformers
14,660
--- language: en license: unknown widget: - text: "<ARG1>She fell</ARG1> because <ARG0>he pushed her</ARG0> ." example_title: "Causal Example 1" - text: "<ARG0>He pushed her</ARG0> , <ARG1>causing her to fall</ARG1>." example_title: "Causal Example 2" - text: "<ARG0>She fell</ARG0> because <ARG1>he pushed her</ARG1> ." example_title: "Non-causal Example 1" - text: "<ARG1>He is Billy</ARG1> and <ARG0>he pushed her</ARG0>." example_title: "Non-causal Example 2" --- Binary causal sentence classification with argument prompts: * LABEL_0 = Non-causal * LABEL_1 = Causal (ARG0 causes ARG1) Trained on multiple datasets. For Causal sequences, try swapping the arguments to observe the prediction results.
ranrinat/distilbert-base-uncased-finetuned-emotion
192df21ed8bd263daa77d0f5f11ae3c80c3e8131
2022-07-17T14:28:45.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ranrinat
null
ranrinat/distilbert-base-uncased-finetuned-emotion
7
null
transformers
14,661
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246080819022496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8152 | 1.0 | 250 | 0.2994 | 0.9095 | 0.9072 | | 0.2424 | 2.0 | 500 | 0.2158 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jinwooChoi/KDW_SA_mix_16_1e5
7cca1e7c276b12c76eb24f41da531185494d4374
2022-07-19T07:11:19.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/KDW_SA_mix_16_1e5
7
null
transformers
14,662
Entry not found
shivarama23/swin_4epoch
5d5ec4b2dc9fb37382e848c8f7f05172c520ee25
2022-07-18T09:39:49.000Z
[ "pytorch", "swin", "image-classification", "transformers" ]
image-classification
false
shivarama23
null
shivarama23/swin_4epoch
7
null
transformers
14,663
Entry not found
claudiovaliense/teste_claudio4
b0cd4b5624302a9bb870abd53dc00757add166ae
2022-07-18T15:34:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
claudiovaliense
null
claudiovaliense/teste_claudio4
7
null
transformers
14,664
Entry not found
doya/klue-sentiment-everybodyscorpus
f5acecf1d9c3234d79bde528efbebbcf3c53025f
2022-07-18T16:09:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
doya
null
doya/klue-sentiment-everybodyscorpus
7
null
transformers
14,665
Entry not found
pnr-svc/DistilBert-Sentiment-Analysis-Turkish
b47d1fdafba58fb9f87aea6f3c16bd00d21bd11c
2022-07-18T18:38:46.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
pnr-svc
null
pnr-svc/DistilBert-Sentiment-Analysis-Turkish
7
null
transformers
14,666
Entry not found
vencortexTeam/autotrain-CompanyDescription-1149642380
03c663ae361b9223c8b80ee9b77ff91fd6085fdf
2022-07-19T15:24:12.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:vencortexTeam/autotrain-data-CompanyDescription", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
vencortexTeam
null
vencortexTeam/autotrain-CompanyDescription-1149642380
7
null
transformers
14,667
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - vencortexTeam/autotrain-data-CompanyDescription co2_eq_emissions: 4.803822525731932 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1149642380 - CO2 Emissions (in grams): 4.803822525731932 ## Validation Metrics - Loss: 1.1474181413650513 - Rouge1: 57.8827 - Rouge2: 46.6881 - RougeL: 56.4209 - RougeLsum: 56.4665 - Gen Len: 18.0731 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/vencortexTeam/autotrain-CompanyDescription-1149642380 ```
jinwooChoi/KDW_SA_base_mix_48_1e5
6eb30586a4e5a83467b108baa3c298ada5bea40c
2022-07-19T07:05:25.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/KDW_SA_base_mix_48_1e5
7
null
transformers
14,668
Entry not found
roscazo/Covid-conv-v1
14114c19a213403584c5b2cd1c875353bc172f38
2022-07-19T21:03:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
roscazo
null
roscazo/Covid-conv-v1
7
null
transformers
14,669
Entry not found
abdulmatinomotoso/multi_news_headline
2d70633f769a6cdc8f90da32ed39d318ef531e8d
2022-07-19T23:50:20.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/multi_news_headline
7
null
transformers
14,670
--- tags: - generated_from_trainer model-index: - name: multi_news_headline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_headline This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.3316 | 0.53 | 100 | 7.0830 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Kwaku/gpt2-finetuned-banking77
a372a4dc9604ac5b9f4c3f402b297eeadd8adbf5
2022-07-21T20:21:55.000Z
[ "pytorch", "gpt2", "text-generation", "eng", "dataset:banking77", "transformers" ]
text-generation
false
Kwaku
null
Kwaku/gpt2-finetuned-banking77
7
null
transformers
14,671
--- language: eng datasets: - banking77 --- # GPT2 Fine-Tuned Banking 77 This is a fine-tuned version of the GPT2 model. It's best suited for text-generation. ## Model Description gpt2-finetuned-ko was fine tuned on the [banking77](https://huggingface.co/datasets/banking77) dataset, which is "composed of online banking queries annotated with their corresponding intents." ## Intended Uses and Limitations Given the magnitude of the [Microsoft DialoGPT-large](https://huggingface.co/microsoft/DialoGPT-large) model, the author resorted to fine-tuning the gpt2 model for the creation of a chatbot. The intent was for the chatbot to emulate a banking customer agent, hence the use of the banking77 dataset. However, when the fine-tuned model was deployed in the chatbot, the results were undesirable. Its responses were inappropriate and unnecessarily long. The last word of its response is repeated numerously, a major glitch in it. The model performs better in text-generation but is prone to generating banking-related text because of the corpus it was trained on. ### How to use You can use this model directly with a pipeline for text generation: ```python >>>from transformers import pipeline >>> model_name = "Kwaku/gpt2-finetuned-ko" >>> generator = pipeline("text-generation", model=model_name) >>> result = generator("My money is", max_length=15, num_return_sequences=2) >>> print(result) [{'generated_text': 'My money is stuck in ATM pending. Please cancel this transaction and refund it'}, {'generated_text': 'My money is missing. How do I get a second card, and how'}] ``` ### Limitations and bias For users who want a diverse text-generator, this model's tendency to generate mostly bank-related text will be a drawback. It also inherits [the biases of its parent model, the GPT2](https://huggingface.co/gpt2#limitations-and-bias).
ChuVN/bart-base-finetuned-squad2-finetuned-squad2
30819a65fff25c680f27441b5479625fe7720264
2022-07-21T14:43:51.000Z
[ "pytorch", "bart", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ChuVN
null
ChuVN/bart-base-finetuned-squad2-finetuned-squad2
7
null
transformers
14,672
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bart-base-finetuned-squad2-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad2-finetuned-squad2 This model is a fine-tuned version of [ChuVN/bart-base-finetuned-squad2](https://huggingface.co/ChuVN/bart-base-finetuned-squad2) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lqdisme/distilbert-base-uncased-finetuned-squad
ca7bf280a6417dac710d47198c35128e7a395a1b
2022-07-20T08:03:52.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
lqdisme
null
lqdisme/distilbert-base-uncased-finetuned-squad
7
null
transformers
14,673
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Isma/test
2912f913a8c0ddf6a6ac930e501438cd677affba
2022-07-20T04:41:05.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
Isma
null
Isma/test
7
null
transformers
14,674
Entry not found
muibk/mirrorbert_mbert_sent_unsup_en_de_ru_10k_mean
de9aad80d99295b0c5e8a180eab4e1e229461ab2
2022-07-20T13:40:13.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
muibk
null
muibk/mirrorbert_mbert_sent_unsup_en_de_ru_10k_mean
7
null
transformers
14,675
Entry not found
finiteautomata/legal-definition-ner
531084a64a6751712c1cb1fa1cdd64bec6e77d33
2022-07-20T14:47:12.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
finiteautomata
null
finiteautomata/legal-definition-ner
7
null
transformers
14,676
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: legal-definition-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal-definition-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3580 - eval_precision: 0.3777 - eval_recall: 0.4355 - eval_macro_f1: 0.1845 - eval_micro_f1: 0.4046 - eval_accuracy: 0.8817 - eval_Alias_Term_f1: 0.125 - eval_Alias_Term_precision: 0.1786 - eval_Alias_Term_recall: 0.0962 - eval_Definition_f1: 0.1631 - eval_Definition_precision: 0.1424 - eval_Definition_recall: 0.1908 - eval_Qualifier_f1: 0.0 - eval_Qualifier_precision: 0.0 - eval_Qualifier_recall: 0.0 - eval_Referential_Definition_f1: 0.0 - eval_Referential_Definition_precision: 0.0 - eval_Referential_Definition_recall: 0.0 - eval_Referential_Term_f1: 0.0 - eval_Referential_Term_precision: 0.0 - eval_Referential_Term_recall: 0.0 - eval_Secondary_Definition_f1: 0.0275 - eval_Secondary_Definition_precision: 0.0343 - eval_Secondary_Definition_recall: 0.0229 - eval_Term_f1: 0.9757 - eval_Term_precision: 0.9567 - eval_Term_recall: 0.9955 - eval_runtime: 33.3159 - eval_samples_per_second: 166.647 - eval_steps_per_second: 10.415 - epoch: 3.45 - step: 1616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
haisona3/longformer-base-4096-finetuned-squad2-length-1024-128window
de903aba6a1a33dc172cbda2502a0f5d75406d0a
2022-07-20T16:34:46.000Z
[ "pytorch", "tensorboard", "longformer", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
haisona3
null
haisona3/longformer-base-4096-finetuned-squad2-length-1024-128window
7
null
transformers
14,677
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: longformer-base-4096-finetuned-squad2-length-1024-128window results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-base-4096-finetuned-squad2-length-1024-128window This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ChuVN/longformer-base-4096-finetuned-squad2-length-1024-128window
2f16686585f2b296c35d7183749229573922ba99
2022-07-20T23:21:07.000Z
[ "pytorch", "tensorboard", "longformer", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ChuVN
null
ChuVN/longformer-base-4096-finetuned-squad2-length-1024-128window
7
null
transformers
14,678
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: longformer-base-4096-finetuned-squad2-length-1024-128window results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-base-4096-finetuned-squad2-length-1024-128window This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8641 | 1.0 | 32580 | 0.9057 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ahmed007/T5-ibn-Shaddad-v2
21ebed26868085a7d181cb56a35b57cde38a2fdb
2022-07-21T02:22:41.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/T5-ibn-Shaddad-v2
7
null
transformers
14,679
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-ibn-Shaddad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-ibn-Shaddad-v2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1234 | 1.0 | 2493 | 0.1159 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ahmed007/mt5-small-ibn-Shaddad-v3
5248ac233c96e9ffa11989e6acd3722d0c73f5f1
2022-07-21T03:47:51.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "Poet", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/mt5-small-ibn-Shaddad-v3
7
null
transformers
14,680
--- license: apache-2.0 tags: - Poet - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-ibn-Shaddad-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-ibn-Shaddad-v3 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2668 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 5.4157 | 1.0 | 935 | 3.2668 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
farleyknight/distilbert-base-uncased-finetuned-cola
664896037c348df35853243829cc1922088c14b2
2022-07-21T12:38:30.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
farleyknight
null
farleyknight/distilbert-base-uncased-finetuned-cola
7
null
transformers
14,681
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5491920151313351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8288 - Matthews Correlation: 0.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5294 | 1.0 | 535 | 0.5478 | 0.3803 | | 0.3519 | 2.0 | 1070 | 0.5429 | 0.4830 | | 0.2375 | 3.0 | 1605 | 0.5676 | 0.5298 | | 0.1783 | 4.0 | 2140 | 0.7776 | 0.5338 | | 0.1294 | 5.0 | 2675 | 0.8288 | 0.5492 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
arize-ai/resnet-50-cifar10-quality-drift
a966167ee856646ed878293729386c429920d96b
2022-07-21T23:55:46.000Z
[ "pytorch", "tensorboard", "resnet", "image-classification", "dataset:cifar10_quality_drift", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
arize-ai
null
arize-ai/resnet-50-cifar10-quality-drift
7
null
transformers
14,682
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10_quality_drift metrics: - accuracy - f1 model-index: - name: resnet-50-cifar10-quality-drift results: - task: name: Image Classification type: image-classification dataset: name: cifar10_quality_drift type: cifar10_quality_drift args: default metrics: - name: Accuracy type: accuracy value: 0.724 - name: F1 type: f1 value: 0.7221970011456912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-cifar10-quality-drift This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10_quality_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.8235 - Accuracy: 0.724 - F1: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.7311 | 1.0 | 750 | 1.1310 | 0.6333 | 0.6300 | | 1.1728 | 2.0 | 1500 | 0.8495 | 0.7153 | 0.7155 | | 1.0322 | 3.0 | 2250 | 0.8235 | 0.724 | 0.7222 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/SKKU_SA_HJW_0722_2
db751ee8756cc5fbf98b5efc6ef8baab4d956c3d
2022-07-22T06:24:47.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_HJW_0722_2
7
null
transformers
14,683
Entry not found
jinwooChoi/SKKU_SA_HJW_0722
1112a9f62e831db6963c3ac4f9773a8b64836a03
2022-07-22T07:15:52.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_HJW_0722
7
null
transformers
14,684
Entry not found
huggingtweets/thenextweb
53656bf4c311c80b08a85c2a2ed13b2a89b04fe9
2022-07-22T10:35:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thenextweb
7
null
transformers
14,685
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1306571874000830464/AZtkNMd-_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TNW</div> <div style="text-align: center; font-size: 14px;">@thenextweb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TNW. | Data | TNW | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 39 | | Short tweets | 44 | | Tweets kept | 3167 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3egcwo6t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thenextweb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s2bu9ha) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s2bu9ha/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thenextweb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ameerazam08/autotrain-imdb-1166543171
f30e49c3c0ee48c115e15a2798e9f3a6daad6559
2022-07-22T11:56:54.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:ameerazam08/autotrain-data-imdb", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
ameerazam08
null
ameerazam08/autotrain-imdb-1166543171
7
null
transformers
14,686
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ameerazam08/autotrain-data-imdb co2_eq_emissions: 0.07308302140406821 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1166543171 - CO2 Emissions (in grams): 0.07308302140406821 ## Validation Metrics - Loss: 0.2211569994688034 - Accuracy: 0.9138 - Precision: 0.9020598523124758 - Recall: 0.9284 - AUC: 0.9711116000000001 - F1: 0.9150404100137985 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ameerazam08/autotrain-imdb-1166543171 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ameerazam08/autotrain-imdb-1166543171", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ameerazam08/autotrain-imdb-1166543171", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/leadermcconnell
c0af7679cfa7fbb83e71b8edf7f10c4d21dd7fe5
2022-07-22T22:07:50.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/leadermcconnell
7
null
transformers
14,687
--- language: en thumbnail: http://www.huggingtweets.com/leadermcconnell/1658527665443/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/732596482336002049/JYMrr9_4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Leader McConnell</div> <div style="text-align: center; font-size: 14px;">@leadermcconnell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Leader McConnell. | Data | Leader McConnell | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 151 | | Short tweets | 20 | | Tweets kept | 3074 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sz9pqeo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leadermcconnell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sxm633o0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sxm633o0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/leadermcconnell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sanskar/DepressionAnalysis
94d1632c446bbce88ee4edb001f139a94bc87eb2
2022-07-23T19:50:11.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sanskar
null
sanskar/DepressionAnalysis
7
null
transformers
14,688
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: DepressionAnalysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DepressionAnalysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6091 | 1.0 | 151 | 0.5593 | 0.7082 | | 0.4041 | 2.0 | 302 | 0.4295 | 0.8055 | | 0.3057 | 3.0 | 453 | 0.4023 | 0.8367 | | 0.1921 | 4.0 | 604 | 0.4049 | 0.8454 | | 0.1057 | 5.0 | 755 | 0.4753 | 0.8479 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/luciengreaves-seanhannity
50740296f0493681f1876771135d400346daba14
2022-07-22T22:49:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/luciengreaves-seanhannity
7
null
transformers
14,689
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/666311094256971779/rhb7qkCD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402771730582622212/gwApDT26_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucien Greaves & Sean Hannity</div> <div style="text-align: center; font-size: 14px;">@luciengreaves-seanhannity</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucien Greaves & Sean Hannity. | Data | Lucien Greaves | Sean Hannity | | --- | --- | --- | | Tweets downloaded | 3197 | 3250 | | Retweets | 536 | 13 | | Short tweets | 379 | 60 | | Tweets kept | 2282 | 3177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2iwc0kes/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @luciengreaves-seanhannity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2db4oami) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2db4oami/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/luciengreaves-seanhannity') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Siyong/M
5e765d08165691176284f1b86bd5958e69a96f16
2022-07-23T10:51:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/M
7
null
transformers
14,690
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Millad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Millad This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2265 - Wer: 0.5465 - Cer: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 750 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 3.2911 | 33.9 | 2000 | 2.2097 | 0.9963 | 0.6047 | | 1.3419 | 67.8 | 4000 | 1.9042 | 0.7007 | 0.3565 | | 0.6542 | 101.69 | 6000 | 1.7195 | 0.5985 | 0.3194 | | 0.373 | 135.59 | 8000 | 2.2219 | 0.6078 | 0.3241 | | 0.2805 | 169.49 | 10000 | 2.3114 | 0.6320 | 0.3304 | | 0.2014 | 203.39 | 12000 | 2.6898 | 0.6338 | 0.3597 | | 0.1611 | 237.29 | 14000 | 2.7808 | 0.6041 | 0.3379 | | 0.1265 | 271.19 | 16000 | 2.8304 | 0.5632 | 0.3289 | | 0.1082 | 305.08 | 18000 | 2.8373 | 0.5874 | 0.3344 | | 0.103 | 338.98 | 20000 | 2.8580 | 0.5743 | 0.3292 | | 0.0854 | 372.88 | 22000 | 2.5413 | 0.5539 | 0.3186 | | 0.0675 | 406.78 | 24000 | 2.5523 | 0.5502 | 0.3229 | | 0.0531 | 440.68 | 26000 | 2.9369 | 0.5483 | 0.3142 | | 0.0504 | 474.58 | 28000 | 3.1416 | 0.5595 | 0.3225 | | 0.0388 | 508.47 | 30000 | 2.5655 | 0.5390 | 0.3111 | | 0.0396 | 542.37 | 32000 | 3.1923 | 0.5558 | 0.3178 | | 0.0274 | 576.27 | 34000 | 2.9235 | 0.5520 | 0.3257 | | 0.0361 | 610.17 | 36000 | 3.3828 | 0.5762 | 0.3312 | | 0.02 | 644.07 | 38000 | 3.3822 | 0.5874 | 0.3466 | | 0.0176 | 677.97 | 40000 | 3.1191 | 0.5539 | 0.3209 | | 0.0181 | 711.86 | 42000 | 3.2022 | 0.5576 | 0.3237 | | 0.0124 | 745.76 | 44000 | 3.2265 | 0.5465 | 0.3162 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
PanNorek/roberta-base
a1d5f8de68318311c3ee14fce16c635d6bc00c6f
2022-07-23T20:22:28.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
PanNorek
null
PanNorek/roberta-base
7
null
transformers
14,691
Entry not found
circulus/kobart-trans-chungcheong-v1
f677a023bf94c1fe905e9c4694940602ec5c21f0
2022-07-25T06:47:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
circulus
null
circulus/kobart-trans-chungcheong-v1
7
null
transformers
14,692
KoBART 기반 충청도 사투리 스타일 변경 - AI-HUB 의 충청도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
Splend1dchan/t5-large-squad
777f52fcbf9c21c6cefef3ed86509f08c4d25e76
2022-07-25T03:29:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/t5-large-squad
7
null
transformers
14,693
Entry not found
SebOchs/xtremedistil-l6-h256-uncased-squad
8867a9073c69f098c064ec7172ec4d563817ea89
2022-07-25T06:33:58.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:SQuAD", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
SebOchs
null
SebOchs/xtremedistil-l6-h256-uncased-squad
7
null
transformers
14,694
--- language: - en tags: - question-answering license: mit datasets: - SQuAD metrics: - EM - F1 --- # Test model for DL4NLP 2022 HW06 xtremedistil-l6-h256-uncased trained on SQuAD ## Hyper parameters - learning rate: 1e-5 - weight decay: 0.01 - warm up steps: 0 - learning rate scheduler: linear - epochs: 1 ## Metric results on the dev set - F1: 65.48 - EM: 51.67
rvignav/clip-vit-base-patch32-demo
50b82a6e0270c3db1d50d05a9a1575292861bc72
2022-07-27T19:50:36.000Z
[ "pytorch", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
rvignav
null
rvignav/clip-vit-base-patch32-demo
7
null
transformers
14,695
Entry not found
ben-yu/autotrain-MS2-1173943517
96be29757af94c4f062799445d7c028bc67c5ec4
2022-07-25T01:31:42.000Z
[ "pytorch", "led", "text2text-generation", "unk", "dataset:ben-yu/autotrain-data-MS2", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ben-yu
null
ben-yu/autotrain-MS2-1173943517
7
null
transformers
14,696
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ben-yu/autotrain-data-MS2 co2_eq_emissions: 0.687008092853648 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1173943517 - CO2 Emissions (in grams): 0.687008092853648 ## Validation Metrics - Loss: 2.806302070617676 - Rouge1: 0.0342 - Rouge2: 0.006 - RougeL: 0.0242 - RougeLsum: 0.0283 - Gen Len: 19.9989 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ben-yu/autotrain-MS2-1173943517 ```
clevrly/xlnet-base-mnli-finetuned
39d7e31dc2db8c31fef18f9a9de959eea7f1e693
2022-07-25T16:25:12.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
clevrly
null
clevrly/xlnet-base-mnli-finetuned
7
null
transformers
14,697
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-mnli-finetuned results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9118695873662761 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-mnli-finetuned This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3456 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.336 | 1.0 | 49087 | 0.3299 | 0.9010 | | 0.2582 | 2.0 | 98174 | 0.3456 | 0.9119 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Maxaontrix/bert-base-NER-reptile-5-datasets-finetuned-ner
c82e42d3852cddef294a14cb930a9d11a08cd07d
2022-07-26T07:23:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:skript", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Maxaontrix
null
Maxaontrix/bert-base-NER-reptile-5-datasets-finetuned-ner
7
null
transformers
14,698
--- tags: - generated_from_trainer datasets: - skript model-index: - name: bert-base-NER-reptile-5-datasets-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-NER-reptile-5-datasets-finetuned-ner This model is a fine-tuned version of [sberbank-ai/bert-base-NER-reptile-5-datasets](https://huggingface.co/sberbank-ai/bert-base-NER-reptile-5-datasets) on the skript dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 298 | 0.4198 | 0.6385 | 0.5297 | 0.5790 | 0.8699 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
peter2000/bmz_topics
7c41ce743108ec1f81c68ba545e54c82bd8a9761
2022-07-25T12:03:16.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
peter2000
null
peter2000/bmz_topics
7
null
sentence-transformers
14,699
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # peter2000/bmz_topics This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('peter2000/bmz_topics') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('peter2000/bmz_topics') model = AutoModel.from_pretrained('peter2000/bmz_topics') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=peter2000/bmz_topics) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 76 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.BatchHardTripletLoss.BatchHardTripletLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1520, "warmup_steps": 152, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->